6 research outputs found

    Constraint analysis for DSP code generation

    Get PDF
    +113hlm.;24c

    Constraint analysis for DSP code generation

    Full text link

    Using Machine Learning to Automate Compiler Optimisation

    Get PDF
    Institute for Computing Systems ArchitectureMany optimisations in modern compilers have been traditionally based around using analysis to examine certain aspects of the code; the compiler heuristics then make a decision based on this information as to what to optimise, where to optimise and to what extent to optimise. The exact contents of these heuristics have been carefully tuned by experts, using their experience, as well as analytical tools, to produce solid performance. This work proposes an alternative approach – that of using proper statistical analysis to drive these optimisation goals instead of human intuition, through the use of machine learning. This work shows how, by using a probabilistic search of the optimisation space, we can achieve a significant speedup over the baseline compiler with the highest optimisation settings, on a number of different processor architectures. Additionally, there follows a further methodology for speeding up this search by being able to transfer our knowledge of one program to another. This thesis shows that, as is the case in many other domains, programs can be successfully represented by program features, which can then be used to gauge their similarity and thus the applicability of previously learned off-line knowledge. Employing this method, we are able to gain the same results in terms of performance, reducing the time taken by an order of magnitude. Finally, it is demonstrated how statistical analysis of programs allows us to learn additional important optimisation information, purely by examining the features alone. By incorporating this additional information into our model, we show how good results can be achieved in just one compilation. This work is tested on real hardware, for both the embedded and general purpose domain, showing its wide applicability

    An integrated soft- and hard-programmable multithreaded architecture

    Get PDF

    The Customizable Virtual FPGA: Generation, System Integration and Configuration of Application-Specific Heterogeneous FPGA Architectures

