
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

April 2021

ENABLING IOT AUTHENTICATION, PRIVACY AND SECURITY VIA ENABLING IOT AUTHENTICATION, PRIVACY AND SECURITY VIA

BLOCKCHAIN BLOCKCHAIN

Md Nazmul Islam
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

Recommended Citation Recommended Citation
Islam, Md Nazmul, "ENABLING IOT AUTHENTICATION, PRIVACY AND SECURITY VIA BLOCKCHAIN"
(2021). Doctoral Dissertations. 2108.
https://scholarworks.umass.edu/dissertations_2/2108

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/2108?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2108&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

ENABLING IOT AUTHENTICATION, PRIVACY AND SECURITY VIA ENABLING IOT AUTHENTICATION, PRIVACY AND SECURITY VIA

BLOCKCHAIN BLOCKCHAIN

Md Nazmul Islam

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

ENABLING IOT AUTHENTICATION, PRIVACY AND SECURITY
VIA BLOCKCHAIN

A Dissertation Presented

by

MD NAZMUL ISLAM

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2021

Electrical and Computer Engineering

© Copyright by Md Nazmul Islam 2021

All Rights Reserved

ENABLING IOT AUTHENTICATION, PRIVACY AND SECURITY
VIA BLOCKCHAIN

A Dissertation Presented

by

MD NAZMUL ISLAM

Approved as to style and content by:

Sandip Kundu, Chair

Wayne P. Burleson, Member

Daniel E. Holcomb, Member

Brian N. Levine, Member

Christopher V. Hollot, Department Chair
Electrical and Computer Engineering

DEDICATION

To my parents.

ACKNOWLEDGMENTS

First and foremost, I am grateful to my advisor Prof. Sandip Kundu for hisguidance

and support during my stay at UMass. I am forever indebted to the research skills and

the engineering knowledge he has passed through his supervision. His research and teaching

dedication has encouraged me immensely during my Ph.D. and will always be a great source

of inspiration.

I want to thank Prof. Wayne Burleson, Prof. Dan Holcomb, and Prof. Brian Levine for

agreeing to be part of my committee. I am greatly indebted to Prof. Levine for providing

vital feedback as part of my committee. I want to thank Prof. Burleson and Prof Holcomb

for their constructive inputs, which have played a significant part in shaping this research.

Special thanks to Prof. Holcomb for always giving great feedback whenever I asked for any

guidance.

Also, I would like to thank my lab-mate Vinay Patil, for his contributions to various

projects. Technical discussions with him have been a great learning curve. Thanks to all of

our current and past lab members for creating a great work culture and ambiance. I will

forever cherish my experiences and the friends I made at Amherst. Without their support,

my Amherst experience would not be the same.

Finally, my graduate life would not have been possible without the sacrifices of my

parents. I will forever be thankful for their unconditional love and support.

v

ABSTRACT

ENABLING IOT AUTHENTICATION, PRIVACY AND SECURITY
VIA BLOCKCHAIN

FEBRUARY 2021

MD NAZMUL ISLAM

B.Sc., BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sandip Kundu

Although low-power and Internet-connected gadgets and sensors are increasingly inte-

grated into our lives, the optimal design of these systems remains an issue. In particular,

authentication, privacy, security, and performance are critical success factors. Furthermore,

with emerging research areas such as autonomous cars, advanced manufacturing, smart

cities, and building, usage of Internet of Things (IoT) devices is expected to skyrocket [61].

A single compromised node can be turned into a malicious one that brings down whole

systems or causes disasters in safety-critical applications. This dissertation addresses the

critical problems of (i) device management, (ii) data management, and (iii) service man-

agement in IoT systems. In particular, we propose an integrated platform solution for IoT

device authentication, data privacy, and service security via blockchain-based smart con-

tracts. We ensure IoT device authentication by blockchain-based IC traceability system,

from its fabrication to its end-of-life, allowing both the supplier and a potential customer to

verify an IC’s provenance. Results show that our proposed consortium blockchain framework

implementation in Hyperledger Fabric for IC traceability achieves a throughput of 35 trans-

actions per second (tps). To corroborate the blockchain information, we authenticate the IC

securely and uniquely with an embedded Physically Unclonable Function (PUF). For reli-

vi

able Weak PUF-based authentication, our proposed accelerated aging technique reduces the

cumulative burn-in cost by ∼ 56%. We also propose a blockchain-based solution to integrate

the privacy of data generated from the IoT devices by giving users control of their privacy.

The smart contract controlled trust-base ensures that the users have private access to their

IoT devices and data. We then propose a remote configuration of IC features via smart

contracts, where an IC can be programmed repeatedly and securely. This programmability

will enable users to upgrade IC features or rent upgraded IC features for a fixed period after

users have purchased the IC. We tailor the hardware to meet the blockchain performance.

Our on-die hardware module design enforces the hardware configuration’s secure execution

and uses only 2,844 slices in the Xilinx Zedboard Zynq Evaluation board. The blockchain

framework facilitates decentralized IoT, where interacting devices are empowered to execute

digital contracts autonomously.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

CHAPTER

1. INTRODUCTION . 1

1.1 Blockchain . 1

1.1.1 Blockchain Classification . 2
1.1.2 Smart Contracts . 3
1.1.3 Security of Blockchain and Smart Contracts . 3

1.2 PUFs . 4

1.2.1 Strong PUFs . 4
1.2.2 Weak PUFs . 4

1.3 Scope of this Work . 5
1.4 Dissertation Outline . 6
1.5 Collaborators . 6

2. ENABLING IC TRACEABILITY VIA BLOCKCHAIN PEGGED TO
EMBEDDED PUF . 7

2.1 Introduction . 7
2.2 Related Works . 9

2.2.1 RFID-based Traceability . 10
2.2.2 Package ID-based Traceability . 10
2.2.3 Chip ID-based Traceability . 11
2.2.4 Blockchain-based Traceability . 11

2.3 Motivation . 12

viii

2.3.1 Transparency and End-to-end Visibility with Blockchain 12
2.3.2 Blockchain vs Private Databases for IC Traceability 13
2.3.3 Blockchain vs Centralized Database for IC Traceability 13

2.4 Proposed IC Traceability Protocol based on Customized Blockchain
Transactions . 13

2.4.1 Approach . 14
2.4.2 Transaction and Blockchain Creation . 15

2.4.2.1 Ownership addresses and keys . 15
2.4.2.2 Transaction customization . 16
2.4.2.3 Incorporating a transaction to a block and creating a

blockchain . 17

2.4.3 Protocol for Ownership Transfer . 18
2.4.4 Protocol Demonstration and Discussion . 20

2.5 Proposed IC Traceability Protocol based on Smart Contracts 20

2.5.1 System Requirements and Smart Contract Implementation 21

2.5.1.1 Ownership Keys and Addresses . 22
2.5.1.2 Smart Contract Implementation by the Consortium 22

2.5.2 Proposed IC Traceability Protocol . 25

2.5.2.1 Enrollment of a Device by the Manufacturer 25
2.5.2.2 Procedure for Ownership Transfer . 25

2.5.3 Authentication by Strong and Weak PUFs . 26

2.5.3.1 Authentication via Strong PUFs . 27
2.5.3.2 Authentication via Weak PUFs . 28

2.5.4 Counterfeit Detection by the Proposed Traceability Protocol 30

2.5.4.1 Recycled & Remarked ICs . 30
2.5.4.2 Overproduced ICs . 30
2.5.4.3 Cloned ICs and Tampered ICs . 31

2.5.5 Protocol Demonstration in Ethereum Blockchain . 32
2.5.6 Protocol Demonstration in Hyperledger Fabric . 33

2.5.6.1 Blockchain Network Model . 33
2.5.6.2 Implementation of the Chaincode and Access Control

Policies . 33
2.5.6.3 Performance Evaluation . 34
2.5.6.4 Operational Cost of Consortium Blockchain 36

2.6 Analysis of the Protocols . 36

ix

2.6.1 Security . 36
2.6.2 Privacy . 38
2.6.3 Reliability . 38
2.6.4 Performance . 39
2.6.5 Practicality of the Proposed Protocol . 40

2.7 Limitations ans Discussion . 42
2.8 Concluding Remarks . 42

3. PRESERVING IOT PRIVACY IN SHARING ECONOMY VIA
SMART CONTRACTS .43

3.1 Introduction . 43
3.2 Threat Model and Motivation . 44

3.2.1 Threat Model . 44
3.2.2 Motivation . 45

3.3 Related Works . 46
3.4 Proposed Methodology . 47

3.4.1 Implementing Smart Contract . 47
3.4.2 Transferring Tenancy to a Tenant . 47
3.4.3 Establishing a Shared Encryption Key . 49
3.4.4 Encrypting IoT Data with the Shared Encryption Key 50
3.4.5 Change of Encryption Key after Tenancy Period . 51

3.5 Hardware Collateral for the Smart Contract . 51
3.6 Protocol Demonstration and Discussion . 51
3.7 Limitations and Discussion . 52
3.8 Concluding Remarks . 53

4. IMPROVING RELIABILITY OF WEAK PUFS VIA
ACCELERATED AGING .54

4.1 Introduction . 54
4.2 Background and Motivation . 55

4.2.1 Weak PUF . 55
4.2.2 PUF Reliability . 56
4.2.3 Temporal Majority Voting . 57
4.2.4 Negative Bias Temperature Instability . 58
4.2.5 Burn-In (Accelerated Aging) . 60
4.2.6 PUF Reliability using accelerated aging . 61

4.3 Methodology . 61

4.3.1 Weak PUF System Design . 61
4.3.2 Process Variation and Error Rate . 63

x

4.4 Burn-in time reduction . 66

4.4.1 Weak PUF Designs . 66
4.4.2 Thermal Noise Errors . 69
4.4.3 Error Rate vs Mismatch . 69
4.4.4 Modeling Process Variation. 71

4.4.4.1 Planar MOSFET . 71
4.4.4.2 FinFET . 72

4.4.5 Heterogeneous Error Model . 73
4.4.6 Cumulative Burn-in Time . 73

4.5 Concluding Remarks . 76

5. PMU-TROJAN: ON EXPLOITING POWER MANAGEMENT SIDE
CHANNEL FOR INFORMATION LEAKAGE .77

5.1 Introduction . 77
5.2 Related Works . 80
5.3 Background . 81

5.3.1 Hardware Trojans . 81
5.3.2 Dynamic Voltage and Frequency Scaling (DVFS) . 82
5.3.3 Power Management Unit (PMU) . 83
5.3.4 Remote Server Maintenance: Integrated Management Card 83

5.4 Proposed Methodology . 84

5.4.1 Threat Model . 84
5.4.2 Trojan Insertion . 84
5.4.3 Trojan Activation . 85
5.4.4 Trojan Operation . 87

5.5 Experimental Results . 88
5.6 Trojan Detection . 88
5.7 Concluding Remarks . 89

6. REMOTE CONFIGURATION OF INTEGRATED CIRCUIT
FEATURES VIA SMART CONTRACTS .90

6.1 Introduction . 90
6.2 Related Works . 93
6.3 Motivation . 93

6.3.1 Motivation for Post-production IC Customization 93
6.3.2 Motivation for Smart Contract-based Solution . 94

6.4 Proposed Protocol and Smart Contract Implementation . 96

xi

6.4.1 System Design . 96
6.4.2 Implementation of Smart Contracts . 96

6.4.2.1 Register Device . 96
6.4.2.2 Upgrade Configuration . 98
6.4.2.3 Query Configuration . 99

6.5 Proposed Hardware-software Co-design for Remote Configuration 100

6.5.1 Software . 100
6.5.2 Hardware . 101

6.5.2.1 Hardware configuration module (HCM) 101
6.5.2.2 Timestamp module . 102
6.5.2.3 Crypto module . 103

6.6 Implementation and Protocol Demonstration . 103

6.6.1 Implementation of the Smart Contract . 104
6.6.2 Implementation of Feature Configuration by Hardware 104

6.6.2.1 Target device and the Hardware Architecture 104
6.6.2.2 Gateway . 105
6.6.2.3 Protocol Demonstration . 105

6.7 Results and Evaluation . 106
6.8 Security Analysis of the Protocol . 107
6.9 Limitations and Discussion . 109

6.9.1 Performance . 109
6.9.2 Vulnerabilities in Smart Contracts . 111
6.9.3 Transactional Privacy . 112

6.10 Concluding Remarks . 112

7. CONCLUSION . 113

7.1 Summary of Contributions . 113
7.2 Future Works . 114

APPENDICES

A. MULTI-HOST HYPERLEDGER FABRIC IMPLEMENTATION 115
B. SAMPLE CODE SNIPPET FOR TRIGGERING THE

PMU-TROJAN . 129

BIBLIOGRAPHY . 130

xii

LIST OF TABLES

Table Page

2.1 Transaction format for ownership transfer. The Size is for a single IC
ownership transfer. 16

2.2 Structure of a Block . 18

2.3 Operation cost for a chip in supply chain. 32

2.4 Comparative Performance Analysis of the Proposed IC Traceability
Protocol. 40

3.1 Operation cost for the proposed smart contract transactions. 52

4.1 Implementation details for various Weak PUF design configurations 67

4.2 Results for reduction in Cumulative Burn-in time for various PUF
configurations . 74

5.1 Frequency and voltage level change . 88

6.1 Estimates of transaction fees for various operations. 104

6.2 Resource utilization of our hardware modules. 107

6.3 Device utilization summary. 107

B.1 Code Snippet for Triggering the PMU-Trojan . 129

xiii

LIST OF FIGURES

Figure Page

2.1 Detailed diagram of the ownership transfer protocol. *For the manufacturer,
this transaction will be the genesis transaction. 19

2.2 Proposed approach for IC traceability from manufacturer to the end-user.
OEM: Original Equipment Manufacturer. 21

2.3 Smart contract implementation for IC traceability. 22

2.4 Detailed diagram of the ownership transfer protocol. Transactions requiring
payment of fees are drawn with solid black lines. 26

2.5 Hardware authentication module for generating cryptographic key from
PUF embedded in an SoC [91]. 28

2.6 (a) Device enrollment and (b) authentication process via Weak PUFs. 29

2.7 Chip activation using active metering [181] before enrollment of
authentication data in blockchain. Green arrow indicates secure link
established by the designer and manufacturer’s public key infrastructure.
ATE: Automated Test Equipment. 31

2.8 Hyperledger Fabric network model for our proposed protocol. 33

2.9 Hyperledger Caliper benchmark result. 34

2.10 Throughput and latency of the registerDevice() transaction in the
proposed blockchain implementation using Hyperledger Fabric. 35

2.11 Schematic of typical in-vehicle network architecture of a modern
automobile. All inter-bus communication is done exclusively only over
the gateway ECU. CAN - Controller Area Network, MOST - Media
Oriented Systems Transport. 41

3.1 Threats associated with accessing indoor IP camera by home-owner from
remote location in a home-sharing economy scenario. 45

3.2 Block diagram of a Trusted Platform Module (green block) embedded into
the camera’s software architecture [8]. 46

xiv

3.3 Detailed diagram showing the role of all entities in the proposed IoT privacy
protection protocol. 48

3.4 Detailed diagram of the tenancy transfer protocol. 49

3.5 Detailed diagram of the privacy protection protocol: (1) the smart contract
notifies the IP camera about the tenancy change, (2) IP camera
computes the symmetric key from tenant’s public key and encrypts
video data, (3) tenant calculates the symmetric key and decrypts the
video data. The dotted lines indicate inaccessible data. 50

4.1 SRAM-like cross-coupled inverter PUF cell (Ref) [213] . 56

4.2 Error rate reduction due to Temporal Majority Voting . 59

4.3 Block Diagram of the proposed reliability enhancement scheme (from [112],
our earlier paper) . 62

4.4 Flowchart illustrating the operation of Burn-in Optimizer 64

4.5 SRAM-like cross-coupled inverter PUF cell (Ref) [213] . 65

4.6 Error rate correlation with PUF cell threshold voltage mismatch 66

4.7 Modified parallel active loads-based PUF design (D1) [166] 68

4.8 Modified current mirror-based PUF design (D2) [166] . 68

4.9 Error rate correlation with PUF cell threshold voltage mismatch for
alternate Weak PUF designs ({D1,D2}) based on [166] 70

4.10 Error rate correlation with PUF cell threshold voltage mismatch for Ref
under nominal and boosted supply voltage (1.2V) . 71

4.11 Error rate correlation with PUF cell threshold voltage mismatch for planar
MOSFET (Ref) and FinFET (F1) designs . 72

5.1 Minimalistic hardware Trojan example. 81

5.2 Block diagram of MPSoC embedded with PMU [81]. 82

5.3 MPSoC infected with hardware Trojan. 85

5.4 Flow chart illustrating the proposed methodology. 86

5.5 An example attack scenario at data center. 87

xv

6.1 An example application that stores a user’s credit card information is
installed in the user’s device and vendor repository. Before upgrading
the chip configuration, the device and the vendor repository identify
each other. Then, the credit card stored by the cloud service is charged
after the user upgrades the device configuration. 91

6.2 User’s device uses smart contracts in Ethereum to rent upgraded feature
configurations. 95

6.3 Proposed protocol for remote configuration of IC features using smart
contracts. Transactions requiring payment of fees are drawn with solid
black lines. 97

6.4 Proposed hardware design for remote configuration of IC features (FC:
Functional Component). 102

6.5 Experimental setup for demonstrating feature configuration using proposed
hardware design. The Raspberry Pi works as the gateway. 105

6.6 HTTP POST Content sent from the Zedboard via ESP8266-01. 106

6.7 Authentication of the manufacturer, integrity and confidentiality of the
configuration in our protocol. 109

6.8 Transaction times of upgradeConfiguration() for increasing gas price in
the Main Ethereum network with a gas limit of 83500. 110

6.9 Cumulative density function (CDF) for the upgradeConfiguration()
transaction times in the Main Ethereum network with a gas price of
40× 10−9 Ether and a gas limit of 83500. 111

xvi

CHAPTER 1

INTRODUCTION

The increasing availability of computing and communication infrastructure has allowed

electronic devices surrounding us to be interconnected to work smartly, collectively called

the Internet of Things (IoT). The intelligent, interconnected IoT devices bring significant

and indispensable convenience and intelligence in every aspect of our lives. However, IoT is

still confronting several challenges and manifesting a series of issues that we need to address

urgently. Counterfeit hardware, data privacy, software faults, system management difficul-

ties, security issues during communication, and remote device service management are vital

issues for current IoT infrastructure. Although several works have proposed new standards,

lightweight protocols, and novel frameworks, some IoT challenges remain unresolved.

To address the challenges of implementing IoT infrastructure, a holistic new approach

and technical solution are necessary. The inherently distributed nature of IoT necessitates

the design of distributed solutions and novel architecture models. In this dissertation, we

propose that the blockchain technology can address some of the weaknesses mentioned above.

In particular, we propose an integrated platform solution for IoT device authentication, data

privacy, and service security via blockchain. This chapter first explains a few backgrounds

and the motivation behind the work. Derived from this motivation, we present the scope of

the work. Finally, we give an overview of the structure of this dissertation.

1.1 Blockchain

Blockchains are distributed ledgers that maintain a continuously growing list of ordered

records called blocks [157]. A distributed ledger is a type of shared database, replicated, and

synchronized among the members of a decentralized network. Each block contains a list of

transactions, timestamp, nonce, and a link to the previous block, forming a chronological

chain. A transaction is a transfer of any asset with a value from the current owner to a new

1

owner. To submit transactions to the blockchain, each node uses a pair of private and public

keys. First, the node constructs and signs a transaction and broadcasts it to the blockchain

network. Each blockchain node validates any transactions it receives before broadcasting

them to its peers, dropping invalid transactions. The miner nodes in the network construct

a new block to record these valid transactions and broadcast it to their peers, who verify

it before appending it to the ledger. This process repeats continuously. To resolve different

states, or “forks” in the network, each blockchain employs a mechanism, known as consensus

[206]. Figure 2.2 illustrates a blockchain formed from a sequence of blocks, each containing

multiple transactions.

Often introduced as the technology behind Bitcoin [157, 191], blockchain has potential

applications in numerous industries beyond financial services [123,202]: from real estate [156,

204] and health-care [122] to utilities [37,131], the government sector [215], and IoT [72,100].

These applications have been possible because of its decentralized nature. Applications that

could previously run only through a trusted intermediary can now operate without a central

authority and achieve the same functionality. The distributed ledger facilitates business

networks wherever anything of value needs to be tracked and traded without requiring

central management.

1.1.1 Blockchain Classification

There are three types of blockchain: public, private, and consortium. Public blockchains

are accessible to every Internet user. The public nature stems from the fact that everyone in

the blockchain network can freely and unconditionally participate in the consensus process.

A private blockchain is a blockchain where write permissions are kept centralized to one

organization [54].

In a consortium blockchain, a pre-selected group of organizations control the consensus

process instead of allowing any user within a blockchain network to participate in the con-

sensus process or allowing a single organization to have full control. The right to read the

blockchain can be made public or restricted to the consortium blockchain participants. A

hybrid approach is also possible that allows public members to make a limited number of

queries [54].

2

1.1.2 Smart Contracts

Smart contracts are blockchain-powered autonomous computer programs that, once

started, execute automatically the conditions defined beforehand, such as the verification,

facilitation, or enforcement of the negotiation or performance of a contract [203]. Smart

contracts give us distributed trustworthy computations on a blockchain platform. They

translate the existing contractual clauses into embedded hardware and software so that it

can self-verify that conditions have been met to execute the contract [55]. Smart contracts

contain code functions and interact with other contracts, make decisions, store data, and

send tokens/money to others.

The main benefit of deploying smart contracts in a blockchain is the blockchain’s as-

surance that the contract terms cannot be modified. The blockchain makes it extremely

expensive to modify or tamper the contract terms. It generates the confidence and security

necessary to automate the declarative phrases without resorting to a third party.

1.1.3 Security of Blockchain and Smart Contracts

Despite the widespread adoption of blockchain-based solutions, the blockchain systems

encounter several security threats. The two most fundamental attacks against blockchain

systems are the double-spend attack [164] and the selfish mining attack [48]. In a double-

spend scenario, an attacker creates a transaction that moves funds to a merchant’s address.

After the transaction appears in the newest block on the main branch, the attacker takes

possession of the purchased goods. The attacker then releases two blocks immediately,

using his mining power, with a transaction in the first that transfers the funds to a second

attacker-owned address. In this way, the attacker can have the goods and his coin back.

In a selfish mining attack, the selfish miner keeps discovered blocks secret and continues

to mine on top of them, hoping to gain a larger lead on the public chain, and only publishes

the selfish chain to claim the rewards when the public chain approaches the length of the

selfish chain. Though risking some secret blocks’ rewards, once the selfish chain is longer than

its competitor, the selfish miner can securely invalidate honest miners’ competing blocks.

Accordingly, the overall expectation of the selfish miner’s relative revenue increases.

3

Apart from the double-spend attack and the selfish mining attack, some of the well-known

attacks on blockchains include the eclipse attack [48], private key leakage, vulnerabilities in

smart contracts [35]. Several solutions have been proposed in the literature to counter these

threats that increase the security, efficiency, and transparency of blockchain systems [47,163]

and ensure smart contracts’ security [46] and privacy [127,225].

1.2 PUFs

Physical unclonable functions (PUFs) harness the intrinsic disorder in an IC introduced

during the fabrication process and provide a set of unique input to output mappings, called

challenge-response pairs (CRPs) [65, 200]. Based on the implementation, a PUF that pro-

vides a limited set of CRPs is classified as a Weak PUF, while a design that can produce an

exponential number of CRPs is called a Strong PUF.

1.2.1 Strong PUFs

Strong PUFs can be leveraged for an authentication mechanism to uniquely identify an

IC and detect tampering, impersonation, or substitution of such components. The salient

features of a Strong PUF are the uniqueness of responses across different PUFs to the

same challenge, ensuring the reliability of a response in the presence of noise, and the

unclonability in the form of being resistant to model-building attacks [183]. Even if a Strong

PUF exhibits ideal uniqueness and unclonability [212], it can still be susceptible to noise.

Hence, authentication using a Strong PUF requires acquiring multiple CRPs to check against

a database and applying a threshold to account for noise. The number of CRPs required

depends on the total population of possible devices that need to be distinguished and the

noise that may affect the system [175].

1.2.2 Weak PUFs

Weak PUFs can be leveraged for secure cryptographic key generation to combat semi-

conductor device counterfeiting, theft of service, and tampering. Weak PUFs rely on intrinsic

process variations to produce repeatable and unique fingerprints. This fingerprint is further

processed to generate a unique cryptographic key. For generating a reliable key, the fin-

4

gerprint needs to be reproducible over time, even under changing environmental conditions.

However, noise in the system can affect the fingerprint and introduce errors. To alleviate

noise and generate stable keys, literature works have proposed several solutions, such as

error-correcting codes [64], accelerated device aging [112,113], built-in self-test [43], etc.

1.3 Scope of this Work

The Internet of Things, refers to the billions of physical devices worldwide connected to

the Internet, all collecting and sharing data. Centralized approaches to building an Internet

of hundreds of billions of things are expensive, do not scale, lack privacy, pose security

challenges to large-scale enterprises, and are not designed for business model endurance

[111]. The use of blockchain as a reliable, distributed ledger of transactions and peer-to-

peer communication among participating nodes can offer greater scalability and security for

the IoT. It can offer multidimensional reinforcements for the IoT infrastructure. In this

work, we propose blockchain-based solutions for building smart mechanisms in IoT systems

contributing to device management, data management, and service management.

We propose a blockchain-based IC traceability system for IoT device authentication.

Our proposed traceability system allows both the supplier and a potential customer to ver-

ify an IC’s provenance, from its fabrication to its end-of-life. To corroborate the blockchain

information, we authenticate the IC securely and uniquely by embedded Physically Unclon-

able Function (PUF). We propose a method to enhance the reliability of Weak PUFs via

post-Silicon accelerated aging.

IoT devices send out sensitive information that must be protected from unauthorized

access, usage, or disclosure. We propose a blockchain-based protocol that integrates the

privacy of data generated from the IoT devices by giving users control of their privacy. In

an exemplary solution, we show how smart contracts can facilitate efficient IoT devices by

automating their operations and decision making in sharing economies. This autonomous

decision-making capabilities of blockchain-enabled IoT devices can eliminate privacy threats.

When using blockchain, the user’s private key is regarded as the identity and security cre-

dential. However, users often rely on third-party hosted nodes to access the wallet and check

balances, initiate transactions, and more. Such reliance can be exploited by a side-channel

5

attack to extract the private key successfully. We propose a method where a co-tenant

thread monitors the power management side-channel information from a thread affected by

a hardware Trojan. Such a Trojan can leak private keys and disrupt digital transactions.

Blockchain and smart contracts provide transparency, longevity, and allow applications

to minimize the need for a trusted arbiter. Facilitation of these three aspects can enable

remote, secure device service management. This work proposes a protocol for remote config-

uration of IC features, where a user can program an IC repeatedly and securely using smart

contracts. Our proposed integrated platform solution facilitates proof of data integrity, de-

vice authentication, and secure features reconfiguration. A fundamental primitive to achieve

this goal is establishing a trust-base that cannot be tampered with. Storing data by using

blockchain secured with PUF derived keys provides an assurance that data has not been

tampered with, in addition to providing traceability and transparent auditing capabilities.

1.4 Dissertation Outline

This dissertation document is organized as follows. Chapter 2 discusses existing IC

authentication methods and presents a method of IC authentication via blockchain pegged

to embedded PUFs. In Chapter 3, we propose a methodology to eliminate privacy threats

from IoT-enabled telematics devices via blockchain-based smart contracts. In Chapter 4,

we present a technique to improve the reliability of PUFs by accelerated aging. In Chapter

5, we propose a hardware Trojan that can leak private keys using a power management side

channel and a software solution to suppress the side channel. In Chapter 6, we propose a

remote configuration of IC features via smart contracts. We conclude the dissertation in

Chapter 7 with insights for future work.

1.5 Collaborators

All five studies were conducted under the supervision of Professor Sandip Kundu. The

study featured in Chapter 2 was a collaboration with Vinay Patil. Chapter 3 was done in

collaboration with Arman Pouraghily and Professor Tilman Wolf. The study featured in

Chapter 4 was done in collaboration with Professor Daniel Holcomb and Vinay Patil.

6

CHAPTER 2

ENABLING IC TRACEABILITY VIA BLOCKCHAIN PEGGED TO
EMBEDDED PUF

2.1 Introduction

The globalization of semiconductor manufacturing has increased the risk of tampered and

counterfeit products from manufacturing to distribution and field use. Malicious actors can

counterfeit, tamper with, or re-package ICs, and introduce compromised ICs into the supply

chain [90, 103]. This compromised supply chain exacts financial loss to legitimate suppliers

[168] and poses a security risk for safety-critical applications, like defense [30,99,104]. In the

effort to stem the tide of counterfeit electronics, traceability has long been established and

promoted [154]. Traceability plays a crucial role in securing the supply chain by counterfeit

electronic parts avoidance, detection, mitigation, and disposition. Hence, it is necessary to

develop a secure IC traceability system that can allow both the supplier and a potential

customer to verify its provenance.

Traceability refers to the combination of the ability to know the current possession of

a product at all times (track) and the ability to find the origin, ownership history, time

spent at each point (trace), by means of recorded identifications [114,117]. Tracing allows a

customer to establish a product’s provenance with a high degree of confidence. Tracking can

help suppliers minimize counterfeit products and offer value-added services, like a product

recall, during the life-cycle of a product.

Prior works proposed implementing a centralized system with a governing third party

to empower supply chain traceability to ensure data and transaction transparency over a

product’s lifetime. The governing third party is commissioned to create a centralized data

storage to enable a flow of trusted information [94, 159]. However, relying on a governing

third party to broker all data about every product’s supply chain may create a single point

of weakness and inherent bias, fraud in the system. If the party were the brand itself, or the

7

most powerful actor in the supply chain, it would ultimately be responsible for only its bot-

tom line; this could lead to selective disclosure or, worse, extortion. If a third party gathered

the supply chain data, it would have to be totally unbiased and adequately incentivized to

deliver the system’s technical capability.

However, third parties like NGOs or industry associations would become a single point of

weakness; this would make them and their operations a vulnerable target for bribery, social

engineering, or targeted hacking. For example, GS1 is a standards organization trying to

solve supply chain problems by uniquely identifying and accurately capturing information

about products. However, according to recent Data Quality pilots, data accuracy was a

growing problem — about 50% of the data surveyed was inaccurate [7]. Besides, GS1 has,

of late, been restricting access to the centralized product database, excluding consumers and

prioritizing corporations [24]. Moreover, although few supply chains are integrated, their

supporting information systems can be heavily fragmented [158]. Hence, there is a need to

come up with a more robust approach for developing IC traceability. Potential solutions

must also account for legitimate re-sale of devices during the product lifetime.

In this chapter, we propose novel IC traceability protocols via a blockchain-based owner-

ship management system. Blockchains can enable the IC ownership transfer information to

be verified, recorded and make it infeasible for any malicious party to alter or challenge the

legitimacy of the information recorded. Thus, this verifiable and shared ledger can enable an

IC’s identification and traceability throughout the supply chain and its deployment lifetime.

However, including just the ownership and simple IC information in the blockchain is

not sufficient enough. To corroborate a record in the blockchain against a physical device,

the device must be authenticated securely and uniquely. For this purpose, we utilize phys-

ical unclonable functions (PUFs) as the hardware root-of-trust. We propose securely and

uniquely identifying an IC using both Strong and Weak PUFs to corroborate the blockchain

information in this work. This work’s primary focus is specifically on securing the IC supply

chain, although we can apply the methodology to any electronic device supply chain. The

major contributions of this work are:

8

• Proposing a blockchain-based open traceability protocol that IC suppliers can use to

track and detect any counterfeits in supply chain.

