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Abstract
Many optimisations in modern compilers have been traditionally based around using

analysis to examine certain aspects of the code; the compiler heuristics then make a

decision based on this information as to what to optimise, where to optimise and to

what extent to optimise. The exact contents of these heuristics have been carefully

tuned by experts, using their experience, as well as analytical tools, to produce solid

performance.

This work proposes an alternative approach – that of using proper statistical analysis to

drive these optimisation goals instead of human intuition,through the use of machine

learning.

This work shows how, by using a probabilistic search of the optimisation space, we can

achieve a significant speedup over the baseline compiler with the highest optimisation

settings, on a number of different processor architectures.

Additionally, there follows a further methodology for speeding up this search by be-

ing able to transfer our knowledge of one program to another.This thesis shows that,

as is the case in many other domains, programs can be successfully represented by

program features, which can then be used to gauge their similarity and thus the appli-

cability of previously learned off-line knowledge. Employing this method, we are able

to gain the same results in terms of performance, reducing the time taken by an order

of magnitude.

Finally, it is demonstrated how statistical analysis of programs allows us to learn addi-

tional important optimisation information, purely by examining the features alone. By

incorporating this additional information into our model,we show how good results

can be achieved in just one compilation.

This work is tested on real hardware, for both the embedded and general purpose do-

main, showing its wide applicability.
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Chapter 1

Introduction

Automationhas been a defining characteristic of the latter 20th century– we have read-

ily accepted the assistance of machines and computers in ourdaily lives, allowing them

to perform tasks that humans could not accomplish at such speed. Indeed, a traditional

compiler is in itself an example of automation, providing a means of translating high

level instructions into lower level instructions with a pace that has allowed the software

industry to flourish. However, the construction of the compiler itself is a conspicuously

manual task, often involving substantial effort to build aninitial prototype, and even

more to create the calibre of optimisation engine which generates the quality of code

expected today.

This thesis investigates a means to significantly accelerate the process of creating a

good optimising compiler byautomatically learninga good optimisation strategy. In

addition, it shows how such an compiler can substantially outperform a manually tuned

compiler over a number of benchmark suites.

1.1 The Problem

Time-to-market

Time-to-market is now a significant driving force in processor design/manufacture,

particularly in embedded systems. The stalling of the increase in clock rates due to

transistor shrinkage has forced architects to explore moreelaborate design strategies

in order to preserve Moore’s Law. As microprocessors are becoming increasingly

9



10 Chapter 1. Introduction

complex [28], compilers are finding it harder to keep pace, and even more difficult to

obtain good performance.

At the same time, coding in assembly is slow and labourious, and can delay an em-

bedded systems project from design to market; thus we have increasing demand for

compiled code, with the compiler having decreasing abilityto exploit the processor.

Further, the lack of a good optimising compiler poses a challenge for the architect dur-

ing development, and can hamper the evaluation of architectures for compiled code.

There is a clear need for compilers which can provide qualitycode for new and emerg-

ing platforms as soon as they are released.

Compiler performance

Frequently, optimising compilers are faced with difficult decisions as to which opti-

misations to apply and in which order; taken together with the multitude of other ex-

tremely taxing tasks the compiler must perform such as code scheduling and register

allocation (which themseves may all produce subtle interactions between each other)

the task faced by an optimising compiler is indeed vast [14, 26]. Traditional compilers

rely on manually written heuristics to counter this huge optimisation problem, usually

with poor results[47].

There has been significant research interest in improving the performance of optimis-

ing compilers for embedded systems, e.g. [41]. Such work largely focuses on improv-

ing back-end, architecture specific compiler phases such ascode generation, register

allocation and scheduling. However, the investment in evermore sophisticated back-

end algorithms produces diminishing returns, and is usually specific to an architecture.

There exists an unwanted gap in performance between compiled code and hand-written

code. Improving the performance of code on an embedded processor could result in a

reduction in clock speed, and thus power consumption, or could lead to less expensive

hardware being used.
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1.2 Contributions

This thesis presents methods to increase the performance ofcompiled code by re-

placing hand-tuned or arbitrary compiler heuristics with statistically derivedmachine

learningtechniques. In addition, these methods do not require many hours of experts’

time to tune, and can be simply and quickly regenerated for new architectures with

excellent results.

Firstly, a probabilistic scheme for optimising embedded systems is presented, which

takes the idea of iterative compilation and extends it, based on runtime feedback, by

statistically determining which optimisations, and in which order, provide good per-

formance for an embedded program. It uses this information as the basis for a proba-

bilistic search of the optimisation space, concentrating the search in known good areas

in order to gain further performance improvements in a capped number of iterations.

Secondly, prior experience of the effects of compiler optimisation on previously seen

programs is captured and used to greatly reduce the number ofevaluations necessary

to gain good performance. Capturing program characteristics asprogram features(see

in section 4.3) and using statistical analysis allows this scheme to achieve results an

order of magnitude faster than previous work.

Finally, a third scheme is proposed which dispenses with search altogether, and pro-

vides immediate performance improvement without inconvenience. This technique

usesunsupervised learningto train the system on a larger number of programs than

was possible previously, allowing better characterisation of the program space by sta-

tistical techniques, and ultimately, better performance in one evaluation.

1.3 Structure

This thesis is structured as follows: chapter 2 describes work related to both search

based compiler techniques, where multiple compilations are performed, and non-search

based techniques which have only one evaluation. Work relating to library generation

and choosing from a selection of heuristics is also described. Chapter 3 gives a sum-

mary of the tools and infrastructure which were used to carryout the experiments in

this thesis. Chapter 4 provides an introduction to machine learning from a compiler

perspective, and explains the techniques used in this thesis, and by others. Chapter 5
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describes a probabilistic iterative search method for improving single program perfor-

mance. In chapter 6, code features are employed to use previous experience of similar

programs to prime the search, and in chapter 7, an unsupervised clustering-based ap-

proach is proposed which gives a better characterisation ofthe optimisation space, and

allows the number of evaluations to be reduced to one, thus eliminating search entirely.

Chapter 8 concludes the thesis, presenting a summary of the work achieved, an evalu-

ation of the work, a critical analysis and a look ahead to possible directions for future

work.



Chapter 2

Related Work

This chapter provides a summary of related work in the area ofmachine learning tech-

niques. Section 2.1 discusses search-based compiler techniques for compilers and li-

brary generation, and section 2.2 details techniques basedon modelling the optimi-

sation space, using preditive models to predict performance and guide compilation,

both usingsupervised learning. Section 2.3 details work which uses anunsupervised

technique calledclusteringto examine benchmark suites.

Supervised Learning

Supervised learning is a term which includes a large number of learning methodolo-

gies, all of which rely on knowing the correct output for given inputs in the training

dataa priori. That is to say that a learning algorithm takes each traininginput pat-

tern and produces an expected output – that expected output is then compared to the

known correct output, the differences recorded and the learning system updated to try

to minimise these differences. The most well-known exampleof a supervised learning

technique isback-propagationin artificial neural networks(see section 4.5.1.3).

This section deals with supervised learning techniques. Section 2.1.1 discusses compiler-

based search techniques for the purpose of gaining the best possible optimisation of

code, and section 2.1.2 shows domain specific application ofsearch in the field of li-

brary generation. Section 2.2.1 shows how predictive modelling has been used to pre-

dict the performance of a program without needing to run it, and section 2.2.2 shows

its use in predicting the best way to optimise, without search.

13



14 Chapter 2. Related Work

2.1 Search-based techniques

Intelligent search-based techniques can be thought of as a specialised example of on-

line supervised learning, in which the search strategy is updated during the search.

They traverse an optimisation space, evaluating points in that space and attempting to

find the best result. In this case, compiler transformationsare evaluated. The space

can be searched, and if structure can be observed, then previous results can be used to

determine where in the space is most profitable to search. Simple examples of this are

hill-climbersandgreedy algorithms.

2.1.1 Compiler techniques

Work in this section focuses on searching the space of potential transformations at

compile time, in order to produce the best performance. Thisis an extension ofitera-

tive compilation, first used by Bodin et al.[7] and Kisuki et al.[47].

Iterative compilation (as proposed) is the random searching of the compiler optimi-

sation space for a particular program, evaluating as many points as possible within a

constrained time. The evaluation consists of simply compiling the code with a given set

of optimisations, executing the binary and recording the runtime. The optimisations

which provide the fastest runtime are considered the best for the particular program

being compiled.

Bernstein et al. (1989)

One of the earliest pieces of work in this area is Bernstein et al. [5]. They used three

different heuristics, one after the other, to the problem ofchoosing a register to spill.

By measuring the results with a cost function, they could determine which produced

the best result. This is an example of a very limited, exhaustive search. Moss, Cavazos

et al. [44] tackled the problem of register allocation by applying supervised learning to

this näıve approach, using features of the code to determine which heuristic to employ,

and thus saving the time of running and performing a cost function on all three.
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Kulkarni et al. (2003)

Kulkarni et al. [36] use genetic algorithms and their VISTA optimisation framework

with a compiler based on VPO (Very Portable Optimizer) to attempt to effectively

search the space of possible transformations, using iterative compilation. They report

on two different approaches: one which reduces the search time by 65% on average

and another which reduced the number of generations by 68%. These goals seem so

similar as to be almost identical.

Optimisations are performed at a low level, on a RTL (register transfer lists) represen-

tation. Optimising a single function with this approach takes around ten minutes, with

applications taking hours or days. The vast majority of thistime is spend compiling

and linking the code rather than applying the transformations, suggesting either this

low level application of transformations is very efficient,or the compiler used takes a

long time to run.

Several techniques are employed to help cut the overall compile time. Firstly, a hash

table of all previous runs is kept. If the genetic algorithm happens to chose a sequence

which has already been tested, then there is no need to rerun that sequence. A second

hash table is kept which tracks all the effective transformations, disregarding those

which have no effect on the code. They use Cyclic Redundancy Checks (CRC) on the

RTL representation. Data is only gathered using general purpose CPUs, and thus may

not be applicable to the embedded domain.

Triantafyllis, Vachharajani and August (2003)

The authors consider the case of iterative compilation for general purpose compilers

[61]. The long compilation times which might be acceptable in the world of embedded

systems are not so in the general purpose world. This paper provides a system called

Optimization-Space Exploration which is intended to dramatically cut the time spent

compiling.

