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Abstract

Simulation preorder/equivalence and bisimulation equivalence are the most commonly
used equivalences in concurrency theory. Their standard definitions are often called
strong simulation/bisimulation, while weak simulation/bisimulation abstracts from in-
ternal τ -actions.

We study the computational complexity of checking these strong and weak seman-
tic preorders/equivalences between pushdown processes and finite-state processes. We
present a complete picture of the computational complexity of these problems and also
study fixed-parameter tractability in two important input parameters: x, the size of the
finite control of the pushdown process, and y, the size of the finite-state process.

All simulation problems are generally EXPTIME-complete and only become poly-
nomial if both parameters x and y are fixed.

Weak bisimulation equivalence is PSPACE-complete, but becomes polynomial if and
only if parameter x is fixed.

Strong bisimulation equivalence is PSPACE-complete, but becomes polynomial if
either parameter x or y is fixed.

Keywords: Pushdown automata, Verification, Simulation, Bisimulation.
ACM Subject Classification: F1.1, F3.1, F4.1, F4.3.

1. Introduction

Semantic equivalence checking is an important technique in formal verification of software
systems. The idea is to compare the behavior of a given program (the implementation)
with its intended behavior (the specification). Since the two behaviors are formalized
as transition systems, the comparison means proving some kind of semantic equivalence

IThis journal paper is mostly based on three conference presentations [33, 41, 36].
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between the initial states of the two transition systems. Since such proofs cannot be
completed by humans for programs of realistic size, a natural question is whether the
problem is decidable and what is its complexity. This question has been considered for
many computational models and a large number of results have been achieved during
the last decade (see [45, 17, 29, 9, 30, 11, 48] for surveys of some subfields).

As semantic equivalences we consider simulation equivalence (defined indirectly via
simulation preorder), as well as bisimulation equivalence [46, 44]. We consider both the
standard (i.e., strong) variants of these equivalences and the weak variants which abstract
from internal τ -actions. These are some of the most important semantic equivalences in
the linear/branching time spectrum of van Glabbeek [55, 54].

In this paper we consider pushdown processes, the class of processes whose behavior
is definable by pushdown automata (PDA), as well as finite-state systems, the class of
processes which are definable by finite-state labeled transition systems. The importance
of PDA has recently been recognized also in areas different from theory of formal lan-
guages. In particular, PDA are a natural and convenient model for sequential programs
with recursive procedure calls (see, e.g., [5, 6, 18, 20, 19]). Global data of such a program
is stored in the finite control, and the stack symbols correspond to activation records of
individual procedures. A procedure call is thus modeled by pushing a new symbol onto
the stack, and a return from the procedure is modeled by popping the symbol from the
stack. Consequently, a PDA is seen as a finite description of a computational behavior
rather than a language acceptor in this context2. The behavior of a given PDA ∆ is for-
mally defined by the associated transition system T∆, where the states are configurations
of ∆ and pα

a→ qβ if this move is consistent with the transition function of ∆. Hence,
T∆ has infinitely many states.

A special subclass of PDA are the context-free processes, which correspond to PDA
with just one control-state. The class of context-free processes is also called Basic Process
Algebra [8, 7]. 3 The classes of all pushdown processes, context-free processes and finite-
state processes are denoted PDA, BPA and FS, respectively.

Let A,B be classes of processes. The problem whether a given process s of class
A is simulated (or weakly simulated) by a given process t of class B is denoted by
A v B (or A vw B, respectively). Similarly, the problem if s and t are simulation
equivalent, weakly simulation equivalent, bisimilar, or weakly bisimilar, is denoted by
A ' B, A 'w B, A ∼ B, or A ≈ B, respectively.

Our contribution: We study the computational complexity of these problems, with
a particular focus on fixed-parameter tractability w.r.t. two important input parameters:

x: The size the the finite control of the pushdown automaton, i.e., the global data of the
considered recursive program. In particular, the finite control has only size 1 for
all BPA-processes.

2From the language-theoretic point of view, the definition of PDA adopted in this area corresponds
to the subclass of real-time PDA. It does not mean that the concept of ε-transitions vanished—it has
only been replaced by ‘silent’ transitions with a distinguished label τ which may (but does not have to)
be taken into account by a given semantic equivalence.

3This is because stateless PDA correspond to a natural fragment of ACP known as BPA (Basic
Process Algebra; see [8]). BPA cannot model global data, but they are sufficiently powerful to model,
e.g., the interprocedural data-flow [18]. It is worth noting that the expressive power of PDA is strictly
greater than the one of BPA w.r.t. most of the considered semantic equivalences.
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y: The size of the finite-state process, i.e., the size of the specification.

While these problems are generally PSPACE- or EXPTIME-complete, most of
them become polynomial if one (or both) of these parameters x and y are fixed. Thus,
most equivalence checking problems between PDA and finite-state systems are fixed-
parameter tractable.

Our results can be summarized as follows (see also the table in Section 7).

• All (strong and weak) simulation problems are generally EXPTIME-complete,
and the lower bound even holds for the simpler BPA case, i.e., PDA/BPA ≡ FS
for ≡∈ {v,w,',vw,ww,'w}. All these problems become polynomial if and only
if both parameters x and y are fixed.

• Weak bisimulation equivalence (PDA ≈ FS) is generally PSPACE-complete.
However, it becomes polynomial if and only if parameter x is fixed. In particular,
the problem BPA ≈ FS (for x = 1) is polynomial.

• Strong bisimulation equivalence (PDA ∼ FS) is generally PSPACE-complete.
However, it becomes polynomial if either parameter x or y is fixed. In other words,
this problem is only hard to solve if both parameters x and y are large.

Furthermore, we show that PDA ∼ FS is easier than the general PDA ∼ PDA
problem. In the appendix of this paper we show EXPTIME-hardness of PDA ∼ PDA.

The results in this journal paper are mostly based on three of our conference pre-
sentations [33, 41, 36]. Some earlier (and weaker) results have appeared in [34, 37]. All
proofs of theorems are given in this paper, except for Theorem 18. The bisimulation
basis construction required for this proof was introduced in [38] and generalized in [40].

Related work: The ‘symmetric’ equivalence checking problem where two pushdown
processes (or context-free processes) are compared to each other has also been studied.

While all simulation problems between PDA/BPA are undecidable [21], some bisim-
ulation problems are decidable.

Baeten, Bergstra, and Klop [7] proved that strong bisimilarity is decidable for normed
BPA (a PDA is normed if the stack can be emptied from every reachable configuration).
Simpler proofs were given later in [14, 22, 26], and there is even a polynomial-time
algorithm [24]. The decidability result has been extended to all (not necessarily normed)
BPA in [15], and an elementary (2-EXPTIME) upper complexity bound is due to
[12]. Recently, PSPACE-hardness of this problem has been established in [49]. Strong
bisimilarity was shown to be decidable also for normed PDA [51]. Later, Sénizergues
proved that bisimilarity is decidable for all PDA processes [47]. (See the appendix of this
paper for an EXPTIME lower bound.)

Weak bisimilarity is undecidable for PDA [50], and in fact for a very modest subclass
of PDA known as one-counter nets (Petri nets with only one unbounded place) [42].
Moreover, weak bisimilarity is even undecidable for PDA with just 2 control-states [43].
Is is an open question if weak bisimilarity is decidable for PDA with just 1 control state
(i.e., BPA). The best known lower bound for the BPA ≈ BPA problem is EXPTIME-
hardness [43].
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2. Preliminaries

2.1. Transition Systems and Semantic Equivalences
Definition 1. A labeled transition systems is a triple T = (S,Act ,→) where S is a set
of states, Act is a finite set of actions, and → ⊆ S × Act × S is a transition relation.
We write s a→ t instead of (s, a, t) ∈ → and we extend this notation to elements of Act∗

in the natural way. A state t is reachable from a state s, written s →∗ t, iff s
w→ t for

some w ∈ Act∗.
The action τ is a special ‘silent’ internal action. The extended transition relation

‘ a⇒’ is defined by s a⇒ t iff either s = t and a = τ , or s τ i

→ s′
a→ t′

τj

→ t for some i, j ∈ N0

and s′, t′ ∈ S.

In the equivalence-checking approach to formal verification, one describes the spec-
ification (the intended behavior) and the actual implementation of a given process as
states in transition systems, and then it is shown that they are equivalent. Here the
notion of equivalence can be formalized in various ways according to specific needs of a
given practical problem (see, e.g., [55] for an overview).

Simulation and bisimulation equivalence are of special importance as their accompa-
nying theory has been developed very intensively and found its way to many practical
applications.

Definition 2. Let T = (S,Act ,→) be a labeled transition system.

Simulation A binary relation R ⊆ S × S is a simulation iff for all pairs (s, t) ∈ R

and all actions a ∈ Act if s a→ s′ there exists some transition t
a→ t′ such that

(s′, t′) ∈ R.

Simulations are closed under union and the largest simulation relation on T is a
preorder, denoted by v. A process s is simulated by t, written s v t, iff there is a
simulation R such that (s, t) ∈ R. Processes s, t are simulation equivalent, written
s ' t, iff they can simulate each other, i.e., s v t and t v s.

Bisimulation A symmetric simulation relation is called a bisimulation. The largest
bisimulation relation is an equivalence called strong bisimulation. It is denoted by
∼.

Weak simulation In weak simulation one abstracts from internal τ actions. A binary
relation R ⊆ S × S is a weak simulation iff for all pairs (s, t) ∈ R and all actions
a ∈ Act if s a→ s′ there exists some transition t

a⇒ t′ such that (s′, t′) ∈ R.

Weak simulations are closed under union and the largest weak simulation relation
on T is a preorder, denoted by vw. A process s is weakly simulated by t, written
s v t, iff there is a weak simulation R such that (s, t) ∈ R. Processes s, t are
weakly simulation equivalent, written s 'w t, iff they can simulate each other, i.e.,
s vw t and t vw s.

Weak Bisimulation A symmetric weak simulation relation is called a weak bisimula-
tion. The largest weak bisimulation relation is an equivalence, which is called weak
bisimulation equivalence and denoted by ≈.
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Definition 3. (Bisimulation up-to k) Let T = (S,Act ,→) be a transition system. The
relation ≈k⊆ S × S for k ∈ N0 is called weak bisimulation up-to k. These relations are
defined inductively as follows: ≈0= S × S and for k > 0 we have (s, t) ∈≈k iff

• For all a ∈ Act, if s a⇒ s′ then there exists some transition t a⇒ t′ s.t. (s′, t′) ∈≈k−1,
and

• For all a ∈ Act, if t a⇒ t′ then there exists some transition s a⇒ s′ s.t. (s′, t′) ∈≈k−1

The relation ∼k for k ∈ N0 is called strong bisimulation up-to k. The relations ∼k are
defined analogously to ≈k with a→ instead of a⇒.

Simulations and bisimulations can also be used to relate states of different transition
systems; formally, two systems are considered to be a single one by taking the disjoint
union.

Simulations and bisimulations can also be viewed as games [52, 53] between two
players, the attacker and the defender. In a simulation game the attacker wants to show
that s 6v t, while the defender attempts to frustrate this. The initial configuration of the
game is given as the pair of states (s, t). Imagine that there are two tokens put on states
s and t. Now the two players, attacker and defender, start to play a simulation game
which consists of a (possibly infinite) number of rounds where each round is performed as
follows: The attacker takes the token which was put on s originally and moves it along a
transition labeled by (some) a; the task of the defender is to move the other token along
a transition with the same label. If one player cannot move then the other player wins.
The defender wins every infinite game. It can be easily shown that s v t iff the defender
has a universal winning strategy. The only difference between a simulation game and a
bisimulation game is that the attacker can choose his token at the beginning of every
round (the defender has to respond by moving the other token). Again we get that s ∼ t
iff the defender has a winning strategy. Corresponding ‘weak forms’ of the two games
are defined in the obvious way: instead of the relation a→, the players use the relation a⇒
with possibly several extra weak internal τ steps.

The relations ∼k and ≈k also have a game theoretic characterization. We have s ∼k t
(resp. t ≈k t) iff the defender has a strategy by which he can avoid losing the strong
(resp. weak) bisimulation game from (s, t) for at least k rounds.

2.2. Temporal Logic and Characteristic Formulae
Hennessy-Milner Logic [23] is a simple modal logic that is interpreted on labeled transition
systems T = (S,Act ,→). The formulae have the following syntax.

Φ ::= true | ¬Φ | Φ1 ∧ Φ2 | 〈a〉Φ

where a ∈ Act .
The denotation [[Φ]] of a formula Φ is a subset of S, which is defined inductively over

the structure of Φ as follows.