• Enhancing the traceability protocol, such that, customers can trace and verify IC’s

provenance.

• Proposing a smart contract which automates self-execution of the enrollment, authen-

tication, and ownership transfer of an IC.

• Developing a comprehensive ownership management system which enables each party

along the supply chain to prove the ownership of PUF-embedded IC and transfer it to

a new owner.

• Demonstrating the proposed solution in Ethereum blockchain. The code has been

made publicly accessible in Github [2].

We outline this chapter as follows. Section 2.2 discusses the related works on trace-

ability solutions for counterfeit detection in the IC supply chain. After that, we describe

our motivation behind a blockchain-based solution for IC traceability in Section 2.3. In the

following two sections, we propose two novel IC traceability protocols via blockchain pegged

to embedded PUFs. The first protocol is based on customized blockchain transactions (Sec-

tion 2.4), while the second protocol is based on smart contracts (Section 2.5). Section 2.6

presents a detailed analysis of the proposed protocols regarding security, privacy, reliability,

performance, and scalability. Finally, we discuss the limitations of the proposed protocols

in 2.7 and conclude the chapter in Section 2.8.

2.2 Related Works

Several traceability solutions have been proposed in the literature for counterfeit detec-

tion in the IC supply chain. These solutions resort to RFIDs, various kinds of chip IDs,

package IDs, blockchain, etc. In this section, we present the literature works which proposed

various IC traceability solutions.

9

2.2.1 RFID-based Traceability

RFID-based counterfeit detection has been proposed in [75, 190, 197, 223]. Schuster et

al. proposed an RFID-based track and trace solution using EPC (Electronic Product Code)

Network infrastructure [126]. Staake et al. proposed an extension of EPC Network in-

frastructure with an EPC Product Authentication Service to provide secure authentication

functionalities [197]. Shi et al. proposed a Batch Clone Detection (BCD) scheme, which

performs the clone tag detection at a batch level [190]. The proposed scheme reduces stor-

age and computational overhead on the centralized detection server side. Elkhiyaoui et al.

proposed a new protocol, CHECKER, for counterfeit detection in RFID-based supply chains

through on-site checking [75]. In this protocol, RFID readers can verify product genuine-

ness by checking the product’s path’s validity, while RFID-equipped products travel through

the supply chain. However, RFID-based technologies cannot provide truly secure solutions

for supply chain traceability because an adversary can easily copy one RFID tag’s unique

identifier to another tag.

2.2.2 Package ID-based Traceability

Several traceability solutions proposed affixing a unique ID in package (SHIELD [62]),

on the package (DNA marking [154], nanorods [128], QR codes) of each component to track

it as it moves throughout the supply chain. For verifying the trustworthiness of an electronic

component, DARPA initiated a program called SHIELD (Supply Chain Hardware Integrity

for Electronics Defense) [62]. The program proposes to embed a dielet into host packages

of legitimately produced ICs, without disrupting or harming the system. A secure remote

server stores the information for identification and authentication, such as cryptographic

key and serial ID for each dielet. Passive sensors inside the dielet can record any malicious

behavior as tampering evidence. Jin et al. proposed an improved protocol that resists the

try-and-check attack in DARPA’s example authentication protocol [118]. The proposed two-

phase activation secures the untrusted transit between a trusted fabrication facility and an

assembly facility. A true random number generator (TRNG) inside the dielets efficiently

generates their cryptographic keys and serial IDs in parallel during a trusted fabrication

process.

10

2.2.3 Chip ID-based Traceability

Several works have proposed traceability solutions using various kinds of chip IDs, such

as PUFs or ECIDs [179]. Skudlarek et al. proposed a hardware root-of-trust based solution

that enables connection of SoCs to a secure server [193] for tracking them at each step in

the supply chain. An SRAM PUF provides each chip with its unique ID and DNA. The chip

connects to a secure server at important stages in the supply chain. The server authenticates

the chip and records that event, establishing a reliable audit trail for the chip’s progress and

providing proof of provenance. Several Strong PUF-based RFID ICs have also been proposed

previously for supply chain traceability [65,176,208]. In these methods, the back-end server

stores a list of challenge-response pairs for RFID tags with embedded PUF. When the RFID

tag communicates with a reader, the back-end server sends a challenge and the tag’s PUF

reconstructs, and transmits the corresponding response. If the response matches the one

stored by the back-end server, the tag is verified. In all these methods, RFID monitoring

schemes need to have either a persistent online connection between supply chain partners

and the back-end database or a local database on each partner site to perform authentication

appropriately. However, this approach is not secure from a man-in-the-middle attack. ECID-

based chip tracking solutions [179,222] are not secure. As it is static and readable, it is easy

to clone an ECID. Moreover, the chip vendors are silos. Individual companies do not share

data across corporate boundaries and cannot build cross-party trust relationships.

2.2.4 Blockchain-based Traceability

Blockchains have been successfully deployed to enable the supply chain integrity of vari-

ous commodities. For example, Walmart has proposed monitoring the food supply chain by

tracking the temperature variations and the time taken to transit food commodities [185].

However, it is not straightforward to apply it to the electronics supply chain as the semi-

conductor industry has some unique characteristics compared to other industries. It would

not be a secure solution to enable electronic products’ authentication and integrity only by

the shipping time and packaging appearance.

In literature [89], the authors proposed a method to protect the information flow in IoT

devices with blockchain. The proposed solution uses blockchain for storage, transparency,

11

auditability of the IoT data. The proposed solution explores its benefits to multi-factor

authentication, software integrity, and continuous authentication of IoT devices. However,

it does not facilitate traceability solutions and ownership management to ensure the integrity

of the supply chain, from fabrication to the end of product-life, that can allow a customer

to verify the provenance of a device or a system. Hence, a more comprehensive protocol is

required to enable IC traceability, authenticate a device, and transfer the ownership for a

secure supply chain.

2.3 Motivation

This work’s key novelty is developing a blockchain-based traceability protocol for ensur-

ing that the IC supply chain can be fully tracked and traced from the time of fabrication to

the end of product-life. Several works have been done to deploy blockchain across a wide

span of industries: from finance [123] and health-care [122] to utilities [131], real estate [156],

government sector [215], and IoT [72, 100]. To the best of our knowledge, no other works

have used blockchain for IC traceability and supply chain integrity. In the next section, we

describe why we need a blockchain instead of a centralized database for IC traceability.

2.3.1 Transparency and End-to-end Visibility with Blockchain

For secure IC authentication, it is required that (i) data transparency and trust is

preserved, (ii) there is end-to-end traceability of ICs produced from an untrusted supply

chain (originated from diverse suppliers who might be dispersed throughout the globe), and

(iii) the chip identity is bound to the device. A blockchain-based traceability solution can

increase transparency, add end-to-end visibility, maintain a single version of the truth about

the supply chain, and provide cyber-attack resilience for data storage via no single point of

failure. Blockchain establishes a trusted environment for all participants — manufacturers,

distributors, retailers, and consumers, who can gain permissioned access to known and

trusted information regarding their transactions’ origin and state.

12

2.3.2 Blockchain vs Private Databases for IC Traceability

If IoT device authentication data is kept into private databases by the designers (e.g.,

the scenario that each vendor maintains the authentication data of hardware components),

various security and trust issues may arise. Firstly, these databases are maintained and

updated by a database administrator (DBA). If a competitor can bribe the DBA, they can

compromise the database. Secondly, the vendor performs authentication within a private

network that is not interoperable with any other network. Thirdly, a system integrator may

use a large number of different chips from different manufacturers. It would be inconvenient

to validate the authenticity of all chips from various companies.

2.3.3 Blockchain vs Centralized Database for IC Traceability

If IoT device authentication data is kept in a centralized database, it is vulnerable to

being modified by malicious insiders without being noticed. The corruption of the adminis-

trator will violate the trust and integrity of the whole network. As a result, to record the

authentication data of ICs and build a secure and trustworthy authentication infrastructure,

a database accessible to all the supply chain participants should be maintained. In this work,

we explore an alternative solution to perform IoT authentication using blockchain.

We focus on the supply chain integrity from a different angle — an end-to-end framework

to provide a comprehensive solution from the device fabrication stage to systems’ end-of-life.

Blockchain ensures the management of all necessary information in a trusted and decentral-

ized manner. This decentralization enables all supply chain participants to track, verify, and

authenticate devices. Time-stamped tracking information provides tamper-resistance and

evidence. Blockchain also creates opportunities for more supply chain participants within

the vertical to join the network.

2.4 Proposed IC Traceability Protocol based on Customized Blockchain

Transactions

In this section, we present our proposed protocol for IC traceability via customized

blockchain transactions [110]. First, we describe our approach and the key system require-

ments of the protocol. After that, we present the methodology of creating our customized

13

transaction in the blockchain for IC traceability. Finally, we explore ownership transfer

details, which is the key part of our overall blockchain protocol.

2.4.1 Approach

The blockchain will contain a record of the relevant IC ownership transfer information,

termed as a transaction, and PUF data, used for authentication, for each point of transfer

over the device’s lifetime. This record also enables proof of ownership without an explicit

need for a trusted intermediary. Furthermore, authorized parties can utilize the blockchain

to authenticate, track, analyze, and provision chips.

Before detailing the protocol, we specify the key requirements for creating the blockchain

and explain their necessity for enabling reliable tracing of ICs.

1. Only the legitimate IC manufacturers registered with a designated consortium can

claim the initial ownership and write the relevant PUF data on the blockchain.

2. Only the IC’s current owner can create a new transaction for transferring the ownership

to a new owner.

The first requirement prevents unauthorized parties, like counterfeiters, from falsely

claiming ownership of an IC. This requirement can be ensured by verifying that the first

transaction in the blockchain for ownership transfer (the genesis transaction) was created

only by the registered IC manufacturer. We propose consortium blockchain for the verifi-

cation in our protocol. The consortium can be formed of multiple semiconductor organiza-

tions, each of which operates a node in the blockchain. Examples of such organizations can

be Semiconductor Industry Association (SIA), Joint Electron Device Engineering Council

(JEDEC), etc. Validation of a transaction requires a set number of nodes to sign-off on it.

The second requirement prevents an unauthorized party from hijacking an IC’s owner-

ship by creating a fraudulent transaction. Our protocol grants only the current owner the

ability to create a new transaction. The information in the last transaction recorded in

the blockchain establishes the current owner’s identity, and PUF authentication verifies the

owner’s physical possession of the IC.

14

2.4.2 Transaction and Blockchain Creation

We leverage Bitcoin’s idea [157], in which the possession of a user’s balance can be

proven in the blockchain. In particular, by borrowing the ideas presented in the "proof of

possession of balance" used in Bitcoin, we introduce here the concept of "proof of possession

of IC". In this section, we describe how our protocol customizes the blockchain transaction

and transfers the ownership in a step by step process.

2.4.2.1 Ownership addresses and keys

All the potential owners of an IC are assigned their addresses, used during ownership

transfer. Owners generate their addresses from ECDSA (Elliptical Curve Digital Signing

Algorithm) public/private key pair. First, a random 256-bit private key is generated. Each

transaction is supplemented with a digital signature created using the private key. The

signature uniquely identifies the current owner as of the seller.

Kpriv ∈ {0, 1}256

Next, a 512-bit public key is generated from the private key using the ECDSA algorithm.

The public key is used for verification of the transaction signature. The public key is not

revealed until a transaction is signed, unlike most systems where the public key is made

public.

Kpub = ECDSA512(Kpriv)

Since the 512-bit public key is large, it is converted to a smaller address shared with

others and utilized as a part of the blockchain transaction. The 512-bit public key is hashed

using SHA-256, further hashed using RIPEMD-160 to generate the 160-bit address.

Kaddress = RIPEMD160(SHA256((Kpub)))

The consortium plays a key role in authenticating participants, and it maintains a direc-

tory that binds the identity information of an associated party with a transaction address.

Any blockchain-based identity management system can ensure the reliability of the user’s

entity information [36,139,178].

15

Table 2.1: Transaction format for ownership transfer. The Size is for a single IC ownership
transfer.

Field Description Size (Bytes)

Input(s)

icCount Number of ICs variable

serialNumber Identifier of an IC variable

prevTxID The previous transaction reference 32

icInfo Other necessary information related to IC variable

challenges Challenge to the PUF variable

hashResponse Hash of the Responses from PUF variable

signature Seller’s signature 71

publicKey Seller’s public key for verifying the signature 64

Output(s)
value Transaction Value 1

publicKeyHash Buyer’s Address 20

2.4.2.2 Transaction customization

The general structure of a transaction in our protocol is shown in Table 2.1. We denote

the current and the new owners as the seller and buyer, respectively. A transaction input

contains the reference to the previous transaction, seller’s signature, seller’s public address,

and IC information. A transaction output contains the buyer’s address and transaction

value. The salient features of a transaction are described as follows:

• Our proposed protocol facilitates the seller to sell multiple ICs in the same transaction.

The seller needs to specify the number of ICs to be sold in the icCount field.

• The serialNumber in the format serves as an identifier for an IC. This identifier (e.g.,

Electronic Product Code, or EPC) can be used to enable the verifier to look up the

correct transaction for the IC being queried among a collection of ICs. Here, the serial

number is being used to identify, and not as the primary means to authenticate. For

each IC, the corresponding previous transaction hash is referenced in the prevTxID

field. For a genesis transaction, this is set to none. Other important IC information

is included in the icInfo field.

16

• Each IC’s PUF challenge-response data is included in challenge and hashResponse

field, respectively. For achieving reliable authentication on-field, the manufacturer

includes the most stable CRPs in the transaction. The manufacturer can also generate

helper data for error correction and achieving greater reliability. Literature works have

shown that the helper data can be constructed to become known to an adversary

without compromising the PUF response’s secrecy, i.e., it does not need to be kept

secret [69, 182]. The manufacturer can include it in the transaction during device

enrollment or at the device side in insecure one-time programmable (OTP) non-volatile

memory (NVM).

• A transaction includes the seller’s signature and the public key in signature and

publicKey field, respectively. The seller generates the public key from the private key.

The hash of this public key must match the hash given in the previous transaction

output (publicKeyHash). The public key is also used to verify the seller’s signature.

The signature is an ECDSA signature over a hash of a raw version of the transaction.

The signature, combined with the public key, proves that the real owner created the

transaction.

• The transaction output nominates the buyer’s address in publicKeyHash field. Any

future transaction by the buyer will require the relevant public key and signature.

2.4.2.3 Incorporating a transaction to a block and creating a blockchain

After signing a transaction, the seller sends it into the consortium blockchain network,

where the nodes pick up the transaction and verify the signature cryptographically. After

verification, the blockchain node ensures that the referenced transaction has not been spent

in a different transaction to prevent double spending. Finally, all the verified transactions

that are considered to have happened at the same time are placed in groups called blocks.

Table 2.2 presents the structure of a block.

Each block has a reference to the previous block, and this is what places one block after

another, forming a chronological chain. A consensus mechanism ensures that the creation

and modification of data are agreed upon by all the nodes or a majority of the nodes. Each

17

Table 2.2: Structure of a Block

Field Description
Size

(Bytes)

prevBlockHash The hash value of the previous
block used as a pointer 32

Header timeStamp A Unix timestamp recording when
this block was created

4

nonce
The block-specific nonce to allow

variations of the header and
compute different hashes

4

Transac-

tions

txnCount Number of transactions in block 1

transaction List of verified transactions variable

transaction in a block is tied to a unique identifier (TxID), a double SHA256 hash of the

verified, signed transaction. A TxID is used to look up a transaction in the blockchain and

reference for future transactions.

2.4.3 Protocol for Ownership Transfer

Figure 2.1 illustrates the detailed system model of the proposed ownership transfer pro-

tocol. The protocol consists of several phases, which we describe as follows:

Sending previous Transaction ID to the buyer To allow the buyer to trace the IC

supply chain information and authenticate it, the seller sends him the previous transaction

ID (TxID) in the blockchain. The latest transaction information of an IC contains the

current owner’s address (publicKeyHash). Using the previous transaction ID, the potential

buyer can prove the genuineness of the seller.

IC Verification by the buyer With the received transaction ID (TxID), the buyer

can query the blockchain’s previous transaction information. The buyer can verify the

genuineness of the ownership and authenticate the IC from the blockchain information. The

occurs in the following two steps:

a) Verifying the ownership information: The buyer can verify the genuineness of the

current seller from the referenced previous transaction. Also, using TxID, the buyer can

obtain the transaction information which has reference to its previous transaction, which

18

Figure 2.1: Detailed diagram of the ownership transfer protocol. *For the manufacturer,
this transaction will be the genesis transaction.

again has reference to its previous information, and so on. In this way, the buyer can trace

back along the supply chain to the IC’s provenance.

b) Authenticating the IC: The buyer can retrieve challenges from the blockchain and

apply them to the IC. The PUF embedded in the IC will give the corresponding responses.

If the calculated hash of the responses matches the hash recorded in the blockchain, the

IC is authenticated. The authenticator can be an API (blockchain accessor) or a complete

program, which a user needs to run during the verification. For online/remote sales, the

buyer/seller can designate a trusted agent/broker.

Making payment Once the IC is authenticated, and the seller’s IC ownership is

verified, the buyer makes a payment to the seller. The buyer can make the payment in

blockchain-based cryptocurrency.

Creating a transaction After receiving the payment confirmation, the seller is now

ready to issue the ownership transfer transaction. In a similar way described in section

2.4.2.2, the seller creates a transaction. Seller puts the buyer’s address in the output field

19

of the transaction. If the transaction is validated and added to the blockchain, the buyer

gets the IC ownership.

2.4.4 Protocol Demonstration and Discussion

We implemented the proposed protocol in Bitcoin Testnet3 [1] and made the code avail-

able online [2]. We send the ownership information and the challenge-response pairs (CRPs)

in the Metadata field of the Testnet3 transaction. In our emulated blockchain, a genesis

transaction can be created by only selected private-public keys. Any other private-public key

pairs can create other transactions. Any transaction created with a valid private-public key

pair (whose corresponding address is the recipient of the referenced previous transaction) is

verified and incorporated into a block.

The number of PUF challenges required to distinguish 1 trillion ICs is ∼1024 for a

Hamming distance threshold of 10% [175]. For practical implementation, using, e.g., a 64-

bit arbiter PUF [200], we take the set of challenges, and apply SHA-1 hash function to the

corresponding responses. SHA-1 produces a hash digest of 160 bits. The helper data is also

added to this CRPs for error correction and achieving greater reliability. Hiller et al. showed

that the required helper data size for 165 PUF bits with the probability of 10−5 is 36 bits

[96]. This PUF data adds a total of 260 bits (64-bit challenge, plus the 160-bit hash of the

responses, and 36-bit helper data).

2.5 Proposed IC Traceability Protocol based on Smart Contracts

Our previous protocol proposed a blockchain solution for IC traceability, where we used

customized transactions for logging supply chain information. We can enhance the proposed

solution to facilitate transaction automation in an already existing blockchain platform. For

automated execution of enrollment, authentication, ownership traceability, and ownership

transfer of an IC, we propose a novel IC traceability protocol based on smart contracts

[107]. The main advantage of deploying smart contracts in a blockchain is the blockchain’s

assurance that the contract terms cannot be modified. In our proposed smart contract, the

contractual clauses regarding enrollment, authentication, and ownership transfer of an IC

20

Figure 2.2: Proposed approach for IC traceability from manufacturer to the end-user. OEM:
Original Equipment Manufacturer.

are translated into embedded hardware and software. The embedded hardware and software

can self-verify that conditions have been met to execute the contract.

In this section, we present our proposed protocol for IC traceability via smart contracts.

First, we introduce the system requirements and implemented smart contracts for our pro-

posed protocol. Next, we present our proposed methodology to establish IC supply chain

traceability using blockchain and embedded PUF. After that, we detail the authentication

method used in our traceability protocol and discuss how the proposed protocol performs

counterfeit avoidance and detection. Finally, we outline a demonstration of the protocol and

discuss the practicality, limitations, and future directions.

2.5.1 System Requirements and Smart Contract Implementation

The key system requirements for IC traceability remains the same as described in Section

2.4.1. Both of the system requirements for IC traceability can be fulfilled by implement-

ing a smart contract in the blockchain. Figure 2.2 presents our proposed approach for IC

traceability using smart contracts. In our proposed protocol, a smart contract defines the

condition for enrolling a new device by a manufacturer and transferring a device to a buyer

21

Figure 2.3: Smart contract implementation for IC traceability.

by the current owner. It also defines the function for checking the ownership and authenti-

cating the device. In this section, we describe all the elements needed for implementing a

smart contract.

2.5.1.1 Ownership Keys and Addresses

All the supply chain participants are registered with consortium blockchain and have

their own private-public key pairs and addresses. This unique private-public key pairs and

addresses are necessary for uniquely identifying a supply chain participant and preventing

any forgery. The method for generating private-public keys and addresses is described in

section 2.4.2.1. A user can manage personal keys and addresses using a digital wallet that

can be used to perform any transaction. A digital wallet is a software and hardware, or

specifically designed hardware, that holds the private-public keys and the address [79].

2.5.1.2 Smart Contract Implementation by the Consortium

To enable IC traceability, we have implemented smart contract, namely Ownership Con-

tract (OC). The contract is created by the consortium to maintain uniform applicability and

usability for all supply chain participants. After creating the smart contract, it is sent to

the blockchain network as a transaction that assigns an address to the contract. After this

22

ALGORITHM 1: Pseudo-code of registerDevice() for registering a device claimed by a
manufacturer.
Inputs: Manufacturer’s address (addrManufacturer), and device information (deviceInfo)
if Message sender is in manufacturer’s list then

Specify owner of the device as addrManufacturer
Register deviceInfo on the blockchain

else
Do nothing

end

ALGORITHM 2: Pseudo-code of checkOwnership() for verifying the ownership information
of a device.
Inputs : Seller’s public key (sellerPubKey), and device identifier (deviceIdentifier)
Output: A boolean True or False
if (hash(sellerPubKey) == blockchain[identifierDevice].owner) then

return True
else

return False
end

initial transaction, the contract becomes a part of the blockchain forever, and its address

never changes. Figure 2.3 presents our proposed smart contract for IC traceability. The

smart contract, OC, provides the services for device registration, ownership information

verification, device authentication, and ownership transfer. Next, we explain these services

and how our proposed smart contract implements these.

Device Registration: For introducing a device into the supply chain, the device

must be registered first. We implement this registration by the smart contract function

registerDevice(). Algorithm 1 presents the pseudo-code of function registerDevice().

The function enrolls a device if the message sender is one of the manufacturers registered

with the consortium. The deviceInfo in the function includes data for identification and au-

thentication. The identification data can be a serial number for the device (e.g., Electronic

Product code, or EPC). It is used to look up the targeted device being queried among a

collection of devices. Here, the device identifier is being used to identify, and not as the

primary means to authenticate. For the authentication purpose, the manufacturer includes

PUF data as input to the function registerDevice().

Ownership Verification: Before buying a device, a potential buyer needs to verify the

ownership to confirm that the owner is a genuine one. We implement this verification by

the smart contract function checkOwnership(). Algorithm 2 presents the pseudo-code of

23

ALGORITHM 3: authenticateDevice() for authenticating a device.
Inputs : Identifier of the device to be transferred (deviceIdentifier)
Output: A boolean True or False
set deviceChallenge = blockchain[deviceIdentifier].Challenge
get deviceResponse from the device after applying deviceChallenge
if (deviceResponse == blockchain[deviceIdentifier].Response) then

return True
else

return False
end

ALGORITHM 4: transferOwnership() for transferring the ownership of a device from seller
to buyer.
Inputs: Buyer’s address (addrBuyer), and device identifier (deviceIdentifier)
if (addrMessageSender == blockchain[identifierDevice].owner) then

set blockchain[identifierDevice].owner = addrBuyer
else

Do nothing
end

function checkOwnership(). This function verifies the ownership of the device against the

seller’s address. If the device with the provided identifier is owned by the seller, it returns

True. Any potential buyer invokes this function when he/she wants to verify the ownership

of the device. Additionally, the function can return the ownership history to the provenance.

Device Authentication: In our protocol, a potential buyer must authenticate a de-

vice before buying to confirm that it is authentic, not a counterfeit one. We implement

this authentication capability by the smart contract function authenticateDevice(). Al-

gorithm 3 presents the pseudo-code of authenticateDevice(). This function starts the

device authentication process for a given device identifier. The process includes getting the

challenge-response data for a particular deviceIdentifier, applying the challenge to the device

via the verifier’s wallet, calculates the response, and matching the challenge-response pairs.

Ownership Transfer: For transferring the ownership of a device, the smart contract

implements the function transferOwnership(). Algorithm 4 presents the pseudo-code of

transferOwnership(). This function transfers the device (deviceIdentifier) from the seller

(addrSeller) to the buyer (addrBuyer). First, the function checks whether the message

sender is the owner of the device with deviceIdentifier. If that is true, then the function

assigns the addrBuyer as the new owner of the device.

24

2.5.2 Proposed IC Traceability Protocol

In this section, we present the details of the algorithmic procedures necessary to realize

the proposed protocol. We outline the procedure for enrolling a device by the manufacturer,

followed by the procedure for transferring the ownership, which is the key part of our overall

traceability protocol.

2.5.2.1 Enrollment of a Device by the Manufacturer

When a manufacturer (M) wants to register/enroll a device, it sends a transaction

registerDevice() to the smart contract OC (Figure 2.3). The manufacturer also sends

necessary device information, such as the device’s identifier, authentication information

(PUF data) in the transaction. We name the first transaction for the enrollment of a de-

vice as genesis transaction. The manufacturer can also enroll N number of devices in the

same transaction by including all the devices’ corresponding information. This process fa-

cilitates the scalability of the protocol. As the transactor digitally signs all the blockchain

transactions, any counterfeiter cannot illegally claim to be a non-authorized manufacturer.

2.5.2.2 Procedure for Ownership Transfer

Figure 2.4 illustrates the detailed system model of the proposed ownership transfer

protocol. In this work, we denote the current and the new owners as the seller and buyer,

respectively. The protocol consists of several phases described as follows.

Verifying the ownership information: To verify the current ownership information,

the buyer invokes checkOwnership() with the device identifier. If the return is True, the

buyer can verify the genuineness of the current seller. Additionally, the buyer can also trace

back all the way along supply chain to IC’s provenance.

Authenticating the IC: Verifying the ownership of a device is not sufficient enough.

A malicious seller can replace the original device with a counterfeit one and sell it to the

buyer. Therefore, the buyer also needs to authenticate the device with the stored blockchain

information. We propose two implementations for authentication of the device. We present

the details of the implementation in section 2.5.3.

25

Figure 2.4: Detailed diagram of the ownership transfer protocol. Transactions requiring
payment of fees are drawn with solid black lines.

Making payment: Once the IC is authenticated, and the seller’s IC ownership is

verified, the buyer makes a payment to the seller. The buyer can make the payment in

blockchain-based cryptocurrency. However, details of secure payment are out of our focus

in this work.

Issuing transaction for ownership transfer: In the last step of the proposed proto-

col, the seller issues a transaction transferOwnership() with the device identifier and the

buyer’s address. This function transfers the device from the seller to the buyer.

2.5.3 Authentication by Strong and Weak PUFs

During ownership transfer, the buyer needs to authenticate an IC with the stored

blockchain information. The authenticator can be an API (smart contract front end or

blockchain accessor) or a complete program, which a user needs to run during the verifica-

tion. We propose the following two implementations for authenticating the device.

26

2.5.3.1 Authentication via Strong PUFs

When a manufacturer registers a device, it sends a transaction registerDevice() to

the smart contract OC. This transaction includes necessary device information, such as

the device’s identifier and Strong PUF CRPs for future authentication. At any point in

the supply chain over the device’s lifetime, a potential buyer can authenticate a device

by invoking autheticateDevice() with the respective deviceIdentifier. This invocation

retrieves challenges from the blockchain and applies the challenges to the IC. The PUF

embedded in the IC will give the corresponding responses. If the calculated hash of the

responses matches the hash recorded in the blockchain, the IC is authenticated. Hash is a

compact representation of the entire digital content, which is easy to compute and verify.

For example, while pushing software updates, software vendors supply a hash (also known

as digest), which is digitally signed by the software vendor. This property allows the devices

to verify the software update’s authenticity by computing hash and verifying it using the

vendor’s public key. Inspired by this software attestation technique, we propose compressing

the CRP table as a digest, which can similarly attest to the authenticity of PUF CRPs

supplied by the manufacturer.

To achieve pervasive authentication, it is necessary that the authentication functionality

be easily integrated with modern electronic devices, such as smartphones, and be easy to

use. As illustrated in Figure 2.4, one such example shows an IC verification process using

Near Field Communication (NFC). Several PUF NFC tags are already used in commercial

products [224]. For an easy authentication process, a silicon PUF can be integrated into

a form of NFC. With the recent emergence of NFC-enabled smartphones, custom wired

authentication system setup is no longer necessary for many use cases. This authentication

system facilitates anyone in the supply chain to authenticate ICs using a smartphone with the

necessary application. Other possible authentication procedures can also be implemented

based on the needs of the system.

Here, we note that if the distributors and retailers have no authenticating infrastructure,

they can still look up the blockchain using device identifiers and verify the chips’ provenance.

However, in this case, they cannot authenticate the chips. An end customer can always verify

the provenance and authenticate a chip.

27

Figure 2.5: Hardware authentication module for generating cryptographic key from PUF
embedded in an SoC [91].

2.5.3.2 Authentication via Weak PUFs

Several Weak PUF based public-key cryptography for authentication have been pro-

posed in the literature [32, 43, 88, 136]. Figure 2.5 presents a hardware authentication

module to generate a cryptographic key from SRAM-based Weak PUF [91]. A manufac-

turer first records the device’s Weak PUF data in the blockchain by issuing a transaction

registerDevice(). At any stage of the supply chain, any buyer can authenticate the de-

vice by invoking authenticateDevice(). We describe the components of the authentication

module and their functions as follows.

Key Generation Module: During the enrollment phase, the key generator in the

authentication module generates a private-public key pair. Using the private key, a device

can create the signature of a message protecting the message’s integrity and proving its

authenticity. The recipient can verify the digital signature for authenticity using the public

key corresponding to the private key. The private-public key pair may be keys for RSA, DSA,

Schnorr, El Gamal, Elliptic Curve based public-key cryptosystems, etc. For the illustration

purpose, we describe RSA public-key cryptography here. First, the key generator finds two

prime numbers from a seed derived from PUF output, e.g., the contents of an SRAM. Finding

prime numbers can be done on an appropriately programmed device or Hardware Security

Module (HSM). Once two prime numbers of appropriate sizes are found, an RSA private-

28

Figure 2.6: (a) Device enrollment and (b) authentication process via Weak PUFs.

public key pair is constructed. The RSA key pair generation is a computationally-intensive

process and done only during the enrollment phase.

Encryption Module: The private key is encrypted with a second key (encrypting key)

generated from the same PUF and stored in a non-volatile memory. This encryption is done

using a symmetric encryption algorithm, like AES, and the encrypting key is obtained from

any random 128-bit string from the PUF. The manufacturer records the public key in the

blockchain by issuing a transaction registerDevice() for the device (Figure 2.6(a)).

Decryption Module: During the authentication phase, the encrypting key can be

generated instantly from the PUF output. Using the encrypting key, the decryption module

generates the private key of the device. When a potential buyer wants to authenticate the

device, he invokes authenticateDevice() with the device identifier. The smart contract

sends the device’s public key to the buyer’s wallet. The buyer’s wallet then sends a challenge

message generated with a pseudo-random number generator to the device. The device’s

further cryptographic module creates the device signature using the private key. Using the

public key, the buyer’s wallet can verify the digital signature for the device’s authenticity,

as shown in Figure 2.6(b).