Programs are separated into three classes, with iterative compilation being used on

each class to find the best sequence possible. Each of these classes is split into a

further three subclasses, which are also searched for the best sequence. This happens

one more time, meaning a three layer tree is built.
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When a novel program is compiled, the top three elements of thetree are used to

provide three transformation sequences. These are tried onthe new program, and the

best element selected. The child nodes of this element are then used for the same

process, with again one of them being selected and the child nodes used. When this

process is finished, the best sequence obtained is chosen. This is an attempt to use

the knowledge built offline using iterative compilation to dramatically cut the search

to just nine runs. This is likely to work well if the programs in each class are similar,

but this is hard to judge. The authors contend that program features are not sufficiently

informative for this process and so group programs by a more arbitrary method.

Cooper et al, (2004)

Cooper et al. [15] have performed a study into the effect of sequences of optimisations

on a program. The order in which transformations are appliedcan make a huge dif-

ference to the quality of code produced. A certain transformation may allow another

transformation to work more effectively afterwards, or instead may impede another, or

indeed both. Add to that the fact that this can equally apply to groups of transforma-

tions and that the number of transformations which could be applied is unbounded in

length, and the optimisation space for this problem becomesmassive. In this paper,

the authors explore a subsection of the space exhaustively (16 transformations of up to

length 4) in order to try to characterise the full space, and employ a number of search

techniques to try to find the best possible sequence.

They report that 80% of the local minima in the space are within 10% of the global

optimum. Such a landscape would seem to allow an easy search of the space to get a

good answer, however, this is something that has generally been found to be difficult

in the past. For the cost of 200-4550 compilations, an improvement of 15-25% can be

obtained over the compiler baseline. Search algorithms used are a simple hill climber,

a greedy constructive algorithm and a genetic algorithm. The greedy algorithm, as one

might expect, performs best over a small number of sequences, however the genetic

algorithm does slight better if it is allowed to run for the maximum amount of iterations

(4550).

The graphs of the exhaustive space show that the question of transformation order is a

complex one indeed. The space is filled with local minima, andappears to be without

any obvious structure.
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Bennett et al. (2007)

This paper [4] combines a probabilistic iterative search for the best transformations

to apply to a program with an automatic exploration of processor design, though the

use of instruction set extensions (ISE). Bennett et al. (2007) not only show significant

benefit in performing these tasks independently of one another, but also that consid-

erable additional performance can be gained by consideringthe two in a combined

optimisation space.

Compiler optimisations are performed at the source level using SUIF1, and a tool

called lpsolve built into the compiler from CoSy. This uses data-flow-graph tem-

plates and basic block knowledge to generate a set of candidate IDE templates for each

program, which can be searched through.

Using a simulator configured to a Intel XScale PXA270 processor, which has config-

urable extensions, and the UTDSP and STU-RT benchmark suites, an average speedup

of 1.47 was obtained using the full search – this compares to only 1.09 for instruction

set explorations only, and 1.35 for compiler transformations only. Thus it is clear that

these two values cannot be optimised independently; however, it is not clear just how

complex this problem is.

Intuitively, combining two interacting, already complex problems in an optimisation

space creates an even more complex problem. Though good results are presented here,

it is unknown as to whether more sophisticated machine learning approaches dealing

with non-linear systems may show more utility.

2.1.2 Library Genereration

Using well-optimised libraries for often used pieces of code is a simple way of speed-

ing up program execution. Well understood and computationally intensive filters like

the fast Fourier transform and matrix multiplication are commonly implemented in li-

braries. Since code is libraries is executed so often, and isusually deemed to be critical

for performance, significant time can be spent in optimisingthem.

The works in this section are application/domain specific examples of search tech-

niques, used to optimise library code.
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Whaley et al. (2001)

ATLAS [64] is a tool for automatically generating extremelyefficient BLAS libraries

for particular processors and applications using empirical search. Consisting of a gen-

erator search module and a multiple implementations searchmodule, the tool attempts

to search across as wide an optimisation space as possible toproduce a fast library.

This is at the cost of an extremely long search time – however,this can be amortised

over many uses and a long period of time for very heavily used library kernels such as

matrix multiplication.

The generator module consists of a code generator which receives input parameters,

searches, and produces a kernel as output. The multiple implementation module then

searches through hand-written codes for the particular application, and ATLAS selects

the better of the final options provided by these two approaches. Although ATLAS is

not a restructuring compiler, it does share many of the characteristic of the same, and

is one of the first good implementations of stochastic searchin this field, though it does

rely on hand-tuned code for much of its speed.

SPIRAL

The SPIRAL project [52] is the result of a collaboration of a number of research

groups, but it primarily based out of Carnegie Mellon University and the University

of Illinois at Urbana-Champaign. The objective is to create alibrary of platform-tuned

code for various different DSP architectures which implement most well known and

commonly used signal processing algorithms.

SPIRAL uses its own language (SPL) to represent the algorithms using mathemati-

cal formulas and then uses this to generate code which implements these algorithms.

Optimisations are performed over a more mathematically based than usual intermedi-

ate representation, using a feedback-driven approach witha Markov decision process

combined with reinforcement learning. The SPIRAL project issimilar to the FFTW

project [24] (Fastest Fourier Transform in the West) in thatit uses an intelligent search

strategy to attempt to find the best implementation of a signal processing algorithm,

however, FFTW is much more limited in terms of looking at other algorithms as their

implementation is very closely tied to FFT whereas the SPIRALapproach is general-

isable to any algorithm which can be represented in their SPLlanguage.
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Epshteyn et al. (2005)

This work [20] takes two elements of previous work and combines them effectively

for the purpose of fast library generation. Firstly, the approach taken by the ATLAS

team, involving constructing an accurate empirical model of a processor and applica-

tion couplet, taking a very long time to generate useful results, and a online search

based technique, similar to that employed by Cooper et al. [15].

Epshteyn et al. useActive Learningto achieve a much faster search than ATLAS. An

initial search point is analysed and its information gathered and stored. The next search

point to be evaluated is then, rather than being determined randomly or probabilisti-

cally as in [15] and [22], instead the search space is evaluated to determine which point

contains the most information pertinent to the model being built, which has not already

been amalgamated into the model. This process can only occuronline and nota priori.

The results are presented for a SGI R12000 MIPS-based processor, a Sun UltraSPARC

III and a Intel Pentium III processor, showing a improvementin speed of library gen-

eration of 3 to 4 times the speed of ATLAS for similarly performing libraries.

2.2 Predictive Modelling

Predictive modelling techniques use features (see section4.3) to attempt to characterise

an optimisation space. Using known correct points or explorative search, a model can

be built which is a projected estimation of the real optimisation space. The model can

then be used to predict the best points in the space. This approach differs from that of

search because prior knowledge is used to predict results.

2.2.1 Performance Prediction

Evaluating the performance of an embedded architecture canbe a lengthy process.

Embedded processors generally have long runtimes comparedto general purpose pro-

cessors, and sometimes have incompatible toolchains and libraries that make running

benchmarks difficult. Additionally, the development of architectures is limited by dif-

ficulty in evaluation. Since no hardware exists, simulatorsmust be used, which are

usually slow, and take a long time to produce.
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Performance prediction attempts to address these problemsby predicting the runtime

of a benchmark, without actually running it.

Ipek et al. (2006)

The first work in this field came from research on hardware. Ipek et al. [34] proposed

an automatic system to drastically speed up hardware design-space exploration (ex-

ploring values such as memory latency, cache size ,etc.). Although this work is in the

hardware field, it is possible that the same techniques may beapplicable to the realm

of compiler optimisation.

Using an artificial neural network (ANN) model (see section 4.5.1.3), they are able

to predict the result of variations in the hardware parameters, with excellent results.

With the model considering only 5% of the design space, it canpredict performance to

within 2% error of the true value. In this circumstance, it seems unlikely to be easily

applicable to software world as anything which causes a change in the program being

run, such as a program transformation, causes the system to require retraining - very

costly in time. However, it may be of interest at a conceptuallevel.

Cavazos et al. (2006)

Cavazos et al. [11] employ a similar approach for a compiler. They describe a system

for predicting the performance of a new program on a known andpreviously explored

architecture. The technique is shown to be effective on two different embedded archi-

tectures – a MIPS-based AMD Alchemy processor and a VLIW processor, the Texas

Instruments C6713 floating point DSP. This attributes a degree of generality to the

technique, that it may be applied to other processors too. Initially, a model of the pro-

cessor is built, using 640 training runs from a set of 10 benchmarks. The model used

is a standard feed-forward, back-propagation artificial neural network. These training

runs are randomly taken from a space of possible versions of aprogram, post transfor-

mation. A total of 5 different transformations are considered, giving a space containing

88000 points.

In addition to this, when a new program is to be evaluated, a further 4 probing runs are

made on this new program. These are used to characterise the new program, and give

input to the existing model, which provides a predicted execution time as output.
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The system used to characterise each program is based on ‘reactions’. This means

that instead of deriving information from a features-basedapproach where the source

code is analysed for attributes considered interesting by experts, the information is

derived from comparing the performance of the program when known transformations

are applied to how other programs in the training set have performed when the same

transformations were applied to them.

The selection of which transformations to use to discriminate best between training

programs (called canonical transformations) is produced by a formal system of in-

formation theory, designed to reduce the redundancy in the data. This approach is

interesting as it removes the human element from the system –it is very difficult for

a compiler expert to predict what features might be useful inbuilding a good perfor-

mance model. Indeed, it is the critical task as no amount of clever post-hoc analysis

can produce a good solution when the original features used are of poor quality. It

is for this reason that this paper is of particular interest,as it is the first to model a

program in this way.

However, although this ‘reactions’ based approach does dispense with the human ele-

ment, it does simplify the feedback available to the model toa difference in execution

time. The authors argue that this is all that is necessary as it intrinsically includes the

more complicated hidden information in this simple value byvirtue of this informa-

tion being explicitly actualised in the running of the program, yet this seems difficult

to ascertain with any degree of certainty, given the variable nature of the quality of

features.

If this technique performs well against features, as it is shown to in the paper, it is quite

possible that the features were of poor quality, and a betterset would have performed

differently. Unfortunately, the quality of features is notoriously difficult to quantify.

Given the extremely complicated, non-linear optimisationspace which has been shown

to be present in this kind of problem, it seems unlikely that such a simple approach is

sufficient, although certainly helpful.

Dubach et al. (2007)

Dubach et al. [18] take an alternative approach to speeding up learning. Instead of

building models of programs and predicting which optimisation would be suitable for
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a program, they model how programs perform on a specific processor, then generate

a prediction of the runtime of new programs supplied to the system, without actually

running them on real hardware.

