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Abstract
We show that bisimulation equivalence of order-two pushdown automata is undecidable. More-
over, we study the lower order problem of higher-order pushdown automata, which asks, given
an order-k pushdown automaton and some k′ < k, to determine if there exists a reachable
configuration that is bisimilar to some order-k′ pushdown automaton. We show that the lower
order problem is undecidable for each k ≥ 2 even when the input k-PDA is deterministic and
real-time.
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1 Introduction

Among the various notions of equivalence in concurrency theory [29] bisimulation equivalence
(bisimilarity for short) is undoubtedly the central one in formal verification. For instance,
elegant characterizations of the bisimulation-invariant fragments of well-known logics like
first-order logic, monadic second-order logic or monadic path logic have been obtained in
terms of modal logic [28], the modal µ-calculus [9], and CTL∗ [17], respectively.

The resulting decision problem, given two transition systems and a state of each of them,
to decide whether the two states are bisimilar, is well-known to be complete for determin-
istic polynomial time on finite systems [2]. The status of decidability and of computational
complexity of bisimilarity on infinite state systems is significantly less clear. A prominent
such example is the class of systems described by pushdown automata (pushdown systems):
Decidability was proven by Sénizergues [21], extending his famous decidability result on lan-
guage equivalence of deterministic pushdown automata [20] (see [25] for a primitive recursive
upper bound and [11] for a recent proof); however, the best known lower bound is EXPTIME
[15]. Unfortunately, there are only few classes of infinite state systems, where bisimilarity is
decidable and the precise complexity is known [10, 3].
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Worse still, bisimilarity is not known to be decidable on PA-processes, ground tree re-
write systems, nor on higher-order pushdown systems, whereas its weaker variant (weak
bisimilarity) is not known to be decidable on BPP nor on BPA, just to mention some prom-
inent examples. We refer to [23] for an up-to-date record on the decidability and complexity
status of bisimilarity of infinite state systems in Mayr’s Process Rewrite Systems hierarchy.

A milestone technique for proving lower bounds for bisimilarity on infinite state systems
entitled “Defender’s Forcing” has been introduced by Jančar and Srba [12]. Bisimulation
equivalence can be seen as a game between “Attacker” and “Defender”, where Defender wins
the game if and only if the pair of states are bisimilar. When aiming at showing hardness of
bisimilarity via reduction from a hard problem, the simple but powerful idea of “Defender’s
Forcing” is to construct, whenever necessary, a subgame that allows Defender to make a
choice. This is important since, in a certain sense, Attacker has much more freedom in the
bisimulation game, as in each round he is the one who chooses an outgoing transition of one
of the two states, whereas Defender has to respond with a matching transition in the other
system. With this technique lower bounds on various classes of infinite systems have been
proven, for instance Σ1

1-completeness of bisimilarity on prefix-recognisable graphs [12].
A further natural question is to decide whether a given infinite system is bisimilar to a

finite one, the so-called regularity problem. It seems that even less is known about this prob-
lem, for instance, decidability is open for any class of systems that lies between pushdown
systems (resp. PA-processes) and Mayr’s class of Process Rewrite Systems [23]. However
for deterministic pushdown automata decidability follows from [27, 24].

Higher-order pushdown automata were introduced by Maslov [16] and independently by
Damm and Goerdt [7]. They generate the same class of trees as safe higher order recursion
schemes [14], which have applications to software verification for higher-order programs.

To the best of the authors’ knowledge the decidability status of bisimilarity on higher-
order pushdown automata is open so far, but not explicitly stated as such in the literature.
In our first result we show that bisimilarity of higher-order pushdown automata is already
undecidable at order two. Inspired by [12] we show undecidability via a reduction from
the infinitary version of the Modified Post’s Correspondence Problem (MPCP). We must,
however, restrict ourselves to instances of the infinitary MPCP for which all homomorphisms
are non-erasing for our proofs to work (in contrast to [12]). To obtain this result, we use
the above-mentioned technique “Defender’s Forcing”. Our undecidability result confirms
that to some extent the decidability of bisimilarity of equational graphs with finite out-
degree [21] cannot be significantly improved. It is worth mentioning that transition graphs
of higher-order pushdown automata have finite out-degree and decidable monadic second-
order theories [4, 5]. Deciding equivalence of deterministic order-k pushdown automata is
an interesting open problem, although some progress has been made on this by Stirling [26].

In the second part of the paper, we study the lower order problem, which asks, given
some configuration c of some order-k pushdown automaton and some k′ < k, whether c
can reach a configuration that is bisimilar to some configuration of some order-k′ pushdown
automaton. When k′ = k−1 this question can be seen to ask whether the order-k pushdown
automaton always exhibits behaviour that is ‘inherently order-k’. When k′ = 0, it is a weaker
variant of the regularity problem, which asks whether a k-PDA is bisimilar to some finite
state system. The property queried by the latter implies the property queried by the ‘lower
order problem’ with k′ = 0, but not vice versa.

