

 Swansea University E-Theses ___

Towards weak bisimilarity on a class of parallel processes.

Harwood, W. J. T

 How to cite: ___
Harwood, W. J. T (2006) Towards weak bisimilarity on a class of parallel processes.. thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42496

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42496
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Tow ards weak b isim ilarity on
class of para lle l processes

W. J. T. Harwood BSc. (Wales) MSc. (Oxon)

Submitted to the University of Wales in
fulfilment of the requirements for the Degree of

Doctor of Philosophy

Swansea University

December 2006

ProQuest Number: 10801726

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10801726

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

P LIBRARY

W &

Declaration

This work has not been previously accepted in substance for any degree and is

not being concurrently submitted in candidature for any degree.

Signed .Or^T............................... (candidate)

Date

Statem ent 1
This thesis is the result of my own investigations, except where otherwise stated.

Other sources are acknowledged by footnotes giving explicit references. A bibliogra
phy is appended.

Signed .. (candidate)

Date

Statem ent 2
I hereby give my consent for my thesis, if accepted, to be available for photocopy

ing and for inter-library loan, and for the title and summary to be made available
to outside organisations.

f
Signed (candidate)

Date

A b stra ct

A directed labelled graph may be used, at a certain abstraction, to represent a

system ’s behaviour. Its nodes, the possible states the system can be in; its arrows

labelled by the actions required to move from one state to another. Processes are,
for our purposes, synonymous with these labelled transition systems.

With this view a well-studied notion of behavioural equivalence is bisimilarity,
where processes are bisimilar when whatever one can do, the other can match,
while maintaining bisimilarity. Weak bisimilarity accommodates a notion of silent or
internal action. A natural class of labelled transition systems is given by considering

the derivations of commutative context-free grammars in Greibach Normal Form:
the Basic Parallel Processes (BPP), introduced by Christensen in his PhD thesis.
They represent a simple model of communication-free parallel computation, and for
them bisimilarity is PSPACE-complete. Weak bisimilarity is believed to be decidable,
but only partial results exist.

Non-bisimilarity is trivially semidecidable on BPP (each process has finitely many
next states, so the state space can be explored until a mis-match is found); the
research effort in proving it fully decidable centred on semideciding the positive case.
Conversely, weak bisimilarity has been known to be semidecidable for a decade, but
no method for semideciding inequivalence has yet been found - the presence of silent
actions allows a process to have infinitely many possible successor states, so simple
exploration is no longer possible.

Weak bisimilarity is defined coinductively, but may be approached, and even
reached, by its inductively defined approximants. Game theoretically, these change
the Defender’s winning condition from survival for infinitely many turns to survival
for k turns, for an ordinal «, creating a hierarchy of relations successively closer to

full weak bisimilarity. It can be seen that on any set of processes this approximant
hierarchy collapses: there will always exist some k such that the /cth approximant
coincides with weak bisimilarity. One avenue towards the semidecidability of non-
weak bisimilarity is the decidability of its approximants.

It is a long-standing conjecture that on BPP the weak approximant hierarchy

collapses at u x 2. If true, in order to semidecide inequivalence it would suffice to

be able to decide the u> + n approximants. Again, there exist only limited results:
the finite approximants are known to be decidable, but no progress has been made

on the u;th approximant, and thus far the best proven lower-bound of collapse is
uqcK (the least non-recursive ordinal number). We significantly improve this bound

2

to cukx2 (for a variable BPP); a key part of the proof being a novel constructive

version of Dickson’s Lemma.

The distances-to-disablings or DD functions were invented by Jancar in order to

prove the PSPACE-completeness of bisimilarity on BPP. At the end of his paper is a
conjecture that weak bisimilarity might be amenable to the theory; a suggestion we

have taken up.
We generalise and extend the DD functions, widening the subset of BPP on

which weak bisimilarity is known to be computable, and creating a new means for
testing inequivalence. The thesis ends with two conjectures. The first, that our

extended DD functions in fact capture weak bisimilarity on full BPP (a corollary of

which would be to take the lower bound of approximant collapse to cu2); and second,
that they are computable, which would enable us to semidecide inequivalence, and
hence give us the decidability of weak bisimilarity.

Acknowledgm ents

I wish to thank my supervisor, Faron Moller, for rays of understanding (and patience,
above and beyond). My examiners Julian Bradfield and Ulrich Berger made for an
unexpectedly enjoyable viva, and gave many valuable suggestions.

Thanks too to my friends, for distracting me when I needed to be distracted, and
telling me to get on with it when I needed that too. In particular, Basheera Khan,
Jo Gooch1, Alfie Abdul-Rahman, Lidia Oshlyansky, Andy Gimblett, David Chisnall
and Will Thimbleby have contributed much to my ongoing sanity over the years; and
to the labminton players of the Fourth Floor Faraday - Teme Kahsai, Ben Spencer,
Dave Arter - much appreciation: we’ve created something wonderful!

Finally, I wish to thank my parents, without whom nothing.

1Who knows good coffee when she drinks it.

Contents

L ist o f F igu res 5

1 In tro d u ctio n 7
1.1 Infinite state and infinitely-branching sy s te m s .. 8

1.2 Labelled Transition S y stem s.. 9
1.3 Equivalence relations on processes .. 9

1.3.1 Silent a c t io n s .. 11
1.4 Grammars as processes.. 11

1.4.1 Mayr’s Process Rewrite System h iera rch y 12
1.4.2 Basic Parallel P r o c e s s e s .. 15

1.5 Approximant collapse .. 16
1.6 Distance to d is a b lin g s .. 17
1.7 Organisation ... 17

2 P re lim in a r ies 19
2.1 Ordinal N u m b ers.. 19

2 .1.1 Ordinal a r ith m etic .. 20
2.1.2 Well-founded t r e e s .. 21

2.2 Cardinal num bers.. 22
2.2.1 Regular cardinals... 23

2.3 M on o id s ... 23
2.3.1 Equivalence relations and congruences.. 24

2.4 Semilinear s e t s .. 25
2.4.1 Presburger a r ith m e tic ... 26
2.4.2 Finite automata ... 27

2.5 Two m achines... 29
2.5.1 Pushdown A u tom ata .. 29
2.5.2 Petri N e t s ... 30
2.5.3 Communication-free Petri N e t s .. 32

2

CONTENTS 3

3 C o n stru ctiv e D ick so n ’s L em m a 34
3.1 D o m in a tio n ... 34

3.1.1 Domination-free t r e e s ... 35
3.2 Lexicographically ordered s e q u e n c e s ... 36
3.3 A reification... 37
3.4 Further and related work .. 39

4 G en eral P ro c esse s 40
4.1 Labelled Transition S ystem s.. 40

4.1.1 Simple classes of general p r o c e ss e s ... 41
4.2 Equivalence relations on processes ... 42

4.2.1 Trace and failures equivalence... 43
4.3 Bisimulation equivalence... 44

4.3.1 Bisimilarity on finite p r o c e s s e s .. 46
4.3.2 Bisimulation gam es... 46
4.3.3 Bisimulation approximants .. 47
4.3.4 Semideciding 7£ on finitely-branching p r o c e sse s 48
4.3.5 Finite approximants with finite a lp h a b e ts 49

4.4 Approximant hierarchy.. 49
4.4.1 Optimal move trees .. 50
4.4.2 Approximant hierarchy co llap se .. 51

4.5 Silent a c t io n s ... 51
4.6 Other notions of weak bisimilarity ... 54

5 P ro c esse s from co n tex t-free gram m ars 58
5.1 GNF grammars as processes.. 59

5.1.1 Basic Process A lg e b r a ... 59
5.1.2 Basic Parallel P r o c e s s e s ... 60
5.1.3 Bisimilarity between BPA and BPP p rocesses.............................. 62
5.1.4 Unary la n g u a g e s ... 63
5.1.5 PDA control-state bisimilarity h ierarchy....................................... 63

5.2 Extensions of context-free processes ... 64
5.3 Deciding bisimilarity on context-free processes.. 65

5.3.1 Caucal b a s e s ... 65
5.3.2 Hirshfeld t r e e s .. 66

5.3.3 Tableau p r o o f s .. 67
5.3.4 Jancar’s distances-to-disablings... 68

5.4 Weak b isim ilarity .. 70
5.4.1 Totally normed B P P .. 71

5.4.2 Purely-generated B P P .. 71
5.5 Weak bisimilarity is semidecidable on BPP .. 71
5.6 The finite weak approxim ants.. 73
5.7 Approximant collapse .. 75

5.7.1 An bound for B P P ... 76

6 D ista n ces-to -d isa b lin g s 78
6.1 Strong distances, and norm r e v is ite d ... 78
6.2 D D C fu n c t io n s ... 80

6 .2.1 Approximant c o l la p s e .. 83
6.2.2 The finite approxim ants... 84

6.3 Weak d is ta n c e s ... 85
6.3.1 Refining weak d istance.. 86

6.4 Extending D D r ... 88

6.5 D D $!-0 .. 90

7 D D r on B P P 92
7.1 D ifficulties... 92
7.2 Computability of the D D r fu n c tio n s ... 93

7.2.1 Finite approxim ability.. 95
7.2.2 Unary, non-norm-zero B P P .. 96

7.3 Insufficiency.. 96
7.4 D D ; .. 98
7.5 DD!^, and its c o lla p s e .. 98

8 C on clu sion s, and a research p rogram m e 100
8.1 A program m e... 101

B ib liograp h y 103

List of Figures

1.1 Behaviourally distinct, trace-equivalent p r o cesses 9
1.2 Van Glabbeek’s linear/branching time hierarchy, [v G O l] 10
1.3 Two functionally equivalent, statically inequivalent processes 10
1.4 Chomsky hierarchy .. 12
1.5 A context-sensitive grammar, and its transition diagram...................... 13
1.6 Chomsky Process hierarchy, [BCMS01] .. 14
1.7 Mayr’s Process Rewrite System Hierarchy, ... 14
1.8 For every n, m A c u, M ^ M C n and M ^ M C n 16

2.1 A tree of height u> ... 21

4.1 A normed but non-well-founded L T S ... 41
4.2 u 9 ̂v ... 43
4.3 v is capable of deadlocking, u is not ... 44
4.4 s = l t ... 44
4.5 u = f v ... 45
4.6 The Fan, u v .. 47
4.7 The single-step weak approximants are not tran sitive.................... 53
4.8 X = tL Y but X 96 Y ... 54
4.9 u is finitely branching, T(u) branches in f in ite ly 54
4.10 Two weakly bisimilar processes which are not branching bisimilar . . 55
4.11 Bisimilarity-like relations incorporating silent actions, [vGW96] . . . 56
4.12 Four approaches to silence (to be read left to right, top to bottom) . 57

5.1 A context-free grammar, and its transition system rooted at X . . . 58
5.2 A context-free grammar in GNF .. 59
5.3 A fc-control state P D A .. 64
5.4 Context-free processes P, Q where P Q .. 70

6.1 An illustration of u v u ^ v 81

5

6 .2 u = n n c v .. 86a-'1-'nw
6.3 u v , but u ==d d t v ... 88

7-1 P ~ l Q ... 92
7.2 d (X X) = 1 > d(X) + d(X) = 0 ... 93

7.3 X = DDr y but X y ... 97

Chapter 1

Introduction

A system - be it a vending machine, a computer program or an aeroplane - can be

described or specified at many levels of abstraction, just as a house can be presented
as “tree bedrooms, detached”, or a set of blueprints, or a model. One begins with the
greatest abstraction, the briefest expression of what one wants, what is required; this
is expanded, refined, the precise details of its implementation added, until one has an
object far more solid than the original expression, but perhaps greatly more opaque.
The question is: does this implementation - this model - meet our intentions? Is
the process of refinement faithful? Travelling in the other direction, if we wish to
prove that a device operates in a certain way, obeys a certain law (that a vending
machine will always give the correct change; that a credit card system is secure from
man-in-the-middle attacks; that a floating-point unit is correct), we can derive from
it an idealised expression, an abstraction amenable to mathematical reasoning.

The level of abstraction this thesis is concerned with is to view a system as a
(potentially infinite) collection of states, each representing one of its possible arrange
ments, and incorporating a notion of how it can move from one state to another.
For example, one might model a clock as a set of times - its states being each
hour:minute:second - together with an action tick which links successive moments.
So, graphically, the node named 19:31:01 will have a single tacfc-labelled arrow con
necting it to the node 19:31:02.

But we are not concerned with creating models per se (none of the examples in

the thesis are “real world”), but the question of what happens when one wants to

compare models already created: when one can say that this expression is essentially

the same as this one (and the various meanings one can attach to “essentially the
same”).

7

1.1 Infinite sta te and infinitely-branching system s 8

1.1 Infinite state and infinitely-branching system s

Recent decades have seen a flourishing of research into the specification and verifica
tion of infinite-state systems. Automata invented to generate or recognise languages

have been turned to use as models of behaviour, and novel machines, such as Petri
Nets, developed; conceptions of equivalence have been imported (traces) and subse
quently modified (failures), and new notions discovered: bisimilarity and its family

(whose antecedents lie in logic). Process calculi have enabled infinite state, reac
tive, parallel and potentially non-terminating systems to be built, reasoned about,
and validated [Mil8 8 , BPS01]. The theory of sequential computation has a canon
ical model, the A-calculus; concurrency still waits for unification. The schools of
CSP (Hoare, [Hoa78a]), CCS (Milner, [Mil80, Mil89]) and ACP (Bergstra and Klop,
[BK85]), each with a different emphasis - denotational or operational semantics, or
geared towards equational reasoning - have produced rich familes of formalisms in
which to define processes, so that, for instance, while it is in principle impossible
to say whether an arbitrary program will halt, when defined within an appropriate
framework its behaviour becomes both discoverable, and mechanically so.

Latterly, interest has alighted upon systems which may not only evolve into po
tentially infinitely many states, but can do so in a single step: infinitely branching

systems, against which the usual methods for testing inequivalence fail, and for which
new branches of theory are in the process of being grown. Our subject formalism
is the Basic Parallel Processes, defined by context-free grammars in Greibach Nor
mal Form, and found (by restriction) in ACP, CCS and Petri Net theory, which
together with weak bisimilarity as a notion of equivalence defines infinite state, in
finitely branching processes. While the decidability of strong bisimilarity (under
which BPP processes branch finitely) has been met successfully, in its course giving

rise to a formidable set of techniques - tableaux [BS90], Caucal bases [Cau90], Hir-
shfeld trees [CHM93], Jancar’s DD functions [Jan03] - weak bisimilarity remains an
open problem, solved only for restricted subclasses (the totally normed [Hir96], and

normed purely generated BPP [StiOlc]) using approaches of tenuous applicability to

the general case1. The main work of this thesis is the development of a technique

based upon Jancar’s D D functions, and inspired by his paper, with the potential -

and with partial results to support its case - to settle the full problem positively.

1 As is true on BPA, the sequential cousin of BPA, where Stribrna and Cerna have attempted
unsuccessfully to apply Hirshfeld trees to weak bisimilarity, [SC02].

1.2 Labelled Transition System s 9

1.2 Labelled Transition System s

Expressing the semantics of a process denotationally entails producing a function

which maps processes to meanings, an approach which began with the work of Scott
and Strachy (originally in terms of functions mapping input to output). (Structural)
Operational semantics is an intuitive alternative, originating with Plotkin in [Plo81]
([Plo04]), in which the meaning of a program is exactly the steps it is able to perform:
a directed labelled graph, whose nodes are the possible states the system can be

in, and whose edges are labelled by the actions required to move from one state to
another [AFV01]. Each path through the labelled transition system is then a possible

execution run. For example, Figure 1.1 represents two processes, v and u, one of
which can perform an a action and become a process capable of performing either a
b or a c to get back to the original process, and the other able to choose between an
a transition to a process whose only enabled action is a 6 back to u , or one whose
sole action is a c back to u.

a c

Figure 1.1: Behaviourally distinct, trace-equivalent processes

This offers a unified way to talk about processes: we can write u-^v to mean
the process u performs an a to become the process v, whether u is modelled by, say,
a Petri Net or CCS expression, and define equivalence relations independently of
particular process calculi or automata.

1.3 Equivalence relations on processes

Van Glabbeek’s Linear/Branching time hierarchy, Figure 1.2, presents twelve defini
tions of equivalence, arranged according to their coarseness, and topped by bisimi
larity. At the bottom lies trace equivalence, the classical notion of equivalence from

automata theory, and the least discriminating relation on processes. As noted above,
each path traced through an LTS represents a potential run of the system, its se
quence of labels is called a trace; two processes are trace equivalent when they pro
duce identical sets of traces. No account is taken of branching structure; returning to

Figure 1.1, u and v generate the same traces, but the first move of u decides whether

its second move can be a b or a c, while v can perform either: their behaviour differs.

1.3 Equivalence relations 0 1 1 processes 10

Bisimulation equivalence

2-nested simulation
equivalence

2-bounded-tr-bisimulation

Ready simulation equivalence

Ready trace equivalence
Possible-futures
equivalence

Simulation equivalence

Failures trace
equivalence

Readiness equivalence

Failures equivalence

Completed trace equivalence

Trace equivalence

Figure 1.2: Van Glabbeek's linear/branching time hierarchy, [vGOl]

Moving up the van Glabbeek hierarchy one finds an increasingly tight fit 011 what
one would consider “behaviour” to be; bisimilarity ([Par81, Mil80]) is commonly
referred to as the canonical notion of behavioural equivalence2. Processes are
coinductively bisimilar when whatever one can do, the other can match, while
maintaining bisimilarity.

O

Figure 1.3: Two functionally equivalent, statically inequivalent processes

The processes of Figure 1.3 are bisimilar, as any a from one can always be matched
by an a from the other; conversely, u and v of Figure 1.1 are not bisimilar, since a
move of u-^u i can only be matched by and u\ is clearly not bisimilar to vp.

c . cVi—>, while u\-f+.

2For example, isomorphism (structural equivalence; equality up to the renaming of states) is
stronger than bisimilarity, but distinguishes processes whose behaviour does not differ. In Figure
1.3 both u and v can do nothing more or less than an infinite sequence of a actions; their transition
systems differ structurally, bu t produce the same behaviour. (T hough of course, when one comes to
implement a system, whether it has one or infinitely many sta tes is a difference one would not wish
to overlook.)

1.4 Grammars as processes 11

Bisimilarity exhibits numerous pleasing properties (see e.g. [Sti98b]). It has a

natural game theoretic formulation (§4.3.2); the property “this relation is a bisim
ulation” is expressible as a simple formula of first-order logic (Equation 5.27, page
72); if two processes are bisimilar, they will be considered equivalent under any in
terpretation (within van Glabbeek’s hierarchy). Bisimilarity has been found to be

tractable when all coarser notions are intractable, and often decidable where they

are undecidable. On finite state automata trace equivalence is PSPACE-complete,
while bisimilarity is decidable in 0 (n log n) time; it is a classical result that trace

equivalence is undecidable on pushdown automata ([HU87]), yet in the past ten years

bisimilarity has been proven decidable ([Sen98])3.

1 .3 .1 S ile n t a c t io n s

To accommodate an idea of internal action, a silent or unobservable action name r
is introduced; a silent or weak transition involves a single observable action buffered
before and after by any number of r-labelled transitions (§4.5),

u ^ v =def u— (1-1)

Every notion in the linear/branching time hierarchy of Figure 1.2 has its weak ana
logue, obtained by substituting —>■ arrows by =>. On finite transition systems this
introduces no difficulties; on an infinite LTS, such as that generated by a pushdown
automaton, CCS expression, BPP process, etc, it can be that one goes from having
finitely many possibilities per transition to infinitely many.

1.4 Grammars as processes

Classically, grammars are used to generate languages - be they natural languages in
the case of Chomsky [Cho56, Cho57]4 (and, long before him, Panini [Ing67, Kak87]),
the syntax of programming languages [Knu64]; or more abstract finite and infinite

words, in the early-20th century work of Axel Thue [Thul4] and Emil Post [Pos43]5.
The motivating questions have been, respectively: understanding natural language

(could English be described in terms of a context-free grammar, or something like

3The decidability of trace equivalence for deterministic pushdown automata was open for 30 years
before Senizergues’ demanding paper [Sen97]; a proof a third the size was subsequently found by
Stirling, [StiOlb], based on the observation that on deterministic processes, trace and bisimulation
equivalence coincide (see §4.3).

4 An example of a non-context free aspect of natural language is the crossing dependencies in
subordinate clauses in Dutch.

5Published in 1943, but developed in the 20s.

1.4 Grammars as processes 12

it?); parsing computer programs (from text to syntax), [Joh75]; and the (Hilbert)
programme of mechanising theorem proving (see e.g. [Boo87, MS05]).

Restriction Language type Machine
Type 0 a —»■ ft Recursively enumerable TM
Type 1 aAj3 —► cry/? 7 + e Context-sensitive LB-TM
Type 2 A —> 7 7 7̂ e Context-free PDA
Type 3 A —*■ aa a 6 V U {e} Regular FSA

Figure 1.4: Chomsky hierarchy

The Chomsky hierarchy, Figure 1.4, divides grammars into four tiers, each with

an elegant machine characterisation. We begin with a variable, and successively
rewrite it according to the transition rules; our output is a string of terminals,
a word (which, in the case of unrestricted grammars, can still be rewritten). A

(standard) example, with variables V = {X , Y, C} terminals £ = {a, 6, c}, and six
transition rules is presented in Figure 1.5.

Their role as generators of behaviour, and specifically of labelled transition sys
tems, is more recent, and begins with Caucal’s On the regular structure of prefix
rewriting, [Cau92] (see [EspOl] for an informal introduction). Terminals become
action names; transition rules rewrite variables to variables,

a-^P a e X , a , (3 e V * (1.2)

As a further distinction, we can choose whether a state is a sequence or multiset
of variables - whether it models a sequential or parallel system. In the Chomsky

process hierarchy, Figure 1.6, unrestricted (Type 0) sequential grammars correspond
to pushdown automata (Type 2 in the Chomsky hierarchy), while with parallel
composition the machine equivalent is the Petri Nets. Type 2 processes are context-
free grammars in Greibach Normal Form ([Gre65]); when interpreted sequentially
we call them Basic Process Algebra (BPA) - PDA with a single control state and no

e-transitions - while in parallel they are the Basic Parallel Processes. (For surveys

on decidability questions on processes generating labelled transition systems, see

[Mol96, BE97] and [Srb02b].)

1 .4 .1 M a y r ’s P r o c e s s R e w r it e S y s t e m h ie r a r c h y

In his Process Rewrite System hierarchy, [MayOOb], Figure 1.7 (based on work by

Moller in [Mol96]), Mayr generalises the Chomsky process hierarchy, allowing tran
sitions to have forms that are sequential (S), parallel (P) and both (G), creating a

1.4 Grammars as processes 13

X -> abp X -»■ aYbc L {X) = {an6ncn | n > 1}
y -> aYbC , y a 6 C
C b -^ b C
Cc —* cc

X -----------------^ abc

a Y b c »■ aabCbc------------ ^ aabbCc----------** aabbcc

aa YbCbc.----- ^ aaabCbCbc aaabCbbCc aaabCbbcc

aaabbCCbc

aaaYbCbCbc

Figure 1.5: A context-sensitive grammar, and its transition diagram

1.4 Grammars as processes 14

Restriction
on a —>/3

Restriction
on F

Parallel
composition

Sequential
composition

Type 0 none none PDA PN
Type 1^ a £ QT

(3 £ QT*
v = q w r

F = Q PDA MSA

Type 2 Q <= V F = { e] BPA BPP
Type 3 ft 6 V, (3 £ V U {e} F = {(} FSA FSA

Figure 1 .6 : Chomsky Process hierarchy, [BCMS01]

hierarchy that incorporates many of Chomsky’s machine equivalents, and is strict
with respect to bisimilarity6.

(1.3)

|| E (1.4)

E (1.5)

\E \E .E (1.6)

1 : E ::= e\\x
P : E ::= c|\x
S : E ::=e |\x
G : E : : = e \ X

PRS (G,G)

PAD (S. G) PAN (P,G)

FSA (1,1)

Figure 1.7: Mayr’s Process Rewrite System Hierarchy,

For the state of the art in decidability on process rewrite systems, J in Srba
maintains the Roadmap of Infinite Results, [Srb02b]'. The studied problems are
strong and weak bisimilarity, strong and weak bisimilarity with finite state systems,

'T h e formalisms, as with pushdown au tom ata and Petri Nets (§2.5.2)), fall short of full Turing
power; reachability is decidable even for full PRS, [MayOOb]. For extensions with weak finite sta te
units, see [KRS04]

'h t t p ://www.brics.dk/~srba/roadmap/

1.4 Grammars as processes 15

and strong and weak regularity (whether there exists a finite state process strongly
or weakly bisimilar to a process in question), and results are given for each process

rewrite system, and its normed subclass. A process is normed when no matter what
sequence of transitions it performs, there is always a sequence which takes it to an

“empty process” - if we (as in Equation 1.3) denote this process e, a process a is

normed iff a —>*/3 j3—>*e8. Many decidability results have often come first
for a process class’s normed subset, and afterward in full generality - bisimilarity

on normed BPA was proved decidable in 1990, and for BPA in 1993. In 1999,
bisimilarity was shown to be decidable on normed PA ([HJ99]); the general problem

is still open. For both normed BPA and BPP there exist polynomial algorithms
([HJM96a] and [HJM96b, JK04] respectively). The only PRS for which bisimilarity

is known to be decidable, but weak bisimilarity not, is PDA9.

1 .4 .2 B a s ic P a r a lle l P r o c e s s e s

A BPP is defined by a context-free grammar in Greibach Normal Form; its states
are commutative sequences (or multisets) of variables; its transitions are given by
the rule,

X H Xot- ►7 0 : (1.7)

BPP represents a simple model of communication-free parallel computation, and was
introduced by Christensen in his PhD thesis [Chr93]. (In the following example, e
denotes the empty process. The process M C may either make an a-transition from
its M variable to M C C , a 5-transition to C, or a c-transition from its C variable to
M .)

M

M

C

M C

e

e

M M C

C

M C C

b

C C *

Bisimilarity is PS PACE-complete on BPP [Jan03], while trace equivalence is un
decidable [HJM96a]. Weak bisimilarity is believed to be decidable, but only partial
results exist [Hir96, Str99, StiOlc]. This aim of this thesis is to add a fourth reference
to the preceding list.

8Note that this is not in general the same as saying that from every node in the LTS one can
reach a node with no arrows leading from it. A Petri Net can have places marked but still be
incapable of action. However, for BPA and BPP (communication-free Petri Nets), the notions do
coincide.

9Note, on its parallel counterpart, PN, bisimilarity is already undecidable; bisimilarity might
seem to favour sequential over parallel systems: on PAN and PRS it is undecidable, but for PAD
the question is still open (this does not bode well, for the purposes of this thesis).

1.5 Approximant collapse 16

Non-bisimilarity is trivially semidecidable (each process has finitely many next
states, so the state space can be explored until a mis-match is found); the research

effort in proving it fully decidable centred on semideciding the positive case. Con
versely, weak bisimilarity has been known to be semidecidable for a decade [Esp97],
but no method for semideciding inequivalence has yet been found - the presence

of silent actions allows a process to have infinitely many possible successor states
(Figure 1.8); simple exploration is no longer possible.10

M
M

C

M C
e
e

b

M C

b

c

M C C

b

C C ^

Figure 1.8: For every n, M=^Cn, M ^ M C n and M ^ M C n

1.5 Approximant collapse

Weak bisimilarity is defined coinductively, but may be approached, and even reached,
by its inductively defined approximants (§4.3.3). Game theoretically, these change
the Defender’s winning condition from survival for infinitely many turns to survival
for k, turns, for an ordinal k , creating a hierarchy of relations successively closer to
full weak bisimilarity. It can be seen that on any set of processes this approximant
hierarchy collapses: there will always exist some k such that the Kth approximant
coincides with weak bisimilarity (§4.4.2). One avenue towards the semidecidability
of non-weak bisimilarity is the decidability of its approximants.