[[true]] := S

[[¬Φ]] := S − [[Φ]]
[[Φ1 ∧ Φ2]] := [[Φ1]] ∩ [[Φ2]]

[[〈a〉Φ]] := {s ∈ S | ∃s′ ∈ S. s a→ s′ ∧ s′ ∈ [[Φ]]}
5



One also writes s |= Φ for s ∈ [[Φ]].
Disjunction can be defined via negation and conjunction by Φ1∨Φ2 = ¬(¬Φ1∧¬Φ2).

The universal one-step next operator can be defined by [a]Φ = ¬〈a〉¬Φ.
The logic EF extends Hennessy-Milner Logic with an operator 3 for reachability

whose semantics is defined as follows.

[[3Φ]] := {s ∈ S | ∃s′ ∈ S. s ∗→ s′ ∧ s′ ∈ [[Φ]]}

EF can also be defined as a fragment of computation-tree logic (CTL) [16].
We consider a slight extension of EF by adding another operator 3τ that expresses

reachability by a sequence of τ -actions.

[[3τΦ]] := {s ∈ S | ∃s′ ∈ S. s τ
∗

→ s′ ∧ s′ ∈ [[Φ]]}

We now show a connection between temporal logic and bisimulation equivalence. We
recall some results from [28] (see also [30] for a more recent survey). A characteristic
formula of a finite-state system F w.r.t. ∼ (resp. ≈) is a formula Θ∼F (resp. Θ≈F )
s.t. for every general system G which uses the same set of actions as F we have that
G |= Θ∼F ⇐⇒ G ∼ F (resp. G |= Θ≈F ⇐⇒ G ≈ F ). It has been shown in [28]
that characteristic formulae for finite-state systems w.r.t. ∼ and ≈ can be effectively
constructed in the temporal logic EF (a simple fragment of CTL [16]), by using the
following theorem.

Theorem 1. (from [28])
Let F be a finite-state system with n states and G a general system. States g ∈ G and
f ∈ F are weakly bisimilar iff the following conditions hold:

1. g ≈n f , and
2. For each state g′ which is reachable from g there is a state f ′ ∈ F such that g′ ≈n f ′.

On every system without τ -actions the relation ≈ coincides with ∼. Therefore, we
obtain the following corollary.

Corollary 1. Let F be a finite-state system with n states and G a general system. States
g ∈ G and f ∈ F are strongly bisimilar iff the following conditions hold:

1. g ∼n f , and
2. For each state g′ which is reachable from g there is a state f ′ ∈ F such that g′ ∼n f ′.

Now we construct formulae Φ∼k,f for states f in F w.r.t. ∼k that satisfy g |= Φ∼k,f ⇐⇒
g ∼k f . The family of Φ∼k,f formulae is defined inductively on k as follows:

Φ∼0,f := true

Φ∼k+1,f :=

 ∧
a∈Act

∧
f ′∈S(f,a)

〈a〉Φ∼k,f ′

 ∧
 ∧
a∈Act

([a](
∨

f ′∈S(f,a)

Φ∼k,f ′))
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where S(f, a) = {f ′ | f a→ f ′} and empty conjunctions are equivalent to true. The
first subformulae of Φ∼k+1,f specifies that every attacker move f a→ f ′ in the finite-state
system F can be matched by a defender move in G. The second subformulae of Φ∼k+1,f

specifies that every attacker move in G can be matched by some defender move f a→ f ′

in the finite-state system F .
Thus, by Corollary 1, the characteristic formula Θ∼f (w.r.t. ∼) for a process f of a

finite-state system F = (F,Act ,→) with n states is

Θ∼f = Φ ∧ ¬3Ψ

where Φ = Φ∼n,f and

Ψ =

 ∧
f ′∈F

¬Φ∼n,f ′


Observe that the formulae Φ and Ψ are Hennessey-Milner Logic formulae [23], since they
do not contain the reachability operator 3, but only one-step next modalities 〈a〉 and
[a] and boolean operators. The formula Θ∼f contains only a single reachability operator.
Furthermore, the nesting-depth of one-step next operators in Φ and Ψ is n.

Now we construct the characteristic EF-formula Θ≈f (w.r.t. ≈) for a process f of a
finite-state system F = (F,Act ,→) with n states. Without restriction we assume that
⇒=→ in F , i.e., that the transitive closure w.r.t. τ -transitions is already computed in
F (this can be done in polynomial time).

One first constructs formulae Φ≈k,f for states f in F w.r.t. ≈k that satisfy g |=
Φ≈k,f ⇐⇒ g ≈k f . The family of Φ≈k,f formulae is defined inductively on k as fol-
lows:

Φ0,f := true

Φk+1,f :=

 ∧
a∈Act

∧
f ′∈S(f,a)

3aΦk,f ′

 ∧
 ∧
a∈Act

(¬3a(
∧

f ′∈S(f,a)

¬Φk,f ′))


where S(f, a) = {f ′ | f a→ f ′} and 3τ means “reachable via a finite number of τ -
transitions” and 3a := 3τ 〈a〉3τ for a 6= τ . Empty conjunctions are equivalent to true.
The first subformulae of Φ≈k+1,f specifies that every attacker move f a⇒ f ′ in the finite-
state system F can be matched by a long defender move in G. The second subformulae
of Φ≈k+1,f specifies that every long attacker move in G can be matched by some defender
move f a⇒ f ′ in the finite-state system F .

Thus, by Theorem 1, the characteristic formula Θ≈f for a process f of a finite-state
system F = (F,Act ,→) with n states is

Θ≈f = Φ≈n,f ∧ ¬3

 ∧
f ′∈F

¬Φ≈n,f ′


In general, the characteristic formula Θ≈f has exponential size in n = |F | if it is repre-
sented as a tree of subformulae. However, Θ≈f has only a polynomial number of different
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subformulae (the O(n2) formulae Φ≈k,f for 0 ≤ k ≤ n and f ′ ∈ F where |F | = n). Thus
Θ≈f can be compactly represented by a DAG (directed acyclic graph) of polynomial size,
instead of a tree of exponential size. In this case the construction of Θ≈f takes only
polynomial time.

2.3. Pushdown Processes
In this paper we mainly consider processes that are described by pushdown automata
(PDA). Here the PDA are not used as language acceptors, but as a model of sequential
systems with mutually recursive procedures. In order to emphasize this point, we speak
of pushdown processes. Furthermore, pushdown processes are usually defined to have a
particular initial state (see Subsection 2.4).

Definition 4. A pushdown automaton (PDA) is a tuple ∆ = (Q,Γ,Act , δ) where Q is
a finite set of control-states, Γ is a finite stack alphabet, Act is a finite input alphabet,
and δ is a finite set of transition rules, which have one of the following forms.

• p a→ q, where p, q ∈ Q and a ∈ Act.

• p a→ qβ, where p, q ∈ Q, a ∈ Act and β ∈ Γ∗.

• pA a→ qβ, where p, q ∈ Q, a ∈ Act, A ∈ Γ and β ∈ Γ∗.

∆ induces a labeled transition system T∆ = (S,Act ,→), where S = Q× Γ∗ is the set of
states (we simply write pα instead of (p, α)), Act is the set of actions, and the transition
relation is defined as follows: If (p a→ q) ∈ δ then we have pα a→ qα for every α ∈ Γ∗. If
(p a→ qβ) ∈ δ then we have pα a→ qβα for every α ∈ Γ∗. If (pA a→ qβ) ∈ δ then we have
pAα

a→ qβα for every α ∈ Γ∗.
Note that in configurations where the stack is empty (denoted as pε) only transition

rules of the first two types are applicable.
As a shorthand notation, we use a rule of the form A

a→ B (where A,B ∈ Γ) to
denote the entire set of rules {pA a→ pB | p ∈ Q}.

We can assume (w.l.o.g.) that each transition increases the height (or length) of the
stack by at most one (i.e., |β| ≤ 2), since each PDA can be efficiently transformed into
this kind of normal form.

BPA (basic process algebra [8]), also called context-free processes, is the subclass of
PDA where |Q| = 1, i.e., without a finite control. In this case we do not write the
control-state, i.e., we wite α instead of pα.

2.4. The Problem
We consider the complexity of checking semantic equivalences between pushdown pro-
cesses and finite-state systems. The semantic equivalences we consider are strong and
weak simulation preorder and equivalence and strong and weak bisimulation equivalence.

Let P = (Q,Γ,ActP , δ) be a pushdown automaton and TP = (SP ,ActP ,→P ) be the
induced labeled transition system according to Definition 4. Let F = (SF ,ActF ,→F )
be a finite-state system and ≡ be a preorder/equivalence ∈ {v,w,',vw,ww,'w,∼,≈}.
We require that initial states p0α0 ∈ SP of P and s0 ∈ SF of F are defined.

We say that P and F are in preorder/equivalence relation ≡ (denoted by P ≡ F )
iff their respective initial states are in preorder/equivalence relation in the combined

8



transition system, i.e., iff we have that p0α0 ≡ s0 in the combined labeled transition
system (SP ∪ SF ,ActP ∪ ActF ,→P ∪ →F ). Using this notation, we can now define the
preorder/equivalence checking problems for ≡∈ {v,w,',vw,ww,'w,∼,≈}.
PDA ≡ FS
Instance: A pushdown process P and a finite-state system F .
Question: P ≡ F ?

The complexity of many of these problems depends on the size of both input param-
eters, particularly the size of the finite-state system and the size of the finite control of
the pushdown automaton. In some cases the problems are fixed-parameter tractable, i.e.,
become polynomial if the size one of the input parameters (e.g., the finite control of the
PDA) is fixed. Other problems are PSPACE- or EXPTIME-hard, even if some input
parameters are fixed. Thus we study the following questions.

• What is the general complexity of PDA ≡ FS ?

• What is the complexity of PDA ≡ FS if the size of the finite-state system is fixed?

• What is the complexity of PDA ≡ FS if the size of the finite control of the PDA
is fixed? In particular, what if the finite control of the PDA has size 1, i.e., what
is the complexity of BPA ≡ FS ?

• What is the complexity of PDA ≡ FS if both the size of the finite control of the
PDA and the size of the finite system are fixed? (Note that there are still infinitely
many non-trivial instances in this case, because of the transition rules of the PDA.)

In this paper we give a complete picture of the computational complexity of all these
problems of semantic preorder/equivalence checking between pushdown processes and
finite-state systems.

3. Strong Simulation Preorder and Equivalence

We consider strong simulation preorder between PDA and finite-state systems in both
directions, and simulation equivalence. For ≡∈ {v,w,'} we consider the problem.

PDA ≡ FS
Instance: A pushdown process P and a finite-state system F .
Question: P ≡ F ?

We show that all three problems (for ≡∈ {v,w,'}) have the same complexity. The
problems are EXPTIME-complete in general, and only fixed-parameter tractable if
both the size of F and the size of the finite control of P are fixed. If just one of these
parameters is fixed then the problem stays EXPTIME-hard.

The following table summarizes the complexity results for strong simulation pre-
order/equivalence. In the cases where a parameter size is fixed, the upper bounds are
interpreted as ‘for every fixed size’, while the lower bounds are interpreted as ‘for some
fixed size’.
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Complexity General fixed PDA control fixed F both
(even size 1; BPA) fixed

PDA v FS EXPTIME-compl. EXPTIME-compl. EXPTIME-compl. P
PDA w FS EXPTIME-compl. EXPTIME-compl. EXPTIME-compl. P
PDA ' FS EXPTIME-compl. EXPTIME-compl. EXPTIME-compl. P

3.1. Upper Bounds
If the automata do not contain any internal τ -transitions then strong and weak simulation
equivalence coincide. Thus all upper complexity bounds for weak simulation carry over
to strong simulation. The results of Subsection 4.1 imply the following two theorems.

Theorem 2. The problems PDA v FS, PDA w FS, and PDA ' FS are in EXP-
TIME.

Proof. Directly from Theorem 9. 2

Theorem 3. If the size of the finite control of the PDA and the size of the finite-state
system are bounded by fixed constants, then the problems PDA v FS, PDA w FS, and
PDA ' FS are decidable in polynomial time.

Proof. Directly from Theorem 10. 2

3.2. Lower Bounds
The EXPTIME lower bounds in this section are shown by a reduction from the EXP-
TIME-complete acceptance problem for alternating linear-bounded automata (LBA).

First we show that the problem BPA v FS is EXPTIME-hard, and then we show
that the problem PDA v FS is EXPTIME-hard even for a fixed finite-state system.
Then we show the same EXPTIME-hardness result for the reverse direction w. Finally,
we show EXPTIME-hardness of ' by a simple reduction from v to '.

