3,607 research outputs found

    An Adaptive Modular Redundancy Technique to Self-regulate Availability, Area, and Energy Consumption in Mission-critical Applications

    Get PDF
    As reconfigurable devices\u27 capacities and the complexity of applications that use them increase, the need for self-reliance of deployed systems becomes increasingly prominent. A Sustainable Modular Adaptive Redundancy Technique (SMART) composed of a dual-layered organic system is proposed, analyzed, implemented, and experimentally evaluated. SMART relies upon a variety of self-regulating properties to control availability, energy consumption, and area used, in dynamically-changing environments that require high degree of adaptation. The hardware layer is implemented on a Xilinx Virtex-4 Field Programmable Gate Array (FPGA) to provide self-repair using a novel approach called a Reconfigurable Adaptive Redundancy System (RARS). The software layer supervises the organic activities within the FPGA and extends the self-healing capabilities through application-independent, intrinsic, evolutionary repair techniques to leverage the benefits of dynamic Partial Reconfiguration (PR). A SMART prototype is evaluated using a Sobel edge detection application. This prototype is shown to provide sustainability for stressful occurrences of transient and permanent fault injection procedures while still reducing energy consumption and area requirements. An Organic Genetic Algorithm (OGA) technique is shown capable of consistently repairing hard faults while maintaining correct edge detector outputs, by exploiting spatial redundancy in the reconfigurable hardware. A Monte Carlo driven Continuous Markov Time Chains (CTMC) simulation is conducted to compare SMART\u27s availability to industry-standard Triple Modular Technique (TMR) techniques. Based on nine use cases, parameterized with realistic fault and repair rates acquired from publically available sources, the results indicate that availability is significantly enhanced by the adoption of fast repair techniques targeting aging-related hard-faults. Under harsh environments, SMART is shown to improve system availability from 36.02% with lengthy repair techniques to 98.84% with fast ones. This value increases to five nines (99.9998%) under relatively more favorable conditions. Lastly, SMART is compared to twenty eight standard TMR benchmarks that are generated by the widely-accepted BL-TMR tools. Results show that in seven out of nine use cases, SMART is the recommended technique, with power savings ranging from 22% to 29%, and area savings ranging from 17% to 24%, while still maintaining the same level of availability

    New Fault Detection, Mitigation and Injection Strategies for Current and Forthcoming Challenges of HW Embedded Designs