It is a long-standing conjecture that on BPP the weak approximant hierarchy

collapses at to ■ 2. If true, in order to semidecide inequivalence it would suffice to be
able to decide the uj + n approximants. Again, there exist only limited results: the

finite approximants are known to be decidable, but no progress has been made on

the u;th approximant, and thus far the best proven bound of collapse is ctqck [Str99]
(the least non-recursive ordinal number). We significantly improve this bound to

cuk'2 (§5.7; for a /c-variable BPP), a key part of the proof being a novel constructive

version of Dickson’s Lemma [Dicl3] (presented at CSL 2006, [HMS06]), covered in

10Dispiritingly, there is evidence that in sharp contrast to the situation between traces and strong
bisimilarity, weak bisimilarity is much harder to decide than weak trace equivalence. For example,
on processes with a finite state unit, weak (and strong) trace equivalence is Ili-complete ([Jan95a];
the first level of the arithmetical hierarchy, [Rog67, Kec95]), yet weak bisimilarity is -complete,
[Srb03] (highly undecidable). Transplanted to BPP, this would at least suggest that weak bisimilarity
is undecidable.

1.6 Distance to disablings 17

depth in Chapter 3.

1.6 D istance to disablings

The distances-to-disablings or D D functions were invented by Jancar to prove the

PSPACE-completeness of bisimilarity on BPP [Jan03], and deployed subsequently
to produce a 0 (n 3) algorithm for its normed subset [JK04], and an algorithm for

deciding bisimilarity between BPP and its sequential cousin, BPA [JKM03]. At the

end of the paper he writes,

. . . the author conjectures that the method introduced here for strong

bisimilarity will also turn out useful for showing decidability of weak
bisimilarity for BPP

- a suggestion that has inspired the bulk of the work in this thesis. While the naive

weak analogue of the distances-to-disablings is easily seen to fail to capture weak
bisimilarity (even on finite processes), a small modification suffices to express weak
bisimilarity across a wide class of processes. In order to keep the functions finite we
introduce further extensions, which are then applied to BPP.

1.7 Organisation

The thesis is organised as follows:

• Chapter 2 contains standard definitions and lemmas, chiefly on ordinal num
bers, monoids, semilinear sets and Presburger Arithmetic.

• Chapter 3 concerns a constructive version of Dickson’s Lemma (and is largely
self-contained).

• Chapter 4 begins by defining a general process as a rooted, directed labelled

graph, and defines and describes equivalence relations and approximant col
lapse with relation to them.

• Chapter 5 is on processes derived from context-free grammars. It reviews the

current techniques for deciding bisimilarity and weak bisimilarity on BPP; the
original work is a significant improvement on the bound of weak approximant
collapse (making use of the work found in Chapter 3).

• Chapter 6 gives a generalisation of Jancar’s D D functions, and further extend

them to accommodate silent moves - the D D r functions, and beyond, to the

DDI^ functions.

In Chapter 7 we apply the theory developed in Chapter 6 to the problem of

weak bisimilarity on BPP. Although the greater problem remains unsolved, a

number of partial results are found, and the thesis ends with:

Chapter 8 , conclusions, and a research programme.

Chapter 2

Prelim inaries

Ordinal numbers, well-founded trees; monoids, semilinear sets and Presburger Arith
metic; finite and pushdown automata, and Petri Nets.

2.1 Ordinal Numbers

The counting numbers form an infinite sequence 0,1, 2 , . . . which may nevertheless
be extended: define u j to be the smallest number greater than every member of N,
and we can write,

0 ,1 , 2 , . . . , u j , u j T 1, u j + 2 , . . . (2-1)

and continue to u j x 2, u j x 3, and on u j 2 , u 3, and on,

^ , 0^ , ^ , . . . , 60,60 + 1 , . . . (2.2)

(where eo is the smallest number k such that k = ku). These are the (transfinite)
ordinal numbers, denoted O; and each is either a successor ordinal (k + 1 for some

ordinal /t), or a limit ordinal. All finite ordinals but 0 are successor ordinals, but uj

is a limit ordinal as there is no n s.t. n + 1 = u j .

An intuition to the meaning of “a sequence of length which will be useful
when we come to consider games of an ordinal length §4.3.3, is to read u j as meaning
“go arbitrarily far” , u j • 2 is, then, an arbitrary distance, followed by an arbitrary

distance; u j 2 is an arbitrary number of arbitrary distances.

E xam p le 2.1 (arb itrarily far) Consider an aeroplane which can, at the start of
its journey, take on board any amount of fuel. It is capable of flying any (finite)
distance, so we say its potential range is u j kilometres. If allowed a single mid-air
refuelling session, its potential range would be uj • 2; if permitted to decide, before
take-off, on how many (finite) refuelling sessions it will have, the potential range

19

2.1 Ordinal Numbers 20

becomes uj2.

While each successor ordinal has a unique immediate predecessor, if A is a limit
ordinal there is no greatest element smaller than it. Any strictly decreasing sequence
of ordinals will be finite, allowing a transfinite form of induction. If, whenever

a property is true of every ordinal less than k it must also be true of k , we can

conclude that the property holds of all ordinals.
We can make sense of this idea in terms of set theory using a realisation that

owes to John von Neumann,

D efin itio n 2 .1 .1 (von N e u m a n n ’s ord ina ls) A set S is an ordinal iff

1. R C S =>• R E S; and

2. C is a total order on S, i. e. for R, R' C S, R C R! or R! C R

One can then represent the natural numbers as,

0 = 0 (2.3)

n + 1 = 7i U {71} (2-4)

That is, 1 = {0} = {0}, 2 = {0 ,1}, n = { m \ m < n}. These are ordinals, in the

sense above, and extend naturally into the transfinite: uj —def {0) !>•••}•

L em m a 2 .1 .1 (S C O ==> sup S' € O) The supremum sup S of a set of ordinals S
is an ordinal.

Ordinals can be uniquely expressed in base uj, Cantor Normal Form:

T h eorem 2 .1 .1 (C an tor) For every ordinal k there exist unique sequences of nat
ural numbers c i , . . . , cm and ordinals fa > . . . > /j,m such that,

K = U J ^ C i + U J^2 C2 + . . • + UJ^'TnCm

In particular, when each fa is a natural number we are able to express every ordinal
less than uju . This form is employed in support of Conjecture 5.7.1 (page 76).

2 .1 .1 O r d in a l a r ith m e t ic

The usual recursive definitions of addition and multiplication on natural numbers

extend to the ordinals:

K + 0 =def k (2-5)

K + (/ I + 1) = d e f (/£ + 1) + /I (2 - 6)

k, + A =def sup{ft + /i | \i < A} where A is a limit ordinal (2.7)

2.1 Ordinal Numbers 21

and,

K .0 — def 0 (2 . 8)

« • (/ / + 1) = d e f (« • M) + V (2 - 9)

K • A = d e f S U p { f t • n \ H < \ } (2 . 1 0)

While addition and multiplication are associative, they need not commute: 1 + uj =

sup{l + n \ n < u j } = w < u j + \ \ and 2 • uj = sup{2 • n \ n < u j } = u j .

2 .1.2 W ell-fo u n d ed tree s

Figure 2.1: A tree of height uj

A tree is a directed rooted graph in which there exists exactly one path (unique

sequence of edges) from the root to each of its nodes1. A tree is is well-founded
when no infinite paths exist within it: every sequence of steps that starts with the
root and takes at each time a child to proceed with is finite. The height of a tree is

defined,

D efinition 2.1.2 (h) If t is the root of a tree, h(t) = d e f sup{/i(s) + 1 \ t —>■ s} . If t
is not well-founded, h(t) = d e f °o. ■

Lemma 2.1.1 and the principle of well-founded recursion imply that if t is well-
founded, h(t) G O. Conversely, any ordinal k, G O can (with transfinite induction)

be recast as a well-founded tree of height k :

1. The root t is labelled k ;

1For example, Figure 2.1. Note that neither Figure 1.2 (page 10) nor Figure 4.10 (page 55) are
trees, as their paths are not unique.

2.2 Cardinal numbers 22

2. For each p < k , add the well-founded tree which corresponds to fi as a child,

hence by hypothesis, h(t) = sup{ju | p, < k } — k , and we find:

Lem m a 2.1.2 (ordinals and w ell-founded trees) k G O iff h(t) = k for some

well-founded tree t.

Exam ple 2.2 (addition o f w ell-founded trees) Given two well-founded trees s , t ,
define s + t to be the result of substituting every childless node of t with s. The re
sultant operation is associative (t-\-(s + u) = (t + s) + u), but not commutative. If tn

is a tree of height n, and tu —> tn for all n (i.e., h { t j) = w>), then h{tu + £i) = t v 1 ,
while h(t\ T tff) = u j (see $2.1.1).

E xam ple 2.3 (O is a proper class) For each k G O, Lemma 2.1.2 implies the
existence of a tree tK with h(tK) = k; if O were a set, we could construct a tree t
with children t —> sK for all k, G O. The same Lemma implies G 0 .h { t) = pi, but
by definition h(t) > /i + 1.

2.2 Cardinal numbers

Two sets have the same size or cardinality when their elements can be paired, one-
to-one. w + 1 is a strictly larger ordinal than to, but when viewed as sets - as
(0 , 1 , . . . ,cj} and { 0 , 1 , . . . } respectively - they are of equal cardinality: u j maps to
0, 1 to 2, 2 to 3, etc. A cardinal number is an ordinal which can be used to describe
the size of a set (i.e. any smaller ordinal must have a smaller cardinality). The first
transfinite ordinal is uj; when interpreted as a cardinal it is written No- As p and k
range over the ordinals, N ranges over the cardinal numbers, and we will denote its
class by C.

On the finite numbers ordinality and cardinality coincide: \n\ = |{ 0 ,1, 2 , . . . , n —
1 }| = n; into the transfinite, |cj| = |N| = No, but

and even |eo| = No- The first uncountable ordinal is denoted u j \ , u q = { k \ | k | < No}
- though we will touch here only briefly on numbers this large (§4.4.2, §5.7). The

next largest cardinal from No is denoted Ni; Nw = sup{Nf | i < u j } . The successor of
a cardinal N is defined to be,

\u j • 2 | — | { 0 , 1 , . . . , c j + 1 , c j + 2 , . . . } | — | N • 2 | — N o (2 . 11)

succ(N) = def | inf{A G O | N < |A|}| (2 .12)

(So, every successor cardinal is a limit ordinal.)

2.3 Monoids 23

We use ordinals to measure the heights of trees, and cardinals to measure their

widths. Graphs and trees may be classified according to their branching-degree: to
what strict upperbound can be put on the number of children any node or vertex

exhibits.

D efinition 2.2.1 (sub-H-branching) A graph or tree is sub-H-branching when the

vertex degree of each of its nodes is bounded strictly above by H. I

(See Definition 4.1.5 for the sub-H-branching processes.)

Exam ple 2.4 (K onig’s Lem m a)
A well-founded tree t is sub-^Q-branching iff it is finite ([K6n36]).

E xam ple 2.5
For every graph G there exists an H 6 C s.t. G is sub-'R-branching. Specifically,

denoting the vertex set of G by V{G), G is a sub-succ(\V(G)\)-branching graph.

2 .2 .1 R eg u la r card in a ls

H is a regular cardinal when it is greater than the supremum of any set of lesser
cardinals fewer than H. That is, any sequence of ordinals (each strictly less than
H) which converges on H must itself have at least H elements2. For example, Ho is
regular, since it is greater than the supremum of any subset of Ho, while Ĥ , is by its
definition not regular.

T heorem 2.2.1 (sub-regular cardinal-branching trees)
If t is a sub-H-branching tree, for a regular H, then h(t) < H.

Proof: An induction on h(t). Imagine that t —> s = > h(s) < H. Let A =
{ h(s) + 1 11 —> s) , then \A\ < H, and h(t) = sup A < H. □

We use regular cardinals to simplify several proofs; it is useful to observe,

Lem m a 2.2.1 (regular cardinals) For every cardinal there exists a regular cardi
nal greater than it. In particular (assuming the Axiom of Choice), the successor of

any infinite cardinal is regular, [End77j.

2.3 M onoids

D efin ition 2.3.1 (m onoid) A monoid (S , +) is a set S with an associative binary

operation + : S x S —> S and identity element 0 6 S (Vs £ S.s + 0 = 0 + s = s). It
is commutative if Vs, t £ S.s + t = t + s. ■

2 A cardinal is either finite, regular or singular.

2.3 Monoids 24

E xam p le 2 .6 (w ords over E) Let E* denote the set of sequences over E, with e
as the empty sequence, and • be a concatenation function (so E* is better expressed

as the closure of E with ■), then (E*, •) is a monoid with identity e.

A vector or fc-tuple is sequence of natural numbers of fixed length,

x = (x i , x 2, . . . , x k) e Nk (2.13)

We refer to x \ , . . . , x k as its components, and write,

x (i) = deixi (2.14)

The free commutative monoid over a set V = { X i , . . . , X k} is (F®,U), where V ®
represents the set of multisets over V, and U is multiset union. This is essentially

the same as a recurring monoid, the fc-dimensional vector space (Nfc, +) (where + is
pointwise addition), in that they are related by the monoid isomorphism,

f (x lt X2, ■ ■ ■, Xk) = def X f ' . . . X l k (2.15)

(using monomial notation to express multisets). A useful monoid homomorphism is
the Parikh mapping from sequences (over E) to vectors (of size |E|):

D efin ition 2 .3 .2 (parikh m ap p in g) If w € (a i , . . . ,a m}*

w = d e f (w (a 1) , . . . , w (a m)) (2.16)

where, w(ai) =def the number of ais in w . ■

E xam p le 2 .7 (lan gu age) A language is a subset of words over an alphabet E,
L C E*; o commutative language is the parikh mapping of a language L, {w \ w G L],
i.e. a subset o/N Is L

2 .3 .1 E q u iv a len ce re la tio n s an d co n g ru en ces

D efin itio n 2 .3 .3 (eq u iva len ce re la tion s) A binary relation R on the monoid (S, +)

is an equivalence relation when it satisfies, for all u , v , s £ S,

1. uRu (identity);

2. if uRv then vRu (symmetry); and

3. if uRv and vR s then uRs (transitivity).

if, moreover, it satisfies Vu, v, s .uRv = > u + sRv + s we call R a congruence. ■

2.4 Semilinear sets 25

E xam p le 2 .8 (su m eq u iva len ce) On the monoid (Nk, +) , define two vectors x ,y

to be sum-equivalent, x = s y, when Yli=i ^ (0 = 'Ya =\V{^)- =S *s an equivalence
relation, and in fact is a congruence, since x = s y implies, for any z, that x + z = s

y + z.

Extending Example 2.6, a monoid (S , +) is generated by S' C S when S equals

the closure of S' under + , S'* = S. Every monoid is generated by itself; the rank of

a monoid is the cardinality of its smallest set of generators.

E xam p le 2 .9 ((N*, x) and (Nfc, +))

1. (Nk, x) , the k-tuples with pointwise multiplication, is not finitely generated.
Consider any finite set of vectors M C Nk, and let p be a prime number larger

than any component of any element of M , then Nfe 3 (p, 0 , . . . , 0) 0 M * .

2. (Nfc, +) is finitely generated, and of rank k. Let,

0*0’) = ^ („ (2'17)

i.e. 01 = (1 , 0 , . . . , 0), 0 ̂ = (0 , . . . , 0,1), then equals the closure o f { 01, . . . , 0fc}
under pointwise addition.

T h eorem 2 .3 .1 (R ed e i, [R ed65, Fre68]) If R C S x S is a congruence on a

finitely generated commutative monoid (5 , +) then R is finitely generated?.

E xam p le 2 .10 (fin ite ly gen era ted su m con gru en ce) By Theorem 2.3.1 the con
gruence = s of Example 2.8 is finitely generated. Indeed,

= s = { (3 i,3 ,')1<ij<fc}* (2-18)

A concept we will return to with Caucal Bases in §5.3.1 is that of a congruence

base (or Thue congruence),

Ft Ft
D efin itio n 2 .3 .4 (=) If R is a binary relation on (S, +) , = is the least congruence

R . R . . R . _
containing R. That is, u = v A u = v ==> u + u = v + v . m

2.4 Semilinear sets

A set A C Nfc is linear iff there is a finite sequence of vectors (its base) x , x \ , . . . , xm G

Nk with A = {x + x \n \ + . . . + xmnm | n i , . . . , nm G N}. For example, that (Nk, +)

5This holds even if (S , +) does not have an identity element.

2.4 Semilinear sets 26

is finitely generated is enough to show that is linear. The semilinear sets are the

finite unions of linear sets; the base of a semilinear set is the collection of bases of
its linear constituents.

T h eorem 2 .4 .1 (E ilen b erg and S ch iitzen b erger , [ES69]) If R C N k x N k is a

congruence on a finitely generated commutative monoid (Nfc, +) then R is semilinear.

E xam p le 2 .11 (sem ilin ea r ity o f = s) = s (Example 2.10) is in fact linear,

= s = < (0,0) + Y . K j 6 N ? (2-19)
y 1 <i , j< k)

The importance of this result rests on the intimate connection between the semi
linear sets and Presburger arithmetic, the first-order theory of addition.

2 .4 .1 P r e s b u r g e r a r ith m e t ic

Presburger Arithmetic is the first-order theory of addition: first order logic over
N — (N, -f <). By 4>(xi , . . . , we mean a formula with free variables aq, . . . , Xk■ If
there exist instantiations a \ , . . . , ak 6 Nfc for the variables which make the formula
true, we write, 0 [a i , . . . , a^]. The set of satisfying tuples is denoted,

[[<£]] =def {(o i, . . . , a k) e N k \ <f>[ai, . . . , ak]} (2.20)

Unlike Peano Arithmetic (the first-order theory of addition and multiplication),

T h eorem 2 .4 .2 (P resb u rger , [P re29, Tar51, F R 74]) Presburger Arithmetic is

decidable in 2-EXP time (and any decision procedure must have at least a double
exponential worst-case run time).

A set A C Nfc is Presburger when there exists a formula of k free variables
<f>(xi , . . . , x k) with A = [[</>]]. A relation R is Presburger computable if and only if it
a Presburger set.

T h eorem 2 .4 .3 (G in sb erg and Sp an ier, [G S66]) A set A G Nk is semilinear if

and only if it is Presburger; and, each description is effectively calculable from the

other.

An easy consequence of this is,

L em m a 2 .4 .1 (sem ilin ear se t m em b ersh ip) Semilinear-set membership is de
cidable.

2.4 Semilinear sets 27

E xam p le 2 .12 (su m eq u iva len ce) To continue the thread of Example 2.11, The

orem 2-4-3 implies that = s is Presburger. Easily, let . . . , Xk, yi, ■ ■ •, Vk) =
xi + . . . + xk = yi + . . . + yk, then

= s = [[0]] (2.21)

C orollary 2 .4 .1 (con gru en ces on (Nfc, +)) If R is a congruence on (Nfc, +) ,

1. It has a finite representation as the base of a semilinear set;

2. If this can be found, it is possible to produce a statement of Presburger Arith
metic (f)R which expresses R, and thereby R is decidable.

2 .4 .2 F in i t e a u t o m a t a

A finite automaton is a finite directed graph A = (V, E, —>, u, F) with vertices V,
start-state u E V, and final states F C 7 , whose edges are labelled from E [JJ79].
It recognises a word w E E* exactly when there exists a sequence of edges from u to
a state in F , whose labels equal w. The language of a finite automaton is, then,

L(A) =def { a i . . . o„ I » A . . . 2 V 6 F } (2.22)

while its commutative language (Example 2.7) is LC (A) =def { w \ w G L(A)} . Here
we find a further connection to the semilinear sets. First, define an inverse Parikh
mapping (where E = { a i , . . . , am}),

word(xi , . . . , X m) =def a*1 . . . afz1 (2.23)

then given a semilinear set,

S = {£i,o + £ i ,in i + • • • + xi,ainai 17ii, • • • , n fli e N} U (2.24)

(2.25)

{ f i)0 + xitiTii + . . . + xi,ainai | n i , . . . , nai G N} (2.26)

it is easy to construct an automaton A with LC (A) = S. Namely, for each linear set
{%i,o + Xi,in\ + . . . + Xi!ainai \ n \ , , nai € N} draw a word(xijo)-labelled sequence of

arrows from u to a final state fi E F, and add to f i , for each xi j , j > 1, word(xj;j)-

labelled self-loops. I.e. we generate Xito, then allow any combination of Xij (j > 0)
to be added.

E xam p le 2 .13 (= s as a fin ite a u to m a to n) Since = s is a set of k x 2-tuples, we
can represent it as the following 2k2 -j- 1-state, 4k2-edged finite automaton over the

2.4 Semilinear sets 28

language S — {&i) ■ • • » • • • t f̂c} >

bj bj

w ZH Z v i < i, j < k
(Li (Li

with F = {it}.

For the reverse direction, given an automaton A over E = { a i , . . . , am} we wish
to produce (the base of) a semilinear set S C Nm s.t. LC (A) = S. To this end, we
define the pumping paths and pure pumping paths of A.

A pumping path from a node v G V is a sequence of edges i;— a
pumping path is pure when it contains no other pumping paths. Clearly, for a k

state automaton A, any sequence of k or more edges must contain a pumping path,
and the number of pure pumping paths is finite. We observe, for an automaton A
with start-state it,

1. If v has a pumping path . . . ^ v , and there is a sequence of edges u^+ . . . -^i;,
the commutative language of A contains the linear set

{ai .7. ai + b\ . . . bm.n \ n €E N} (2.27)

2. If u’s pumping path is not pure, i.e.

— 6l bn jpn-\-l bn +m jpn+ l + 1 bm (c\ o o \d£.u—►... —>t . . . -+v (2.28)

then we can widen the above linear set to,

{ (a i . . . a z) + b \ . . . bnbn+i+ i . . . bm.n\ (2.29)

+ &71+1 • • • frn+Z-n 2 (2.30)

\ n! , n2 e N } C L C (A) (2.31)

3. In such a way, every sequence rooted at u can be decomposed into a path,

followed by a series of pure pumping paths.

Since there are finitely many pure pumping paths, bounded in the size of the au
tomaton, we are able to effectively compute the bases of a semilinear representation

of its commutative language. That is to say:

T h eorem 2 .4 .4 (sem ilin ear se ts and fin ite a u to m a ta) A set S G Nfc is semi
linear if and only it is recognised as the commutative language of a finite automaton

(and the translations between the two representations are effective).

2.5 Two machines 29

The star height of a language is a measure of how many nested loops are required

to generate it (in fact, the number of nested Kleene-star operators when given as
a regular expression). It is a classical result that there are languages of arbitrary

star height [Coh70]. When looking at commutative languages, a corollary of the

construction used in Theorem 2.4.4 gives us:

C orollary 2 .4 .2 (co m m u ta tiv e regu lar lan gu age star h e igh t) The star-height
of a commutative finite automaton language is at most 1.

2.5 Two machines

We have already seen one class of automata, the finite state machines, §2.4.2. Here
we give two more, each with a connection to the Basic Parallel Processes §5.1.2.

2 .5 .1 P u sh d o w n A u to m a ta

Pushdown automata add to the finite automata of §2.4.2 an unbounded stack. A
pushdown automaton is a quintuple, (P, T, £ , —>, Z,p) of,

1. Control states P;

2. Stack symbols T;

3. Initial stack symbol Z 6 T;

4. Initial state p € P; and

5. Transition relation, P x T x E - ^ P x r *

A position is a pair of control state and stack (note that this would be our usual
meaning of “state”), (q,a) (a € T*). If in position (g, X a) , a rule (q, X) —>(q', (3)
means the automaton can read an a and move to position (q', (3ct)] we say that a has

been accepted. This notion extends to sequences of letters; the language of a PDA

is the set of words it accepts. These automata can evolve into potentially infinitely
many positions; their languages - the context-free languages - are of a strictly greater

complexity than those given by the finite automata [JJ79].
The automata’s power as language generators does not increase with the num

ber of control states; the single-state PDA already generate all of the context-free
languages. As process generators this does not hold (see Lemma 5.1.2): increasing

the number of control states widens the class of processes which may be described.
Single-control-state PDAs, as used to define processes, are called Basic Process Al
gebra, and represents the sequential cousin of the Basic Parallel Processes.

2.5 Two machines 30

2 .5 .2 P e tr i N e ts

The first well-studied theory of concurrency is a class of automata called the Petri
Nets, invented by Carl Adam Petri in his PhD thesis, [Pet62] (see e.g. [Rei85, EN94],
of the extensive literature available4). They are able to model true concurrency - the

actions of a pushdown automata can be totally ordered by time, but for a Petri Net,
time can be made a partial order5. (However, it is only the interleaving semantics,

not the concurrency semantics of Petri Nets which interests us here, as we wish to
use them to generate Labelled Transition Systems, in which every action is totally

ordered by time.)
A net (P, Tr, E, I, W) is a finite collection of places, P , each holding some (finite,

unbounded) number of tokens, and connected by transitions, Tr, labelled with action

names, I : T r —► E. The weight function W connects places and transitions6:

W : (P x T r) U (Tr x P) —► N (2.32)

A transition can fire when all of its input places contain at least one token; it then
removes one token from each of its inputs, and adds tokens to each of its outputs.
A state is a vector of natural numbers: the number of tokens in each place, and in
this Petri Nets are an example of /c-tuple processes (§4.1.1).

Exam ple 2.14 (a P etri N et) (This example comes from [BCMS01].)
Define a net J\f = (P , Tr, E, I, W), with places P = {p, q , r, s}, transitions T r =

{t i , t 2 , £3 , £4, £5 , to}, actions E = {a, b, c, d}, labels l(t i) = l(te) = a, Z(2̂) = Z(£3) = b,
(̂£4) = c, l(t§) = d, and weight function,

W(p, t1) = 1 W(p, t4) = 1

W (r,t6) = l W(r, t3) = 1 W(r, t4) = 1

W(q, t2) = 1 W(q,U) = 1

W(s, t i) = l W(s , t2) = 1

W(tu s) = 1 W(t2,s) = 1

W(t3,r) = l W(t3,g) = 1 W(tt , r) = 1

W(t5,s) = 1 W(i6,<j) = l W(t6,r) = l

4Petri Nets World, http://www.informatik.uni-hamburg.de/TGI/PetriNets/
5There is a disparity between the way a physicist sees a system (which might be as a set of

interacting particles, with no notion of a global clock), and how it is seen by computer science (a
next-state function, stepping through time). Petri Nets are an attempt to bridge this divide.

6Petri Nets can be viewed as a generalisation of the Vector Addition Systems of [KM69] - the
reachability sets of an n-place feedback-free Petri Net (that is, whose transitions do not have self
loops) is isomorphic to an n-dimensional VAS. The (n-dimensional) Vector Addition Systems with
States, [HP79], are essentially Petri Nets with no more than n unbounded places.

2.5 Two machines 31

(with W being 0 on all other place/transition pairs). Though cumbersome to express

in terms of functions and sets, the key to Petri Nets is their graphical representation:

(Places are circled, transitions boxed.) If r is given one token, the set of possible

firing sequences - the language generated - happens not to be context-free.

Petri Nets are not Turing complete - the reachability problem (whether there
exists a sequence of transitions between two given states, analogous to the Halting
problem) is decidable [EN94]7 - but become so if inhibitor arcs are included (transi
tions which fire when their input places are unmarked8, i.e. tests for zero). Similarly,
pushdown automata are not Turing complete - there, the addition of a second stack
is enough to allow them to compute everything that is computable - but although
bisimilarity (§4.3) is decidable for PDAs ([Sen98]), on Petri Nets it is already unde-
cidable ([Jan95b]); weak bisimilarity (Definition 4.5.1) is undecidable for Petri Nets
with even a single unbounded place ([May03a]; it is unknown whether bisimilarity is
decidable on such nets), as is true of PDAs with a single stack symbol (in addition
to a bottom-of-stack symbol which cannot be removed; ibid).