We show that the lower order problem is undecidable whenever k ≥ 2 even when the
input order-k pushdown automaton is deterministic and real-time (i.e. free of ε-transitions).
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2 Preliminaries

Transition systems and bisimulation equivalence. By N def= {1, 2, . . .} we denote the
naturals. For each n ∈ N we define [1, n] def= {1, . . . , n}. Let us fix a countable set of actions
A. A labeled transition system is a tuple T = (S,A, { a−→| a ∈ A}), where S is a set of states,
A ⊆ A is a finite set of actions, and a−→⊆ S×S is a binary transition relation for each a ∈ A.
A state s ∈ S is called deterministic if for each a ∈ Σ we have |{s′ ∈ S | s a−→ s′}] ≤ 1. We
say T is deterministic if every state of T is deterministic. We naturally extend the transition
relation a−→ inductively to words, as follows: ε−→def= {(s, s) | s ∈ S} and wa−→def= {(s, t) | ∃u ∈
S : s w−→ u and u a−→ t}. We write s w−→ in case s w−→ s′ for some state s′, for each word
w ∈ Σ∗. A binary relation R ⊆ S × S is called bisimulation if for each (s1, s2) ∈ R, for each
a ∈ A and for each i ∈ {1, 2} we have that if si

a−→ s′i for some s′i ∈ S, then s3−i
a−→ s′3−i

for some s′3−i ∈ S such that (s′1, s′2) ∈ R.

We write s1 ∼ s2 if there is some bisimulation R with (s1, s2) ∈ R. It is also sometimes
useful to think of bisimulation equivalence as a game played between Attacker and Defender.
Starting from a pair of states (s1, s2) the game proceeds in rounds in which Attacker makes
the first move by choosing some label a and some transition si

a−→ s′i for some i ∈ {1, 2}.
Defender has to respond with some transition s3−i

a−→ s′3−i and the new game position is
(s′1, s′2). If one of the players cannot make an appropriate move, then the other player wins,
and moreover Defender wins every infinite game.

Higher-order pushdown automata. Let us inductively define the set of k-stacks,
for each k ≥ 1, over some finite stack alphabet Γ with [, ] 6∈ Γ and where ⊥ 6∈ Γ is a special
bottom-of-stack symbol:

A 1-stack is an element of Γ∗⊥.

A (k + 1)-stack is a finite sequence [α1][α2] · · · [αn], where n ≥ 1 and αi is a k-stack for
each i ∈ [1, n].

Let us denote by Stacksk(Γ) the set of all k-stacks over Γ. The empty order k-stack ⊥k is
inductively defined as ⊥1

def= ⊥ and ⊥k+1
def= [⊥k] for each k ∈ N.

Over each 1-stack α we define the (partial) operation swapw for each w ∈ Γ∗ ∪ Γ∗⊥ as

swapw(α) def=


wa2 · · · an if w ∈ Γ∗, α = a1 · · · an⊥, n ≥ 1 and ai ∈ Γ for each i ∈ [1, n],
w if w ∈ Γ∗⊥ and α = ⊥, and
undefined otherwise

and top1(α) def=
{
a1 if α = a1 · · · an⊥ with n ≥ 1 and ai ∈ Γ for each i ∈ [1, n] and
⊥ otherwise.

Let us define the partial operation pop1(α) def= swapε(α) and for each k-stack α =
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[α1][α2] · · · [αn] with k ≥ 2 let us define:

swapw(α) def= [swapw(α1)][α2] · · · [αn]

pushk(α) def= [α1][α1][α2] · · · [αn]

push`(α) def= [push`(α1)][α2] · · · [αn] for each 2 ≤ ` < k

popk(α) def=
{

[α2] · · · [αn] if n ≥ 2
undefined otherwise

pop`(α) def= [pop`(α1)][α2] · · · [αn] for each 2 ≤ ` < k

topk(α) def= α1

top`(α) def= top`(α1) for each 1 ≤ ` < k

Let Opk
def= {swapw | w ∈ Γ∗ ∪ Γ∗⊥} ∪ {pop` | ` ∈ [1, k]} ∪ {push` | ` ∈ [2, k]} denote the set

of k-operations. Note α ∈ Stacksk and op ∈ Opk implies op(α) ∈ Stacksk if op(α) is defined.
For each k ≥ 1, an order-k pushdown automaton (k-PDA) is a tuple P = (Q,A,Γ,∆),

where Q is a finite set of control locations, A ⊆ A is a finite set of actions, Γ is a finite stack
alphabet, and where ∆ ⊆ Q× (Γ ∪ {⊥})× A×Q×Opk is a finite set of stack rewrite rules,
where each (q, x, a, q, op) ∈ ∆ satisfies (i) x = ⊥ and op = swapw implies w ∈ Γ∗⊥ and (ii)
x ∈ Γ and op = swapw implies w ∈ Γ∗. We abbreviate (q, x, a, q′, op) ∈ ∆ by qx a