    Full text link
    Tesis por compendio[EN] Relevance of electronics towards safety of common devices has only been growing, as an ever growing stake of the functionality is assigned to them. But of course, this comes along the constant need for higher performances to fulfill such functionality requirements, while keeping power and budget low. In this scenario, industry is struggling to provide a technology which meets all the performance, power and price specifications, at the cost of an increased vulnerability to several types of known faults or the appearance of new ones. To provide a solution for the new and growing faults in the systems, designers have been using traditional techniques from safety-critical applications, which offer in general suboptimal results. In fact, modern embedded architectures offer the possibility of optimizing the dependability properties by enabling the interaction of hardware, firmware and software levels in the process. However, that point is not yet successfully achieved. Advances in every level towards that direction are much needed if flexible, robust, resilient and cost effective fault tolerance is desired. The work presented here focuses on the hardware level, with the background consideration of a potential integration into a holistic approach. The efforts in this thesis have focused several issues: (i) to introduce additional fault models as required for adequate representativity of physical effects blooming in modern manufacturing technologies, (ii) to provide tools and methods to efficiently inject both the proposed models and classical ones, (iii) to analyze the optimum method for assessing the robustness of the systems by using extensive fault injection and later correlation with higher level layers in an effort to cut development time and cost, (iv) to provide new detection methodologies to cope with challenges modeled by proposed fault models, (v) to propose mitigation strategies focused towards tackling such new threat scenarios and (vi) to devise an automated methodology for the deployment of many fault tolerance mechanisms in a systematic robust way. The outcomes of the thesis constitute a suite of tools and methods to help the designer of critical systems in his task to develop robust, validated, and on-time designs tailored to his application.[ES] La relevancia que la electrónica adquiere en la seguridad de los productos ha crecido inexorablemente, puesto que cada vez ésta copa una mayor influencia en la funcionalidad de los mismos. Pero, por supuesto, este hecho viene acompañado de una necesidad constante de mayores prestaciones para cumplir con los requerimientos funcionales, al tiempo que se mantienen los costes y el consumo en unos niveles reducidos. En este escenario, la industria está realizando esfuerzos para proveer una tecnología que cumpla con todas las especificaciones de potencia, consumo y precio, a costa de un incremento en la vulnerabilidad a múltiples tipos de fallos conocidos o la introducción de nuevos. Para ofrecer una solución a los fallos nuevos y crecientes en los sistemas, los diseñadores han recurrido a técnicas tradicionalmente asociadas a sistemas críticos para la seguridad, que ofrecen en general resultados sub-óptimos. De hecho, las arquitecturas empotradas modernas ofrecen la posibilidad de optimizar las propiedades de confiabilidad al habilitar la interacción de los niveles de hardware, firmware y software en el proceso. No obstante, ese punto no está resulto todavía. Se necesitan avances en todos los niveles en la mencionada dirección para poder alcanzar los objetivos de una tolerancia a fallos flexible, robusta, resiliente y a bajo coste. El trabajo presentado aquí se centra en el nivel de hardware, con la consideración de fondo de una potencial integración en una estrategia holística. Los esfuerzos de esta tesis se han centrado en los siguientes aspectos: (i) la introducción de modelos de fallo adicionales requeridos para la representación adecuada de efectos físicos surgentes en las tecnologías de manufactura actuales, (ii) la provisión de herramientas y métodos para la inyección eficiente de los modelos propuestos y de los clásicos, (iii) el análisis del método óptimo para estudiar la robustez de sistemas mediante el uso de inyección de fallos extensiva, y la posterior correlación con capas de más alto nivel en un esfuerzo por recortar el tiempo y coste de desarrollo, (iv) la provisión de nuevos métodos de detección para cubrir los retos planteados por los modelos de fallo propuestos, (v) la propuesta de estrategias de mitigación enfocadas hacia el tratamiento de dichos escenarios de amenaza y (vi) la introducción de una metodología automatizada de despliegue de diversos mecanismos de tolerancia a fallos de forma robusta y sistemática. Los resultados de la presente tesis constituyen un conjunto de herramientas y métodos para ayudar al diseñador de sistemas críticos en su tarea de desarrollo de diseños robustos, validados y en tiempo adaptados a su aplicación.[CA] La rellevància que l'electrònica adquireix en la seguretat dels productes ha crescut inexorablement, puix cada volta més aquesta abasta una major influència en la funcionalitat dels mateixos. Però, per descomptat, aquest fet ve acompanyat d'un constant necessitat de majors prestacions per acomplir els requeriments funcionals, mentre es mantenen els costos i consums en uns nivells reduïts. Donat aquest escenari, la indústria està fent esforços per proveir una tecnologia que complisca amb totes les especificacions de potència, consum i preu, tot a costa d'un increment en la vulnerabilitat a diversos tipus de fallades conegudes, i a la introducció de nous tipus. Per oferir una solució a les noves i creixents fallades als sistemes, els dissenyadors han recorregut a tècniques tradicionalment associades a sistemes crítics per a la seguretat, que en general oferixen resultats sub-òptims. De fet, les arquitectures empotrades modernes oferixen la possibilitat d'optimitzar les propietats de confiabilitat en habilitar la interacció dels nivells de hardware, firmware i software en el procés. Tot i això eixe punt no està resolt encara. Es necessiten avanços a tots els nivells en l'esmentada direcció per poder assolir els objectius d'una tolerància a fallades flexible, robusta, resilient i a baix cost. El treball ací presentat se centra en el nivell de hardware, amb la consideració de fons d'una potencial integració en una estratègia holística. Els esforços d'esta tesi s'han centrat en els següents aspectes: (i) la introducció de models de fallada addicionals requerits per a la representació adequada d'efectes físics que apareixen en les tecnologies de fabricació actuals, (ii) la provisió de ferramentes i mètodes per a la injecció eficient del models proposats i dels clàssics, (iii) l'anàlisi del mètode òptim per estudiar la robustesa de sistemes mitjançant l'ús d'injecció de fallades extensiva, i la posterior correlació amb capes de més alt nivell en un esforç per retallar el temps i cost de desenvolupament, (iv) la provisió de nous mètodes de detecció per cobrir els reptes plantejats pels models de fallades proposats, (v) la proposta d'estratègies de mitigació enfocades cap al tractament dels esmentats escenaris d'amenaça i (vi) la introducció d'una metodologia automatitzada de desplegament de diversos mecanismes de tolerància a fallades de forma robusta i sistemàtica. Els resultats de la present tesi constitueixen un conjunt de ferramentes i mètodes per ajudar el dissenyador de sistemes crítics en la seua tasca de desenvolupament de dissenys robustos, validats i a temps adaptats a la seua aplicació.Espinosa García, J. (2016). New Fault Detection, Mitigation and Injection Strategies for Current and Forthcoming Challenges of HW Embedded Designs [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/73146TESISCompendi

