8,671 research outputs found

    Developing a virtual reality environment for petrous bone surgery: a state-of-the-art review

    Get PDF
    The increasing power of computers has led to the development of sophisticated systems that aim to immerse the user in a virtual environment. The benefits of this type of approach to the training of physicians and surgeons are immediately apparent. Unfortunately the implementation of “virtual reality” (VR) surgical simulators has been restricted by both cost and technical limitations. The few successful systems use standardized scenarios, often derived from typical clinical data, to allow the rehearsal of procedures. In reality we would choose a system that allows us not only to practice typical cases but also to enter our own patient data and use it to define the virtual environment. In effect we want to re-write the scenario every time we use the environment and to ensure that its behavior exactly duplicates the behavior of the real tissue. If this can be achieved then VR systems can be used not only to train surgeons but also to rehearse individual procedures where variations in anatomy or pathology present specific surgical problems. The European Union has recently funded a multinational 3-year project (IERAPSI, Integrated Environment for Rehearsal and Planning of Surgical Interventions) to produce a virtual reality system for surgical training and for rehearsing individual procedures. Building the IERAPSI system will bring together a wide range of experts and combine the latest technologies to produce a true, patient specific virtual reality surgical simulator for petrous/temporal bone procedures. This article presents a review of the “state of the art” technologies currently available to construct a system of this type and an overview of the functionality and specifications such a system requires

    Deformable Registration through Learning of Context-Specific Metric Aggregation

    Full text link
    We propose a novel weakly supervised discriminative algorithm for learning context specific registration metrics as a linear combination of conventional similarity measures. Conventional metrics have been extensively used over the past two decades and therefore both their strengths and limitations are known. The challenge is to find the optimal relative weighting (or parameters) of different metrics forming the similarity measure of the registration algorithm. Hand-tuning these parameters would result in sub optimal solutions and quickly become infeasible as the number of metrics increases. Furthermore, such hand-crafted combination can only happen at global scale (entire volume) and therefore will not be able to account for the different tissue properties. We propose a learning algorithm for estimating these parameters locally, conditioned to the data semantic classes. The objective function of our formulation is a special case of non-convex function, difference of convex function, which we optimize using the concave convex procedure. As a proof of concept, we show the impact of our approach on three challenging datasets for different anatomical structures and modalities.Comment: Accepted for publication in the 8th International Workshop on Machine Learning in Medical Imaging (MLMI 2017), in conjunction with MICCAI 201

    Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction.

    Get PDF
    Recent contributions to the body of knowledge on traumatic brain injury (TBI) favor the view that multimodal neuroimaging using structural and functional magnetic resonance imaging (MRI and fMRI, respectively) as well as diffusion tensor imaging (DTI) has excellent potential to identify novel biomarkers and predictors of TBI outcome. This is particularly the case when such methods are appropriately combined with volumetric/morphometric analysis of brain structures and with the exploration of TBI-related changes in brain network properties at the level of the connectome. In this context, our present review summarizes recent developments on the roles of these two techniques in the search for novel structural neuroimaging biomarkers that have TBI outcome prognostication value. The themes being explored cover notable trends in this area of research, including (1) the role of advanced MRI processing methods in the analysis of structural pathology, (2) the use of brain connectomics and network analysis to identify outcome biomarkers, and (3) the application of multivariate statistics to predict outcome using neuroimaging metrics. The goal of the review is to draw the community's attention to these recent advances on TBI outcome prediction methods and to encourage the development of new methodologies whereby structural neuroimaging can be used to identify biomarkers of TBI outcome

    Innovative techniques to devise 3D-printed anatomical brain phantoms for morpho-functional medical imaging