↪→P q′op.
The transition system of P is T (P) def= (Q × Stacksk(Γ),A, { a−→P | a ∈ A}), where

(q, α) a−→P (q′, α′) if there is qx a
↪→P q′op in ∆ such that top1(α) = x and α′ = op(α) for

each q, q′ ∈ Q, each a ∈ A and each α, α′ ∈ Stacksk. Thus, states of T (P) are elements of
Q× Stacksk(Γ) that we also denote as configurations of P. We call a configuration (q0, α0)
of P normed if there exists some control location qf ∈ Q with (qf ,⊥k) 6 a−→ (emits no a-
transition) for each a ∈ Σ, and such that every configuration (q, α) with (q0, α0) −→∗ (q, α)
we have (q, α) −→∗ (qf ,⊥k), where −→∗ is the reflexive transitive closure of

⋃
a∈Σ

a−→.
We can now state the decision problem which we study in the next section.
k-PDA-Bisimilarity
INPUT: A k-PDA P = (Q,A,Γ,∆) and two configurations (q, α), (q′, α′) ∈ Q ×

Stacksk(Γ).
QUESTION: Does (q, α) ∼ (q′, α′) hold in T (P)?

The following proposition is folklore and essentially follows from the fact that every config-
uration of a k-PDA has only finitely many successors.

I Proposition 1. The problem k-PDA-Bisimilarity is in Π0
1 for each k ≥ 1.

Post’s Correspondence Problem and Variants of it. For two words u, v over some
finite alphabet Σ we write u � v if uw = v for some w ∈ Σ∗, that is if u is a prefix of v. For
a word w = a1 · · · an with ai ∈ Σ for each i ∈ [1, n] we denote its reverse by wR def= an · · · a1.
For a finite (resp. infinite) sequence of finite words u1, . . . , un (resp. u1, u2, . . .) we write∏
i∈[1,n] ui

def= u1u2 · · ·un (resp.
∏
i≥1 ui

def= u1u2 · · · ) to denote their concatentation.
An instance of Post’s Correspondence Problem is given by a tuple X = ([1, n],Σ, h1, h2),

where n ∈ N, Σ is a finite word alphabet, and where h1, h2 : [1, n]∗ → Σ∗ are homomorph-
isms. We call X increasing if |h1(j)| ≤ |h2(j)| for each j ∈ [1, n]. We call X non-erasing if
h1(j), h2(j) 6= ε for each j ∈ [1, n]. A solution to X is a mapping s : [1,m]→ [1, n] (equival-
ently a word w ∈ [1, n]∗), where m ≥ 1 such that s(1) = 1 and moreover h1(s(1) · · · s(m)) =
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h2(s(1) · · · s(m)). An ω-solution to X is a mapping s : N → [1, n] with s(1) = 1 such that
the following equality over ω-words holds:

∏
i≥1 h1(s(i)) =

∏
i≥1 h2(s(i)).

I Remark. When X is non-erasing and increasing, the following two statements are equi-
valent for each s : N→ [1, n]:

The mapping s is an ω-solution to X .
s(1) = 1 and h1(s(1) · · · s(`)) � h2(s(1) · · · s(`)) for every ` ∈ N.

The classical problem MPCP asks, given an instance X , whether X has a solution. The
infinitary variant ω-MPCP asks, given an instance X , whether X has an ω-solution.

It was shown in [19] that ω-MPCP is Π0
1-complete. As already observed in [12], Sipser’s

Σ0
1-hardness reduction [22] from the halting problem of Turing machines to MPCP can be

transferred to a Π0
1-hardness reduction to ω-MPCP even when restricting instances to be

increasing (by only using Steps 1 to 5 and avoiding Steps 6 and 7 in Section 5.2 of [22]). In
fact, by inspecting the homomorphisms constructed by Sipser, one can additionally assume
that the instances are non-erasing; the latter was not necessary in the undecidability proofs
from [12], but is essential in our hardness proofs. This leads us to the following:
ω-NonErasing-Increasing-MPCP
INPUT: An instance X = ([1, n],Σ, h1, h2) that is non-erasing and increasing, i.e.

such that h1(j), h2(j) 6= ε and |h1(j)| ≤ |h2(j)| for each j ∈ [1, n].
QUESTION: Does X have an ω-solution?

I Theorem 1 ([22]). The problem ω-NonErasing-Increasing-MPCP is Π0
1-complete.

3 Undecidability of 2-PDA-Bisimilarity

We prove Π0
1-hardness of 2-PDA-Bisimilarity by giving a many-to-one reduction from

ω-NonErasing-Increasing-MPCP. For this, let us fix an instance X = (J,Σ, h1, h2) of
ω-NonErasing-Increasing-MPCP. We will construct a 2-PDA P = (Q,A,Γ,∆) and
two configurations (q, [1⊥]) and (q′, [1⊥]) such that X has an ω-solution if and only if
(q, [1⊥]) ∼ (q′, [1⊥]) holds in T (P).
Overview of the Construction.