Definition 5. An alternating LBA [56] is an alternating Turing machine [25] whose
tape is linearly bounded in the size of the input word. An alternating LBA M is de-
scribed by a tuple M = (S,Σ, γ, s0,`,a, π) where S,Σ, γ, s0,`, and a are defined as
for ordinary non-deterministic LBA. In particular, S is a finite set of control-states (we
reserve ‘Q’ to denote a set of control-states of pushdown automata), Σ is the set of tape
symbols, `,a ∈ Σ are the left-end and right-end markers of the tape, respectively, and
π : S → {∀,∃, acc, rej} is a function which partitions the control-states of S into univer-
sal, existential, accepting, and rejecting, respectively. A configuration of the LBA is of
the form usAv, such that

• u ∈ Σ∗ is the tape content to the left of the read-write head

• s ∈ S is the current control-state
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• A ∈ Σ is the tape symbol located at the current head position

• v ∈ Σ∗ is the tape content to the right of the read-write head

• If the head is at the leftmost position then u = ε and A = `, otherwise the first
symbol of u is `.

• If the head is at the rightmost position then v = ε and A = a, otherwise the last
symbol of v is a.

The transition function γ : S × Σ 7→ 2S×Σ×{L,R} describes the dynamics of the system.
To any control-state s ∈ S and tape symbol A ∈ Σ at the current head position, it assigns
a set of possible moves. Each move is described by a tuple from S × Σ × {L,R}, i.e., a
move consists of a new control-state, a new tape symbol which is written to the tape at
the current head position, and a direction L (left) or R (right) for the read-write head
to move to.

The head cannot move beyond the left-and and right-end markers, and these markers
cannot be removed. This is ensured by the following restrictions on δ.

• (t, B,D) ∈ δ(s,`) implies D = R and B = `.

• (t, B,D) ∈ δ(s,a) implies D = L and B = a.

This induces a transition system on the set of configurations as follows.

• If (t, B,R) ∈ γ(s,A) then usAv → uBtv

• If (t, B, L) ∈ γ(s,A) then uCsAv → utCBv

where A,B,C ∈ Σ, s, t ∈ S and u, v ∈ Σ∗.
We assume (w.l.o.g.) there are either exactly two moves (in normal configurations)

or none (in final configurations). I.e., γ satisfies the following two conditions:

• for all s ∈ S and A ∈ Σ such that π(s) = ∀ or π(s) = ∃ we have that |γ(s,A)| =
2. We fix an order on the two possible moves, i.e., on the elements of γ(s,A).
So γ(s,A) = {(s1, A1, D1, ), (s2, A2, D2)} for some s1, s2 ∈ S, A1, A2 ∈ Σ and
D1, D2 ∈ {L,R}. We then define first(s,A) := s1 as the new control-state of the
first move and second(s,A) := s2 as the new control-state of the second move. (It
is possible that s1 = s2.) Therefore, each configuration of M where the control-
state is universal or existential has exactly two immediate successors (configurations
reachable in one computation step).

• for all s ∈ S and A ∈ Σ such that π(s) = acc or π(s) = rej we have that γ(s,A) = ∅,
i.e., each configuration of M where the control-state is accepting or rejecting is
‘terminated’ (without any successors).

A computation-tree for M on an input word w ∈ Σ∗ is a finite tree T satisfying the
following: the root of T is (labeled by) the initial configuration s0`wa of M, and if N
is a node of M labeled by a configuration usv where u, v ∈ Σ∗ and s ∈ S, then the
following holds:

• if s is accepting or rejecting, then T is a leaf;
11



• if s is existential, then T has one successor whose label is one of the two configu-
rations reachable from usv in one step (here, the notion of a computation step is
defined in the same way as for ‘ordinary’ Turing machines; see above);

• if s is universal, then T has two successors labeled by the two configurations reach-
able from usv in one step.

M accepts w iff there exists a computation-tree T such that all leafs of T are accepting
configurations. The acceptance problem for alternating LBA is known to be EXPTIME-
complete [56].

In subsequent proofs we often use M? to denote the set M ∪ {?} where M is a set
and ? 6∈M is a fresh symbol.

Theorem 4. The problem BPA v FS is EXPTIME-hard.

Proof. LetM = (S,Σ, γ, s0,`,a, π) be an alternating LBA and w ∈ Σ∗ an input word.
We construct (in polynomial time) a BPA process ∆ = (Γ,Act , δ) and a process α of

∆ and a finite-state system F = (S′,Act ,→) and a process X of F , such thatM accepts
w iff α 6v X.

The idea for the construction is that the simulation game between α and X constructs
a branch in a computation-tree of M on w. Since the attacker wants to show that M
accepts w, he gets to choose the successor state at the existential control-states, while
the defender gets to choose the successor state at the universal control-states. The
attacker gets to choose the tape symbols in the encoded configurations of M, which are
stored on the stack of α. In order to avoid ‘cheating’ by the attacker (i.e., choosing
tape symbols which do not encode a correct computation of M on w), the defender can
always demand a ‘check’, which he wins if the attacker cheated. Thus the attacker can
only win the simulation game if he can reach an accepting configuration ofM in a correct
simulation of its computation on w.

Let n be the length of w. We let

Γ = S?×Σ ∪ S×Σ?×{0, · · · , n+2} ∪ S×Σ×{W} ∪ {T,Z}

Configurations ofM are encoded by strings over S?×Σ of length n+ 2. A configuration
usv, where u, v ∈ Σ∗ and s ∈ S, is written as

〈?, v(k)〉 〈?, v(k − 1)〉 · · · 〈?, v(2)〉 〈s, v(1)〉 〈?, u(m)〉 · · · 〈?, u(1)〉

where k and m are the lengths of v and u, resp., and v(i) denotes the ith symbol of v
(configurations are represented in a ‘reversed order’ since we want to write the top stack
symbol on the left-hand side).

Unlike pushdown automata, BPA processes do not have a finite control. However,
the current symbol at the top of the stack can be used in this function (i.e., as a finite
memory), as long as the height of the stack does not decrease. Symbols from the set
S×Σ?×{0, · · · , n+ 2} are used as top stack symbols when pushing a new configuration
onto the stack (see below); they should be seen as a finite memory where we keep (and
update) the information about the position of the symbol which will be guessed by the
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next transition (as we count symbols from zero, the bounded counter reaches the value
n+ 2 after guessing the last symbol), about the control-state which is to be pushed, and
about the (only) symbol of the form 〈s, a〉 which was actually pushed.

The Z is a special ‘bottom’ symbol which can emit all actions and cannot be popped.
The role of symbols of S×Σ×{W} ∪ {T} will be clarified later. The set of actions is
Act = {a, c, f, s, d, t} ∪ (S?×Σ), and δ consists of the following transitions:

1. (〈s, ?〉, i) a→ (〈s, ?〉, i+ 1) 〈?,A〉 for all A ∈ Σ, s ∈ S, 0 ≤ i ≤ n+ 1;
2. (〈s, ?〉, i) a→ (〈s,A〉, i+ 1) 〈s,A〉 for all A ∈ Σ, s ∈ S, 0 ≤ i ≤ n+ 1;
3. (〈s,A〉, i) a→ (〈s,A〉, i+ 1) 〈?,B〉 for all A,B ∈ Σ, s ∈ S, 0 ≤ i ≤ n+ 1;
4. (〈s,A〉, n+ 2) c→ (〈s,A〉,W ) for all A ∈ Σ, s ∈ S;

5. (〈s,A〉,W ) d→ ε for all s ∈ S, A ∈ Σ such that s is not
rejecting;

6. (〈s,A〉,W )
f→ (〈s′, ?〉, 0) for all s, s′ ∈ S, A ∈ Σ such that π(s) ∈

{∀,∃} and s′ = first(s,A);
7. (〈s,A〉,W ) s→ (〈s′, ?〉, 0) for all s, s′ ∈ S, A ∈ Σ such that π(s) ∈

{∀,∃} and s′ = second(s,A);

8. (〈s,A〉,W )
f→ (〈s′, ?〉, 0) for all s, s′ ∈ S, A ∈ Σ such that π(s) =

∃ and s′ = second(s,A);
9. (〈s,A〉,W ) s→ (〈s′, ?〉, 0) for all s, s′ ∈ S, A ∈ Σ such that π(s) =

∃ and s′ = first(s,A);
10. (〈s,A〉,W )

y→ T for all s ∈ S, y ∈ {f, s} such that π(s) =
acc;

11. T t→ T

12. Z
y→ Z for all y ∈ Act ;

13. 〈x,A〉 〈x,A〉→ ε for all x ∈ S?, A ∈ Σ.

The BPA process α of the system ∆ is defined as follows.

α = (〈s0,`〉, n+2) 〈?,a〉 〈?, w(n)〉 · · · 〈?, w(2)〉 〈?, w(1)〉 〈s0,`〉Z

It encodes the initial configuration of M, with the input word w stored on the stack in
reverse order. The behavior of α can be described as follows: whenever the top stack
symbol is of the form (〈s,A〉,W ), we know that the previously pushed configuration
contains the symbol 〈s,A〉. If s is rejecting, no further transitions are possible. Otherwise,
(〈s,A〉,W ) can either disappear (emitting the action d—see rule 5), or it can perform
one of the f and s actions as follows:

• If s is universal or existential, (〈s,A〉,W ) can emit either f or s, storing first(s,A)
or second(s,A) in the top stack symbol, respectively (rules 6, 7).

• If s is existential, (〈s,A〉,W ) can also emit f and s while storing second(s,A) and
first(s,A), respectively (rules 8, 9).

• If s is accepting, (〈s,A〉,W ) emits f or s and pushes the symbol T which can do
the action t forever (rules 10, 11).
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If (〈s,A〉,W ) disappears, the other symbols stored in the stack subsequently perform
their symbol-specific actions and disappear (rule 13). If s is not accepting and (〈s,A〉,W )
emits f or s, a new configuration is guessed and pushed to the stack; the construction of
δ ensures that

• exactly n+ 2 symbols are pushed (rules 1–4);

• at most one symbol of the form 〈s′, B〉 is pushed; moreover, the s′ must be the
control-state stored in the top stack symbol. After pushing 〈s′, B〉, the B is also
remembered in the top stack symbol (rule 2);

• if no symbol of the form 〈s′, B〉 is pushed, no further transitions are possible after
guessing the last symbol of the configuration (there are no transitions for symbols
of the form (〈s′, ∗〉, n+ 2));

• after pushing the last symbol, the action c is emitted and a ‘waiting’ symbol
(〈s′, B〉,W ) is pushed.

Now we define the finite-state system F . The set of states of F is given by

S′ = {X,F, S, U,C0, · · · , Cn} ∪ {C0, · · · , Cn} × {0, · · · , n+ 1} × (S? × Σ)4
?

Transitions of F are

1. X a→ X, X
c→ F, X

c→ S, X
c→ Ci for every 0 ≤ i ≤ n;

2. F
f→ X, F

y→ U for every y ∈ Act − {f};
3. S s→ X, S

y→ U for every y ∈ Act − {s};
4. Ci

d→ (Ci, 0, ?, ?, ?, ?), Ci
y→ U for every 0 ≤ i ≤ n, y ∈ Act − {d};

5. U
y→ U for every y ∈ Act ;

6. (Ci, j, ?, ?, ?, ?)
y→ (Ci, j+1, ?, ?, ?, ?) for all 0 ≤ i ≤ n, 0 ≤ j < i, and y ∈

S?×Σ;
7. (Ci, i, ?, ?, ?, ?)

y→ (Ci, i+1, y, ?, ?, ?) for all 0 ≤ i ≤ n and y ∈ S?×Σ;
8. (Ci, i+1, y, ?, ?, ?) z→ (Ci, (i+2) mod (n+2), y, z, ?, ?)

for all 0 ≤ i ≤ n and y, z ∈ S?×Σ;
9. (Ci, j, y, z, ?, ?)

u→ (Ci, (j+1) mod (n+2), y, z, ?, ?)
for all 0 ≤ i ≤ n, i+2 ≤ j ≤ n+1, and y, z, u ∈ S?×Σ;

10. (Ci, j, y, z, ?, ?)
u→ (Ci, j+1, y, z, ?, ?)

for all 0 ≤ i ≤ n, 0 ≤ j < i, and y, z, u ∈ S?×Σ;
11. (Ci, i, y, z, ?, ?)

u→ (Ci, i+1, y, z, u, ?)
for all 0 ≤ i ≤ n and y, z, u ∈ S?×Σ;

12. (Ci, i+1, y, z, u, ?) v→ (Ci, (i+2) mod (n+2), y, z, u, v)
for all 0 ≤ i ≤ n and y, z, u, v ∈ S?×Σ;

13. (Ci, (i+2) mod (n+2), y, z, u, v) x→ U
for all 0 ≤ i ≤ n, x ∈ Act , and y, z, u, v ∈ S?×Σ such that (y, z) and (u, v) are not
compatible pairs (see below).
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Figure 1: The systems F and F ′ (successors of (Ci, 0, ?, ?, ?, ?) in F are omitted).

A fragment of F is shown in Fig. 1. The role of states of the form (Ci, 0, ?, ?, ?, ?) and
their successors (which are not drawn in Fig. 1) is clarified below.