    Get PDF
    Introduction. The Ph.D. thesis addresses the development of innovative techniques to create 3D-printed anatomical brain phantoms, which can be used for quantitative technical assessments on morpho-functional imaging devices, providing simulation accuracy not obtainable with currently available phantoms. 3D printing (3DP) technology is paving the way for advanced anatomical modelling in biomedical applications. Despite the potential already expressed by 3DP in this field, it is still little used for the realization of anthropomorphic phantoms of human organs with complex internal structures. Making an anthropomorphic phantom is very different from making a simple anatomical model and 3DP is still far from being plug-and-print. Hence, the need to develop ad-hoc techniques providing innovative solutions for the realization of anatomical phantoms with unique characteristics, and greater ease-of-use. Aim. The thesis explores the entire workflow (brain MRI images segmentation, 3D modelling and materialization) developed to prototype a new complex anthropomorphic brain phantom, which can simulate three brain compartments simultaneously: grey matter (GM), white matter (WM) and striatum (caudate nucleus and putamen, known to show a high uptake in nuclear medicine studies). The three separate chambers of the phantom will be filled with tissue-appropriate solutions characterized by different concentrations of radioisotope for PET/SPECT, para-/ferro-magnetic metals for MRI, and iodine for CT imaging. Methods. First, to design a 3D model of the brain phantom, it is necessary to segment MRI images and to extract an error-less STL (Standard Tessellation Language) description. Then, it is possible to materialize the prototype and test its functionality. - Image segmentation. Segmentation is one of the most critical steps in modelling. To this end, after demonstrating the proof-of-concept, a multi-parametric segmentation approach based on brain relaxometry was proposed. It includes a pre-processing step to estimate relaxation parameter maps (R1 = longitudinal relaxation rate, R2 = transverse relaxation rate, PD = proton density) from the signal intensities provided by MRI sequences of routine clinical protocols (3D-GrE T1-weighted, FLAIR and fast-T2-weighted sequences with ≤ 3 mm slice thickness). In the past, maps of R1, R2, and PD were obtained from Conventional Spin Echo (CSE) sequences, which are no longer suitable for clinical practice due to long acquisition times. Rehabilitating the multi-parametric segmentation based on relaxometry, the estimation of pseudo-relaxation maps allowed developing an innovative method for the simultaneous automatic segmentation of most of the brain structures (GM, WM, cerebrospinal fluid, thalamus, caudate nucleus, putamen, pallidus, nigra, red nucleus and dentate). This method allows the segmentation of higher resolution brain images for future brain phantom enhancements. - STL extraction. After segmentation, the 3D model of phantom is described in STL format, which represents the shapes through the approximation in manifold mesh (i.e., collection of triangles, which is continuous, without holes and with a positive – not zero – volume). For this purpose, we developed an automatic procedure to extract a single voxelized surface, tracing the anatomical interface between the phantom's compartments directly on the segmented images. Two tubes were designed for each compartment (one for filling and the other to facilitate the escape of air). The procedure automatically checks the continuity of the surface, ensuring that the 3D model could be exported in STL format, without errors, using a common image-to-STL conversion software. Threaded junctions were added to the phantom (for the hermetic closure) using a mesh processing software. The phantom's 3D model resulted correct and ready for 3DP. Prototyping. Finally, the most suitable 3DP technology is identified for the materialization. We investigated the material extrusion technology, named Fused Deposition Modeling (FDM), and the material jetting technology, named PolyJet. FDM resulted the best candidate for our purposes. It allowed materializing the phantom's hollow compartments in a single print, without having to print them in several parts to be reassembled later. FDM soluble internal support structures were completely removable after the materialization, unlike PolyJet supports. A critical aspect, which required a considerable effort to optimize the printing parameters, was the submillimetre thickness of the phantom walls, necessary to avoid distorting the imaging simulation. However, 3D printer manufacturers recommend maintaining a uniform wall thickness of at least 1 mm. The optimization of printing path made it possible to obtain strong, but not completely waterproof walls, approximately 0.5 mm thick. A sophisticated technique, based on the use of a polyvinyl-acetate solution, was developed to waterproof the internal and external phantom walls (necessary requirement for filling). A filling system was also designed to minimize the residual air bubbles, which could result in unwanted hypo-intensity (dark) areas in phantom-based imaging simulation. Discussions and conclusions. The phantom prototype was scanned trough CT and PET/CT to evaluate the realism of the brain simulation. None of the state-of-the-art brain phantoms allow such anatomical rendering of three brain compartments. Some represent only GM and WM, others only the striatum. Moreover, they typically have a poor anatomical yield, showing a reduced depth of the sulci and a not very faithful reproduction of the cerebral convolutions. The ability to simulate the three brain compartments simultaneously with greater accuracy, as well as the possibility of carrying out multimodality studies (PET/CT, PET/MRI), which represent the frontier of diagnostic imaging, give this device cutting-edge prospective characteristics. The effort to further customize 3DP technology for these applications is expected to increase significantly in the coming years

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Nonrigid Registration of 3-Dimensional Images of the Carotid Arteries