We start from the pair of configurations (q, [1⊥]) (the initial left configuration) and
(q′, [1⊥]) (the initial right configuration), thus both initial configurations consist of just one
order-1 stack. We partition the bisimulation game into three phases.

Defining j1
def= 1, in phase 1 we repeatedly push indices j2, j3, . . . ∈ [1, n] onto the

order-1-stack of both configurations and we let Defender choose them by using the technique
of “Defender’s Forcing”. The idea is that Defender’s job is to push an infinite sequence of
indices that is an ω-solution to X onto both order-1 stacks ad infinitum. At any situation
in the game of the form (q, [j` · · · j1⊥]) and (q′, [j` · · · j1⊥]) Attacker can play the action f
to challenge Defender by claiming that h1(j1 · · · j`) is not a prefix of h2(j1 · · · j`).

This leads us to phase 2 in which Defender wishs to prove h1(j1 · · · j`) � h2(j1 · · · j`).
Let w = j` · · · j1⊥. We let the game get to the pair of configurations (t, [w][w][w]) and
(t′, [w][w][w]). From this position, by again using the “Defender’s Forcing” technique and
popping on the top-most order-1 stack, we allow Defender to choose a situation of the form
(x, [uRjk−1 · · · j1⊥][w][w]) and (x′, [uRjk−1 · · · j1⊥][w][w]), where 1 ≤ k ≤ `, where u is a
prefix of h2(jk), and moreover h1(j1 · · · j`) = h2(j1 · · · jk−1)u.

From the latter pair of configurations, phase 3 deterministically prints from the left
configuration essentially (plus some intermediate symbols) the string h1(j1 · · · j`)R by first
performing a pop2, and from the right configuration essentially (plus some intermediate
symbols) the string uRh2(j1 · · · jk−1)R by continuing with the current top order-1-stack.
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Since we had three copies of w at the end of phase two, we can now perform a pop2
followed by a single ‘wait’ on the left configuration, and two pop2s on the right configuration,
so that both then have stack [w]. This allows them both to empty their stacks using the
same number of pop1 operations, allowing our 2-PDA to be normed. Thus our suggested
generalisation of normedness standard for 1-PDA does not help recover decidability.

When describing the rules in detail, we list the rewrite rules of P in reverse order, i.e. first
for phase 3, then for phase 2 and finally for phase 1. Adapting the notation from [12], the
rewrite rules that are presented in a represent the moves added to implement “Defender’s
Forcing”. These moves allow Defender to render the two configurations equal, and hence
trivially bisimilar, if Attacker does not allow Defender to “decide the stack operations”.

The Details.

Let Γ def= [1, n] ∪ Σ. The set of states Q, the set of actions A and the transitions ∆ of P
are implicitly given by the following rewrite rules. We describe the rules for phase 3 first.

x γ
f
↪→P y pop2 and x′ γ

f
↪→P y′ swapγ for each γ ∈ Γ ∪ {⊥}

y a
a
↪→P y pop1 and y′ a

a
↪→P y′ pop1 for each a ∈ Σ

y j
a
↪→P y swapvR for each j ∈ [1, n], where h1(j) = va

y′ j
a
↪→P y′ swapvR for each j ∈ [1, n], where h2(j) = va

y ⊥ ⊥
↪→P z1 swap⊥ and y′ ⊥ ⊥

↪→P z′1 pop2

z1 ⊥
p
↪→P z pop2 and z′1 j

p
↪→P z pop2 for each j ∈ [1, n]

z j
p
↪→P z pop1 for each j ∈ [1, n]

For the following lemma, observe that from both the initial configurations in the lemma
there is a unique maximal (w.r.t. �) word that can be traced.

I Lemma 2. Assume j1, · · · , j` ∈ [1, n] with ` ≥ 1 and let 0 ≤ k ≤ `. Assume some 2-stack
α = [uRjk · · · j1⊥][j` · · · j1⊥][j` · · · j1⊥], where u ∈ Σ∗. Then we have

(x, α) ∼ (x′, α) if and only if h1(j1 · · · j`) = h2(j1 · · · jk)u.