As already mentioned above, the BPA process α is defined as the process in ∆ with
initial state

α = (〈s0,`〉, n+2) 〈?,a〉 〈?, w(n)〉 · · · 〈?, w(2)〉 〈?, w(1)〉 〈s0,`〉Z

Similarly the finite-state process X is defined as the process in F with initial state X.
Now we prove thatM accepts w iff α 6v X. Intuitively, the simulation game between

α and X corresponds to constructing a branch in a computation-tree for M on w. The
attacker (who plays with α) wants to show that there is an accepting computation-tree,
while the defender aims to demonstrate the converse. The attacker is therefore ‘respon-
sible’ for choosing the appropriate successors of all existential configurations (selecting
those for which an accepting subtree exists), while the defender chooses successors of
universal configurations (selecting those for which no accepting subtree exists). The at-
tacker wins iff the constructed branch reaches an accepting configuration. The choice is
implemented as follows: after pushing the last symbol of a configuration, the attacker
has to emit the c action and push a ‘waiting’ symbol (see above). The defender can reply
by entering the state F , S, or one of the Ci states. Intuitively, he chooses among the
possibilities of selecting the first or the second successor, or checking that the ith symbol
of the lastly pushed configuration was guessed correctly (w.r.t. the previous configura-
tion). Technically, the choice is done by forcing the attacker to emit a specific action
in the next round—observe that if the defender performs, e.g., the X c→ F , transition,
then the attacker must use one of his f transitions in the next round, because otherwise
the defender would go immediately to the state U where he can simulate ‘everything’,
i.e., the attacker loses the game. As the defender is responsible only for selecting the
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successors of universal configurations, the attacker has to follow his ‘dictate’ only if the
lastly pushed configuration was universal; if it was existential, he can choose the succes-
sor according to his own will (see the rules 6–9 in the definition of δ). If the lastly pushed
configuration was rejecting, the attacker cannot perform any further transitions from the
waiting symbol, which means that the defender wins. If the configuration was accepting
and the defender enters F of S via the action c, then the attacker wins; first he replaces
the waiting symbol with T , emitting f or s, resp. (so that the defender has to go back
to X) and then he does the action t. The purpose of the states Ci (and their successors)
is to ensure that the attacker cannot gain anything by ‘cheating’, i.e., by guessing con-
figurations incorrectly. If the defender is suspicious that the attacker has cheated when
pushing the last configuration, he can ‘punish’ the attacker by going (via the action c)
to one of the Ci states. Doing so, he forces the attacker to remove the waiting symbol
in the next round (see the rule 5 in the definition of δ). Now the attacker can only
pop symbols from the stack and emit the symbol-specific actions. The defender ‘counts’
those actions and ‘remembers’ the symbols at positions i and i+ 1 in the lastly and the
previously pushed configurations. After the defender collects the four symbols, he either
enters a universal state U (i.e., he wins the game), or gets ‘stuck’ (which means that the
attacker wins). It depends on whether the two pairs of symbols are compatible w.r.t.
the transition function γ of M or not (here we use a folklore technique of checking the
consistency of successive configurations of Turing machines). Observe that if the lastly
pushed configuration was accepting, the defender still has a chance to perform a consis-
tency check (in fact, it is his ‘last chance’ to win the game). On the other hand, if the
defender decides to check the consistency right at the beginning of the game (when the
attacker plays the c transition from α), he inevitably loses because the attacker reaches
the bottom symbol Z in n+2 transitions and then he can emit the action t. It follows
that the attacker has a winning strategy iff M accepts w. 2

Theorem 5. The problem PDA v FS is EXPTIME-hard even for a fixed finite-state
process.

Proof. We modify the construction of Theorem 4. Intuitively, we just re-implement
the cheating detection so that the compatibility of selected pairs of symbols is checked
by the pushdown automaton and not by F (now we can store the four symbols in the
finite control). However, it must still be the defender who selects the (position of the)
pair. We show how to achieve this with a fixed number of states.

First, we define Act = {a, c, f, s, d, t, v, r} and instead of F we take the system F ′ of
Fig. 1 (which is fixed). Now we construct a pushdown automaton (Q,Γ,Act , δ′), where
Γ is the same as in Theorem 4, the set of control-states is

Q = {g, p0, · · · , pn+1} ∪ {c0, · · · , cn} × {0, · · · , n+ 1} × (S? × Σ)4
?

and δ′ is constructed as follows:

1. for each transition X
y→ α of δ which has not been defined by the rule 5. or 13.

(see the proof of Theorem 4) we add to δ′ the transition gX
y→ gα;

2. for each ‘waiting’ symbol X of Γ (i.e., a symbol of the form (〈s,A〉,W )) we add to
δ′ the transition gX

d→ p0ε;
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3. for all 0 ≤ i ≤ n and X ∈ Γ we add to δ′ the transitions piX
d→ piX, piX

r→ pi+1X,
and piX

v→ (ci, 0, ?, ?, ?, ?)X;

4. for all X ∈ Γ we add to δ′ the transitions pn+1X
t→ pn+1X;

5. finally, we add to δ′ the transitions which perform consistency checks; they are
(informally) described below.

The initial configuration of ∆ is the α of Theorem 4 augmented with the control-state g.
The proof follows the line of Theorem 4. The only difference is how the defender

checks the consistency of the lastly and the previously pushed configurations. If he wants
to perform such a check, he replies by X c→ C when the attacker enters a ‘waiting’ state
via his c-transition. It means that the attacker is forced to pop the waiting symbol and
change the control-state to p0 via a d-transition in the next round (rule 2). Intuitively,
the attacker ‘offers’ the defender a possibility to check the pair of symbols at positions 0
and 1. Now we distinguish two cases:

• If the defender wants to accept the proposal, he replies by C
d→ A; it means that

the attacker must emit the action v in the next round and change the control-state
to (c0, 0, ?, ?, ?, ?). From now on the attacker will only pop symbols from the stack,
emitting the action v, until he finds the four symbols or reaches the bottom of
stack. If the collected pairs of symbols are compatible (or if the bottom of stack
is reached), the attacker emits t and wins; otherwise, he becomes ‘stuck’ and the
defender wins.

• If the defender does not want to accept the proposal (i.e., if he wants to check pairs
at another position), he replies by C

d→ R, forcing the attacker to use his (only)
r-transition in the next round (the control-state is changed from p0 to p1). The
defender replies by R r→ C. Now the attacker must use his p1X

d→ p1X transition,
which is in fact an offer to check symbols at positions 1 and 2. Now the game
continues in the same fashion.

If the defender does not accept any ‘offer’ from the attacker (i.e., if the attacker reaches
the control-state pn+1), the attacker wins by emitting the action t (rule 4). Now we can
readily confirm that the attacker has a winning strategy iff M accepts w. 2

Now the show the EXPTIME lower bounds for the other direction of simulation.

Theorem 6. The problem FS v BPA is EXPTIME-hard.

Proof. The technique is similar to the one of Theorem 4. Given an alternating LBA
M = (S,Σ, γ, s0,`,a, π) and w ∈ Σ∗, we construct (in polynomial time) a finite-state
system F̄ = (S,Act ,→), a BPA system ∆̄ = (Γ,Act , δ), and processes X and α of F̄ and
∆̄, resp., such that M accepts w iff X 6v α. The set of states of F̄ is

{X,F, S} ∪ {C0, · · · , Cn} × {0, · · · , n+ 1} × (S?×Σ)4
?,

and the set of actions Act is {a, c, f, s, t} ∪ (S?×Σ). Transitions of F̄ look as follows:

1. X a→ X, X
f→ F,X

s→ S,X
c→ (Ci, 0, ?, ?, ?, ?) for all 0 ≤ i ≤ n;
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2. F a→ X,S
a→ X;

3. we add all transitions given by the rules 6.–12. in the definition of the system F
in (the proof of) Theorem 4;

4. (Ci, (i+2) mod (n+2), y, z, u, v) t→ X for all 0 ≤ i ≤ n and y, z, u, v ∈ S?×Σ
such that (y, z) and (u, v) are not compatible pairs.

The stack alphabet Γ of ∆̄ is (S?×Σ) ∪ (S×Σ?×{0, · · · , n+2}) ∪ {U,Z}. Here U is
the ‘universal’ symbol (which can simulate everything), and Z is a bottom symbol. δ
consists of the following transitions:

1. (〈s, ?〉, i) a→ (〈s, ?〉, i+ 1) 〈?,A〉 for all A ∈ Σ, s ∈ S, 0 ≤ i ≤ n+ 1;
2. (〈s, ?〉, i) a→ (〈s,A〉, i+ 1) 〈s,A〉 for all A ∈ Σ, s ∈ S, 0 ≤ i ≤ n+ 1;
3. (〈s,A〉, i) a→ (〈s,A〉, i+ 1) 〈?,B〉 for all A,B ∈ Σ, s ∈ S, 0 ≤ i ≤ n+ 1;
4. (〈s, ?〉, i) x→ U for all s ∈ S, 0 ≤ i ≤ n+ 1, and x ∈ {f, s, c};
5. (〈s,A〉, i) x→ U for all s ∈ S, 0 ≤ i ≤ n+ 1, and x ∈ {f, s, c};
6. (〈s,A〉, n+ 2)

f→ (〈s′, ?〉, 0) for all s, s′ ∈ S, A ∈ Σ such that π(s) ∈
{∀,∃} and s′ = first(s,A);

7. (〈s,A〉, n+ 2) s→ (〈s′, ?〉, 0) for all s, s′ ∈ S, A ∈ Σ such that π(s) ∈
{∀,∃} and s′ = second(s,A);

8. (〈s,A〉, n+ 2)
f→ (〈s′, ?〉, 0) for all s, s′ ∈ S, A ∈ Σ such that π(s) = ∀

and s′ = second(s,A);
9. (〈s,A〉, n+ 2) s→ (〈s′, ?〉, 0) for all s, s′ ∈ S, A ∈ Σ such that π(s) = ∀

and s′ = first(s,A);
10. (〈s,A〉, n+ 2) c→ ε for all s ∈ S and A ∈ Σ;
11. (〈s,A〉, n+ 2) a→ U for all s ∈ S and A ∈ Σ;
12. (〈s,A〉, n+ 2) x→ U for all s ∈ S, A ∈ Σ, and x ∈ {f, s} such

that π(s) = rej ;

13. 〈x,A〉 〈x,A〉→ ε for all x ∈ S? and A ∈ Σ;

14. 〈x,A〉 〈y,B〉→ U for all x, y ∈ S? and A,B ∈ Σ such that
x 6= y or A 6= B;

15. Z x→ U for all X ∈ Act − {t};
16. U x→ U for all X ∈ Act ;

The process α corresponds to the initial configuration of M, i.e.,

α = (〈s0, w(1)〉, n+2) 〈?,a〉 〈?, w(n)〉 · · · 〈?, w(2)〉 〈?, w(1)〉 〈s0,`〉Z

Again, the simulation game corresponds to constructing a branch in a computation-tree
for M on w. The attacker (who plays with X now) wants to show that there is an
accepting computation-tree, while the defender wants to prove the converse. It means
that the attacker chooses successors of existential configurations, and the defender chooses
successors of universal configurations. At the beginning, the attacker has to use one of
his f , s, or c transitions (if he uses X a→ X, the defender wins by pushing U ; see
the rule 11). It corresponds to choosing the first or the second successor, or forcing a
consistency check. As the defender is responsible for choosing the successors of universal
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configurations, he can ‘ignore’ the attacker’s choice if the lastly pushed configuration was
universal (rules 6.–9.). If the lastly pushed configuration was accepting, the defender gets
‘stuck’ and loses. If it was rejecting, the attacker’s only chance is to use one of his c-
transitions and perform a consistency check (if the attacker emits any other action, the
defender wins by pushing U—see the rules 11, 12). The consistency check is implemented
as follows: first, the attacker chooses the (index of the) pair to be verified by one of
his X c→ (Ci, 0, ?, ?, ?, ?) transitions (observe that if this transition is used ‘too early’,
i.e., before the whole configuration is pushed, the defender wins by pushing U—see the
rules 4, 5). Now the attacker has to guess the symbols which are stored in the stack,
remembering the four crucial symbols. If he makes an incorrect guess, the defender
pushes U and wins (rule 14). Otherwise, the defender has to pop symbols from the stack
(rule 13). If the collected pairs of symbols are compatible, the attacker gets stuck (and
the defender wins). Otherwise, the attacker wins by emitting t. The bottom symbol
Z ensures that the attacker loses if he decides to make a consistency check right at
beginning of the game, because then the defender reaches U before the attacker can emit
t. Also observe that we cannot use U as the bottom symbol, because then the attacker
would not be able to check the consistency of symbols at positions n and n + 1 in the
first two configurations (the attacker’s t-transition would be matched by U). We see that
the attacker has a winning strategy iff M accepts w. 2

SF

X

c

a

ca a

f

s

(C0, 0, ∗, ∗, ∗, ∗) (Cn, 0, ∗, ∗, ∗, ∗)

SF

X

c

a

a a

sc

sC S

f

s

Figure 2: The systems F̄ and F̄ ′ (successors of (Ci, 0, ?, ?, ?, ?) in F̄ are omitted).