29

2.5.4 Counterfeit Detection by the Proposed Traceability Protocol

Various methods of counterfeiting ICs have been described in the literature [90]. In this

section, we present how our proposed traceability protocol prevents various counterfeiting

techniques.

2.5.4.1 Recycled & Remarked ICs

Recycled and remarked components jointly contribute more than 80% of counterfeit inci-

dents [124]. The recycled ICs are taken from used printed circuit boards (PCBs), repackaged

and remarked, and then sold in the market as new. Our proposed protocol defeats this ma-

licious approach in the following two ways:

If an unregistered, malicious manufacturer wants to introduce a recycled/remarked IC

as a legitimate new product, he will need to create a valid genesis transaction for the IC.

However, such a transaction can only be created by the original IP owner registered with

the consortium and easily monitored. The false genesis transaction would immediately be

flagged and would incriminate the counterfeiter. Also, the prevention of double spending

[164] ensures that the counterfeiter cannot introduce multiple forged ICs by pretending to

be a legitimate buyer and then attempting a future sale.

If a registered manufacturer wants to introduce a recycled/remarked IC as a legitimate

product, it must include the device identifier information in the transaction. However, an

already registered IC in the blockchain with the same device identifier would prevent the

recycled IC to re-enter into the supply chain as a new one.

2.5.4.2 Overproduced ICs

In overproduction, an untrusted foundry, assembly, or test site with access to a de-

signer’s IP, may overproduce the original IP design outside the contract and the IP’s owner

knowledge. They can then sell the overproduced ICs in the open market as the original

owner. Our proposed protocol defeats this malicious approach by requiring that the regis-

tering manufacturer sign the transaction, registerDevice() using its private key. As the

counterfeit manufacturer cannot get the original manufacturer’s key, it cannot register the

overproduced ICs as the original manufacturer.

30

Figure 2.7: Chip activation using active metering [181] before enrollment of authentica-
tion data in blockchain. Green arrow indicates secure link established by the designer and
manufacturer’s public key infrastructure. ATE: Automated Test Equipment.

If the counterfeiter decides to use his brand (and own private key), there is still a need to

protect the original designer’s Intellectual Property. In this case, IC metering [31], obfusca-

tion/locking [181], and/or Secure Split Test (SST) [173] based methods can complement our

proposed approach. These approaches use an activation key to activate each chip uniquely.

Figure 2.7 shows how these approaches can complement our proposed scheme. After the

manufacturer fabricates a chip, the designer sends the chip activation key via a secure link

established by the designer and manufacturer’s public-key infrastructure (step 1 in Figure

2.7). After the chip gets the activation key, it is unlocked for testing and enrollment of PUF

authentication data (step 2). Finally, the designer sends a transaction registerDevice()

to the smart contract OC by signing the chip authentication data with its private key (step

3). Recently, logic-locking techniques have been targeted by SAT attacks [221]. These SAT

attacks against logic-locking techniques present a case for a better solution.

2.5.4.3 Cloned ICs and Tampered ICs

The current owner cannot clone an IC with the same ID and provenance information

due to the embedded PUF whose data is recorded in the blockchain. Each PUF device

has a unique and unpredictable way of mapping challenges to responses, even if it was

manufactured with the same process as a similar device, and it is infeasible to clone a PUF

31

Table 2.3: Operation cost for a chip in supply chain.

Operation Gas limit Gas price Cost (in ETH) Cost (in USD)

registerDevice() 121478 10.89 ×10−9 0.0013229 0.463

transferOwnership() 30365 10.89 ×10−9 0.00033067 0.116

with the same Challenge-Response behavior as another given PUF. Sufficient PUF data is

assumed to be available in the blockchain to assure the authenticity of the IC. Furthermore,

our proposed method makes the tampering with the IC very costly due to the embedded

PUF. Various PUF tampering techniques, such as Focused Ion Beam (FIB), are costly and

would have to be performed on a per chip basis to obtain multiple clones [181].

2.5.5 Protocol Demonstration in Ethereum Blockchain

We implemented the proposed smart contract in Solidity programming language, de-

ployed it in Ethereum blockchain, and evaluated it in terms of its operational cost. We made

the code publicly accessible in Github [2]. In particular, we estimated the total cost by mea-

suring the total gas amount (execution fee for every operation made on Ethereum) for all

of the functions involved in the process, that is, (i) registering device (registerDevice()),

and (ii) transferring ownership (transferOwnership()), and then converting it into USD.

As the amount of gas is fixed for each operation in Ethereum, e.g., a SHA3 calculation costs

20 gas, the total gas amount for executing a function is also fixed. In particular, we have

used the Ethereum’s test environment tool, testrpc [115], to measure the gas amount since

it can automatically count the gas amount. With the current value of 1 ETH = 350USD

and 1 Gas = 10.89 × 10−9 ETH (10.89 Gwei), the operation cost for a chip in the supply

chain is calculated in Table 2.3. Finally, the total cost of maintaining the identity of a chip

in a supply chain with N entities is:

total cost = cost of enrollment + (N − 1)× cost of ownership transfer

Using the formula, the total cost of maintaining a chip’s identity in the supply chain

presented in Figure 2.2 with five entities (manufacturer, distributor, retailer, consumer 1,

consumer 2) is 0.463USD + 0.116×4 = 0.927USD.

32

Figure 2.8: Hyperledger Fabric network model for our proposed protocol.

2.5.6 Protocol Demonstration in Hyperledger Fabric

To implement our proposed consortium blockchain and prove the proposed protocol’s ap-

plicability, we select the Hyperledger Fabric framework [33]. Hyperledger Fabric, introduced

and maintained by IBM, is becoming one of the most prominent blockchain platforms. Its

permissioned architecture and non-resource intensive consensus algorithm ideally match the

requirements of implementing our proposed blockchain. A customer could also be registered

with an identity in the blockchain. In this way, the blockchain can record the post-sale

traces as well.

2.5.6.1 Blockchain Network Model

Figure 2.8 presents the Hyperledger blockchain network model, where the manufacturers,

distributors, and retailers are the major members of the blockchain. They are registered

as nodes in the blockchain. Each node creates and maintains an identity (i.e., account,

address, or participant identity) in the system. Any addition (new member) or replacement

of identities must be notified and accepted by all the major members identified in the chain.

2.5.6.2 Implementation of the Chaincode and Access Control Policies

The chaincode (smart contract) implements the underlying functionalities that provide

data storage and management. All the blockchain’s major members verify the creation,

33

maintenance, and deprecation of the chaincode. In our traceability protocol, the required

chaincode functions are described in 2.5.1.2. For regulated and secure chaincode functionali-

ties in the blockchain system, we need access control policies in our prototype infrastructure.

The blockchain system enforces the policies to give access to the operations; otherwise, it de-

nies the operations. The registerDevice() function implements the organization identity-

based access control to enforce that only a manufacturer can register a new device. The

transferOwnership() function implements the user identity-based access control to enforce

that only the owner can transfer a device’s ownership.

2.5.6.3 Performance Evaluation

We set up an experimental environment with a single machine equipped with 8-core,

3.6Ghz CPU and 16GB RAM. As depicted in Figure 2.8, we created a Hyperledger Fabric

1.4.4 network with four organizations (one manufacturer, two distributors, one retailer) in a

single channel with CouchDB state databases using docker containers [13]. We set the block

size to 80 and batch timeout to 400ms. Our endorsement policy adopts the default ‘N of

N’ policy, meaning that a transaction needs to be endorsed by all four organizations. Since

Hyperledger Fabric adopted the Raft ordering service as the new consensus mechanism,

we deployed 3 RAFT orderers on the machine. Finally, we created one client to send the

transactions.

We used Hyperledger Caliper as the blockchain performance benchmark framework [12].

We continuously send transactions from the client and observe the network’s throughput

Figure 2.9: Hyperledger Caliper benchmark result.

34

Figure 2.10: Throughput and latency of the registerDevice() transaction in the proposed
blockchain implementation using Hyperledger Fabric.

and latency. Figure 2.9 presents a sample Linux terminal output after running Caliper.

Figure 2.10 presents the throughput and latency of the proposed blockchain implementation

at various transaction rates. We observed the maximum throughput of 35 tps. With the

increasing transaction rate, the latency keeps increasing, as the accumulated and queued

transactions need to be held at the orderer nodes. The performance of the Hyperledger

Fabric network depends on various factors, such as chaincode execution time, endorsement

delay, network delay, consensus delay among multiple orderers, and block validation delay.

It is important to note here that the hardcore performance evaluation of the Hyperledger

Fabric platform is not the main objective of this experiment. Several works have measured

the performance evaluation of the Hyperledger framework with detailed metrics and com-

prehensive analysis. Here, we measure the performance metrics (throughput and latency)

of the prototype system to prove our proposed framework’s applicability. We also show our

proposed framework’s applicability in a multi-host scenario for a similar blockchain network

model, detailed in Appendix A.

35

2.5.6.4 Operational Cost of Consortium Blockchain

Costs linked with the system activity, such as the system setup, execution, or mainte-

nance, are shared within the consortium according to a pre-established governance scheme.

The consortium’s incentive to build and maintain blockchain infrastructure is to detect

counterfeits in the IC supply chain. Individual companies can leverage the same resources

for various other blockchain applications. Additionally, for regular system maintenance, a

consortium node is rewarded a small fee (e.g., some ETH) when it validates any transaction

committed by a customer for ownership transfer. Selecting appropriate values for transfer

reward will depend on the consortium members’ actual investment for the implementation.

However, such a topic is outside the scope of our current research, and thus it will not be

considered further.

2.6 Analysis of the Protocols

In this section, we analyze the security, privacy, and reliability issues of the proposed

blockchain-based IC traceability protocol; and discuss our proposed protocol’s performance

in terms of scalability and resource requirements.

2.6.1 Security

Double-spending by the seller: Once the transaction is complete and added to

the blockchain by a seller, the buyer becomes the only person authorized to update the

blockchain for a particular IC. Hence, the seller cannot falsely attempt another sale. A

malicious buyer can also mount a double-spend attack. In this attack scenario, the attacker

makes a payment transaction that moves funds to the seller’s address. After the transaction

appears in the newest block on the main branch, the attacker takes possession of the IC. The

attacker then releases two blocks immediately, using his mining power, with a transaction

in the first that transfers the funds to a second attacker-owned address. Now the attacker

has the IC and his funds back. However, this type of double-spend attack is a fundamental

security issue in any blockchain system, and several solutions have been proposed in the

literature [47,163] to counter these threats, as described in Section 1.1.3.

36

Seller’s refusal to transfer IC: Following the previous point, the buyer can use the

blockchain to take legal action against the seller if the seller refuses to transfer the IC to the

buyer. A supply chain participant’s integrity and legitimacy are ensured during registration

when it joins the system and gets its private/public keys (Section 2.4.2.1).

Possible man-in-the-middle attack: An attacker may mount a man-in-the-middle

attack during ownership transfer. First, a malicious party gets valid CRPs of an authentic

device from the blockchain and hardcodes those CRPs into his counterfeit device. Then,

he proves to a potential buyer that his device (a counterfeit one) shows correct CRPs. Our

proposed protocol resists against such attacks. In our proposed protocol, a potential buyer

performs two-step authentication: (i) verifying the ownership information, (ii) authenticat-

ing the IC with Challenge-Response Pairs (CRPs). Even if the attacker can prove the valid

CRPs from his counterfeit device, he cannot prove his ownership of the device because the

blockchain record will show the genuine owner’s information corresponding to that CRP

authentication data.

De-centralized verification and authentication: In a traditional authentication

process, a centralized Verification Authority (or Verifier) possesses a large set of CRPs for

each IC, enrolled prior to sale. The Verifier can only perform authentication of a device

in the field. Our protocol provides the flexibility for any potential buyer to authenticate a

chip.

Modeling attack resistance: An IC’s buyer verifies CRPs on the actual physical

device against the records in blockchain tracing back to the manufacturer. In this instance,

a software model [184] of the PUF is irrelevant and cannot be used to mount an attack.

Unless the chip is provisioned with an Artificial Neural Network (ANN), it cannot clone

the PUF. Provisioning a chip with ANN, solely for cloning increases die area and accrues

additional cost. If an attacker chooses this route, there will be a cost explosion since each

chip’s software model has to be learned separately.

Security against malicious foundries: If a third party foundry (contract manufac-

turer) or assembly wants to behave maliciously, our proposed approach gives no incentive to

do that. For example, if a foundry creates a bad genesis transaction that is not authenticated

by the on-chip PUF, it cannot sell that part. If the foundry creates a genesis transaction,

37

which is authenticated by the PUF, but the chip is a bad one, then the buyer precisely knows

who is responsible. Besides, if the manufacturer provides incorrect PUF data, the IP owner

cannot sell the chip and loses trust in the manufacturer. Moreover, if the manufacturer leaks

the PUF data, still it is infeasible to build hardware with a cloned PUF. Any effort by a

malicious foundry to overproduce ICs is defeated by the locking scheme described in Section

2.5.4.2. Thus, the manufacturer has no incentive to become an attacker.

Consortium blockchain security: The consortium members control the consen-

sus process and write the consortium blockchain with transactional data. Since the cus-

tomers cannot participate in the consensus process, they cannot compromise the consortium

blockchain’s security and privacy.

2.6.2 Privacy

Transparency vs privacy: The proposed protocol shows that an entity performs all

the transactions using a single address. This address re-use may raise some privacy concerns

for the customers. One possible approach to address the issue is to assign multiple addresses

to each participant.

Consortium blockchain vs public blockchain: There are several advantages of a

consortium blockchain over a public blockchain. First, if the read permissions are restricted,

consortium blockchain can provide a greater level of privacy [54]. Moreover, the consortium

can, if desired, change the rules of the blockchain. Since the transactions need to be verified

only by a select number of nodes, transactions are cheaper in validation overheads. Any

accidental fault can be quickly fixed, as the nodes are very well connected.

2.6.3 Reliability

Authentication by Strong PUFs: The genesis block is assumed to have enough PUF

data to disambiguate the IC from millions of other devices [175]. To increase the number of

authentication events, the PUF can be re-mined during each ownership transfer event, and

the new data can be included in challenge and hashResponse fields of the transaction format.

The hashing of PUF responses prevents their exposure in the blockchain and ensures only

the IC’s physical owners can re-generate the hash. The re-mining process can also check the

38

reliability of the PUF, which can be affected by aging over the product lifetime, and update

the blockchain accordingly.

Authentication by Weak PUFs: To generate stable keys from the Weak PUF, several

literature works have proposed solutions, such as accelerated device aging [112,113], built-in

self-test [43], Helper Data Algorithm, also known as a Fuzzy Extractor [64]. The helper data

can be generated during the enrollment phase and stored in a non-volatile memory present

in the chip. It can be constructed to become known to an adversary without compromising

the secrecy of the PUF response, i.e., it does not need to be kept secret [69,182]. During the

authentication stage, the secret key can be reconstructed, combining the response from the

PUF and helper data from the non-volatile memory. Alternatively, a non-volatile memory-

based PUF can be used for authentication, which does not require any helper data [58]. If

PUF is sufficiently reliable, then producing helper data may be omitted.

2.6.4 Performance

Scalability: Our proposed protocols allow the registration and ownership transfer of

multiple ICs in a single transaction between two parties by utilizing the multiple inputs op-

tion in the transaction format and the smart contract functions. The consortium blockchain

eliminates the cost of transaction fees and improves the efficiency by using a non-resource

intensive consensus algorithm. As a result, a consortium blockchain could minimize the cost

of the supply chain’s daily operations, which is ideal for supply chain traceability. Table 2.4

presents the comparative performance analysis of our traceability protocol implementations

in Ethereum and Hyperledger Fabric.

Low power and low cost authentication: The PUF consumes dynamic power only

during the authentication process - when it generates the response. The power required dur-

ing authentication is small. Also, the PUF is a low-cost, lightweight root-of-trust, enabling

easier integration.

Simple, robust authentication: PUFs enable fast, secure authentication of the ICs

due to their unclonability and light footprint. Furthermore, the PUF information can be

updated in the blockchain during each transfer and provides a future buyer with more data

points to verify IC authenticity.

39

Table 2.4: Comparative Performance Analysis of the Proposed IC Traceability Protocol.

Ethereum Hyperledger Fabric

Permissions Permissionless Permissioned

Consensus mechanism PoW PBFT

Access to Data Public Restricted or Public

Node Scalability High Low

Block Generation Time 15 seconds 0.4 seconds

Throughput 15 tps 35 tps

Benchmark Tools EVMremix Caliper

Programming Solidity Go

Cryptocurrency Ethereum None

Flexible consensus mechanisms: Permissioned platforms have semi-trusted mem-

bers where only known participating nodes that are part of a consortium are verified and

registered. These groups are expected to be small in number and, therefore, can employ

alternative consensus mechanisms. Achieving consensus in a distributed system has known

solutions in the research literature, e.g., Paxos [133], RAFT [162], and various Byzantine

Fault Tolerance algorithms [56]. Permissioned blockchain platforms have primarily adopted

these consensus algorithms.

2.6.5 Practicality of the Proposed Protocol

Our proposed authentication and the overall traceability protocol are highly suitable for

a computing system where the IC is part of a system, such as System on Chips (SOCs),

computer motherboard systems, automotive ECUs, etc. These systems can be connected

to the Internet, and using our blockchain protocol allows all the ICs of the system to be

authenticated simultaneously.

Figure 2.11 presents how automotive security can be ensured during any ownership

transfer using our IC traceability protocol via blockchain pegged to embedded Weak PUFs.

Modern automobiles contain more than 70 Electronic Control Units (ECUs) networked

together [186]. The overall safety of the vehicle relies on the authenticity of various ECUs.

The security of a car can be compromised by connecting counterfeit ECU in a vehicle

40

Figure 2.11: Schematic of typical in-vehicle network architecture of a modern automobile.
All inter-bus communication is done exclusively only over the gateway ECU. CAN - Con-
troller Area Network, MOST - Media Oriented Systems Transport.

communication network. A counterfeit ECU from any malicious party can threaten the

functioning of steering, brakes, airbags, windows, headlights, etc [217].This threat gives rise

to the safety concern of people in and around the car. To circumvent this, we propose our

traceability protocol, by which a buyer can authenticate the provenance of all ECUs during

any ownership transfer.

In the proposed protocol, a centralized gateway ECU connects all existing bus systems.

During device enrollment, all accredited OEMs (Original Equipment Manufacturer) of the

respective vehicle enroll the ECUs by issuing registerDevice(). The vehicle manufac-

turer enlists device IDs of all ECUs in the gateway security ECU. At any stage of the

supply chain, a potential buyer can verify the ownership and the provenance of the ECUs

by invoking checkOwnership() with the list of device IDs obtained form the gateway secu-

rity ECU. He can authenticate all the ECUs connected in the vehicle network by invoking

authenticateDevice().

For authentication, the blockchain sends the public keys of all ECUs to the buyer’s wallet.

The buyer’s wallet sends a challenge message to the gateway security ECU via a PassThru

device [186]. The gateway ECU collects the signatures from all ECUs, including its own,

and sends back to the buyer’s wallet. The buyer’s wallet can verify the digital signature for

the authenticity of the device.

41

2.7 Limitations ans Discussion

Cloning PUFs: Recent literature work has shown that PUFs can be tampered by

Focused Ion Beam (FIB) to create clones [93]. However, FIB based tampering is costly and

would have to be performed on a per chip basis to obtain multiple clones. The authors

in [181] conjectured that the FIB attack might not be possible for the ICs with 32nm or

smaller feature nodes.

Authenticity of Analog and Mixed-signal Circuits: The number of counterfeit

analog ICs has been increasing at an alarming rate [25]. Our proposed solution is for

ICs with embedded PUFs and is agnostic to the device’s type, whether analog, digital or

mixed-signal. The solution is easily extended to analog and mixed-signal circuits (with

analog PUFS [66], or package IDs [62], [154], [128]) but is outside the scope of the current

work. Since the blockchain is pegged to PUF for authentication, legacy devices without any

authentication mechanism are not supported by this solution.

Transparency vs Privacy: An open research question regarding our proposed pro-

tocol is how both the transparency requirement for supply chain tracking and anonymity

requirements for maintaining users’ privacy can be satisfied. This requirement is of par-

ticular importance to IP owners selling millions of devices as it can be infeasible to create

millions of public-private key pairs. In future works, we plan to investigate possible solutions

to address this issue.

2.8 Concluding Remarks

In this chapter, we outline a novel methodology to establish IC traceability via blockchain

technology and PUFs. The blockchain allows legitimate parties to track an IC over its entire

lifetime. We use embedded PUFs to provide a simple, secure, and robust authentication

process at every point-of-sale. The protocol automates the entire process of authentication,

ownership transfer by using the smart contract. Our approach does not impose onerous

restrictions on the participants in the blockchain; instead, the underlying technology guar-

antees the integrity of the system even in the face of dishonesty or idleness. This approach

provides a technological solution to a supply chain problem.

42

CHAPTER 3

PRESERVING IOT PRIVACY IN SHARING ECONOMY VIA SMART
CONTRACTS

3.1 Introduction

For widespread adoption of the ever-expanding IoT, privacy and anonymity must be

integrated into its design by giving users control of their privacy. Privacy is the right of

individuals or cooperative users to maintain confidentiality and control over their information

when disclosed to another party. In IoT applications, privacy threats can arise from the

perspective of IoT devices’ users and their data. Any unauthorized access could unexpectedly

initiate privacy threats and attacks. One good example of this is the ‘sharing economy’.

Sharing economy platforms such as Airbnb have recently flourished in the tourism industry.

In a sharing economy platform, a centralized third-party usually provides the technical

infrastructure, user interfaces, and the guidance/monitoring process.

However, relying on a centralized third-party sharing platform inevitably leads to a

single point of weakness, higher fees, lack of trust, and governance issues for both users and

service providers [28]. It creates an inherent bias, fraud, and a single point of weakness in

the system. Such intermediaries charge a large service fee (up to 15% for guests and up to

5% commission of the homeowner), can arbitrarily change the terms and conditions [28].

Moreover, sharing any IoT-devices enabled smart houses poses a severe threat to user’s

privacy. Airbnb hosts prefer to know what is going on in their rentals. Because of this,

hosts may opt to have surveillance cameras in key places. This surveillance allows Airbnb

hosts to spy on guests, which is a severe infringement of the guests’ privacy expectations.

Similarly, by accessing the smart door lock, an intrusive homeowner can compromise the

security system. By accessing the stored credentials on connected devices, hosts can take

control of the IoT devices’ sensors and can even disable an apartment’s control of HVAC

systems [153].

43

In this chapter, we propose smart contracts to eliminate (i) distrust in the third-party

controlled home-sharing economy by decentralization and (ii) privacy threats from IoT-

enabled telematics devices in a sharing house [106,109,171]. In our proposed solution, which

is based on the Ethereum blockchain network, the shared IoT devices are directly connected

to the blockchain and are controlled by a smart contract through which they receive and

update their security parameters and the serving user’s information. The proposed method

ensures exclusive access to the IoT devices seamlessly through blockchain smart contracts.

We organize the chapter as follows. Section 3.2 presents a threat model in a conventional

home-sharing economy and then describes our proposed solution’s motivation. Section 3.3

gives an overview of the related literary works on sharing resources in different IoT ecosys-

tems and enforcing supervised access to those resources. Section 3.4 describes our proposed

protocol to preserve IoT privacy in the sharing economy via smart contracts, and Section

3.5 outlines the hardware collateral required for the protocol. Section 3.6 presents a demon-

stration of the proposed protocol, and finally, Section 3.8 concludes the chapter.

3.2 Threat Model and Motivation

In this section, we present the security, trust, and privacy threats in a conventional

home-sharing economy and then describe our motivation for the proposed solution.

3.2.1 Threat Model

Figure 3.1 presents the trust, and privacy threats in a conventional home-sharing econ-

omy, such as Airbnb. Here, firstly, renting out a unit on Airbnb requires multiple levels of

trust. Both host and guest have to trust Airbnb’s ability and integrity regarding booking

and payment processes. In such a scenario, Airbnb is the provider of the user interfaces,

technical infrastructure, and the guidance/monitoring process. Moreover, it is also respon-

sible for providing services such as insurance and the user’s reputation management. By

doing so, Airbnb is the only responsible for establishing and maintaining trust among users.

Unfortunately, current mechanisms cannot cope with malicious behaviors, high service and

transaction fees, strategic lies, and the formation of deceiving coalitions. Therefore, there is

a need for a critical technological innovation since no centralized entity nor an intermediary

44

Figure 3.1: Threats associated with accessing indoor IP camera by home-owner from remote
location in a home-sharing economy scenario.

can address these problems [155]. Additionally, an intrusive homeowner can compromise

the privacy of the tenant by accessing the connected IoT devices. For example, the data

collected by the IP camera in a rental property cannot be shared with the owner of the

property while it is occupied by a tenant.

3.2.2 Motivation

Protection of Trust The sharing economy is a case of a consumer to consumer (C2C)

business model. Contrary to other business models, where companies sell their products or

services to other businesses (B2B) or consumers (B2C), companies in a sharing economy

are only middlemen who can be cut out of the process by establishing an alternative source

of trust between consumers. Thus, the sharing economy is uniquely suited to decentraliza-

tion via the blockchain. For IoT in the home-sharing economy, blockchain can provide an

infrastructure for direct, safe, and secure transfers between devices, without the need for

a centralized authority. Smart contracts can translate the existing contractual clauses into

embedded hardware and software so that it can self-verify that conditions have been met

to execute the contract. Smart contracts contain code functions and interact with other

contracts, make decisions, store data, and send tokens/money to others.

Protection of Privacy Smart contracts can also facilitate efficient IoT devices by au-

tomating their operations and decision making. We can achieve this automation by allowing

IoT devices to interact with smart contracts and make decisions defined by the fixed con-

45

Figure 3.2: Block diagram of a Trusted Platform Module (green block) embedded into the
camera’s software architecture [8].

tract logic. For example, in order to safeguard surveillance data, modern IP cameras are

equipped with an onboard security chip, Trusted Platform Module (TPM) [8]. Using a sym-

metric cryptographic key, the TPM encrypts the data stream (Figure 3.2). In this work, we

leverage the TPM to change its encryption key whenever a tenancy change is recorded in the

smart contract. This key can only be computed using the device and the tenant’s private

key so that no one else can access the surveillance data other than the current tenant.

3.3 Related Works

Privacy is a concern whenever common resources are shared. Wolf et al. [218] proposed a

new IoT architecture, which facilitates the horizontal integration of different IoT ecosystems.

The proposed work assumes that the owner controls the resource being shared at all times,

and only supervised access to that resource can be granted to the requester by the owner. The

main drawback of such a solution is that there is no provisioning in it by which the requester

can ensure the privacy of its access to that resource. Although this privacy concern is not

a significant problem in various IoT applications, such as sharing the data collected from

temperature sensors deployed in a farm, it could be crucial for other types of applications,

such as home-sharing, car-sharing.

46

3.4 Proposed Methodology

Figure 3.3 presents our proposed protocol showing the role of all entities (the manufac-

turer, owner, tenant, IoT device, blockchain) to preserve IoT privacy in the home-sharing

economy. The protocol consists of the following steps.

3.4.1 Implementing Smart Contract

In the first step of our proposed protocol, the manufacturer of an IoT device (an IP

camera, for example, in our case) creates a smart contract (possessionContract in Figure

3.3). This contract offers functions for managing the possession transfer and polling the

possession of the device. The manufacturer then deploys the contract in blockchain and

embeds the address of the contract in the device. The IP camera may either ship with the

smart contract’s address baked into it, or the blockchain nodes can find out about it via a

discovery service [76].

The smart contract consists of code (its functions) and data (its state). The contract

functions are setDeviceInfo, sendDeposit, transferTenancy, pollTenancy, and the state

variables are owner, owner’s public key, tenant, tenant’s public key, device identifier, device

public key, rental status (rented/unrented), rent initiation date, rental period. Once the

smart contract is deployed in the blockchain, the IoT device executes according to the smart

contract’s states. The IP camera queries the contract, finds the tenant and changes the

video data encryption key. The manufacturer sets the first buyer as the owner of the device.

3.4.2 Transferring Tenancy to a Tenant

To fulfill this protocol, the smart contract stores an internal list of IoT devices, along

with their owner information and their respective rental prices. New devices are added to

this list, and the owner can adjust the prices in this list by calling setDeviceInfo, the

function to set the minimum deposit, prices, and types. When a prospective tenant creates

a transaction sendDeposit to send a deposit, it includes the device information so that the

smart contract can keep a list of tenants and their deposits for each device, along with the

prices at the time of deposit.

47

Figure 3.3: Detailed diagram showing the role of all entities in the proposed IoT privacy
protection protocol.

The owner can check this list to ensure that a deposit has been made before providing

access to his/her property. To transfer the tenancy to a tenant, the owner sends a transaction

transferTenancy() to the possessionContract. Algorithm 5 shows the contract function

transferTenancy() used in our proposed methodology. This transaction defines all the

necessary information related to a tenancy transfer, such as new tenant information, tenancy

starting time, tenancy period. The transaction includes the tenant’s public key, which will

be used by the IoT device for computing the data encryption key. If the transaction’s sender

is the current owner of the device, the smart contract updates its new tenant and the new

tenant public key.

ALGORITHM 5: Pseudo-code of transferTenancy() for transferring tenancy to the tenant.
Inputs: Device identifier (deviceIdentifier)Tenant’s public key (pubKeyTenant), and tenancy

period (tenancyPeriod)
if msg.sender is the owner AND deviceIdentifier is available then

Set pubKeyTenant as the target feed in the deviceIdentifier
Change Subscription time to tenancyPeriod
Change deviceIdentifier state to rented

else
Throw error

end

48

Figure 3.4: Detailed diagram of the tenancy transfer protocol.

3.4.3 Establishing a Shared Encryption Key

The device interacts with the blockchain network and polls the smart contract periodi-

cally by querying the function pollTenancy(). We present the details of device interaction

methods with blockchain in Chapter 6. The pollTenancy() function returns the tenant’s

public key to the requesting device. For video stream encryption purposes, the IP camera

establishes a symmetric key using the Diffie-Hellman protocol [67]. On the one hand, the

device calculates the symmetric key using its private key stored secretly inside the device

and the tenant’s public key from the smart contract. On the other hand, the tenant calcu-

lates the symmetric key using his private key and the device public key. The computation is

based on a pre-established large prime number (p) and a generator (g), which is a primitive

root modulo p.

After the tenant includes the public key in the smart contract, the IP camera can encrypt

the video data with the tenant’s public key, and the tenant can decrypt the data with a pri-

vate key using any standard Public Key Cryptography (PKC) algorithm. However, for large

data like video stream, encryption/decryption with asymmetric PKC (e.g., RSA, ECC) is

very slow. Instead, we choose symmetric key cryptography (AES) for encryption/decryption,

which is several orders of magnitude faster.

49

Figure 3.5: Detailed diagram of the privacy protection protocol: (1) the smart contract
notifies the IP camera about the tenancy change, (2) IP camera computes the symmetric
key from tenant’s public key and encrypts video data, (3) tenant calculates the symmetric
key and decrypts the video data. The dotted lines indicate inaccessible data.

Tenant’s public key, T = gt mod p,

Device public key, D = gd mod p

Next, the public keys are exchanged via smart contract. The tenant and the device

computes a shared symmetric key (s) using their private keys.

Tenant computes s = Dt mod p = gdt mod p,

Device computes s = T d mod p = gdt mod p

3.4.4 Encrypting IoT Data with the Shared Encryption Key

The encryption engine of the TPM changes the encryption key to the newly computed

symmetric key. Then it encrypts all the video data stream or other payload with encryption

key (Figure 3.5). The tenant can also decrypt the video data with the shared key. On

the other hand, the owner can no longer decrypt the surveillance data as the key has been

changed.