Let us add the following rules to ∆ in order to implement phase 2.
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r1 j
f
↪→P r2 push2 and r′1 j

f
↪→P r′2 push2 for each j ∈ [1, n]

r2 j
f
↪→P t push2 and r′2 j

f
↪→P t′ push2 for each j ∈ [1, n]

t ⊥ ⊥
↪→P x swap⊥ and t′ ⊥ ⊥

↪→P x′ swap⊥
t j

p
↪→P t′↓ swapj and t′ j

p
↪→P t′↓ swapj for each j ∈ [1, n]

t j
p
↪→P t swapj for each j ∈ [1, n]

t j
p
↪→P t′j(w) swapj and t′ j

p
↪→P t′j(w) swapj for each j ∈ [1, n] and

each prefix w of h2(j)
t j

↓
↪→P t pop1 and t′↓ j

↓
↪→P t′ pop1 for each j ∈ [1, n]

t′j(w) j
↓
↪→P t pop1 for each j ∈ [1, n] and each

prefix w of h2(j)

t j
〈j,w〉
↪→ P x swapwR and t′j(w)j

〈j,w〉
↪→ P x

′ swapwR for each j ∈ [1, n] and each

and t′↓ j
〈j,w〉
↪→ P x swapwR prefix w of h2(j)

t′j(w) j
〈j,v〉
↪→ P x swapvR for each j ∈ [1, n] and all

prefixes v, w of h2(j)
s.t. v 6= w

I Lemma 3. Let α = j1 · · · j` ∈ [1, n]` with ` ≥ 1. Then we have

(r1, [αR⊥]) ∼ (r′1, [αR⊥]) if and only if h1(α) � h2(α).

Proof. When inspecting the first two pairs of rules from the previous block, it is clear
that (r1, [αR⊥]) ∼ (r′1, [αR⊥]) if and only if (t, [αR⊥][αR⊥][αR⊥]) ∼ (t′, [αR⊥][αR⊥]αR⊥]).
Define the configuration αk

def= [jk · · · j1⊥][αR⊥][αR⊥] for each 0 ≤ k ≤ `.
“If”: Assume h1(α) � h2(α). By assumption we have h1(j1 · · · j`) = h2(j1 · · · jk0−1)u,

where 1 ≤ k0 ≤ ` and where u ∈ Σ∗ is some non-empty prefix of h2(jk0). First, we have that
there exists some bisimulation relation R that relates (x, [uRjk0−1 · · · j1⊥][αR⊥][αR⊥]) and
(x′, [uRjk0−1 · · · j1⊥][αR⊥][αR⊥]) by Lemma 2. For each configuration ζ ∈ Q× Stacks2(Γ),
let us define cl(ζ) def= {(ζ ′, ζ ′) | ∃v ∈ Σ∗ : ζ v−→ ζ ′}. The reader verifies that the symmetric
closure of the following relation is indeed a bisimulation that relates (t, [αR⊥][αR⊥][αR⊥]) =
(t, α`) and (t′, [αR⊥][αR⊥]αR⊥]) = (t′, α`):

{(〈t, αk〉, 〈t′, αk〉) | k0 ≤ k ≤ `} ∪ {(〈t, αk〉, 〈t′↓, αk〉) | k0 < k ≤ `}
∪

⋃
k0<k≤`,w�h2(k) cl(〈t′k(w), αk〉) ∪

⋃
w�h2(k0),w 6=u cl(〈t′k0

(w), αk0〉)
∪

{(
〈t, αk0〉, 〈t′k0

(u), αk0〉
)}

∪ cl(〈t, αk0−1〉) ∪ R

“Only if”: Assume h1(j1 · · · j`) 6� h2(j1 · · · j`). First, recall that we have

(x, [uRjk−1 · · · j1⊥][αR⊥][αR⊥]) 6∼ (x′, [uRjk−1 · · · j1⊥][αR⊥][αR⊥]) (1)

for every k ∈ [1, `] and each prefix u of h2(jk) by Lemma 2.
For proving (t, [α⊥][α⊥][α⊥]) 6∼ (t′, [α⊥][α⊥][α⊥]) we will show (t, αk) 6∼ (t′, αk) for

each 0 ≤ k ≤ ` by induction on k.
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Induction base. We have to prove (t, [⊥][α⊥][α⊥]) 6∼ (t′, [⊥][α⊥][α⊥]). When performing
action ⊥ on both configurations we obtain the pair (x, [⊥][α⊥][α⊥]) and (x′, [⊥][α⊥][α⊥])
which is not bisimilar by Lemma 2 since |α| ≥ 1 and h2 is non-erasing by assumption.
Induction step. Let 0 ≤ k < `. Consider the bisimulation game starting from the pair of
configurations (t, αk+1) and (t′, αk+1). We will describe a winning strategy for Attacker.
Attacker plays (t, αk+1) p−→ (t, αk+1). We make a case distinction on the answers of De-
fender. Firstly, assume Defender responds (t′, αk+1) p−→ (t′↓, αk+1). In the next round, At-
tacker plays (t′↓, αk+1) ↓−→ (t′, αk) and Defender can only respond with (t, αk+1) ↓−→ (t, αk).
For the resulting pair of configurations it holds (t, αk) 6∼ (t′, αk) by induction hypothesis.
Secondly, assume Defender responds (t′, αk+1) p−→ (t′jk+1

(w), αk+1) for some w � h2(jk+1).