A marking M is a tuple of natural numbers expressing the number of tokens on

each place, M G (so, if p G P, M(p) equals the number of tokens on p); a Petri
Net process is a pair of net and marking, (Af , M) . We write when a net
marked from M has an a-labelled transition enabled, which when fired produces a

marking of M ' . That is,

M A M ' iff 3t e = a A Vp 6 P-W(p, t) > 0 M(p) > 0 and
^ 1 Vp G P.M (p) - W(p, t) + W(t , p) = M'(p)

Analogously, we write for a t E T r , to mean t is enabled in M , and produces

from it M' when fired. A standard result from Petri Net theory is,

7On PAN (Figure 1.7), the least generalisation of Petri Nets and PA, reachability remains decid
able, [May97].

8It has recently been found that reachability is decidable for nets with a single inhibitor arc,
[BLM89, Rei04].

2.5 Two machines 32

Lem m a 2.5.1 (P etri N et transition sequences) For a G Tr*,

M ^ M ' = > Vp G P.M (p) + ^ (W(Z,p) - VF(p, t)) • B(t) = M'(p)
te.Tr

2 .5 .3 C o m m u n ica tio n -free P e tr i N e ts

A net is communication free when its transitions have exactly one input place a piece;
we cannot synchronise places, cannot say “if this place and this place are enabled,
fire” (analogous to the divide between context-sensitive and context-free grammars).

D efinition 2.5.1 (com m unication-free P etri N ets)
A Petri Net J\f = (P, Tr, E, Z, W) is communication free when, for p,p' G P , t G

Tr, W(p , t) > 0 A W(p' , t) > 0 ==> p = p'. ■

Graphically, each box has exactly one arrow entering it.9 A place p is markable
in J\f from M if there exists a transition sequence the result of which puts a token in
p. The subnet generated by a sequence of transitions a G Tr* has as transitions,
T ra = { a ^ and places,

Pa = d e f {P € P \ 3 i . W (p , a i) > 0 or W(<7i,p) > 0} (2.34)

For the communication-free nets, Esparza has found a stronger version of Lemma
2.5.1 ([Esp97]):

Lem m a 2.5.2 (com m unication-free P etri N et transition sequences)
For a £ Tr* , M-^> if and only if,

1. Vp G P, M (p) + YsteTr^W&P) ~ > 0/ and

2. every p G Pa is markable from M in the subnet generated from a.

And goes on to prove that,

Lem m a 2.5.3 (E sparza’s Reach) Reach =def { {M, &■> M') I is effectively
semilinear.

9 A useful shorthand, employed in Chapter 5, in defining transitions is X A a , where X is a place, a
the transition’s action, and a a tuple of each place (possibly repeated) to which the transition outputs
tokens. The net can be described as a commutative context-free grammar in Greibach normal form
- it is, in fact, exactly a BPP, §5.1.2. (The connections between commutative grammars and Petri
Nets have long been of interest to researchers - see for example [CRM74].)

Proof: For P' C P and V C Tr, define sets of markings and Parikh-mapped
transition sequences restricted to P' and T' respectively,

M { P ') —def { M | M (p) > O i f f p G P ' }

T(T') = def { a \ a (t) > 0 iff t e T ’}

Define, Reach(P',T') = def {(M ,<r,M ') \ M G M (P ') , a G T(T') and and
find that:

Reach = (J Reach(P/,T ') (2.35)
P 'C P ,T 'C T r

Since semilinearity is preserved by finite union, it suffices to prove that each set
Reach(P', T') is effectively semilinear. Note that if a place is markable from some
marking in M.(P'), it must be markable from every marking in that set. Consider

some <t G T', and the subnet J\fa it generates. There are now two cases:

1. Every place of Ma is markable from A i(P ') . Applying Lemma 2.5.3, we find
that Reach(P;, T ') equals the solutions (M, <r, M 7), for all p G P , to,

M(p) = M'(p) + ^ 2 (W (t , p) - W(p , t)) . a { t)
t e T r

2. Some place is unmarkable, but then Reach(P',T') = 0.

The second case is trivially semilinear; the first is the set of natural number solutions

of a finite system of linear equations, which is an effectively semilinear set. □

Chapter 3

Constructive D ickson’s Lemma

3.1 Dom ination

Domination is a generalisation of the greater-than relation to monoids (§2.3):

f > 9 =def Bh.f = g + h (3.1)

A sequence / i , / 2, • • • is domination-free or non-dominating when no element dom
inates a predecessor: jBi < j . f \ < fj . Clearly, on (N, +) (the natural numbers
with addition), the length of every domination-free sequence n i, 712, . . . is both finite
and bounded by n\ . Conversely, on (N, x) there exists an infinite domination-free
sequence: the prime numbers.

If we move to (N2, +) (the two dimensional vector space with pointwise addition),
it is no longer possible to put a finite bound on the length of a domination free
sequence as a function of its first element. For example, from (0,1) we could have,

(0 , 1), (0 , 0)

or. (0,1), (1,0), (0,0)

or, (0,1), (2,0), (1,0), (0,0)

or, (0, 1) , (3, 0) , (2, 0) , (1, 0) , (0, 0)

all domination-free sequences. However, they are bounded in length by the second

component of their second elements: no infinite domination-free sequence rooted at
(0,1) exists. Dickson’s Lemma states that in fact any domination-free sequence from
(Nfc, +) is finite.

34

3.1 Domination 35

Lem m a 3.1.1 (D ickson’s Lem m a, [D icl3]) For any infinite sequence drawn from

Nk, x i , x 2, . . . we can always find indices i < j such that x\ < Xj.

Proof: For a contradiction, let x \ , x 2, G Nfc be an infinite domination-free
sequence, x ^ y ==> 30 < I < k.x{l) > y(l)', that is, for each j > 1 there exists an

index 0 < I < k such that,
x \ (I) > Xj(l) (3.2)

The pigeonhole principle implies the existence of an infinite subsequence y i , y 2, ■ ■ •
with Vi.yfil) < x\{l)', a further application of the principle gives us an infinite subse
quence z[, 22, . . . in which z[(l) = z2{l) = Reapply the construction k — 1 times
to yield an infinite sequence v \ , v 2, . . . in which Wi,j.vl = vy. a maximally domi
nating sequence, yet any subsequence of a domination-free sequence must itself be
domination free. □

It does not, however, help in putting ordinal bounds (§2.1) on the lengths of our
non-dominating sequences. It is possible to say, for example, that the unfolding of a
domination-free sequence of N2 is curbed in the following way: it is allowed a finite
number of arbitrary increases in length, therefore it is limited strictly above by u j 2 .

Before we prove this, a diversion into a forest.

3 .1 .1 D o m in a tio n -free tree s

A tree labelled from Nk is domination-free when every path through it forms a
non-dominating sequence.

D efinition 3.1.1 (largest dom ination-free tree) The maximal domination-free
tree rooted at x G Nk, DO M(x) , is a tree t, with

1. The root o f t is labelled x;

2. If u is a node of t and a = x \ , x 2, . . . , xfn is the sequence of labels in the path
from t to u, then for each x' G such that ax' is a domination-free sequence,
add u —> v! and label u' by x f.

I.e., t holds all possible non-dominating sequences beginning with x. M

Lemma 3.1.1 is equivalent to asserting that for any x G Nfc, DO M { x) is well-founded.
Returning to the sequences rooted at (0,1), we find,

h(DO M((0,1))) = u (3.3)

and for sequences of natural numbers, a forest: DOM(0) , D O M (l) , D O M (2) , . . . ,
whose height is sup{ h{DOM{ n)) \ n G N} = u j - i.e. the order type of domination-

3.2 Lexicographically ordered sequences 36

free sequences of natural numbers is uj. We wish to find a full generalisation of this

result, and thus a constructive version of Dickson’s Lemma.

3.2 Lexicographically ordered sequences

A lower bound for the height of the maximal domination-free tree is provided by

considering lexicographically-ordered sequences,

D efinition 3.2.1 (lexicographic ordering) x > i exy =def 3i.y{i) < x{i) A V? <
i .y(j) = x{ j) M

In distinction to the non-domination relation >iex is a total order. For example,
there are two permutations of (0 ,1), (1,0) which make non-dominating sequences,
(0,1) ^ (1,0) and (1,0) ^ (0 ,1), while for any A C there is exactly one way of

making a lexicographically ordered sequence of its elements, x > iex y = > y^iex x 1.
(There are, in this sense, more non-dominating sequences of any given length than
lexicographically-ordered ones.)

If <t = # 1, X2, . . . is a lexicographically-ordered sequence from Nfc,

X \ ^> leX^2 ^ l e x • • •

it is easily seen that cr is domination free (x > \ exy = > 3l.y(l) < x(l) x ^ y).
Define L E X (x), the largest lexicographically-ordered tree rooted at x analogously
to D O M (x) (Definition 3.1.1). Clearly, h (D O M (x)) > h (L E X (x)); we find the
following (well known) result,

Lem m a 3.2.1 (T he order-type o f > iex on Nfc) For x G Nk, h(LEX(x)) < uok,
and

sup{ h (LEX{ x)) | £ G Nk} = ujk

Proof: Sketch. An induction on k. Consider x = (a i , . . . , an+i) G Nfc+1. If the
first component is pinned at a i, we have (by hypothesis) a tree of height bounded
strictly above by u k. Each time the first component is reduced, we can raise the

other components arbitrarily high while retaining the >iex order, that is, a\ trees of

height cvk, stacked upon each other. □

Corollary 3.2.1 sup{ h (DOM(x)) | x G Nfc} > ujk

1I.e. it makes sense to write, ^ iex = <iex, but not to have ^ = >

3.3 A reification 37

3.3 A reification

We will construct a function r : (Nk)+ —> with the property that, if x[,X2, ■ ■ ■ i xni xn+1

is non-dominating,

r(i?1 ,X2 , >lex r(x1, X*2,...,Xn, xn+1) (3.4)

This proof is taken from [HMS06], and owes to Faron Moller. For sequences on G N+

we set r(on) =def n • For sequences of pairs, define, on o = x[, X2 , . . . , xn G (N2)+ ,

min(cr) =def min{a%(l) | 0 < j < m } min(cr) =def m in{x)(2) | 0 < j < m } (3.5)
x y

and, second, the set of possible elements with which to extend a sequence while
maintaining non-domination and its minimum values:

{x | minx(a) < x(l) , mmy(o) < f (2) and
* 2(cr) = def wn _ w (3.b)

VU < i < m.Xi % x

First, note that S^io) is always finite; second, that on o G (N2)+ , the following meets
our needs:

r{o) — def (min(o-) + min(fj), IS2M I) (3.7)x y

That is, if ox G (N2)+ is domination-free, either:

1 . minx(x) < mincer);

2 . miny(:r) < miny(cr); or

3. x G S2 (o) (i.e. |5 2W | > \S2 {ox) + 1|)

hence, r(o) >\exr(ox) . We are now in a position to prove the result stated at the
end of §3.1. Consider how a sequence of pairs rooted at x can unfold. r(x) = (x,y);

in the next step, either we reduce the y component (and keep x constant), or reduce

x (and raise y to whatever we please). That is, we have x many opportunities to
increase the potential length of our sequence arbitrarily far.

The construction proceeds by induction. Define a function to project out the ith

component of a sequence,

^- i ((® l > • • • i ® n)) —def (®l j • • • j Qi—1) O'i+li • • • j ®n) (3.8)

3.3 A reification 38

then, for cr = x \ , x*2 , , x^ E (Nn) + , define the set of non-dominating subsequences
of cr in which the ith component has been deleted:

NDi(tr) —def {(TT-tOziJj • • • , 7T-j(xTp)) \ p > 0 ,0 < i\ < . . . < ip < m and

(^ (x q) , • • •, 7T-t(®Tp)) is non-dominating}

Finally,

min(a) = def min{rn_i(<r') | o' E ND^tr)}
i <lex
S n (&) —def (x | VO < i < n.m in(x) = min(crx) and

i i
VO < j < m.Xj x}

L em m a 3 .3 .1 (Sn) For o E (Nn)+ .S'n(cr) is finite.

Proof: For o = x[, X2, . . . , x^ , we wish to prove that for any x E Sn(cr), and any
0 < i < n, there exists a 0 < j < m with x(i) < Xj(i).

Let 0 < i < n and i\ < . . . < ip be such that,

min(cr) = rn_ i (7T.j(xi1) , . . . , n.fix*))
t

and suppose that x E Sn(o). If (7r_j(x71) , . . . , 7r_j(x7p)) is non-dominating, then by
induction,

min(crx) < iex rn_ i (7r_») , . . . , 7T-i(x7p), 7r.i(x))i
■^lex r n —1 (^’- i (X j 1) , . . . , -̂i{p îv))

-= min(cr)
i

But then, x Sn{p). TT.fix̂) , . . . , 7r.j(xTp), K-i(x) is dominating: Bj.ir.fix^) < 7r_*(f),
yet x7- ^ x, hence x(z) < x7-(i). Since we can do this for each component of x, the
members of Sn(o) must be bounded as a function of cr, and be finitely many. □

Finally, define

D efin itio n 3 .3 .1 (rn) For cr £ (Nn)+ ,

f n

rn(cr) =def (I5 " M l
\ i = 1

where the sum is componentwise (i.e. rn(cr) E Nn).

L em m a 3 .3 .2 (rn) For a G (Nn)+ , x G Nn, i f crx is non-dominating then,

rn{(?) >iexrn(<7x)

P roof: For all i, ND_i(cr) C ND_i(crx), hence min^crx) < mincer). If equality
holds in all cases, then Sn(ax) C Sn(a), since Sn(ax) C Sn(a), but x G Sn(a). That

is to say, rn(ax) < iex rn(a). □
We are left with the situation that, although non-domination is a strictly weaker

condition than lexicographical ordering, nevertheless:

T h eorem 3 .3 .1 (n o n -d o m in a tin g v ec to r-la b e lled trees)
If t is a non-dominating tree labelled from Nk, then h(t) < uA

Proof: Label each node u of t by rn(a), where t —» t \ —■> . . . —> tm —► u is the path
leading to u , and a = l(t), l (t \) , . . . , l (tm), l(u) is the (necessarily domination-free)
sequence of labels. By Lemma 3.3.2 we have a lexicographically-ordered tree, and
applying Lemma 3.2.1 gives us h{t) < u k. □

3.4 Further and related work

(This work forms part of [HMS06], and first appeared as a CALCO-jnr 2005 Swansea
University Research Report in [HM05]; it was presented at CSL 2006 by Anton
Setzer.) Other constructive proofs of Dickson’s Lemma have been undertaken, in
particular in the field of term rewriting. Martfn-Mateos et al formalised the proof
of Dickson’s Lemma using the ACL2 theorem prover2 in [MMAHRR03] (without an
ordinal mapping), while at the same time and for the same end Sustik produced an
explicit ordinal mapping on sequences3, [Sus03], though not an optimal one, giving

only an eo result - so, for example, the bound on pairs is already
As noted by Setzer, very recently - preprint March 2006, [BG06] - Blass and

Gurevich have defined the stature, ||P ||, of a well partial ordering P as the order
type of nondominating sequences of P ; they derive the ujk result found in Theorem

3.3.1 as a special case. Their interest is in program termination (using ordinals is

an approach that goes back at least as far as Turing, [MJ84]); their proofs are both

more general and more difficult than ours.

2http://www.cs.utexas.edu/users/moore/acl2/
3The stated motivation behind such work has been the formalisation of Buchberger’s Algorithm,

an important tool for creating Grobner bases. Note that Strfbrna has found a nice connection
between Basic Parallel Process bisimilarity and polynomial rings, which itself uses Grobner bases
for decidability, [Str99].

Chapter 4

General Processes

A process acts, and becomes a new process.

4.1 Labelled Transition System s

A unifying view for the automata and process algebras glossed in the Introduction,
which stems from the Structural Operational Semantics of Plotkin [PI0 8 I, AFV01],
is the labelled transition system.

D efin itio n 4 .1 .1 (LTS)
A Labelled Transition System is a directed labelled graph: a tuple (S, £ , —>) of

states S, action names £ and transition relation -> C 5 x E x 5 . ■

At this level of description no weights are given to the actions, no propensities,
stochastic or otherwise, no timing1, no distinction between causal and contingent,
and no true concurrency. The processes that can be described by LTSs we name the

general processes.

D efin itio n 4 .1 .2 (gen era l p rocesses) A general process is a pair (L,u) , where

L = (S, £ , —►) is a LTS, and u g 5 . That is, a rooted LTS. I

If (L, u) is a general process, and u-^v is a transition in L, we say (returning to

this chapter’s opening) that u may perform the action a to become the process v.
We will typically refer to a process (L, u) as u, its LTS left implicit. The collection

of all general processes is a proper class (since there is no set of graphs); everything

that follows will take place within it.
We will later garnish the A relation with information as to the change wrought

by the action modulo some function (§6.1, Equation §6.5), and the (ordinal) number

1See e.g. [Emm88].

40

4.1 Labelled Transition System s 41

of times this can be done (§6.4). But for now, a standard notation for when an

action cannot be made,
u-f* :iff (4-1)

and the usual extension from actions to sequences of actions: Vu.u-^u, and if w =

(a i , . . . , an+i) £

W / • rr Q-n ®n+1 / / . r.\u—*u :irx dui, U2 , .. •, un.u—>u\ . . . —>un —> u (4-*)

UJ U)' '̂Moreover, u-^u' :iff 3n.u—>uf.

4 .1 .1 S im p le c la sses o f g en era l p ro cesses

A void process is one whose only transition is the void transition, u-^u,

void (u) :iff Va 6 T.u-f* (4-3)

The norm of a process is the minimal distance from it to a void process,

norm (u) = m in{|u;| | u ^ u ' A v o id (r /)} (4-4)

(By convention, m in0 = oo.) A LTS L = (5 , S, —►) is normed when all u G S have
finite norm. A process is normed when it has a finite norm, and cannot reach a
process with infinite norm. Our formal definition is a little stronger:

D efinition 4.1.3 (norm ed processes)
(L, u) is a normed process when L is normed. ■

A LTS is well-founded (§2.1.2) when every sequence of transitions u^>ui-+U2 . . .
within it is finite (a sufficient but not a necessary condition for normedness, Figure
4.1).

Figure 4.1: A normed but non-well-founded LTS

D efinition 4.1.4 (w ell-founded processes) (L,u) is a well-founded process when

no infinite paths exist through L. ■

The well-founded processes are a class intimately bound to the ordinal numbers

(§2.1). Define the height of a process,

h(u) =def s u p {h(v) + 1 1 u-^v} (4.5)

4.2 Equivalence relations on processes 42

then, h(u) £ O if and only if u is a well-founded process, and moreover for every

ordinal k E O there exists a well-founded process u with h(u) = n (see Lemma 2.1.2).
A transition u—>u' is norm reducing when oc > norm(u) > norm (it') (norm(u) =

norm(u/) + 1). A LTS is normed if and only if every u E S possesses at least one
norm-reducing transition; the LTS is well-founded if (but not only-if) all transitions

are norm reducing.
If, for each u E S(L), there is at most one transition of any given label (i.e. u-^u'

and u-^u" implies u' = u") then L is termed deterministic. If in the LTS of a process
u there can only ever be finitely many choices for the next state (as is true of all of

the systems introduced in the previous chapter) we say that u is finitely branching,
or, sub-#o-branching (see §2 .2).

Generalising,

D efinition 4.1.5 (sub-H-branching processes)
(L, u) is sub-H-branching when the vertex degree of L is bounded strictly above

by H. ■

Further, the sub-Hi-processes correspond to those whose branching is countable.
A studied subset are those processes which can be represented as vectors from Nfc.
For example, Petri Nets (§2.5.2) and BPPs (Chapter 5), with or without silent
actions (§4.5).

D efinition 4.1.6 (fc-tuple processes)
(L,u) is a k-tuple process when S (L) ~ Nfc. ■

4.2 Equivalence relations on processes

Given two processes, the first question one might ask is whether they represent the

same system: are they equivalent? There are dozens of studied notions of equiva
lence (many summarised by van Glabbeek in [vG90]). Since processes are, for our

purposes, directed labelled graphs, a natural first attempt is graph equivalence: that
they share an identical structure. But a process essentially models action, and it
proves easy to find an example of structurally different graphs whose behaviours

are indistinguishable. Our second attempt will draw from automata theory: pro
cesses are equivalent when they can exhibit identical sequences or traces of actions.
But here we will find the notion too permissive - necessary but not sufficient. This

holds too of a variant known as failures equivalence, the native idea of equivalence

for Hoare’s CSP [Hoa78a]. The concept we will reach, bisimilarity, owes to David

Park [Par81] (though it has antecedents in logic: p-morphisms [Seg71], and zig-zag

relations [vB76]), and was originally used in Milner’s CCS [Mil80, Mil89].

4.2 Equivalence relations on processes 43

We draw a line between a static or timeless notion of equivalence and an opera
tional one; and subdivide the latter into linear and branching time2. Our aim is to

find a definition of equivalence which captures reactive behaviour.
Static notions of equivalence treat processes as objects, with no idea that they

do anything - generate a language, model a system.

D efin itio n 4 .2 .1 (G raph eq u iva len ce) (L,u) and (M, v) are graph equivalent
u ~ v iff there exists an isomorphism f : L —> M and f (u) = v. ■

This is an equivalence relation, yet one too restrictive when we consider processes

in terms of what they can do (an idea which will become more precise in the course
of this chapter), u and v of Figure 4.2 are not structurally equivalent, but act
identically; since a process is about action, we would not wish to distinguish them,
nor use a notion of equivalence which does.

a

Figure 4.2: u v

4 .2 .1 T race an d fa ilu res eq u iv a len ce

A trace of a process u is a sequence of actions w £ £* with (see Equation 4.2,

page 41). A completed trace from u is a sequence of actions which brings u to a void
process, u ^ v A void(v). Two processes are (completed) trace equivalent when their

sets of (completed) traces are equal:

D efinition 4.2.2 (trace equivalence)

L{u) =def {w I U ^ v A void{v)} LT{u) = def {w \ u ^ } (4.6)

Two processes u ,v are trace equivalent, u = lt v when L T (u) = LT(v) . They are

completed trace equivalent or language equivalent, u = l v , when L(u) = L(v). ■

(See the introduction to Chapter 5 for more on completed traces and languages.)
Considering again the processes of Figure 4.2, LT(u) = {an \ n G N} = LT(v) and
L(u) = L{v) = 0. However, completed trace equivalence only makes sense for normed

2Likewise, temporal logics are commonly characterised as either linear (e.g. Linear Temporal
Logic), each moment has only one future, or branching, taking into account a multiplicity of future
worlds (e.g. Computation Tree Logic) - see [VarOl, HR04].

4.3 Bisimulation equivalence 44

processes (4.1.1), while trace equivalence fails to capture deadlock3. The processes

u, v of Figure 4.3 have the same traces, but while one can halt, the other cannot.

a

o
u -< v >-a a

Figure 4.3: v is capable of deadlocking, u is not

To account for deadlock, we might follow CSP [Hoa78a, BHR84] and generalise

completed traces to failures equivalence:

D efin itio n 4 .2 .3 (fa ilu res eq u iva len ce) A failure of u is a pair (w,A) , with w G
w a£*, A C £ , and 3u'.u^>uf A Va 6 A . u f (u) denotes the set of failures of u; two

processes are failures equivalent, u = f v, when they have the same failures. ■

Traces and failures are linear-time notions of equivalence: they take no notice
of the branching structure of processes. This structure is, however, important if we
wish to truly capture reactive behaviour. In Figure 4.4, L (s) = L (t) = {a&, ac},
but after the initial a action s evolves into a process capable of doing b or c, while
t has to choose, either moving to a state which can perform b, or to one with a c
action enabled. The processes of Figure 4.5 have the same failures sets, but their
behaviour clearly differs. Branching time semantics pulls us back towards isomor
phism: behaviour cannot be determined as a set of runs, as this ignores divergent
action [vG94]. Its most studied example is bisimilarity.

s t

si t\ t2
c b c

Figure 4.4: s = l t

4.3 Bisim ulation equivalence

In [Ace03], Luca Aceto gives the following as a prominent open question,

Can one prove in a formal sense that bisimulation equivalence is the finest
reasonable behavioural equivalence?

3For our purposes, a process is deadlocked iff it is void.

4.3 Bisimulation equivalence 45

> >- >-

Figure 4.5: u = f V

Intuitively, two processes are bisimilar when whatever one can do, the other can
match, such that the resulting processes are still bisimilar. Technically, processes

are bisimilar when they are related by a bisimulation:

D efin itio n 4 .3 .1 (B isim u la tio n) A binary relation R on general processes is a
bisimulation relation exactly when uRv implies,

1. If u-^u' then 3v'.v-^v1 s.t. u'Rvf; and

2. If v —*v' then 3u'.u-^-u' s.t. u'Rv'

Two processes u , v are bisimilar
u ~ v

if and only if they are related by a bisimulation; that is, ~ is the union of all bisimu
lation relations.4 (Note that we have elided the labelled transition parts of the general
processes in our definition.) ■

E xam p le 4 .1 (b isim ilar and non -b isim ilar p rocesses) The processes of Figure

4-2 are bisimilar, while those of Figures 4-4 and 4-5 are not. For the former, imagine
we have a bisimulation R with sRt. Then, since t —>ti, we must have s \R t \ , but s\-^>

c
and t\-f*.

L em m a 4 .3 .1 (b is im ila r ity on d e term in istic p rocesses) On deterministic pro

cesses, ~ = = LT; on normed deterministic processes, ~ = = l .

w wP roof: Since 3w.u—> v-f+ = > u / v it suffices to prove that = lt and
=L are bisimulation relations on deterministic and normed deterministic processes

respectively.
For the former, let u = l t v , and wlog u —>u'. Since there is exactly one action

v-^v' from v, and the sets of a-prefixed words of u , v are identical, it must be that

4 A simulation relation is defined by using only the first clause; u simulates v iff they are related
by a simulation relation. Note that mutual simulation does not imply bisimilarity (easily seen), and
in general simulation is a harder problem to decide - for example, bisimilarity is decidable on BPA
§5.3, simulation is undecidable already for normed BPA, [GH94]. In [KM02c], Kucera and Mayr
show that there exists a polynomial reduction of bisimilarity to simulation equivalence across a wide
range of processes.

4.3 Bisimulation equivalence 46

u’ = lt v'. The sequel is similar; we only need note that normedness implies that
any action u-^u' contributes towards some completed trace. (For a discussion of

bisimilarity and language equivalence, see [StiOla].) □

4 .3 .1 B is im ila r ity on fin ite p ro cesses

(L, u) is a finite process w hen L is a fin ite graph. T h e language equivalence problem

is know n to be PS PACE-complete on such processes [MS72], w hereas b isim ilarity is

P-com plete [ABGS91], and indeed:

L em m a 4 .3 .2 (~ on fin ite p rocesses)
Bisimilarity is decidable on finite processes in 0 (n log n) time.

Proof: [MolOO]. See [KS90, PT87] for the bisimulation colouring algorithm. □

4 .3 .2 B is im u la tio n g a m es

Bisimilarity admits a natural game-theoretic characterisation,

D efin itio n 4 .3 .2 (G (u , v)) The game G{u\ ,U2) is played between I and II . First, I
chooses a process Ui and a transition (which may include the void transition, u ^ U i) ,

I : u A u ' i (4.7)

to which I I must respond with a transition of the same action-name from the other
process,

I I : (4.8)

If no such move exists, the game ends. Otherwise, continue with G{u'l ,v!'2) . All finite
games are won by I; all infinite games, I I . 5 M

The following is a standard result (see e.g. [StiOld]):

T h eorem 4 .3 .1 (G(u, v)) u ~ v iff I I has a winning strategy for G(u,v) .