50

3.4.5 Change of Encryption Key after Tenancy Period

The transferTenancy function in possessionContract defines that during the tenancy

period, the tenant will have the possession of the device. After the tenancy period, the

original owner will have the device’s possession, and the encryption key will be changed

according to the original owner’s public key. As the smart contracts are reactive entities, in

order to terminate them, one should trigger them. The owner does this termination once the

rental period is over. The trigger message is only accepted and processed by the contract

if it comes from the owner and if the contract period is over. Upon receiving the trigger

message, if the rental period is over, the contract reverts the device’s rental state to unrented,

which means that the camera will no longer use the renter’s information to send its feed.

The camera then uses the owner’s public key to calculate the symmetric key and redirects

the encrypted stream to the owner’s address. With the trigger message, the payment and

change (deposit minus payment) are also sent to the owner and the tenant, respectively.

3.5 Hardware Collateral for the Smart Contract

For implementing the proposed smart contract, the IP camera’s system-on-chip (SoC)

needs to be equipped with an encryption engine, such as AES, DES, 3DES etc. Most of the

modern IP cameras are equipped with such security engines for safeguarding the data [8].

Similar privacy protection methodology can be applied to any other IoT devices present in

a home. Alternatively, a Smart Home Hub [187] can perform the privacy protection for all

the IoT devices connected to it.

3.6 Protocol Demonstration and Discussion

We implemented the proposed protocol in Solidity programming language and eval-

uated in terms of its operational cost. The code is publicly accessible in Github reposi-

tory [27]. In particular, we calculated the total cost by measuring the total gas amount

(execution fee for each operation made in Ethereum) for all of the functions involved in

the process, that is, (i) registering device (registerDevice()), (ii) transferring ownership

(transferOwnership()), and (iii) transferring tenancy (transferTenancy()) and then con-

verting it into USD (Table 3.1). For practical implementation, the protocol can be imple-

51

Table 3.1: Operation cost for the proposed smart contract transactions.

Operation Gas limit Gas price Cost (in ETH) Cost (in USD)

registerDevice() 121478 10.89 ×10−9 0.0013229 0.463

transferOwnership() 30365 10.89 ×10−9 0.00033067 0.116

transferTenancy() 23365 10.89 ×10−9 0.00023067 0.08

mented in an application and all the steps, like creating transaction, verifying ownership,

authenticating the device, transferring the tenancy can be done by using the application.

Participants can mange their keys and addresses using a digital wallet.

3.7 Limitations and Discussion

Data Storage on the Blockchain In a decentralized sharing economy platform, the

data need to be securely stored on the blockchain. However, storing all data on a blockchain

database distributed across thousands of nodes is hugely inefficient. Therefore, not all data

should be stored on the blockchain – only items that are sensitive and need to be stored

securely like transactions, identities, core property information, reviews, etc. Items like

property descriptions, indexes for searching, and photos change regularly and should not be

stored within the blockchain. More centralized applications could be built on a secondary

layer above the blockchain, which can act as a window into the system – but keep its core

USP (User Services Platform) the same.

Reduced Operational Governance Control One major limitation of a blockchain-

based sharing economy is reduced operational governance control of the provider’s actual

service level. In general, federal, state, or local authorities always regulate businesses offering

rental services. In the sharing economy, however, unlicensed individuals offering rental

services may not obey these regulations. For example, there are reports of users who find

their bikes provided by the owners of Mobike severely destroyed, with a little chance of

compensation.

Listing All IoT Devices The hosts may have hidden video or audio surveillance

equipment to monitor the guests. These hidden remotely-connected IoT devices violate the

52

guests’ expectations of privacy. Our proposed protocol necessitates that the owner has to

enlist all blockchain-enabled IoT devices in the smart contract for preserving privacy.

3.8 Concluding Remarks

Sharing IoT devices introduces new opportunities for innovation, but at the same time,

it makes it challenging to ensure private access to the resources being shared. To avoid

the cost overhead of a trusted third party supervising the private access to the resource,

we proposed the alternative solution of using blockchain technology. Our proposed protocol

preserves the IoT privacy by facilitating the change of encryption key via smart contracts.

53

CHAPTER 4

IMPROVING RELIABILITY OF WEAK PUFS VIA ACCELERATED
AGING

4.1 Introduction

In the previous chapters, we have used Weak PUFs for device-unique key generation

and authentication. Among the Weak PUFs, SRAM-like PUFs have become prominent in

the industry as part of secure key/ID generation functions [98]. SRAM-like Weak PUFs

utilize the mismatch in the device characteristics of the cross-coupled inverters, due to

manufacturing process variation, to settle into a particular logical state upon power-on.

These power-on states are random across cells. Ideally, a Weak PUF should reproduce the

same output behavior during each power-on operation, i.e., the PUF should be reliable.

However, due to environmental variations, noise or aging, a Weak PUF output can become

erroneous. The problem is exacerbated if the inherent mismatch between the cross-coupled

inverters in SRAM-like Weak PUF is small. Hence, the intended use of Weak PUFs for

key/ID generation is negatively impacted.

Among the prior approaches to improve PUF reliability, accelerating device aging or

burn-in has received increasing attention [42, 84, 148]. In accelerated aging, devices are

subjected to temperature and voltage stress in a burn-in chamber. For SRAM-like Weak

PUFs, the burn-in process can increase the inherent mismatch between the cross-couple

inverters so that a PUF output attains stronger immunity to noise.

While burn-in is beneficial, it can significantly inflate production costs due to long baking

times to maximize the number of reliable integrated circuits (ICs). The straightforward way

to determine the bake times is to account for the worst-case design corners. This worst-case

design consideration can prove detrimental to the utilization of PUFs in low-cost applica-

tions, like Smart Cards, and for high volume manufacturing. Hence, there is a compelling

need to reduce burn-in time. Integrating a mechanism for the IC to provide certain in-

54

formation to the manufacturer to aid in calculating the minimum burn-in time, without

compromising the security of the PUF, can prove advantageous and offer a considerable

increase in manufacturing throughput.

In this chapter, we present a method to reduce the burn-in time by quantifying the

minimum burn-in requirements for each Weak PUF cell [113]. We use a low-cost proxy

to represent the inherent cross-coupled inverter mismatch in terms of the PUF error rate.

The error rates of the instantiated PUFs in an IC are measured and used to decide the

burn-in requirements. We present a low-overhead architecture to automate the collection of

necessary data. Also, the effect of alternate SRAM-like PUF designs and different transistor

technology implementations on the burn-in process are analyzed.

4.2 Background and Motivation

In this section, we discuss some relevant background with regards to device aging and

burn-in. We also discuss the temporal majority voting (TMV) technique in detail as we

will utilize this in our methodology. We also present the prior research regarding previous

techniques for improving Weak PUF reliability.

4.2.1 Weak PUF

In the hardware security context, literature works have proposed SRAM cells for use

as Weak PUFs [98]. Due to process variation, the transistor parameters of an SRAM cell

are skewed from their nominal value, making the cell asymmetrical. The random nature

of process variation results in a unique start-up pattern of an SRAM memory array, which

can be used as a device fingerprint. The most common design of an SRAM cell is the 6T

structure consisting of two cross-coupled inverters and two access transistors. SRAM-based

Weak PUFs generate their random bits by amplifying the mismatches in process variations

in two (or more) transistors using a positive feedback structure. However, when these

mismatches are small, different environmental variations, ambient noise, or aging can often

affect the PUF outputs resulting in some bits of the raw PUF response being unreliable.

Recent hardware studies have shown that various environmental variations can result in the

unreliability of 6− 8% in the PUF response bits [142].

55

Figure 4.1: SRAM-like cross-coupled inverter PUF cell (Ref) [213]

To circumvent the need for multiple power-ups of the SRAM PUFs, we modify the basic

cell, as shown in Figure 4.1, to efficiently allow multiple evaluations of a cell’s output in the

presence of noise [213]. The circuit, termed as Ref, works using pre-charge and discharge

cycles. During pre-charge (EN = 0), the output nodes are raised to supply level (Vdd,1

and Vdd,2) and M7 (footer) prevents short-circuit current consumption. In the evaluation

phase (EN = 1), the process variation of the transistors creates discharge paths of different

strengths. This allows the circuit to settle to either logic-1 or logic-0. The effect of noise on

the outputs is simulated by adding noise voltages to Vdd,1 and Vdd,2. This design is similar

to changes required to enable Temporal Majority Voting (TMV) in related work [148] and

to Sense-Amplifier PUF [41].

4.2.2 PUF Reliability

Fuzzy extraction has been explored to derive stable keys from biometric data and, for

authentication of such data [70]. For improving the reliability of Weak PUFs, application of

error-correction codes (ECCs) and fuzzy extractors requires generating and utilizing helper

data [50, 64, 143, 144, 146], which is made public. For ECC implementations, a stable key

of the desired length needs a large number of initial Weak PUF bits, even with helper data

[50]. The intrinsic error rate of a Weak PUF cell increases as the process variation reduces,

which is the case as a technology node matures. An increase in PUF error rate increases the

56

initial bits required to derive a stable key of the same length and increases the helper data

needed for fuzzy extraction and error correction.

Circuit and device-level solutions can improve the Weak PUF cell reliability, provid-

ing alternatives to costly ECC. Pre-selecting SRAM-based Weak PUF cells that exhibit a

greater degree of transistor threshold voltage mismatch has been proposed by Hofer et al.

to improve the reliability of the system [97]. Layout techniques and resettable logic were

shown to reduce the influence of systematic process variations by Su et al. [199]. Jang and

Ghosh [116] proposed extensions over a conventional 6T SRAM cell by incorporating PMOS

latches and using Magnetic Tunnel Junction (MTJ) devices to protect against environmental

fluctuations. Alternate configurations of the inverters in the SRAM cell have been explored

by Ganta and Nazhandali to reduce the variations with respect to temperature and hence,

decrease the number of unreliable bits that need error correction [83]. Bucci and Luzzi [52]

constructed a differential circuit to capture the process mismatch and amplify it to reduce

the effect of noise on the PUF cell output. Patil et al. [166] further explored various con-

figurations of SRAM-like Weak PUFs that exhibit higher sensitivity to process variations,

resulting in greater resilience to thermal noise. The higher sensitivity allows the PUF cells to

be immune to noise even in mature technology nodes. Cortez et al. [60] proposed adapting

voltage ramp-up time to ambient temperature to reduce the error rate of memory PUFs.

However, the auxiliary circuits needed for voltage ramp-up accrue a large area overhead,

and shaping the supply voltage becomes complex in large circuits.

The effect of aging on PUF reliability has been studied extensively by Garg et al. [84],

and Maes et al. proposed techniques to counter the effects [145]. Bhargava et al. [42] utilized

aging via Hot carrier injection (HCI) aided PUF reliability.

4.2.3 Temporal Majority Voting

The area overhead from implementing traditional ECC blocks and the number of initial

PUF bits required scales superlinearly as the error rate increases. A simple, circuit-based

way to reduce the error rate using Temporal Majority Voting (TMV) has been explored by

Mathew et al. [148] and Xiao et al. [220]. Mathew et al. [148] also explored burn-in and

dark bits evaluation to reduce error rates. Design changes were required to enable voting,

57

and synchronous design helped improve uniqueness. However, the approach can only correct

error rates of < 8 %, and additional techniques are necessary for practical applications.

In this work, we will assume a simple counter-based TMV for error correction during

the regular operation of the PUF. For example, a simple 4-bit counter-based TMV counts

from 0 to 15 and can be used for 15-way voting. If the resultant value after 15 evaluations

of the cell’s response is greater than 8, then the final value can be classified as 1, or else it

can be classified as 0. The mathematical model of the TMV is a binomial counting process,

and hence, the reduction in error rate can be calculated analytically. For example, a PUF

cell whose error rate is 1− p produces a final error rate of Pe(N) given by,

Pe(N) =
N∑

m=k

(
N

k

)
pm(1− p)N−m (4.1)

where k = (N + 1)/2 (as N is odd) when an N -way voting is used [132]. The circuit

implementation of the TMV typically consists of an n-bit counter where N = 2n − 1 . The

counter is incremented by 1 if the response from the PUF cell is 1.

Using (4.1), we plot the initial and final error rates for 4-bit (15-way), 5-bit (31-way) and

6-bit (63-way) TMVs in Figure 4.2. The TMV selection would be based on the maximum

error rate that the system needs to correct (final error rate ≤ 10−6). We utilize a 4-bit TMV

for regular operation for this work, noting that it can correct a maximum error of 6%.

4.2.4 Negative Bias Temperature Instability

Transistor aging has become a significant reliability concern for current CMOS technol-

ogy. Among various aging mechanisms, Bias Temperature Instability (BTI) is considered

the dominant aging mechanism, causing the threshold voltage of the transistor to increase.

There are two BTI mechanisms: (i) Negative BTI (NBTI) affecting the PMOS transistors

and (ii) Positive BTI (PBTI) affecting the NMOS transistors. NBTI results from continuous

trap generation in Si-SiO2 interface when a negative voltage is applied to the PMOS gate

(stress). Under stressed operating conditions (i.e., On-state, negative gate bias at elevated

temperature and supply voltage), Si-H bonds near the interface continue to break and gen-

58

Figure 4.2: Error rate reduction due to Temporal Majority Voting

erate interfacial traps that contribute to an increase in Vth. Due to the Vth degradation,

NBTI results in poor drive current, lower noise margin, and shorter device lifetime.

The NBTI-induced threshold voltage shift is a function of supply voltage, temperature,

and many technology parameters. Various models have been proposed in the literature to

accurately estimate the threshold voltage degradation of ∆Vth due to NBTI. Kang et al.

proposed a compact threshold voltage degradation model considering the temporal NBTI

variation in short channel devices [121]. Paul et al. showed that the maximum circuit delay

degradation due to NBTI closely follows the same fractional power dependency to time as

the Vth degradation with an appropriate scale factor [167]. Kumar et al. have proposed

an efficient AC NBTI model for circuit simulations [130]. Vattikonda et al. have proposed

a further improved circuit compatible NBTI model to consider AC relaxation effects and

technology-dependent parameters [211].

FinFET : The NBTI model for FinFETs is the same as (4.2.4). The effect of NBTI and

mitigation techniques for FinFET SRAMs have been explored in detail by Wang et al. [216].

According to the Reaction-Diffusion (RD) model [40], the BTI-induced threshold voltage

shift is:

59

∆Vth(t) =

(√
K2

vαTclk

1− β1/2nt

)2n

βt = 1−
2ξ1te +

√
ξ2C(1− α)Tclk

2tox +
√
Ct

(4.2)

Kv = f(Vdd − Vth, T)

where α is the duty cycle, T is the temperature, Tclk is the clock cycle, and other parameters

are technology parameters previously defined in [40].

4.2.5 Burn-In (Accelerated Aging)

IC designers and manufacturers are concerned about quality and reliability over a prod-

uct’s lifetime. To ensure economic viability, it is desirable to remove defective devices from

the population before shipping them to the customer. Consequently, many ICs undergo a

burn-in process after fabrication to accelerate failures that manifest in early-life, which are

primarily caused by process and manufacturing defects. However, under burn-in conditions,

increased junction temperature (average temperature of the silicon substrate) increases the

leakage current, and increased leakage current further increases the junction temperature.

Thus, manufacturers try to control the junction temperature by removing the heat from

the IC. If the heat generation rate becomes greater than the rate of heat removal, junction

temperature starts increasing. This condition is called thermal runaway [209]. It has been

shown that the burn-in setup conditions must evolve by reducing either the ambient temper-

ature or the thermal resistance, or a combination of both. For example, in 130nm process

technology, the junction temperature should be kept below 110 °C with a thermal resistance

of 0.5 °C/W and an ambient temperature of 80 °C to avoid thermal runaway [209].

In the case of a Weak PUF, the response can be made more reliable by increasing the

magnitude of the difference in the threshold voltages of the two PMOS devices in the cross-

coupled inverters (M1, M3), in Figure 4.5. One such method of improving the reliability is

to exploit NBTI aging effects to reinforce the desired (or “golden”) response of the PUF cell.

This is done by finding the golden outputs (OUT, OUT) of the PUF cell and forcing the

opposite values onto them via the access transistors (M5, M6). Increasing the temperature

60

and/or applying voltage stress for a certain amount of time accelerates the devices’ aging in

a beneficial manner [42, 84, 148]. Hence, by improving the PUF reliability via burn-in, the

number of defective ICs is reduced.

4.2.6 PUF Reliability using accelerated aging

The aging effect on PUF reliability has been studied extensively by Garg et al. [84], and

Maes et al. proposed techniques to counter the effects [145]. Bhargava et al. [42] utilized

aging via Hot Carrier Injection (HCI) aided PUF reliability.

4.3 Methodology

This section discusses the PUF system design to enable the IC to output the maximum

error rate observed. Later, we elaborate on a mechanism to correlate the error rate to the

inherent mismatch in the PUF cell that allows us to find the burn-in time required to make

all the PUF cells reliable.

4.3.1 Weak PUF System Design

In Figure 4.3, we describe the proposed system to measure the maximum error rate in

a PUF. We described this system initially in our paper [112]. The system consists of a PUF

cell array connected to an array of multiplexers (Muxes). These muxes will direct the PUF

outputs to the relevant counters based on the mode of operation. A Central Control unit

oversees the entire operation of the PUF system. The circuit operates in two modes: (i)

Design for Reliability (DfR) mode and (ii) Regular Operation (OP) mode.

(i) Design for Reliability (DfR) mode: Before burn-in, the circuit is initialized into

(DfR) mode to obtain the maximum error rate among the PUF cells. The control unit

directs each PUF output via the MUX array to a 10-bit counter and performs 1024 pre-

charge and evaluations cycles on each cell. During every evaluation, the counter increments

if the output is logic-1. The large counter allows us to get an accurate measurement of the

error rate of a cell. Also, a single 10-bit counter is enough as this process is carried out

before burn-in and is not time intensive like burn-in. Even if a PUF cell takes 1ns for each

evaluation, then each cell error rate is obtained in ≈ 1µs.

61

Figure 4.3: Block Diagram of the proposed reliability enhancement scheme (from [112], our
earlier paper)

The counter value is fed to the Burn-in Optimizer unit that first determines the correct

PUF cell output. If the count is below 512 (ideally 0), then the correct output is determined

to be logic-0. If the counter is between 0 and 512, this count becomes the error rate for the

cell (out of 1023). For logic-1, the count would be > 512 (ideally 1023). To find the error

rate, we subtract the current count from 1023. The estimated logic value (PUF value) of

the PUF cell is fed back to the Central Control unit, which then writes the opposite value

to the PUF cell for burn-in.

The Burn-in Optimizer also maintains an internal register that stores the current max-

imum error rate (initialized to 0 on start-up). Each calculated error rate is compared to

the current maximum using a comparator and set as the new maximum if the error rate

is higher. All PUF cells are processed to obtain the final maximum error rate. Further

optimization is possible by utilizing the maximum error, 6%, that a 4-bit TMV can correct.

62

The Error Threshold can be set to ≈ 62 (6% of 1023), and each calculated error rate is

compared against this before comparing with the stored maximum. The final IC output

(Max Error Rate) is the maximum error only if it is greater than the error threshold, and

otherwise, the output is a 0. Such ICs would not need burn-in as the TMV is sufficient.

In some instances, the designer may wish to account for an acceptable yield loss and use

more PUF cells than required. Hence, the Mask Array can be utilized to select the most

reliable PUF cells. The Burn-in Optimizer is used to set the mask bits to indicate reliable

cells. It can also possess an additional counter to keep track of cells with error rates of ≤ 6%

(for TMV). In case the system finds the required number of cells, it can output a 0 max

error rate to reduce burn-in requirements further. After burn-in, the Burn-in Optimizer can

be reused to set the final mask bits. Masking has been shown to help improve the reliability

of the Weak PUF system [148]. The Burn-in Optimizer’s entire operation is illustrated as a

flowchart, as shown in Figure 4.4.

(ii) Regular Operation (OP) mode: In this mode, the control unit queries and directs

the PUF outputs to the 4-bit TMVs. We can use multiple TMVs to speed up the PUF

evaluations for convenient real-time operation. As the burn-in process will have increased

the mismatch of the PUF cells by an appropriate amount, the TMVs should be able to

correct any observed errors as they will be well below the TMV threshold.

4.3.2 Process Variation and Error Rate

We utilize the SRAM cell design, whose operation is detailed in Section 4.2.1 and re-

illustrated in Figure 4.5 as the reference design, termed Ref.

Utilizing the maximum error rate produced by a PUF system, we aim to find the current

inherent mismatch, in terms of threshold voltages between the PMOS transistors (M1, M3),

in Figure 4.5. This maximum error rate acts as a proxy representing the inherent mismatch

between the cross-coupled elements in the actual PUF cell and will help us determine the

amount of NBTI aging needed to make the cell reliable.

To correlate the error rate with a threshold voltage mismatch value, we perform a set of

SPICE simulations on the Weak PUF cell. Circuit thermal noise is considered as the source

of errors in the PUF output. The noise is applied to the circuit in a differential manner at

63

Figure 4.4: Flowchart illustrating the operation of Burn-in Optimizer
64

Figure 4.5: SRAM-like cross-coupled inverter PUF cell (Ref) [213]

Vdd,1 and Vdd,2, as shown Figure 4.5. The inherent mismatch of a PUF cell is approximated

by varying the threshold voltage in one of the PMOS transistors (M3 in our case) in steps of

1mV up to a certain maximum. A large number of evaluations are performed under varying

thermal noise for each step, and the error rate is calculated by comparing the values with

the output for zero thermal noise.

An example, as shown in Figure 4.6, plots the error rates against the increasing threshold

voltage mismatches for a PUF cell, as shown in Figure 4.5, in 45 nm technology [18] using

minimum sized transistors. This plot gives us an approximate correlation between the error

rate of a cell and the inherent PMOS transistors mismatch. Knowing that a 4-bit (15-way)

TMV can correct a maximum of 6% error, we see that any cell with an inherent mismatch

of ≥ 19mV can be handled by the TMV. The cells with lower mismatch are not TMV-

correctable and become the target of our burn-in efforts. The worst-case threshold voltage

shift, when the maximum error rate is 50%, for the burn-in process is set at a higher value

than 19mV to account for the approximations made in our analysis. This value becomes the

total target mismatch required to create a fully reliable PUF system. We also note that an

error rate of 50% would represent the ideal true random number generator (TRNG). Based

on the observed maximum error, which represents the lowest mismatch observed among

65

Figure 4.6: Error rate correlation with PUF cell threshold voltage mismatch

the PUF cells of a particular IC, we can calculate the threshold voltage shift required from

the burn-in process to reach the target mismatch. In a real-world scenario, the maximum

observed error rates are likely to be below 50%, and hence, the needed threshold voltage

shift from burn-in will be less than the set target value. This reduced threshold voltage shift

translates into significant savings with regards to burn-in time.

4.4 Burn-in time reduction

In this section, we explore the advantage of using the proposed solution presented in

Section 4.3 considering Weak PUF systems that need to generate 128 reliable bits. The

reported results consider a cumulative burn-in time, where we assume that only a single IC

undergoes the accelerated aging at a time. In practical situations, different manufacturers

can utilize different ways. Hence, it is difficult to assume just one arbitrary process.

4.4.1 Weak PUF Designs

Along with the simple SRAM-like Weak PUF design (Ref), we extend the analysis

using other PUF designs proposed in our earlier work [166]. It was shown that connecting

66

Table 4.1: Implementation details for various Weak PUF design configurations

Configuration
(Identifier)

Transistor
Sizing

2-parameter model
values [141]

PMOS NMOS λ1 λ2
Cells with 0
error (%)

Simple (Ref) 90 nm 90 nm 0.292 1.906 83

Two Parallel Loads (D1) 180 nm 90 nm 0.188 2.395 96

Current Mirror Load (D2) 180 nm 90 nm 0.191 2.491 97

FinFET (F1) 1 fin 1 fin 0.413 1.595 60

either the pull-up or pull-down transistors of the cross-coupled inverters in the PUF to

a bias voltage can significantly benefit reliability. Since we consider NBTI as the aging

mechanism of interest for the burn-in process, we modify the circuits so that the pull-down

transistors are connected to bias voltages while the pull-up transistors are cross-coupled

to form the inverters. For this work, we choose the parallel active loads design with two

parallel NMOS transistors (D1), as shown in Figure 4.7, and the current mirror-based design

with NMOS current mirrors (D2), as shown in Figure 4.8. The access transistors and the

pre-charge voltages connected to OUT and OUT are the same as the Ref design, shown

in Figure 4.5, and are omitted in the circuit diagrams for clarity. The transistors are sized

to allow maximum process variation sensitivity except for the footer (M2), which is sized

larger to allow the circuit’s proper operation. Vbias was set to 0.5V for D1 and 0V for D2.

Conventional CMOS scaling beyond the 45nm technology node is severely constrained by

pronounced threshold voltage (Vth) fluctuations resulting from Short Channel Effects (SCE)

and Random Dopant Fluctuations (RDF) due to process variations [71,180,198,207]. Hence,

FinFETs were developed to facilitate the continued scaling of technology nodes. FinFET

devices exhibit better electrostatic characteristics with respect to SCE as the gate, or fin,

wraps around a thin slice of silicon (channel) [177]. The greater control over the channel

allows FinFETs to have lower leakage current and power consumption over bulk CMOS. We

wished to study the effect on burn-in requirements when using FinFETs as the basis for

constructing the Weak PUF. We considered only the Ref design, as shown in Figure 4.5,

67

Figure 4.7: Modified parallel active loads-based PUF design (D1) [166]

Figure 4.8: Modified current mirror-based PUF design (D2) [166]

and instantiated the PUF, termed as F1, using 20 nm FinFETs using predictive technology

models [19]. We fixed the fin number at 1 for all transistors except the footer (M7 in

68

Ref), which had 2 fins for proper current sinking. We set the supply voltage at 0.9V. The

specifications for the various designs are tabulated in Table 4.1.

4.4.2 Thermal Noise Errors

The random motion of the charge carriers from thermal excitation induces thermal noise

in transistors and can create random voltage fluctuations in conductors [120,160]. Thermal

noise has a near-uniform power spectral density, and there is no correlation among differ-

ent samples across time. Short channel effects [87] can exacerbate the effects of thermal

noise in advanced CMOS technology nodes, causing a significant impact on transistor noise

performance [205]. The thermal noise at any given node can be represented with a normal

distribution with 0 mean, and the standard deviation is given by [188],

σNOISE(T) =

√
kB ∗ T
C

(4.3)

where kB is the Boltzmann constant, T is the absolute temperature (Kelvin), and C is the

node capacitance (Farads).

We record the node capacitances at OUT and OUT in each design (Ref, D1, D2, F1),

under no process variation condition, to determine the amount of thermal noise to be added

to Vdd,1 and Vdd,2.

4.4.3 Error Rate vs Mismatch

Using the procedure described in section 4.3.2, we seek to find the correlation proxies for

each of the designs being considered. For the planar MOSFETs (Ref, D1, D2), we utilized

the 45 nm technology [18] to instantiate the cells. The supply voltage (Vdd) is set to 1V.

We shift the threshold voltage of one of the PMOS transistors (M3) in steps of 1mV up

to a maximum of 150mV. This threshold voltage sweep represents the proxy for the total

mismatch and helps simplify further analysis. At each step, we perform 2000 evaluations of

the cell under varying thermal noise conditions, using (4.3), and calculate the error rates.

Figure 4.9 shows the results which highlight the fact that the alternate designs (D1 and D2)

have a greater process sensitivity than Ref as every step increase in mismatch reduces the

observed error significantly and the error rate reaches 0 % with a lower amount of mismatch.

69

Figure 4.9: Error rate correlation with PUF cell threshold voltage mismatch for alternate
Weak PUF designs ({D1,D2}) based on [166]

In cases where incorporating the alternate designs may not be desired, we sought to

explore a technique to improve the performance of the existing SRAM-based PUF (Ref).

Boosting the supply voltage is beneficial for the operation of an SRAM [169]. However, we

must also be aware of an increase in leakage power. For this work, we study the performance

of Ref when the supply voltage is boosted to 1.2V. As shown in Figure 4.10, the results

indicate a decrease in the error rate with increased mismatch under higher supply voltage.

A designer can generate any number of such proxies at different voltages and use the data

to adaptively choose what supply voltage needs to be set for the PUF block, which decides

the burn-in time. This is because we only output the maximum error rate from an IC that

is later used with the correlation data. However, such supply adaptability increases the

complexity of the overall system design.

Replacing the planar MOSFET based PUF (Ref) with FinFET-based design (F1) pro-

vides better performance in cases where the inherent mismatch is higher, as shown in Fig-

ure 4.11. We note here that the FinFETs are more susceptible to thermal noise (from (4.3))

as the node capacitances are lower due to the smaller technology node (20 nm) compared to

70

Figure 4.10: Error rate correlation with PUF cell threshold voltage mismatch for Ref under
nominal and boosted supply voltage (1.2V)

the planar MOSFET. The results show that FinFET based implementations can be viable

as Weak PUFs even with the higher noise.

4.4.4 Modeling Process Variation

4.4.4.1 Planar MOSFET

Manufacturing induced process variations are modeled as random parametric variations

in the threshold voltage (V TH) and channel length (L) of each transistor in a circuit. The

values are obtained from a normal distribution, N(µ, σ2), where the mean (µ) and standard

deviation (σ) are determined based on the technology node used. Transistor geometry

impacts the susceptibility of a device to process variations, with larger devices experiencing

fewer fluctuations. In terms of threshold voltage, the mean is the default transistor model

value, and the standard deviation is given by,

σV TH =
σV TH0√

W∗L
Wmin∗Lmin

(4.4)

71

Figure 4.11: Error rate correlation with PUF cell threshold voltage mismatch for planar
MOSFET (Ref) and FinFET (F1) designs

where (Wmin,Lmin) are the minimum possible width and length of a device, respectively,

and (W ,L) are the sizes used in the design. σV TH0 is the standard deviation of threshold

voltage for the minimum sized device.

In this work, we instantiate the planar MOSFET PUF cell designs (Ref, D1, D2) with

45 nm NCSU FreePDK45 models [18]. Typically, for 45 nm node, a standard deviation of

53mV for threshold voltage and 10 % channel length variation are considered [16]. We used

equation (4.4) to calculate the standard deviation for threshold voltage of any arbitrary

sized transistor.

4.4.4.2 FinFET

While FinFETs are not affected by RDF due to undoped channel, they are susceptible

to Work Function Variation (WFV) caused by irregularities in fin surface from the manu-

facturing process [149]. Hence, WFV has the most significant impact on threshold voltage

variation. For this work, we consider a standard deviation of 30mV for threshold voltage to

represent the process variation in FinFET transistors [149].

72

4.4.5 Heterogeneous Error Model

In realistic scenarios, a collection of Weak PUF cells would have a distribution of errors.

This heterogeneous error model is advantageous in modeling real PUF systems as a homo-

geneous error model can overestimate the required ECC resources [141]. The homogeneous

model would also provide no useful information for driving the burn-in process as all cells

would be assumed to have the same error rate and, hence, the same process mismatch.

For this work, 10, 000 instances of the PUF cell, for each design, were simulated with

the relevant process variation parameters, as described in sections 4.4.4. Each cell was eval-

uated 1000 times under varying thermal noise (as determined in section 4.4.2) at 25 °C. We

obtained the error rate by comparing it with a simulation with no noise. Utilizing the result-

ing data with the mathematical framework for the heterogeneous error model [141], we can

generate error rates for an arbitrary number of PUF cells for each given design. The relevant

2-parameter model details for each PUF design are tabulated in Table 4.1. We also list the

percentage of cells among an arbitrary population that would possess 0% error for each

design, given the 2-parameter model data. Due to the higher thermal noise susceptibility,

FinFET implementation (F1) offers the lowest amount of 60%. This observation indicates

that the FinFET based design will offer fewer savings than a comparable planar MOSFET

design in terms of total burn-in time.