    Online Timing Slack Measurement and its Application in Field-Programmable Gate Arrays

    Get PDF
    Reliability, power consumption and timing performance are key concerns for today's integrated circuits. Measurement techniques capable of quantifying the timing characteristics of a circuit, while it is operating, facilitate a range of benefits. Delay variation due to environmental and operational conditions, and degradation can be monitored by tracking changes in timing performance. Using the measurements in a closed-loop to control power supply voltage or clock frequency allows for the reduction of timing safety margins, leading to improvements in power consumption or throughput performance through the exploitation of better-than worst-case operation. This thesis describes a novel online timing slack measurement method which can directly measure the timing performance of a circuit, accurately and with minimal overhead. Enhancements allow for the improvement of absolute accuracy and resolution. A compilation flow is reported that can automatically instrument arbitrary circuits on FPGAs with the measurement circuitry. On its own this measurement method is able to track the "health" of an integrated circuit, from commissioning through its lifetime, warning of impending failure or instigating pre-emptive degradation mitigation techniques. The use of the measurement method in a closed-loop dynamic voltage and frequency scaling scheme has been demonstrated, achieving significant improvements in power consumption and throughput performance.Open Acces

    NEGATIVE BIAS TEMPERATURE INSTABILITY STUDIES FOR ANALOG SOC CIRCUITS

    Get PDF
    Negative Bias Temperature Instability (NBTI) is one of the recent reliability issues in sub threshold CMOS circuits. NBTI effect on analog circuits, which require matched device pairs and mismatches, will cause circuit failure. This work is to assess the NBTI effect considering the voltage and the temperature variations. It also provides a working knowledge of NBTI awareness to the circuit design community for reliable design of the SOC analog circuit. There have been numerous studies to date on the NBTI effect to analog circuits. However, other researchers did not study the implication of NBTI stress on analog circuits utilizing bandgap reference circuit. The reliability performance of all matched pair circuits, particularly the bandgap reference, is at the mercy of aging differential. Reliability simulation is mandatory to obtain realistic risk evaluation for circuit design reliability qualification. It is applicable to all circuit aging problems covering both analog and digital. Failure rate varies as a function of voltage and temperature. It is shown that PMOS is the reliabilitysusceptible device and NBTI is the most vital failure mechanism for analog circuit in sub-micrometer CMOS technology. This study provides a complete reliability simulation analysis of the on-die Thermal Sensor and the Digital Analog Converter (DAC) circuits and analyzes the effect of NBTI using reliability simulation tool. In order to check out the robustness of the NBTI-induced SOC circuit design, a bum-in experiment was conducted on the DAC circuits. The NBTI degradation observed in the reliability simulation analysis has given a clue that under a severe stress condition, a massive voltage threshold mismatch of beyond the 2mV limit was recorded. Bum-in experimental result on DAC proves the reliability sensitivity of NBTI to the DAC circuitry