E xam p le 4 .2 (~ C = l t) To prove that ~ C = l t it suffices to show that if there
W

exists a w with it—> <=> v-f* then I has a winning strategy on G{u , v). (That strat-
y j CL CL CL CL

egy being, if wlog u—> Av-f*, at each turn, successively perform it—>iti—>it2—̂►... - W ,
where w — a \ . . . an; there must come a transition against which I I has no response.)

5Note, the more common definition of the game does not allow u A u transitions, and adds to
the winning conditions that the first player who cannot make a move loses. These definitions are
equivalent; the one used here has the advantage that it is identical (with for A) to the weak
bisimulation game, and simplifies the construction of optimal move trees, §4.4.1.

4.3 Bisimulation equivalence 47

4 .3 .3 B is im u la tio n a p p ro x im a n ts

Rather than require that the game must be infinite for II to win, we set an ordinal

bound, moving from G to GK. The game GK(u\,U2) is played between I and II.
If k, = 0, player II wins. Otherwise, I chooses a process iq , one of its transitions

Ui—tu'i and a /i < k; II has to respond with an identically-named move from u^-i.
If there are none, I wins; otherwise the game proceeds on G^u'^u^)6.

Turning from games to relations, the bisimulation approximants, or stratified

bisimulations, are defined:

D efin ition 4 .3 .3 (B isim u la tio n ap p rox im an ts) The bisimulation approximants

for all ordinals n 6 O, are

1. u ~o v for all processes u and v.

2. u ~ „ +i v iff

(a) if u-^u' there is a transition v- +̂v' such that u' v';
and

(b) if v-^v' there is a transition u-^u" such that u' v'.

3. For all limit ordinals A, u ~ \ v iff u ~ K v for all k < \ .

■

L em m a 4 .3 .3 II has a winning strategy for GK(u,v) iff u ~ K v.

For convenience, a (3 abbreviates a (3 A a 7̂ + i p.

E xam p le 4 .3 In Figure f.6, II has a winning strategy on Gu(u,v), but not for
Guj+i (u, v), therefore u v.

Figure 4.6: The Fan, u v

6Implicitly, G = Goo, where I never winning is equivalent to a victory for II .

4.3 Bisimulation equivalence 48

E xam ple 4.4 (trace equivalence and finite approxim ability)
W

Q = l- Imagine that u v , i.e. 3w.u—> <==> v-f*. Clearly I has a
winning strategy on G\w| (u, v): perform, one by one, the sequence of actions w from
the process which is capable of doing it. To make the inclusion strict, note that (in
Figure 4-6), s = l t, but s ^ 2 v.

Exam ple 4.5 (failures and readies equivalences) See Definition 4-2.3. The read
ies of a process are [OH86],

r(u) = {{w,A) | 3u'.u^u'3/a E A.vl-̂ L •<=>• a E A}

f{u) / f(v) or r(u) ^ r(v) gives I a winning strategy on the game Gu{u,v). Let
(w,A) witness inequivalence, then I can force play to a pair of processes u',v' such
that 3a E A.uf A v'yL.

4 .3 .4 S em id ec id in g 7£ on f in ite ly -b ra n ch in g p ro cesses

On finitely branching processes with an effective next-state relation (a description
which includes Petri Nets and pushdown automata, §2.5) we are able to semidecide
non-bisimilarity by playing the bisimulation game on successively larger finite graphs.

If u, v are processes of finitely branching LTSs, the set of reachable states in the
game Gn(u, v) is itself finite7. If the next-state relation is effective, this finite graph
is computable. The game Gn{u,v) is then equivalent to ~ on finite processes {any
u', v' more than n transitions away from u, v respectively can be removed without
affecting the outcome of Gn{u,v)) - which is decidable (Lemma 4.3.2). By Lemma
4.4.4, u rf v = > u v ==> 3n.u 7̂ n v; we conclude that:

Lem m a 4.3 .4 (sem ideciding / on finitely-branching processes)
7̂ is semidecidable on finitely-branching processes with an effective next-state

relation.

(It is easy to define a process which branches finitely but cannot have an effective

next-state relation. Name the root A. The children of a node u are uO and u l , and

if u is represents the binary code (modulo some fixed universal Turing Machine)
of a program M which halts given its own Godel number as input then u has an

additional transition, uĥ s. This LTS cannot be explored.)

7Moreover, if their branching is bounded above by some N , the set of possible states for Gn is
at most N 2 .

4.4 Approximant hierarchy 49

4 .3 .5 F in ite a p p ro x im a n ts w ith fin ite a lp h a b ets

The zeroth approximant ~o relates all processes; the first approximant ~ i relates
those processes u, v for which,

Va <= S .n A <^> (4.9)

If £ is a finite alphabet, the total number of equivalence classes modulo ~ i is simply
2ls L That is, given any set of processes A,

\X / | < 2|e| (4.10)

Imagine there are N possible equivalence classes modulo ~ n, T i , . . . , T/v, and £ =
{ a i , . . . , am}. Considering ~ n+i, & process is either able to perform an a\ action to
reach a process in T\ or not; able to perform an a\ to a process in X2, or not, and so
forth. (Note that we have assumed nothing about the branching structure of these
processes.) We find,

Lem m a 4.3.5 (F in ite approxim ants over finite alphabets)
Let | ~ n | =def sup{|-A/ ~n | | -4 a set of processes over the finite alphabet £ } ,

then

H > i | = 2 P | 2l ^ ' - 2lE| }» (4 U)

We will use this result in Chapter 6 (in the proof of Lemma 6.2.3). Of interest
for its own sake is the situation when £ is infinite. This is not an avenue we have
explored, but the Generalised Continuum Hypothesis appears to imply that,

|£ | = Ni = H ~ n + l | = Ni+n+1 (4-12)

4.4 Approximant hierarchy

On general processes there exists a strict approximant hierarchy,

L em m a 4 .4 .1 (ap p roxim an t h ierarchy) p < k ==>■

Proof: For any KinO we wish to (transfinite inductively) construct two processes

u,v with u v. Define uQ to be a void (actionless) process, void(uo). Given
processes u ̂ for all p < k, let uK have exactly the transitions, V/i < n .u ^ u ^ . We

will prove that,
k, < k ==> uK uK> (4-13)

by an induction on k. Of course, if k > 0 then uo uk . Let k < and consider
the game GK(uK,u Kr). To show that uK uKr, note that any move from uK can be

4.4 Approximant hierarchy 50

replicated exactly from uK>, so player I must move uK/-^uK» with k" > k . But now,
for any p < k I I can move uK-^u^, and by hypothesis u^ uK» (but I I has no
move uK- >̂uK). □

E xam ple 4.6 (approxim ant collapse on finitely branching processes)
Let u v, and wlog I : u-^u'. By definition, for each i < cj we can find a

process v-^Vi such that V{ u1 but Vi 7̂ u'. This is only possible if v can reach
infinitely many processes in a single step, hence on all finitely branching processes,

~ M

4 .4 .1 O p tim a l m ove tree s

Informally, on a game G (u ,v), u-^u' is an optimal move for Player I if no other
move exists which will end the game sooner. Formally, if u v , u-^+u' is an optimal
move for Player I iff there does not exist a v-^v' with u' v'. If u ~ v, all moves
are optimal (i.e. equally suboptimal).

D efinition 4.4.1 (om t) o m t(u ,v) is constructed,

1. The root is (u,v).

2. For a node (s, t),

(a) If s-^s' is an optimal move for I then, for all t '.t-^t', (s , t) —> (s ' , t '); and

(b) If t-^t' is an optimal move for I then, for all s'.s-^s', (s, f) —> (sf, t ')

(If I I has no responses, i.e. u v, the tree will be empty (denoted by fy).) ■

Then, u ^ v if and only if om t(u , v) is well-founded. And further,

Lem m a 4.4.2 (om t) u v iff h(om t(u ,v)) — k

Proof: u ~q v iff 3a.wA v-/+ iff omt(u, v) = 0 iff h(omt(u, v)) = 0. Let

u ^ u, and u-^+ui, U2 , . . v-^v\, V2 , . . . be the optimal moves for I (not necessarily a
countable sequence). For each of I F s possible responses, u-^u', v-^v' (respectively)
we have (by hypothesis) h(omt(ui,v')),h(omt(u',Vi)) < k, while for any p < k we
can find a pair (u*, v') or (v', uf) with h(omt(ui, v')) > p or h{omt{u’, vi)) > p. That
is, h(omt(u,v)) = sup{// + 1 \ p < k} = k. Conversely, h(omt(u,v)) = k implies the
existence of a winning strategy for I I on GK(u,v), and a winning strategy for I on

G k+i {u , v). □

4.5 Silent actions 51

4 .4 .2 A p p ro x im a n t h ierarch y co lla p se

Lem m a 4.4.3 (collapse on sets o f processes) On any set S of processes there
exists a k, s.t. ~

Proof: For each pair (u, v) £ S x S, either u ~ v or 3fi.u 7̂ v. Let C — {/i | u 7̂

v}; either C is a set, in which case k = supC, or C is a proper class, but then so

must S be. □

E xam ple 4 .7 (w ell-founded processes) If u,v are well-founded processes, and
k = max{/i(u), h(v)}, then u ~ v iff u v (an induction on k).

Lem m a 4.4 .4 (sub-N-branching approxim ant collapse)
On the sub-#-branching processes, where # is a regular cardinal (§2.2.1),

Proof: Imagine there exist sub-N-branching processes u , v, for a regular N, with

In particular, it is well known that on finitely branching processes, ~ =
(Example 4.6), and on countably-branching processes (e.g. the fc-tuple processes,
Definition 4.1.6),

u v tor k > is. omt{u, v) is av for k > N. omt{u, v) is a sub-N-branching tree, hence h(omt(u, v)) < N
(Theorem 2.2.1), but h(omt(u,v)) = k ># . □

(4.14)

4.5 Silent actions

We use a r to denote a silent action (as opposed to an observable or strong action
a ^ t) 8. While a (strong) transition u-^u' involves a single step through the LTS of

u, a weak transition u^u' (a £ E U {e}) incorporates any number of silent moves,
and at most one strong action. Formally,

u' otherwise
(4.15)

8In CCS-like formalisms - for instance, B PPr of §5.2 - r denotes an (internal) synchronisation;
in ACPt , [JJ85], observable actions are abstracted into silent actions, renamed r.

4.5 Silent actions 52

Every concept introduced so far has a natural weak equivalent. Weak trace and

completed trace equivalence, = rLTi = t L ? become

u =tlt v =def Vit; G £*.?!=>• (4-16)

u =tl v = d e f Vu? G £ * .u ^ u ' A void(r/) (4-17)

<S=>- A void(i/) (4-18)

while a weak bisimulation relation is,

D efinition 4.5.1 (weak bisim ulation) R is a weak bisimulation relation when

uRv implies, for a G £ U {e},

1. If u ^ u ' then 3 v ' .v ^ v ' s.t. u ' R v a n d

2. If v=̂ >v' then 3 u ' .u ^ u f s.t. u'Rv'

Two processes u , v are weakly bisimilar

u « v

if and only if they are related by a weak bisimulation9. ■

and the weak bisimulation approximants are defined analogously to (Defini
tion 4.3.3); namely, with ^ for A . The weak bisimulation game becomes,

D efinition 4.5.2 GTK (iq, U2), the weak bisimulation game up to k, is played between
I and II , analogously to GK $4-3.3. ■

Note, in G(u, v) we allow empty moves to be played, but they cannot change
the state of the game, u—>v = > u = v. In G T(u,v), every move may admit silent
transitions. A standard theorem:

T heorem 4.5.1 (GT) u ~ v iff II has a winning strategy on GT(u, v), and u v
iff II has a winning strategy on GTK(u,v).

E xam ple 4.8 (u ^ v ^ u)

1. Trivially, U\-^U2 = > u\ = U2 ;

2. With silent actions, if u \^ U 2 and U2 =>u\ then u\ ~ U2 , since whichever move
I plays, Ui=>u'i, I I can respond with u ^ - i^ ^ u ^ .

9 Also known as o b serva tio n equ ivalence , [Mil89], and as r-bisimulation equivalence in [JJ85].

4.5 Silent actions 53

u « S3 v and v ~ S3 s but u s

T T T

a,r a,r a,T
a,T

a ,r

Figure 4.7: The single-step weak approximants are not transitive

E xam p le 4 .9 (s in g le -step w eak b isim u la tion s) Let a binary relation R be a
single step weak bisimulation when uRv implies that, for a £ E U {e},

1. u-^u' implies 3 v ' .v ^ v ' with u!Rv', u ^ u ' implies 3v' .v ^ v ' with u'Rv'; and

2. v-^v' implies 3u'.u=>u' with u'Rv', v ^ v ' implies 3u'.u=^>u' with u'Rv'

Two processes are single-step weakly bisimilar, u v if and only if they are
related by a single-step weak bisimulation.

That is to say, a move for player I is a strong transition, a move for Player I I
is a weak one - and yet, it is a standard result that « = « s . A winning strategy for
I on gives I a strategy for ss; conversely, a winning strategy on « can be used by
I on ms . I fum'K v we continue by induction on k. A move u ^ u ' can be decomposed

into u^>u\^>. . . -^*ui—>ut+1~>. . . -^u'. Make each of these transitions in turn; I I ’s
responses are . . . =M/. If u! v' then (by hypothesis) in the game
u & v to I : u=̂ >u' I I can answer u=W ; hence, u' v ' .

It is worth noting that their respective approximants do not coincide: the &Sk

relations are not even equivalences (see Figure f.7).

Note that the correspondence between (completed) trace equivalence and bisim
ilarity on (normed) deterministic processes (Lemma 4.3.1) does not hold between

weak trace equivalence and weak bisimilarity. Figure 4.8 shows two normed, deter
ministic processes which both have the weak trace language (a, 6} but are not weakly

bisimilar. (The inclusions ~ C = t l t , = tL are still valid.)
The T operator is a tool for showing the correspondence of strong and weak

bisimilarity. A graph with r transitions is transformed into a graph with arrows:

D efin itio n 4 .5 .3 (T) For L = (S', E, —>), T{L) = (S', E, =>), where for a £ E,
a t * a t * j e t * _u=>v u —►—>—>v, and u=>v < = > u—>v. m

4.6 Other notions of weak bisimilarity 54

X Y

Figure 4.8: X = tL Y but X 96 Y

If u is a finitely-branching process, T{u) need not be (Figure 4.9). We find the
folklore result,

L em m a 4 .5 .1 (T)

1. u « v <t=>- T(u) ~ T(v)

2. u ^ K v T(u) T(v)

An easy consequence of Lemma 4.5.1 is that weak bisimilarity on finite processes is
decidable.

t a t a

a t a t

Figure 4.9: u is finitely branching, T(u) branches infinitely

W ith silent actions, any process reachable from (L, u) can potentially be reached
in a single transition. If the vertex-set of L is S(L), then

\S(L)\ < N = > u is a sub-N-branching process (4-19)

Since the set of reachable processes from a finitely-branching process is countable,
we find that

L em m a 4 .5 .2 (T on fin ite ly -b ran ch in g p rocesses) If u is a finitely-branching

process then T (u) is sub-'&i-branching.

As a corollary, on the finitely-branching processes,

~ = « W1 (4.20)

4.6 Other notions of weak bisimilarity

With only strong transitions, there is no concept of livelock - either a process can

act, or it has no transitions at all: (dead)locking means termination.

a
voidr (u) :iff Va € (4.21)

4.6 Other notions of weak bisimilarity 55

A process is livelocked when it can only act silently - if u is livelocked it is voidr

but not void. Weak bisimilarity cannot distinguish between live and deadlocking -
between, in computing terms, a hanging system, and one which has been switched
off10. A more subtle point levelled against weak bisimilarity is illustrated in Fig
ure 4.10: u and v are weakly bisimilar, yet their branching structure differs: v has

the additional capability of choosing to do only a b action after the first transi
tion. Branching bisimilarity was developed to ensure that the intermediate steps of

equivalent processes are matched, and thereby be more sensitive to their branching

structure.

D efin ition 4.6.1 (branching bisim ulation) A symmetric relation R is a branch
ing bisimulation when, if uRv then

1. If u^u' then u'Rv; and

2. If u-^u' then v^-^-v' with u'Rv'

Processes are branching bisimilar if and only if they are related by a branching bisim
ulation.11 ■

Figure 4.10: Two weakly bisimilar processes which are not branching bisimilar

Two other approaches to silence, lying in between weak and branching bisimi
larity, and mutually incomparable, are the delay bisimulations of [Mil81b], and the
77-bisimulations of [BvG87]. Each is a refinement of Condition 2; the first changes it

to,
u- -̂u' = > 3v', v".v^-^v'^v" u'Rv' and u'Rv'' (4.22)

and for 77-bisimilarity,

u-^u' = > 3vf ,v" .v=>v'-^*^v" uRv' and u'Rv" (4.23)

(See [vGW96] for more on this quartet.)

10If u ^ u and void(7;), u ~ v.
11 The proof that this does in fact constitute an equivalence relation has an interesting history,

[Bas96],

Branching
bisimilarity, [GW89]

Delay bisimilarity,
[MilSla]

77-bisimilarity,
[BvG87]

Weak
bisimilarity

Figure 4.11: Bisimilarity-like relations incorporating silent actions, [vGW96]

Weak bisimilarity can itself be cast in these terms, see Example 4.9. It is the
least observant of processes’ branching, but since our criterion is the expression of
behaviour, not fidelity to graph structure, we can return to u and v of Figure 4.10
and ask: is there a reason why they should be distinguished 011 the basis of their
behaviour?

4.6 Other notions o f weak hisimilarity 57

Branching bisimilarity
U-------- V V --------- u

e a

v'
a

Branching-, Delay- and 77-bisimilarity
u v v u

u v

Delay bisimilarity
u v v u

u v

,// / /v u

77-bisimilarity Weak bisimilarity (equivalent definition)
U ------------- V V U U --------------V V u

a v

a

e

, / / HV u

Figure 4.12: Four approaches to silence (to be read left to right, top to bottom)

Chapter 5

Processes from context-free
grammars

A grammar or formal rewriting system is a means to generate complex, potentially
infinite systems from the exhaustive application of a finite set of rules. Classically
these systems have been languages, sets of sequences over an alphabet ([Cho56,
Cho57]; though they could be trees [GS97], or terms over an algebra [DJ90, Klo90],
or even formalisms of biological systems, [Lin6 8 , Pru90]). With symbols a, 6, c, X
and the rule that, in any string of symbols, an X may be rewritten either to b or
aXb, we may generate the language {anbcn \ n (E N} (Figure 5.1).

X ^ b X —> aXc

X ----- >■ a X c ----->■ aaXcc----- ̂aaaXccc---- ̂• • •

b abc aabcc aaabccc

Figure 5.1: A context-free grammar, and its transition system rooted at X

This is an example of a context-free grammar (Type 2 in Chomsky’s Hierarchy,
see Figure 1.4); a distinction is made between terminal (alphabet) symbols E and

non-terminal or variable symbols V, with only the latter being rewritten. Each

transition rule allows a single variable to be substituted by a sequence of variables
and terminal symbols; one cannot restrict the applicability of one rule based upon

the applicability of another (as the enabledness of a Petri Net transition may depend

on multiple places); there is no synchronisation, no communication. The language
of such a grammar is written on the leaves of its transition system.

58

5.1 GNF grammars as processes 59

T heorem 5.0.1 (Language equivalence on context-free gram m ars) Itisun-
decidable whether a context-free grammar over E can generate E* (the universality
problem,), [Gre68]; and (as a corollary) it is undecidable whether two context-free
grammars generate the same language.

5.1 GNF grammars as processes

It is a fundamental result of formal language theory that any context-free grammar
can be effectively transformed, preserving its language, into Greibach Normal Form:
a grammar whose transition rules —> are of the form —> C V x E x V* ([Gre65]).
Its original application was in proving the equivalence of context-free grammars

and pushdown automata; for our purposes, the interest lies in producing labelled
transition systems (§4.1; an approach initiated by Caucal, [Cau92]). In GNF, each
transition is of the form X —> aa, where X € V and a £ V*. It is a small step to
recast this as,

(5.1)

from, UX becomes a a ” to UX performs the action a, and becomes a ” (see [EspOl]
for grammars as processes, and [MSS04] for a more technical view). In Figure 5.2,
the language of M is the set of sequences of edge labels from M to e; it equals
[anbcc \n € N}.

M -
b

e ■<-

■ > M C

b

c

+ MCC
b

c c *

Figure 5.2: A context-free grammar in GNF

5 .1 .1 B a sic P r o c e ss A lg eb ra

Let A — (V, E, —>) be a GNF grammar. A BPA process is a sequence of variables,
a £ P ; the transition relation —> is extended by the rule,

X A 7 = > X a ^ j a (5.2)

Figure 5.2 is an example. Only the head variable of the process sequence is capa
ble of performing an action (by which we will argue that BPA is marginally less

context-free than its parallel cousin, BPP). It was introduced in [BK85] as a simple

model of sequential processes. Since they generate exactly the context-free lan
guages, trace equivalence §4.2.1 is, as a corollary of Theorem 5.0.1, undecidable (as

5.1 GNF grammars as processes 60

is failures equivalence, Definition 4.2.3, and indeed every notion of equivalence of
van Glabbeek’s hierarchy (Figure 1.2) coarser than bisimilarity, [GH94]).

Bisimilarity (§4.3) was first proved decidable for its normed subset [Cau90, BBK93,
Gro92], and then for full BPA, [CHS95] (subsequently a polynomial-time algorithm

for normed BPA has been found, [HJM96a]). But whether weak bisimilarity (§4.5) is

decidable remains open1; while it is decidable on totally normed BPA, [Hir96], even
a non-trivial bound on its level of approximant collapse (§4.4.2) has yet to be found

(see §5.7 and Equation 5.42).

5 .1 .2 B a sic P a ra lle l P r o c e sse s

In §2.3 we went from sequences to multisets (see Definition 2.3.2, the Parikh homo
morphism) - from languages to commutative languages. A BPP is a GNF grammar

A = (V, £ , —*) in which concatenation is commutative,

Va, P e V*.a/3 = /3a (5.3)

—> is extended to BPP processes by the same rule as for BPA (Equation 5.2), but
with the effect that any variable of the process can act; there is no notion of left
most derivation, or ability to arbitrarily postpone the enabledness of a variable (i.e.
the BPA process X nY has to remove n instances of X before it can perform an
action from Y, while as a BPP process Y can act immediately; in this, BPP is more
context-free than BPA: only the presence or absence of a variable determines whether
its transitions can be made). An equivalent view takes BPP processes as multisets
of variables, with —► extended, for a, (3 £ V®, by

a A/? :iff l G Q , l A 7 a n d (a - { I }) U 7 = /? (5.4)

Clearly, every BPP process over V can be represented as a IV^-vector of natural
numbers, and so are examples of /c-tuple process (k = \V\, Definition 4.1.6).

E xam p le 5.1 (B P P) A two-variable BPP and the LTS generated from its process

M (see Figure 5.2),

M A M C

M - i e

C A e

a a a

M I " M C M C C 7"
c

c < „ cc
1 Branching bisimilarity (§4.6) was proven decidable for the totally normed BPA in [Hiit91b], and

a PS pace algorithm for normed BPA was given in [CHT95]; there does not appear to have been
much research interest in broadening this result.

5.1 GNF grammars as processes 61

BPP was introduced by Christensen in his thesis [Chr93] as a simple model of

parallel processes. Where a BPA can be viewed as a single control-state Push
down automaton, BPPs are effectively communication-free Petri Nets ([Hir94b]; see

§2.5.3); the applicability of much Petri Net theory has proven useful (e.g. §5.5).
Christensen shows in [Chr93] that a BPP can generate a non-context-free lan

guage. His example is

A-^e, B-^e, C ^ e , X -^ B C X , BC, X ^ A C X , AC, X - ^ A B X , A B (5.5)

Then, L(X) = {w E {a ,b , c} \w(a) = w(b) = 'in(c)}, so L' = L{ X) D a*b*c* —
{anbncn | n > 1}. But L' is not context-free (using the Pumping Lemma [HU87]),
yet the intersection of two context-free languages must be context-free, therefore
L(X) is not context-free. He goes on to provide a Pumping Lemma for BPPs,

Lem m a 5.1.1 (B P P P um ping Lem m a) Let a be a BPP process, and L = L{a) .
Then there is a constant n such that i f w E L with \ w\ > n then there exist u , v , s E E*
such that,

1. w = us;

2. |v| > 1; and

3. \/i.uvls E L.

He uses it to show that the BPP languages are disjoint from the context-free lan
guages, using the example {an6n | n > 1}. Trace (language) equivalence was shown
to be undecidable by Hirshfeld, [Hir93].

E xam ple 5.2 (m axim al finite norm s) L e t A = (V ,E ,—>) be a normed BPP whose

variables are ordered according to non-decreasing norm, V = { X \ , . . . , X k } , i <
j norm(Xi) < norm(Xj) . M (i) =^e/ m ax{norm (Xj) \ j < i}; of course,
M (X i) = 1, and if mi = m ax{|7 | | X ^ ' y } then M{Xf) < m i . M (Xi - i) + 1. If it
requires n bits to define A , then M(Xk) can be written in 0 (n) bits (and all of
M { X l) , . . . , M { X k) in 0 (n 2)).

For bisimilarity, decidability was proven in [CHM93], and for its normed sub
set a polynomial algorithm was found in [HJM96b] (though without an explicit

degree). PSPACE-hardness was proved in [Srb02c] (by a reduction from QSAT

[Pap94, GW99]; Mayr previously found a co-NP-hardness result [MayOOa] using

3-SAT) and -completeness by Jancar in [Jan03]; a proof which also furnished a

5.1 GNF grammars as processes 62

0 (n 3)-time decision procedure for normed BPP [JK04]. Mayr’s co-NP-hardness re
sult means that it is extremely unlikely that a polynomial time decision procedure

exists for full BPP (as it would imply that P = N P)2.

5 .1 .3 B is im ila r ity b e tw een B P A an d B P P p ro cesses

BPA and BPP generate identical classes of commutative languages, but incomparable

classes of non-commutative languages; likewise, modulo bisimilarity their classes of

transition system are incomparable (see [BCMS01], from which the following theorem

and proof is drawn).

T h eorem 5 .1 .1 (B P P and B P A are in com parab le) There exists a BPP pro
cess which is not bisimilar to any BPA process, and vice versa.

Proof: Consider M of Example 5.1, and imagine that (3 is a BPA process with
M ~ /?. Let n be very large, and X(3 be the BPA process which corresponds to M C n,
with norm(X) + norm((3) = n -1-1, and norm(X) = k. The result of performing k
norm-reducing transitions from X a must be a , yet from M C n we can reach the two
non-bisimilar states, M C n~k and C n~̂ k~l\

Conversely, imagine that a is a BPP process bisimilar to M of Figure 5.2.
norm(o:) = 1, hence a = X , and L(X) = {anbcn |n G N}. Again, let n be large,
then

Decidability between an arbitrary BPA and BPP is nontrivial - the union of
BPA and BPP is a broader class than the finite processes (see e.g. Figure 5.4).
Both Blanco and Cerna, Kretfnsky and Kucera found positive decidability results

for normed BPA and normed BPP, [Bla95, CKK96] (the former based on [CM90]),
but it took until 2003 for decidability between full BPA and BPP to be proven

(by Jancar, Kucera and Moller, [JKM03]). Their technique involved converting

the BPP process (if possible) into a one-counter automata, and then using the (non-
elementary, [Sen98]; EXPTlME-hard, [KM02a]) decision procedure for PDA. (A result

2While it can be decided in polynomial time whether a place is unbounded, Mayr shows that the
problem of whether this place matters - that changing he number of tokens on the place actually
changes its behaviour - is NP-hard. For example, add a variable A â cA to the BPP of Figure 5.1,
then if a process has A enabled it does not matter, for the purposes of bisimilarity, what or how
many other variables are enabled: A ~ A M nC rn (for all n ,m). A (in Mayr’s terminology) masks
the other variables.