This performance predictor can then be used in conjunction with iterative compilation

techniques to improve their performance. The predictor is orders of magnitude faster

than physically running the program on real hardware, and thus addresses the bottle-

neck of iterative compilation - the long time necessary to obtain good results; using

the predictor instead of real hardware allows many more runsof a program to be made

and better results to be obtained.

This work uses code features derived from source to express adescription of the pro-

grams, and an artificial neural network (ANN) model. They report that using an input

of 16 samples to the model, they are able to achieve a correlation coefficient of 0.65 to

the actual results, which rises to 0.8 when 128 samples are allowed.

The process of building a predictor of performance is subtlydifferent to that of a pre-

dictor of which optimisations to apply to a program, yet the models generated must

be very similar. On an abstract level, the end result of each process (if one assumes

iterative compilation is coupled with the performance predictor) is the same, yet the

processes are obviously different in methodology. This raises the question as to what

different information is being stored in these two approaches; if one approach is intrin-

sically better than the other, then one would expect that thebetter approach is that for

which the a model can best express the information being stored within.

2.2.2 Predicting the best optimisation

Modelling has also been used to predict the best way to optimise a program. This in-

volves analysing a new program, then predicting the set of optimisation options which

provide the best performance.

Lagoudakis and Littman (2000)

A number of different heuristics have been proposed for the problem of register alloca-

tion, and different heuristics are known to perform better in different context. Selecting
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the correct heuristic for different contexts has been shownto benefit a performance by

Cavazos and Moss [9].

Rather than using an intelligent machine learning techniqueto replace a hand-coded

heuristic, it can be much easier to use machine learning simply to choose between

several well-known heuristics for a particular purpose. The advantage of this, other

than its simplicity, is that these heuristics are thoroughly tested, trusted and understood

by compiler writers and it is therefore much easier to integrate such an approach into

a production compiler than a more sophisticated technique.

Work in the area of heuristic selection, but in a different context is presented by

Lagoudakis and Littman [38] at Stanford. They created a system based on features

to select an algorithm for the abstract problems of order statistics selection and stan-

dard sorting. Order statistics selection is, given an unsorted array of numbers, find the

nth element if the array were sorted in any given order, wheren is any valid index of

the array. They were able to beat the two best standard algorithms for this procedure,

deterministic select and heap select, by forming a hybrid algorithm which chose be-

tween the two. They applied a similar approach to standard numerical sorting by using

a hybrid of quicksort and insert sort.

Monsifrot et al. (2002)

Monsifrot et al. [43] contend with the problem of loop unrolling heuristics on both the

superscalar UltraSPARC and the VLIW-esque Itanium64. Instead of a manually writ-

ten heuristic, an automatically derived one is proposed, based on decision trees. Here

only the question of whether to unroll or not is considered, leaving the unroll factor

to the underlying compiler. Loops are gathered from unspecified programs written in

FORTRAN-77, and a heuristic is generated based on features such as decision trees

are used (OC1 software), which involves splitting a set of objects in a hyperspace over

and over until every object in a substance belong to the same class - that is , to unroll

or not to unroll.

Results are presented using the Open Research Compiler for Intel Itanium64 and Sun

UltraSPARC. On average the execution time is reduced to 93.8% on IA-64 and 96%

on UltraSPARC of the baseline. Interestingly, if the decision trees for the two proces-

sors are swapped, the performance benefit is reduced considerably, furthering the case
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that separate models are needed for different processor configurations to gain optimal

performance.

Cavazos and Moss (2004)

The authors examine the problem of when it is profitable to apply an optimisation,

in this case instruction scheduling, to a program in a just-in-time environment [9].

Although instruction scheduling in particular is examined, there is no reason why the

technique demonstrated here could not be put to use for otheroptimisations. The

language used is Java, and the compiler, JIKES RVM. The authors use list scheduling

over basic blocks, using the critical path scheduling model, although they note that the

type of scheduler used is not important.

Within a just-in-time environment, it is always necessary to weigh the cost of opti-

misations which may make the code run faster against the actual speedup likely to

be gained from such optimisations. The scheduling optimisation can significantly im-

prove the running time of a program, but it also an expensive optimisation to run in

terms of compilation time it would therefore be useful to be able to determine which

basic blocks particularly benefit from scheduling and thus apply it to only these blocks.

This is the question which Cavazos and Moss attempt to answer in this paper, by em-

ploying machine learning.

The authors note that the just-in-time environment severely restrains what kind of tech-

niques can be used to decide whether to schedule, as this process in itself adds to the

compilation time. It is therefore necessary to select a method which is inexpensive

both in terms of computational complexity and using a set of features which are cheap

to obtain at runtime. Thus, any features based on the dependence graph of the block

would be unsuitable as the DAG itself would be expensive to calculate. Instead, all

possible instructions were classified into twelve categories, each which in the opinion

of the authors, have similar scheduling properties. The features used therefore were

simply the percentages of each type of instruction within the basic block.

Using rule set induction provided by the ‘Ripper’ tool, what are effectively decision

trees are created for a binary classification problem. The learning is supervised, done

using a training set to which the answer as to whether to schedule or not has been

manually determined.
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Results show that it is fairly rare that scheduling is effective within this just-in-time en-

vironment – the authors argue this makes it all the more necessary for a cheap heuristic

to determine whether to schedule or not, however, they do notdirectly compare how

well this system compares to simply never scheduling at all.The classification ac-

curacy is impressive however, with over 90% of the improvement of scheduling the

whole program being obtained with only 25% of the time this would take.

Stephenson and Amarasinghe (2005)

Stephenson and Amarasinghe [57] use two simple statisticaltechniques to try to predict

the correct unroll factor for the high-level loop unrollingoptimisation on a per loop

basis. Loop unrolling is one of the most important high-level optimisations as it not

only removes some control flow overhead, but also allows the compiler greater scope

for gaining instruction level parallelism, as well as allowing further optimisations to

take place on the loop. In this paper, the authors report a 5% overall improvement on

the SPEC 2000 benchmark suite using these techniques, with aprediction accuracy

of 65% for all loops in these benchmarks. Since these numbersare not particularly

impressive, the paper concentrates on the time which could be saved by employing

machine learning techniques for this and similar problems rather than employing a

large number of expensive compiler writers. These experiments were performed on

the Intel Itanium2 architecture and using the Open Research Compiler[46]. Unroll

factors between 1 and 8 were considered.

In order to employ either of the techniques used in this paper, features must be deter-

mined and extracted. As is common, the authors first produced38 features for consid-

eration – far too many for these simple linear techniques to handle. A much smaller

subset of features were selected from this original set by two different means: Mutual

Information Scoring and a greedy selection algorithm. Mutual Information Scoring

is a method of ranking how much uncertainty can be removed from the overall result

(in this case the loop unroll factor) by knowing the value of aparticular feature. As is

pointed out, this method has the problem that interactions between features (how much

of the uncertainty that is removed by feature 2 has already been removed by feature 1)

are not considered. The greedy algorithm works by taking thebest performing feature

using a given classifier, then combining it with the second best feature, the third best

feature and so on.
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The five features selected using the greedy algorithm for nearest neighbours were:

number of operands, live range size, critical path length, number of operations and

known tripcount. For the support vector machine, they were number of floating point

operations, loop nest level, number of operands, number of branches and number of

memory operations. Two different classifiers are used:

Nearest neighbours is a well known, statistical technique for classifying phenomena

based on available features. In this case, classifying unroll factor from some feature

vector determined by the authors. Training involves mapping each input vector to a

point in some n-dimensional space (where n is the number of features) whose correct

classification is knowna priori. Novel input vectors are classified by mapping them

to this space, then calculating the Euclidean distance between the new point and all

the training points. The shortest distance is found and the novel input is classified

according to the previously determined class of the nearesttraining point. A confidence

factor can be determined by considering the closest k neighbours and comparing their

class.

It is obvious that this technique increases significantly incomplexity with the number

of features used and the number of training points allowed.

Secondly, Support Vector Machines (SVM) are used. A traditional SVM splits the data

into two classes by constructing a maximum-margin hyperplane (the distance between

the closest examples to the hyperplane is maximised) such a hyperplane is derived by

solving a quadratic programming problem. This can be modified with some difficulty

to accommodate multiple classes as is used in this paper.

Unsupervised Learning

Unsupervised learning does not involve evaluating any points in the optimisation space.

Instead, it seeks to discover some structure in the input (feature) space or model the

probability distribution of the input data. This allows us to characterise the space more

quickly by using a smaller number of points, representativeof the space in general.
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2.3 Clustering

Clustering is an unsupervised learning technique which seeks structure in the input

data, finding clusters of input points which broadly share similar features. From this,

it may be possible to classify the input data into sets, according to their proximity to

each cluster in feature space.

Joshi et al. (2006)

Joshi et al. examine benchmark similarity in MediaBench, MiBench and SPEC CPU2000

benchmarks. The purpose is to reduce the time needed to evaluate a system using the

benchmark suites, and argues that only a subset need to be executed and profiled in

order to effectively estimate the average IPC, data cache miss rate and speedup of the

whole benchmark suite, when varying the system and processor.

Additionally, they evaluate the four generations of the SPEC CPU benchmark series to

determine how much changes between each generation. They conclude that temporal

data locality gets progressively worse through the iterations of SPEC CPU, however

the inherent program characteristics stay the same.

They accomplish this by using clustering on a rich feature space derived from simula-

tion using a custom tool called SCOPE, which is a derivative ofthe SimpleScalar v3.0

simulator. Features include instruction mix, control flow behaviour statistics such as

basic block size, branch direction, fraction of branches taked and fraction of forward-

taken branches, as well as register dependency distance, data temporal locality, data

spatial locality, and instruction locality.

This work has interesting implications for anyone wanting to evaluate a new processor,

but has not enough time to run the whole benchmark suite. However, the work lacks

anything to compare the chosen clusters to, and therefore itis hard to say if the clus-

tering technique is is better than a naı̈ve selection process. Additionally, the work is

intended to assist in estimating the performance of the benchmarks evaluated in the pa-

per, and it is not possible to gain a similar benchmark subseton a different benchmark

suite, without running the whole suite through a slow simulator and profiler.
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2.4 Summary

This chapter has described the related work in the area of andmachine learning in com-

piler optimisation. Firstly, techniques involving supervised learning were described,

including techniques which search the optimisation space,and those which model the

optimisation space to predict a good answer. This includes library generation, per-

formance prediction, and performance maximisation. Secondly, an unsupervised ap-

proach was presented, using clustering to represent the optimisation space.
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Infrastructure

This chapter describes the infrastructure that facilitated the research in this work – the

two primary compilers, SUIF and GCC, and the optimisation tools which were used to

drive them. Section 3.1 details the benchmarks used in this thesis, where section 3.2

does the same for platforms. Finally, the tools used are discussed in section 3.3.