    Get PDF
    In den vergangenen drei Jahrzehnten wurde die Entwicklung von Field Programmable Gate Arrays (FPGAs) stark von Moore’s Gesetz, Prozesstechnologie (Skalierung) und kommerziellen MĂ€rkten beeinflusst. State-of-the-Art FPGAs bewegen sich einerseits dem Allzweck nĂ€her, aber andererseits, da FPGAs immer mehr traditionelle DomĂ€nen der Anwendungsspezifischen integrierten Schaltungen (ASICs) ersetzt haben, steigen die Effizienzerwartungen. Mit dem Ende der Dennard-Skalierung können Effizienzsteigerungen nicht mehr auf Technologie-Skalierung allein zurĂŒckgreifen. Diese Facetten und Trends in Richtung rekonfigurierbarer System-on-Chips (SoCs) und neuen Low-Power-Anwendungen wie Cyber Physical Systems und Internet of Things erfordern eine bessere Anpassung der Ziel-FPGAs. Neben den Trends fĂŒr den Mainstream-Einsatz von FPGAs in Produkten des tĂ€glichen Bedarfs und Services wird es vor allem bei den jĂŒngsten Entwicklungen, FPGAs in Rechenzentren und Cloud-Services einzusetzen, notwendig sein, eine sofortige PortabilitĂ€t von Applikationen ĂŒber aktuelle und zukĂŒnftige FPGA-GerĂ€te hinweg zu gewĂ€hrleisten. In diesem Zusammenhang kann die Hardware-Virtualisierung ein nahtloses Mittel fĂŒr PlattformunabhĂ€ngigkeit und PortabilitĂ€t sein. Ehrlich gesagt stehen die Zwecke der Anpassung und der Virtualisierung eigentlich in einem Konfliktfeld, da die Anpassung fĂŒr die Effizienzsteigerung vorgesehen ist, wĂ€hrend jedoch die Virtualisierung zusĂ€tzlichen FlĂ€chenaufwand hinzufĂŒgt. Die Virtualisierung profitiert aber nicht nur von der Anpassung, sondern fĂŒgt auch mehr FlexibilitĂ€t hinzu, da die Architektur jederzeit verĂ€ndert werden kann. Diese Besonderheit kann fĂŒr adaptive Systeme ausgenutzt werden. Sowohl die Anpassung als auch die Virtualisierung von FPGA-Architekturen wurden in der Industrie bisher kaum adressiert. Trotz einiger existierenden akademischen Werke können diese Techniken noch als unerforscht betrachtet werden und sind aufstrebende Forschungsgebiete. Das Hauptziel dieser Arbeit ist die Generierung von FPGA-Architekturen, die auf eine effiziente Anpassung an die Applikation zugeschnitten sind. Im Gegensatz zum ĂŒblichen Ansatz mit kommerziellen FPGAs, bei denen die FPGA-Architektur als gegeben betrachtet wird und die Applikation auf die vorhandenen Ressourcen abgebildet wird, folgt diese Arbeit einem neuen Paradigma, in dem die Applikation oder Applikationsklasse fest steht und die Zielarchitektur auf die effiziente Anpassung an die Applikation zugeschnitten ist. Dies resultiert in angepassten anwendungsspezifischen FPGAs. Die drei SĂ€ulen dieser Arbeit sind die Aspekte der Virtualisierung, der Anpassung und des Frameworks. Das zentrale Element ist eine weitgehend parametrierbare virtuelle FPGA-Architektur, die V-FPGA genannt wird, wobei sie als primĂ€res Ziel auf jeden kommerziellen FPGA abgebildet werden kann, wĂ€hrend Anwendungen auf der virtuellen Schicht ausgefĂŒhrt werden. Dies sorgt fĂŒr PortabilitĂ€t und Migration auch auf Bitstream-Ebene, da die Spezifikation der virtuellen Schicht bestehen bleibt, wĂ€hrend die physische Plattform ausgetauscht werden kann. DarĂŒber hinaus wird diese Technik genutzt, um eine dynamische und partielle Rekonfiguration auf Plattformen zu ermöglichen, die sie nicht nativ unterstĂŒtzen. Neben der Virtualisierung soll die V-FPGA-Architektur auch als eingebettetes FPGA in ein ASIC integriert werden, das effiziente und dennoch flexible System-on-Chip-Lösungen bietet. Daher werden Zieltechnologie-Abbildungs-Methoden sowohl fĂŒr Virtualisierung als auch fĂŒr die physikalische Umsetzung adressiert und ein Beispiel fĂŒr die physikalische Umsetzung in einem 45 nm Standardzellen Ansatz aufgezeigt. Die hochflexible V-FPGA-Architektur kann mit mehr als 20 Parametern angepasst werden, darunter LUT-Grösse, Clustering, 3D-Stacking, Routing-Struktur und vieles mehr. Die Auswirkungen der Parameter auf FlĂ€che und Leistung der Architektur werden untersucht und eine umfangreiche Analyse von ĂŒber 1400 BenchmarklĂ€ufen zeigt eine hohe Parameterempfindlichkeit bei Abweichungen bis zu ±95, 9% in der FlĂ€che und ±78, 1% in der Leistung, was die hohe Bedeutung von Anpassung fĂŒr Effizienz aufzeigt. Um die Parameter systematisch an die BedĂŒrfnisse der Applikation anzupassen, wird eine parametrische Entwurfsraum-Explorationsmethode auf der Basis geeigneter FlĂ€chen- und Zeitmodellen vorgeschlagen. Eine Herausforderung von angepassten Architekturen ist der Entwurfsaufwand und die Notwendigkeit fĂŒr angepasste Werkzeuge. Daher umfasst diese Arbeit ein Framework fĂŒr die Architekturgenerierung, die Entwurfsraumexploration, die Anwendungsabbildung und die Evaluation. Vor allem ist der V-FPGA in einem vollstĂ€ndig synthetisierbaren generischen Very High Speed Integrated Circuit Hardware Description Language (VHDL) Code konzipiert, der sehr flexibel ist und die Notwendigkeit fĂŒr externe Codegeneratoren eliminiert. Systementwickler können von verschiedenen Arten von generischen SoC-Architekturvorlagen profitieren, um die Entwicklungszeit zu reduzieren. Alle notwendigen Konstruktionsschritte fĂŒr die Applikationsentwicklung und -abbildung auf den V-FPGA werden durch einen Tool-Flow fĂŒr Entwurfsautomatisierung unterstĂŒtzt, der eine Sammlung von vorhandenen kommerziellen und akademischen Werkzeugen ausnutzt, die durch geeignete Modelle angepasst und durch ein neues Werkzeug namens V-FPGA-Explorer ergĂ€nzt werden. Dieses neue Tool fungiert nicht nur als Back-End-Tool fĂŒr die Anwendungsabbildung auf dem V-FPGA sondern ist auch ein grafischer Konfigurations- und Layout-Editor, ein Bitstream-Generator, ein Architekturdatei-Generator fĂŒr die Place & Route Tools, ein Script-Generator und ein Testbenchgenerator. Eine Besonderheit ist die UnterstĂŒtzung der Just-in-Time-Kompilierung mit schnellen Algorithmen fĂŒr die In-System Anwendungsabbildung. Die Arbeit schliesst mit einigen AnwendungsfĂ€llen aus den Bereichen industrielle Prozessautomatisierung, medizinische Bildgebung, adaptive Systeme und Lehre ab, in denen der V-FPGA eingesetzt wird
    corecore