Then Attacker can play (t′jk+1
(w), αk+1) 〈jk+1,w〉−−−−−→ (x′, [wRjk · · · j1][α⊥][α⊥]) and Defender

can only respond with (t, αk+1) 〈jk+1,w〉−−−−−→ (x, [wRjk · · · j1][α⊥][α⊥]) and the resulting pair of
configurations is not bisimilar by (1). J

Finally, let us add the following rules to ∆ for implementing phase 1.

q k
↑
↪→P q′j swapk and q′ k

↑
↪→P q′j swapk for each j, k ∈ [1, n]

q k
↑
↪→P q swapk for each k ∈ [1, n]

q k
j
↪→P q swapjk for each k, j ∈ [1, n]

q′j k
j
↪→P q′ swapjk for each k, j ∈ [1, n]

q′j k
j′

↪→P q swapj′k for each k, j, j′ ∈ [1, n] with j′ 6= j

q k
f
↪→P r1 swapk and q′k

f
↪→P r′1 swapk for each k ∈ [1, n]

I Lemma 4. We have (q, [1⊥]) ∼ (q′, [1⊥]) if and only if X has an ω-solution.

One can easily verify that both configurations (q, [1⊥]) and (q′, [1⊥]) are normed. For
the following theorem, the lower bound follows from Theorem 1 and and Lemma 4, whereas
the upper bound follows from Proposition 1.

I Theorem 5. The problem 2-PDA-Bisimilarity is Π0
1-complete, even when both input

configurations are normed.

4 The Lower Order Problem

We consider the following class of lower order problems for k ≥ 2 and k′ ∈ [0, k− 1] (where
a 0-PDA is a finite automaton):
LOk,k′

INPUT: A deterministic k-PDA P and a configuration (q, α) of P.
QUESTION: Does there exist a configuration (r, β) of P with (q, α) −→∗ (r, β) such that

(r, β) ∼ (r′, β′), where (r′, β′) is a configuration of some k′-PDA P ′?

This problem is related to determining whether a program employing order-k functions can
ever reach a state from which it could continue using code only constructed with order-k′
functions. The case when k′ = 0 is thus related to the problem of determining whether a
(higher-order) recursive program is equivalent to one using only constant memory.

The following holds whether or not P ′ is restricted to being deterministic:
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I Theorem 6. LOk,k′ is undecidable for every k ≥ 2 and k′ ∈ [0, k − 1].

To our knowledge the decidability of LO1,0 and the variant of LOk,k′ for which we require
(r, β) = (q, α) remain open when k′ ≥ 1 (and k′ ≥ 0 if P is allowed to be non-deterministic).
These stronger problems would be even more pertinent to practical applications.

4.1 Language Recognition
Our construction requires us to use k-PDA as language recognisers. In order to do this
we extend the model further to: R = (Q, q0, F,A,Γ,∆) where q0 ∈ Q is an initial control
location and F ⊆ Q is a set of accepting control locations. The language recognised by R is:

L(R) def= { w ∈ A∗ | (q0,⊥k) w−−→ (q, α) for some q ∈ F and α ∈ Stacks(Γ) }

For simplicity, we allow ε ∈ A and for language recognisers view this as a silent transition.
A reachable configuration (q, α) is one such that (q0,⊥k) w−→ (q, α) for some w ∈ Σ∗.

We say that the language L ⊆ Σ∗ is k-complete if it is recognised by a deterministic
k-PDA but not by any (k − 1)-PDA (whether deterministic or non-deterministic). A k-
complete language exists for every k ≥ 1 [6, 7, 16].

In the spirit of [1], we say that a language is visibly k-complete for k ≥ 2 if it is k-
complete and we can partition A into A = A↑ ] A< ] A↓ such that it is recognised by a
visible k-PDA R. A k-PDA R is visible if it has a transition of the form qγ

a
↪→R q′op only

if a ∈ A↑ implies op = pushk, a ∈ A↓ implies op = popk and a ∈ A< implies op ∈ Opk−1.
Thus the language is ‘marked’ with the order-k pushes and pops performed by some k-PDA
recognising it. It is clear that the existence of k-complete languages implies the existence of
visibly k-complete languages (pick a k-complete language and some k-PDA recognising it,
then convert the k-PDA to recognise a visibly k-complete language by marking the symbols
labelling pushk and popk transitions—any (k − 1)-PDA generating the annotated language
could also generate the original by removing the annotations).

Let us further say that a deterministic k-PDA R is total if R is real-time (i.e. without
ε-transitions) and for every reachable configuration (q, α) and every a ∈ A, there exists a
transition of the form q top1(α) a

↪→R q′op such that op(α) is defined.
We say that a deterministic visible k-PDA R recognising a visibly k-complete language

is visibly-total if R is real-time and for every reachable configuration (q, α) and every a ∈ A<

there exists a transition of the form q top1(α) a
↪→R q′op such that op(α) is defined, for every

a ∈ A↑ a transition q top1(α) a
↪→R q′pushk and for every a ∈ A↓ there is a transition of the

form q top1(α) a
↪→R q′popk (whether or not popk(α) is defined).