Using machine learning with compilers requires extremely robust infrastructure. Sig-

nificant training is often required, and this demands a largequantity of data. Generating

this data is only practically possible by using infrastructure capable of automatically

compiling and running thousands of programs without human prompting.

Additionally, using many different transformation sequences and optimisations stresses

the compiler in a way not usually tested for. This entails using options which may never

have been used before in a particular combination, and thus cause even a production-

level compiler to crash or do something unexpected. Therefore, it is important to have

robust infrastructure which can detect and compensate for these issues.

3.1 Benchmarks

Benchmark suites are collections of programs designed to evaluate, and allow the com-

parison of, the performance of compilers and processors. They are designed to give

a thorough appraisal of the system by employing commonly used coding techniques,

algorithms, and real world examples to test how well it performs. Since this thesis fo-

cuses on compiler optimisation, the processors remain unchanged, allowing evaluation

29
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of the compiler. Two different benchmark suites are used in this thesis: UTDSP and

EEMBCv2. These focus on programs most commonly found in the embedded domain,

the primary target of this work.

3.1.1 UTDSP

UTDSP [29] is a benchmark suite created at the University of Toronto which targets

DSPs. Written in C, the benchmarks are divided into the categories of kernels and ap-

plications. The kernels represent the main computation carried out in many embedded

programs, such as fast Fourier transforms and matrix multiplication. The applications

are composed of more complex algorithms and data structures. The details are shown

in figure 3.1. Many of the programs are available in up to four coding styles (explicit

vs pointer-based array references, plain vs source-level software pipelined).

3.1.2 EEMBCv2

EEMBC [19] is a commercial benchmark suite targetting embedded architectures. It

is the most commonly used benchmark suite in commercial embedded systems com-

parison, and consists of some of the most important programsand kernels in this area.

They are divided into automotive, consumer, networking, office and telecom cate-

gories. EEMBCv2 takes the original v1 benchmarks, and adds more modern consumer

and networking benchmarks, using up-to-date techniques. This is shown in figure 3.2.

The suite comes with its own test harness, which can be used toverify program output

to check for inconsistencies, and additionally used to create a composite ‘EEMBC

score’ of all the benchmarks when used in a formally specifiedway (this is not done in

this thesis).

There are 55 benchmarks in total: 16 automotive, 5 consumerv1, 3 networkingv1, 4

office, 6 telecoms, 13 consumerv2 and 7 networkingv2.
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Program Description

fft 1024 Radix-2, decimation-in-time

Fast Fourier Transform (FFT)fft 256

fir 256 64 Finite Impulse Response (FIR)

filterfir 32 1

iir 4 64 Infinite Impulse Response (IIR)

filteriir 1 1

latnrm 32 64
Normalised lattice filter

latnrm 8 1

lmsfir 32 64 Least-mean-squared (LMS)

adaptive FIR filterlmsfir 8 1

mult 10 10
Matrix multiplication

mult 4 4

G721 encoder ITU ADPCM speech transcoder

G721 decoder ITU ADPCM speech decoder

V32.modem encoder V.32 modem encoder

V32.modem decoder V.32 modem encoder

compress Image compression using Discrete

Cosine Transform

edgedetect Edge detection using 2D

convolution and Sobel operators

histogram Image enhancement using

histogram equalisation

Figure 3.1: UTDSP benchmarks
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Benchmark category Description

automotive Workload tests, Automotive algorithms, Signal processing

consumerv1 Image compression and decompression, Colour filtering and conversion

networking v1 Routelookup, packetflow monitoring

office Beizer, Dithering, Text parsing

telecoms Autocorrelation, FFT, iFFT, Viterbi decoder

consumerv2 MPEG4 encode and decode, updated jpeg encode and decode

networking v2 IP packet check, IP reassembly, QoS, TCP decoding

Figure 3.2: EEMBCv2 benchmark categories

3.2 Platforms

This thesis uses a number of platforms to evaluate this work.All platforms used are

real hardware implementations of the architecture, and notsimulated or implemented

in an FPGA. Performance counters are used to give real-worldperformance numbers,

which are not influenced by unquantified behaviour in the system libraries, as can

happen when using simulators. Four different embedded processors and a general-

purpose processor are targetted in this thesis. Additionally, a cut-down version of

another general-purpose processor is used, which is being targetted at the embedded

domain.

3.2.1 Analog Devices TigerSHARC

The TigerSHARC TS-101 is a high-performance embedded processor from Analog

Devices. It has an internal floating point engine, as well as the ability to process 1, 8,

16 and 32 bit fixed-point, and process four 32-bit instructions per cycle. The manufac-

turers claim enough on-chip memory to cope with 64,000 pointFFTs[2]. This platform

does not use an OS, running in bare-metal mode.

3.2.2 Philips Trimedia

The Philips Trimedia (now made by NXP Semiconductors) is a multimedia, VLIW,

embedded processor using the Harvard architecture. Philips claim [62] this processor
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can be efficiently programmed using only high-level languages, rather than traditional

DSP assembly programming, and this makes it an interesting architecture for compiler

evaluation. The version of the chip used in this thesis has 128 32-bit geneal purpose

registers and 32KB instruction cache, 32KB data cache. Thisplatform does not use an

OS, running in bare-metal mode.

3.2.3 Intel Celeron

The Intel Celeron is a budget general-purpose processor manufactured by Intel [31].

The chip generally shares architectural features with the top-of-the-line Intel proces-

sors, but with less features/cache to save money and energy.The processor used in this

thesis runs at 400MHz, with 128KB of L2 cache.

In recent years, Intel has also marketed the Celeron as an alternative embedded pro-

cessor, stressing the low power consumption. This platformwas used with the Linux

OS, kernel version 2.4.20

3.2.4 AMD Alchemy Au1500

The AMD Alchemy Au1500 processor is a low power embedded SoC processor using

the MIPS32 instruction set. The chip chip used in this work runs at 500MHz, has 16kB

instruction cache and 16KB non-blocking data cache. This platform was used with the

Linux OS, kernel version 2.4.23

3.2.5 Texas Instruments C6713

The TI C6713 is a 32/64-bit high-end floating point DSP, a wide clustered VLIW

processor with a 4KB instruction cache and a 4KB data cache [59]. On chip there is

also 64K-Byte L2 unified cache/mapped RAM and 192K-byte additional L2 mapped

RAM. This platform does not use an OS, running in bare-metal mode.
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3.2.6 Intel Core2Duo E6750

The Intel Core2Duo [32] is a general-purpose dual-core processor capable of running

in 32-bit or 64-bit mode. The version used in this thesis runsat 2.66GHz, has 4MB

of shared L2 cache and used 32-bit mode. This platform was used with the Linux OS,

kernel version 2.6.24.

3.3 Compiler Tools

Two main tools are used in the course of this thesis: firstly the COLO Tool, which em-

bodies the SUIF compiler [29], and a modified version of GCC called Milepost GCC.

Milepost GCC differs from classic GCC in that the internal optimisations are exposed

and can be externally driven. These tools are necessary to generate the optimisation

space which this work evaluates.

3.3.1 The COLO Tool

The COLO (COmpilers that Learn to Optimise) Tool is an optimisation framework,

developed at the University of Edinburgh, which drives source-to-source transforma-

tions in C and provides complete control of which transformations are applied and in

which order. The framework is written in Java, and incorporates the SUIF compiler

from Stanford [29] (discussed later in section 3.3.1.1) as its transformation engine.

C code enters the system and is translated into an intermediate representation on which

all transformations operate. The Optimisation Engine is responsible for deciding which

optimisations should be applied, and in which order; this stage is fully programmable

and interchangeable, allowing a variety of different optimisation strategies to be used

within the framework. Having selected a transformation schema, transformations are

then applied by the Transformation Framework. After finishing the transformation

process, the IR is translated back into C code and compiled into executable by any

standard C compiler, depending on which platform is the desired target. The program

is then executed and profiled in the Profiler, collecting execution time and code size,

and the results fed back to the Optimisation Engine to allow it to update itself based on

the success or failure of the chosen transformation schema.
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Figure 3.3: The COLO Optimisation framework Tool

Linker information such as the memory footprint of the compiled program is passed

back to the optimisation engine, which decides on the further optimisation strategy

based on this, and the additional timing information gathered from profiled program

execution.

This process is then repeated until a set goal is reached, such as a maximum number

of iterations, or desired execution time achieved. The finalexecutable with the desired

transformed code is the output of the process. This structure is depicted in figure 3.3.

3.3.1.1 The SUIF Compiler

The SUIF compiler is used as the Transformation Engine of theCOLO Tool. It is a

openly released research compiler developed by the SUIF group at Stanford [29]. SUIF

allows independently developed compilation passes work together using specified in-

termediate representation called SUIFIR. It is furnished with a variety of high-level

optimisations which are applied at the SUIFIR level. These transformations can be

applied independently, and in any order. There are around 80different transformations
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available, which are listed in Appendix A.

The compiler includes both C-89 and Fortran front-ends, but only the C front-end was

used in this work. The SUIF compiler was of particular utility in this work as the IR

is sufficiently high-level to allow the complete reconstruction of source code, and thus

can be used as a source-to-source compiler.

The C code is first transformed into SUIFIR using the SUIF front-end, which allows the

code to be transformed. Two different transformation systems are used, which can be

used interchangeably: the ’porky’ SUIF stage, which allowsdata transformations, and

a unimodular loop transformation stage, which provides classic loop transformations

like unrolling and tiling. These transformations work on the SUIFIR level.

Although SUIF source-to-source transformations are powerful, using the compiler has

several drawbacks. It only accepts C-89 as an input language,and thus many modern

benchmarks are incompatible, or require significant time tobe rewritten in C-89. Ad-

ditionally, modern programs often take advantage of GNU C extensions provided by

GCC, which are again incompatible with SUIF. A more robust compiler would allow

more complicated programs to be evaluated, and would take less time to configure. For

these reasons, a second tool is used in this thesis: MilepostGCC.

3.3.2 Milepost GCC

Milepost GCC is a modified version of the GCC compiler developedby the Milepost

project [25]. This compiler does not do source-to-source optimisation, but instead is

changed so that the internal optimisation phases are exposed and driveable by an exter-

nal tool. The use of external tools allows sophisicated machine learning optimisation

strategies to be swapped in and out easily. This is achieved using the GCC Iterative

Compilation Interface, part of Milepost GCC.