Theorem 7. The problem FS v PDA is EXPTIME-hard even for a fixed finite-state
process.

Proof. The required modification of the proof of Theorem 6 is quite straightforward.
Instead of F̄ we take the system F̄ ′ of Fig. 2. The consistency check is performed by
the pushdown automaton, but the attacker still selects the index of the pair he wants
to verify by performing the corresponding number of c-transitions. The only thing the
defender can do is to ‘count’ those c’s in the finite control of the pushdown automaton
(if the attacker uses more than n+ 1 c-transitions, the defender can push U and thus he
wins). When the attacker emits the first s, the defender has to start the consistency check
of the previously selected pairs—he successively pops symbols from the stack (emitting
s) until he collects the four symbols. If they are compatible, the defender can go on and
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perform an infinite number of s-transitions (and hence he wins); otherwise, the defender
gets stuck and the attacker wins. 2

Finally, we show the EXPTIME lower bound for checking simulation equivalence.

Theorem 8. The problem BPA ' FS is EXPTIME-hard. Moreover, the problem
PDA ' FS is EXPTIME-hard even for a fixed finite-state process.

Proof. There is a simple (general) reduction from the A v B problem to the A ' B
problem (where A,B are classes of processes) which applies also in this case—given
processes p ∈ A and q ∈ B, we construct processes p′, q′ such that p′ has only the
transitions p′ a→ p, p′ a→ q, and q′ has only the transition q′

a→ q. It follows immediately
that p′ ' q′ iff p v q. 2

4. Weak Simulation Preorder and Equivalence

We consider weak simulation preorder between PDA and finite-state systems in both
directions, and weak simulation equivalence. For ≡∈ {vw,ww,'w} we consider the
problem.

PDA ≡ FS
Instance: A pushdown process P and a finite-state system F .
Question: P ≡ F ?

We show that all three problems (for ≡∈ {vw,ww,'w}) have the same complexity.
The problems are EXPTIME-complete in general, and only fixed-parameter tractable
if both the size of F and the finite control of P are fixed. If just one of these parameters
is fixed then the problem stays EXPTIME-hard.

The following table summarizes the complexity results for strong simulation pre-
order/equivalence. In the cases where a parameter size is fixed, the upper bounds are
interpreted as ‘for every fixed size’, while the lower bounds are interpreted as ‘for some
fixed size’.

Complexity General fixed PDA control fixed F both
(even size 1; BPA) fixed

PDA vw FS EXPTIME-compl. EXPTIME-compl. EXPTIME-compl. P
PDA ww FS EXPTIME-compl. EXPTIME-compl. EXPTIME-compl. P
PDA 'w FS EXPTIME-compl. EXPTIME-compl. EXPTIME-compl. P

4.1. Upper Bounds
Theorem 9. The problems PDA vw FS, FS vw PDA, and PDA 'w FS are in
EXPTIME.

20



Proof. All of the above mentioned problems are polynomially reducible to the model-
checking problem with pushdown automata and a fixed formula ϕ of the modal µ-calculus
(which is decidable in deterministic exponential time [58]).

Let
ϕ := νX.2a3b〈c〉X

where 2aψ = νY.(ψ ∧ [a]Y ) and 3bψ = µZ.(ψ ∨ 〈b〉Z). Intuitively, 2aψ says that
each state which is reachable from a given process via a finite sequence of a-transitions
satisfies ψ, and 3bψ says that a given process can reach a state satisfying ψ via a finite
sequence of b-transitions. Hence, the meaning of ϕ can be explained as follows: a process
satisfies ϕ iff after each finite sequence of a-transitions it can perform a finite sequence
of b-transitions ended with one c-transition so that the state which is entered again
satisfies ϕ (see [32, 16] for a precise definition of the syntax and semantics of the modal
µ-calculus). Now let ∆ = (Q,Γ,Act , δ) be a pushdown automaton, F = (F,Act ,→) a
finite-state system, pα a process of ∆, and f a process of F . We construct a pushdown
automaton ∆ = (Q×F×Act×{0, 1},Γ ∪ {Z}, {a, b, c}, δ′) (where Z 6∈ Γ is a new bottom
symbol) which ‘alternates’ the x⇒ transitions of ∆ and F , remembering the ‘x’ in its
finite control. Formally, δ′ is constructed as follows:

• for all qA x→ rβ ∈ δ and g ∈ F we add (q, g, τ, 0)A a→ (r, g, x, 0)β to δ′;

• for all qA τ→ rβ ∈ δ, x ∈ Act , and g ∈ F we add (q, g, x, 0)A a→ (r, g, x, 0)β to δ′;

• for all q ∈ Q, g ∈ F , x ∈ Act , and Y ∈ Γ ∪ {Z} we add (q, g, x, 0)Y b→ (q, g, x, 1)Y
to δ′;

• for each transition g
x→ g′ of F and all q ∈ Q, Y ∈ Γ ∪ {Z} we add (q, g, x, 1)Y b→

(q, g′, τ, 1)Y to δ′;

• for all g τ→ g′ of F , x ∈ Act , q ∈ Q, and Y ∈ Γ ∪ {Z} we add (q, g, x, 1)Y b→
(q, g′, x, 1)Y to δ′;

• for all q ∈ Q, g ∈ F , and Y ∈ Γ ∪ {Z} we add (q, g, τ, 1)Y c→ (q, g, τ, 0)Y to δ′;

We claim that
pα vw f iff (p, f, τ, 0)αZ |= ϕ

Indeed, each sequence of a-transitions of (p, f, τ, 0)αZ corresponds to some x⇒ move of
pα and vice versa; and after each such sequence, the ‘token’ can be switched from 0 to
1 (performing b), and now each sequence of b’s ended with one c corresponds to a x⇒
move of f . Then, the token is switched back to 0 and the computation proceeds in the
same way. ϕ says that this can be repeated forever, unless we reach a state which cannot
do any a when the token is set to 0. The new bottom symbol Z has been added to
ensure that (p, f, τ, 0)αZ cannot get stuck just due to the emptiness of the stack. The
FS vw PDA direction is handled in a very similar way (the roles of pα and f are just
interchanged). 2

Theorem 10. If the size of the finite control of the PDA and the size of the finite-
state system are bounded by fixed constants k1 and k2, respectively, then the problems
PDA vw FS, PDA ww FS, and PDA 'w FS are decidable in polynomial time.
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Proof. The complexity result of [58] says that model-checking with any fixed formula
of the modal µ-calculus and pushdown processes with a fixed number of control states is
decidable in polynomial time. By synchronizing our given PDA (with ≤ k1 control-states)
with a given (fixed) finite-state process (with ≤ k2 states), as in Theorem 9 we obtain a
pushdown automaton with a fixed number of control-states, and the result follows. (In
other words, the algorithm in the proof of Theorem 9 is only exponential in k1 ∗ k2 and
polynomial if k1, k2 are fixed.) 2

4.2. Lower Bounds
If the automata do not contain any internal τ -transitions then strong and weak simulation
equivalence coincide. Thus all lower complexity bounds for strong simulation carry over
to weak simulation. The results of Subsection 3.2 imply the following two theorems.

Theorem 11. The three problems BPA vw FS, BPA ww FS, and BPA 'w FS are
all EXPTIME-hard.

Proof. Directly from the Theorems 4,6 and 8. 2

Theorem 12. The three problem PDA vw FS, PDA ww FS and PDA 'w FS are
EXPTIME-hard, even for a fixed finite-state process.

Proof. Directly from the Theorems 5, 7 and 8. 2

5. Strong Bisimulation Equivalence

We consider the following problem.

PDA ∼ FS
Instance: A pushdown process P and a finite-state system F .
Question: P ∼ F ?

We show that this problem is PSPACE-complete in general, but fixed-parameter
tractable. If either the size of F or the size of the finite control of P is fixed, then the
problem is polynomial.

The following table summarizes the complexity results for strong bisimulation. In
the cases where a parameter size is fixed, the upper bounds are interpreted as ‘for every
fixed size’, while the lower bounds are interpreted as ‘for some fixed size’.

Complexity General fixed PDA control fixed F both fixed
PDA ∼ FS PSPACE-complete P P P
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5.1. Upper Bounds
If the automata do not contain any internal τ -transitions then strong and weak bisim-
ulation equivalence coincide. Thus all upper complexity bounds for weak bisimulation
carry over to strong bisimulation. The results of Subsection 6.1 imply the following two
theorems.

Theorem 13. PDA ∼ FS is decidable in polynomial space.

Proof. Directly from Theorem 17. 2

Theorem 14. If the size of the finite control of the PDA is bounded by a fixed constant
k, then the problem PDA ∼ FS is decidable in polynomial time.

Proof. Directly from Theorem 18. 2

If the finite-state system F is fixed then PDA ∼ FS is also polynomial. (However,
this result only holds for strong bisimilarity, not for weak bisimilarity (see Theorem 19)).
The proof is done by a reduction to a model checking problem for pushdown automata
with the characteristic formula for the finite-state system w.r.t. strong bisimulation.

Theorem 15. Let F be a fixed finite-state system. For every pushdown process P , check-
ing if P ∼ F requires only polynomial time in the size of P .

Proof. Using the construction from Subsection 2.2, one can reduce the problem P ∼ F
to a model checking problem for the pushdown process P and a formula in the temporal
logic EF (a fragment of CTL [16]). Let f be the initial state of F and Θ∼f = Φ ∧ ¬3Ψ
the characteristic formula for F w.r.t. ∼, as defined in Subsection 2.2. The formulae Φ
and Ψ are Hennessey-Milner Logic formulae [23], and the nesting-depth of one-step next
operators in Φ and Ψ is n = |F |. Note that Θ∼f and n are fixed, since F is fixed. We
have P ∼ F ⇐⇒ P |= Θ∼f .

Let m be the size of (the description of) P . We assume that P has ≤ m control-states
and ≤ m − 1 different stack symbols. Now we show that this model checking problem
can be solved in time polynomial in m. Let P ′ be a state that is reachable from P . The
nesting-depth of one-step next operators in the Hennessy-Milner Logic formulae Φ and
Ψ is n. Therefore, it depends only on the first n steps of the computations of P and P ′

whether they satisfy Φ and Ψ, respectively. Thus, it depends only on the control-states
of P and P ′ and on the first n stack symbols of P and P ′ whether they satisfy Φ and Ψ,
respectively, because deeper stack symbols cannot be accessed in n steps.

There are at most m different possibilities for the control-state and at most mn

different possibilities for the first n stack symbols (including the cases where the stack
has height < n). For each of these mn+1 configurations with stack-height ≤ n, we check
if it satisfies Φ or Ψ. Each of those checks can be done in O(mn) time. Furthermore, for
each α of these nm+1 configurations with stack-height ≤ n, we check if P can reach some
configuration of the form αβ for some β. (where β represents the stack contents below
the first n stack symbols. So β does not matter for Φ and Ψ.) Each of those generalized
reachability-checks can be done in O(m3n2) time [10].

Therefore the whole property P |= Θ∼f can be checked in time O(mn +mn+1 ∗mn +
mn+1 ∗m3n2) = O(m2n+1n2). Thus the time used by the algorithm is polynomial in m,
the size of P , but exponential in n. 2
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5.2. Lower Bounds
The PSPACE lower bound for the general PDA ∼ FS problem is shown by a reduction
from the PSPACE-complete problem of quantified boolean formulae (QBF) [56].

Let n ∈ N and let x1, . . . , xn be boolean variables. Without restriction we assume
that n is even. A literal is either a variable or the negation of a variable. A clause is
a disjunction of literals. For technical reasons we use the variables in descending index
order xn, xn−1, . . . , x1. The quantified boolean formula Q is given by

Q := ∀xn∃xn−1 . . . ∀x2∃x1(Q1 ∧ · · · ∧Qk)

where the Qi are clauses. The PSPACE-complete problem is if Q is true. We reduce
this problem to the bisimulation problem by constructing a pushdown process P and a
finite-state system F s.t. Q is true iff P ∼ F .