(5.6)

6 c cnwhere Y —>(3. 7 / e (norm(T7) = n + 1 > norm(K)), so 7 — and (3 —> e (k > 0).
C Cn ^But then, X —̂ 7 — ►/? —»• e, in which case the two processes are not even trace

equivalent (see Example 4.2). □

5.1 GNF grammars as processes 63

subsequently refined by Jancar, Kot and Sawa, converting the BPP into a normal
form - with a potential exponential increase in size - then directly into a BPA,
[JKS05]). A key part of the proof is an innovative expression of bisimilarity on

BPP processes using Jancar’s distances-to-disablings functions, which we will cover

in more depth later, §5.3.4, extend in Chapter 6 , and apply in Chapter 7.

5 .1 .4 U n a r y la n g u a g es

A language over a single-letter alphabet is termed unary. Observe that if |£ | = 1 ,
the language and commutative language (Example 2.7) of a process coincide, and

moreover it makes no difference to the language whether the process is treated as a
BPP or a BPA. By extending the proof of Theorem 2.4.4 (using the BPP pumping

Lemma 5.1.1) we can find:

T heorem 5.1.2 (unary context-free process languages)

1. All languages generated by context-free processes over a unary alphabet are
regular;

2. Any BPP or BPA over a unary alphabet can be effectively translated into a
finite process which generates the same language; and

3. Language equivalence on unary context-free processes is decidable.

Proof: 1. This is essentially a special case of Parikh’s Theorem, [Par66 , Gin66].
(Esparza gives an alternative proof of which in [Esp97]). 2. It is easy to make
this procedure constructive; rather than consider all strings generated by o, explore
the string-space, keeping track of which pure pumping sequences we come across
and ensuring never to repeat one. 3. Language equivalence is decidable on finite

processes. □

5 .1 .5 P D A c o n tr o l-s ta te b is im ila r ity h ierarch y

Modulo language equivalence, increasing the number of control-states a pushdown

automaton is allowed improves succinctness of expression but does not increase the

class of what can be expressed: the single-control state PDAs (i.e. BPAs) already

generate all of the context-free languages ([Gre65]). In contrast, with reference to
bisimilarity, additional control states enable the expression of strictly richer labelled

transition systems.

Lem m a 5.1.2 (P D A control-state hierarchy)
There exists a k control-state PDA with a position which is not bisimilar to any

position of a PDA with fewer than k control states.

5.2 Extensions of context-free processes 64

P = {p i,P 2, . . . ,Pfc} S = T = {A}

Vz (p*, A) - ^ (p * , A A)

Vz (P i , A) - ^ (p i , e)

V i < A; (p i , A) A (p i + 1 , i 4)

(Pi> ^ (P i , ^ 2) (P i , - 4 3) (P i , ^ 4)

(P2, A)

ai ai ai

02
(P2, A 2) ' ^ (p2, -A3) I (P2 , -44)

02 02

ai

02

(Pfc, 4) ^ (pfc, 4̂2) „ (Pfc, 4̂3) ̂ (Pife, -44)
Ofc flfc Ofc

Figure 5.3: A k-control state PDA

P roof: Sketch, consider the fc-state PDA of Figure 5.3. It builds a counter of
arbitrary size, and needs to keep track of whether this counter decrements on an
ai, a2, etc.; behaviour which can be switched by a single action. That is, the stack
symbols encoding the counter require k different interpretations, meaning k control
states. □

5.2 Extensions of context-free processes

BPA,* adds a special deadlock symbol, <5, where Va.5a ~ e; [MS98] shows that this
generates a strictly richer class of transition systems (but not of languages) than
BPA, but ~ remains decidable ([Bos96]); the latter because 5 can be simulated by
a fresh variable/action D-^*D, the former because d enables a BPA process of any

norm to reach a void process in a single step.
BPPr allows CCS-style communication within processes. For each symbol a of

the alphabet there is a corresponding anti-a, a. r here represents the internal (and

thereby silent) synchronisation of a and anti-a,

X - ^ a and Y-^(3 XYj^otfl'y (5.7)

Bisimilarity is decidable on B P Pr , but becomes undecidable if we add a unary
restriction operator { a / L behaves exactly as a , but cannot perform any action from

5.3 Deciding bisimilarity on context-free processes 65

L, or a, if a 6 L), as this algebra can mimic a two-counter Minsky machine ([Min67]),

and hence is Turing complete (the proof is in [Chr93], based on [Tau89]).
Lossiness and other forms of unreliability are an active research interest (not

least because a wholly loss-free communication system is a practical impossibility),
e.g. Lossy Channel Systems ([SchOl]) and Lossy Vector Addition Systems ([BM99]).
Lossy BPP was introduced in [May03b], and bisimilarity proved decidable in [Srb02a]
(see §5.3.3). Here, lossiness is modelled using a special action, drop ^ E, which allows

processes to drop any number of variables,

X ? . . . X l ^ X f . . . X f Vyi < x i , . . . , yk < < Xi (5.8)

E xam p le 5 .3 (a lo ssy B P P)
The lossy BPP defined by X - ^ X B , B ^ e is not bisimilar to any BP P process a.

(If a is a BPP process, and n is greater than the number of transitions offered to a,
then a / X B n.)

One could alternatively define lossiness as a special usage of silent actions: for
each variable X , add a transition X^+e (and allow no other r transitions); every
action a=>oc' may potentially involve the loss of variables. Call these the silently
lossy B P P ; it is easily seen that weak bisimilarity is decidable on these (unbounded,
but finitely-branching) processes: ~ is semidecidable by Lemma 5.5.2, and 76 by
Lemma 4.3.4.

5.3 Deciding bisimilarity on context-free processes

The problem of bisimilarity on context-free processes has fuelled the development of
a number of powerful techniques - an arsenal which has, as yet, had little impact on

the related question of weak bisimilarity. We gloss the most important of them here.

5 .3 .1 C au ca l b ases

A method for semideciding strong bisimilarity on classes of processes for which bisim
ilarity is a congruence (§2.3.1) is to show that they admit a finite Caucal base - a

notion introduced by Caucal (and called a self-bisimulation) in [Cau90] to prove
decidability on normed BPA (§5.1.1).

D efin ition 5 .3 .1 (C au cal b ase) A binary relation R on a class of processes is a

Caucal base iff uRv implies,

1. If u-^u' then 3v'.v-^v' s.t. uf = v'; and

5.3 Deciding bisimilarity on context-free processes 66

2. If v —*v' then 3u'.u-^u' s.t. u' = v r

(See Definition 2.3.4-) ®

R
Lem m a 5.3.1 (Caucal base) On BPP or BPA processes, = C ~ .

R
Proof: We wish to prove that = is a bisimulation. First, the distance or inference

depth of a, (3 from R is zero when aR(3, one when a = aict2 , (3 = P1P2 and a\R(3i A
R

oi2-R/32i and so forth. Clearly, a, (3 are a finite distance from R iff a = /?; the proof
is a simple induction on this distance. □

Corollary 5.3.1 (Caucal base) a ~ (3 iff aR P for some Caucal base R.

Lem m a 5.3.2 (finite Caucal bases) If R is a finite relation on BPA or BPP
processes, it is semidecidable whether R is a Caucal base.

Proof: Let Ro be the pairs of processes of distance 0 from R (i.e. Ro = R),

Rn + l = d e f { (a i a 2 , P 1P 2) | <*1 R iP l A a 2 R j P 2 . i 1 j < Tl} (5 - 9)

If R is finite, each Rn can be constructed; R is a bisimulation base when for each
a R P , any move has a counterpart P ^ P ' with Bn.a'RP' (and the dual, P—>P').
If they exist, we can find them. □

The existence of a finite Caucal base for normed BPA was shown in [Cau90] (and
though decidability was already known, his proof is significantly easier to understand
than that of [BBK87, BBK93]); a finite base for full BPA was found by Christensen,
Hiittle and Stirling in [CHS92, CHS95]. Hirshfeld proved in [Hir94a] that a finite

base exists for BPP (a result related to Theorem 2.3.1). See [BCMS01] for details.

5 .3 .2 H irsh fe ld tree s

Otherwise known as expansion trees, and first proposed in [Hir94c]; see e.g. [JM99].

D efinition 5.3.2 (expansion) A finite binary relation A on BPP processes is ex
panded by A' when,

1. ocAP and a-^a' implies that P ^ P ’ with a'A'P';

2. aA P and P-^P’ implies that with a'A'P'; and

3. Minimality: no proper subset of A' satisfies conditions 1 and 2

5.3 Deciding bisimilarity on context-free processes 67

D efin itio n 5 .3 .3 (H irsh feld tree) An expansion tree for (a, (3) is constructed:

1. Its root is labelled { (a , /?)};

2. The children of a node A are all expansions A' of A, with the provisos that:

(a) Every pair (a, a) is omitted; and

(b) Every pair (a, (3) which has already occurred in A or its ancestors is omit
ted.

The 0-labelled leaves are termed successful; a non-empty leaf (i.e. one with no ex
pansions) is unsuccessful. A branch is successful if and only if it does not terminate

with an unsuccessful node. ■

L em m a 5 .3 .3 (exp an sion trees) a ~ (3 iff the expansion tree grown from (a, (3)
has a successful branch.

Using a notion - domination, §3.1 - which we will employ in §5.7.1, one can elim
inate the possibility of infinite branches. A finite Hirshfeld tree may be constructed,
and a successful branch sought.

5 .3 .3 T ab leau p roofs

Tableau proofs are prominent in modal logic and proof theory ([Fit96, DGHP99]);
when written they resemble natural deductions ([BE99, Gir89]), finite tree-like struc
tures which decompose a statement to-be-proved until its truth or falsehood becomes
trivial. A tableau is a finite collection of rules describing how a sentence (in our case,
an expression of a process) may be broken down into atomic propositions. It is sound
when it cannot prove anything that is false, and complete when everything true has

a successful tableau.

Goal
 ------ ----------— :------— side conditions (5.ID)
Subgoall5. . . , Subgoaln

Tableau techniques were first applied to infinite labelled transition systems in [BS90]
(extending the work of [CES86]) in order to verify temporal properties of processes

(safety: nothing bad will happen; liveness: something good will eventually happen,
etc), and have since furnished a number of decidability proofs for equivalence rela
tions on context-free processes (e.g. strong bisimilarity on BPP [R95], BPA [Hiit91a],
normed pushdown processes [Sti98a]; branching bisimilarity on BPA [Hiit91b]). In

[Srb02a], Srba presents a class of transition systems called the Effective Commuta
tive Transition Systems together with a sound and complete tableau, enabling him

5.3 Deciding bisimilarity on context-free processes 68

to prove at a stroke the decidability of bisimulation equivalence on BPP, lossy BPP,
BPP with interrupt and timed-arc BPP (§5.2).

D efin itio n 5 .3 .4 (very sim p le B P P) A BPP algebra is very simple iff for all

t , s £ —7 l(t) = l(s) = > t = s. ■

As a toy example, we can demonstrate the decidability of bisimulation equivalence

on the very simple BPP (in which each transition is uniquely identified by its action

name) with a sound and complete two rule tableau3.
First, a variable X is non-removable, N R (A), when

NR(X) :iff I A q ==> a (X) > 0 (5.11)

our two rules are,

a = fj ot = jj

For any pair of a, (3 of very simple BPP, the exhaustive application of the above two
variable-cancelling rules will create a necessarily finite tree, whose leaves are of the
form 7 = 6 (where neither rule applies). It is not difficult to see that a ~ (3 if and
only if the tree (or tableau) rooted at a = (3 has leaves labelled by e = e.

5 .3 .4 J a n ca r ’s d is ta n c e s -to -d isa b lin g s

In [Jan03], Jancar presents a novel method for capturing bisimilarity on BPP pro
cesses (further developed in [JKM03]). We will return in depth to the general tech
nique in Chapter 7, using rather different notation and a very different approach.
For now, with distance defined as per Equation 6.1 (page 78),

dist(ii, v) =def min{|ic| | u—+v} (5.13)

the distances-to-disablings functions are constructed: for any action a £ E,

dda(ot) = def m in{dist(a, (3) \ (3-/*} (5-14)

is a disabling function; and, if T — (d \ , . . . ,di) is a sequence of already constructed
distances-to-disablings functions (d{ : V* —> N U { —l,o;}), and 5 = (5 \ , . . . , 5 i) £

3The very simple grammars originated with [But72]; see also [KH66].

5.3 Deciding bisimilarity on context-free processes 69

(N U { —1, u }) 1 then

dd(a^ ^ (a) =def m in{dist(a, (3) \ \Ji.di{(3) < u and (5.15)

V (3'.(3^(3',F {(3 ')-F (f3)^5} (5-16)

where,
(d i , . . . , d i) (a) = (d i (a) , . . . , d i (a)) (5.17)

and the subtraction in Line 5.16 is pointwise. Either f3 cannot make an a move, or

if it can there is at least one di function whose change, upon making the move, is
not 5i. (By convention, m in0 = cu.) We will reintroduce (generalisations of) these

functions in Chapter 6 (with what I hope is more intuitive notation). As noted in
[JKM03], on finitely branching processes, u,v,

u ~ v iff d(u) = d{y) for all distances-to-disablings functions d (5.18)

(see Lemma 6.2.1 for a generalisation). Our immediate interest is the tight and sur
prising correspondence between distances-to-disablings and the NORM(Q) functions.
If Q C V is a set of variables, the norm relative to Q of a process is the minimal
number of transitions require to remove every instance of a variable from Q :

NORM(Q) =def min{|u>| | a ^ W A \ /X 6 Q . a (X) — 0} (5.19)

In particular, NORM(0)(a) = 0 for all a , and NORM(F) = norm. (Recalling NR

of Equation 5.11, page 68, n r (X) iff NO RM ({X})(X) = a;.) Two processes a ,/? are

NORM-equivalence when VQ.NORM(Q)(o;) = norm (Q)(/?); in fact, NORM-equivalence

coincides with distances-to-disablings equivalence - i.e., w ith bisimilarity. In [Jan03],

Jancar goes further, providing a P S p a c e decision procedure:

Lem m a 5.3.4 (N O R M) For any B P P system A = (V, £ , —»), we can effectively
find, in space that is polynomial in the size of A, a finite number of sets of places,

Q l, • • •, Qm Q V such that,

\ / a , / 3 e V *, a ~ j3 iff VO < i < ra.NORM(Qi)(a) = NORM(Qj)(/3) (5.20)

In the four years since, no (published) progress has been made in applying the

theory to weak bisimilarity. This will become clearer in Chapter 7.

5.4 Weak bisimilarity 70

5.4 Weak bisimilarity

Weak bisimilarity is ExPTlME-hard on BPA [May02]4, and is at least PSPACE-hard

on BPP. Context-free processes perm itted a silent action may branch infinitely, Fig

ure 5.4; the straightforward exploration means of semideciding inequivalence of §4.3.4

no longer applies, and creates problems that have remained open, even for normed

processes.

^ P ^ A , P ^ Q
I t r t q 1+q q Q-%e

A ± A

Figure 5.4: Context-free processes P, Q where P Q

Mayr shows in [May02] that weak bisimilarity is undecidable for BPA with a
control unit of size 2. In [KRS06], Kretmsky, Rehak and Strejcek broaden this
result to BPP: they define a special (monotonic) case of finite control unit extended
BPP and BPA, /cBPA and /cB PP, and prove that weak bisimilarity is undecidable
even for normed /cBPA and normed /cBPP.

Strfbrna and Cerna have attempted without much success to apply weak variants
of Hirshfeld trees (§5.3.2) and Caucal bases (§5.3.1) to weak bisimilarity on BPA,
[SC02].

The first tractable algorithms involving weak bisimilarity on infinite state systems
have been found by Kucera and Mayr, who show that weak bisimilarity between BPA
and finite processes, and between normed BPP and finite processes, is decidable in

polynomial time, [KM02b].

L em m a 5 .4 .1 (con gru en ce) Weak bisimilarity « and the weak bisimulation ap-
proximants are congruences on BPP processes (with reference to process concate
nation).

Proof: R = {(a5, (35) \ a « (3} is a weak bisimulation. Let ayP/^y, and wlog I:
cry^a/y'. Either a=^a' and 7 ^ 7 ' or a=^a' and 7 =^7 '; in the former case, 3(3.(3^(3'
with a' ss (3' by assumption, but then a'^'R(3'^' (the other cases are similar). For

the weak approximants, a « K (3 = > NAy.cry ^7 , by induction on k . Let a (3

4At the end of [Hir96], Hirshfeld writes,

We [...] conjecture that eventually it will be shown that weak (and branching) bisimu
lation is decidable. The work that was needed to prove the result for the very restricted
case of totally normed BPA [...] is discouraging.

5.5 Weak bisimilarity is semidecidable on B PP 71

and I : where wlog a ^ a ' and 7 =^7 . By assumption V/i < k 3(3' .(3^(3'
with a' (31, and by hypothesis a ' j ' (3,ry'. □

5 .4 .1 T o ta lly n orm ed B P P

The first non-trivial subclass of BPP for which « was proven decidable is the totally
normed BPP [Hir96]5, which strengthens the normed condition to, for every X (E V,

0 < normT(X) < 00 (5.21)

While these processes may branch infinitely, they remain finitely approximate, in

that the approximant hierarchy collapses at u r.

a 76 (3 =>• 3n.a (3 (5.22)

(Let a 7& (3, and a ^ o t be F s move. I I can have only finitely many responses fi^(3'
with normT(c/) = normr (/3').) See Theorem 5.6.1.

5 .4 .2 P u r e ly -g e n e r a te d B P P

The first non-finitely approximable subset of BPP for which we have a decidability
proof is the normed, purely generated B P P , as given by Stirling in [StiOlc].

A variable X € V is a generator when it can be used to build, in a single weak
transition, an arbitrary number of variables. Define,

G{ X) = def { A | X ^ X A A normr (A) = 0} (5.23)

It is a pure generator when,

X ^ a A normT(X) = normr (o;) = > a = X a (5-24)

(I.e. every normT-neutral silent transition is either generating or leaves the process

unchanged). The tableau proof is difficult, and while the paper states that this work

could be extended to the normed BPP, “the combinatorics become awesome.”

5.5 Weak bisim ilarity is semidecidable on B P P

Since (N ^ l)2 is a congruence on BPP (Lemma 5.4.1), and is finitely gener
ated (Example 2.9), Theorem 2.4.1 applies, and we find that « is itself a semilinear

relation (Corollary 2.4.1). There are countably many such relations, so given an

5The definition of totally normed owes to Hiittel, [Hiit91b].

5.5 Weak bisimilarity is semidecidable on BPP 72

effective means to test whether a candidate relation is, in fact, a weak bisimulation,
would give us its semidecidability. For, if a ta (3, then there exists a weak bisimu
lation R Css with aR(3. Semilinear set membership is decidable (Lemma 2.4.1); it

remains to show that we can test whether a relation is a weak bisimulation. For this,
we define a semilinear encoding of the relation (from [Esp97], which is in turn

based on [Jan95b]):
Recall the relation Reach of §2.5.3. Projecting away the r transitions gives the

effective semilinear relation,

Reachr =def {(<5, o, (3) | (5.25)

and, applying Theorem 2.4.3,

Lem m a 5.5.1 (4>a) We can, for any BPP, effectively construct a formula of Pres-

burger Arithmetic (§2.4-1) 4>a such that, for all of its processes a, (3,

a ^ /3 <pa[a j \ (5.26)

Proof: Let ^[a, a, (3\ iff Reachr (o, <r, (3), then

4>a(a,(3) = 3<j.'0(q, <t, (3) and E ff{ i) = 1 A a(i) = 1 =>• Xi=$>

(where of course whether an atom can perform a =$■ transition can be Presburger
encoded). □

Finally, if p is the Presburger equivalent of a candidate weak bisimulation, define
the Presburger formula,

XP =def Va, f fp(a, 0) = > (5.27)

Va, of . (a,a') = > 3 P ' P ') .p(a', P') A (5.28)

M a , 0 4 a0,(3 ') = > 3a 4 a { a ,a ') .p {d '0 ') (5.29)

and find:

Lem m a 5.5.2 (« on B P P) « is semidecidable on BPP.

Proof: If a ~ (3, enumerate all Presburger equivalents p of semilinear relations on
N2'!^, testing for each:

1 . p[a, /?]; and

2- X p

eventually we must find a relation which satisfies both, and may conclude that,
indeed, a sa (3. □

5.6 The finite weak approximants 73

5.6 The finite weak approximants

Stffbrna gives in [Str99] a neat encoding of the finite weak approximants into for
mulas of Presburger Arithmetic,

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

which gives us their decidability (Theorem 2.4.2), and moreover the decidability of
« on the finitely-approximable subclass of BPP (the totally normed BPP §5.4.1, for
example). However, no complexity bounds are given, and it is difficult to see how
this method could be extended to £3^.

T h eorem 5 .6 .1 (th e fin ite ly ap p rox im ab le B P P) On any finitely-approximable
class of BPP, is decidable.

Proof: Semidecidability is given by Lemma 5.5.2; to semidecide non-equivalence,
decide each finite approximant in turn. □

Lemma 4.3.5 puts a bound on the number of equivalence classes there are modulo
zen: the players of G^(a, (3) have infinitely many choices, but each comes from finitely

many equivalence classes. On BPP we find a stronger result, and a second way to
decide the finite weak approximants.

Define the capping of (natural numbers) x by n to be,

(5.37)
n i i f x < n
— = d e f \
x n otherwise

where,

a ~ n (3 <=> 0n[a,/3]

4>o {oii (3) = True

(j)n+i (a,/5) = V a',a .^a(a ,a /) = >

3 /3 ^ a(/3,/5')A

and

V/3',a.V;0(/3 j ') = >

3 a ' . ip a (a , S ') A <pn (a , 0)

and extend this to monomials by, Xl n xk =def . . . X f k . It’s easy to see that,
A-, . . .A »

5.6 The finite weak approximants 74

i.e. to decide a « i (3 on processes of any size, it suffices to test the question on a

pair of processes composed of at most k variables a piece.

Lem m a 5.6.1 (B P P finite approxim ant branching) For BP P processes over

V = { X 1 , . . . , X k } ,
hn lcn

(5 . 3 9)

Proof: Sketch, we wish to show that,

a
kn
a

(5.40)

An induction on n; let (3 = , and consider the game G^+1(a, (3). If I : a=>ot ,
where a = X \ . . . X \ X 2 . . . X 2 ■ ■. X k .. • X k, first decompose its transition sequence:

XI

a =

a

X i

7 i i

X2

X 1

71:

Xk

X^

7 l Xl

*2

72] l k x

next, consider each Xi in turn. There are Xi instances of Xi in a ; in a' they become

7 q, 7 i2, • • •, l i Xi (where of course it could be that 7 ij — X i) . If Xi < kn+1, or

\ { l i s I l i j 7̂ e, 1 < j < x;}| < fc” +1 (5.41)

there is nothing to be done, as the transition sequence can be replicated by (3.
Otherwise, we have at least kn+l components, each of which involves at least one
variable; by hypothesis it makes no difference to whether a f has kn instances of
a variable or more than kn instances: subsequent X ^ - j ^ transitions are redundant.
The pigeon-hole principle implies that this transition sequence, minus the redundant
parts, can also be met by a f. (The cases a ^ a ' and f3=>f3' are similar.) □

(Note, this seems a very conservative bound - finding an example a for which

a 7̂ 2 say, is difficult.) Given any ot, (3, we can use Lemma 5.6.1 to effectively
construct two finite processes u , v with the property that, a (3 iff u ~ v.

Corollary 5.6.1 (~ n as ~ betw een finite processes) On B P P processes, can
be effectively reduced to ~ on finite processes.

5.7 Approximant collapse 75

5.7 Approximant collapse

Given two parallel processes P, Q with P ps ̂ Q (Figure 5.4), we can for any n G N

find processes X, Y where X n Yn, by adding 2n fresh variables,

X 0 = P Y0 = Q
v v v Q' v*Z + 1 *-*Z

Can one go further, do there exist BPP processes whose inequivalence cannot be

seen by ~u;x2? In the sequential case (as first noted by Stribrna in [Str99]) the level
of approximant collapse must be at least uP. For any « < uP we wish to construct
a pair of BPA processes a,/? with a rfc f3 but a &K (3. Let V = {X o ,. . . , A"n_ i} ,
£ = {a , r} , and

X 0A e X ^ e X i+1^ X i+1 Xi (5.42)

For each ac < u n, with Cantor Normal Form (Theorem 2.1.1)

ac = ujn~l an-1 + . . . + u;ai + ao (5.43)

let a K = X q° . . . X'^Xi • It can be proven that k, < p < ujn implies a K a^ (the
following comes from [HMS06]). In the following, a , /? ,7 are interpreted sequentially
as BPA processes.

• If a ps (3 then

1. 7 0 ps 7 (3-, and

2 . a j ps /?7

(of course, for BPA processes a 7 does not in general equal 7 a), with the caveat
that for 2 to hold, a ps e = > a ^ e .

• If i > j then X i X j ps Xi.

• As a consequence, for every (3 G P* there exists an c*K such that ~ (3.

• Next, for every k, < cuk, X k ^ a K.

• For every p < ac, a K̂ a ^ .

• If olk=>(3 then 3p < ac.om ps /?, and

• If olk^(3 then 3/i < ac.q ̂ ps (3.

5.7 Approximant collapse 76

Then, for any ordinal ujk we can find a pair of processes from a k + 1-variable BPA

which are ^ k equivalent, but are not weakly bisimilar. Namely a uk and a u)k+1.
It is a simple transfinite induction to verify that the game GJjk (aU)k ,a 0Jk+1) is won

by IF, a winning strategy for I on G ^ ^ ^ a ^ k , a UJk+1) begins with For
sequential context-free processes, the conjecture is:

C onjecture 5.7.1 (Strfbrna) On BPA processes, ~

Returning to parallel context-free processes, a long-standing conjecture holds

otherwise:

C onjecture 5.7.2 (H irshfeld, Jancar) On BPP processes, « = ~cjx2-

BPP processes branch finitely, hence Lemma 4.4.4 gives us,

* = (5.44)

We can do a little better: in [Str99] there is an argument owing to Julian Bradfield
to show that the BPP approximant hierarchy collapses by level uj\CK , the first non
recursive ordinal. Yet this is number of a completely different order to eo, let alone
to uj • 2 ; we will progress to a more modest bound, one which relies on the analysis
of Dickson’s Lemma given in Chapter 3.

5 .7 .1 A n uju b o u n d for B P P

(Presented at CSL 2006, and published in LICS 2006, [HMS06].) First, a result
based on a lemma of Hirshfeld’s [Hir96],

Lem m a 5.7.1 (dom ination) If a (3 and 0 7 (36 for some p < k, then

a l a n d P i P $

Furthermore, (a j , a 6) < iex (Pl ,P$) or ((3j,P6) <iex (0 7 , aS), where <iex is the
usual lexicographic ordering.

Proof: The weak approximants on BPP are congruences (Lemma 5.4.1): a6

PS 0 7 ; however, if 0 7 ^ + 1 then 0 7 £^ +1 && P& (the other case is similar).
Note that a ^ (3, so either a <iex (3 or (3 < iex a. □

Lem m a 5.7.2 For BP P processes ot,(3, h(omt(a, (3)) — k implies the existence of a

N -labelled non-dominating tree of height k.