3.3.2.1 GCC ICI

The GCC Interactive Compilation Interface (ICI) is an interface for controlling the

internal optimisation decisions of the GCC compiler. It allows the complete substitu-

tion of default optimisation heuristics and the reorderingof transformations, beyond

the capabilities of command line options or pragmas. Instead, the optimisation can be
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Figure 3.4: Framework for Milepost GCC [25]

driven by shared libraries, though command line options arestill available. A list of

the optimisations available is found at [33].

The ICI replaces the GCC Controller (pass manager). Passes can be selected by an

external plugin, choosing different optimisations than the default Controller. Addi-

tionally, the plugin can provide its own passes, implemented entirely outside GCC.

3.3.2.2 GCC CCC Optimisation Framework

The GCC Continuous Collective Compilation Framework is tool to drive compiler

optimisation, particularly through the GCC ICI (interface).It contains a toolbox of

techniques which allow simple interaction with internal GCCoptimisations, allowing

the user to automate the running of thousands of compilations with different optimisa-

tion schemas. It allows extensions so that custom optimisation selction algorithms can

be implemented and used within the tool.

Figure 3.4 shows how GCC CCC and Milepost GCC interact when training and de-

ploying a simple machine learning based compiler.
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3.4 Conclusion

This chapter has detailed the infrastructure which was usedin this thesis. Two embed-

ded benchmark suites have been compiled using both SUIF, driven by the COLO Tool,

and Milepost GCC. A variety of platforms have been used, including DSP-like plat-

forms like the Analog Devices TigerSHARC, the Philips Trimedia (a VLIW processor)

and a general purpose processor, the Intel Core2Duo.



Chapter 4

Introduction to Machine Learning

This chapter provides an introduction to machine learning from a compiler perspective,

explains some of the general concepts in machine learning and discusses the techniques

used in this thesis, and in other work. Section 4.1 discusseswhy machine learning is

useful for compilers, section 4.2 outlines the idea of machine learning, section 4.3

explains the concept of features, section 4.4 shows how machine learning is affected

by complexity, section 4.5 details some machine learning techniques, section 4.6 shows

how machine learning techniques can be applied in the compiler field and section 4.7

warns of some of the problems one may encounter when employing machine learning.

4.1 Why use Machine Learning?

During the phases of optimisation and code generation, a compiler makes hundreds

of decisions which impact the quality of the outputted code.Indeed, given the same

input C code, two properly implemented but different compilers are extremely unlikely

to produce the same output code, although the functionalityof that code would be

the same. This is because many of the decisions needed to be taken by the compiler

are dependent upon extremely complex scenarios, where it isvery hard to tell which

answer would give better code, and which worse. In addition,these decisions have

interacting effects, meaning that one optimisation decision which initially gives better

code, may in the end result in worse code being produced.

Traditional compilers tackle these problems by usingheuristics. These are effectively

vastly simplified, hand-generated models of the system, which allow the compiler to

39
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make an optimisation decision in a very small space of time. The main reason why

code outputted is often different between compilers is thatdifferent heuristics are often

employed, both with different estimates as to how the spacesshould be modelled. It

logically follows that if different heuristics are used in different compilers, either the

compiler with the best set of heuristics should be best for all code generated (which

is demonstrably not the case) or that different sets of heuristics (and thus different

compilers) have more beneficial effects on some pieces of code over others. This

shows that heuristics are not a good solution, simply the best which has been used so

far.

This is the nub of the matter – that these heuristics are oftenlittle better than educated

guesses made by experienced compiler writers, whose performance can vary wildly

over different code types, and have no statistical evidencein their provenance.

In some cases, such as code scheduling, very accurate heuristics have been developed

which provide near perfect performance – their mapping of inputs to outputs is very

near that of the oracle. For register allocation too, graph colouring heuristics (amongst

others) have been used to great effect, however, firstly, these solutions took a great deal

of effort to arrive at, and secondly, there exist even more complex problems which a

compiler must deal with to obtain optimal results, which a human could not hope to

tackle fully.

Therefore there is a need for systems which can quickly and accurately provide an

answer to difficult, non-linear (see section 4.4) problems within a compiler, which can

be both quickly and reliably generated, and also are based onreal statistical analysis

of the problem, rather than a human ad hoc view. Machine learning allows us to

generate more complicated models, which more accurately represent the complexity

of the problems at hand, and whose generation is based on a true scientific approach.
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4.2 What is Machine Learning?

The general paradigm of computation is classically:

INPUT→ PROCESS→ OUTPUT

Machine Learning (ML) fits very easily into this conceptualisation. ML can be thought

of as computational process used to map a set of inputs to a setof outputs, much like a

mathematical function. ML is useful to us when it is not intuitively obvious what that

function is, such as is the case with many decisions an optimising compiler makes. In a

traditional compiler, these hard choices are either not considered at all – being mapped

to a fixed number for all inputs – or else are made by manually written and tuned

heuristics. ML can be used to replace these ad hoc heuristicswith proper statistical

analysis and modeling, which much better express the true nature of the problem.

A compiler may wish to know which transformation to apply next – this problem can

be addressed using ML by representing the program as a vectorof code features(see

section 4.3) which describe the program’s important characteristics and comparing

this to a pre-prepared model of the system. By comparing the new program to a model

which represents the learned past experience of the ML tool,the correct transformation

can be selected. e.g.:

FEATURES→MODEL→TRANSFORMATIONS

Section 4.6.2 deals with how these models are constructed and section 4.5 describes

how they function.

4.2.1 Supervised and Unsupervised Learning

Machine learning techniques can usually be classified into supervised or unsupervised

techniques(a third general category, reinforcement learning also exists, but is not dis-

cussed in this thesis).
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Supervised Learning

Supervised learning techniques rely on havinglabelled datain the training stage – that

is input data, to which the correct answer is already known bysome other means. A

learning algorithm takes each training input pattern from the labelled data, and pro-

duces an expected output. That output is compared to the known correct output from

the labelled data, and the difference calculated. The learning algorithm then attempts

to change the variables within the algorithm to compensate for the error, to learn from

past mistakes. The most well-known example of a supervised learning technique is

back-propagationin artificial neural networks(see section 4.5.1.3). Search techniques

can be thought of as a specialised form of online supervised learning, in which the

search strategy is updated during the search.

Unsupervised Learning

Conversely, unsupervised learning does not use labelled data at all. Instead, it seeks to

discover some structure in the input (feature) space or model the probability distribu-

tion of the input data. There is no feedback loop to allow learning from mistakes, and

so incorrect classifactions do not affect these algorithms.

4.3 Program Features

One of the most vital elements in any machine learning environment is defining how

the modelling technique perceives the input – in our case, how models can differentiate

between programs or sections of code, and how they can gauge their similarity. We

need to be able to represent our inputs (programs) in a way which is intelligible to our

models – to this end, we employcode features.

A set of code features pertaining to a program consists of a vector of real or binary

values which we hope accurately depicts the crucial characteristics of that program.

The selection of good features is important to any machine learning-based technique,

as without accurate and relevant inputs, a model cannot hopeto produce pertinent

outputs.

Initial selection of features is a matter for expert opinion, but statistical techniques can
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be used to help assess those features as to their relevancy and redundancy (see section

4.5.5). Some examples of features which are used in this workare the total number of

adds used in a program, the proportion of multiplications orshifts, and features related

to memory usage such as a count of loads and stores. A more detailed discussion of the

features used in the experiments reported in this thesis is given in the relevant chapters.

4.4 Complexity in the Optimisation Space

Code optimisation within a compiler was always considered tobe a difficult problem

to solve, but no real evidence or analysis was produced to show quite how difficult.

This is an important question as the complexity of the problem informs the type of

model to be used to confront it. The use of too simple a model will lead errors due

to an inability to accurately represent the true system, andtoo complex a model may

lead tooverfitting(see section 4.7), which results in a more complicated but inaccurate

model being imposed on a simple system.

4.4.1 Linear Problems

A significant proportion of problems do not in themselves produce complex interac-

tions. A classification problem which can be solved by a simple straight line is con-

sideredlinear. The output of an OR logic gate given two inputs is a classicallinearly

separableproblem.

It is obvious that a straight line is enough to separate both output states. In any at-

tempt to solve the OR problem, or indeed any other linear problem, a linear modelling

technique is best used, such as logistic regression or a single-layered neural network

(see section 4.5.1). It should be noted that some compiler problems can be solved well

with linear modelling, as is shown by Cavazos and O’Boyle[12],however simply be-

cause a linear model works well on an issue is not proof in itself that the problem is

intrinsically linear – rather it may be a linearisation of a more complicated system.
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4.4.2 Non-linear Problems

When a straight line is insufficient to separate classes of output, the problem can be

considerednon-linear. The XOR logic gate provides a classical non-linear problemin

figure 4.1

Figure 4.1: XOR diagram – inside the oval area signal on output is ’1’. Outside of this

area, output signal equals ’0’. It is not possible to divide it by one line. [65]

Plainly, a single straight line alone cannot separate the two classes – a more compli-

cated model is needed. Many compiler optimisation decisions fall into this category of

non-linearly separable problems.

Such a system can only be accurately modelled using a non-linear technique, such as

non-linear regression, Hidden Markov Models (HMM), a kernelised Support Vector

Machine or Multi-Layer Perceptron, amongst others (see section 4.5.1).

4.5 Machine Learning Techniques

The established field of machine learning has produced thousands of techniques with

varying complexity for a multitude of tasks. Since the use ofmachine learning in com-

pilers is in its relative infancy, simple techniques are likely to produce the most success
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at this point. This section presents five commonly used machine learning techniques

which have been used in compilers.

4.5.1 Artificial Neural Network (ANN)

An Artificial Neural Network is a model and methodology of reasoning, loosely based

on a biological brain. It is comprised of a number of simple and highly connected

computational units, connected by weighted links which affect the communication be-

tween one neuron and another. It is by means of these weights that an ANN is able to

store information, and by changing and updating the weightsin a systematic way, that

it is able to ‘learn’.

4.5.1.1 Computation in a neuron

A neuron receives multiple signals as input, which it makes acomputation upon and

then sends an output through a different channel. This output is then relayed as input

to other neurons.

The task a neuron performs is determined by itsactivation function. It computes a

weighed sum of inputs, and compares it to athresholdvalue,θ. If the computed input

is greater than the threshold, the neuron is considered to have ‘fired’ and a value of 1

is outputted. If less thanθ, the neuron does not fire and−1 is outputted.