4.4.6 Cumulative Burn-in Time

Since we targeted to obtain 128 stable bits from a PUF system, we first considered the

system had 128 initial PUF cells, and all the cells needed to be reliable. Next, we considered

a scenario where a 2% yield loss might be acceptable, and masking is used. For this case,

we reused (4.1) with {k = 128, p = 0.98} to find the value of N that would result in

Pe(N) ≤ 10−6 (failure rate of 1 ppm). Results showed that we needed 144 initial PUF cells.

For all the designs considered in this paper (Ref, D1, D2, F1), we assume that the

burn-in temperature is 100 °C and the stress voltage is 1.1V and utilize (4.2.4) to calculate

the time required. The relevant device parameters for the NBTI equation are obtained from

the NCSU FreePDK models [18] for planar devices and from PTM models for the FinFET

[19].

73

T
ab

le
4.
2:

R
es
ul
ts

fo
r
re
du

ct
io
n
in

C
um

ul
at
iv
e
B
ur
n-
in

ti
m
e
fo
r
va
ri
ou

s
P
U
F
co
nfi

gu
ra
ti
on

s

C
on

fi
gu

ra
ti
on

#
P
U
F
C
el
ls

C
u
m
u
la
ti
ve

B
u
rn
-i
n
T
im

e
(h
ou

rs
)

T
ar
ge
t
M
is
m
at
ch

(m
V
)

N
at
u
ra
l
A
gi
n
g

T
im

e
W
or
st
-c
as
e

O
p
ti
m
iz
ed

R
ed

u
ct
io
n
(%

)

R
ef

12
8

41
.5
2E

6
17

.9
3E

6
56
.8
2

25
70

0
da

ys
14

4
0.
62

E
6

98
.5
0

R
ef

(1
.2
V
)

12
8

25
.1
5E

6
15

.9
2E

6
36
.7
0

23
42

5
da

ys
14

4
0.
42

E
6

98
.3
3

D
1

12
8

0.
49

E
6

0.
11

4E
6

79
.7
3

12
9
da

ys
14

4
0

10
0.
00

D
2

12
8

90
.2

43
.7
7

51
.4
8

4
16

m
in
s

14
4

0
10
0.
00

F
1

12
8

10
.3
2E

6
8.
62

E
6

16
.4
7

22
29

5
da

ys
14

4
0.
18

E
6

98
.2
5

74

For obtaining the cumulative burn-in time, 1million PUF systems were generated for

the 128 and 144 cells/system cases for each Weak PUF design using the heterogeneous

error model. For each PUF system, the threshold voltage mismatch was found using the

methodology described in section 4.3. To find a necessary increase in device mismatch in

each system, the data from section 4.4.3 and the mismatch representing the 6% error rate

(for 4-bit TMV) were used. Our target threshold voltage shift (also the worst-case shift)

was set by increasing the TMV mismatch found for each design by 30%. This is to account

for the approximations in our methodology for correlating error rate and inherent mismatch.

Table 4.2 also lists the amount of time needed to increase the PMOS threshold voltage due

to NBTI by the target mismatch value.

For each system, the max error rate indicates the lowest amount of inherent mismatch

and decides the threshold voltage shift needed to reach the target. The shift needed is used in

(4.2.4) to calculate the burn-in time. The cumulative burn-in time (Optimized) for 1million

PUF systems with 128 and 144 initial cells are recorded in Table 4.2 for each design. We

also note that a manufacturer might need to assume that each IC needs to undergo the

maximum burn-in for each design without the proposed solution.

From the results, in Table 4.2, we see that intelligent burn-in offers significant savings

compared to a constant worst-case scenario-driven burn-in. Also, using extra bits (144)

and masking results in reduced burn-in time compared to using just 128 cells/system. D2

offers the best results for any PUF system as the burn-in required is negligible compared to

other designs. Additionally, combining the alternate designs (D1 and D2) with masking and

extra bits can allow us to forgo burn-in entirely. Consequently, these designs are attractive

for low-cost applications where dedicated PUF circuits would make more sense regarding

resource utilization. The FinFET (F1) results show that we need to use extra bits for

greater reliability, but the lower cell area for the technology allows us to incorporate more

cells easily.

The results discussed here show the relative performance of various designs, but are

ultimately dependent on the amount of error correction afforded to us by the TMVs used

during regular operation. Vijayakumar et al. have shown that using an Up-Down counter

[213] allows them to correct twice the error compared to a similarly sized regular TMV. In

75

actual designs, using better error correction reduces the target mismatch required by the

burn-in process, but a designer must weigh such considerations against various constraints

such as available area, power requirements, and so on.

Resource Overheads: We considered a 144-PUFs system and calculated the area overhead

from the Burn-in Optimizer, Central Control, Mask Array and 10-bit counter described in

section 4.3. The rest of the circuitry for TMV-based reliable bit generation is assumed to

be present in the system. Using the 45 nm standard cell library from Nangate [17], the area

overhead was found to be 500µm2 (Burn-in optimizer costs 149µm2). This area is a small

overhead as most of the area (≈ 2500µm2) for an efficient implementation is occupied by

the TMV counters, PUF cells, and the mux arrays.

The primary testing time overhead is from obtaining the maximum error rate, which

entails serially querying each PUF cell 1024 times (10-bit counter) and processing the results.

For a 144-PUFs system, this requires ∼ 150, 000 cycles in total. At a test frequency of

10MHz, for example, each chip will need 15ms to generate the results. However, in cases

where no burn-in is required, the designer can directly proceed to the final key enrollment

phase. The Burn-in Optimizer is only used to set the Mask Array, and the system operates

at its final intended frequency, which is greater than the test frequency.

4.5 Concluding Remarks

Literature works have extensively proposed Weak PUFs for security applications such

as key/ID generation. Such applications require the PUFs to be highly reliable even in the

presence of noise. To ameliorate the noise susceptibility of the PUF outputs, many different

techniques have been proposed. One such method is to utilize burn-in/accelerated aging for

improving PUF reliability. Our work focuses on creating a PUF system that enables the

calculation of minimum burn-in time for an IC. We obtain results for various SRAM-like

Weak PUF designs, which show a significant reduction in burn-in times, providing large

savings during the manufacturing process’s post-silicon stages. Further, results show that

FinFET based implementations can also be viable as Weak PUFs even in the presence of

significant noise.

76

CHAPTER 5

PMU-TROJAN: ON EXPLOITING POWER MANAGEMENT SIDE
CHANNEL FOR INFORMATION LEAKAGE

5.1 Introduction

In a blockchain network, any entity connected to other entities in a peer-to-peer manner

is called a client. All these clients talk to each other and form a network where each client

works as a node. Nodes are responsible for verifying and relaying the transactions and

blocks on the network [157]. The nodes which download and verify every single block, and

therefore every single transaction in each block, are referred to as full nodes. A full node

requires time and resources, as the download and validation process is particularly heavy

on CPU and disk IO. For example, it is recommended that a full node requires a computer

with multi-core CPU, 4GB RAM, and an SSD drive, and at least 200GB free space [26].

Running a full node is the most secure way to interact with the blockchain, making this

piece of infrastructure critical to the network. Organizations or individuals run full nodes

if they need it for their business. The Miners run full nodes as they get rewards for mining

coins in Bitcoin or transaction fees in Ethereum. However, running a full node requires an

adequate level of knowledge and resources that most users are understandably unwilling to

invest in. As e result, there is no built-in incentive for individual users to run a full node.

Consequently, individual users resort to a third-party centralized infrastructure as an al-

ternative to running full nodes. For example, the most popular software wallets (Metamask,

MyEtherWallet, MyCrypto, Jaxx, Exodus, etc.) rely on third-party hosted nodes. These

clients connect to a remote node and completely trust their responses. The positive aspect

of this is an enhanced user experience as these wallets’ users do not need to run their nodes.

However, significant security threats may arise when users are forced to trust a third party

infrastructure-as-a-service (IaaS) while handling sensitive data such as private keys.

77

Such Infrastructure-as-a-Service (IaaS) cloud computing supports multiple virtual ma-

chines on a hardware platform managed by a virtual machine monitor (VMM) or hypervisor.

These co-resident VMs are mutually distrusting, and a malicious VM can pose risks to the

confidentiality and integrity of the co-resident VMs. This chapter proposes a method where

a co-tenant thread monitors the power management side-channel information from a thread

affected by a hardware Trojan. Such a Trojan can leak secret private keys and disrupt digital

transactions.

The globalization of semiconductor manufacturing and the phenomenal growth of tran-

sistor devices are posing new threats for secure and reliable hardware design. The business

model of outsourcing design and fabrication to increase profitability gives an adversary

enough scope to tamper the supply chain by inserting hidden, malicious logic, known as

Hardware Trojan, into an IC [45]. Hardware Trojan creates a malicious backdoor that can

allow an attacker to disable a chip’s security, access secret keys, reprogram cryptographic

part, access unencrypted configuration bitstream, modify low-level silicon features, or per-

manently destroy the device [137].

Several emerging trends in hardware integration and user computing practices are cre-

ating ample scope of such malicious back-doors. Dynamic Voltage and Frequency Scal-

ing (DVFS) is an intelligent power-management technique that enables frequency scaling-

capable processors to change the frequency and voltage of a processor(s) based on system per-

formance requirements [134]. It is a commonly-used technique to save power on a wide range

of computing systems, from embedded, laptop, and desktop systems to high-performance

server-class systems.

Power Management Unit (PMU) (Power Management Integrated Circuit or PMIC) is a

system block for managing DVFS and other power requirements in an SoC device. PMUs

offer various services ranging from DVFS, managing power states to dynamic control of power

rails. They are the most extensive and fastest-growing part of the analog IC market [4,22].

They provide flexible power management and increase energy efficiency in high-performance

Multiprocessor System-on-Chips (MPSoCs) [195]. The control over the change of voltage and

frequency level by PMUs can create a backdoor for malicious attack. Triggering the voltage

level change by a hardware Trojan according to the extracted secret key and monitoring the

78

change level, the secret key can be leaked covertly to an adversary. This chapter proposes

PMU-Trojan, a hardware Trojan that exploits the PMU side channel for secret information

leakage. This method is easily generalizable to any information leakage. For demonstration

purposes, we focus on leaking the Advanced Encryption Standard (AES) key.

The proposed method is particularly useful in data center scenarios where the data

center is far away and needs remote maintenance. There are two options for maintaining

servers remotely: (i) Integrated management card, (ii) Power Distribution Unit (PDU).

While a PDU manages the power supply only, a management interface card allows much

more maintenance options for the server. Remote management cards allow administrators

to troubleshoot from afar via an interface to the server. Examples of integrated management

cards are HPE iLO (Integrated Lights-Out), Dell iDRAC (Integrated Dell Remote Access

Card), IBM RSA (Remote Supervisor Adaptor), Lenovo’s ThinkServer EasyManage, etc.

These are autonomous management systems built into the server, which offer the remote

administrator simplifying server setup, power and thermal optimization, and server health

monitoring. As an example scenario, in this work, we demonstrated how a remote admin-

istrator could monitor the Trojan infected voltage level change and obtain the secret key

using our proposed methodology.

The major contributions of this chapter are:

• Designing a PMU-Trojan to extract and then leak secret key covertly to an adversary.

• Applying the proposed secret key leakage method in a data center application.

• Proposing a Trojan detection method to prevent the secret key leakage.

The chapter is organized as follows. Section 5.2 describes the related works in leaking

secret cryptographic keys, mainly the AES key. Section 5.3 briefly presents backgrounds

related to our proposed methodology for leaking the AES key. In Section 5.4, we present

PMU-Trojan and our proposed methodology to leak AES key using the Trojan. Section

5.5 discusses experimental results and analysis of the proposed method. In section 5.6, the

proposed hardware Trojan detection method is presented. Finally, Section 5.7 concludes the

chapter.

79

5.2 Related Works

Several literature works have proposed various methods to leak cryptographic secrets,

mainly AES key, from the chip. Physical attacks which target leaking the cryptographic

secrets are classified as observation and perturbation attacks.

Observation or Side-Channel Attack (SCA) consists of observing physical emanations of

the system, such as, power [125] or E/H field [172]. Skorobogatov et al. proposed a method

of extracting the secret key to activate the backdoor and other security keys such as the

AES and the Passkey by using Pipeline Emission Analysis (PEA) [192].

Perturbation or Differential Fault Analysis (DFA) consists of injecting faults during the

execution of a cryptographic algorithm [49]. Piret et al. proposed a technique to break

the AES-128 with only two faulty ciphertexts, assuming the fault occurs between the an-

tepenultimate and the penultimate MixColumn [170]. Bhasin et al. proposed a hardware

Trojan whose principle is to trigger an artificial fault injection to reveal Advanced Encryption

Engine (AES) secret key. [44]. Kumaki et al. proposed a cipher-destroying and secret-key-

emitting hardware Trojan by developing a malicious circuit that connects the encryption

and decryption modules in the AES core. [129]

Liu et al. presented a silicon implementation of a hardware Trojan, which is capable of

leaking the secret key of a wireless cryptographic integrated circuit (IC) consisting of an

Advanced Encryption Standard (AES) core and an Ultra-WideBand (UWB) transmitter

[138]. Giraud et al. presented two fault attacks on the AES: inducing a fault on only one bit

of an intermediate result and exploiting faults on bytes. Both require the ability to obtain

several faulty ciphertexts originating from the same plaintext [85]. Dusart et al. exploited

the byte faults occurring after the ShiftRow layer of the 9th round to find AES key [74].

Mayer proposed a side-channeling attack to extract the private key successfully exploiting

the SEC (Standards for Efficient Cryptography) Group’s curve secp256k1, which is currently

used in Bitcoin and Ethereum [151]. Prior information leakage techniques mainly rely on

the side-channel analysis or fault injection, subject to noise effects, and the challenge of

building an accurate fault model. However, there have been very few works that can leak

secret information using hardware Trojan. Our work provides an alternative approach to

leaking information using hardware Trojan.

80

Figure 5.1: Minimalistic hardware Trojan example.

5.3 Background

This section explores some relevant background regarding hardware Trojans, Dynamic

Voltage and Frequency Scaling (DVFS), Power Management Unit (PMU), and remote server

maintenance.

5.3.1 Hardware Trojans

Hardware Trojans are malicious modifications implanted in an IC, which can be exploited

by a knowledgeable adversary to compromise a chip’s security. Trojan circuits, by design,

are typically activated under particular conditions (e.g., sensing a specific design signal such

as power or temperature, connecting to low-transition probability nets), which makes them

unlikely to be activated and detected using random or functional stimuli. A hardware Trojan

consists of the following two main components.

• Trigger: used for activating a malicious activity.

• Payload: used for executing the malicious activity.

Figure 5.1 shows an archetype hardware Trojan. In this minimalistic Trojan, the trigger

part is a simple logic-AND gate. When both the inputs A and B are equal to logic-1,

the Trojan circuit is activated. The payload part is a logic-XOR gate. When the Trojan

is activated, it inverts the intermediate node C. An adversary can design such hardware

Trojan to access secret keys, disable or destroy a system at an opportunistic time.

81

Figure 5.2: Block diagram of MPSoC embedded with PMU [81].

5.3.2 Dynamic Voltage and Frequency Scaling (DVFS)

With higher integration of transistor devices and exponentially increasing demands for

processing power and clock-rates, power consumption and thermal performance of integrated

circuits have become a limiting factor for modern processor systems. An optimizing power

supply solution is required for power-saving benefits and reducing the self-heating of a pro-

cessor chip. Dynamic Voltage and Frequency Scaling (DVFS) is a method of changing the

frequency and operating voltage of a processor(s) based on system performance requirements

at a given point in time. DVFS allows operating systems to change operating performance

points in real-time without any kernel or user involvement to achieve the lowest power and

best performance possible.

In CMOS circuits, most of the dynamic power is consumed in the parasitic capacitance

of digital gates. If the dynamic behavior is adjusted to fit the task being executed, a

considerable amount of power can be saved. The equation for dynamic power is:

PT = Cpd × V 2
cc × fI ×NSW

where, PT is the transient power consumption, Cpd is dynamic power dissipation capacitance,

Vcc is supply voltage, fI is input frequency, and NSW is number of input bits switching. An

intelligent power savings solution reduces operating frequency and simultaneously reduces

the supply voltage. Few examples of commercial implementations of DVFS technique are

AMD’s PowerNow and Intel’s SpeedStep.

82

5.3.3 Power Management Unit (PMU)

DVFS has been realized at both hardware and operating system levels. A Power Man-

agement Integrated Unit (PMU) is a system block for managing DVFS and other power

requirements in an SoC device [201]. Figure 5.2 illustrates a block diagram of an MPSoC

along with an exemplary PMU.

A PMU is configured to transmit a voltage change request to a Voltage Regulator (VR)

unit based on the decision made by the DVFS algorithm. For example, Intel processors use

a Serial Voltage IDentification (SVID) three-wire (clock, data, alert) synchronous interface

to transfer the voltage change requests to VR, which in turn decodes the VID and supplies

the corresponding voltage to the processor through the power rails. Specifically, Intel i7-

4650 processor line allows 8-bit VID Data signal (00h-FFh) to request for a voltage ranging

between 0V to 3.04V, although the specified operating voltage ranges between 1.64V to

1.85V [14].

An associated monitor circuit is configured to determine whether the requested voltage

change has occurred. The monitor circuit detects the voltage change by monitoring the

frequency of a VCO (Voltage-Controlled Oscillator) within the monitor circuit coupled to

the voltage source. Upon receiving the voltage transition complete signal, the PMU adjusts

the processing core’s clock frequency within the integrated circuit. PMU supplies each

component on an SoC with just enough voltage to deliver the required performance while

minimizing power consumption.

5.3.4 Remote Server Maintenance: Integrated Management Card

Today’s data centers and server rooms are challenging environments to control and man-

age. They require 24x7 monitoring of server health and other well-being checks remotely.

Since data center security policies are typically complicated, urgent remote server main-

tenance needs an intelligent solution. Integrated Management Card is a hardware-based

management platform that allows administrators to remotely check, configure or reset sys-

tems remotely through an interface.

The interface can be simple and Web-based, or a program run on a local computer.

Administrators can perform a wide range of operations using the interface menu, such as

83

monitoring the server’s current state, remote rebooting, performing a power cycle from a

distance, or opening a console session to work remotely on the server. Management card

provides an array of practical, hardware-level information about a system, including operat-

ing frequency, voltage levels, power-supply status, fan speeds, temperatures, etc. Examples

of integrated management cards are HPE iLO, Dell iDRAC, IBM RSA, Lenovo ThinkServer

EasyManage, etc.

5.4 Proposed Methodology

In this section, we first describe a threat model and then present our proposed method-

ology for leaking AES key by inserting Trojan and exploiting PMU behavior [105].

5.4.1 Threat Model

Hardware Trojan can be inserted in a chip at various stages from the Register Transfer

Level (RTL) code to mask fabrication. An attacker can introduce Trojan by modifying

the netlist design or lithographic masks. For an illustrative example, in our work to leak

AES key, such modifications can be done by a few key hardware engineers who can insert a

malicious circuit during the design phase without affecting the design’s main functionality

[214, 219]. At any stage, from designing RTL code to lithographic mask, the soft product

design provider can include hidden, malicious functionality that can be turned on at an

opportunistic time. The adversary can then leverage such malicious modifications for leaking

confidential information, such as a secret cryptographic key.

5.4.2 Trojan Insertion

Figure 5.3 shows an MPSoC block diagram implanted with PMU-Trojan to extract the

AES key. The trigger part of the Trojan is a checker circuit that checks for a specific

sequence of three 8-bit VID data signals coming out of PMU. When the specific sequence

is matched, it activates the Trojan payload. The payload circuit consists of a PMU-Trojan

key-extractor and a Multiplexer.

84

Figure 5.3: MPSoC infected with hardware Trojan.

5.4.3 Trojan Activation

We propose a software-hardware coalition-based trigger that takes advantage of the core

processor’s voltage change requests. Similar to the sequence cheat code idea presented by

Waksman et al. [214], we propose a sequence of power event requests for triggering the un-

derlying Trojan. Several OSes deploy some form of DVFS at the operating system level.

For example, Linux implements CPUfreq, a standard kernel framework to switch between

various frequencies and operating voltages. CPUfreq monitors the system performance re-

quirements of a processor(s) and takes decisions to increase or decrease operating frequency

in order to serve the user’s needs and save power [6].

The rules for adjusting frequencies, whether to a faster or slower clock speed and when

to adjust frequencies, are defined by the CPUfreq governor. The governor defines the power

characteristics of CPU, which in turn affects CPU system performance. There are several

implementations of CPUfreq governor: (i) performance, and (ii) powersave, (iii) ondemand,

(iv) conservative, (v) userspace, etc.

The userspace governor is a customizable governor that allows the user program (or any

process running as root) to decide the processor’s specific speed. For triggering PMU-Trojan,

a program is written to change the frequency in a particular sequence. When the program

runs, the frequency of the processor changes accordingly.

The OS looks-up in the Operating Performance Point (OPP) Library to find the corre-

sponding voltage levels. OPP is the set of discrete tuples consisting of frequency and voltage

85

Figure 5.4: Flow chart illustrating the proposed methodology.

pairs that the device supports. OPP library provides a set of helper functions to organize

and query the OPP information [210]. The PMU sends the voltage change requests in the

form of VID signals to the Voltage Regulator (VR). The checker circuit monitors the incom-

ing requests for the complex sequence. When the sequence matches, it selects the AES key

extracted by the Trojan. Thus the PMU changes the voltage levels according to the AES

key instead of changing according to OPP.

86

Figure 5.5: An example attack scenario at data center.

5.4.4 Trojan Operation

Once the Trojan is triggered, the processor core voltage changes according to the ex-

tracted AES key. An adversary monitors the voltage level change and obtains the key

covertly. The Serial VID corresponding to a voltage level is processor-specific and can be

obtained from the processor manufacturer’s datasheet. There are several hardware monitor-

ing tools, such as, Intel Performance Monitoring Unit (PMU), Intel Performance Counter

Monitor (PCM), Intel Extreme Tuning Utility [15], HWMonitor, CPU-Z [5] for Windows op-

erating system and i7z, c2ctl for Linux operating system [3]. The methodology is illustrated

as a flowchart in Figure 5.4.

In the data center scenario, an adversary can monitor the PMU-Trojan induced voltage

level change using the Integrated Management Card. Figure 5.5 illustrates such a case,

where a Threat Actor can sneak information using IBM RSA management card. A Threat

Actor could be anyone with a malicious agenda, such as a rogue Administrator, outside agent,

third party vendor, that has gained access to the server network. Apart from administrators,

malicious attacks can also be initiated by compromised third party Business Partner if a

credentialed account in the Business Partner network is allowed to access servers in the core

data center [23].

87

Table 5.1: Frequency and voltage level change

Frequency (GHz) FID Voltage (V) VID
3.1 8 1.2 32
2.7 7 1.150 28
2.3 6 1.125 26

5.5 Experimental Results

We implemented the Trojan blocks in Verilog RTL and synthesized the RTL with Nan-

gate 45nm Open Cell Library [101] using Synopsys Design Compiler to find the Trojan

design overheads. The Trojan incurs an area overhead of 192µm2. The power overhead is

negligible, as PMU-Trojan has a low activity factor. For coarse-grain DVFS with an off-chip

voltage regulator, voltage level stabilization takes around 50µs [196]. For fine-grain DVFS

with a fully integrated on-die voltage regulator, such as Intel Haswell processor, a voltage

change can be done once in 500ns [53]. Compared to core frequency, the rate at which

voltage can be changed is 2-3 orders of magnitude slower. This results in a low activity

factor for the PMU-Trojan, hence low power dissipation overhead.

For testing the frequency and voltage level change in terms of FID (Frequency Identifi-

cation Number) and VID, respectively, we ran a program in a Q9450 Core 2 Quad Processor

workstation and monitored the FID and VID signals change using c2ctl tool. c2ctl is a fre-

quency and voltage monitoring performance utility tool. Appendix B shows a sample code

snippet for triggering PMU-Trojan. The imposed frequency change at a specific sequence

and the observed voltage level change are shown in Table 5.1. This experiment is just an

example of a change of VID signals according to a specific frequency level change. A Trojan

infected chip will change the VID signals according to the AES key similarly.

5.6 Trojan Detection

This section describes the complexity of PMU-Trojan activation during the pre-deployment

test and the limitations of traditional Trojan detection methods. We then propose a low

complexity technique to detect anomalous behavior inflicted by PMU-Trojan.

88

Our proposed method increases the magnitude of complexity involved in Trojan detec-

tion by a statistical approach during testing [57]. VID signals are 6 to 8 bits in modern

processors. A sequence of voltage change requests in the form of VID signals can thus po-

tentially have enormous state space resulting in enormous test times. Therefore, activating

the Trojan during post-silicon tests has an extremely low probability. Our proposed scheme

also defeats traditional Differential Power Analysis (DPA) based Trojan detection due to

a low information bit rate spread over a long time by a PMU-Trojan. Hardware Trojan

detection technique, like information flow tracking [80] tags assets such as cryptographic

key bits in the design, then use formal methods such as model checking [174] and theorem

proving [119] to analyze how these bits propagate through the design. However, we leak the

secret information via a side-channel by monitoring the voltage level change in our proposed

work. This information flow via side-channel does not depend on the conditions under which

information can safely flow between specific signals in a design.

For detecting PMU-Trojan, a concurrent hardware monitoring thread is written, which

continuously checks the voltage level change according to the AES key. If any such event

occurs, the monitoring thread will alarm and shut down the system immediately.

5.7 Concluding Remarks

In this chapter, we outline a novel security threat stemming from a hardware Trojan

that can intelligently impact the behavior of PMU. We designed PMU-Trojan that can leak

confidential information by exploiting the PMU behavior. The proposed Trojan incurs a

very marginal area overhead and can be triggered by executing a simple program. The

threat is ominous, particularly in the data-center application where a malicious adversary

can leak a user’s secret information, such as blockchain private key, with the help of our

proposed PMU-Trojan.

89

CHAPTER 6

REMOTE CONFIGURATION OF INTEGRATED CIRCUIT
FEATURES VIA SMART CONTRACTS

6.1 Introduction

CMOS technology has been a driver of growth in the semiconductor industry for over

three decades with rapid scaling of transistor feature size. With scaling, the cost of devel-

oping a new integrated circuit (IC), its manufacture, debugging and volume production has

increased. The cost of developing a new SoC, its debug and design iterations is escalating

with the transition to 7nm technology and beyond. The semiconductor industry’s economic

model is typically based on economies of scale, and this model works well for high-volume

products, such as smartphones. However, the volume for any single chip is insufficient for

smaller, more fragmented markets to justify the high level of investment needed — partic-

ularly for advanced process nodes such as FinFET, for example [78].

Consequently, without the ability to customize IC features after production, an IC’s

lowest-priced application determines its price. This challenge motivates the manufacturers

to develop capabilities for post-production IC customization. Today, such customization is

limited to one-time programmable (OTP) for predetermined IC bins [38, 68]. This chapter

explores how an IC can be programmed repeatedly and securely using blockchain-based

smart contracts. This programmability will enable users to upgrade IC features or rent

upgraded IC features for a fixed period after users have purchased the IC.

The manufacturer can implement the IC feature configuration based on a centralized

architecture [73]. Information is sent from the device to the cloud, where the data is pro-

cessed using analytics and then sent back to the device. Figure 6.1 shows an example of this

centralized system-based remote feature configuration, a smart device automatically paying

for its feature configuration upgrade. Such a system encounters four technical challenges

that human-centric applications solve with a person in the loop.

90

Figure 6.1: An example application that stores a user’s credit card information is installed
in the user’s device and vendor repository. Before upgrading the chip configuration, the
device and the vendor repository identify each other. Then, the credit card stored by the
cloud service is charged after the user upgrades the device configuration.

The first challenge is transparency. In Figure 6.1, the smart device automatically per-

forms actions on a user’s behalf. As the device sends encrypted data to the cloud service,

it would be impossible for the user to audit the encrypted information to ensure that the

device did not send any private data — a concern that is well justified [34,161].

The second challenge is longevity. Some of these devices may still be in use long after

their vendors stop maintaining them [92]. However, these devices are often vertical silos,

where a centralized entity manages application state and communication protocols. As a

result these devices cannot function without the cloud services of their vendors [82, 95]. In

Figure 6.1, the device cannot pay to the vendor without the cloud service.

The third challenge is trust. In Figure 6.1, the user has to trust the vendor with their

credit card information, and the credit card company acts as a trusted third party to help

manage funds and resolve disputes in exchange for non-negligible fees. Transactions that

involve the exchange of digital or physical assets require trust, which inherently involves

risks. Examples of such risks are the vendor leaking credit card information or the credit

card company undermining exchange’s fairness by colluding while resolving disputes [86].

The fourth challenge is a single point of failure. Figure 6.1 presents a client-server model

for configuration update distribution from the vendor’s repository to the user device. In this

model, excessive network traffic may occur when devices request the update files simulta-

neously. In the IoT environment where tens of millions of devices are possibly required to

91

be updated simultaneously, this type of centralized client-server model is inappropriate, has

very limited scalability, and exposes billions of weak points that may compromise network

security.

Each of these challenges can compromise the centralized system based remote device

feature configuration. Using blockchain technology is one approach to addressing these

challenges. A blockchain guarantees complete transparency of transactions carried out on

the chain. Besides, it allows the state to be stored among the nodes in a decentralized

network that persists as long as the network of nodes exists. Moreover, independent and

autonomous execution of the smart contract logic by each node on the network using the

blockchain’s data reduces the need for trust and third party involvement in a transaction

[108].

In this work, we propose blockchain-based smart contracts for enabling chip features on-

field. The smart contract takes the user’s feature configuration request as input and returns

an encrypted configuration. To support the manufacturer’s authorized feature configuration,

we propose an on-die hardware module that enforces the hardware configuration’s secure

execution. The major contributions of this work are:

• Proposing a protocol for remote, secure, and repeated configuration of IC features via

smart contracts.

• Proposing smart contracts which define the protocol and stores the state and logic

necessary for remote chip feature upgrades.

• Proposing an on-die hardware module that communicates with the smart contract and

enforces its functionalities.

• Demonstrating the proposed solution in both software and hardware implementation.

The implementation is publicly available [20].

The chapter is organized as follows: Section 6.2 presents the related works on blockchain-

based firmware upgrade. Section 6.3 presents the motivation behind blockchain-based remote

IC configuration. Section 6.4 presents the system design and implemented smart contracts

for our proposed protocol. In Section 6.5, we present our proposed hardware design and

92

the methodology to chip feature upgrade using blockchain. Section 6.8 discusses the secu-

rity analysis of the proposed protocol. In Section 6.6, we outline the implementation and

demonstration of the protocol. Section 6.7 presents the results, evaluation and Section 6.9

discusses the limitations of this approach. Finally, Section 6.10 concludes the chapter.

6.2 Related Works

Although several blockchain-based firmware update protocols have been proposed in the

literature [39, 51, 135], there have been very few works on upgrading the hardware config-

uration via blockchain. A peer-to-peer framework was proposed by Boudguiga et al. to

disseminate firmware updates between IoT devices that have restricted Internet access [51].