    Get PDF
    Atherosclerosis at the carotid bifurcation can result in cerebral emboli, which in turn can block the blood supply to the brain causing ischemic strokes. Non-invasive imaging tools that characterize arterial wall, and atherosclerotic plaque structure and composition may help to determine the factors, which lead to the development of unstable lesions, and identify patients at risk of plaque disruption. Registration of 3D ultrasound (US) images of carotid plaque obtained at different time points, and with Magnetic Resonance (MR) images are required for monitoring of plaque changes in volume and surface morphology, and combining the complementary information of the two modalities for better understanding of factors that define plaque vulnerability. These registration techniques should be nonrigid, to remove deformations caused by bending and torsion in the neck during image acquisition sessions. The high degrees of freedom and large number of parameters associated with nonrigid image registration methods causes several problems including unnatural plaque morphology alteration, high computational complexity, and low reliability. Thus, we used a “twisting and bending” model with only six parameters to model the natural movement of the neck for nonrigid registration. We calculated the Mean Registration Error (MRE) between the segmented vessel surfaces in the target and the registered images using the distance between “matched points” to evaluate registration results. We registered 3D US carotid images acquired at different head positions to simulate images acquired at different times, and obtained an average MRE of 0.8±0.3mm for nonrigid registration. We registered 3D US and MR carotid images at field strengths, 1.5T and 3.0T, of the same subject acquired on the same day, and obtained an average MRE of 1.4±0.3mm for 1.5T and 1.5±0.4mm for 3.0T, using nonrigid registration. Furthermore, we showed that the error metric used here was not significantly different from the widely accepted Target Registration Error (TRE)

    Improvements in the registration of multimodal medical imaging : application to intensity inhomogeneity and partial volume corrections

    Get PDF
    Alignment or registration of medical images has a relevant role on clinical diagnostic and treatment decisions as well as in research settings. With the advent of new technologies for multimodal imaging, robust registration of functional and anatomical information is still a challenge, particular in small-animal imaging given the lesser structural content of certain anatomical parts, such as the brain, than in humans. Besides, patient-dependent and acquisition artefacts affecting the images information content further complicate registration, as is the case of intensity inhomogeneities (IIH) showing in MRI and the partial volume effect (PVE) attached to PET imaging. Reference methods exist for accurate image registration but their performance is severely deteriorated in situations involving little images Overlap. While several approaches to IIH and PVE correction exist these methods still do not guarantee or rely on robust registration. This Thesis focuses on overcoming current limitations af registration to enable novel IIH and PVE correction methods.El registre d'imatges mèdiques té un paper rellevant en les decisions de diagnòstic i tractament clíniques així com en la recerca. Amb el desenvolupament de noves tecnologies d'imatge multimodal, el registre robust d'informació funcional i anatòmica és encara avui un repte, en particular, en imatge de petit animal amb un menor contingut estructural que en humans de certes parts anatòmiques com el cervell. A més, els artefactes induïts pel propi pacient i per la tècnica d'adquisició que afecten el contingut d'informació de les imatges complica encara més el procés de registre. És el cas de les inhomogeneïtats d'intensitat (IIH) que apareixen a les RM i de l'efecte de volum parcial (PVE) característic en PET. Tot i que existeixen mètodes de referència pel registre acurat d'imatges la seva eficàcia es veu greument minvada en casos de poc solapament entre les imatges. De la mateixa manera, també existeixen mètodes per la correcció d'IIH i de PVE però que no garanteixen o que requereixen un registre robust. Aquesta tesi es centra en superar aquestes limitacions sobre el registre per habilitar nous mètodes per la correcció d'IIH i de PVE

    DEFORM'06 - Proceedings of the Workshop on Image Registration in Deformable Environments

    Get PDF
    Preface These are the proceedings of DEFORM'06, the Workshop on Image Registration in Deformable Environments, associated to BMVC'06, the 17th British Machine Vision Conference, held in Edinburgh, UK, in September 2006. The goal of DEFORM'06 was to bring together people from different domains having interests in deformable image registration. In response to our Call for Papers, we received 17 submissions and selected 8 for oral presentation at the workshop. In addition to the regular papers, Andrew Fitzgibbon from Microsoft Research Cambridge gave an invited talk at the workshop. The conference website including online proceedings remains open, see http://comsee.univ-bpclermont.fr/events/DEFORM06. We would like to thank the BMVC'06 co-chairs, Mike Chantler, Manuel Trucco and especially Bob Fisher for is great help in the local arrangements, Andrew Fitzgibbon, and the Programme Committee members who provided insightful reviews of the submitted papers. Special thanks go to Marc Richetin, head of the CNRS Research Federation TIMS, which sponsored the workshop. August 2006 Adrien Bartoli Nassir Navab Vincent Lepeti

    Review on Image Guided Surgery Systems

    Get PDF
    Nowadays modern imaging techniques can grant an excellent quality 3D images that clearly show the anatomy, vascularity, pathology and active functions of the tissues. The ability to register these preoperative images to each other, to offer a comprehensive information, and later the ability to register the image space to the patient space intraoperatively is the core for the image guided surgery systems (IGS). Other main elements of the system include the process of tracking the surgical tools intraoperatively by reflecting their positions within the 3D image model. In some occasions an intraoperative image may be acquired and registered to the preoperative images to make sure the 3D model used to guide the operation describes the actual situation at surgery time. This survey overviews the history of IGS and discusses the modern system components for a reliable application and gives information about the different applications in medical specialties that benefited from the use of IGS
    corecore