Thus,

Y = sign

[

n

∑
i=1

xiwi−θ

]

This is known as asign function, and is ahard limit function. Other activation functions

may also be used, such as asigmoid function(Y = 1
1+e−x ), which is used in a standard

back-propagation network.

4.5.1.2 Single layered network

A single layered neural network can be used to solve linearlyseparable problems. For

this to occur, the neurons in the network must not only be ableto store information,
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but also be able to update that information to converge with the data supplied to it – to

‘learn’. The model represents ahyperplanein ann-dimensional space which divides

that space into two sections. The type of simple network described here is called a

perceptron.

The weights in the network are first initialised to random values. The output of the

neuron is then calculated for thepth iteration (in the first case,p = 1)We use thesign

activation functiondescribed above:

Y(p) = sign

[

n

∑
i=1

xi(p)wi(p)−θ

]

The weighted inputs must then be updated as follows, using thedelta rule:

wi(p+1) = wi(p)+αxi(p)e(p)

wheree(p) is the error for iterationp, defined as:

e(p) = Ydesired(p)−Yactual(P)

andα is the learning rate. Thelearning ratespecifies how quickly a network is updated

in relation to the calculated error. A slower rate of learning is often advantageous as it

stops the network from oscillating between points of noise in the data.

This process is then repeated forp+ 1 until the model has converged, or some other

stopping criterion has been met (see section 4.7.1). The thresholdθ can be changed to

move the decision boundary if that is desirable.

4.5.1.3 Multi-Layer Perceptron

TheMulti-Layer Perceptron(MLP) is a slightly more sophisticated form of neural net-

work. By employing an additionalhidden layerof neurons, this system can overcome

the limitation of a single-layered network of only being able to accurately differentiate

in a linear space, and is capable of the representation of a non-linear space (see section

4.4). The network consists of three fully-connected layers, the input layer, the hid-

den layerand theoutput layer, with each connection having a weight attached. Even
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further hidden layers may be used in some circumstances, such as when modelling a

discontinuous function.

MLP uses neurons in the same way as the single-layered model,and so error can be

calculated in the same way, using the difference between desired and actual output of

the network, and the delta rule for updating the weights. However, the appearance

of a hidden layer of neurons raises the further difficulty of how to assign ‘blame’

for the error in a network between the different nodes and weights. The traditional

methodology used isback-propagationof error.

Instead of a sign activation function, asigmoid activation function(Y = 1
1+e−x ) is used.

This ensures that the output is between 0 and 1, and that the derivative is easy to

calculate. This is important in calculating theerror gradient.

The weights are first initialised to random values, uniformly distributed.

Where the nodes at the input layer, hidden layer and output layer are respectively

referred to asi, j,k respectively, the output at the hidden and output neurons can be

calculated as follows:

Yi(p) = sigmoid

[

n

∑
i=1

xi j (p)wi j (p)−θ j

]

Yj(p) = sigmoid

[

m

∑
j=1

x jk(p)w jk(p)−θk

]

where n is the number of inputs to the hidden layer and m is the number of inputs to

the output layer.

The error gradient for the output layer (δk) is then calculated:

δk(p) = yk(p) [1−yk(p)]ek(p)

whereek(p) is the error for the iteration (p) at the output layer:

ek(p) = ydesired,k(p)−yactual,k(p)

The weights connecting to the output neurons can then be updated for the next iteration:
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w jk(p+1) = w jk(p)+αy j(p)δk(p)

whereα is the learning rate.

Similarly, the error gradient for the output later (δ j ) is then calculated:

δ j(p) = y j(p)
[

1−y j(p)
]

l

∑
k=1

δk(p)w jk(p)

wherel is the number of output neurons.

The weights connecting to the hidden neurons can then be updated for the next itera-

tion:

wi j (p+1) = wi j (p)+αyi(p)δ j(p)

This process is then repeated forp+ 1 until the model has converged, or some other

stopping criterion has been met (see section 4.7.1). Again,the thresholdθ can be

changed to move the decision boundary if that is desirable

4.5.2 Independent and Identically Distributed Model

An Independent and Identically Distributed modelconsiders each element of that

model (for our purposes, each transformation) to be independent of each other with

respect to the effect it has in the optimisation space. We know that this is untrue in

many circumstances for the case of program transformations, but it is still useful for

providing a simple model of the system. It is a normalised distribution of probabil-

ity values which represents the usefulness of each transformation individually, without

reference to any possible interaction with others.

Under the independent model we assume that the probability of a sequence of trans-

formations being good is simply the product of each of the individual transformations

in the sequence being good, i.e.:

P(s1,s2, . . . ,sL) =
L

∏
i=1

P(si).

HereP(sj) is the probability that the transformationsj occurs in good sequences.
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4.5.3 Markov Model

The IID model (above) is incapable of representing any interaction between transfor-

mations. This is unlikely to be a good model for representinga transformation space,

as we are aware that many transformations areenabling transformations– that is, by

their actions they allow an another transformation to optimise further where before no

optimisation would be possible: i.e. loop unrolling may expose an opportunity for

common subexpression elimination between the head and the tail of a loop that did not

exist before.

Similarly, we know that there existinhibiting transformations, that while perhaps pro-

viding some optimisation themselves, may disable the effect of future transformations

which might eventually produce better optimisation overall: i.e. the conversion of a

for-loop to a while-loop which breaks a perfectly nested forstructure and prevents loop

tiling from occurring safely.

For these reasons, it useful to use a model which represents the interactions between

transformations – aMarkov chainprovides such ability.

A Markov chain for transformation sequences can be defined asfollows:

P(s) = P(s1)
L

∏
i=2

P(si|si−1).

wheres is a sequence of lengthL andsi with i = 1, . . . ,L is each position of the se-

quence with possible states taken fromT = {t1, t2, . . . , tN}. The equation above states

that the probability of a transformation applied in the sequence depends upon the trans-

formations that have been applied before.

The main assumption under this model is that these probabilities do not change along

the sequence, they are the same at any position of the sequence, and therefore the

model is often referred as a stationary Markov chain. This oversimplification prevents

the number of parameters of the model from increasing with the length of the sequences

considered.

4.5.4 Nearest Neighbours

Nearest neighboursis a very simple statistical technique, usually used for solving clas-

sification problems. Features (see section 4.3) from labelled data are extracted, and that
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data projected onto an-dimensional space, wheren is the length of the feature vector.

When a new unlabelled feature vector is presented, it is classified by attributing it to

the class of its closest neighbour in the feature space, usually using Euclidian distance.

The main advantages of this scheme are the simplicity of the technique and the lack

of any time required for training the model, whereas potential disadvantages include

significant computational complexity when a large amount oflabelled data is present

due to the need to calculate the distance between the new input and every existing

labelling point in the space.

4.5.5 Principal Components Analysis

In general, any reduction in the dimensionality of a space will inevitably result in

some loss of information. A good dimensionality reduction technique will preserve as

much of the information as possible that can be used to differentiate between different

classes.

Principal Components Analysis (PCA) is an unsupervised learning technique (see sec-

tion 4.2.1) which helps in feature selection by removing features which do not vary

across the feature space, whilst retaining those that do.

PCA is a linear transformation which produces a subspace of some bigger space that

possesses the greatest variance over that space - that is to say it eliminates redundant

information and tries to encapsulate as much information from the original space in

a smaller number of principal components (which are a combination of the original

features), now used as the new features. It does this with no reference to the output

classification space, using only the input space, and can therefore be classed as a type

of unsupervised learning. More formally, it is a rotation ofthe coordinate system of

the original space of vectors of dimensionalitym to a new set of coordinates on a space

with dimensionalityr, wherer <m, such that the greatest variance by any projection of

the data set comes to lie on the first axis, the second greateston the second axis and so

on. These axes are the principal components, ordered by variance, and so the top five

principal components capture the most variance possible and can be used as features

for our nearest neighbours classifier.

Step 1.

Construct am×n matrixM, wherem is the number of programs andn is the number of
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features. Each row is the original transposed feature vector for one program. Calculate

the empirical mean along each column and subtract that mean for each element in the

column to create a new matrixN which has a zero empirical mean.

Step 2.

Calculate an×n covariance matrixP:

Pn×n = (pi, j , pi, j = cov(Dimi,Dim j))

whereDimx is thexth dimension of an Independent and Identically DistributedModel.

cov is the standard covariance function:

cov(X,Y) =
∑n

i=1(Xi− X̄)(Yi−Ȳ)

(n−1)

Step 3

Calculate the unit eigenvectors and eigenvalues for square matrix P. Create a new

n×n feature matrix,Q, by reordering the eigenvalues by greatest first, then entering

the corresponding eigenvectors intoQ so that the matrix contains these eigenvectors

in its columns. The vectors with the largest corresponding eigenvalues represent the

vectors which exhibit the greatest variance.

Step 4

Select the firstr ordered eigenvectors or components fromQ, wherer is the number of

principal components wanted for use as features as the output of PCA, and enter them

into anm× r matrix S.

Step 5

Calculate the finalm× r feature vectorsT:

T = STNT

4.6 Using Machine Learning with a Compiler

This section describes how machine learning can be used in the compiler field. Firstly,

a search strategy is briefly detailed, followed by a method for performance prediction,

and finally, a means to predict the effects of code transformation.
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4.6.1 Searching an Optimisation Space

Given the huge optimisation space produced by attempts to optimise a single program,

it makes sense that simply choosing one point in the space is not sufficient to obtain the

best results. It is therefore worthwhile to make multiple attempts to compile a program,

randomly selecting optimisations and test them one by one tosee which is best. This

is known as iterative compilation [26].

However, it is clear that this optimisation space is not randomly distributed, rather it

has structure. This raises the question of how we can exploitthis structure to better

select which optimisations to test; a search strategy is needed. There are numerous

search strategies which could be employed such as using a genetic algorithm or a

probabilistic search. Chapter 5 will consider a simple probabilistic approach.

Probabilistic Search

For the case of testing ten transformations, which could be applied in any order only

once, the potential optimisation space is around 1010 – obviously not exhaustively

searchable. The simplest way of searching is just random sampling, however we can

improve on this by building a probabilistic model online.

We can construct a probability vector, of which each elementcorresponds to a single

transformation. Each element contains a probability P, where 0≤P≤ 1. Elements may

be initialised to 0.5, or randomly initialised. A length of transformation sequence must

be selected. This can either be determined randomly for eachrun, within specified

bounds, or fixed for all runs.