    Runtime Monitoring for Dependable Hardware Design

    Get PDF
    Mit dem Voranschreiten der Technologieskalierung und der Globalisierung der Produktion von integrierten Schaltkreisen eröffnen sich eine Fülle von Schwachstellen bezüglich der Verlässlichkeit von Computerhardware. Jeder Mikrochip wird aufgrund von Produktionsschwankungen mit einem einzigartigen Charakter geboren, welcher sich durch seine Arbeitsbedingungen, Belastung und Umgebung in individueller Weise entwickelt. Daher sind deterministische Modelle, welche zur Entwurfszeit die Verlässlichkeit prognostizieren, nicht mehr ausreichend um Integrierte Schaltkreise mit Nanometertechnologie sinnvoll abbilden zu können. Der Bedarf einer Laufzeitanalyse des Zustandes steigt und mit ihm die notwendigen Maßnahmen zum Erhalt der Zuverlässigkeit. Transistoren sind anfällig für auslastungsbedingte Alterung, die die Laufzeit der Schaltung erhöht und mit ihr die Möglichkeit einer Fehlberechnung. Hinzu kommen spezielle Abläufe die das schnelle Altern des Chips befördern und somit seine zuverlässige Lebenszeit reduzieren. Zusätzlich können strahlungsbedingte Laufzeitfehler (Soft-Errors) des Chips abnormales Verhalten kritischer Systeme verursachen. Sowohl das Ausbreiten als auch das Maskieren dieser Fehler wiederum sind abhängig von der Arbeitslast des Systems. Fabrizierten Chips können ebenfalls vorsätzlich während der Produktion boshafte Schaltungen, sogenannte Hardwaretrojaner, hinzugefügt werden. Dies kompromittiert die Sicherheit des Chips. Da diese Art der Manipulation vor ihrer Aktivierung kaum zu erfassen ist, ist der Nachweis von Trojanern auf einem Chip direkt nach der Produktion extrem schwierig. Die Komplexität dieser Verlässlichkeitsprobleme machen ein einfaches Modellieren der Zuverlässigkeit und Gegenmaßnahmen ineffizient. Sie entsteht aufgrund verschiedener Quellen, eingeschlossen der Entwicklungsparameter (Technologie, Gerät, Schaltung und Architektur), der Herstellungsparameter, der Laufzeitauslastung und der Arbeitsumgebung. Dies motiviert das Erforschen von maschinellem Lernen und Laufzeitmethoden, welche potentiell mit dieser Komplexität arbeiten können. In dieser Arbeit stellen wir Lösungen vor, die in der Lage sind, eine verlässliche Ausführung von Computerhardware mit unterschiedlichem Laufzeitverhalten und Arbeitsbedingungen zu gewährleisten. Wir entwickelten Techniken des maschinellen Lernens um verschiedene Zuverlässigkeitseffekte zu modellieren, zu überwachen und auszugleichen. Verschiedene Lernmethoden werden genutzt, um günstige Überwachungspunkte zur Kontrolle der Arbeitsbelastung zu finden. Diese werden zusammen mit Zuverlässigkeitsmetriken, aufbauend auf Ausfallsicherheit und generellen Sicherheitsattributen, zum Erstellen von Vorhersagemodellen genutzt. Des Weiteren präsentieren wir eine kosten-optimierte Hardwaremonitorschaltung, welche die Überwachungspunkte zur Laufzeit auswertet. Im Gegensatz zum aktuellen Stand der Technik, welcher mikroarchitektonische Überwachungspunkte ausnutzt, evaluieren wir das Potential von Arbeitsbelastungscharakteristiken auf der Logikebene der zugrundeliegenden Hardware. Wir identifizieren verbesserte Features auf Logikebene um feingranulare Laufzeitüberwachung zu ermöglichen. Diese Logikanalyse wiederum hat verschiedene Stellschrauben um auf höhere Genauigkeit und niedrigeren Overhead zu optimieren. Wir untersuchten die Philosophie, Überwachungspunkte auf Logikebene mit Hilfe von Lernmethoden zu identifizieren und günstigen Monitore zu implementieren um eine adaptive Vorbeugung gegen statisches Altern, dynamisches Altern und strahlungsinduzierte Soft-Errors zu schaffen und zusätzlich die Aktivierung von Hardwaretrojanern zu erkennen. Diesbezüglich haben wir ein Vorhersagemodell entworfen, welches den Arbeitslasteinfluss auf alterungsbedingte Verschlechterungen des Chips mitverfolgt und dazu genutzt werden kann, dynamisch zur Laufzeit vorbeugende Techniken, wie Task-Mitigation, Spannungs- und Frequenzskalierung zu benutzen. Dieses Vorhersagemodell wurde in Software implementiert, welche verschiedene Arbeitslasten aufgrund ihrer Alterungswirkung einordnet. Um die Widerstandsfähigkeit gegenüber beschleunigter Alterung sicherzustellen, stellen wir eine Überwachungshardware vor, welche einen Teil der kritischen Flip-Flops beaufsichtigt, nach beschleunigter Alterung Ausschau hält und davor warnt, wenn ein zeitkritischer Pfad unter starker Alterungsbelastung steht. Wir geben die Implementierung einer Technik zum Reduzieren der durch das Ausführen spezifischer Subroutinen auftretenden Belastung von zeitkritischen Pfaden. Zusätzlich schlagen wir eine Technik zur Abschätzung von online Soft-Error-Schwachstellen von Speicherarrays und Logikkernen vor, welche auf der Überwachung einer kleinen Gruppe Flip-Flops des Entwurfs basiert. Des Weiteren haben wir eine Methode basierend auf Anomalieerkennung entwickelt, um Arbeitslastsignaturen von Hardwaretrojanern während deren Aktivierung zur Laufzeit zu erkennen und somit eine letzte Verteidigungslinie zu bilden. Basierend auf diesen Experimenten demonstriert diese Arbeit das Potential von fortgeschrittener Feature-Extraktion auf Logikebene und lernbasierter Vorhersage basierend auf Laufzeitdaten zur Verbesserung der Zuverlässigkeit von Harwareentwürfen
    corecore