I Lemma 7. For every k ≥ 1 there exists a (visibly) k-complete language that is recognised
by a deterministic (visibly)-total k-PDA.

4.2 Outline of the undecidability of LOk,k‘ with k ≥ 2
In all cases we work by a reduction from (the finitary variant of) MPCP. We fix an MPCP
instance X = ([1, n],Σ, h1, h2) and for each LOk,k′ we construct a k-PDA PX such that
there is a solution to the lower order problem if and only if there is a solution to X . We
have two separate constructions, one for the case k− k′ ≥ 2 and one for the case k′ = k− 1.
First, let us assume k − k′ ≥ 2. The idea is that for each potential solution w to X there
is a configuration cw that is reachable from a configuration (q0,⊥k) whose k-stack is of the
form [α][swapw(⊥k−1)] for some (k − 1)-stack α. From cw the deterministic k-PDA PX can
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simulate on its stack α some deterministic (k − 1)-PDA recognizing some (k − 1)-complete
language. However, at any point PX threatens to pop [α] and then deterministically output
h1(w)R in case the current control location of the simulation is in some accepting control
location or else to deterministically output h2(w)R in case the current control location of
the simualation is in some non-accepting control location. In case h1(w) = h2(w) the
distinction between accepting and rejecting control locations cannot be made by observing
this behaviour and so there will be a finite automaton bisimilar to PX .

Let us now assume k′ = k − 1. We follow a similar idea, but this time simulate an
automaton for a k-complete language. However this simulation may lead to k-stacks of the
form [αm] · · · [α1][swapw(⊥k−1)] for arbitrarily large m. This means that to carry out the
threat of printing h1(w)R or h2(w)R it is necessary to make an unbounded number of popk
operations. If w is a solution to X so that h1(w) = h2(w) then a bisimilar P ′ will need
to ‘know’ m in order to synchronise with this preparation to print h1(w) or h2(w). It thus
needs to be equipped with a counter, but since k − 1 ≥ 1, this is possible. Concerning the
proof, there is a simple modification exploiting visibly total automata recognising k-complete
visible languages, thus we have decidided to relegate this case to the long version.

4.3 The undecidability of LOk,k′ for k ≥ 2 and k − 2 ≥ k′ ≥ 0.
We fix a deterministic (k−1)-PDAR = (QR, q0R, FR,AR,ΓR,∆R) that recognises a (k−1)-
complete language. Due to Lemma 7 we may assume that it is total-deterministic. We do not
require any visibility assumption in this section. We construct a k-PDA PX = (Q,A,Γ,∆)
and take a configuration (q0,⊥k) as input to the problem. We will progressively introduce
∆ (and thereby Q,A, and Γ).

First we have rules responsible for ‘guessing’ a solution to MPCP and spawning R:

q0⊥
#1
↪→PX q0 swap1⊥ and q0 j

#j′
↪→PX q0 swapj′j for each j, j′ ∈ [1, n]

q0 j
#
↪→PX q′0 swapj and q′0 j

#
↪→PX q′′0 pushk for each j ∈ [1, n]

q′′0 j
#
↪→PX q′′0 pop1 and q′′0 ⊥

#
↪→PX q0R swap⊥ for each j ∈ [1, n]

We then add every rule in ∆R to ∆. Finally we have rules responsible for printing out the
image of the alleged solution under either h1 or h2:

qf γ
#
↪→PX y−1 popk and q γ

#
↪→PX y−2 popk for each γ ∈ ΓR, qf ∈ FR,

q ∈ QR − FR
y−1 j

#
↪→PX y1 pushk and y−2 j

#
↪→PX y2 pushk for each j ∈ [1, n]

y1 a
a
↪→PX y1 pop1 and y2 a

a
↪→PX y2 pop1 for each a ∈ Σ

y1 j
a
↪→PX y1 swapvR

1
and y2 j

a
↪→PX y2 swapvR

2
f. e. j ∈ [1, n]: h1(j) = v1a,
h2(j) = v2a

y1 ⊥
reset
↪→ PX q′0 popk and y2 ⊥

reset
↪→ PX q′0 popk

We have borrowed the rules for y1 and y2 from the previous construction, and so from
the proof of Lemma 2 we get:

I Lemma 8. Suppose that we have a stack α = [swapj`···j1⊥(⊥k−1)] [swapj`···j1⊥(⊥k−1)]
where j1, . . . , j` ∈ [1, n]. Then we have (yi, α) ureset−−−−−→ (q′0, popk(α)) if and only if u =
hi(j1 · · · j`)R, for each i ∈ {1, 2}.