F is defined as follows: The initial state is sn.

si
a−→ si−1 for 1 ≤ i ≤ n

ti
a−→ ti−1 for 1 ≤ i ≤ n

si
a−→ ti−1 for 1 ≤ i ≤ n where i is odd

ti
a−→ si−1 for 1 ≤ i ≤ n where i is even

s0
a−→ u

t0
a−→ u

u
a−→ u

t0
a−→ wn

wi
a−→ wi−1 for 1 ≤ i ≤ n

Note that the size of F is not fixed, but linear in n. Figure 3 illustrates the construction.
Now we define the pushdown process P . Initially the stack is empty and the initial

control-state is pn. For 1 ≤ j ≤ k and 1 ≤ l ≤ n we define Qj(Xl) iff Xl makes the clause
Qj true and Qj(X̄l) iff X̄l makes Qj true. The transitions of P are as follows:

pi
a−→ pi−1Xi for 1 ≤ i ≤ n

pi
a−→ pi−1X̄i for 1 ≤ i ≤ n

pi
a−→ ti−1 for 1 ≤ i ≤ n where i is odd

pi
a−→ si−1 for 1 ≤ i ≤ n where i is even

p0
a−→ qj for 0 ≤ j ≤ k

q0
a−→ q0

qjXl
a−→ qjXl for 1 ≤ j ≤ k, 1 ≤ l ≤ n if Qj(Xl).

qjXl
a−→ qj for 1 ≤ j ≤ k, 1 ≤ l ≤ n if ¬Qj(Xl).

qjX̄l
a−→ qjX̄l for 1 ≤ j ≤ k, 1 ≤ l ≤ n if Qj(X̄l).

qjX̄l
a−→ qj for 1 ≤ j ≤ k, 1 ≤ l ≤ n if ¬Qj(X̄l).

Additionally we define that in the control-states si and ti the stack is ignored and the
systems behaves just like si and ti in the system F of Figure 3.

We now show that Q is true iff P ∼ F (i.e., iff pnε ∼ sn).
First we need some terminology to describe possible stack contents of P that encode

variable assignments for a subset of the variables of the form xn, . . . , xm+1 (for some m
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Figure 3: The finite-state system F used in the reduction from QBF to strong bisimulation.

with n ≥ m ≥ 0). Let Vm be the set of all strings of the form αnαn−1 . . . αm+1, where
αi is either Xi or X̄i. For every such string α ∈ Vm we define the formula Qα as the
formula obtained from Q by setting the variables xnxn−1 . . . xm+1 according to α. So, if
m is even, we obtain Qα = ∀xm∃xm−1 . . . ∃x1(Q1(α) ∧ · · · ∧ Qk(α)) and if m is odd we
obtain Qα = ∃xm∀xm−1 . . . ∃x1(Q1(α)∧ · · · ∧Qk(α)). In particular, if m = n then α = ε
and Qα = Q. On the other hand, if m = 0 then all variables in Q are set by α.

Lemma 1. Let n ≥ m ≥ 0 and α ∈ Vm.

1. sm 6∼ tm
2. sm ∼ pmα iff Qα is true
3. tm ∼ pmα iff Qα is false

Proof. We prove the property by induction on m.
The base case is m = 0. Here all variables are already set by α.

1. The attacker has the following winning strategy in the bisimulation game between
s0 and t0. The attacker moves t0

a−→ wn and the defender can only respond by
s0

a−→ u. Now u has an infinite ‘a’-loop while wn can only do exactly n ‘a’-actions.
Thus u 6∼ wn and s0 6∼ t0.

2. If Qα is true then all clauses Qj(α) are true. Thus all possible successor states
qjα of p0α in the pushdown process have the same behavior, an infinite ‘a’-loop.
Therefore u ∼ qjα for all 0 ≤ j ≤ k and finally s0 ∼ p0α.

3. If Qα is false then there exists at least one 1 ≤ j ≤ k s.t. Qj(α) is false. Consider
the bisimulation game between t0 and p0α. If the attacker moves t0

a−→ u then
the defender responds by p0α

a−→ q0α (and vice-versa). If the attacker moves
t0

a−→ wn then the defender responds by p0α
a−→ qjα (and vice-versa). If the

attacker moves p0α
a−→ qj′α for some j′ where Qj′(α) is false then the defender

responds by t0
a−→ wn. If the attacker moves p0α

a−→ qj′α for some j′ where
Qj′(α) is true then the defender responds by t0

a−→ u. In any case the defender
wins and we have t0 ∼ p0α.
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Finally, the ‘only-if’ part of (2) and (3) follows from the fact s0 6∼ t0 which has been
shown in (1).

The induction hypothesis is that the property already holds for m−1. Now we assume
n ≥ m ≥ 1 and show the induction step from m− 1 to m.

1. If m is even then the attacker moves tm
a−→ tm−1 and the defender can only respond

by sm
a−→ sm−1. The resulting pair is non-bisimilar by induction hypothesis. Thus

the attacker can win and sm 6∼ tm.
If m is odd then the attacker moves sm

a−→ sm−1 and the defender can only respond
by tm

a−→ tm−1. The resulting pair is non-bisimilar by induction hypothesis. Thus
the attacker can win and sm 6∼ tm.

2. Consider the case where Qα is true. We handle odd and even values of m separately.
(a) If m is even then Qα = ∀xm∃xm−1 . . . ∃x1(Q1(α)∧ · · · ∧Qk(α)) is true. Since

xm is universally quantified, the formula remains true whatever value is chosen
for xm, i.e., both QαXm

and QαX̄m
are true.

If the attacker moves pmα
a−→ sm−1α then the defender responds by sm

a−→
sm−1 (and vice-versa). The resulting pair is bisimilar by definition.
If the attacker moves pmα

a−→ pm−1αXm or pmα
a−→ pm−1αX̄m then the

defender responds by sm
a−→ sm−1. In both cases the resulting pair is bisimilar

by induction hypothesis, because both formulae QαXm
and QαX̄m

are true.
(b) If m is odd then Qα = ∃xm∀xm−1 . . . ∃x1(Q1(α) ∧ · · · ∧Qk(α)) is true. Since

xm is existentially quantified, there must be at least one right value for xm,
i.e., at least one of the formulae QαXm or QαX̄m

must be true.
If the attacker moves pmα

a−→ tm−1α then the defender responds by sm
a−→

tm−1 (and vice-versa). The resulting pair is bisimilar by definition.
If the attacker moves pmα

a−→ pm−1αXm then the defender responds either
by sm

a−→ sm−1 or by sm
a−→ tm−1, depending on whether QαXm

is true or
not. The resulting pair is bisimilar by induction hypothesis.
Similarly, if the attacker moves pmα

a−→ pm−1αX̄m then the defender re-
sponds either by sm

a−→ sm−1 or by sm
a−→ tm−1, depending on whether

QαX̄m
is true or not. The resulting pair is bisimilar by induction hypothesis.

Finally, if the attacker moves sm
a−→ sm−1 then the defender responds either

by pmα
a−→ pm−1αXm or pmα

a−→ pm−1αX̄m, depending on whether QαXm

or QαX̄m
is true. There is at least one right possible choice, because at least

one of these formulae must be true. The resulting pair is bisimilar by induction
hypothesis.

In every case the defender had a winning strategy and thus sm ∼ pmα.
3. Now we consider the case where Qα is false. We handle odd and even values of m

separately.
(a) If m is even then Qα = ∀xm∃xm−1 . . . ∃x1(Q1(α)∧ · · · ∧Qk(α)) is false. Since

xm is universally quantified, at least one of the two formulae QαXm
and QαX̄m

must be false.
If the attacker moves pmα

a−→ sm−1α then the defender responds by tm
a−→

sm−1 (and vice-versa). The resulting pair is bisimilar by definition.
If the attacker moves pmα

a−→ pm−1αXm then the defender responds either
by tm

a−→ sm−1 or by tm
a−→ tm−1, depending on whether QαXm

is true or
not. The resulting pair is bisimilar by induction hypothesis.
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Similarly, if the attacker moves pmα
a−→ pm−1αX̄m then the defender re-

sponds either by tm
a−→ sm−1 or by tm

a−→ tm−1, depending on whether
QαX̄m

is true or not. The resulting pair is bisimilar by induction hypothesis.
Finally, if the attacker moves tm

a−→ tm−1 then the defender responds either
by pmα

a−→ pm−1αXm or by pmα
a−→ pm−1αX̄m, depending on whether

QαXm
or QαX̄m

is false. There is at least one possible such choice, because at
least one of these formulae must be false. The resulting pair is bisimilar by
induction hypothesis.

(b) If m is odd then Qα = ∃xm∀xm−1 . . . ∃x1(Q1(α) ∧ · · · ∧Qk(α)) is false. This
implies that the formula stays false whatever value is chosen for xm, i.e., both
formulae QαXm

and QαX̄m
are false.

If the attacker moves pmα
a−→ tm−1α then the defender responds by tm

a−→
tm−1 (and vice-versa). The resulting pair is bisimilar by definition.
If the attacker moves pmα

a−→ pm−1αXm or pmα
a−→ pm−1αX̄m then the

defender responds by tm
a−→ tm−1. In both cases the resulting pair is bisimilar

by induction hypothesis, because both formulae QαXm and QαX̄m
are false.

In every case the defender had a winning strategy and thus tm ∼ pmα.

The ‘only-if’ part of the properties (2) and (3) follows from the fact that sm 6∼ tm, which
has been shown in (1). 2

Theorem 16. The problem PDA ∼ FS is PSPACE-hard.

Proof. We instantiate Lemma 1 with m = n and obtain that Q (i.e., Qε) is true iff
sn ∼ pnε. Then the result follows from the PSPACE-hardness of QBF. 2

6. Weak Bisimulation Equivalence

We consider the following problem.

PDA ≈ FS
Instance: A pushdown process P and a finite-state system F .
Question: P ≈ F ?

This problem is PSPACE-complete in general. Unlike strong bisimulation, it is
fixed-parameter tractable in only one parameter. If the size of the finite control of P is
fixed, then the problem is polynomial. However, it stays PSPACE-complete for a small
fixed finite-state system F (with only 3 states).

The following table summarizes the complexity results for strong bisimulation. In
the cases where a parameter size is fixed, the upper bounds are interpreted as ‘for every
fixed size’, while the lower bounds are interpreted as ‘for some fixed size’.

Complexity General fixed PDA control fixed F both
(even size 3) fixed

PDA ≈ FS PSPACE-compl. P PSPACE-compl. P
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6.1. Upper Bounds
Now we show that the problem PDA ≈ FS is in PSPACE. As shown in Subsection 2.2,
the problem PDA ≈ FS can be reduced to a model checking problem for pushdown
automata and the characteristic formula Θ≈f in the temporal logic EF. The EF-formula
Θ≈f has polynomial size when described as a DAG and can be constructed in polynomial
time in the size of FS.

It has been shown by Walukiewicz [57] that model checking pushdown automata with
the temporal logic EF is PSPACE-complete. A closer analysis of the model checking
algorithm presented in [57] reveals that its complexity remains in PSPACE for all EF-
formulae which are described by a polynomial-size DAG [59]. Finally, our characteristic
formula Θf uses a slight extension of EF, because of the 3τ operator (normal EF has
only the 3 operator). However, the model checking algorithm of [57] can trivially be
generalized to this extension of EF without increasing its complexity.

Thus, model checking pushdown automata with the formula Θ≈f can be decided in
polynomial space. So the whole algorithm to check weak bisimilarity works in polynomial
space and we obtain the following theorem.

Theorem 17. PDA ≈ FS is decidable in polynomial space.

Now we consider the problem of fixed-parameter tractability for given bounds on the
size of the finite control of the PDA.

We showed in [35, 38] that the problem BPA ≈ FS is polynomial (i.e., for push-
down automata with a finite control of the fixed size 1). This result was generalized to
pushdown automata with a finite control of an arbitrary fixed size k in [40].

Theorem 18. ([40]) If the size of the finite control of the PDA is bounded by a fixed
constant k, then the problem PDA ≈ FS is decidable in polynomial time.

6.2. Lower Bounds
The problem PDA ≈ FS is PSPACE-hard, even for a small fixed finite-state system
with 3 states (shown in Figure 4). The proof is done by a reduction from the PSPACE-
complete problem [56] if a single tape, linearly space-bounded, nondeterministic Turing-
machine M accepts a given input w. There is a constant k s.t. if M accepts an input w
then it has an accepting computation that uses only k · |w| space. For any such M and
w we construct a pushdown automaton P s.t.

• If M accepts w then P is not weakly bisimilar to any finite-state system.

• If M doesn’t accept w then P is weakly bisimilar to the finite-state system F of
Figure 4.

The construction of P is as follows. Let n := k · |w| + 1 and Σ be the set of tape
symbols of M . Configurations of M are encoded as sequences of n symbols of the form
v1qv2 where v1, v2 ∈ Σ∗ are sequences of tape symbols of M and q is a state of the
finite control of M . The sequence v1 are the symbols to the left of the head and v2 are
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Figure 4: The finite-state system F with initial state s1.

the symbols under the head and to the right of it. (v1 can be empty, but v2 can’t.)
Let p0 be the initial control-state of P and let the stack be initially empty. Initially, P
is in the phase ‘guess’ where it guesses an arbitrarily long sequence c1#c2# . . .#cm of
configurations of M (each of these ci has length n) and stores them on the stack. The
pushdown automaton can guess a sequence of length n by n times guessing a symbol and
storing it on the stack. The number of symbols guessed (from 1 to n) is counted in the
finite control of the pushdown automaton. The number m is not counted in the finite
control, since it can be arbitrarily large. The configuration cm at the bottom of the stack
must be accepting (i.e., the state q in cm must be accepting) and the configuration c1 at
the top must be the initial configuration with the input w and the initial control-state
of M . All this is done with silent τ -actions. At the end of this phase P is in the control
state p. Then there are two possible transitions: (1) p τ→ p0A where the special symbol
A /∈ Σ is written on the stack and the guessing phase starts again. (2) p τ→ pverify where
the pushdown automaton enters the new phase ‘verify’.