They investigated how the use of a blockchain framework would meet the requirements of

the CIA triad properties, i.e., confidentiality, integrity and availability. Lee et al. proposed a

blockchain-based firmware update scheme, where an embedded device requests its firmware

update to nodes in a blockchain network and gets a response to determine whether its

firmware is up-to-date or not [135]. If not latest, the embedded device downloads the latest

firmware from a peer-to-peer firmware sharing network of the nodes. Baza et al. proposed

a firmware update scheme based on blockchain and smart contract for autonomous vehicles

[39]. The smart contract ensures the authenticity and integrity of firmware updates, and

manages the reputation values of Autonomous Vehicles (AVs) that transfer the new updates

to other AVs.

6.3 Motivation

In this section, we present our motivation for post-production IC customization and the

smart contract based solution for such customization.

6.3.1 Motivation for Post-production IC Customization

Without the ability to customize chip configuration after production, the price of an

IC is determined by its lowest priced application. Chip manufacturers sell the highest end

chips as lesser chip parts based on consumer demand. This motivates the manufacturers to

develop capabilities for post-production IC customization.

93

Realizing Economies of Scale Several semiconductor industries apply chip config-

uration after manufacturing. The commodity microprocessor business offers an example of

post-production customization, where a manufacturer can tailor the number of cores, cache

size, and frequency of operation for a target market segment after manufacturing a chip [194].

The Intel Skylake micro-architecture, for instance, features a highly configurable design. In-

tel can meet the various market segment requirements using the same macro cells [147].

The Skylake family consists of five separate actual dies which can be further segmented by

disabling various features. For example, GT1 graphics are based on GT2 graphics that have

disabled half the execution units [21]. However, such customization techniques are limited

to one-time programmable (OTP) for predetermined IC bins presently.

Customizing Feature Upgrades The availability of a post-production customiza-

tion technique could, for example, allow a buyer to upgrade his processor from i5 to i7 after

purchase to scale to her computing needs in exchange for a payment made to the manufac-

turer. During manufacture or in the field, chip features may be enabled or disabled. While

chip cost is fixed, the manufacturer can set the chip selling price according to the features

enabled and markets being addressed.

6.3.2 Motivation for Smart Contract-based Solution

This section presents how smart contracts address the technical challenges of trans-

parency, longevity, trust, and single point of failure that can be frequently encountered in a

centralized system based remote feature configurations like Figure 6.1.

Transparency with Public Logs In Figure 6.1, the vendor may obtain personal

information about a user (such as computation pattern, working behavior, or resource usage)

that could be sold to advertisers for better advertisement targeting. Users would have no

way to directly verify what exact information their device sent if communication to the

cloud service was encrypted. The use of smart contracts provides a public, auditable log of

communication.

Longevity through Decentralization A user’s device lifetime may outlast the ven-

dor in the example of Figure 6.1. In smart contracts, an application’s core state and logic

are fully distributed, which allows an application to continue to operate or be picked up by

94

Figure 6.2: User’s device uses smart contracts in Ethereum to rent upgraded feature config-
urations.

a new vendor long after the original vendor has shut down. As smart contracts are a public

interface, anyone can directly interact with the smart contract using their applications with

the assurance that the application’s state will be available on the blockchain, rather than

being lost with the shutdown of a vendor.

Minimized Trust using Smart Contracts The need to trust vendors or third

parties with personal information like credit cards or bank accounts creates worthy targets

for attack, many of which have been notoriously exploited [165]. Instead, users can avoid

this risk by directly interacting with deterministic business logic defined in smart contracts.

Transactors can use smart contracts as reliable escrows for digital assets, creating a platform

that supports various applications.

Removing Single Point of Weakness A blockchain can provide an elegant solu-

tion to remove the single point of weakness in a centralized scenario. For example, in a

blockchain-based solution, the first requests for a configuration update will be served by

the manufacturer’s node. The manufacturer’s node also takes part in the network initially,

but after the configuration codes have propagated to enough nodes, it can stop serving. As

a result, a device that joins the network long after the manufacturer has stopped serving

can still retrieve the requested configuration update and be assured that it is the right file.

Contrary to this solution, in the centralized scenario in Figure 6.1, the device may poll the

manufacturer’s server for an update and get a 404 error [29].

95

6.4 Proposed Protocol and Smart Contract Implementation

This section outlines the system design and smart contract implementation for our pro-

posed IC feature configuration protocol.

6.4.1 System Design

In our proposed protocol, users can upgrade IC features or rent upgraded IC features

for a fixed period after purchasing an IC. We propose implementing this repeated, remote,

and secure programming of the IC using a smart contract, as shown in Figure 6.3. The

owner of a device requests for remote configuration by sending the list of upgrade-able

functional components or IPs, and intended period of usage to the smart contract. The

smart contract first verifies the authenticity of the device ownership. According to the

requested configurable features, the smart contract sets the configuration state. The user

device periodically polls the state of the smart contract and receives the latest configuration

code.

Our proposed system design has two main components: (i) the smart contract that

defines the protocol for renting IC feature configurations and (ii) the on-die hardware module

that communicates with the smart contract and enforces its functionalities. In this section,

we provide the details of our smart contract implementation. In Section 6.5, we present the

details of the proposed hardware design.

6.4.2 Implementation of Smart Contracts

In our proposed protocol, a smart contract defines the condition for registering a new

device by a manufacturer, upgrading device configuration by a user and querying the current

configuration by the device. The smart contract is created by the manufacturer to maintain

uniform applicability and usability for all of the owners of all devices. In the following, we

describe all the steps in our protocol and how our proposed smart contract implements these

services.

6.4.2.1 Register Device

Any new device produced by the manufacturer must be registered first. This require-

ment is necessary because each device’s configuration code will be encrypted with device

96

Figure 6.3: Proposed protocol for remote configuration of IC features using smart contracts.
Transactions requiring payment of fees are drawn with solid black lines.

public key. During usage, the user can request a specific configuration for a target device.

The manufacturer performs the registration by issuing a transaction registerDevice() to

the smart contract. Algorithm 6 presents the pseudo-code of function registerDevice().

This function enrolls a device with all necessary information, if the message sender is the

manufacturer. In our proposed protocol, each device is associated with the following three

pieces of information:

Device identifier This is a device identification data used to look up the targeted device

being queried among many devices. It can be a serial number of the device (e.g., Electronic

Product code, or EPC).

Device private key Each device has a unique private key and the corresponding public

key. The manufacturer uses this public key to encrypt all possible configurations during

the registration phase. The encryption is necessary to make sure that only the target

device can decrypt the configuration, and any other device of similar type cannot apply the

configuration. The device can later decrypt the encrypted configuration using its private

key and apply the configuration. The private-public key pair may be keys for RSA, DSA,

Elliptic Curve based public key cryptosystems, etc.

97

ALGORITHM 6: Pseudo-code of registerDevice() for registering a device claimed by a
manufacturer.
Inputs: Device information (deviceInfo), a list of configurations encrypted with device public

key (K+
d (config1), K+

d (config2) etc.), pricing, and owner’s address (addrOwner)
if Message sender is the Manufacturer then

Set owner of deviceInfo as addrOwner
Set current configuration as K+

d (configDefault)
Set upgradable configurations as K+

d (config1), K+
d (config2)

else
Do nothing

end

All possible device configurations The manufacturer determines all possible con-

figurations in a device and encrypts those configuration codes using the device public key.

For example, if the configuration code is config1, the manufacturer uses the device public

key, K+
d to encrypt the code and produce encrypted configuration, K+

d (config1). Simi-

larly, the manufacturer encrypts and registers all the configurations, such as, K+
d (config1),

K+
d (config2) etc. These configurations can be the same for all devices of the same type.

6.4.2.2 Upgrade Configuration

The user issues a transaction upgradeConfiguration() to the smart contract to upgrade

the configuration of a device. This smart contract function defines the feature upgrade policy

that enforces its execution without an intermediary, so only authorized devices can request

and receive the update. The policy includes the manufacturer’s pre-defined Service Level

Agreement (SLA) with the customer. The required cost for getting a particular feature

upgrade can be set using various policies out of this work’s scope.

The smart contract function upgradeConfiguration() first verifies if the request sender

for the feature upgrade is the device’s owner. If this is true, the function then calculates the

required transaction fee for that requested feature upgrade. If the requester makes enough

payment with the transaction, the function sets the device configuration’s current state as

the requested configuration. The function also initiates the transfer of the upgrade fee from

the contract’s address to the manufacturer’s wallet address.

98

ALGORITHM 7: Pseudo-code of upgradeConfiguration() for upgrading the configuration
of the device.
Input: Device identifier (deviceIdentifier), requested configuration (config), and usage

period
if (Message sender is the owner of deviceIdentifier) then

Calculate required price for feature upgrade
if Message value == required price then

Set current configuration state of deviceIdentifier as K+
d (config)

Set current configuration period of deviceIdentifier as usage period
Transfer the transaction fee from the owners’s wallet to manufacturer’s wallet

else
Do nothing

end
else

Do nothing
end

6.4.2.3 Query Configuration

The device interacts with the blockchain network and polls the smart contract periodi-

cally by querying the function queryConfiguration(). This function returns the requested

configuration and the upgrade period to the requesting device. The devices either ship with

the smart contract’s address baked into their blockchain client, or they find it via a discovery

service [59]. The device interaction with blockchain and the smart contract can happen in

the following two ways.

The device itself runs a blockchain node The device needs a piece of software,

known as a client, to run a blockchain full node or a light node (retrieving data live). A client

is an implementation of a blockchain that verifies all transactions in each block, keeping the

network secure and the data accurate. In this case, the device directly receives the query

output from the smart contract in blockchain and then processes it. However, resource-

constrained devices do not possess enough horsepower to run a software client for intensive

blockchain calculations.

An edge gateway device runs a blockchain node We propose delegating the

task of running a blockchain node to gateways or any other unconstrained device capable

of providing this functionality. In this case, the gateway runs the blockchain client. It is

the entry point into the blockchain network (main-, test- or private net), capable of running

as a full node or a light node. It can be used by the user device as a gateway into the

Ethereum network via JSON RPC endpoints exposed on top of HTTP, WebSocket and/or

99

IPC transports [11]. We propose the gateway solution to be more efficient as the device

does not require running a computation-intensive blockchain node. Besides, the gateway

can provide the blockchain service to all the devices in the same network. In the next

section, we describe how our proposed hardware module processes the configuration once

the device receives it.

6.5 Proposed Hardware-software Co-design for Remote Configuration

In our proposed protocol, the device polls the smart contract periodically, receives the

requested configuration from the blockchain, and then executes it. We partitioned this

execution framework into software and hardware design. In the following, we describe the

operations performed in these parts.

6.5.1 Software

The software code is executed on the device processor and handles control tasks such

as interaction with the blockchain and communication with the hardware part. This code

is flashed on the processor’s write-protected internal ROM during manufacturing and gets

executed during or after booting.

Interacting with Blockchain Node The device software interacts with a blockchain

node running on a gateway by sending a request through JSON RPC either over HTTP or

WebSocket; as a single request. The requests follow this format in Ethereum:

{“method” : “eth_call”, “id” : 1, “jsonrpc” : “2.0”, “params” : [{“to” : “..”, “data” : “..”]}

The method essentially defines what function an Ethereum node should execute. It either re-

quests data from the node, executes an EVM (Ethereum Virtual Machine) function, returns

a response, or transmits data to the Ethereum network (send a transaction). In our design,

we use the eth_call method to retrieve already mined data from the blockchain about a

particular smart contract. The id field is an identifier string set by the device and helps

make sure the device and the gateway are communicating in the same context. The jsonrpc

100

field specifies the protocol version and must be exactly 2.0, which the protocol expects. The

to field is the smart contract address.

To query the device configuration using eth_call, we use the queryConfiguration()

function of the contract. The JSON-RPC format expects eth_call to have a specific data

field format. The data is the first four bytes of the Keccak-256 hash of the function’s signa-

ture. The signature is defined as the function name with the parenthesized list of parameter

types. The response returned for this request is a hexadecimal number concatenated from

two values (encrypted configuration code and the upgrade period), each padded to a 32-byte

length with zeroes.

Decrypting the Configuration Code After receiving an appropriate configuration

code and the upgrade period for that configuration, the device software first decrypts the

encrypted configuration code using the private key. We assume that the private key is hard-

coded in the software design for the implementation purpose. After that, the functional

component configuration process starts in our proposed on-die hardware module. As pro-

cessing the configuration is the core part of our remote device management system design,

we propose the implementation of this processing in hardware for enhanced security.

6.5.2 Hardware

The custom hardware part aims to secure and accelerate the configuration process. For

processing the configuration, we propose a Configuration Controller Module (CCM), as

shown in Figure 6.4. Our proposed hardware design consists of the following modules.

6.5.2.1 Hardware configuration module (HCM)

This module acts as the main controller module for the chip. The hardware configuration

module (HCM) receives the configuration code from the blockchain module and directs

changes to functional component characteristic settings. This module enables conditional

activation or deactivation of on-chip functions provided by the on-chip modules in response

to the reception of the external reconfiguration request. The chip subsequently utilizes the

activated chip features during operation. The HCM forwards the configuration code and the

101

Figure 6.4: Proposed hardware design for remote configuration of IC features (FC: Func-
tional Component).

upgrade period to the encryption module in the crypto engine and the timestamp module,

respectively.

The HCM receives the encrypted configuration from the encryption module and stores

this updated configuration in an on-chip or off-chip programmable non-volatile storage

(EEPROM/flash). The module also sets a configuration flag while storing the new con-

figuration. The software code checks this flag bit during or after the next boot up and

configures the hardware accordingly. If the flag bit is on (logic-1), the software loads the

HCM with the updated configuration (after decrypting it with the decryption module). Oth-

erwise, the software loads the HCM with the default configuration the device is provisioned

with during manufacturing.

6.5.2.2 Timestamp module

The timestamp module receives the upgraded reconfiguration period from the HCM

and sets the timestamp counter with that value. After the upgrade period, the timestamp

module notifies the HCM. The HCM changes the device configuration settings to the default

after the upgrade period. The timestamp module also decrements the timestamp counter

102

value with the usage period to keep track of the remaining upgrade period. The module

periodically sends the remaining upgrade period to the HCM. The HCM stores this value in

the storage along with the encrypted configuration. The software loads the HCM with the

upgraded configuration and the remaining upgrade period during or after the next boot up.

6.5.2.3 Crypto module

The crypto module performs symmetric encryption of the configuration file to prevent

any physical attacks from retrieving the configuration. Encrypting the configuration requires

the device to have a unique secret key. This module also manages the keys for symmetric key

cryptographic operations. We assume that the symmetric key is hard-coded in the design

for the implementation purpose. The symmetric key can be generated from a PUF-based

system for additional security, as described earlier in Section 2.5.3.2. We propose the use of

AES for symmetric encryption.

AES Encryption Module The symmetric key (AES key) encrypts the configuration

and stores the encrypted configuration in a persistent storage. For the symmetric encryption

algorithm, we choose AES-128 in counter (CTR) mode. AES-CTR mode’s advantage is that

it uses the only AES encrypt operation (for both encryption and decryption), making the

implementation smaller than many other AES modes. This design makes implementations

simpler and yields a significant throughput increase in hardware.

AES Decryption Module During device boot-up, the decryption module generates

the configuration using the AES key. In AES-CTR mode, this is the same module as the

encryption module. To decrypt something, the input states need to be successive values of

the same “counter” used for encryption. Then the binary sequence output is XOR-ed to the

ciphertext to get the plain text.

6.6 Implementation and Protocol Demonstration

In this section, we present the experimental setup, implementation of smart contract for

prototyping our proposed protocol, and evaluation of the experimental results.

103

Table 6.1: Estimates of transaction fees for various operations.

Transaction Paying Party Gas Limit Gas Price (ETH) Cost (ETH) Cost (USD)

Contract Creation Manufacturer 367191 33 ×10−9 0.012127 4.25

registerDevice() Manufacturer 103642 40 ×10−9 0.004145 1.45

upgradeConfiguration() User 30184 30 ×10−9 0.0009055 0.32

6.6.1 Implementation of the Smart Contract

We implemented the proposed smart contract in Solidity programming language and

tested the functionalities in both Ropsten1 and Rinkeby2 Ethereum Test Networks. After

that, we deployed the smart contract in Main Ethereum Network3 and evaluated the protocol

in terms of its operational cost. We made the source code publicly accessible in Github

[20]. In particular, we estimated the cost of each operation by measuring the gas amount

(execution fee for the transaction made on Ethereum) for all of the functions involved in the

process, as shown in Table 6.1.

6.6.2 Implementation of Feature Configuration by Hardware

6.6.2.1 Target device and the Hardware Architecture

We implemented the feature configuration using our proposed hardware design. For

our experiments, we used the Xilinx Zynq-7000 System-on-Chip platform, which integrates

a dual-core ARM Cortex A9 processing system along with Xilinx Virtex-7 family pro-

grammable logic. The target device used is Zedboard Zynq Evaluation and development

kit (xc7z020clg484-1). The overall system contains the following components: Zynq Pro-

cessing System (PS), Universal Asynchronous Receiver Transmitter (UART), Timer and

our customized IP. The customized IP communicates with the processor via the memory-

mapped-register. Reception and the transmission of data happens through the UART.

1https://ropsten.etherscan.io/address/0xe790fa82964853ba42695de768a4c4436f6f3022

2https://rinkeby.etherscan.io/address/0x4cd8304aa0e8b304cac6ebca95b92ddcf6437638

3https://etherscan.io/address/0x990bea57863d1a4de73daf21053c040c9abc8978

104

Figure 6.5: Experimental setup for demonstrating feature configuration using proposed hard-
ware design. The Raspberry Pi works as the gateway.

6.6.2.2 Gateway

To interact with the blockchain and receive the smart contract state updates, the device

needs to connect to a blockchain client. We use a Raspberry Pi 3 Model B+ that acts as an

edge gateway device for running the blockchain client. The Raspberry Pi is equipped with

a 1.4GHz 64-bit Quad Core ARMv8 processor. Figure 6.5 shows the hardware setup for

our experiment. We run the most prominent blockchain client implementation, go-ethereum

or geth [11] on the Raspberry Pi. The Zedboard’s Processing System (PS) uses geth as a

gateway into the Ethereum network via JSON RPC endpoints exposed on top of HTTP.

To implement such a two-way end device-Ethereum proxy, gateway connects to WiFi to

communicate with both end-device and an Ethereum client to route data to the blockchain

network.

6.6.2.3 Protocol Demonstration

We show the proof-of-concept by enabling and disabling different hardware blocks with

the upgraded and the default configuration. In one exemplary implementation, we turn on

the board LEDs according to the configuration upgrade requested by the user. The Zed-

board communicates with the gateway via the Tx and Rx pins for Universal Asynchronous

Receiver/Transmitter (UART). An ESP8266-01 device connected to the Zedboard PMOD

105

works as the WiFi station and is controlled by AT Commands through UART communica-

tion [9]. From the Zedboard, we initiate a TCP connection with the gateway and periodically

send an HTTP POST request to the gateway. This POST request contains the query to

the smart contract. Figure 6.6 shows the HTTP POST Content sent from the Zedboard via

ESP8266-01. The returned output from the query to the smart contract is then processed

by the hardware design in Zedboard FPGA.

Figure 6.6: HTTP POST Content sent from the Zedboard via ESP8266-01.

6.7 Results and Evaluation

We generated all results using Vivado Design Suite 2017.4. We functionally verified the

design using the Vivado simulator and performed the profiling and software implementation

in Xilinx SDK 2017.4. We described the design in Verilog at the Register Transfer Level

(RTL) for all the modules. We packaged all these Verilog source files for all the modules

into an IP. The Zynq Processing System (PS) accesses this IP as a memory-mapped IO

(Input/Output). For the timestamp module, we implemented a clock divider and counters

to keep track of the usage period and the remaining upgraded configuration period. To

access the Zedboard LEDs via the hardware configuration module, we set proper output pin

configurations in the design constraint file.

For the crypto module, we implemented the design blocks indicated by the rectangles

with sharp corners in Figure 6.4 (the encryption/decryption module). For the design blocks

indicated by the rectangles with rounded corners in Figure 6.4 , we initialized the design

with pre-defined keys — the symmetric key for the hardware part and the private key

106

Table 6.2: Resource utilization of our hardware modules.

Module Slice LUTs Slice Registers Slice Frequency (MHz)

Crypto Module (AES) 2245 3602 1087 324.6

Timestamp Module 90 58 54 242.2

Remaining IP Block 482 602 205 242.2

Table 6.3: Device utilization summary.

Resource Utilization Available Utilization %
LUT 2844 53200 5.35

LUTRAM 60 17400 0.34
FF 4336 106400 4.07
IO 10 200 5.00

for the software part. We implemented the encryption module from Opencores4 using the

AES-128 encryption algorithm in the counter (CTR) mode operation with a pre-defined

“counter” value. In AES-CTR mode implementation, the AES hardware cost is reduced by

50% (decryption hardware is not required). This AES implementation features a pipeline

architecture with a fully synchronous and synthesize-able design. The design has only one

clock domain in entire core.

In our implementation, the maximum frequency calculated is 242.2MHz with a 100MHz

clock. In Table 6.2, we summarize the resource utilization (in LUTs and Slices) and max-

imum clock frequency of all building blocks. The maximum frequency of the AES from

Opencores is 324.6MHz with the throughput of 1.6Gbytes/second and latency of 21 clock

cycles. The device utilization summary is given in Table 6.3.

6.8 Security Analysis of the Protocol

This section considers various system-level and hardware-level threats in our proposed

protocol and how our proposed solution can counter them.

4https://opencores.org/projects/tiny_aes

107

Overuse of reconfiguration After paying for the upgrade, the user might want to

enjoy the upgraded features in his device even after the upgrade period. Our Hardware

Configuration Module (HCM) ensures that the configuration is set back to the previous

state after the upgraded reconfiguration period.

Free loading If a user owns multiple devices of same type, he might rent just one

upgraded reconfiguration and apply the same upgraded reconfiguration to all of his devices.

In our protocol, each reconfiguration is encrypted using the public key (K+
d) of the device.

So, only that specific device can decrypt it with its private key (K−d) and install the recon-

figuration. This private key is unique to each device and any other device cannot decrypt

the firmware and install it.

Arbitrary pricing In a centralized system, the vendor could charge arbitrary fees

from the users. In our proposed protocol, as pricing model is pre-determined in the smart

contract, the users are safeguarded from any arbitrary pricing.

Incorrect payment by the user The user might not send enough money to get

the reconfiguration upgrade. In our protocol, the payment is automated and follows the

pre-established rules of the smart contract. If the user pays less than the required amount

of money for the upgrade, he/she doesn’t get the upgrade.

Physical attack by a malicious user to steal the configuration file An attacker

might want to mount a physical attack on the device to get the configuration file and apply

the stolen configuration to other devices or the same device later. Our proposed HCM stores

the configurations encrypted to prevent any physical attacks by an attacker.

Integrity of the reconfiguration and sender authentication A malicious attacker

could modify the reconfiguration en route to the user’s device via a man-in-the-middle

attack or a compromised gateway. Our proposed protocol provides sender authentication

and reconfiguration integrity through digital signatures. During device registration, the

manufacturer computes the signature for a configuration c by RSA-encrypting c with the

manufacture’s private key K−m. The manufacturer then appends the signature K−m(c) to the

configuration c and registers the device with both information. Our scheme does not apply

a hash function on the configuration to create the digital signature, as the configuration size

would be smaller than the hash digest. Generally, when the hash digest is much smaller

108

Figure 6.7: Authentication of the manufacturer, integrity and confidentiality of the config-
uration in our protocol.

than the original message’s size, the hash function is applied to reduce the computational

effort while creating the digital signature.

Before applying the update, the device receives both the configuration and the digi-

tal signature from the blockchain. The device then RSA-decrypts the signature using the

manufacturer’s public key K+
m, yielding c′. If c and c′ match, two essential things can be en-

sured: (i) the manufacturer signed the configuration and (ii) the configuration had not been

changed in transit, so that message integrity is given. The manufacturer’s public key could

be fused at the fabric/hardware level. We note here that the configuration and the signature

are encrypted by the corresponding device public key K+
d during the registration process

and later decrypted by the device private key K−d , as described in Section 6.4.2.1. Figure

6.7 presents the overall scheme for the manufacturer authentication and the configuration

integrity and confidentiality in our proposed protocol.

6.9 Limitations and Discussion

In this section, we identify the limitations and deployment considerations for our pro-

posed protocol. We comment on possible ways to overcome these issues and highlight the

ongoing works that are being done to address them.

6.9.1 Performance

Compared to a properly configured centralized database, a blockchain results in lower

transaction throughput and higher latencies. For example, Main Ethereum blockchain’s

average throughput is 15 transactions per second. In addition, since miners are incentivized

to prioritize transactions with higher rewards, the transaction time can be strongly affected

by the transaction’s gas price.

109

Figure 6.8: Transaction times of upgradeConfiguration() for increasing gas price in the
Main Ethereum network with a gas limit of 83500.

In Figure 6.8, we issue transactions upgradeConfiguration() to our smart contract,

with varying gas prices while holding all other variables constant. We measure the time

it takes from sending the transaction from a node on the Ethereum Mainnet to seeing that

transaction executed and included in a block on the chain. We issued the transaction six

times with each gas price. As we can see from the Figure 6.8, a higher gas price reduces

both the mean transaction time and the variance of transaction times, down to an average

of 13 seconds with a gas price of 60× 10−9 Ether. However, if we increase the gas price

more, we observe diminishing returns as eventually we are bottlenecked by the Ethereum

network’s throughput.

In Figure 6.9, we use a constant gas price and gas limit and run the same transaction

10 times over two days. The network load and gas value differ with time, resulting in higher

tail latencies when a constant gas price is used. Our experiments measure a mean latency

of 112 seconds and a 95-percentile latency of 190 seconds.

110

Figure 6.9: Cumulative density function (CDF) for the upgradeConfiguration() transac-
tion times in the Main Ethereum network with a gas price of 40× 10−9 Ether and a gas
limit of 83500.

The comparatively lower performance of Ethereum smart contracts implies that applica-

tions that use them must design around the possibility of transaction delays (on the order of

minutes to hours), or increase the gas price to reduce transaction times (down to the order

of tens of seconds). In our protocol, In our protocol, we design the sequence of events so that

transaction latency can be hidden from the user by allowing the Ethereum smart contract

transactions to occur before the user device receives the configuration code (Figure 6.3).

Few newer proposals, such as sharding [140], Bitcoin-NG [77], Stellar [152], show promising

results to address performance.

6.9.2 Vulnerabilities in Smart Contracts

In contrary to traditional software, smart contracts cannot be directly patched after

deployment. If a smart contract contains critical bugs, such as logical errors and lacks a

self-destruct, assets can get locked in the contract. Smart contracts may have vulnerabil-

ities at the programming language, bytecode, and blockchain levels that expose them to

various kinds of attacks [35, 46]. The most notable example of bugs was in the Distributed

111

Autonomous Organization (The DAO) smart contracts that allowed a hacker to steal over

$50M USD worth of Ethers out of the $168M funds invested. The Ethereum community

voted to return (or hard fork) the state of the network to one prior to the hack, recovering

Ethers back to investors. These challenges impose a unique set of considerations for design-

ing smart contracts. Several solutions have been proposed in the literature to increase smart

contracts’ security [46,63]. There are two common strategies to update smart contracts: (i)

using a self-destruct function to release the contract’s internal states, sending all the funds

to a particular address, and then publishing a new contract, or (ii) including a mutable

reference to the address of a newly created contract after the old contract is deprecated.

6.9.3 Transactional Privacy

Blockchain transactions contain a source address, a destination address, and the data

or assets to be transferred. For validation, the content of every transaction is exposed to

every node on the network. Although the addresses are not explicitly tied to any real-world

identity, an interested party can monitor and analyze the data to discover patterns about

a user’s transactions. Several literature works have proposed techniques to attain transac-

tional privacy, such as zero-knowledge Succinct Non-interactive ARguments of Knowledge

(zkSNARK) [189], homomorphic commitments [150]. Other works, such as Hawk [127], ex-

plore methods for creating privacy-preserving smart contracts that do not store transactions

clearly to maintain transactional privacy from the public.

6.10 Concluding Remarks

In this chapter, we proposed a smart contract-based device management system that can

facilitate the configuration of functional components included in a remotely located IC. This

system allows individual ICs to be custom configured to a specification mutually agreed by

manufacturer and buyer. We partitioned the framework into software and hardware parts

based on the analysis result of a pure software solution and the hardware overhead under

design constraints. Our small hardware footprint ensures that the configuration code runs

securely and that the encryption key is not leaked. Without hardware support, it cannot be

guaranteed that the configuration and the secret key is not accessible by malware.

112

CHAPTER 7

CONCLUSION

In this dissertation, we propose an integrated platform solution for IoT device authen-

tication, privacy, and security via blockchain-based smart contracts. We believe blockchain

for IoT has the potential to enable a decentralized trust model for interoperable, digitized

identities of devices and transactions between them on a global scale.

7.1 Summary of Contributions

For our first contribution, we ensure IoT device authentication by blockchain-based IC

traceability system, from the time of its fabrication to its end-of-life, which allows both

the supplier and a potential customer to verify an IC’s provenance. To corroborate the

blockchain information, we authenticate the IC securely and uniquely by embedded Physi-

cally Unclonable Function (PUF).

Secondly, the blockchain also integrates the protection of privacy of data generated from

the IoT devices by giving users control of their own privacy. We tailor the hardware to meet

the blockchain performance. We propose a side-channel attack to to extract the private key

successfully by exploiting the users’ reliance on third-party hosted nodes to access the wallet,

initiate transactions, and more. We propose a method where a co-tenant thread monitors the

power management side-channel information from a thread affected by a hardware Trojan.

Such a Trojan can leak private keys and disrupt digital transactions.

To conclude this dissertation research, we also propose a secure, remote configuration of

IC features using smart contracts. In contrast to conventional enabling/disabling techniques

rigidly carried out solely by the manufacturer, our proposed protocol provides flexible tech-

niques by which a user may selectively enable/disable hardware features. The blockchain

framework facilitates decentralized IoT where interacting devices are empowered to au-

tonomously execute digital contracts.

113

7.2 Future Works

Our proposed dissertation research provides many new dimensions that are worth ex-

ploring in future work.

Secure data transmission from the device to the blockchain We have looked

into requesting data from the blockchain node. In the future, we can look into the secure

data transmission from the IoT device to the blockchain node. Our custom hardware design

can be utilized for enabling secure data transmission from the device to the blockchain.

Dynamic pricing for remote IC Features configuration Leveraging our custom

hardware, this secure data transmission can unearth several new applications. With time,

when the device’s performance will degrade due to aging, the manufacturer may lower its

price accordingly, till its expiry. According to the age of the devices, we can develop a

mechanism that can facilitate automated dynamic pricing of a device based on prior protocols

defined in the smart contracts. If the device has a Residual Life Meter (RLM) [102,104], it

can send its aging data to the blockchain. We can adopt a dynamic pricing scheme instead

of fixed pricing for the remote IC features configuration protocol using this aging data.

Customizing feature downgrades for a refund to the customer We can utilize

our proposed remote configuration protocol to allow a customer to disable unwanted fea-

tures selectively and subsequently apply for a refund corresponding to the disabled feature.

This technique can be value-added for a customer because it can allow flexible changes to

inventory (for a distributor) or individual products (for an end-user) to account for market

shifts or changes in personal preferences. This technique can also be value-added for the

manufacturer because the refund request may give the manufacturer some real-time data

regarding customer preferences and market conditions efficiently.

Leveraging AI to create Decentralized Autonomous Organizations We can

leverage the Big Data and Machine Learning aspects of Artificial Intelligence (AI) along

with blockchain and other technologies. If AI is added to the IoT ecosystem connected to

a blockchain network, it creates a Decentralized Autonomous Organization (DAO). DAO

refers to an organization that runs without any human intervention.