We have the following characterisation of reachable configurations of PX :
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I Lemma 9. Let (p, α) be a configuration of PX with (q0,⊥k) −→∗ (p, α). Then one of the
following holds:

p ∈ {q0, q
′
0, y
−
1 , y

−
2 } and α = [swapj`···j1⊥(⊥k−1)] for some j1, . . . , j` ∈ [1, n] with j1 = 1.

p = q′′0 and α = [swapj`′ ···j1⊥(⊥k−1)] [swapj`···j1⊥(⊥k−1)] for some j1, . . . , j` ∈ [1, n] with
j1 = 1 and 0 ≤ `′ ≤ `.
p ∈ {y1, y2} and α = [swapwj`′ ···j1⊥(⊥k−1)] [swapj`···j1⊥(⊥k−1)] for some j1, . . . , j` ∈
[1, n] with j1 = 1 and 0 ≤ `′ ≤ ` and w ∈ Σ∗.
p ∈ QR and α = [β] [swapj`···j1⊥(⊥k−1)] for some j1, . . . , j` ∈ [1, n] with j1 = 1 and
0 ≤ `′ ≤ ` where (p, β) is a reachable configuration of R.

Proof. By induction on the length of a run from (q0,⊥k) witnessing reachability. J

Thanks to the reset transitions we have the following:

I Lemma 10. Assume (q0,⊥k) −→∗ c for some configuration c of P such that c ∼ c′

for some configuration c′ of some k′-PDA with k − k′ ≥ 2. Then (q0,⊥k) −→∗ c0 where
c0 = (q′0, [swapj`···j1⊥(⊥k−1)]), for some j1, . . . , j` ∈ [1, n] and j1 = 1. Moreover, there is
some configuration c′0 of P ′ with c′ −→∗ c′0 and c0 ∼ c′0.

Proof. Since c = (p, α) must satisfy one of the conditions Lemma 9, by considering each
case in turn it can easily be verified that c u−−→ c0 for c0 of the requisite form with u ∈ A∗.
Since c ∼ c′ we must have c′ u−−→ c′0 with c0 ∼ c′0 for some configuration c′0 of P ′. J

Let us first consider the case when X has no solution. Due to Lemma 10 it is sufficient
to consider P-configurations c of the form (q′0, α). Since the image of the sequence of indices
in α under h1 and h2 must differ, it can be shown that any automaton with configuration
bisimilar to c could be converted to one recognising L(R). Completeness then gives:

I Lemma 11. If X has no solution, then there is no reachable configuration c of P and
k′-PDA P ′ with configuration c′ such that c ∼ c′.

Now we prove the converse.

I Lemma 12. If X has a solution, then (q0,⊥k) −→∗ c for some configuration c of P and
a deterministic real-time k′-PDA P ′ with configuration c′ such that c ∼ c′.

Proof. Let j1 · · · j` be a solution to X . Let c def= (q′0, [swapj`···j1⊥(⊥k−1)]) with h1(j1 · · · j`) =
h2(j1 · · · j`) = a1 · · · am with ai ∈ Σ for each i ∈ [1,m]. We then take F = (S,A, { a−→F |
a ∈ A}) to be the following deterministic finite transition system, which in particular is the
transition system of a k′-PDA and set c′ def= s. We set S def= {s, t, u} ∪ {xi | 0 ≤ i ≤ `} ∪ {yi |
0 ≤ i ≤ m} and define and a−→F for each a ∈ A as follows:

s
#−→F x` and x`

#−→F xi−1 for each i ∈ [1, `]
x0

#−→F t and t
a−→F t for each a ∈ AR

t
#−→F u and u

#−→F ȳm
ȳ0

reset−→ s and ȳi
ai−→F ¯yi−1 for each 1 ≤ i ≤ m

Recalling that R is total-deterministic and real-time and so from every configuration
may make an a-transition for any a ∈ ΣR, the reader can verify that the symmetric closure
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of the following relation is a bisimulation:

{(c, s)} ∪ {((qR, β), t) | c −→∗ (qR, β) and qR ∈ QR}
∪ {((y−j , α), u) | c −→∗ (y−j , α)}
∪ {((q′′0 , α`′), x`′) | α`′ = [swapj`′ ···j1⊥(⊥k−1)] [swapj`···j1⊥(⊥k−1)]) 0 ≤ `′ ≤ `}

∪ {((yj , αij), ȳi) | (yj , [swapj`···j1⊥(⊥k−1)] [swapj`···j1⊥(⊥k−1)]) am···ai+1−−−−−−→ (yj , αij),
1 ≤ j ≤ 2, 0 ≤ i ≤ m}

J

5 Further Directions

We believe some limited generalisation of undecidability for LOk,k′ to the case when P ′ may
also range over collapsible pushdown automata [8] is possible. We expect it to be possible
to adapt the construction to use the recent hierarchy theorem by Kartzow and Parys for
deterministic CPDA [13]. Indeed in the light of [18] one might expect to get a version where
P is a 2-CPDA and P ′ can range over deterministic PDA of any order. One obstacle is
when (k − k′) = 1 and P ′ needs to be able to keep track of the height of the k-stack of P,
meaning that a simple extension to the CPDA case would require one to prohibit ‘k-links’.
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