In the phase ‘verify’ the pushdown automaton P pops symbols from the stack (by
action τ). At any time in this phase it can (but need not) enter the special phase ‘check’.
For a ‘check’ it reads three symbols from the stack. These symbols are part of some
configuration ci. Then it pops n − 2 symbols and then reads the three symbols at the
same position in the next configuration ci+1 (unless the bottom of the stack is reached
already). In a correct computation step from ci to ci+1 the second triple of symbols
depends on the first and on the definition of M . If these symbols in the second triple are
as they should be in a correct computation step of M from ci to ci+1 then the ‘check’ is
successful and it goes back into the phase ‘verify’. Otherwise the ‘check’ has failed and P
is in the control-state fail . Here there are two possible transitions: (1) fail τ→ p2. In the
control-state p2 the stack is ignored and the pushdown automaton from then on behaves
just like the state s2 in the finite-state system F of Figure 4. (2) fail τ→ p3. In the
control-state p3 again the stack is ignored and from then on the pushdown automaton
behaves just like the state s3 in the finite-state system F of Figure 4. The intuition is
that if the sequence of configurations represents a correct computation of M then no
‘check’ can fail, i.e., the control-state fail cannot be reached. However, if the sequence
isn’t a correct computation then there must be at least one error somewhere and thus
the control-state fail can be reached by doing the ‘check’ at the right place.
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So far, all actions have been silent τ -actions. The only case where a visible action
can occur is the following: The pushdown automaton P is in phase ‘verify’ or ‘check’
(but not in state fail) and reads the special symbol A from the stack. Then it does the
visible action ‘a’ and goes to the control-state pverify . If P reaches the bottom of the
stack while being in phase ‘verify’ or ‘check’ then it is in a deadlock.

Lemma 2. If M accepts the input w then P is not weakly bisimilar to any finite-state
system.

Proof. We assume the contrary and derive a contradiction. Assume that there is a
finite-state system F ′ with r states s.t. P ≈ F ′. Since M accepts w, there exists
an accepting computation sequence c = c1#c2# . . .#cm where all ci are configurations
of M , c1 is the initial configuration of M with input w, cm is accepting and for all
i ∈ {1, . . . ,m− 1} ci → ci+1 is a correct computation step of M .

P can (by a sequence of τ -steps) reach the configuration α := pverify (cA)r+1c. Since
c is an accepting computation sequence of M , none of the checks can fail. Thus the only
sequence of actions that α can do is τmn+m−1(aτmn+m−1)r+1. (In particular, no infinite
loop is possible.)

We assumed that P ≈ F ′. Thus there must be some state f of F ′ s.t. α ≈ f . Since F ′

has only r states, it follows from the Pumping Lemma for regular languages that α 6≈ f
and we have a contradiction. 2

Lemma 3. Let F be the finite-state system from Figure 4. If M doesn’t accept the input
w then P ≈ F .

Proof. Since there is no accepting computation of M on w, any reachable configuration
of P belongs to one of the following three sets.

1. Let C1 be the set of configurations of P where either P is in phase ‘guess’ or P is
in phase ‘verify’ or ‘check’ s.t. a check can fail before the next symbol A is popped
from the stack, i.e. the control-state fail can be reached with only τ -actions.

2. Let C2 be the set of configurations of P where either the finite control of P is in
state p2 or P is in phase ‘verify’ or ‘check’, there is at least one symbol A on the
stack and no check can fail before the next symbol A is popped from the stack,
i.e. the control-state fail cannot be reached with only τ -actions, but possibly after
another ‘a’ action.

3. Let C3 be the set of configurations of P where either the finite control of P is in
state p3 or P is in phase ‘verify’ or ‘check’, there is no symbol A on the stack and
no check can fail, i.e. the control-state fail cannot be reached.

The following relation is a weak bisimulation:

{(α1, s1) | α1 ∈ C1} ∪ {(α2, s2) | α2 ∈ C2} ∪ {(α3, s3) | α3 ∈ C3}

We consider all possible attacks.

1. Note that no α1 ∈ C1 can do action ‘a’.
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• If the attacker makes a move from a configuration in C1 with control-state
fail to p2/p3 then the defender responds by a move s1

τ→ s1/s2. These are
weakly bisimilar to p2/p3 by definition. If the attacker makes a move α1

τ→ α′1
with α1, α

′
1 ∈ C1 then the defender responds by doing nothing. If the attacker

makes a move α1
τ→ α′1 with α1 ∈ C1 and α2 ∈ C2 (this is only possible if

there is at least one symbol A on the stack) then the defender responds by
making a move s1

τ→ s2. If the attacker makes a move α1
τ→ α′1 with α1 ∈ C1

and α2 ∈ C3 (this is only possible if there is no symbol A on the stack) then
the defender responds by making a move s1

τ→ s3.

• If the attacker makes a move s1
τ→ s2/s3 then the defender makes a sequence

of τ -moves where a ‘check’ fails and goes (via the control-state fail) to a
configuration with control-state p2/p3. This is weakly bisimilar to s2/s3 by
definition.

2. If α2 is a configuration with control-state p2 then this is bisimilar to s2 by definition.

• If the attacker makes a move α2
τ→ α′2 with α2, α

′
2 ∈ C2 then the defender

responds by doing nothing. If the attacker makes a move α2
a→ α′2 (this is

only possible if the symbol A is at the top of the stack) then the control-state
of α′2 is pverify and α′2 ∈ C1. Thus the defender can respond by s2

a→ s1.

• If the attacker makes a move s2
a→ s1 then the defender responds as follows:

First he makes a sequence of τ -moves α2
τ∗→ α′2 that pops symbols from the

stack without doing any ‘check’ until the special symbol A is at the top. Then
he makes a move α′2

a→ α′′2 . By definition the control-state of α′′2 is pverify and
α′′2 ∈ C1.

3. A configuration α3 ∈ C3 can never reach a configuration where it can do action ‘a’.
The only possible action is τ . Thus α3 ≈ s3.

Since the initial configuration of P is in C1 and the initial state of F is s1, we get P ≈ F .
2

Theorem 19. Checking weak bisimilarity of pushdown processes and finite-state systems
is PSPACE-hard, even for the fixed finite-state system F of Figure 4.

Proof. By reduction of the acceptance problem for single tape nondeterministic linear
space-bounded Turing machines. Let M , w, P and F be defined as above. If M accepts
w then by Lemma 2 P is not weakly bisimilar to any finite-state system and thus P 6≈ F .
If M doesn’t accept w then by Lemma 3 P ≈ F . 2

7. Conclusion

We have shown a complete picture of the computational complexity of checking (weak
and strong) simulation preorder/equivalence and bisimulation equivalence between push-
down processes and finite-state systems. Furthermore, we have shown under which con-
dition these problems are fixed-parameter tractable. The following table summarizes the
complexity results.
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Complexity General fixed PDA control fixed F both
(even size 1; BPA) fixed

PDA vw FS EXPTIME-compl. EXPTIME-compl. EXPTIME-compl. P
PDA ww FS EXPTIME-compl. EXPTIME-compl. EXPTIME-compl. P
PDA 'w FS EXPTIME-compl. EXPTIME-compl. EXPTIME-compl. P
PDA v FS EXPTIME-compl. EXPTIME-compl. EXPTIME-compl. P
PDA w FS EXPTIME-compl. EXPTIME-compl. EXPTIME-compl. P
PDA ' FS EXPTIME-compl. EXPTIME-compl. EXPTIME-compl. P
PDA ≈ FS PSPACE-complete P PSPACE-complete P
PDA ∼ FS PSPACE-complete P P P

We draw the following conclusions from these results.

• Simulation is computationally harder than bisimulation, both in general and for
fixed-parameter tractability.

The same trend also holds for the problems where one compares two infinite-state
systems, e.g., PDA v PDA, BPA v BPA, PDA ≈ PDA, etc. For example,
BPA v BPA (and all other simulation problems for BPA/PDA) are undecidable,
PDA ≈ PDA is undecidable [50], BPA ≈ BPA is EXPTIME-hard [43] and
PDA ∼ PDA is decidable and EXPTIME-hard [47, 36] and BPA ∼ BPA is
decidable in 2-EXPTIME and PSPACE-hard [13, 49]. (See [48] for a general
overview.)

One reason for this trend is that bisimulation checking problems can be reduced
in polynomial time to simulation checking problems for a large class of process
models, which includes pushdown processes and finite-state systems [39].

• Fixed-parameter tractability is important.

While many of these semantic preorder/equivalence checking problems have a high
complexity, they are all fixed-parameter tractable. In some cases (e.g., strong bisim-
ulation) it even suffices to fix just one parameter to make the problem polynomial.
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[35] A. Kučera, R. Mayr, Weak bisimilarity with infinite-state systems can be decided in polynomial

time, in: Proceedings of CONCUR’99 [2], pp. 368–382.
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[40] A. Kučera, R. Mayr, A generic framework for checking semantic equivalences between pushdown

automata and finite-state automata, in: Proceedings of IFIP TCS 2004, 2004.
[41] R. Mayr, On the complexity of bisimulation problems for pushdown automata, in: Proceedings of

33



IFIP TCS’2000, vol. 1872 of Lecture Notes in Computer Science, Springer, 2000.
[42] R. Mayr, Undecidability of weak bisimulation equivalence for 1-counter processes, in: Proceedings

of ICALP 2003, vol. 2719 of Lecture Notes in Computer Science, Springer, 2003.
[43] R. Mayr, Weak bisimilarity and regularity of context-free processes is exptime-hard, TCS 330 (2005)

553–575.
[44] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.
[45] F. Moller, Infinite results, in: Proceedings of CONCUR’96 [1], pp. 195–216.
[46] D. Park, Concurrency and automata on infinite sequences, in: Proceedings 5th GI Conference, vol.

104 of Lecture Notes in Computer Science, Springer, 1981.
[47] G. Sénizergues, Decidability of bisimulation equivalence for equational graphs of finite out-degree,

in: Proceedings of FOCS’98, IEEE Computer Society Press, 1998.
[48] J. Srba, Roadmap of infinite results, EATCS Bulletin (78) (2002) 163–175.
[49] J. Srba, Strong bisimilarity and regularity of basic process algebra is PSPACE-hard, in: Proceedings

of ICALP 2002, vol. 2380 of Lecture Notes in Computer Science, Springer, 2002.
[50] J. Srba, Undecidability of weak bisimilarity for pushdown processes, in: Proceedings of CONCUR

2002 [4], pp. 579–593.
[51] C. Stirling, Decidability of bisimulation equivalence for normed pushdown processes, Theoretical

Computer Science 195 (1998) 113–131.
[52] C. Stirling, The joys of bisimulation, in: Proceedings of MFCS’98, vol. 1450 of Lecture Notes in

Computer Science, Springer, 1998.
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Appendix

Strong bisimulation equivalence between two pushdown automata is decidable [47], but
no upper complexity bound is known. The best known lower bound is EXPTIME-
hardness, shown here.

Theorem 20. The problem PDA ∼ PDA is EXPTIME-hard.

Proof. We reduce the EXPTIME-complete [56] acceptance problem for alternating
linear-bounded automata (LBA) to the PDA ∼ PDA problem. The intuition for the
construction is as follows.

The attacker in the bisimulation game has a winning strategy if and only if the alter-
nating LBA accepts. The bisimulation game encodes the computation of the alternating
LBA. The sequence of traversed LBA configurations is stored on the stack of both push-
down automata. If the current LBA control-state is existential, then the attacker gets
to choose the successor control-state. If the current LBA control-state is universal, then
the defender gets to choose the successor control-state. The attacker chooses the tape
symbols of the next LBA configuration. There is no immediate guarantee that these are
the right tape contents w.r.t the LBA computation (i.e., the attacker could cheat here).
However, after every step the defender gets the option of challenging the attackers choice
of tape symbols (i.e., to verify if they are incompatible with the rules of the LBA com-
putation). If such a challenge reveals an error (i.e., cheating) of the attacker, then the
defender wins the game. This forces the attacker to play ‘honest’ and thus to faithfully
simulate the LBA computation. If this faithful simulation of the alternating LBA finally
reaches the accepting state of the LBA, then a special action becomes enabled in only
one of the two pushdown automata and thus the attacker wins the bisimulation game.
Otherwise, the defender wins the game.