114

APPENDIX A

MULTI-HOST HYPERLEDGER FABRIC IMPLEMENTATION

In this section, we describe the multi-host setup for Hyperledger Fabric implementation

[10]. It is a setup of a Raft-based ordering service using Docker Swarm as the multi-host

container environment. This setup is a more realistic deployment. We started everything

from scratch and performed the following steps to bring up this Fabric network in a four-host

deployment in the Google Cloud Platform (GCP) environment.

Our sample network comprises three peer organizations (representing the manufacturer,

distributor, and retailer) and one orderer organization, as shown in the above diagram.

We have a raft-based ordering service cluster of three ordering service nodes (orderers) in

the orderer organization. In each peer organization (Organization 1, Organization 2, and

Organization 3), there are two peers, Peer 0 and Peer 1. All peers have the CouchDB

database, and for all the peer organizations, Peer 0 works as the endorsing peer. Each

organization has their own certificate authority instance. The respective certificate authority

creates the certificates for all the participants (admin, peer, client) in an organization.

115

We create a channel (consortium) mychannel among the three peer organizations. We

deploy the chaincode (smart contract) in this channel, and using the chaincode, we invoke

and query transactions. We deploy all the components and services (docker containers)

related to Organization 1, 2, and 3 in VM1 (virtual machine 1), VM2, and VM3, respectively.

For VM1 (Organization 1), we have a dedicated containerized API server to interact with

the Hyperledger Fabric network from outside the Docker Swarm Network (e.g., using our

local machine directly from the Postman client). Finally, we deploy all the components and

services related to the Orderer organization in VM4.

A.1 Bringing Up All Hosts

We bring up four GCP VM instances representing four hosts (four organizations) and

preload the required components (proper fabric prerequisite, tools, images) in the nodes

according to the Fabric documentation. The four hosts are running Fabric v2.0 on Ubuntu

18.04 LTS. We create a custom firewall opening all ports and allowing all traffic (all UDP,

TCP, and ICMP) for the demonstration purpose.

A.2 Forming an Overlay Network with Docker Swarm

We use Docker Swarm to form an overlay network and make all the four hosts join.

Docker Swarm is a container orchestration tool that provides an overlay network for con-

tainers across multiple hosts. Those containers on this overlay network can interact with

each other as if they were on a large host. We opened four terminals, one for each host.

116

From Host 1,

Using the token from Host 1, we add other hosts as managers to this swarm. From Host 2,

3, and 4,

Finally, we add an overlay artifacts_test, which will be the network for our demo. We

create this overlay network on Host 1 only. If Docker Swarm works correctly, all nodes will

have this overlay network.

A.3 Preparing Fabric Network Materials in Host 1 and Copying to Others

One of the critical steps is to make sure that all components are sharing the same crypto

materials. For the sake of simplicity, in this demo, we create all the materials in Host 1

and then copy the whole directory to other hosts. We create a Certificate Authority (CA)

container for each organization. Certificates and signing keys for an organization (e.g.,

org1) are issued and signed by the same CA (ca.org1). For Organization 1, we create the

Certificate Authority container (ca.org1.example.com) on Host 1.

117

In the following, we generate the required crypto materials for Organization 1 on Host 1.

After that, we register and enroll two peers, the admin and user.

Similarly, we create the Certificate Authority containers and generate the required crypto

materials for Organization 2 and Organization 3 on Host 1. After that, we register and

enroll the organizations’ peers, the admins and users. Finally, we create the Certificate

Authority container for Orderer Organization and generate the required crypto materials

on Host 1. This time, we register the three orderers. This way we create all the crypto

materials required for the Fabric network on Host 1.

In this way, we create the required crypto materials for all the participants for each organiza-

tion. With all these crypto materials available now, we run the create-artifacts.sh script

to create the Genesis block (genesis.block), the Channel transaction (mychannel.tx) file,

118

and the anchor peer update transaction files for the three peer organizations. We require

the Genesis block for bootstrapping the orderers and Channel transaction file for configuring

a channel among the peer organizations.

We have everything on Host 1 now. We copy this directory to all the other hosts. As we

cannot copy files across VMs, we first push this directory into a Git repository and pull that

repository to the other three VMs. After doing that, all nodes will have the same crypto

material and required docker-compose files. We are ready to bring up all containers.

A.4 Bringing Up the Containers in Each Host

We use docker-compose to bring up all containers in each host. In Host 1, there is a total

of five containers (two peers, two couchDBs for those two peers, a CLI container). We can

see the docker containers up and running on Host 1.

119

Similarly, we use docker-compose to bring up all containers in Host 2, Host 3, and Host 4.

In Host 2 and 3 each, there is a total of four containers (two peers, two couchDBs for those

two peers). In Host 4, there is a total of three containers (three orderers). The terminal

outputs on Host 2 and Host 4 are shown below.

120

A.5 Creating Channel and All Peer Nodes Joining It

As we have CLI only on Host 1, we issue all commands from the Host 1 terminal.

We first create the channel configuration block for mychannel and make the two peers of

Organization 1 join the channel using this block.

From the Host 2 and Host 3, we fetch the channel configuration block and make their peers

join the channel using this block. The terminal output from Host 2 is shown below.

121

A.6 Installing and Instantiating TraceIC Chaincode

In this step, we package, install, and approve the traceic chaincode for Organization 1

on Host 1. After chaincode approval from Organization 1, we check the commit readiness

of the chaincode. As the other two peer organizations have not approved the chaincode yet,

we can see only approval from Organization 1 for the chaincode.

We choose the chaincode life-cycle endorsement policy as N of N. So, we have to package,

install and approve the chaincode for Organization 2 from Host 2 and Organization 3 from

Host 3.

122

After the Organization 2 and Organization 3 approve the chaincode, we can commit chain-

code definition to all the endorsing peers. We can do it from any host. The following shows

committing the chaincode by Organization 1 from the CLI container on Host 1.

As the CLI container is in the Docker Swarm network, the chaincode container gets created

in each host. Thus each organization now has the chaincode container on their respective

VM. We can also verify if the chaincode commit is successful by querying it.

123

A.7 Invoking and Querying the Chaincode

After we commit the chaincode and create the container for it, the next step is to invoke

and query the chaincode. First, we invoke init and then invoke createIC with some sample

arguments to the chaincode from the CLI container.

124

We can verify the invokation from Fauxton. Fauxton is a native web-based interface built into

CouchDB. It provides a basic interface to most functionalities, including creating, updating,

deleting, viewing documents, and designing documents.

After that, we can query an IC record from the CLI container. This query result shows that

the fabric network is working well.

Invoking or querying the chaincode from the CLI container is a little cumbersome process.

We create a separate API service container (artifacts_api_1) to interact with the chaincode

from outside the virtual machine using Postman client. For implementing the API, we use

the latest Fabric SDK. This implementation contains a Nodejs API and uses JWT (JSON

Web Token) for user identity verification.

125

We implement three APIs in the container: (i) register user, (ii) register IC, and (iii) query

IC. Firstly, we register a new user, and then with the new user token, we invoke and query

the chaincode. As we register and enroll new users for an organization at runtime, we have to

ensure that the CA container is up and running for that organization. For the demonstration

purpose, we create the API container on Host 1 and use its IP address and port number to

register a new user from the Postman client.

We see that the user gets a token. The token gets mapped to an ID, and all crypto materials

and the identification (ID) for that user get created inside the container on Host 1.

Using the token created during the registration, the user can issue transactions to the chain-

code. First, we invoke createIC transaction with some sample arguments (key, identifier,

type, CRP, and owner) to the traceic chaincode in channel mychannel.

126

We see that the IC is successfully registered. We can also verify the invokation from the

CouchDB database in peer 0 of Organization 1 update from the Fauxton as shown below.

127

The CouchDB databases in other organizations’ peers also get updated with a successful

transaction invokation. The CouchDB database for peer 0 of Organization 2 is shown as

below.

After we invoke the chaincode, we use query to check again.

In this demonstration, we implement a RAFT-based orderer cluster with a Fabric net-

work. These containers run on four different hosts. Docker Swarm brings these four hosts

together, allowing containers running on separate hosts to communicate. We do not specify

static IP on fabric network components, and all containers communicate with each other

such that they were on the same host. We use the existing Docker Compose files with

minimum modification to run on Docker Swarm.

128

APPENDIX B

SAMPLE CODE SNIPPET FOR TRIGGERING THE PMU-TROJAN

Table B.1: Code Snippet for Triggering the PMU-Trojan

echo -n "userspace" > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

echo -n 3100 /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

openssl speed

echo -n 2700 /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

openssl speed

echo -n 2300 /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

openssl speed

129

BIBLIOGRAPHY

[1] Bitcoin testnet3. URL: https://en.bitcoin.it/wiki/Testnet .

[2] Blockchain for IC Traceability. URL: https://github.com/nazmulislam025/IC-Traceabi
lity-Blockchain.

[3] c2ctl. URL: https://aur.archlinux.org/packages/c2ctl/ .

[4] Competitive Landscape: Power Management IC and Power Semiconductor Ven-
dors, 2012. URL: https://www.gartner.com/doc/2010815/competitive-landscape-
power-management-ic.

[5] CPU-Z & HWMONITOR PRO. URL: http://www.cpuid.com/ .

[6] Cpufreq. URL: https://www.kernel.org/doc/Documentation/cpu-freq/ .

[7] Data quality: It’s a supply chain issue. URL: http://www.dataversity.net/data-quality-
its-a-supply-chain-issue/ .

[8] Data security — How Bosch secures the camera. URL: http://resource.boschsecurity.co
m/documents/WP_TPM_WhitePaper_enUS_9007223261094667.pdf .

[9] ESP8266 AT Instruction Set. URL: https://www.espressif.com/sites/default/files/docu
mentation/4a-esp8266_at_instruction_set_en.pdf .

[10] Fabric Multi-host Deployment. URL: https://github.com/mni025/FabricMultiHostDep
loyment .

[11] Go Ethereum. URL: https://github.com/ethereum/go-ethereum.

[12] Hyperledger Caliper. URL: https://github.com/hyperledger/caliper .

[13] Implementing IC Traceability using Hyperledger Fabric. URL: https://github.com/mni
025/TraceICHyperledgerFabric.

[14] Intel Core i7-4650U Processor. URL: http://ark.intel.com/products/75114/Intel-Core-
i7-4650U-Processor-4M-Cache-up-to-3-30-GHz .

[15] Intel Extreme Tuning Utility. URL: https://www.intel.com/content/www/us/en/suppo
rt/processors/processor-utilities-and-programs/intel-extreme-tuning-utility-intel-
xtu.html .

[16] International Technology Roadmap for Semiconductor (ITRS). URL: http://www.itrs.
net/Links/2006Update/2006UpdateFinal.htm.

[17] Nangate Open Cell Library. URL: http://www.si2.org/openeda.si2.org/projects/nanga
telib.

130

[18] NCSU FreePDK 45nm. URL: http://www.eda.ncsu.edu/wiki/FreePDK45:Contents.

[19] Predictive Technology Model (PTM). URL: http://ptm.asu.edu/ .

[20] Remote configuration of IC features via smart contracts. URL: https://github.com/m
ni025/remote-configuration-smart-contract .

[21] Skylake (client) - Microarchitectures - Intel. URL: https://en.wikichip.org/wiki/intel/
microarchitectures/skylake_(client).

[22] Sonics Introduces Semiconductor IP Industry’s First Power Management Solu-
tion Combining Fine-Grain Partitioning and Autonomous Control, 2015. URL:
https://www.gartner.com/doc/2010815/competitive-landscape-power-management-ic.

[23] Target Breach. URL: http://www.itworldcanada.com/post/hacking-of-hvac-supplier-
led-to-target-breach-report .

[24] Who is hiding behind the barcode? URL: https://product.okfn.org/2013/10/16/who-
is-hiding-behind-the-barcode/ .

[25] Top 5 counterfeited semiconductors: Analog ICs top the list. URL: https://electroiq.co
m/2012/04/top-5-counterfeited-semiconductors-analog-ics-top-the-list/ (2012).

[26] What are the parity ethereum disk space needs and overall hardware requirements?
URL: https://github.com/openethereum/wiki/blob/master/FAQ.md (2019).

[27] Preserving IoT privacy in Sharing Economy. URL: https://github.com/mni025/IoT-
Privacy-via-Blockchain (August, 2019).

[28] Decentralizing Airbnb. URL: https://www.smarthosts.org/posts/Zr4w8SEK5BH42CP
ZF/airbnb-blockchain-loyalty-travel (July, 2017).

[29] HTTP/1.1: Status Code Definitions. URL: https://www.w3.org/Protocols/rfc2616/rfc
2616-sec10.html (March, 2016).

[30] Inquiry into counterfeit electronic parts in the Department of Defence supply chain.
URL: https://www.armed-services.senate.gov/imo/media/doc/Counterfeit-Electronic-
Parts.pdf. (May 2012).

[31] Alkabani, Yousra, and Koushanfar, Farinaz. Active hardware metering for intellectual
property protection and security. In USENIX security symposium (2007), pp. 291–306.

[32] Alvarez, Anastacia B, Zhao, Wenfeng, and Alioto, Massimo. Static physically un-
clonable functions for secure chip identification with 1.9–5.8% native bit instability at
0.6–1 v and 15 fj/bit in 65 nm. IEEE Journal of Solid-State Circuits 51, 3 (2016),
763–775.

[33] Androulaki, Elli, Barger, Artem, Bortnikov, Vita, Cachin, Christian, Christidis, Kon-
stantinos, De Caro, Angelo, Enyeart, David, Ferris, Christopher, Laventman, Gen-
nady, Manevich, Yacov, et al. Hyperledger fabric: a distributed operating system for
permissioned blockchains. In Proceedings of the thirteenth EuroSys conference (2018),
pp. 1–15.

131

[34] Angwin, Julia. Own a Vizio Smart TV? It’s Watching You. URL: https://www.propubli
ca.org/article/own-a-vizio-smart-tv-its-watching-you (2015).

[35] Atzei, Nicola, Bartoletti, Massimo, and Cimoli, Tiziana. A survey of attacks on
ethereum smart contracts (sok). In International conference on principles of secu-
rity and trust (2017), Springer, pp. 164–186.

[36] Augot, Daniel, Chabanne, Hervé, Clémot, Olivier, and George, William. Transform-
ing face-to-face identity proofing into anonymous digital identity using the Bitcoin
blockchain. arXiv preprint arXiv:1710.02951 (2017).

[37] Back, Adam, Corallo, Matt, Dashjr, Luke, Friedenbach, Mark, Maxwell,
Gregory, Miller, Andrew, Poelstra, Andrew, Timón, Jorge, and Wuille,
Pieter. Enabling blockchain innovations with pegged sidechains. URL:
http://www. opensciencereview.com/papers/123/enablingblockchain-innovations-with-
pegged-sidechains (2014).

[38] Baer, David, Sweet, James D, Chen, Iue-Shuenn, Bowers, Heather, and Beach, Jeffrey.
Method and system for using one-time programmable (otp) read-only memory (rom)
to configure chip usage features, Dec. 20 2007. US Patent App. 11/535,912.

[39] Baza, Mohamed, Nabil, Mahmoud, Lasla, Noureddine, Fidan, Kemal, Mahmoud, Mo-
hamed, and Abdallah, Mohamed. Blockchain-based firmware update scheme tailored
for autonomous vehicles. arXiv preprint arXiv:1811.05905 (2018).

[40] Bhardwaj, Sarvesh, Wang, Wenping, Vattikonda, Rakesh, Cao, Yu, and Vrudhula,
Sarma. Predictive modeling of the NBTI effect for reliable design. In IEEE Custom
Integrated Circuits Conference 2006 (2006), IEEE, pp. 189–192.

[41] Bhargava, Mudit, Cakir, Cagla, and MAI, Khanh. Attack resistant sense ampli-
fier based PUFs (SA-PUF) with deterministic and controllable reliability of PUF re-
sponses. In Hardware-Oriented Security and Trust (HOST), 2010 IEEE International
Symposium on (2010), IEEE, pp. 106–111.

[42] Bhargava, Mudit, and Mai, Ken. A high reliability PUF using hot carrier injection
based response reinforcement. In Cryptographic Hardware and Embedded Systems-
CHES 2013. Springer, 2013, pp. 90–106.

[43] Bhargava, Mudit, and Mai, Ken. An efficient reliable puf-based cryptographic key
generator in 65nm cmos. In Proceedings of the conference on Design, Automation &
Test in Europe (2014), European Design and Automation Association, p. 70.

[44] Bhasin, Shivam, Danger, Jean-Luc, Guilley, Sylvain, Ngo, Xuan Thuy, and Sauvage,
Laurent. Hardware trojan horses in cryptographic ip cores. In Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2013 Workshop on (2013), IEEE, pp. 15–29.

[45] Bhunia, Swarup, Hsiao, Michael S, Banga, Mainak, and Narasimhan, Seetharam.
Hardware trojan attacks: threat analysis and countermeasures. Proceedings of the
IEEE 102, 8 (2014), 1229–1247.

[46] Bissias, George, Levine, Brian, and Kapadia, Nikunj. Securing the assets of decentral-
ized applications using financial derivatives (draft). arXiv preprint arXiv:1701.03945
(2017).

132

[47] Bissias, George, and Levine, Brian N. Bobtail: Improved blockchain security with
low-variance mining. In ISOC Network and Distributed System Security Symposium
(2020).

[48] Bissias, George, Levine, Brian Neil, Ozisik, A Pinar, and Andresen, Gavin. An analysis
of attacks on blockchain consensus. arXiv preprint arXiv:1610.07985 (2016).

[49] Blömer, Johannes, and Seifert, Jean-Pierre. Fault based cryptanalysis of the advanced
encryption standard (aes). In Computer Aided Verification (2003), Springer, pp. 162–
181.

[50] Bösch, Christoph. Efficient Fuzzy Extractors for Reconfigurable Hardware. Master’s
thesis, Dept. EECS, Massachusetts Institute of Technology, 2008.

[51] Boudguiga, Aymen, Bouzerna, Nabil, Granboulan, Louis, Olivereau, Alexis, Quesnel,
Flavien, Roger, Anthony, and Sirdey, Renaud. Towards better availability and account-
ability for iot updates by means of a blockchain. In 2017 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW) (2017), IEEE, pp. 50–58.

[52] Bucci, M., and Luzzi, R. Identification circuit and method for generating an identifi-
cation bit using physical unclonable functions, Nov. 12 2013. US Patent 8,583,710.

[53] Burton, Edward A, Schrom, Gerhard, Paillet, Fabrice, Douglas, Jonathan, Lambert,
William J, Radhakrishnan, Kaladhar, and Hill, Michael J. Fivr—fully integrated
voltage regulators on 4th generation intel® core™ socs. In Applied Power Electronics
Conference and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE (2014), IEEE,
pp. 432–439.

[54] Buterin, Vitalik. On Public and Private Blockchains. URL: https://blog.ethereum.org/
2015/08/07/on-public-and-private-blockchains/ (August 7, 2015).

[55] Buterin, Vitalik, et al. A next-generation smart contract and decentralized application
platform. white paper (2014).

[56] Castro, Miguel, Liskov, Barbara, et al. Practical byzantine fault tolerance. In OSDI
(1999), vol. 99, pp. 173–186.

[57] Chakraborty, Rajat Subhra, Wolff, Francis G, Paul, Somnath, Papachristou, Chris-
tos A, and Bhunia, Swarup. Mero: A statistical approach for hardware trojan detec-
tion. In CHES (2009), vol. 5747, Springer, pp. 396–410.

[58] Che, Wenjie, Plusquellic, Jim, and Bhunia, Swarup. A non-volatile memory based
physically unclonable function without helper data. In Proceedings of the 2014
IEEE/ACM International Conference on Computer-Aided Design (2014), IEEE Press,
pp. 148–153.

[59] Christidis, Konstantinos, and Devetsikiotis, Michael. Blockchains and smart contracts
for the internet of things. Ieee Access 4 (2016), 2292–2303.

[60] Cortez, M., Hamdioui, S., van der Leest, V., Maes, R., and Schrijen, G.-J. Adapting
voltage ramp-up time for temperature noise reduction on memory-based PUFs. In
Hardware-Oriented Security and Trust (HOST), 2013 IEEE International Symposium
on (June 2013), pp. 35–40.

133

[61] Dakroub, Alain. Understanding the iot platform for service providers. URL: https://
www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2016/pdf/BRKSPG-2067.pdf
(2018).

[62] DARPA. Supply chain hardware basic concepts and taxonomy of dependable and se-
cure computing. Microsystems Technology Office/MTO Broad Agency Announcement
(2014).

[63] Delmolino, Kevin, Arnett, Mitchell, Kosba, Ahmed, Miller, Andrew, and Shi, Elaine.
Step by step towards creating a safe smart contract: Lessons and insights from a
cryptocurrency lab. In International Conference on Financial Cryptography and Data
Security (2016), Springer, pp. 79–94.

[64] Delvaux, Jeroen, Gu, Dawu, Schellekens, Dries, and Verbauwhede, Ingrid. Helper data
algorithms for puf-based key generation: Overview and analysis. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 34, 6 (2015), 889–902.

[65] Devadas, Srinivas, Suh, Edward, Paral, Sid, Sowell, Richard, Ziola, Tom, and Khan-
delwal, Vivek. Design and implementation of PUF-based ”Unclonable" RFID ICs
for anti-counterfeiting and security applications. In RFID, 2008 IEEE International
conference on (2008), IEEE, pp. 58–64.

[66] Deyati, Sabyasachi, Chatterjee, Abhijit, and Muldrey, Barry John. Analog push pull
amplifier-based physically unclonable function for hardware security, May 4 2017. US
Patent App. 15/336,895.

[67] Diffie, Whitfield, Van Oorschot, Paul C, and Wiener, Michael J. Authentication and
authenticated key exchanges. Designs, Codes and cryptography 2, 2 (1992), 107–125.

[68] Dingee, Don. Customized PMICs with OTP in automotive and IoT. URL: https://
www.semiwiki.com/forum/content/6122-customized-pmics-otp-automotive-iot.html
(August, 2016).

[69] Dodis, Yevgeniy, Ostrovsky, Rafail, Reyzin, Leonid, and Smith, Adam. Fuzzy extrac-
tors: How to generate strong keys from biometrics and other noisy data. SIAM journal
on computing 38, 1 (2008), 97–139.

[70] Dodis, Yevgeniy, Ostrovsky, Rafail, Reyzin, Leonid, and Smith, Adam. Fuzzy Extrac-
tors: How to Generate Strong Keys from Biometrics and Other Noisy Data. SIAM J.
Comput. 38, 1 (Mar. 2008), 97–139.

[71] Dollfus, Philippe, Bournel, Arnaud, Galdin, Sylvie, Barraud, Sylvain, and Hesto,
Patrice. Effect of discrete impurities on electron transport in ultrashort MOSFET
using 3D MC simulation. IEEE Transactions on Electron Devices 51, 5 (2004), 749–
756.

[72] Dorri, Ali, Kanhere, Salil S, and Jurdak, Raja. Towards an optimized blockchain
for iot. In Proceedings of the Second International Conference on Internet-of-Things
Design and Implementation (2017), ACM, pp. 173–178.

[73] Downum, Steven, Phillips, Walter, and Samuel, Balasingh. Firmware update control
mechanism using organizational groups, Nov. 6 2018. US Patent App. 15/352,356.

134

[74] Dusart, Pierre, Letourneux, Gilles, and Vivolo, Olivier. Differential fault analysis on
aes. In Applied Cryptography and Network Security (2003), Springer, pp. 293–306.

[75] Elkhiyaoui, Kaoutar, Blass, Erik-Oliver, and Molva, Refik. CHECKER: On-site check-
ing in RFID-based supply chains. In Proceedings of the fifth ACM conference on se-
curity and privacy in wireless and mobile networks (2012), ACM, pp. 173–184.

[76] Ethereum. Whisper message for smart contracts. URL: https://github.com/ethereum/
wiki/wiki/Whisper .

[77] Eyal, Ittay, Gencer, Adem Efe, Sirer, Emin Gün, and Van Renesse, Robbert. Bitcoin-
ng: A scalable blockchain protocol. In 13th {USENIX} symposium on networked
systems design and implementation ({NSDI} 16) (2016), pp. 45–59.

[78] Faulkner, Andrew, et al. Enabling secure semiconductor supply chain management.
URL: https://www.chipestimate.com/Enabling-Secure-Semiconductor-Supply-Chain-
Management/Sidense-a-part-of-Synopsys/Technical-Article/2017/09/05 (February,
2017).

[79] Fay, Thomas, and Paniscotti, Dominick. Systems and methods of blockchain transac-
tion recordation, Oct. 6 2016. US Patent App. 15/086,801.

[80] Fern, Nicole, San, Ismail, and Cheng, Kwang-Ting Tim. Detecting hardware trojans in
unspecified functionality through solving satisfiability problems. In Design Automation
Conference (ASP-DAC), 2017 22nd Asia and South Pacific (2017), IEEE, pp. 598–504.

[81] Frank, Michael. Voltage detection, Nov. 18 2014. US Patent 8,892,922.

[82] Gallagher, S. Internet of $@!%: Google api change triggers epson printer
revolt. URL: https://arstechnica.com/information-technology/2016/12/internet-of-
google-api-change-triggers-epson-printer-revolt/ (2016).

[83] Ganta, D., and Nazhandali, L. Circuit-level approach to improve the temperature
reliability of Bi-stable PUFs. In Quality Electronic Design (ISQED), 2014 15th Inter-
national Symposium on (March 2014), pp. 467–472.

[84] Garg, A., and Kim, T.T. Design of SRAM PUF with improved uniformity and re-
liability utilizing device aging effect. In Circuits and Systems (ISCAS), 2014 IEEE
International Symposium on (June 2014), pp. 1941–1944.

[85] Giraud, Christophe. Dfa on aes. Advanced Encryption Standard–AES (2005), 571–571.

[86] Goldfeder, S., et al. Escrow protocols for cryptocurrencies: How to buy physical
goods using bitcoin. In International Conference on Financial Cryptography and Data
Security (2017), Springer, pp. 321–339.

[87] Goo, Jung-Suk, Choi, Chang-Hoon, Abramo, A., Ahn, Jae-Gyung, Yu, Zhiping, Lee,
T. H., and Dutton, R. W. Physical origin of the excess thermal noise in short channel
MOSFETs. IEEE Electron Device Letters 22, 2 (Feb 2001), 101–103.

[88] Guajardo, Jorge, Kumar, Sandeep S, Schrijen, Geert-Jan, and Tuyls, Pim. Phys-
ical unclonable functions and public-key crypto for fpga ip protection. In Field
Programmable Logic and Applications, 2007. FPL 2007. International Conference on
(2007), IEEE, pp. 189–195.

135

[89] Guardtime, and IntrinsicID. Internet of things authentication: A blockchain solution
using sram physical unclonable functions. URL: https://www.intrinsic-id.com/wp-
content/uploads/2017/05/gt_KSI-PUF-web-1611.pdf .

[90] Guin, Ujjwal, Huang, Ke, DiMase, Daniel, Carulli, John M, Tehranipoor, Mohammad,
and Makris, Yiorgos. Counterfeit integrated circuits: A rising threat in the global
semiconductor supply chain. Proceedings of the IEEE 102, 8 (2014), 1207–1228.

[91] Handschuh, Héléna, and Tuyls, Pim Theo. Device and method for obtaining a cryp-
tographic key, Jan. 19 2011. US Patent App. 13/574,311.

[92] Hartzog, Woodrow, and Selinger, Evan. The internet of heirlooms and disposable
things. NCJL & Tech. 17 (2015), 581.

[93] Helfmeier, Clemens, Boit, Christian, Nedospasov, Dmitry, and Seifert, Jean-Pierre.
Cloning physically unclonable functions. In Hardware-Oriented Security and Trust
(HOST), 2013 IEEE International Symposium on (2013), IEEE, pp. 1–6.

[94] Helo, Petri, and Szekely, Bulcsu. Logistics information systems: an analysis of software
solutions for supply chain co-ordination. Industrial Management & Data Systems 105,
1 (2005), 5–18.

[95] Hern, Alex. Revolv devices bricked as google’s nest shuts down smart home com-
pany. URL: https://www.theguardian.com/technology/2016/apr/05/revolv-devices-
bricked-google-nest-smart-home (2016).

[96] Hiller, Matthias, Kürzinger, Ludwig, and Sigl, Georg. Review of error correction for
pufs and evaluation on state-of-the-art fpgas. Journal of Cryptographic Engineering
(2020).

[97] Hofer, Maximilian, and Boehm, Christoph. An Alternative to Error Correction for
SRAM-like PUFs. In Proceedings of the 12th International Conference on Cryp-
tographic Hardware and Embedded Systems (Berlin, Heidelberg, 2010), CHES’10,
Springer-Verlag, pp. 335–350.

[98] Holcomb, Daniel E, Burleson, Wayne P, and Fu, Kevin. Power-up sram state as an
identifying fingerprint and source of true random numbers. IEEE Transactions on
Computers 58, 9 (2009), 1198–1210.

[99] Horvath, Bryan T. Not all parts are created equal: The impact of counterfeit parts in
the air force supply chain. Tech. rep., Air War College, Air University Maxwell AFB
United States, 2017.

[100] Huh, Seyoung, Cho, Sangrae, and Kim, Soohyung. Managing iot devices using
blockchain platform. In Advanced Communication Technology (ICACT), 2017 19th
International Conference on (2017), IEEE, pp. 464–467.

[101] Initiative, Silicon Integration, et al. Nangate open cell library. Avaialable: http://www.
si2. org/openeda. si2. org/projects/nangatelib (2011).

[102] Islam, M. N., and Kundu, S. Modeling residual life of an ic considering multiple aging
mechanisms. In 2016 IEEE 25th North Atlantic Test Workshop (NATW) (May 2016),
pp. 24–27.

136

[103] Islam, Md Nazmul, and Kundu, Sandip. Modeling residual lifetime of an ic considering
spatial and inter-temporal temperature variations. In Asian Test Symposium (ATS),
2016 IEEE 25th (2016), IEEE, pp. 240–245.

[104] Islam, Md Nazmul, and Kundu, Sandip. An analytical model for predicting the residual
life of an ic and design of residual-life meter. In VLSI Test Symposium (VTS), 2017
IEEE 35th (2017), IEEE, pp. 1–6.

[105] Islam, Md Nazmul, and Kundu, Sandip. Pmu-trojan: on exploiting power management
side channel for information leakage. In Proceedings of the 23rd Asia and South Pacific
Design Automation Conference (2018), IEEE Press, pp. 709–714.

[106] Islam, Md Nazmul, and Kundu, Sandip. Preserving iot privacy in sharing economy
via smart contract. In 2018 IEEE/ACM Third International Conference on Internet-
of-Things Design and Implementation (IoTDI) (2018), IEEE, pp. 296–297.

[107] Islam, Md Nazmul, and Kundu, Sandip. Enabling ic traceability via blockchain pegged
to embedded puf. ACM Trans. Des. Autom. Electron. Syst. 24, 3 (Apr. 2019), 36:1–
36:23.

[108] Islam, Md Nazmul, and Kundu, Sandip. Remote configuration of integrated circuit
features and firmware management via smart contract. In 2019 IEEE International
Conference on Blockchain (Blockchain) (2019), IEEE, pp. 325–331.

[109] Islam, Md Nazmul, and Kundu, Sandip. IoT Security, Privacy and Trust in Home-
Sharing Economy via Blockchain. Springer International Publishing, Cham, 2020,
pp. 33–50.

[110] Islam, Md Nazmul, Patii, Vinay C, and Kundu, Sandip. On ic traceability via
blockchain. In VLSI Design, Automation and Test (VLSI-DAT), 2018 International
Symposium on (2018), IEEE, pp. 1–4.