Proof: The level of a node is its distance from the root. Apply the following
substitution method to each successive level i of t = omt(a,(3): for all level i nodes

u , if u dominates an ancestor v ,

Z(v) = (0,VO Ku) = (f h i W) (5.45)

replace u in t by u' = omt(<f)7 , (f>6) if (07 , 4>5) < iex (VhS V^) and by u' = omt(ipi , ipd)
if <iex (cf*!, (f>8). Lemma 5.7.1 means this is a height-preserving operation.
If v! also dominates an ancestor, repeat the process. That < iex is well-founded
guarantees that it can be repeated at most a finite number of times (for each branch);
and that t is well-founded means that there are a finite number of levels to cover. □

T heorem 5.7.1 (B P P approxim ant collapse)
On BP P processes, « =

Proof: Assume a 76 /3 but a (3. By Lemma 5.7.2 there exists a non-dominating

vector-labelled tree of height k > but Theorem 3.3.1 implies k < . □

Chapter 6

Distances-to-disablings

The distances-to-disablings functions were developed in [Jan03] to address the prob
lem of strong bisimilarity on Basic Parallel Processes (for which there exists a pleas
ing correspondence with their relativised norms, §5.3.4). At the end of his paper
Jancar conjectures his method to be a promising approach to the (still open) prob
lem of weak bisimilarity, but work on this appears to have stalled, with no papers
published on the subject in the years since. We begin by defining a generalised
version of distances-to-disablings (with simplified notation) applicable to all general
processes, with details as to the connection with approximant collapse and the fi
nite approximants. Finding that their natural weak analogue immediately fails, we
develop a form which is applicable to weak bisimilarity; and that, with promising if
partial results, is the subject of Chapter 7.

6.1 Strong distances, and norm revisited

The strong distance from u to v is defined to be the minimal number of transitions
required to reach v from u:1,

dist(u, v) = d e f min{|u?| | u ^ v } (6 .1)

For a set V of processes, we write dist(u, V) =def min{dist(u, v) | v 6 V}-, for P a
predicate on processes,

dist(u, P) —def dist(u, { v | P (v)}) (6 .2)

aThis distance is not intended to be a metric - though one of the first approaches to process
equivalence was metric-space oriented, [dBZ82a, dBZ82b]. We might (in passing) look at the class of
processes on which dist is reflexive, transitive and obeys the triangle inequality. A simple condition
is both necessary and sufficient: for all processes u, u-^v = > 3b .v^ u .

78

6.1 Strong distances, and norm revisited 79

(And, dist(P) =def Au.dist(u, P).) Recalling norm of §4.1.1, we find

a
norm('u) = distfy, void) = distfy, {v | Va.v/»}) (6-3)

Rather than ask the distance until all actions are disabled, we might ask it of a
particular action.

a
da(u) =def dist(u, /►) (6.4)

A useful notation, trailed at the end of §4.1, is to define the change (modulo a
given function) produced by a transition (see the £s of §5.3.4). For / a function on

a set of processes P , / : P —► Z ^ , 6 6 Z ^ , and u ,v € P:

u~-*f,6v ;iff u-^v (6-5)

and f (u) < oo (6 -6)

and f{u) + 8 = f (v) (6.7)

Where by convention, oo + <5 = 5-|-oc = oo for any 82. Again, u-^f$ abbreviates
~\ / ® / du .u—>fjU .

E xam ple 6.1

1. In Figure 4-1 (page 41), u has two transitions, u-^+u andu-^u' (with void{u')).
da(u') = 0 , so da(u) = 1 and u-^da:0u, u-^da- i u'-

2. In Figure 4-4 (Pa9e 44), s and t only have da-reducing actions: s-^da,6 = >
8 = - 1 .

3. In Figure 4-6 (page 47), u-^da,n and v-^da,n for every n > — 1, while

u - ^ d a , oo d a ,O Q (6 -8)

a
and s-f+da 5 f or every d (since da(s) = oo).

(Note, this can be viewed as a generalisation of the norm-stratifying notation of
[StiOlc], i.e. af>n(3 iff a=^norm T o conclude, if P is a set of pairs (/ , 8),

u-^jrv :iff y (f , 8) E F . u - ^ j }sv (6-9)

We are now able to elegantly ask convoluted questions like: “What is the min
imum distance until we can, with an a-labelled transition, go from a situation in

2To avoid confusion, oo is used where u might appear (in for example [Jan03]).

6.2 D D C functions 80

which the a action can (eventually) be disabled to one in which it cannot.”

Au.dist(u,/>da]00) (6.10)

The use of such questions is the subject of this Chapter.

6.2 D D C functions

D efinition 6.2.1 (D D C) The distances to disablings functions are constructed: if
a E E, and D is a (potentially empty) set of pairs (d ,5), where d is an already

constructed D D C function and S E N _ ij00, then

a
dd(a , D) = Xu. min{dist(u, v) | v-f+D}

is a D D C function.3 No restriction is put on the size of the D sets. ■

Where for convenience, N _ i)00 abbreviates N U {—1, oo}. Specifically, da = dd{a , 0),
a

and Au.dist(/»da ^ = dd(a, { (dd(a , 0), oo)}) (Equation 6.10). When D is a singleton
set, {d', J}, we abbreviate dd(a, {cf, £}) to dd(a , d', d). The height of a D D C function
is defined to be the depth of nesting in its construction:

h(dd(a ,D)) — sup{h(d) + 1 1 (d, S) E D } (6-11)

So, h(da) = h(dd(a,0)) = 1, and by construction, h(d) E O. In the manner of
Definition 4.1.5 we restrict the branching of these DD trees: d is a DD^ function
when the cardinalities of the D sets used in its construction are bounded strictly
above by N. We call DD^° the finite and DD**1 the countable D D C functions, and
abbreviate the former to D D .

u = DDc v :iff Vd E D D c .d(u) = d(v) (6.12)

Lem m a 6.2.1 (D D C)

1. For any N there exist processes u ,v with u v but u / v ;

2. On general processes, ~ = = DDc ; and

3. On the sub-tt-branching processes, ~ = = d d n.

3Recall that C represents the class of cardinal numbers, §2.2 (page 22).

6.2 DDC functions 81

d(u) 7 ̂ d(v)
n = min{d(u), d(v)}

u' d(u') = 0 <(=> d{y') ± 0 v'

d! G D(d)
d!{u") ± d'(v")
n' = min {d'{u").d'(vn)}

u
d"' = dd{a', 0)
d'”{u'") > d'"{v"') = 0

Figure 6.1: An illustration of u v ==> u / v

P roof: 1. Let W be a regular cardinal with N' > K (Lemma 2.2.1). We will
construct a pair of processes with uK vK but uK = ddn' vk (implying
uK v k) . Specifically, define uo to be a void process,

void(uo) (6.13)

and define, for each k G O , u k to be the process with the transitions,

V /i < k .u k - ^ u ^ (6 - 1 4)

6.2 DD C functions 82

and finally, let vK be the process with transitions:

V/x < k,.vk—*Uh and vK-^vK (6.15)

It is easy to see that, for all ac, uk vk. To begin with, we will prove that for any

d e D D N',
ac' > ac > h(d) ==> d{uK) = d(ufK) (6.16)

by an induction on h(d). For ac > ac' > 0, da(uK) = da(uK>) = 1. For the inductive
step, let d = dd(a,D). We may assume by the induction hypothesis that,

ac' > ac > h(d) = > D (u k) = D (uk>) (6-17)

Since d(uo) — 0 for all d G D D C, we find that d(uK), d(uK>) E {0 ,1}.

1. If d(uK) = 1 then there exists a // < ac such that uk—>dUh, but then
so d(u'K) > 0 ;

2. If d(uK/) = 1 and d{uK) = 0 then there exists a ac' > // > ac with
Since (by induction hypothesis)

D (uk>) = D{uM) = D (uk) = D {uh{d)) (6.18)

it must be that ^ (D) = {0 }, so we have contradicting d(uK) = 0 .

It can be shown by induction on h(d) that,

ac > h(d) =£> d{uK) = d{vK) (6.19)

This is easily shown by cases, as above. Observe that the sole transition from vK
which cannot be exactly replicated from uK is vK-^vK: the only subtle case d =
dd(a , D) is when,

7T2{D) = {0 } and d(uK) = 0 < d(vK) (6 .20)

(i.e. vk-^dvk). However, we know that D (uK) = D and which
implies d(uK) > 0. To finish the proof, recall that W is a regular cardinal: Theorem

2 .2.1 implies that for all d E DD^ , h(d) < N', i.e.

uw r/J vw and u /̂ vw (6 -21)

2. Let d(u) 7̂ d(v), we wish to prove that u v, and will do so by transfinite
induction on h{d). First, if d = da = dd(a, 0) (for some a G £) , and wlog c =

6.2 DDC functions 83

da(u) < da(v), then there exists a u)G S c s.t. u^u' -A, but if v ^ v ' then r/A ; hence,
u / c Next, let d = dd(a , D) (D 7 ̂ 0) and wlog c = d(u) < d(v). If u ^ v we are
already done, so assume that u ~ v (this assumption will lead us to a contradiction).

a
Again, either u 7̂ u, or we can force play to u \ v' s.t. u'-/+D and v'—>d (and by

assumption, u' ~ v'). If 7 ̂ 'K\(D){v') then by induction hypothesis we are
done; otherwise, move v'-^dv". For any response u'-^u" there must be a {d!, 5) E D

s.t. d'{v") = d'{v') + 5 7 ̂ d'('u') + <5 = d'{u") (see Figure 6.1). Again, since play has
been forced by I to this situation, and h(d!) < h(d), we can invoke the induction

hypothesis to conclude that u 7̂ v.
Conversely, if u v we wish to construct a D D C function d to distinguish u from

a av. This proceeds by transfinite induction on k . If u v then 3a.u—> -<=>• fyA,
i.e. da(u) = 0 da(v) 7 ̂ 0, so simply d = da. Otherwise, if u v , and
wlog F s optimal move is u-^u', for each v-^v' we have, by induction hypothesis,
a function dv> which distinguishes u' from v1. Create a set of pairs D such that
tti(D) = {dv> | v-^+v'} (i.e. the first components of our set of pairs D are the dv>
functions given to us by the induction hypothesis), and ^ (D) be such that u -̂ +d u '
(i.e. the second components - the 6 values - are such that u-^du '] it is worth noting
that there will always exist numbers drawn from N _ i;00 to satisfy this). Then by

a
construction, v-f*Dv' , and if d = dd(a, D), d(v) = 0 < d(u).

3. Observe that in the construction above, if u and v are sub-N-branching,
d e DD*. □

On the finitely-branching processes, ~ = = d d - Immediately we find that = dd is
undecidable on the Petri Nets, but decidable on Pushdown Automata and the Basic
Parallel Processes. By Lemma 4.5.1, and the semidecidability of « on BPP (Lemma
5.5.2), we find too that = ddc is semidecidable on BPP with silent moves.

6 .2 .1 A p p ro x im a n t co lla p se

The connection with approximant collapse (§4.4) is a simple extension of the proof
of Lemma 6 .2.1.2. If d G D D (a finite D D function), and d{u) 7 ̂ d{y) Lemma 6.2.1

gives us u v, but we can say something stronger: u 7^2 v. Wlog let d = dd(a , D),
and ci = d(u) < d(v). Player I can force play in ci steps to a pair of states u',v'
for which 3 (d',5) G D with d(u!) 7 ̂ d(vf) and C2 = minjc?^'), d(v')}. This trick can

be repeated at most h(d) — 1 many times before we arrive at d' = da. Of course,
da(u') / da{v') = > u' rfjm v ': where m = min{da(ti'), da(v')} + 1 .

The reason we cannot conclude u / Cl+C2+...+Cri v (for h(d) = n; i.e. u v) is

that the size of each Ci can (potentially) be chosen by Player I I , and each decision

is (again, potentially) deferred until C 1 + I + C 2 + I + . . . + 1 + 1 steps through the

6.2 DDC functions 84

game. That is, I I has at most h(d) — 1 opportunities to arbitrarily postpone the loss

of G(u, v): this equates to u ^^xhid) v• This result extends to the regular cardinals:

L em m a 6 .2 .2 (DD** and ap p roxim an t co llap se) If ~ = = ddn on a class of

processes, for a regular cardinal N, then ~ = ~ n Xco on that class.

Proof: If two processes u , v are not bisimilar, and bisimilarity is captured by ’
then there exists a d € DD** where d(u) ^ d(v). If N is regular, then h(d) = k < N,

and from this we wish to conclude that u '/'Xxu v - Either d = dd(a, 0) (u v),
or we can find a d' G D(d) where h{d') < k such that I is able to force play to

u',v' and d'{u') ^ d'{v'). We find then a (not necessarily countable) sequence of

DD** functions d , d' , d", . . . with k = h(d) > h(df) > h{d!') > . . . At each step in the

sequence I I has an opportunity to arbitrarily postpone loss of the game; its length

is bounded strictly above by N, and so u '/'tt.xu v • D

6 .2 .2 T h e fin ite a p p ro x im a n ts

On general processes with finite alphabets the full power of D D C is required to
capture bisimilarity. We will find here that the distinguishing strength of trace
equivalence is met already by the finite DD functions, and do so through a more
general result, a sequel to §4.3.5.

L em m a 6 .2 .3 (D D and ~ n) For any processes u, v over a finite alphabet and any
n € N we can find a finite sequence of D D functions D n, each of height bounded by
n, such that,

D n{u) = D n(v) = > u ~ n v (6.22)

P roof: We will build two finite trees, U, V , essentially the unfolding of u and v
modulo ~ n. The trees are rooted at u and v respectively; call this level n. At level 1,
we finish. For a node u' at level m + 1, partition the transitions of u! into equivalence

classes modulo ~ m+i. By Lemma 4.3.5 there are finitely many classes; choose one

representative u-^u" of each to be the children of u'.
D\ = (da)a6£. For D m+i, we turn to the m th levels of our two trees. For each

u'-^d u", where tti(D) — D m, add dd (a ,D) to D m. That is,

D m+i = D m U (6.23)

(dd(a,D)|7ri(D) = D m, (6.24)

u an m + 1th level node of U or F (6.25)

u an mth level node and u -̂ +d u) (6.26)

6.3 Weak distances 85

Finally, let D n+i(u) = D n+i(u), and wlog I : u-^u' . There is by its construction a

move recorded in U with u' ~ n u let D be such that u -^du " and tti(D) —
D n. Since dd(a, D)(v) = dd(a, D)(u) > 0 (by assumption), 3v'.v—>dv 'i D n(u) =

D n{v) so D n(u") = D n(v') - i.e. u" ~ n v' □

C orollary 6.2.1 (D D and For processes u ,v over a finite alphabet,

u = d d v = > u v (6.27)

To return to the opening of this section, recall that C = L (Example 4.4). We

find, = l D D =dd-
We can express « with the D D C functions by using the T operator (Definition

4.5.3). The difficulty with this approach is that while u,v might branch finitely,
and be expressed by the finite D D functions, T(u) ,T (v) could branch infinitely,
and require the infinite DD^1 functions to capture bisimilarity on. The problem
of capturing bisimilarity on infinitely branching systems using finitary disablings
functions is central to this thesis.

6.3 Weak distances

The weak analogues of bisimilarity and bisimulation approximants (§4.5) are straight
forward: swap strong arrows —> for weak, =>. This natural approach to distance4

yields,
d ist^ (it, v) = d ef min{|u;| | u ^ v }

The natural weak distance to disabling functions, D D ^n, become, in turn,

a
ddnw(a, D) = d e f Ait. m in{distnu,(it, u) | v/^>D} (6.28)

for a E S U {e}, and D a (possibly empty) set of pairs (d,5), for d an already

constructed natural weak distance to disabling function, and 5 E N _ i)00.

Lem m a 6.3.1 For d E DD^,n, u ^ v = > d(v) > d(u).

In the absence of r actions these equal the D D C functions; with them, we meet
an insuperable problem: even the trivial processes it, v of Figure 6.2 are beyond its

power to differentiate.
(An induction on h(d). If d = ddnw(b, 0), d(u) = d(v) = 0. For d = ddnw(b, D)

and b ^ e, d(v) = 0 = d(u) (Lemma 6.3.1). Finally, let d — ddnw(e, D) and d(v) = oo.

4First put into print by Hiittel in [Hiit9lb].

6.3 Weak distances 86

Figure 6.2: u = nr)c v

tti(D) (u) = iri(D)(v) by hypothesis, and 7T2{D)(v) = {0} (since v^ d v). But then,
u^£)V, hence d(u) = oo.)

6 .3 .1 R efin in g w eak d is ta n ce

No distinction is made by distnu, between (u, u) and (u, v) when u ^ v , which suggests
we refine our notion of weak distance. A simple if ugly solution follows.

D efin itio n 6 .3 .1 (d istT)

, . . . 1 0 <— u = v
aistryu, v) = <

I distr(u,v) + 1 *— otherwise

D efin itio n 6 .3 .2 (D D ^) The weak distances to disablings functions are constructed:
if a E E U {e}, and D is a (potentially empty) set of pairs (d, d), where d is an already

constructed DD^ function and 5 E N _2, - i)0o> then

a
ddT(a , D) = Xu. min{ dzsi^u, v) | v ^ D}

is a DD^ function. ■

Again, dar =def ddT(a, 0), and ddT(a,d,S) abbreviates ddT(a, {(d, d)}).
Considering Figure 6.2 (page 86), dar(u) = 1 > daT(v). However, transitions of

the form u^>d,-2V are now possible (for example, if the r arrow is removed from the

above, u=>daT, - 2v)- A small lemma helps to deal with this:

Lem m a 6.3.2 (ugly lem m a) 7 /0 < distr{u,un) < d is ^ u , u") then there exists an
a E E U {e} s.t. u ^ u ' and for all v ^ v ' , 0 < dzstr(u/, u") < d i s t r^ ' , v") .

Proof: Say 1 = distr (u, u") < distr (u, i/') = 2: u-^u", but v-^v" =$■ a / e . □
The results for D D C, Lemma 6.2.1, follow through without too much complication

to DD^:

Lem m a 6.3.3 (D D ^) On processes with a silent r action,

6.3 Weak distances 87

1. For any M there exist processes u, v with u = d Dn v but u 76 v;

2. On general processes, « = = DDc; and

3. On the sub-^o-branching processes, ~ = ^ d d 1*1 ‘ su^~^-branching pro
cesses, for M a regular cardinal greater than Mo, ~ — = d d n*

Proof:

1. The processes uK, v K constructed in the proof of 6 .2.1.1 serves here too.

2. Let d(u) 7 ̂ d(v), with d G DD^. Prove by induction on h(d) that u 76 v. For

d = dd(a,$), d{u) 7 ̂ d(v) gives I a winning strategy on Gfj(u,v) (Definition
4.5.2). Wlog let c = d(u) < d{v)] by Lemma 6.3.2 I can force play (in c — 1
steps if c > 1, c steps otherwise) to processes u',v' with 0 = d{u') < d{v')\

a
then, but u ^ , hence u f tc+i v -

Let d = d d (a ,D), and assume that 3d1 G iri(D).d'(u) 7 ̂ d'(v) =>■ u 76 v.
A winning strategy for I: wlog iri(D)(u) = 7Ti (D) (v), and c = d(u) < d{v).
Apply Lemma 6.3.2 to force play to u', v' with 0 = d{u') < d(v'). If 7Ti (D) (i/) 7 ̂
7Ti (D) (v '), we are done. Otherwise, make v ' ^ d v " , and by definition for any
response u'^u" there exists a {d', 6) G D with d'{u') + 5 ^ d'{u"), i.e. d'{v") 7 ̂
d"(u"), and by hypothesis u" 76 v".

Conversely, if u 76* v we wish to construct a DD^ function which distinguishes
u from v. This proceeds in an identical manner to the proof of Lemma 6 .2.1.2.

3. The construction above requires a (d , <5) pair for each process reachable in a
single ^ . For finitely branching processes, this reachability set is countable.
If the processes u , v are sub-^-branching for a regular cardinal M > Mo, then:
from u (respectively, v) we can reach k,\ < M processes in a single r step,

x K2 < M in the next step, and so on; the regularity of M ensures that the
resultant set cannot have M or more elements, hence in the construction above

the DD^ functions suffice.

□
We abbreviate DD^° to D D r .

E xam ple 6 .2 (D D r and processes w ith finite alphabets) It should be clear that
Lemma 4-3.5 o /§^ .5 .5 applies equally to the finite weak approximants:

6.4 Extending DDr 88

and moreover that the construction of §6.2.2 (suitably modified) enables us to con
clude that on general processes with finite alphabets,

u = d d t v = > U^uj v (6.30)

6.4 Extending D D r

o
u

T

S 0 a,r a, t.
r

V

Figure 6.3: u ^ v, but u = d d t v

Processes u , v of Figure 6.3 are strong finitely branching but weak infinitely
branching, and while not weakly bisimilar, they are D D r equivalent. We will go
through the proof of this with some care (in particular point 2(c)ii), since it will
reappear, with complications, for Figure 7.3.

1. u v : I I has a winning strategy for G^(u,v), for any n; I has a winning
strategy on G[j{u,v) (repeatedly move u^>u).

2. Vd € D D r , d(u) = d(v), by induction on h(d). Clearly, dd(a, 0)(u) = dd(a,0)(v);
if d = dd(a,D), with 7Ti (D) (u) = 7Ti (D)(v), then:

(a) d{u),d(v) e {0 ,1 , oo};

(b) if d = dd(e, 0), and
e e

i. d{u) = 0, so u ^ D, implying that ^ (D) ^ {0} and so v ^ Dv' for

v' 6 {u, so, s i , . . . } , which is to say: d{v) = 0.

ii. d{u) = 1, so u=k>Sj=f>D. Either u=^du (s o tt2 (D) = {0} and v ^ d v) ,
e e e €or u ^ p S j , but then v=>DSj, and v=>Si^D: d(y) = 1.

iii. d(u) = oo, but then d(so) = oo, so so4>l>so, meaning ̂ (D) = {0}
and v^ d v : d(v) = oo.

(c) if d — dd(a , 0), and
a a

i. d{u) = 0, so \ f i .u ^ DSi, in which case \ f i . v ^ DSi and d(v) = 0.

6.4 Extending DDr 89

u dii. d{u) — 1, so d(u)=>D. Since so7^, d(v) < 0. If d(u)^DSjj then
v=>DSj and we are done. Otherwise, u ^ f u , so tt2 {D) = {0}. We

wish to now show that, for all d' G D D r we can find an n such that,

for every i > n d'(v) — d'{si) (6.31)

in which case, there would exist an n s.t. u ^ ^ s n, and we would have

d(v) = 1. A second induction on D D r height. If d' = dd(a, D f), let
n(d!) — m ax{n(d//) \ d" G D'} + 1; it is straightforward (in light of

what has gone) to verify that V« > n(d').d'(v) = d'(si).
a a

iii. if d(u) = 00 then so=^r>, but sot^.

Lemma 6 .3.3.3 implies the existence of a countable disabling function d G D D ^1

to distinguish u from v. We would rather keep things finite - must, if computability

is to be maintained - and find that a small extension to the D D r functions suffices:

aw
d%T(u) = m in{distr (u, v) \ (6.32)

where, for ordinals k G O,

a« | u=^fu'=>f <r- k = a + 1 _ ____
u ^ F riff { a. * (6-33)

[V/i < k .u=>f +— otherwise

q U an I q U) ■

I.e. iff Vn.u=> (moreover, with reference to our notation, u=> iff u=> and

$u' .u=^u'=>). Then, u=^d%,oui but v=>d%,5v ' = > 6 = 0 0 .

D efin itio n 6 .4 .1 (DD^.) The -extended weak distances to disablings functions
are constructed: if a G £ U {e}? and D is a finite (potentially empty) set of pairs

(d,S), where d is d%T or an already constructed DD^. function, and 6 G N _2,-i,ooj
then

a
ddT(a, D) = Xu. min{distr(u, v) | v j^ D}

is a DD^. function. H

L em m a 6 .4 .1 (DD^.)

1. u « v =4> u = Dd't v; and

2. if « = = DD/̂ on a class of processes, « = on that class.

nu aw
P roof: 1. If daT(u) 7 ̂ d^r (v) I can force play to u',v' with u'=> <£=> v '7^, i.e.
3n.u' 96n v'. The proof proceeds as per that of Lemma 6 .3.3.2.

6.5 D D ^ ° 90

2. Let wlog ci = d(u) < d(v). If d = d%T then I has a winning strategy on

G^+ci iu i v) : force play (in ci moves) to u', v' s.t. d(u') = 0 < d(v'), then there exists
n a n

an n s.t. v'=> but u . Otherwise, proceed as to the proof of Lemma 6.2.2. □

C orollary 6 .4 .1 (DD^ and B P A) On BPA processes, DD^ (see Equation

5.42).

6.5 T>T>ct °

Reaching further, we ask how many times a process is capable of performing a =>d
transition:

a *
dd*{a, D){u) =def min{distr (u, v) | v ^ D} (6.34)

E xam p le 6 .3 (ddf)

1. I fd = dd(f(a, D), then d(u) > 0 implies that, for every n, there exists a sequence

U ^ d U \ ^ d U2^D • • • =^D^n-

S. d " = d d ? (a ,0)

D efin itio n 6 .5 .1 (D D ^,C>) The O-extended weak distances to disablings functions
are constructed: if a G E U {e}; and D is a (potentially empty) set of pairs (d ,5),
where d is an already constructed DD^,C> function, £ £ N _2,-i,oo> and 0 > k £ O,
then

dd*(a, D)

is a DD® function.5 H

The DD^,K functions put an upper limit of k on the ordinal in the functions’ con
struction; the DD^,K functions restrict both that and the size of the D-sets. In that,
D D r = DD^0,1. Again, DD£ abbreviates DD^oA

E xam p le 6 .4 The processes uK, v K given in the proof of Lemma 6.2.1.1 (page 80)

are distinguished by a DDI^ function of height 2, ddT(a, ddf{a, 0), 0). That is,

v K= ĥdd l̂ (a,<l>),0v K (6.35)

whereas, 5 — 2.

5We require k > 0 to allow D D T = DD*. Trivially, if d = dd^.(a, D) then d(u) = oo.

It should be clear that the DD^,C> functions respect bisimilarity,

u « v ==>■ u = DDc,o v (6.36)

(- non-DD^,c>-equivalence presents I with a winning strategy). We make one further
extension:

dd™(a, D) (u) =def min{dist(u, u') \ u '^™} (6.37)

i.e. dd^°(u) > 0 when, after every move, it is always possible to make another

one. Easily, ddT{a, D){u) — oo =>■ dd ^ { a ,D) = oo (and the contraimplication
does not hold). On general processes, dd^(u) > 0 iff Vk £ 0.dd*(a, D)(u) > 0, and

on sub-N-branching processes (for a regular N), dd^P(a, D)(u) = dd^(a, D){u) (see
the proof of Lemma 6.3.3.3, page 86). In that case, we say that the DD^,C> hierarchy

has collapsed by level N.

E xam ple 6 .5 (D D ^,C> on w eakly-finitely branching processes) On processes
u whose branching modulo =!► is finite (the silently lossy BPP of §5.2, say),

ddt){a, D) = d d f { a , D) (6.38)

Adding dd*{a,D) functions as tests, for any k > uj, cannot increase our ability to
distinguish non-weakly bisimilar processes.

These functions’ connection to approximant collapse is subtle; that « = = ddn,o
(for any N) on a class of processes enables us to conclude nothing about its level of
collapse. If « = = ddn,« (for a regular N) Player I I has fewer than N opportunities
to postpone loss of the game for k, + u moves; we conclude,

'(k+u)^ (6.39)

Chapter 7

D D r on B P P

Weak bisimilarity is known to be decidable on the totally normed and purely-generated
normed subclasses of BPP. We know of no non-trivial decidability results for un-
normed BPP processes; no general method which could, for example, be applied to

the processes P, Q of Figure 7.1.

^ P ^ A , P ^ Q
j r t- r Ql+QQQJL>e

e ^~a Q < a QQ < a QQ Q ^ ' ‘ ‘ A-^A

Figure 7.1: P Q

But consider, P can move to an unnormed state A, while any move from Q must
reach a state Qn of finite norm. In terms of the basic D D r function dar = ddr (a, 0),

P=^daT,OC>A and Q^da T ,00 (7-1)

{ Q ^ d ar,sQn+1 = > 5 = n + 2, Q4>daTi_ 2£); the D D r function d = dd(e,dar, oo)
distinguishes them:

d(P) = 1 > d(Q) = 0 (7.2)

7.1 Difficulties

The D D functions behave particularly well on BPP processes, in stark contrast to
D D r . For example, for any d £ D D ,

Va, @.d(a/3) = d(a) + d{0) (7.3)

(By Lemma 5.3.4, for each d £ DD we can find a set of places Q s.t. d =

92

7.2 Com putability of the DDT functions 93

n o r m (Q). Of course, n o r m (Q)(a(3) = NORM(Q)(a) + n o r m (Q) (/?).) This is easily
seen to fail for D D r , Figure 7.2.