Once the length of sequence has been determined for the run, the transformation vector

must be populated. This is done by selecting the requisite number of transformations

with respect to their associated probability. The run can now proceed with the selected

transformations used, and the result recorded.

The probability vector must then be updated by using the result of the run. An exam-

ple of how this might be done is to equally distribute the responsibility for the speedup

obtained among the transformations used, so that their corresponding elements in the

probability vector are multiplied by the speedup obtained,then normalised to 1. In

this way, transformations which contribute to a net speedupof the program are grad-

ually more and more likely to be selected for each test run, and those which cause a
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reduction in speed are less likely to be selected. In this way, the search can focus on

the more profitable transformations, and combinations thereof, and select less useful

transformations less often.

This process can be repeated over and over until the requiredperformance is achieved

or a set amount of time has passed. The probability vector is reset for each new pro-

gram on the basis that different programs benefit in different way from transformation

4.6.2 Predicting Execution Time

Predicting the performance of a new piece of code is helpful when wanting to reduce

the time spent running the new code, either on real hardware,or on a simulator. Using

machine learning, we can make a prediction of the execution time of a new program

many orders of magnitude more quickly than a cycle-accuratesimulator. This section

gives a basic overview of how such a system might be constructed.

Programs are needed to both train and evaluate the system. The programs are then

partitioned into training and testing sets. The number of programs needed for training

varies with both the type of the model employed and its complexity. If there is a

shortage of training data, then cross-validation (see section 4.7.2) may be used.

Code features (see section 4.3) are determined and extractedfor each program in both

the training and testing sets. There is a single feature vector associated with each

program. Each of the training programs are then executed andtheir execution times

recorded. These training runs will provide the experience necessary to build the model.

Models may be constructed in a number of different ways depending on which model

is chosen (see section 4.5), for example the MLP model (see section 4.5.1.3). The

model is constructed by feeding each feature vector into themodel, one at a time, and

supplying the corresponding execution time so that the error may be corrected. The

model should be trained on all inputs, over and over until themodel stabilises, while

also watching out for overfitting (see section 4.7.1). The model’s values are then locked

to the learned static values.
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FEATURES→MODEL→EXECUTION TIME GRAPH

Having trained the model, it can then be supplied with a new, unseen feature vector

from the testing set. The model will then output the predicted execution time, which

can be compared with the actual execution time for the real hardware or simulator, in

order to evaluate the results.

4.6.3 Predicting Effects of Transformation

Evaluating the effectiveness of a particular transformation can be time consuming,

particularly if the program must be run on a simulator. If performance tuning is being

attempted, it is beneficial to be able to try as many differenttransformations as possible,

and the limiting factor is likely to be the time taken to run the programs. Machine

learning can assist in this problem by facilitating the construction of a model which

automatically predicts the speedup of a modified program. Using code features, and

a model which models performance independently of transformations, it is possible to

predict the impact not only of transformations used to construct the model, but also

new transformations not seen before.

This is similar to the more general case of predicting execution time (in the previous

section) but differs in that here the runtime of the baselineis already known, and just

the difference a transformation would make needs to be predicted. This approach is

taken by Cavazos et al.[11].

FEATURES→MODEL→CHANGE IN EXECUTION TIME

Program features must be selected, as described in section 4.3. Extra features which

describe the relative differences between both the original and transformed program are

also used. Additionally, a set ofcanonical transformationsmust be selected. These are

a set of transformations which is felt best characterise thetransformation space - that

is giving the best coverage of the kinds of transformation available. The number of

transformations used is constrained by the time and resources available, but has been

shown to work with as little as 4 [18].

The program to be modelled is then transformed using each of these canonical trans-

formations in turn, and executed and its performance recorded, along with the baseline.
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A model can then be built using feature-speedup pairs as inputs – the features of the

transformed program and the speedup obtained relative to baseline. A number of re-

gression models may be used (see section 4.5).

When a new transformation is to be evaluated, the baseline code is transformed, and the

code features extracted from that transformed program. These code features are then

used as input to the model, with the output being the expectedspeedup over baseline

of this transformed program.

4.7 The Pitfalls of Using Machine Learning

In this thesis, we show how machine learning can significantly outperform manually

derived heuristics and methodologies. Indeed, large speedups are available using these

techniques, but it is important to remember that machine learning is not a panacea. It is

not simply a matter of removing a heuristic from a compiler, and socketing in a model

in its place. There are significant difficulties to overcome,both in the selection and util-

isation of features, and in the training process of buildinga model. If the inputs to the

model are not of sufficient quality, no modelling technique,sophisticated or otherwise,

has any hope of providing good results. Similarly, if a modelis not constructed and

evaluated properly, it may not represent the true optimisation space correctly, instead

oversimplifying it, or attributing complexity where none in fact exists. This section

discusses some of these programs and some potential solutions.

4.7.1 Overfitting

In order to provide the best results, a model mustgeneralisethe space which it repre-

sents, allowing new, unseen, data points to be assigned withaccuracy. A significant

danger to good generalisation isoverfitting. Overfitting is the attribution by a model of

a more complicated optimisation space than the underlying data warrants. This might

mean mapping the noise in the data, or result from a lack of data points which suggest

complexity, where in fact there is none when more points are revealed. An overfitted

model will produce poor predictions as any new data given to the model is unlikely to

follow the complicated specifics of the training data.

An extreme case of overfitting is that of total training data memorisation. Given a



56 Chapter 4. Introduction to Machine Learning

model capable of representing a sufficiently complex system(such as a MLP with

many hidden nodes, see section 4.5.1.3), and given enough time to train, the model

may simply represent a memorisation of the training data, and not the general case.

This results in perfect or near perfect prediction of the training data, but not a true

representation of the space being modelled.

Thus, preventing overfitting is imperative when training a model. Many techniques

have been suggested to assist avoiding overfitting, such as the early-stop method, and

the most simple of which are good validation, the early stop method and Bayesian

priors.

The Early-stop Method

The early-stop method is a very simple, though not properly mathematically analysable,

technique for preventing overfitting, and ensure generalisation in models which employ

iterative learning schemes such as gradient descent. The model is trained on the train-

ing set data as normal, causing the model to adjust to fit the data, and the error rate to

gradually lower. However, instead of ceasing this trainingafter the model and the data

have converged and the error rate is static, the learning is stopped early.

Choosing when to stop learning can be determined by constantly referring to a separate

validation data set. After a fixed number of iterations, learning is temporarily halted,

and the model evaluated on the validation set. Learning thenproceeds for another fixed

number of iterations, and the same validation is done, and this is repeated. When the

falling error rate on the validation set has reached its lowest point, and the error rate

begins to rise, then the learning is halted and the model fixed. It is important to note

that the error rate on the training set may still be falling atthis stage, but it is necessary

to stop learning to enable generalisation.

If enough data points are available, it is advisable to use a third labelled data set called

a testing set for further validation when using this method –this is to ensure that there

is no overfitting toward the validation set. In reality, the availability of labelled data is

often low, and socross-validationis used.
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4.7.2 Cross-validation

Cross-validation is a technique for ensuring the generalityof a model when labelled

data is scarce and must be used in the training of the model. Itis advantageous as

it allows almost all of the data to but used in training, whilst still ensuring proper

validation of data, and thus good practice.

The data is partitioned intoP segments, and the model trained usingP−1 segments.

The model is then evaluated using the remaining data segment. The model is then

rebuilt P times, each time omitting a different segment and evaluating on it. In an

extreme example, the data points can be partitioned individually, meaning as many

models as the number of data points need to be constructed. This is known asleave-

one-out-cross-validation. The main disadvantage of this scheme is the time and effort

involved in building a large number of models. When a model is very complex, it may

require a long time to complete training, even on modern machines, and this must be

taken into account.

4.7.3 Underfitting

Underfitting occurs when a model is used which is not capable of representing the

complexity of the underlying system for which it is being used to represent, such as

a straight line to solve the XOR problem (see figure 4.1). Goodtesting and valida-

tion techniques can ensure that underfitting has not occurred, as well as using existing

knowledge of the complexity of the space and choosing modelsaccordingly.

4.8 Summary

This chapter has described the basics of machine learning, and how it can fit in a

compiler context. Sections 4.1 and 4.2 dealt with what machine learning is and why

it is useful. Representing programs by means of features was described in section 4.3,

and the complexity of the problems has been discussed in section 4.4, which directly

relates to which implementation of machine learning is likely to be most successful.

Models capable of expressing different orders of complexity were presented in section

4.5. Examples have been given of how machine learning can solve specific compiler
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problems in section 4.6 , and a short guide to what can go wrongwhen using machine

learning techniques given in section 4.7.



Chapter 5

Evolving Iterative Compilation

There exists an unwanted gap in performance between compiled code and hand-written

code. Iterative compilation [7, 13, 26] narrowed this gap byattempting a large number

of different optimisation strategies, and choosing the best. The implication of this work

is that built-in compiler heuristics which select optimisation strategies are not doing as

good a job as is possible.

This chapter proposes a new approach to selecting compiler transformations – namely

probabilistic optimisation. It details how stochastic methods can be used to select the

high-level transformations, directed by execution time feedback, where optimisation

space coverage is traded off against searching in known goodregions. Using such an

approach we achieve significant performance improvements –on average over 1.71

across three different architectures. This approach can easily be transfered to other, or

even yet to be invented, processors and extract high levels of performance unachievable

by traditional techniques with no additional native compiler effort.

Section 5.1 outlines the main problem and the motivation behind this chapter; section

5.2 describes the probabilistic search approach; section 5.3 gives details of our experi-

mental set up; section 5.4 presents our results and our analysis thereof and section 5.5

gives some brief conclusions.

59
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5.1 Motivation

Embedded systems designers are presented with a dilemma: tohand-code their pro-

grams using assembly code, or to use a compiler. The former has much to offer – it

produces very fast, clean and small code, but comes at the price of the significant time

required to code the program. In addition there is the cost ofhiring an experienced as-

sembly programmer to carry out the work and the maintainability issues such assembly

code generates.

On the other hand, if a compiler could be used then these problems are reduced, but

it entails sacrificing execution speed and code size [67]. Indeed, with the increasing

speed of embedded processors, chips are increasingly programmed using high-level

languages as the benefits begin to outweigh the cost of assembly code.

Time-to-market is now a significant driving force in embedded systems, and with chips

becoming more complex, compilers are finding it harder to keep pace, and even more

difficult to obtain good performance on these chips [50]. At the same time, coding

in assembly could delay this fast-moving field from design tomarket; thus we have

increasing demand for compiled code, with the compiler having decreasing ability to

exploit the processor.