[111] Islam, Md Nazmul, Patil, Vinay C, and Kundu, Sandip. Determining proximal geolo-
cation of iot edge devices via covert channel. In Quality Electronic Design (ISQED),
2017 18th International Symposium on (2017), IEEE, pp. 196–202.

[112] Islam, Md Nazmul, Patil, Vinay C, and Kundu, Sandip. A guide to graceful aging:
How not to overindulge in post-silicon burn-in for enhancing reliability of weak puf.
In Circuits and Systems (ISCAS), 2017 IEEE International Symposium on (2017),
IEEE, pp. 1–4.

[113] Islam, Md Nazmul, Patil, Vinay C, and Kundu, Sandip. On enhancing reliability of
weak pufs via intelligent post-silicon accelerated aging. IEEE Transactions on Circuits
and Systems I: Regular Papers (2017).

[114] ISO. EN ISO 8492.1995. European Committee for Standardization, Point 3.16. (1995).

[115] Iyer, Kedar, and Dannen, Chris. The ethereum development environment. In Building
Games with Ethereum Smart Contracts. Springer, 2018, pp. 19–36.

[116] Jang, J. W., and Ghosh, S. Design and analysis of novel SRAM PUFs with embed-
ded latch for robustness. In Sixteenth International Symposium on Quality Electronic
Design (March 2015), pp. 298–302.

137

[117] Jansen-Vullers, Monique H, van Dorp, Christian A, and Beulens, Adrie JM. Man-
aging traceability information in manufacture. International journal of information
management 23, 5 (2003), 395–413.

[118] Jin, Chenglu, and van Dijk, Marten. Secure and efficient initialization and authenti-
cation protocols for shield. IEEE Transactions on Dependable and Secure Computing
(2017).

[119] Jin, Yier, and Makris, Yiorgos. Proof carrying-based information flow tracking for
data secrecy protection and hardware trust. In VLSI Test Symposium (VTS), 2012
IEEE 30th (2012), IEEE, pp. 252–257.

[120] Johnson, J. B. Thermal Agitation of Electricity in Conductors. Phys. Rev. 32 (Jul
1928), 97–109.

[121] Kang, Kunhyuk, Park, Sang Phill, Roy, Kaushik, and Alam, Muhammad A. Estima-
tion of statistical variation in temporal nbti degradation and its impact on lifetime
circuit performance. In Proceedings of the 2007 IEEE/ACM international conference
on Computer-aided design (2007), IEEE Press, pp. 730–734.

[122] Kar, I. Estonian citizens will soon have the world’s most hack-proof health-care
records, 2016.

[123] Kelly, J, and Williams, A. Forty big banks test blockchain-based bond trading system,
2016.

[124] Kessler, L. W., and Sharpe, T. Faked parts detection. URL: http://www.circuitsassem
bly.com/cms/component/content/article/159/9937-smt. (2010).

[125] Kocher, Paul, Jaffe, Joshua, and Jun, Benjamin. Differential power analysis. In
Advances in cryptology—CRYPTO’99 (1999), Springer, pp. 789–789.

[126] Koh, Robin, Schuster, Edmund W, Chackrabarti, Indy, and Bellman, Attilio. Securing
the pharmaceutical supply chain. White Paper, Auto-ID Labs, Massachusetts Institute
of Technology (2003), 1–19.

[127] Kosba, Ahmed, Miller, Andrew, Shi, Elaine, Wen, Zikai, and Papamanthou, Char-
alampos. Hawk: The blockchain model of cryptography and privacy-preserving smart
contracts. In 2016 IEEE symposium on security and privacy (SP) (2016), IEEE,
pp. 839–858.

[128] Kuemin, Cyrill, Nowack, Lea, Bozano, Luisa, Spencer, Nicholas D, and Wolf, Heiko.
Oriented assembly of gold nanorods on the single-particle level. Advanced Functional
Materials 22, 4 (2012), 702–708.

[129] Kumaki, Takeshi, Yoshikawa, Masaya, and Fujino, Takeshi. Cipher-destroying and
secret-key-emitting hardware trojan against aes core. In Circuits and Systems (MWS-
CAS), 2013 IEEE 56th International Midwest Symposium on (2013), IEEE, pp. 408–
411.

[130] Kumar, Sanjay V, Kim, Chris H, and Sapatnekar, Sachin S. An analytical model for
negative bias temperature instability. In Proceedings of the 2006 IEEE/ACM interna-
tional conference on Computer-aided design (2006), ACM, pp. 493–496.

138

[131] Lacey, Stephen. The energy blockchain: How bitcoin could be a catalyst for the
distributed grid. GreenTech Media 26 (2016).

[132] LAM, Suk Wah Louisa. Theory and application of majority vote: From condorcet
jury theorem to pattern recognition. 2nd Int. Conf. mathematics education into the
21st century: Mathematics for Living (2000).

[133] Lamport, Leslie. Generalized consensus and paxos.

[134] Le Sueur, Etienne, and Heiser, Gernot. Dynamic voltage and frequency scaling: The
laws of diminishing returns. In Proceedings of the 2010 international conference on
Power aware computing and systems (2010), pp. 1–8.

[135] Lee, Boohyung, and Lee, Jong-Hyouk. Blockchain-based secure firmware update for
embedded devices in an internet of things environment. The Journal of Supercomputing
73, 3 (2017), 1152–1167.

[136] Lee, Jae W, Lim, Daihyun, Gassend, Blaise, Suh, G Edward, Van Dijk, Marten, and
Devadas, Srinivas. A technique to build a secret key in integrated circuits for identi-
fication and authentication applications. In VLSI Circuits, 2004. Digest of Technical
Papers. 2004 Symposium on (2004), IEEE, pp. 176–179.

[137] Li, He, Liu, Qiang, and Zhang, Jiliang. A survey of hardware trojan threat and
defense. Integration, the VLSI Journal 55 (2016), 426–437.

[138] Liu, Yu, Jin, Yier, and Makris, Yiorgos. Hardware trojans in wireless cryptographic
ics: silicon demonstration & detection method evaluation. In Proceedings of the In-
ternational Conference on Computer-Aided Design (2013), IEEE Press, pp. 399–404.

[139] Liu, Yuan, Zhao, Zheng, Guo, Guibing, Wang, Xingwei, Tan, Zhenhua, and Wang,
Shuang. An Identity Management System Based on Blockchain. Conference on Pri-
vacy, Security and Trust (PST) (Aug 2017).

[140] Luu, Loi, Narayanan, Viswesh, Zheng, Chaodong, Baweja, Kunal, Gilbert, Seth, and
Saxena, Prateek. A secure sharding protocol for open blockchains. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(2016), ACM, pp. 17–30.

[141] Maes, Roel. An Accurate Probabilistic Reliability Model for Silicon PUFs. In Proceed-
ings of the 15th International Conference on Cryptographic Hardware and Embedded
Systems (2013), CHES’13, Springer-Verlag, pp. 73–89.

[142] Maes, Roel, Rozic, Vladimir, Verbauwhede, Ingrid, Koeberl, Patrick, Van der Sluis,
Erik, and van der Leest, Vincent. Experimental evaluation of Physically Unclonable
Functions in 65 nm CMOS. In ESSCIRC (ESSCIRC), 2012 Proceedings of the (2012),
IEEE, pp. 486–489.

[143] Maes, Roel, Tuyls, Pim, and Verbauwhede, Ingrid. A soft decision helper data algo-
rithm for SRAM PUFs. In Information Theory, 2009. ISIT 2009. IEEE International
Symposium on (2009), IEEE, pp. 2101–2105.

139

[144] Maes, Roel, Tuyls, Pim, and Verbauwhede, Ingrid. Low-overhead implementation of a
soft decision helper data algorithm for SRAM PUFs. In Cryptographic Hardware and
Embedded Systems-CHES 2009. Springer, 2009, pp. 332–347.

[145] Maes, Roel, and van der Leest, Vincent. Countering the effects of silicon aging on
SRAM PUFs. In Hardware-Oriented Security and Trust (HOST), 2014 IEEE Inter-
national Symposium on (2014), IEEE, pp. 148–153.

[146] Maes, Roel, Van Herrewege, Anthony, and Verbauwhede, Ingrid. Pufky: A fully
functional puf-based cryptographic key generator. In Cryptographic Hardware and
Embedded Systems–CHES 2012. Springer, 2012, pp. 302–319.

[147] Mandelblat, Julius. Technology insight: Intel’s next generation microarchitecture code
name skylake. In Intel Developer Forum, San Francisco (2015).

[148] Mathew, Sanu K, Satpathy, Sudhir K, Anders, Mark A, Kaul, Himanshu, Hsu,
Steven K, Agarwal, Amit, Chen, Gregory K, Parker, Rachael J, Krishnamurthy,
Ram K, and De, Vivek. 16.2 A 0.19 pJ/b PVT-variation-tolerant hybrid physically
unclonable function circuit for 100% stable secure key generation in 22nm CMOS. In
2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC) (2014), IEEE, pp. 278–279.

[149] Matsukawa, T., Liu, Y., Endo, K., i. O’uchi, S., and Masahara, M. Variability origins
of FinFETs and perspective beyond 20nm node. In IEEE 2011 International SOI
Conference (Oct 2011), pp. 1–28.

[150] Maxwell, Greg. Confidential transactions. URL: https://people.xiph.org/greg/confiden
tialvalues.txt (Accessed 09/05/2016) (2015).

[151] Mayer, Hartwig. Ecdsa security in bitcoin and ethereum: a research survey. Coin-
Faabrik, June 28 (2016), 126.

[152] Mazieres, David. The stellar consensus protocol: A federated model for internet-level
consensus. Stellar Development Foundation 32 (2015).

[153] Meza, Summer. Airbnb hosts are recording their guests with hidden cam-
eras. URL: http://www.newsweek.com/airbnb-hidden-cameras-recording-guests-739709
(December, 2017).

[154] Miller, Mitchell, Meraglia, Janice, and Hayward, James. Traceability in the age of
globalization: a proposal for a marking protocol to assure authenticity of electronic
parts. Tech. rep., SAE Technical Paper, 2012.

[155] Mittendorf, Christoph. What trust means in the sharing economy: A provider per-
spective on airbnb. com.

[156] Mizrahi, Alex. A blockchain-based property ownership recording system. A
Blockchain-based Property Ownership Recording System (2015).

[157] Nakamoto, Satoshi. Bitcoin: A peer-to-peer electronic cash system, 2008.

[158] New, Steve. The transparent supply chain. Harvard Business Review 88 (2010), 1–5.

140

[159] Ninlawan, C, Seksan, P, Tossapol, K, and Pilada, W. The implementation of green
supply chain management practices in electronics industry. In Proceedings of the inter-
national multiconference of engineers and computer scientists (2010), vol. 3, pp. 17–19.

[160] Nyquist, H. Thermal Agitation of Electric Charge in Conductors. Phys. Rev. 32 (Jul
1928), 110–113.

[161] Oltermann, Philip. German parents told to destroy doll that can spy on chil-
dren. URL: https://www.theguardian.com/world/2017/feb/17/german-parents-told-
to-destroy-my-friend-cayla-doll-spy-on-children (2017).

[162] Ongaro, Diego, and Ousterhout, John K. In search of an understandable consensus
algorithm. In USENIX Annual Technical Conference (2014), pp. 305–319.

[163] Ozisik, A Pinar, Andresen, Gavin, Bissias, GD, Houmansadr, Amir, and Levine,
Brian Neil. A secure, efficient, and transparent network architecture for bitcoin. UMass
Amherst, Tech. Rep. UM-CS-2016–006 (2016).

[164] Ozisik, A Pinar, and Levine, Brian Neil. An explanation of nakamoto’s analysis of
double-spend attacks. arXiv preprint arXiv:1701.03977 (2017).

[165] O’Brien, SA. Giant equifax data breach: 143 million people could be affected.
URL: https://money.cnn.com/2017/09/07/technology-/business/equifax-data-breach/
8 (2017).

[166] Patil, Vinay C., Vijayakumar, Arunkumar, Holcomb, Daniel E., and Kundu, Sandip.
Improving Reliability of Weak PUFs via Circuit Techniques to Enhance Mismatch. In
Hardware-Oriented Security and Trust (HOST), 2017 IEEE International Symposium
on (May 2017), IEEE, p. to be published.

[167] Paul, Bipul C, Kang, Kunhyuk, Kufluoglu, Haldun, Alam, Muhammad A, and Roy,
Kaushik. Impact of nbti on the temporal performance degradation of digital circuits.
IEEE Electron Device Letters 26, 8 (2005), 560–562.

[168] Pecht, Michael, and Tiku, Sanjay. Bogus: electronic manufacturing and consumers
confront a rising tide of counterfeit electronics. IEEE spectrum 43, 5 (2006), 37–46.

[169] Pille, J., Adams, C., Christensen, T., Cottier, S. R., Ehrenreich, S., Kono, F., Nelson,
D., Takahashi, O., Tokito, S., Torreiter, O., Wagner, O., and Wendel, D. Imple-
mentation of the Cell Broadband Engine™; in 65 nm SOI Technology Featuring Dual
Power Supply SRAM Arrays Supporting 6 GHz at 1.3 V. IEEE Journal of Solid-State
Circuits 43, 1 (Jan 2008), 163–171.

[170] Piret, Gilles, and Quisquater, Jean-Jacques. A differential fault attack technique
against spn structures, with application to the aes and khazad. In CHES (2003),
vol. 2779, Springer, pp. 77–88.

[171] Pouraghily, Arman, Islam, Md Nazmul, Kundu, Sandip, and Wolf, Tilman. Privacy in
blockchain-enabled iot devices. In 2018 IEEE/ACM Third International Conference
on Internet-of-Things Design and Implementation (IoTDI) (2018), IEEE, pp. 292–293.

141

[172] Quisquater, Jean-Jacques, and Samyde, David. Electromagnetic analysis (ema): Mea-
sures and counter-measures for smart cards. Smart Card Programming and Security
(2001), 200–210.

[173] Rahman, Md Tauhidur, Forte, Domenic, Shi, Quihang, Contreras, Gustavo K, and
Tehranipoor, Mohammad. Csst: Preventing distribution of unlicensed and rejected ics
by untrusted foundry and assembly. In Defect and Fault Tolerance in VLSI and Nan-
otechnology Systems (DFT), 2014 IEEE International Symposium on (2014), IEEE,
pp. 46–51.

[174] Rajendran, Jeyavijayan, Dhandayuthapany, A, Karri, Ramesh, and Vedula, V. Se-
curity verification of 3rd party intellectual property cores for information leakage. In
Proceedings of IEEE VLSI Design (2016).

[175] Ramesh, P., Patil, V. C., and Kundu, S. Peer pressure on identity: On requirements
for disambiguating PUFs in noisy environment. In 2017 IEEE North Atlantic Test
Workshop (NATW) (May 2017), pp. 1–4.

[176] Ranasinghe, Damith, Engels, Daniel, Cole, Peter, et al. Security and privacy: Modest
proposals for low-cost RFID systems. In Auto-ID Labs Research Workshop, Zurich,
Switzerland (2004).

[177] Risch, L. Pushing CMOS beyond the roadmap. Solid-State Electronics 50, 4 (2006),
527–535.

[178] Rizzo, Pete. Blockchain identity startup shocard raises 1.5 million. URL: http://www.
coindesk.com/blockchain-identity-startup-shocard-1-5-million/ (July, 2015).

[179] Robson, Norm, Safran, John, Kothandaraman, Chandrasekharan, Cestero, Alberto,
Chen, Xiang, Rajeevakumar, Raj, Leslie, Alan, Moy, Dan, Kirihata, Toshiaki, and
Iyer, Subramanian. Electrically programmable fuse (efuse): From memory redundancy
to autonomic chips. In Custom Integrated Circuits Conference, 2007. CICC’07. IEEE
(2007), IEEE, pp. 799–804.

[180] Roy, Gareth, Brown, Andrew R, Adamu-Lema, Fikru, Roy, Scott, and Asenov, Asen.
Simulation study of individual and combined sources of intrinsic parameter fluctua-
tions in conventional nano-MOSFETs. IEEE Transactions on Electron Devices 53, 12
(2006), 3063–3070.

[181] Roy, Jarrod A, Koushanfar, Farinaz, and Markov, Igor L. Ending piracy of integrated
circuits. Computer 43, 10 (2010), 30–38.

[182] Rührmair, Ulrich, and Holcomb, Daniel E. Pufs at a glance. In Proceedings of the
conference on Design, Automation & Test in Europe (2014), European Design and
Automation Association, p. 347.

[183] Rührmair, Ulrich, Sehnke, Frank, Sölter, Jan, Dror, Gideon, Devadas, Srinivas, and
Schmidhuber, Jürgen. Modeling Attacks on Physical Unclonable Functions. In Pro-
ceedings of the 17th ACM Conference on Computer and Communications Security
(New York, NY, USA, 2010), CCS ’10, ACM, pp. 237–249.

142

[184] Rührmair, Ulrich, Sölter, Jan, Sehnke, Frank, Xu, Xiaolin, Mahmoud, Ahmed, Stoy-
anova, Vera, Dror, Gideon, Schmidhuber, Jürgen, Burleson, Wayne, and Devadas,
Srinivas. Puf modeling attacks on simulated and silicon data. IEEE Transactions on
Information Forensics and Security 8, 11 (2013), 1876–1891.

[185] S, Nash, Kim. Wal-mart readies blockchain pilot for tracking u.s produce, china
pork. URL: https://blogs.wsj.com/cio/2016/12/16/wal-mart-readies-blockchain-pilot-
for-tracking-u-s-produce-china-pork/ .

[186] Sagstetter, Florian, Lukasiewycz, Martin, Steinhorst, Sebastian, Wolf, Marko, Bouard,
Alexandre, Harris, William R, Jha, Somesh, Peyrin, Thomas, Poschmann, Axel, and
Chakraborty, Samarjit. Security challenges in automotive hardware/software archi-
tecture design. In Proceedings of the Conference on Design, Automation and Test in
Europe (2013), EDA Consortium, pp. 458–463.

[187] Samsung. Samsung smart home hub. URL: https://www.samsung.com/us/smart-
home/how-it-works/ .

[188] Sarpeshkar, Rahul, Delbruck, Tobias, and Mead, Carver A. White Noise in MOS
Transistors and Resistors. IEEE Circuits and Devices 9, 6 (1993), 23–29.

[189] Sasson, Eli Ben, Chiesa, Alessandro, Garman, Christina, Green, Matthew, Miers, Ian,
Tromer, Eran, and Virza, Madars. Zerocash: Decentralized anonymous payments from
bitcoin. In 2014 IEEE Symposium on Security and Privacy (2014), IEEE, pp. 459–474.

[190] Shi, Jie, Kywe, Su Mon, and Li, Yingjiu. Batch Clone Detection in RFID-enabled
supply chain. In RFID (IEEE RFID), 2014 IEEE International Conference on (2014),
IEEE, pp. 118–125.

[191] Shirriiff, Ken. Bitcoins the hard way: Using the raw Bitcoin protocol. URL:
http://www.righto.com/2014/02/bitcoins-hard-way-using-raw-bitcoin.html (2014).

[192] Skorobogatov, Sergei, and Woods, Christopher. In the blink of an eye: There goes
your aes key. IACR Cryptology ePrint Archive 2012 (2012), 296.

[193] Skudlarek, Joseph P, Katsioulas, Tom, and Chen, Michael. A platform solution for
secure supply-chain and chip life-cycle management. Computer 49, 8 (2016), 28–34.

[194] Sperling, ED. How much will that chip cost? URL: https://semiengineering.com/how-
much-will-that-chip-cost/ (March, 2014).

[195] Spiridon, Constantin, Popescu-Stanesti, Vlad Mihail, Shyr, You-Yuh, Hartular,
Alexandru, and Densham III, William L. Single chip power management unit ap-
paratus and method, Jan. 14 2003. US Patent 6,507,173.

[196] Srinivasan, Sudarshan, Kurella, Nithesh, Koren, Israel, and Kundu, Sandip. Dynamic
reconfiguration vs. dvfs: A comparative study on power efficiency of processors. In
VLSI Design and 2016 15th International Conference on Embedded Systems (VLSID),
2016 29th International Conference on (2016), IEEE, pp. 563–564.

[197] Staake, Thorsten, Thiesse, Frédéric, and Fleisch, Elgar. Extending the EPC network:
the potential of RFID in anti-counterfeiting. In Proceedings of the 2005 ACM sympo-
sium on Applied computing (2005), ACM, pp. 1607–1612.

143

[198] Stolk, P. A., Widdershoven, F. P., and Klaassen, D. B. M. Modeling statistical dopant
fluctuations in MOS transistors. IEEE Transactions on Electron Devices 45, 9 (Sep
1998), 1960–1971.

[199] Su, Ying, Holleman, Jeremy, and Otis, Brian P. A digital 1.6 pj/bit chip identification
circuit using process variations. IEEE Journal of Solid-State Circuits 43, 1 (2008),
69–77.

[200] Suh, G Edward, and Devadas, Srinivas. Physical unclonable functions for device
authentication and secret key generation. In Proceedings of the 44th annual design
automation conference (2007), ACM, pp. 9–14.

[201] Sun, Daying, Xu, Shen, Sun, Weifeng, Lu, Shengli, and Shi, Longxing. Low power
design for soc with power management unit. In ASIC (ASICON), 2011 IEEE 9th
International Conference on (2011), IEEE, pp. 719–722.

[202] Swan, Melanie. Blockchain: Blueprint for a new economy. " O’Reilly Media, Inc.",
2015.

[203] Szabo, Nick. Formalizing and securing relationships on public networks. First Monday
2, 9 (1997).

[204] Tapscott, Don, and Tapscott, Alex. Blockchain Revolution: How the technology behind
Bitcoin is changing money, business, and the world. Penguin, 2016.

[205] Triantis, Dimitris P, Birbas, Alexios N, and Kondis, D. Thermal noise modeling
for short-channel MOSFETs. IEEE Transactions on Electron Devices 43, 11 (1996),
1950–1955.

[206] Tschorsch, Florian, and Scheuermann, Björn. Bitcoin and beyond: A technical survey
on decentralized digital currencies. IEEE Communications Surveys & Tutorials 18, 3
(2016), 2084–2123.

[207] Tsutsui, Gen, Saitoh, Masumi, Nagumo, Toshiharu, and Hiramoto, Toshiro. Impact
of SOI thickness fluctuation on threshold voltage variation in ultra-thin body SOI
MOSFETs. IEEE Transactions on nanotechnology 4, 3 (2005), 369–373.

[208] Tuyls, Pim, and Batina, Lejla. RFID-tags for anti-counterfeiting. In Cryptographers’
Track at the RSA Conference (2006), Springer, pp. 115–131.

[209] Vassighi, Arman, and Sachdev, Manoj. Thermal runaway in integrated circuits. IEEE
Transactions on Device and Materials Reliability 6, 2 (2006), 300–305.

[210] Vatinel, Christophe Pierre, and Loisel, Jerome Henri. Changing an operating perfor-
mance point, Nov. 11 2014. US Patent 8,885,694.

[211] Vattikonda, Rakesh, Wang, Wenping, and Cao, Yu. Modeling and minimization of
pmos nbti effect for robust nanometer design. In Proceedings of the 43rd annual Design
Automation Conference (2006), ACM, pp. 1047–1052.

[212] Vijayakumar, A., Patil, V. C., Prado, C. B., and Kundu, S. Machine learning resistant
strong PUF: Possible or a pipe dream? In 2016 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST) (May 2016), pp. 19–24.

144

[213] Vijayakumar, Arunkumar, Patil, Vinay, and Kundu, Sandip. On Improving Reliability
of SRAM-Based Physically Unclonable Functions. Journal of Low Power Electronics
and Applications 7, 1 (Jan 2017), 2.

[214] Waksman, Adam, Suozzo, Matthew, and Sethumadhavan, Simha. Fanci: identification
of stealthy malicious logic using boolean functional analysis. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security (2013), ACM,
pp. 697–708.

[215] Walport, MGCSA. Distributed ledger technology: Beyond blockchain. UK Govern-
ment Office for Science (2016).

[216] Wang, Yao, Cotofana, Sorin D, and Fang, Liang. Statistical reliability analysis of
NBTI impact on FinFET SRAMs and mitigation technique using independent-gate
devices. In Nanoscale Architectures (NANOARCH), 2012 IEEE/ACM International
Symposium on (2012), IEEE, pp. 109–115.

[217] Wasicek, Armin. Protection of intellectual property rights in automotive control units.
SAE International Journal of Passenger Cars-Electronic and Electrical Systems 7,
2014-01-0338 (2014), 201–212.

[218] Wolf, Tilman, Zink, Michael, and Nagurney, Anna. The cyber-physical marketplace:
A framework for large-scale horizontal integration in distributed cyber-physical sys-
tems. In 2013 IEEE 33rd International Conference on Distributed Computing Systems
Workshops (2013), IEEE, pp. 296–302.

[219] Wu, Debby. Engineers found guilty of stealing micron secrets for china.
URL: https://news.bloomberglaw.com/ip-law/chip-engineers-found-guilty-of-stealing-
micron-secrets-for-china (2020).

[220] Xiao, Kan, Rahman, M.T., Forte, D., Huang, Yu, Su, Mei, and Tehranipoor, M. Bit
selection algorithm suitable for high-volume production of SRAM-PUF. In Hardware-
Oriented Security and Trust (HOST), 2014 IEEE International Symposium on (May
2014), pp. 101–106.

[221] Xie, Yang, and Srivastava, Ankur. Delay locking: Security enhancement of logic
locking against ic counterfeiting and overproduction. In Proceedings of the 54th Annual
Design Automation Conference 2017 (2017), ACM, p. 9.

[222] Yang, Kun, Forte, Domenic, and Tehranipoor, Mark. An rfid-based technology for
electronic component and system counterfeit detection and traceability. In Technolo-
gies for Homeland Security (HST), 2015 IEEE International Symposium on (2015),
IEEE, pp. 1–6.

[223] Yang, Kun, Forte, Domenic, and Tehranipoor, Mark. Resc: An rfid-enabled solution
for defending iot supply chain. ACM Transactions on Design Automation of Electronic
Systems (TODAES) 23, 3 (2018), 29.

[224] Yu, Meng-Day Mandel, and Devadas, Srinivas. Pervasive, dynamic authentication of
physical items. Communications of the ACM 60, 4 (2017), 32–39.

145

[225] Zhang, Fan, Cecchetti, Ethan, Croman, Kyle, Juels, Ari, and Shi, Elaine. Town crier:
An authenticated data feed for smart contracts. In Proceedings of the 2016 aCM
sIGSAC conference on computer and communications security (2016), pp. 270–282.

146

	ENABLING IOT AUTHENTICATION, PRIVACY AND SECURITY VIA BLOCKCHAIN
	Recommended Citation

	ENABLING IOT AUTHENTICATION, PRIVACY AND SECURITY VIA BLOCKCHAIN
	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Blockchain
	Blockchain Classification
	Smart Contracts
	Security of Blockchain and Smart Contracts

	PUFs
	Strong PUFs
	Weak PUFs

	Scope of this Work
	Dissertation Outline
	Collaborators

	Enabling IC Traceability via Blockchain Pegged to Embedded PUF
	Introduction
	Related Works
	RFID-based Traceability
	Package ID-based Traceability
	Chip ID-based Traceability
	Blockchain-based Traceability

	Motivation
	Transparency and End-to-end Visibility with Blockchain
	Blockchain vs Private Databases for IC Traceability
	Blockchain vs Centralized Database for IC Traceability

	Proposed IC Traceability Protocol based on Customized Blockchain Transactions
	Approach
	Transaction and Blockchain Creation
	Ownership addresses and keys
	Transaction customization
	Incorporating a transaction to a block and creating a blockchain

	Protocol for Ownership Transfer
	Protocol Demonstration and Discussion

	Proposed IC Traceability Protocol based on Smart Contracts
	System Requirements and Smart Contract Implementation
	Ownership Keys and Addresses
	Smart Contract Implementation by the Consortium

	Proposed IC Traceability Protocol
	Enrollment of a Device by the Manufacturer
	Procedure for Ownership Transfer

	Authentication by Strong and Weak PUFs
	Authentication via Strong PUFs
	Authentication via Weak PUFs

	Counterfeit Detection by the Proposed Traceability Protocol
	Recycled & Remarked ICs
	Overproduced ICs
	Cloned ICs and Tampered ICs

	Protocol Demonstration in Ethereum Blockchain
	Protocol Demonstration in Hyperledger Fabric
	Blockchain Network Model
	Implementation of the Chaincode and Access Control Policies
	Performance Evaluation
	Operational Cost of Consortium Blockchain

	Analysis of the Protocols
	Security
	Privacy
	Reliability
	Performance
	Practicality of the Proposed Protocol

	Limitations ans Discussion
	Concluding Remarks

	Preserving IoT Privacy in Sharing Economy via Smart Contracts
	Introduction
	Threat Model and Motivation
	Threat Model
	Motivation

	Related Works
	Proposed Methodology
	Implementing Smart Contract
	Transferring Tenancy to a Tenant
	Establishing a Shared Encryption Key
	Encrypting IoT Data with the Shared Encryption Key
	Change of Encryption Key after Tenancy Period

	Hardware Collateral for the Smart Contract
	Protocol Demonstration and Discussion
	Limitations and Discussion
	Concluding Remarks

	Improving Reliability of Weak PUFs via Accelerated Aging
	Introduction
	Background and Motivation
	Weak PUF
	PUF Reliability
	Temporal Majority Voting
	Negative Bias Temperature Instability
	Burn-In (Accelerated Aging)
	PUF Reliability using accelerated aging

	Methodology
	Weak PUF System Design
	Process Variation and Error Rate

	Burn-in time reduction
	Weak PUF Designs
	Thermal Noise Errors
	Error Rate vs Mismatch
	Modeling Process Variation
	Planar MOSFET
	FinFET

	Heterogeneous Error Model
	Cumulative Burn-in Time

	Concluding Remarks

	PMU-Trojan: On Exploiting Power Management Side Channel for Information Leakage
	Introduction
	Related Works
	Background
	Hardware Trojans
	Dynamic Voltage and Frequency Scaling (DVFS)
	Power Management Unit (PMU)
	Remote Server Maintenance: Integrated Management Card

	Proposed Methodology
	Threat Model
	Trojan Insertion
	Trojan Activation
	Trojan Operation

	Experimental Results
	Trojan Detection
	Concluding Remarks

	Remote Configuration of Integrated Circuit Features via Smart Contracts
	Introduction
	Related Works
	Motivation
	Motivation for Post-production IC Customization
	Motivation for Smart Contract-based Solution

	Proposed Protocol and Smart Contract Implementation
	System Design
	Implementation of Smart Contracts
	Register Device
	Upgrade Configuration
	Query Configuration

	Proposed Hardware-software Co-design for Remote Configuration
	Software
	Hardware
	Hardware configuration module (HCM)
	Timestamp module
	Crypto module

	Implementation and Protocol Demonstration
	Implementation of the Smart Contract
	Implementation of Feature Configuration by Hardware
	Target device and the Hardware Architecture
	Gateway
	Protocol Demonstration

	Results and Evaluation
	Security Analysis of the Protocol
	Limitations and Discussion
	Performance
	Vulnerabilities in Smart Contracts
	Transactional Privacy

	Concluding Remarks

	Conclusion
	Summary of Contributions
	Future Works

	Multi-host Hyperledger Fabric Implementation
	Bringing Up All Hosts
	Forming an Overlay Network with Docker Swarm
	Preparing Fabric Network Materials in Host 1 and Copying to Others
	Bringing Up the Containers in Each Host
	Creating Channel and All Peer Nodes Joining It
	Installing and Instantiating TraceIC Chaincode
	Invoking and Querying the Chaincode

	Sample Code Snippet for Triggering the PMU-Trojan
	Bibliography