X X — X A A A d = ddT(e,da,2)

Figure 7.2: d (X X) = 1 > d(X) + d(X) = 0

then, d = ddT(e, {(c?a, 2)}), and d (X X) = 1 > d(X) + d(X) = 0. The problem of
finding nice algebraic properties for D D r functions has proven very challenging.

E x a m p le 7.1 (p rop erties o f daT) For all processes a, dtT{a) = oo.

(dar (a) + dar {(3) if dQr (a) = 0 and dar (/3) = 0
daT{oi(S) = < or daT(ot) > 1 and daT((3) > 1 (7.4)

 ̂ dar(ct) 4- daT({3) — 1 otherwise

7.2 Com putability of the D D r functions

In §5.5 we defined the Reachr relation, Equation 5.25 (page 72), used to prove the
semilinearity of ^ (and from that §5.6, the decidability of the finite approximants,
~ n) • We will proceed to use it to define Presburger formula for distT, and develop
from that formulas for the (finite) D D r functions, in order to prove decidability.

Denote the Presburger equivalent of Reachr by ■0. That is, for all BPP processes
q , /3,

ip[a,(f,/3\ Reachr (a, a, (3) (7.5)

Define,
a / — 3 n = 0 A a = P o r
A (a ,n ,/3)= . _ (7.6)

da. 2_, cr = n — 1 A ip [a, a , a)

A !(cf, n, j3) = A (a , n, /5)A < n.A(a , ri, (3) (7-7)

(Where n — m = 0 i f n — m < 0 , and n — m otherwise.) It is straightforward to
verify that:

L em m a 7 .2 .1 (A !)

1. distT(a, (3) — n iff A ![o ,n , (3\; and

7.2 Com putability o f the DDr functions 94

2. distr (oi,f3) = oo iff jBn.A'[a,n, j3\

If 0 is a Presburger Formula which expresses a set of processes, we define the

distance until it is reached,

For V = { X , , . . . , X k], let { X ni , . . . , X nt} = { X S V | X 4 -} , and define <j>a{g) =

and we find,

L em m a 7 .2 .2 (D a)

1. dd(a, 0)(a) = n iff D a[a,n\; and

2. dd{a,$)(ot) — oo iff jBn.Da[a,n]

Consider some finite D D function dd(a ,D) (that is, dd(a,D) G DD^°), and
imagine that for each (di, Si) G D we have a Presburger formula Di with, di(a) = n
iff Di[a,n] and di (a) = oo iff jBn.Di[a,n]. Define,

A ^ (a ,n) = 30.<f>0) A A (a , n, j3)

A^(a, n) = A^(a, n) A jBn' < n. A^(o, n')

(7.8)

(7.9)

a
VL0 < i < l.xni = 0 (i.e. (f>a(oi) oe£>), then

D a(x ,n) =def A^a(f ,n) (7.10)

D°° = {d | (d, 00) S D }

D n = D - D ° °

(7.11)

(7.12)

a
We wish to construct a Presburger formula (f> s.t. <p[a, n] iff oc^>D\

(7.13)
(di,Si)€D
"iy.tjiix, a, y) (7.14)

(7.15)V 3 n . D i (y , n) V
diED00

f l n . D i (x , n) A D i (y , n + S i)
(.di,Si)EDn

(7.16)

a
Where a ^ D if and only if:

1. There exists a (d, S) G D s.t. d(a) = 00 (Line 7.13); or

2. For all /3.a=^j3 (Line 7.14)

7.2 Com putability of the D Dr functions 95

(a) (d, oo) £ D yet d(/3) = n < oo (Line 7.15); or

(b) (d, S) £ D yet d(a) + 5 ^ d(/3) (Line 7.16)

Specifically, 4>a$ { x) = V .̂-it/>(:r, a, y). We have,

(7.17)

Lem m a 7.2.3 (D D aj))

1. dd(a,D)(ot) = n iff D D ajE)[d,n]; and

2. dd(a, D) (a) = oo iff f l n . D D a ^ [6 i , n \

And as a corollary,

T heorem 7.2.1 (D D r functions on B P P) The D D r functions are computable
on BP P processes.

Proof: Theorem 2.4.2. To compute, say, d = dd(a, D) on a , construct its Pres-
burger equivalent D D a,D, then if j3n.DDa>£)[d,n\ is false, proceed with

7 .2 .1 F in ite a p p ro x im a b ility

If a 7̂ /3, Lemma 6.2.3 (Example 6.2) and Theorem 7.2.1 imply that we can find

a function d £ D D r such that d(a) ^ d(/3). In this way we add a third method for
semideciding on BPP processes - and deciding « on the finitely approximable

BPP - to the approximants of Theorem 5.6.1, and the strong bisimulation games of

Corollary 5.6.1.

E xam ple 7.2 (trace and failures equivalence)
Weak trace and weak failures non-equivalences (Equation f .16) are semidecidable

on BP P processes through the D D r functions. That is, if a (3 or a (3 then
3d £ D D T • d (a) ^ d (P) .

D D a}D[a, 0] , D D a^ [a , 1] , . . .

until we find a formula that is satisfied.
To compute =d, for some d = dd(a , D) £ wDD,

□

a = d (3 iff \ /n.DDajD[ot,n\ -<=> D D a,D[j3,n] (7.18)

7.3 Insufficiency 96

7 .2 .2 U nary , n o n -n o rm -zero B P P

In [Str99], Strfbrna proves that on BPPs with a single action name and no variables

of zero norm, « = ~ w.2. We find:

Lem m a 7 .2 .4 (unary, non-zero-norm) On BPP processes with a single action

name and no transitions of the form X ^ e , ss = = d d t (and so & is decidable).

Proof: Let a (3, an induction on k. If a 961 (3 then daT(a) = 0 dar((3) ^ 0.
For the inductive step, let I : and observe first that:

normT(o;) = 00 = normT(/?) = > a « (3 (7-19)

If either normT(a) = 00 or normr (a) — 00 then dar distinguishes them. If not,
observe second that if daT(a') < 00,

B = {/3'\ and daT{(3') = dar(a')} (7.20)

is a finite set (false for the full unary BPP). By hypothesis for each (3' £ B there
exists a d p £ D D r with dp {(3') ^ d p {a'). Our D D r function is then:

d = ddT{a,D) ni (D) = {dar) U (d p) p €B a ^ Da' (7.21)

That is, D is a set of D D r x N _ 2, - i)00 pairs, whose D D r parts equal {daT} U { d p | (3' £
B } : and whose S parts are such that is true. □

Whether having a single-letter alphabet is sufficient in itself to give « = =dDt
is listed as Open Problem 1.3 in Chapter 8 . I have been unable to find a counter
example.

7.3 Insufficiency

Figure 6.3 (§6.4, page 88) gives a pair of processes u, v which are related by D D r but
are not weakly bisimilar. It should be clear that while we can find a BPP process

which is equivalent to u,

X ^ X A , e A ^ e X « u (7.22)

no [3 weakly bisimilar to v exists, as the ability to perform an arbitrary sequence of

a actions implies that a process is able to make infinitely many (Lemma 7.5.1). And

yet, an analogue does exist, Figure 7.3.

7.3 Insufficiency 97

X ^ X A X-^X X ^ C
i 0..TA ^ e

Y ^ Y A Y ^ C

C ^ C C-^e

P \ r r < y \ r
X < a ,T X A < aT X A A f y

c ^ r 7 i ' ^ cA A ^ Fc , e

Y ~ y r Y A ~ y r Y A A T y r

C * y r C A * y r C A A X F

AA a,r ■‘x a,r AA

Figure 7.3: X = d d t Y but X Y

The proof that X = d d t Y proceeds in a similar (though more tedious) manner
to that of §6.4 (page 88), so we will not cover it in depth here. The only subtle
point to check is the move which guarantees non-weak bisimilarity: X can make an
^-neutral transition on a c action, X ^ X , while if Y ^ j3 , Y ft (3. But again, for
any d € D D T we can find an n such that for all i > n, d (Y) = d(CAl), so on any
candidate d = dd(c,D), with X ^ d X , 3 i . Y ^ i) C A l .

L em m a 7 .3 .1 (D D r and norm ed p rocesses) On normed BPP, « C = d d x -

It is worth noting that X and Y are normed but are not purely generated (§5.4.2).

G (X) = {A} = G{Y), yet X , F -^ norm,oC (i.e. both can make non-generating, norm-
neutral moves). Open Problem 1 asks whether there exists a normed and purely

generated pair of processes whose inequivalence cannot be told by D D r .
Casting ones mind back to the van Glabbeek hierarchy Figure 1.2, every equiv

alence coarser than bisimilarity is undecidable. Analogously, = d d t is coarser than
weak bisimilarity, and finer than weak trace equivalence (which is certainly unde
cidable); it would be extraordinary if the finite weak distances-to-disablings were

decidable on general BPP.

C on jectu re 7 .3 .1 (D D r on B P P) =D D r is undecidable on BPP processes.

7.4 d p ; 98

7.4 d d ;

The DD^. functions (Definition 6.5.1, page 90) extend D D r with d%T functions. They

are strong enough to distinguish X, Y of Figure 7.3,

d = dd(c , , 0) d(X) = 1 > d(Y) = 0 (7.23)

and is easily seen to preserve computability. For this, it suffices to prove that we can

effectively construct a formula Sla of Presburger Arithmetic such that,

f2a[a] <=> a=> (7.24)

Let our variables be V = { X \ , . . . , X&}. Define,

A (X) = { Y \ X ^ a Y } (7.25)

A n+l(X) = { Y \ Z e An(X) , Z ^ a Y } (7.26)

Then, A k(X) = A k+1(X), X G A k{X) = > X ^ , and

X ^ iff a y G A k(X) . Y G A k(Y) (7.27)

Let A“ = { X \ 3 Y G A k(X) .Y G A k(Y) } = { X Xl, X X2, . . . , X Xl}. iff 3X G
A UJ.a (X) > 0, hence define

l
^ (a) — def V a(xi) > 0 (7.28)

t=l

L em m a 7 .4 .1 (DD^ on B P P) The DD^ functions are computable on B P P pro
cesses.

The DD^ functions are able to express weak bisimilarity on every example BPP
process-pair I have managed to find1 yet a proof that that they capture the problem
on full BPP has remained elusive, and is probably illusive:

C on jectu re 7 .4 .1 (« C e d d /) There exist BPP processes a, (3 with a ft (3 yet

a =dd't ft-

7.5 DDJ:, and its collapse
n u) n o o

L em m a 7 .5 .1 (d£°) On B P P processes, <=> a=>.

1 Conversely, it is obvious that ~ C = d d > on BPA processes - Lemma 6.2.2 would imply that
~ = ~u,2 , but this is contradicted by the BPA processes of Equation 5.42.

Proof: A corollary of the construction used in Equation 7.24. □
That is, we cannot strengthen =dd^. by adding any function dd*(a, 0) (§6.5).

Whether the same holds for the dd*(a, D) £ D D ^ functions depends on the truth of
Conjecture 7.4.1. The final chapter constitutes a research programme to answer the

question of how complex our distances-to-disablings functions need be to pin weak
bisimilarity; this chapter closes with a conjecture.

C onjecture 7.5.1 (D D “ on B P P)

1 . Each D D “ function is computable;

2 . and ~ = = d d “ •

The result, were part one of this conjecture proven, would be to take the known
level of approximant collapse from u>u to a;2; if in addition the second part is true,
then « is decidable on the Basic Parallel Processes.

Chapter 8

Conclusions, and a research
programme

Bisimilarity - behavioural equivalence - is a well-understood problem on the Ba
sic Parallel Processes, with a number of decidability proofs using several different
techniques. Weak bisimilarity, in contrast, remains an open problem. While semide
cidability was shown over a decade ago, the problem of semideciding inequivalence
has resisted every attempt made at it, and is known to be true only for heavily
restricted subclasses. The central difficulty is in moving from a finitely branching
system (in which each step yields only a finite number of possibilities) to one that
branches infinitely; semideciding inequivalence switches from being a trivial problem
to a formidable one. Nevertheless, it is generally believed that weak bisimilarity is
decidable, and it is its closeness to the edge of undecidability which makes it an
interesting question to tackle.

This thesis makes two contributions to the theory of Basic Parallel Processes,
both with a view to the semidecidability of inequivalence. The first concerns weak

bisimulation approximant collapse, and the second is a development of Jancar’s

distances-to-disablings functions.
If two processes are not weakly bisimilar we can attach an ordinal number to

the number of moves it takes to manifest this inequivalence. If our processes branch

finitely this will always be a finite number; Basic Parallel Processes (with silent
moves) branch infinitely, and it is not difficult (given any natural number n) to find

processes whose inequivalence is not manifested until u + n. A long-standing conjec
ture holds that it is impossible to find Basic Parallel Processes whose inequivalence

is not seen until w x 2 steps, but before this thesis the only work on the problem has

achieved the (rather trivial) result that no such processes exist which cannot be told
by . Our work takes this number down to uju - the first “sensible” bound on the

100

8.1 A programme 101

problem. We achieve this using a novel constructive version of Dickson’s Lemma.
The major work of this thesis is a development of the distances-to-disablings

functions, invented by Petr Jancar in order to express strong bisimilarity on the

Basic Parallel Processes, into a tool applicable to weak bisimilarity. In this we

have met with partial but encouraging success. The basic distances-to-disablings

functions are computable on Basic Parallel Processes, and are able to distinguish

inequivalent processes which the current methods cannot; but unfortunately they
do not fully express weak bisimilarity - if two processes are not weakly bisimilar,
we cannot guarantee that a distance-to-disablings function exists which will tell the

difference. From there, we created a natural extension of the distances-to-disablings,
one that retains computability, enabling them to handle any example I have yet been

able to find. However, I have been unable to prove that this is enough to capture
weak bisimilarity, and indeed now believe that a stronger (potentially uncomputable)
extension is required.

We close the thesis with a research programme: four open problems to complete
the theory of weak distances-to-disablings on the Basic Parallel Processes, and, we
hope, finally settle weak bisimilarity there.

8.1 A programme

The D D r - and DD^. - functions are computable, and will distinguish processes for
which the currently developed methods are inapplicable (Figure 7.1, page 92); but
they do not express weak bisimilarity on full BPP (Figure 7.3, page 97), and we have
not found a non-trivial restriction on BPP processes which yields ~ = = d d t -

O pen problem 1 (D D r)

1. Find a necessary and sufficient restriction on B PP processes to give « = = d d t ■

2. Every example found thus far of non-weakly bisimilar, D D T-equivalent pro
cesses happens to not be purely generated. Is normed, purely generated a

sufficient condition?

3. Being unary and having no variables of zero norm is sufficient, but is having

a single observable action also sufficient?

4- Is = d d t undecidable on full BPP?

The extended functions, DD^, retain computability, and we have not found an ex
ample of non-weakly bisimilar BPP processes which are nevertheless DD^-equivalent;

a proof that no such example exists is sufficient to give the decidability of « on BPP.
However, we think that a counterexample does exist:

O p en p rob lem 2 (DD^.) Find B P P processes a , (3 for which a ft (3 but a =dd't P-

Moving to the extended DD!^ functions, it is easily seen that d“T = but
rather harder to prove that the hierarchy collapses at uj for more complex DD!^

functions:

O pen p rob lem 3 (D D “ x2) Can we find a ddT(a ,D) G D D ^ and a B PP a such

that dd“ (a ,D)(a) ft dd%+1 (a, D)(a)?

Chapter 7 ends by conjecturing (7.5.1) that the DD^ functions are strong enough
to express « on full BPP processes. A corollary is to take the upper bound on
approximant collapse from (§5.7) to oo2. If, like DD^, each DD^ function is
computable, then ft becomes semidecidable, and (in conjunction with Lemma 5.5.2)
the long-open problem of the decidability of « on Basic Parallel Processes will be
closed, positively.

O p en p rob lem 4 (D D ^)

1. Does equal « on B PP processes; and

2. Are the DD^ functions computable?

Bibliography

[ABGS91]

[Ace03]

[AFV01]

[Bas96]

[BBK87]

[BBK93]

[BCMS01]

C Alvarez, J. L. Balcazar, J. Gabarro, and M. Santha. Paral
lel complexity in the design and analysis of concurrent systems.
In PARLE: Parallel Architectures and Languages Europe. LNCS,
Springer-Verlag, 1991.

L. Aceto. Some of my favourite results in classic process algebra.
Bulletin of the EATCS , 81:90-108, 2003.

L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational
semantics. In Jan A. Bergstra, Alban Ponse, and Scott A. Smolka,
editors, Handbook of Process Algebra, Chapter 3, pages 197-292. El
sevier Science, Dordrecht, The Netherlands, 2001.

T. Basten. Branching Bisimilarity is an Equivalence indeed! Infor
mation Processing Letters, 58(3):141-147, May 1996.

J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Decidability of
bisimulation equivalence for processes generating context-free lan
guages. In A. J. Nijman J. W. de Bakker and P. C. Treleaven,
editors, Proceedings of the Conference on Parallel Architectures and

Languages Europe (PARLE). Volume II: Parallel Languages, volume
259 of LNCS , pages 94-111, Eindhoven, The Netherlands, June 1987.
Springer-Verlag.

J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Decidability of

bisimulation equivalence for processes generating context-free lan
guages. Journal of the ACM , 40(3):653—682, July 1993.

O. Burkart, D. Caucal, F. Moller, and B. Steffen. Handbook of

Process Algebra, chapter 9, pages 545-623. Prentice-Hall, North-
Holland, 2001. Ch: Verification on Infinite Structures.

103

BIBLIOGRAPH Y 104

[BE97]

[BE99]

[BG06]

[BHR84]

[BK85]

[Bla95]

[BLM89]

[BM99]

[Boo87]

[Bos96]

[BPS01]

[BS90]

O. Burkart and J. Esparza. More infinite results. Bulletin of the

European Association for Theoretical Computer Science, 62:138-159,
June 1997. Columns: Concurrency.

J. Barwise and J. Etchemendy. Language, Proof, and Logic. CSLI

Publications, Stanford, California, 1999.

A. Blass and Y. Gurevich. Program termination, and well partial
orderings. Technical Report MSR-TR-2006-27, Microsoft Research

(MSR), March 2006.

S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of
communicating sequential processes. Journal of the ACM , 31(3):560-

599, July 1984.

J. A. Bergstra and J. W. Klop. Algebra of communicating processes
with abstraction. Theoretical Computer Science, 37:77-121, 1985.

J. Blanco. Normed BPP and BPA. In Proceedings of the A C P ’94,
pages 242-251. Springer-Verlag, 1995.

K. Buning, T. Lettmann, and E. Mayr. Projections of vector addi
tion system reachability sets are semilinear. Theoretical Computer
Science, 64, 1989.

A. Bouajjani and R. Mayr. Model checking lossy vector addition
systems. In STACS: Annual Symposium on Theoretical Aspects of
Computer Science, volume 1563, page 323, 1999.

R. V. Book. Thue systems as rewriting systems. J. Symb. Comput.,
3(1-2) :39-68, 1987.

D. Bosscher. Decidability of bisimulation equivalence of context-free

processes extends to processes defined over BPA<5. Technical report,
Centrum voor Wiskunde en Informatica, 1996.

J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of

Process Algebra. North-Holland, 2001.

J. Bradfield and C. Stirling. Verifying temporal properties of pro
cesses. In J. C. M. Baeten and J. W. Klop, editors, CONCUR ’90:
Theories of Concurrency: Unification and Extension, volume 458 of

Lecture Notes in Computer Science, pages 115-125, Amsterdam, The
Netherlands, 27-30August 1990. Springer-Verlag.

BIBLIOGRAPH Y 105

[But72]

[BvG87]

[Cau90]

[Cau92]

[CES86]

[CHM93]

[Cho56]

[Cho57]

[Chr93]

[CHS92]

[CHS95]

P. Butzbach. Une famille de congruences de thue pour lesquelles le

probleme de l’equivalence est decidable. application a l ’equivalence
des grammaires separees. In ICALP , pages 3-12, 1972.

J. C. M. Baeten and R. J. van Glabbeek. Another look at abstraction

in process algebra. In ICALP: Annual International Colloquium on
Automata, Languages and Programming, 1987.

D. Caucal. Graphes canoniques de graphes algebriques. Theoretical
Informatics and Applications, 24(4):339-352, 1990.

D. Caucal. On the regular structure of prefix rewriting. Theoretical
Computer Science, 106(1):61—86, November 1992.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verifica
tion of finite-state concurrent systems using temporal logic specifica
tions. ACM Transactions on Programming Languages and System s,
8(2):244-265, April 1986.

S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation equivalence
is decidable for basic parallel processes. In CONCUR , pages 143-157,
1993.

N. Chomsky. Three models for the description of language. IRE
Transactions on Information Theory, 2(3):113-124, 1956.

N. Chomsky. Syntactic structures. The Hague: Mouton, 1957.

S. Christensen. Decidability and Decomposition in Process Algebras.
PhD thesis, The University of Edinburgh, 1993. Also available as

The University of Edinburgh, LFCS report ECS-LFCS-93-278.

S. Christensen, H. Hiittel, and C. Stirling. Bisimulation equivalence

is decidable for all context-free processes. In W. R. Cleaveland,
editor, CONCUR ’92: Third International Conference on Concur
rency Theory, volume 630 of Lecture Notes in Computer Science,
pages 138-147, Stony Brook, New York, 24-27August 1992. Springer-
Verlag.

S. Christensen, H. Hiittel, and C. Stirling. Bisimulation equivalence

is decidable for all context-free processes. Information and Compu
tation , 121 (2): 143—148, September 1995.

BIBLIOGRAPH Y 106

[CHT95]

[CKK96]

[CM90]

[Coh70]

[CRM74]

[dBZ82a]

[dBZ82b]

[DGHP99]

[Dicl3]

[DJ90]

[Emm88]

[EN94]

D. Caucal, T. Huynh, and L. Tian. Deciding branching bisimilarity

of normed context-free processes is in E^. INFCTRL: Information

and Computation (formerly Information and Control), 118, 1995.

I. Cerna, M. Kretfnsky, and A. Kucera. Bisimilarity is decidable in

the union of normed BPA and normed BPP processes. Electronic

Notes Theoretical Computer Science, 5, 1996.

D. Caucal and R. Monfort. On the transition graphs of automata and

grammars. In WG: Graph-Theoretic Concepts in Computer Science,
International Workshop WG, 1990.

R. S. Cohen. Star height of certain families of regular events. Journal
of Computer and System Sciences, 4(3):281-297, June 1970.

S. Crespi-Reghizzi and D. Mandrioli. Petri Nets and commutative
grammars. Technical Report 74-5, Laboratorio di Calcolatori, Insti
tute di Electtrotecnia del Politecnico di Milano, 1974.

J. W. de Bakker and J. I. Zucker. Denotational semantics of concur
rency. In Proceedings of the 1 4 th ACM Symposium on the Theory of
Computing, 1982.

J. W. de Bakker and J. I. Zucker. Processes and the denotational
semantics of concurrency. INFCTRL: Information and Computation
(formerly Information and Control), 54, 1982.

M. D ’Agostino, D. M. Gabbay, R. Hanle, and J. Posegga, editors.
Handbook of Tableau Methods. Kluwer Academic Publishers, Dor
drecht, 1999.

L. E. Dickson. Finiteness of the odd perfect and primitive abundant
numbers with n distinct prime factors. Amer. J. Math., 35:413-422,
1913.

N. Dershowitz and J-P. Jouannaud. Rewriting systems. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, Volume

B, pages 244-320. Elsevier Science, 1990.

W. Emmerich. Timed and stochastic Petri Nets, October 1988.

J. Esparza and M. Nielsen. Decidability issues for Petri Nets - a

survey. Bulletin of the EATCS, 52:244-262, 1994.

BIBLIOGRAPH Y 107

[End77]

[ES69]

[Esp97]

[EspOl]

[Fit96]

[FR74]

[Fre68]

[GH94]

[Gin66]

[Gir89]

[Gre65]

[Gre68]

[Gro92]

[GS66]

H. B. Enderton. Elements of Set Theory. Academic Press, 1977.

S. Eilenberg and M. P. Schiitzenberger. Rational sets in commutative

monoids. Journal of Algebra, 13:173-191, 1969.

J. Esparza. Petri Nets, commutative context-free grammars, and

basic parallel processes. FUNDINF: Fundamenta Informatica, 31,

1997.

J. Esparza. Grammars as processes. Lecture Notes in Computer

Science, 2300:277-297, 2001.

M. C. Fitting. First-Order Logic and Automated Theorem Proving.
Springer, New York, second edition, 1996.

M. J. Fischer and M. O. Rabin. Super-exponential complexity of
presburger arithmetic. Project MAC Tech. Memorandum 43, MIT,
Cambridge, 1974.

P. Freyd. Redei’s finiteness theorem for commutative semigroups.
Proc. Amer. Math. Soc., 19:1003, 1968.

J. F. Groote and H. Hiittel. Undecidable equivalences for basic pro
cess algebra. Information and Computation, 115(2):354—371, Decem
ber 1994.

S. Ginsburg. The Mathematical Theory of Context-Free Languages.
McGraw-Hill, New York, 1966.

J-Y. Girard. Proofs and types, volume 7 of Cambridge tracts in
theoretical computer science. Cambridge University Press, 1989.

S. A. Greibach. A new normal form theorem for context-free phrase

structure grammars. Journal of the ACM, 12:42-52, 1965.

S. A. Greibach. A note on undecidable properties of formal lan
guages. Mathematical Systems Theory, 2(1):1—6 , 1968.

J. F. Groote. A short proof of the decidability of bisimulation for

normed BPA-processes. Information Processing Letters, 42(3): 167-

171, May 1992.

S. Ginsburg and E. H. Spanier. Semigroups, presburger formulas, and

languages. Pacific Journal of Mathematics, 16(2):285-296, 1966.

BIBLIOGRAPH Y 108

[GS97]

[GW89]

[GW99]

[Hir93]

[Hir94a]

[Hir94b]

[Hir94c]

[Hir96]

[HJ99]

[HJM96a]

[HJM96b]

[HM05]

F. Gecseg and M. Steinby. Tree Languages, volume 3, Beyond words,
chapter 6 , page 1. Springer-Verlag, Berlin, 1997. Ch: Tree Lan

guages.

R. J. van Glabbeek and W. P. Weijland. Branching time and ab
straction in bisimulation semantics (extended abstract). In IFIP

Congress, pages 613-618, 1989.

I. P. Gent and T. Walsh. Beyond NP: the QSAT phase transition.

In A A A I/IA A I , pages 648-653, 1999.

Y. Hirshfeld. Petri Nets and the equivalence problem. In CSL: 7th

Workshop on Computer Science Logic. LNCS, Springer-Verlag, 1993.

Y. Hirshfeld. Congruences in commutative semigroups. Technical
Report ECS-LFCS-94-291, Laboratory for Foundations of Computer

Science, The University of Edinburgh, 1994.

Y. Hirshfeld. Petri Nets and the equivalence problem. Lecture Notes
in Computer Science, 832:165-174, 1994.

Y. Hirshfield. Deciding equivalences in simple process algebras. Tech
nical Report ECS-LFCS-94-294, The University of Edinburgh, 1994.

Y. Hirshfeld. Bisimulation trees and the decidability of weak bisim
ulations. Electronic Notes Theoretical Computer Science, 5, 1996.

Y. Hirshfeld and M. Jerrum. Bisimulation equivalence is decidable
for normed process algebra (extended abstract). Lecture Notes in

Computer Science, 1644:72-73, 1999.

Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for

deciding bisimilarity of normed context-free processes. Theoretical
Computer Science, 158(1—2): 143—159, 20 May 1996.

Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial-time algo
rithm for deciding bisimulation equivalence of normed Basic Parallel
Processes. Mathematical Structures in Computer Science, 6(3):251-

259, June 1996.

W. J. Harwood and F. Moller. Weak bisimulation approximants.
In Selected Papers from the CALCO Young Researchers Workshop

(CALCO-jnr 2005), Swansea Uni- versity Research Report CSR 18-
2005, pages 27-40, 2005.

BIBLIOGRAPH Y 109

[HMS06]

[Hoa78a]

[Hoa78b]

[HP 79]

[HR04]

[HU87]

[Hiit91a]

[Hiit91b]

[Ing67]

[Jan95a]

[Jan95b]

[Jan03]

W. J. Harwood, F. Moller, and A. Setzer. Weak bisimulation approx-
imants. In Zoltan Esik, editor, CSL, volume 4207 of Lecture Notes

in Computer Science, pages 365-379. Springer-Verlag, 2006.

C. A. R. Hoare. Communicating sequential processes. Communi
cations of the ACM , 21 (8):666—677, August 1978. See corrigendum
[Hoa78b].

C. A. R. Hoare. Corrigendum: “Communicating Sequential Pro
cesses” . Communications of the ACM , 21(11):958—958, November
1978. See [Hoa78a],

J. E. Hopcroft and J-J. Pansiot. On the reachability problem for 5-
dimensional vector addition systems. Theoretical Computer Science,
8:135-159, 1979.

M. Huth and M. Ryan. Logic in Computer Science. Cambridge,
second edition, 2004.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata The
ory, Languages, and Computation, chapter 2, pages 13-45. Addison-
Wesley Publishing Company, 1987.

H. Hiittel. Decidability, Behavioural Equivalences and Infinite Tran
sition Graphs. Ph.D. thesis, Computer Science Dept., University of
Edinburgh, December 1991.

H. Hiittel. Silence is golden: Branching bisimilarity is decidable for
context-free processes. Lecture Notes in Computer Science, 575:2,

1991.

P. Z. Ingerman. ’’Panini-Backus Form” suggested. Commun. ACM ,
10(3):137, 1967.

P. Jancar. High undecidability of weak bisimilarity for Petri Nets.
Lecture Notes in Computer Science, 915:349, 1995.

P. Jancar. Undecidability of bisimilarity for Petri Nets and some

related problems. Theoretical Computer Science, 148(2):281-301,
1995.

P. Jancar. Strong bisimilarity on basic parallel processes is PSPACE-
complete. In Proceedings of the eighteenth Annual IEEE Syposium on

BIBLIOGRAPH Y 110

[JJ79]

[JJ85]

[JK04]

[JKM03]

[JKS05]

[JM99]

[Joh75]

[Kak87]

[Kec95]

[KH66]

[Klo90]

[KM69]

Logic in Computer Science (LICS-03)9, pages 218-227, Los Alami-
tos, CA, June 22-25 2003. IEEE Computer Society.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

J. A. Bergstra and J. W. Klop. Algebra of Communicating Processes

with Abstraction. Theoretical Computer Science, 37(1):77—121, 1985.

P. Jancar and M. Kot. Bisimilarity on normed Basic Parallel Pro
cesses can be decided in time 0 (n 3). 2004.

P. Jancar, A. Kucera, and F. Moller. Deciding bisimilarity between

BPA and BPP processes. In CONCUR: 14-th International Confer
ence on Concurrency Theory. LNCS, Springer-Verlag, 2003.

P. Jancar, M. Kot, and Z. Sawa. Notes on complexity of bisimilarity
between BPA and BPP. Work in progress, July 2005.

P. Jancar and F. Moller. Techniques for decidability and undecid
ability of bisimilarity. In CONCUR: 10th International Conference
on Concurrency Theory. LNCS, Springer-Verlag, 1999.

S. C. Johnson. Yacc: Yet another compiler compiler. Computer
Science Technical Report #32 , Bell Laboratories, Murray Hill, NJ,
1975.

S. C. Kak. The paninian approach to natural language processing.
Int. J. Approx. Reasoning, 1(1) :117—130, 1987.

A. S. Kechris. Classical descriptive set theory. Graduate texts in

Mathematics. Springer-Verlag, 1995.

A. J. Korenjak and J. E. Hopcroft. Simple deterministic languages.
In FOCS: IEEE Symposium on Foundations of Computer Science

(FOCS), 1966.

J. W. Klop. Term rewriting systems. Technical Report CS-R9073,
Centrum voor Wiskunde en Informatica, Amsterdam, 1990.

R. Karp and R. Miller. Parallel program schemata. Journal of Com
puter and System Sciences, 3:147-195, 1969.

BIBLIOGRAPH Y 111

[KM02a]

[KM02b]

[KM02c]

[Knu64]

[Kon36]

[KRS04]

[KRS06]

[KS90]

[Lin68]

[May 9 7]

[MayOOa]

[MayOOb]

[May02]

A. Kucera and R. Mayr. On the complexity of semantic equiva
lences for pushdown automata and BPA. In MFCS: Symposium on

Mathematical Foundations of Computer Science, 2002.

A. Kucera and R. Mayr. Weak bisimilarity between finite-state sys
tems and BPA or normed BPP is decidable in polynomial time. The
oretical Computer Science, 270, 2002 .

A. Kucera and R. Mayr. Why is simulation harder than bisimulation?

Lecture Notes in Computer Science, 2421:594, 2002.

D. E. Knuth. Backus Normal Form vs. Backus Naur Form. Com
munications of the ACM , 7(12):735—736, 1964.

D. Konig. Theorie der endlichen und unendlichen Graphen.
Akademische Verlagsgesellschaft, Leipzig, 1936.

M. Kretinsky, V. Rehak, and J. Strejcek. On extensions of process

rewrite systems: Rewrite systems with weak finite-state unit. Elec
tronic Notes Theoretical Computer Science, 98:75-88, 2004.

M. Kretinsky, V. Rehak, and J. Strejcek. Refining the undecid
ability border of weak bisimilarity. Electronic Notes in Theoretical
Computer Science, 149(l):17-36, 2006.

P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state
processes, and three problems of equivalence. Inf. Comput, 86(1):43-

6 8 , May 1990.

A. Lindenmayer. Mathematical models for cellular interaction in
development. J. Theoret. Biology, 18:280-315, 1968.

R. Mayr. Combining Petri Nets and PA-Processes. Lecture Notes in

Computer Science, 1281:547-561, 1997.

R. Mayr. On the complexity of bisimulation problems for basic par
allel processes. In ICALP: Annual International Colloquium on Au
tomata, Languages and Programming, 2000.

R. Mayr. Process rewrite systems. INFCTRL: Information and Com
putation (formerly Information and Control), 156, 2000.

R. Mayr. Weak bisimilarity and regularity of BPA is EXPTIME-
hard. Technical report, Institut fur Informatik, Universitat Freiburg,
December 2002.

BIBLIOGRAPH Y 112

[May03a]

[May03b]

[Mil80]

[Mil81a]

[Mil81b]

[Mil88]

[Mil89]

[Min67]

[MJ84]

[MMAHRR03]

[Mol96]

R. Mayr. Undecidability of weak bisimulation equivalence for 1-
counter processes. In ICALP: Annual International Colloquium on

Automata, Languages and Programming, 2003.

R. Mayr. Undecidable problems in unreliable computations. Theo
retical Computer Science, 297, 2003.

R. Milner. A Calculus of Communicating Systems. Springer-Verlag,
Berlin, 1 edition, 1980.

R. Milner. A modal characterisation of observable machine be
haviour. In E. Astesiano and C. Bohm, editors, Trees and Alge
bra in Programming; 6th CAAP, volume 112 of LNCS , pages 25-34.
Springer Verlag, March 1981.

R. Milner. A modal characterization of observable machine-
behaviour. In E. Astesiano and C. Bohm, editors, Proceedings CAAP
’81, volume 112 of LNCS, pages 25-34, Genoa, March 1981. Springer-
Verlag.

R. Milner. Operational and algebraic semantics of concurrent pro
cesses. LFCS Report Series, pages 1-42, February 1988.

R. Milner. Communication and Concurrency. International Series in
Computer Science. Prentice Hall, 1989. SU Fisher Research 511/24.

M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-
Hall, 1967.

F. L. Morris and C. B. Jones. An early program proof by alan turing.
Annals of the History of Computing, 6(2):193—143, 1984.

F-J. Martfn-Mateos, J-A. Alonso, M-J. Hidalgo, and J-L. Ruiz-
Reina. A formal proof of Dickson’s Lemma in ACL2. In Moshe Y.
Vardi and Andrei Voronkov, editors, LPAR , volume 2850 of Lecture

Notes in Computer Science, pages 49-58. Springer-Verlag, 2003.

F. Moller. Infinite results. In Ugo Montanari and Vladimiro Sassone,

editors, CONCUR ’96: Concurrency Theory, 7th International Con
ference, volume 1119 of Lecture Notes in Computer Science, pages

195-216, Pisa, Italy, 26-29 August 1996. Springer-Verlag.

BIBLIOGRAPH Y 113

[MolOO]

[MS72]

[MS98]

[MS05]

[MSS04]

[OH86]

[Pap94]

[Par 6 6]

[Par81]

[Pet62]

[Plo81]

[Plo04]

F. Moller. A taxonomy of infinite state processes. In P. Jancar and

Mojmir Kretinsky, editors, Electronic Notes in Theoretical Computer

Science, volume 18. Elsevier Science Publishers, 2000.

A. R. Meyer and L. J. Stockmeyer. The equivalence problem for reg
ular expressions with squaring requires exponential space. In FOCS:
IEEE Symposium on Foundations of Computer Science (FOCS),
1972.

F. Mu and J. Srba. Comparing the classes BPA and BPA with

deadlocks. Technical report, December 1998.

Y. Matiyasevich and G. Senizergues. Decision problems for semi-thue

systems with a few rules. Theoretical Computer Science, 330(1): 145—

169, 2005.

F. Moller, S. A. Smolka, and J. Srba. On the computational complex
ity of bisimulation, redux. INFCTRL: Information and Computation
(formerly Information and Control), 194, 2004.

E. R. Olderog and C. A. R. Hoare. Specification-oriented semantics
for communicating processes. Acta Informatica, 23:9-66, 1986.

C. H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

R. J. Parikh. On context-free languages. Journal of the ACM,
13(4):570-581, October 1966.

D. Park. Concurrency and automata on infinite sequences.
In P. Deussen, editor, Theoretical Computer Science: 5th GI-
Conference, volume 104 of Lecture Notes in Computer Science, pages

167-183, Karlsruhe, Germany, 1981. Springer-Verlag.

C. A. Petri. Kommunikation m it Automaten. PhD thesis, Schriften
des IIM Nr. 2, Bonn, 1962.

G. Plotkin. A structural approach to operational semantics. Techni
cal Report DAIMI FN-19, Department of Computer Science, Aarhus

University, Denmark, 1981.

G. D. Plotkin. The origins of structural operational semantics. Jour
nal of Logic and Algebraic Programming (JLAP), 60:3-15, 2004.

BIBLIOGRAPH Y 114

[Pos43]

[Pre29]

[Pru90]

[PT87]

[R95]

[Red65]

[Rei85]

[Rei04]

[Rog67]

[SC02]

[SchOl]

[Seg71]

E. Post. Formal Reductions of the General Combinatorial Problem.
American Journal of Mathematics 65. 1943.

M. Presburger. Uber die Vollstandigkeit eines gewissen Systems der

Arithmetik ganzer Zahlen, in welchem die Addition als einzige Oper
ation hervortritt. Sprawozdanie z I Kongresu Matematikow Krajow

Slowcanskich Warszawa, pages 92-101, 1929.

P. Prusinkiewicz. The Algorithmic Beauty of Plants (The Virtual
Laboratory). Springer-Verlag, 1990.

R. Paige and R. E. Tarjan. Three partition refinement algorithms.
SICOM P: SIAM Journal on Computing, 16, 1987.

C. Rockl. Proof tableaux for basic parallel processes. Technical
report, Fakultat fur Informatik, Technische Universitat Miinchen,
1995.

L. Redei. The Theory of Finitely Generated Commutative Semi
groups. Oxford University Press, 1965.

W. Reisig. Petri Nets: an introduction. Springer-Verlag, 1985.

K. Reinhardt. Reachability in Petri Nets with inhibitor arcs.
Wilhelm-Schickhard Institut fur Informatik, Universitat Tubingen,
April 2004.

H. Rogers, Jr. Theory of Recursive Functions and Effective Com
putability. McGraw-Hill, 1967.

J. Strfbrna and I. Cerna. Modifications of expansion trees for weak

bisimulation in BPA. Electronic Notes Theoretical Computer Science,
68 (6), 2002 .

P. Schnoebelen. Bisimulation and other undecidable equivalences

for lossy channel systems. In N. Kobayashi and B. C. Pierce, edi
tors, Proceedings of the f th International Workshop on Theoretical
Aspects of Computer Software (TACS’01), volume 2215 of Lecture

Notes in Computer Science, pages 385-399, Sendai, Japan, October

2001. Springer-Verlag.

K. Segerberg. An essay in classical modal logic. Uppsala University,
Filosofiska Studier, 13, 1971.

BIBLIOGRAPH Y 115

[Sen97]

[Sen98]

[Srb02a]

[Srb02b]

[Srb02c]

[Srb03]

[Sti98a]

[Sti98b]

[StiOla]

[StiOlb]

[StiOlc]

G. Senizergues. The equivalence problem for deterministic pushdown

automata is decidable. In ICALP: Annual International Colloquium

on Automata, Languages and Programming, 1997.

G. Senizergues. Decidability of bisimulation equivalence for equa-
tional graphs of finite out-degree. In IEEE, editor, 39th Annual Sym
posium on Foundations of Computer Science: proceedings: Novem
ber 8-11, 1998, Palo Alto, California, pages 120-129, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA, 1998. IEEE Com
puter Society Press.

J. Srba. Note on the tableau technique for commutative transition
systems. In FOSSACS: International Conference on Foundations of

Software Science and Computation Structures, volume 2303, pages
351-371. Lecture Notes in Computer Science, 2002.

J. Srba. Roadmap of infinite results. Bulletin of the Eu
ropean Association for Theoretical Computer Science, 78:163-,
October 2002 . Columns: Concurrency. Up-to-date version at
www. b r i c s . dk/~srba/roadm ap.

J. Srba. Strong bisimilarity and regularity of basic parallel processes
is PSPACE-hard. Lecture Notes in Computer Science, 2285:535,
2002 .

J. Srba. Completeness results for undecidable bisimilarity problems.
2003. Submitted to IN F IN ITY’03.

C. Stirling. Decidability of bisimulation equivalence for normed push
down processes. Theoretical Computer Science, 195, 1998.

C. Stirling. The joys of bisimulation. Lecture Notes in Computer

Science, 1450:351-371, 1998.

C. Stirling. Bisimulation and language equivalence, May 18 2001.

C. Stirling. Decidability of DPDA equivalence. Theoretical Computer

Science, 255, 2001.

C. Stirling. Decidability of weak bisimilarity for a subset of basic

parallel processes. Lecture Notes in Computer Science, 2030:379-

393, 2001.

BIBLIOGRAPH Y 116

[StiOld]

[Str99]

[Sus03]

[Tar51]

[Tau89]

[Thu 14]

[VarOl]

[vB76]

[vG90]

[vG94]

[vGOl]

C. Stirling. Modal and Temporal Properties of Processes. Texts in

Computer Science. Springer-Verlag, 2001.

J. Stnbrna. Decidability and complexity of equivalences for simple

process algebras. PhD thesis, The University of Edinburgh, 1999.
Also available as The University of Edinburgh, LFCS report ECS-

LFCS-99-408.

M. Sustik. Proof of Dickson’s Lemma using the ACL2 theorem prover

via an explicit ordinal mapping. In Workshop on the ACL2 Theorem

Prover and Its Applications, July 2003.

A. Tarski. A Decision Method for Elementary Algebra and Geometry.
Univ. of California Press, 2nd edition, 1951.

D. Taubner. Finite Representations of CCS and TCSP Programs by
Automata and Petri Nets, volume 369 of Lecture Notes in Computer
Science. Springer-Verlag, 1989.

A. Thue. Probleme liber Veranderungen von Zeichenreihen nach
gegebenen Regeln. Skr. Vid. Kristianaia I. Mat. Naturv. K lasse ,
10/34, 1914.

M. Vardi. Branching vs. linear time: Final showdown. In TACAS:
International Workshop on Tools and Algorithms for the Construc
tion and Analysis of Systems, LNCS, 2001.

J. F. van Benthem. Modal correspondence theory. PhD thesis, Math
ematical Institute, University of Amsterdam, Amsterdam, NL, 1976.

R. J. van Glabbeek. The linear time-branching time spectrum (ex
tended abstract). In CONCUR , pages 278-297, 1990.

R. J. van Glabbeek. W hat is branching time semantics and why
to use it? In M. Nielsen, editor, The Concurrency Column, pages

190-198. Bulletin of the EATCS 53, 1994. Also available as Re
port STAN-CS-93-1486, Stanford University, 1993, at h t t p : / / -

th e o ry .s ta n fo rd .ed u /b ra n ch in g /, and in G. Paun, G. Rozenberg

& A. Salomaa, editors: Current Trends in Theoretical Computer Sci
ence; Entering the 21st Century, World Scientific, 2001.

R. J. van Glabbeek. The linear time - branching time spectrum I.
The semantics of concrete, sequential processes. In J. A. Bergstra,

A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra,
pages 3-99. North-Holland, 2001.

[vGW96] R. J. van Glabbeek and W. Weijland. Branching time and abstrac
tion in bisimulation semantics. JACM: Journal of the ACM , 43,

1996.

Glossary

N ranges over the cardinal numbers.

a, /?, 7 , 5 are some BPP or BPA processes.

~ is the largest strong bisimulation relation: our chosen notion of behavioural
equivalence between processes (page 45).

ss is the largest weak bisimulation relation. Weak bisimilarity ignores silent or
internal action (page 52).

is the Kth weak approximant, it approximates « in the sense that it considers
k steps where « takes account of all steps (page 52).

means exactly k equivalent: u k,k v and u ?£k+i v.

BPA Basic Process Algebra, the non-commutative context-free processes; equivalent
to e-free, single control-state PDA (pages 29, 59).

BPP The Basic Parallel Processes, the commutative context-free processes; equiva
lent to the communication-free Petri Nets (pages 15, 32, 60).

C is the class of cardinal numbers (page 22).

da{u) is the minimum number of transitions from u to a process v which cannot
a

perform an a action, v-f*. Note that da = dd(a, 0).

daT(u) is the minimum number of weak transitions (=^) from u to a process v which
an

cannot perform an arbitrary number of a transitions, 3n.v^> (page 89).

dd(a , D) is a distance-to-disablings function. dd{a , D){u) is the minimum distance from
a

u to a process v for which v-/+D, where D is itself composed of distances-to-
disablings-^ pairs (page 80).

118

S
?!

BIBLIOGRAPH Y 119

(a ,D) is an extended weak distance-to-disablings function. dd*(a, D)(u) is the mini
mum weak distance (plus one, if u ^ v) to a process v which cannot perform

a a*a sequence k long of =>& transitions, v ^ D (page 90).

DD^ is the set of distances-to-disablings whose constituent sets are bound strictly

above by N (page 80).

DD abbreviates DD^° (the finite distances-to-disablings functions).

D D C is the full class of distances-to-disablings functions, with no restriction as to

the size of sets used in their construction (page 80).

D D r is the set of finite weak distances-to-disablings functions (page 86).

DD(. is D D r augmented with d%T (page 90).

D D “ are the finite extended weak distances-to-disablings functions dd*(a,D) for

which the k part is either 1 or w (page 90). The conjecture of this thesis is
that these functions express weak bisimilarity on BPP processes (page 102).

= DDc means u = DDc v iff d(u) = d(v) for all d £ D D C (page 80).

f.i, k range over the ordinal numbers.

N-i,oo = N U { - 1 , oo}

O is the class of ordinal numbers (page 19).

u-^v means a process u performs an a action and becomes a process v\ equivalently,
in a labelled transition system there is an a-labelled arrow from a node u to a

node v (page 9).

u—*d,8v means u-^v and d(u) + 5 = d(v) (page 79).

a a a
u ^ d v Where D is a set of (d, 5) pairs, means u ^ d ,8v f°r all (d, d) £ D; u-/+Dv if

a
either u-f*v or 3 (d, 5) £ D s.t. d{u) + S ^ d{v) (page 79).

u=>v means a process u performs some number of silent transitions, then a strong

a action, then some number of silent transitions, to become the process v;
(page 11).

Index

D O M { x), 35

G{u, v), 46
L E X (x), 36

S, 40
DD, 80

finite approximants, 84
D D ? 89

BPP, 98
D D r , 87

BPP
difficulties, 92
insufficiency, 96

extending, 8 8

finite approximability, 95
D D ?

collapse, 98
D D ? °

collapse, 91
Reachr , 72
E, 40

= tLT , 52
= tLi 52
- . , 4 0

approximants, 47
finite approximants for infinite al

phabets, 49
hierarchy, 49

uju on BPP, 76

collapse, 51

bisimilarity, 44
between BPA and BPP, 62

context-free processes, 65
game, 46

other notions, 54
BPA, 59

fcBPA, 70

BPP, 60
approximant collapse, 75
fcBPP, 70
finite weak approximants are de-

cidable, 73
purely generated, 71
semidecidability of weak bisimilar

ity, 71
silently lossy, 65
single-action, non-norm-zero, 96
totally normed, 71

cardinals, 2 2

regular, 23

Caucal bases, 65
Chapter

1, Introduction, 7
2, Preliminaries, 19
3, Constructive Dickson’s Lemma,

34
4, General processes, 40
5, Processes from context-free gram

mars, 58
6 , Distance functions, 78
7, Distance functions on BPP, 92
8 , A research programme, 100

congruences, 24

120

INDEX 121

Conjectures
D D “ , 99

= d d t

undecidable on BPP, 97

~ S E DDb 98
BPA approximant collapse, 76

BPP approximant collapse, 76

Corollaries
d d ;

BPA, 90

as ~ on finite processes, 74

Caucal bases, 66
commutative regular language star

height, 29

congruences on (Nfc, +), 27

Definitions

DDa D, 95
D°°, 94
D n, 94
D a, 94

Gtk, 52
DD

height, 80
d d ; , 89 , 90
D D C, 80

countable, 80

finite, 80
DD?, 86

A '(a, n, (3), 93

A (a , n, (3), 93

A*, 94

1 , 2 5

dist, 78

distT, 86

=DDC’ ®0

=rLT , 52

=tL, 52

0a,D, 94
~ k, 47

79
41

89
da, 79

C 89
89

fc-tuple, 24

38
ugly weak distance, 86
approximants, 47
bisimulation, 45

game, 46
BPP

very simple, 68
branching bisimulation, 55
Caucal bases, 65
domination, 34
equivalence relation

congruence, 24
equivalence relation, 24
expansion, 66

failures and readiness, 48
failures equivalence, 44
graph equivalence, 43

Hirshfeld tree, 67
labelled transition systems, 40
linear set, 25

monoids, 23

norm, 41
norm reducing, 42

optimal move trees, 50

optimal moves, 50

ordinals

von Neumann’s, 20
Parikh mapping, 24

Petri Nets

INDEX 122

communication-free, 32

Presburger arithmetic

computable, 26

sets, 26

processes
fc-tuple, 42

finite, 46

general, 40

normed, 41
sub-N-branching, 42

void, 41
well-founded, 41

pumping path, 28

pure, 28
semilinear sets, 26
sub-N-branching, 23
T operator, 53
trace equivalence, 43
trees, 2 1

height, 21

largest domination-free tree, 35
well-founded, 2 1

vector, 24
weak bisimilarity

weak bisimulation relation, 52
domination, 34

reification, 38

equivalence relations, 24

functional, 43
Example

D D r

trace, failures equivalence, 95

Examples
(E V) , 2 4

D D r

finite alphabets, 87
D D ^, 90

DD^,C> on weakly-fmitely branch
ing processes, 91

= s as a finite automaton, 27

~ w, 47

daT
properties, 93

90

u ^ d,6, 79
52

£ = L j 4 8

~ Q = l t , 46
approximants

collapse on finitely-branching pro
cesses, 50

collapse on well-founded processes,
51

bisimilarity
bisimilar and non-bisimilar pro

cesses, 45
BPP, 60

lossy, 65
failures and readiness, 48
finitely generated sum congruence,

25
Konig’s Lemma, 23

languages, 24
maximal norms, 61
monoids

finitely generated, and non-finitely

generated, 25

ordinals
cu as “arbitrarily far”, 19

proper class, 2 2

Petri Nets, 30

semilinearity of = 5 , 26
sum equivalence, 25

trees
addition, 2 2

INDEX 123

sub-^-branching, 23

weak bisimilarity

single-step weak bisimulations, 53
extensions of context-free processes, 64

finite automata, 27

generalised continuum hypothesis, 49

grammars as processes, 11, 59

Hirshfeld trees, 6 6

Jancar’s distances to disablings, 6 8

labelled transition systems, 40

deterministic, 42
unexplorable finitely-branching, 48

languages
unary, 63

Lemmas

D D a}Di 95
Da, 94
S„, 38
DD

~n, 84
d d ;

BPP, 98
DD*

approximant collapse, 84
D D C, 80

D D t

normed BPP, 97
D D ;, 89

DD?, 8 6

D D L . 85
A, 93

NORM, 69

72

98

vn, 38

G k = 47
approximants

collapse on sets of processes, 51

finite approximants with finite

alphabets, 49
hierarchy, 49
sub-N-branching collapse, 51

bisimilarity

deterministic processes, 45

finite processes, 46
BPP

« and are congruences, 70

ss is semidecidable, 72
domination, 76
finite approximant branching, 74
pumping lemma, 61
single-action, non-zero-norm, 96
transition sequences, 32

cardinals
no largest cardinal, 23

Caucal bases, 6 6

Dickson’s Lemma, 35
optimal move trees, 50
ordinals

well-founded trees, 22

PDA
control-state hierarchy, 63

Petri Nets

transition sequences, 32

Reach, 32
semideciding / on finitely branch

ing processes, 48

semilinear sets
membership, 26

T operator, 54

trees
lexicographically-ordered, 36

Ugly lemma, 8 6

INDEX 124

LTS, 40

machines, 29

monoids, 23
free commutative, 24

norm reducing transition, 42

Open problems
D D r , 101
d d ; , 1 0 2

D D ? x2, 102

DD?, 102
optimal move trees, 50
ordinals, 19

arithmetic, 2 0

Cantor normal form, 20
limit, 19
successor, 19

organisation, 17

Parikh mapping, 24
Petri Nets, 30

communication-free, 32
Presburger arithmetic, 26
processes

equivalence relations, 42
finite, 46

pushdown automata, 29

reification, 37

semideciding 7̂ , 48

semilinear sets, 25

silent actions, 51

tableau proofs, 67

Theorems

Gr , 52
D D r

computable on BPP, 95

bisimilarity

game, 46

BPP

approximant collapse, 77

finitely approximable, 73
Cantor normal form, 20

comparing BPA and BPP, 62

congruences on finitely generated

monoids, 26
Eilenberg and Schiitzenberger, 26

Ginsburg and Spanier, 26

Language equivalence is undecid-
able on context-free grammars,
58

Presburger arithmetic
equals the semilinear sets, 26
is decidable, 26

Redei, 25
semilinear sets

finite automata equivalence, 28
trees

non-dominating vector-labelled,
39

sub regular cardinal-branching,
23

total order, 36

trees, 21

domination-free, 35

well-founded, 21

vector space, 24

void, 41
voidT, 54

weak bisimilarity, 52

context-free processes, 70

weak distance, 85
refining, 86