Let M = (S,Σ, γ, s0,`,a, π) be an alternating LBA and w ∈ Σ∗ an input word.
Let n be the length of w. We construct (in polynomial time) a PDA (Q,Γ,Act , δ) and
processes α := (q0, 0)q0w and α′ := (q′0, 0)q0w such that M accepts w iff α 6∼ α′.

We represent an LBA configuration as uqv where u is the tape to the left of the
head, q is the control-state, and v is the tape under the head and to the right of it. Let
S′ := {q′ | q ∈ S} and S′′ := {q′′ | q ∈ S}. Q := S×{0, . . . , n−1}∪(S×Σ)×{1, . . . , n}∪S′×
{0, . . . , n−1}∪(S′×Σ)×{1, . . . , n}∪S′′×{0, . . . , n−1}∪(S′′×Σ)×{1, . . . , n}∪{(q̃, 0) | q ∈
S} ∪ (S × S)× {0} ∪ {qc, q′′c } ∪ {x}.

The reason that the control-states of the PDA can have complex forms like (S ×
Σ)×{1, . . . , n} is that it may be necessary to remember in the control-state of the PDA
which tape symbol ∈ Σ is stored at the position of the read/write head of the simulated
LBA. Furthermore, one also needs to know the current tape position ∈ {1, . . . , n} of the
read/write head of the simulated LBA.

For every state q ∈ Q, the states q′, q′′ and q̃ are seen as being associated to q.
Γ := Σ∪S, Act := Σ∪S×Σ∪S ∪{a, c, w, e}∪{λ} and the set of transitions δ is defined
as follows:

1. (q, i) X→ (q, i+ 1)X for all q ∈ S, X ∈ Σ, 0 ≤ i ≤ n− 2;

2. (q, i)
(q,Y )→ ((q, Y ), i+ 1)Y q for all q ∈ S, Y ∈ Σ, 0 ≤ i ≤ n− 1;
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3. ((q, Y ), i) X→ ((q, Y ), i+ 1)X for all q ∈ S, X,Y ∈ Σ, 0 ≤ i ≤ n− 1;
4. ((q, Y ), n)

q1→ (q1, 0) if π(q) = ∃ and q1 = first(q, Y )/second(q, Y );

5. (q′, i) X→ (q′, i+ 1)X for all q ∈ S, X ∈ Σ, 0 ≤ i ≤ n− 2;

6. (q′, i)
(q,Y )→ ((q′, Y ), i+ 1)Y q for all q ∈ S, Y ∈ Σ, 0 ≤ i ≤ n− 1;

7. ((q′, Y ), i) X→ ((q′, Y ), i+ 1)X for all q ∈ S, X,Y ∈ Σ, 0 ≤ i ≤ n− 1;
8. ((q′, Y ), n)

q1→ (q′1, 0) if π(q) = ∃ and q1 = first(q, Y )/second(q, Y );
9. ((q, Y ), n) a→ (q̃1, 0) if π(q) = ∀ and q1 = first(q, Y );

10. ((q, Y ), n) a→ (q̃2, 0) if π(q) = ∀ and q2 = second(q, Y );
11. ((q, Y ), n) a→ ((q1, q2), 0) if π(q) = ∀, q1 = first(q, Y ), q2 = second(q, Y );
12. ((q′, Y ), n) a→ (q̃1, 0) if π(q) = ∀ and q1 = first(q, Y );
13. ((q′, Y ), n) a→ (q̃2, 0) if π(q) = ∀ and q2 = second(q, Y );
14. ((q1, q2), 0)

q1→ (q1, 0)
15. ((q1, q2), 0)

q2→ (q2, 0)
16. (q̃1, 0)

q1→ (q′1, 0)
17. (q̃1, 0)

q2→ (q2, 0)
18. (q̃2, 0)

q1→ (q1, 0)
19. (q̃2, 0)

q2→ (q′2, 0)
20. ((q, Y ), n) w→ qc if π(q) = acc;

21. (q, i) X→ (q′′, i+ 1)X for all q ∈ S, X ∈ Σ, 0 ≤ i ≤ n− 2;

22. (q, i)
(q,Y )→ ((q′′, Y ), i+ 1)Y q for all q ∈ S, 0 ≤ i ≤ n− 1;

23. ((q, Y ), i) X→ ((q′′, Y ), i+ 1)X for all q ∈ S, X,Y ∈ Σ, 0 ≤ i ≤ n− 1;

24. (q′, i) X→ (q′′, i+ 1)X for all q ∈ S, X ∈ Σ, 0 ≤ i ≤ n− 2;

25. (q′, i)
(q,Y )→ ((q′′, Y ), i+ 1)Y q for all q ∈ S, 0 ≤ i ≤ n− 1;

26. ((q′, Y ), i) X→ ((q′′, Y ), i+ 1)X for all q ∈ S, X,Y ∈ Σ, 0 ≤ i ≤ n− 1;

27. (q′′, i) X→ (q, i+ 1)X for all q ∈ S, X ∈ Σ, 0 ≤ i ≤ n− 2;

28. (q′′, i)
(q,Y )→ ((q, Y ), i+ 1)Y q for all q ∈ S, Y ∈ Σ, 0 ≤ i ≤ n− 1;

29. ((q′′, Y ), i) X→ ((q, Y ), i+ 1)X for all q ∈ S, X,Y ∈ Σ, 0 ≤ i ≤ n− 1;
30. ((q′′, Y ), n)

q1→ (q1, 0) if π(q) = ∃ and q1 = first(q, Y )/second(q, Y );

31. (q′′, i) X→ (q′′, i+ 1)X for all q ∈ S, X ∈ Σ, 0 ≤ i ≤ n− 2;

32. (q′′, i)
(q,Y )→ ((q′′, Y ), i+ 1)Y q for all q ∈ S, Y ∈ Σ, 0 ≤ i ≤ n− 1;

33. ((q′′, Y ), i) X→ ((q′′, Y ), i+ 1)X for all q ∈ S, X,Y ∈ Σ, 0 ≤ i ≤ n− 1;
34. ((q′′, Y ), n)

q1→ (q′′1 , 0) if π(q) = ∃ and q1 = first(q, Y )/second(q, Y );
35. ((q′′, Y ), n) a→ (q̃1, 0) if π(q) = ∀ and q1 = first(q, Y );
36. ((q′′, Y ), n) a→ (q̃2, 0) if π(q) = ∀ and q2 = second(q, Y );
37. ((q′′, Y ), n) a→ ((q1, q2), 0) if π(q) = ∀, q1 = first(q, Y ), q2 = second(q, Y );
38. (q, i) c→ qc for all q ∈ S, 0 ≤ i ≤ n− 1;
39. ((q, Y ), i) c→ qc for all q ∈ S, 0 ≤ i ≤ n;
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40. (q′, i) c→ qc for all q ∈ S, 0 ≤ i ≤ n− 1;
41. ((q′, Y ), i) c→ qc for all q ∈ S, 0 ≤ i ≤ n;
42. (q′′, i) c→ q′′c for all q ∈ S, 0 ≤ i ≤ n− 1;
43. ((q′′, Y ), i) c→ q′′c for all q ∈ S, 0 ≤ i ≤ n;
44. ((q′′, Y ), n) w→ q′′c if π(q) = acc;

Furthermore, at control-state q′′c the system emits exactly n+ 4 times the action ‘c’ and
then deadlocks. At control-state qc the system behaves deterministically as follows:

1. First read the top 3 symbols from the stack (while emitting ‘c’ actions) and re-
member them.

2. Then pop n− 2 symbols from the stack (by ‘c’ actions). Thus, one is at the same
position in the previous LBA-configuration that is stored on the stack.

3. Read another 3 symbols from the stack and check if there is an error (according to
the transition rules of the LBA). If yes, then deadlock. If no, then emit the special
action ‘e’.

The construction above ensures that the attacker plays only in one process (on the
α-side; the q-side), while the defender only plays in the other process (on the α′-side;
the q′-side). In the important cases the attacker cannot play on the q′-side, because the
defender could then immediately make the two processes equal and win. In the rest of
the cases it does not matter on which side the attacker plays. In the bisimulation game,
configurations of the LBA are pushed onto the stack. The attacker determines which
symbols are pushed (rules 1–3). We say that the attacker ‘cheats’ if he pushes an LBA
configuration onto the stack that is not a successor of the previous one (according to the
transition rules of the LBA).

The attacker also determines the successor-control-state in those cases where the
control-state is labeled as existential (rules 4 and 8).

However, the defender determines the successor-control-state in those cases where the
control-state is labeled as universal (rules 9–19). The construction in the rules 9–19 is
a classic application of the so-called ‘defender’s choice’ technique in bisimulation games.
The idea is that by threatening to make the two processes equal (and thus winning the
game immediately), the defender can force the attacker to choose a particular action
according to the defender’s wishes. (This technique was pioneered in [27], but not made
very explicit there. See [30, 31] for a detailed modern description of this technique). In
our construction the game proceeds as follows. If the current control-state q is universal
(i.e., π(q) = ∀) then the rules (9–11) apply to the q-side and the rules (12–13) apply to
the q′ side. However, the attacker must choose rule 11, because otherwise the defender
can make the two processes equal in the next step. Then the defender has a choice
between rule 12 and rule 13, and thus chooses between the first successor q1 and the
second successor q2 of q. If the defender chose q1 (i.e., rule 12) then the attacker is
forced to chose rule 16, because otherwise the processes become equal (by rules 15/17).
Then the defender responds by rule 14 and the game continues from the control-states
q1/q′1 in the left/right process. If the defender chose q2 (i.e., rule 13) then the attacker is
forced to chose rule 19, because otherwise the processes become equal (by rules 14/18).
Then the defender responds by rule 15 and the game continues from the control-states
q2/q′2 in the left/right process. Thus it was entirely up to the defender whether the game
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continues from q1/q′1 or q2/q′2, i.e., whether the first or second successor control-state of
q was chosen.

The defender can also, in any step, go from the q′ domain of control-states go to
the q′′ domain of control-states (rules 24–26). By doing so, he threatens to make the
two processes equal in the very next step (rules 27–37 and 21–23). The only way for
the attacker to avoid this, is to do the action ‘c’ and go to the control-state qc, while
the defender is forced to go to the control-state q′′c in the other process (rules 38–43).
Processes with control states qc or q′′c a said to be in the ‘check-phase’. In the control-state
qc it is checked if the two most recently pushed LBA configurations on the stack have
an error at this particular point (according to the transitions of the LBA). In this way
it is checked if the attacker has ‘cheated’ in the bisimulation game by breaking the rules
of the LBA and pushing wrong configurations on the stack. If the attacker has cheated
(i.e., an error is found) then the defender wins, since both processes are deadlocked after
n+4 ‘c’-actions. If the attacker was honest (i.e., there is no error) then the attacker wins,
since he can do the action ‘e’ at the end, and the defender cannot. This construction
ensures that the attacker never cheats, i.e., never pushes wrong LBA configurations onto
the stack.

We now show that the LBA accepts the input w iff α 6∼ α′.
If the LBA accepts w then the attacker has the following winning strategy. The

attacker plays honest and in the α process. He pushes a successive sequence of LBA
configurations onto the stack. The defender is forced to do the same in the α′ process.
The attacker gets to choose the successor-control-states at the existential states and the
defender chooses the successors at the universal states (see detailed description above).
Since the attacker plays honest, the defender would lose if he went to the q′′ domain
of control-states and forced a check-phase. Since the LBA accepts w, the attacker can
eventually reach an accepting control-state and then do the action ‘w’ (rule 20). If the
defender is still in the q′ domain of control-states, he loses immediately. If the defender
is in the q′′ domain of control-states then a check-phase is initiated. The attacker will
still win after n+4 ‘c’ actions and the final (winning) ‘e’ action, since he has not cheated.
If the defender initiates the check-phase too early, such that the stack bottom is reached
during the check-phase, then the attacker still wins. In this particular case more ‘c’
actions are possible in q′′c than in qc. Thus α 6∼ α′.

If the LBA does not accept w then the defender has the following winning strategy. If
the attacker plays on the α′ side then the defender makes the two processes equal. If the
attacker does not play honest then the defender goes to the q′′ domain and so threatens
to make the two processes equal in the next step, unless the attacker does the ‘c’ action
and begins a check-phase. In this check-phase the defender wins after n + 4 ‘c’-actions
(deadlock in both processes), because the attacker has cheated. If the attacker himself
goes to the q′′ domain of control-states, then the defender can immediately make the
two processes equal and win. The definition of the rules 9–19 ensures that the defender
gets to choose the successor-control-state at the universal states (see detailed description
above). Thus, since the LBA does not accept w, the attacker can never reach an accepting
control-state (unless by cheating). So the defender can defend forever and wins. Thus
α ∼ α′. 2
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