It is clear that a solution is necessary to this problem, therefore, there has been sig-

nificant research interest in improving the performance of optimising compilers for

embedded systems, e.g. [41]. Such work largely focuses on improving back-end, ar-

chitecture specific compiler phases such as code generation, register allocation and

scheduling. However, the investment in ever more sophisticated back-end algorithms

produces diminishing returns. This chapter proposes a solution to help counter this

problem.

Given that an embedded system typically runs just one program in its lifetime, we

can afford much longer compilation times (e.g. in the order of several hours) than in

general-purpose computing. In particular, feedback directed or iterative approaches

where multiple compiler optimisations are tried and the best selected, has been an area

of interest [51]. However, these techniques still give relatively small improvements as

they effectively restrict themselves to trying different back-end optimisations.

In this chapter, an entirely distinct approach is considered, namely using source-level

transformations for embedded systems. Such an approach is by definition highly
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portable from one processor to another and is entirely complementary to the efforts

of the manufacturers back-end optimisations.

While high-level approaches can deliver good performance, it is extremely difficult

to predict what the best transformation should be. It depends both on the underlying

processor architecture and the native compiler. Small changes in the program – a new

release of the native compiler or the next generation processor – will all impact on

the transformation selection. Typically, high level restructures have a static simpli-

fied model with which to guide transformation selection. It has been shown [14, 26],

however, that the optimisation space is highly non-linear and that such approaches are

unlikely to prove good solutions.

5.1.1 Motivating Example

High-level transformations are a portable, yet highly effective way to improve perfor-

mance by assisting the back-end compiler to produce efficient code. Deriving effi-

cient program transformation sequences, however, is a complex task. For all but the

most basic programs, the interaction between the source-to-source transformation, the

back-end compiler and its built-in optimisations and the underlying target architecture

cannot be easily analysed and exploited. Furthermore, programmers frequently apply

their own program transformation to the program they wish toimprove based on their

expert knowledge and experience with a specific processor and its compiler. How-

ever, with each new generation of the processor, or even the release of a new compiler

version, their knowledge becomes outdated. Furthermore, new processors and their

frequently immature compilers are a challenge for each program developer aiming at

high performance.

As an example, consider the program excerpt in figure 5.1(a).The lmsfir function is

part of the UTDSP [40] (see section 3.1.1)LMSFIR benchmark. It computes a single

point of an N-tap adaptive finite impulse response (FIR) filterapplied to a set of input

samples. The first of the twofor loops iterates over the input and coefficient vectors and

performs repeated multiply-accumulate (MAC) operations. The second loop updates

the filter coefficient for the next run of this filter function.

In figure 5.1(b) the main differences due to transformationsin an optimised Analog

Devices TigerSHARC (see section 3.2.1) implementation are listed. While the routine
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(a) Original implementation

void lmsfir(float input[], float output[],

float expected[], float coefficient[], float

gain)

{

int i;

float sum,term1,error,adapted,old adapted;

sum = 0.0;

for (i = 0; i < NTAPS; ++i) {

sum += input[i] * coefficient[i];

}

output[0] = sum;

error = (expected[0] - sum) * gain;

for (i = 0; i < NTAPS-1; ++i) {

coefficient[i] += input[i] * error;

}

coefficient[NTAPS-1] = coefficient[NTAPS-2] +

input[NTAPS-1] * error;

}

(b) TS-101 implementation

← Loop totally unrolled

← Array references dismantled

← Loop totally unrolled

← Array references dismantled

(c) TriMedia implementation

← New temps. introduced

← Lowered to DO-WHILE loop∗

← Pseudo 3-address code

← Linear pointer-based

array traversal

← Loop totally unrolled

← Pseudo 3-address code

← Linear pointer-based

array traversal

∗ See figure 5.2 for the specific example of this loop.

Figure 5.1: Differences between the original lmsfir implementation (a), and implemen-

tations for the TigerSHARC (b) and TriMedia (c) processors

has not changed semantically, it outperforms the routine infigure 5.1(a) by a factor of

1.75 on the TigerSHARC TS-101 processor. In this transformedversion of the pro-

gram, both loops have been flattened and the array referencesdismantled into explicit

base address plus offset computations.

On the Philips TriMedia (see section 3.2.2), however, different transformations pro-

duce the best performinglmsfir implementation (see figure 5.1(c)). Here the speedup

of 1.2 is achieved by converting the firstfor loop into ado-whileloop and flattening the

second. All array references have been converted to pointers and an almost 3-address

code produces the best result. The first loop of example 5.1(a) in its optimised form

data = input; coef = coefficient; sum = 0.0F;

i = 0;

do

{

{

float *suif tmp, *suif tmp0;

suif tmp = data;

data = data + 1;

term1 = *suif tmp;

suif tmp0 = coef;

coef = coef + 1;

term2 = *suif tmp0;

sum = sum + term1 * term2;

}

i = i + 1;

} while (!(8 <= i));

Figure 5.2: First loop of example 5.1(a) optimised for the TriMedia processor
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for the TriMedia is shown in figure 5.2.

This short example demonstrates how difficult it is to predict the best high-level trans-

formation for a new platform. Iterative compilers interleave transformation and pro-

filed execution stages to actively search for good transformation sequences. Portable,

optimising compilers, however, must be able to search a potentially huge transforma-

tion space in order to find a successful sequence of transformations for a particular

program and a particular architecture. This chapter proposes a probabilistic search al-

gorithm that is able to examine a small fraction of the optimisation space and still find

significant performance improvements.

5.2 Probabilistic Search

This section describes a scheme to intelligently search thevast optimisation space pre-

sented to a compiler. Using a combination of probabilistic and random search, the

compiler can focus in on the profitable optimisation sequences, but still gain good

enough coverage of the space to avoid becoming stuck in localminima, and limiting

the scope of the search.

Selecting the best overall high-level transformation normally consists of selecting a

sequence of smaller transformations which are applied to part or all of the program.

Given that certain transformations may be parameterised (for example, loop unrolling

is parameterised by the unroll factor), and that different combinations may be consid-

ered, selecting the best transformation is effectively an optimisation problem over the

space of all possible transformations.

This approach to program optimisation makes use of an iterative transformation frame-

work called the COLO Tool (see section 3.3.1) that alternatesphases in which individ-

ual points of the optimisation space are sampled and their fitness is evaluated. In par-

ticular, transformation sequences are constructed and applied to the input program and

the resulting program is then executed to determine its performance. Thisdynamicpro-

gram optimisation approach does not rely on model-based static analysis, but guides

the search on actual performance.
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Figure 5.3: Transformation categorisation

5.2.1 Optimisation Space

In this chapter we consider 81 high level transformations (provided in appendix A), ap-

plicable to C programs and available within the SUIF [29] based compiler framework

(see section 3.3.1.1). For convenience we have classified them as shown in figure 5.3.

13 are in effect analysis phases that mark the IR enabling later transformations which

actually modify the source. These transformations can be classified into three broad

groups; those aimed at modifying the program’s control-flow, those that modify the

actual computation performed and those focused on data which is further subdivided

into actual layout and access. These broad categories are further refined as shown in

figure 5.3.

All categories contain lowering transformations which translate a complex structure

into a smaller one, i.e. unpacking a structure into its sub-components.

The control-flow transformations are aimed either at loop transformations or more gen-

eral control-flow changes. The data access transformationsinclude value propagation,

modifying memory references and data type conversion. Finally, the computation

based transformations include partial evaluations, redundancy elimination and code

simplification. This is by no means a definitive transformation taxonomy, but provides

an overview of the options available.

5.2.2 Optimisation Algorithm

Central to the success of this technique is the optimisation algorithm hosted within the

optimisation engine of the COLO Tool framework. The huge sizeof the optimisation

space and its complexity make it necessary to find a balanced trade-off betweenspace

explorationandfocused search. For the benchmarks considered here, the size of the
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space is approximately 8110 (81 transformations in any order, up to length 10). To

find good points, whilst keeping the number of sample points (and thus the number of

program runs) within reasonable limits, a probabilistic algorithm is employed.

Although the random search of the optimisation space leads to significant performance

improvement [26], it is, by definition, unable to direct efforts and search for an opti-

mal point. If a transformation or sub-sequence is found to consistently perform well

or poorly, or indeed have no effect, we would like to use this information to guide

the search. However, there is a natural tension between avoiding hardwiring of bi-

ased heuristics and cost-effective search. What is needed isa technique that combines

an unbiased sampling of the transformation space with feedback-focused attention on

good areas.

In order to overcome this dilemma of space exploration vs. focused search, two simple,

yet powerful algorithms are combined, representing each ofthe two domains. These

two algorithms compete with each other and within a finalmergestage the best of the

two individual solutions is chosen. To facilitate a broad and non-biased space cover-

age we have chosen a simplerandom searchas our space exploration algorithm. The

focused search is represented by asearchalgorithm inspired by a modifiedPopulation-

based Incremental Learning (PBIL) [3] approach. Both algorithms can be considered

as two extreme cases of a continuum where the learning rate isLR= 1 for the PBIL

inspired technique andLR= 0 for random search. In particular, in a competitive learn-

ing network the activations of the output units are computedand the weights adjusted

according to the rules given by the following two equations [3]:

out puti = ∑
j

wi j × inputj (5.1)

∆wi j = LR× (inputj −wi j ) (5.2)

A learning rateLR = 0 leads to constant weights which are not adjusted during the

search. On the other hand, a learning rateLR= 1 enforces strong adjustment to the

individual weights over changing input. These two algorithms are discussed in the

following two sections.
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5.2.2.1 Space Exploration

Random search assigns a constant uniform probability distribution to the set of trans-

formations and chooses the next transformation solely based on a value generated by

a pseudo-random number generator. In the case of parameterised transformations, we

equally divide the assigned probability across all enumerated versions. For example

if each transformation has a 0.1 probability of being selected but there are 50 loop

unrolling options, then each of them is assigned a probability of 0.002.

The learning rate,LR, is 0 for random search as no information is carried across itera-

tions of the algorithm and from equation 5.2 it follows that∆wi j = 0.

Both the transformation and the length of the transformationsequence (up to some

upper limit) are determined by a random process. The random search algorithm does

not use the effectiveness of any transformations to direct its search.

5.2.2.2 Focused Search

PBIL is a stochastic search technique which aims to integrategenetic algorithms and

competitive learning. It increases the probability of an option being selected whenever

a positive instance using that option is encountered.

In our stochastic optimisation algorithm, transformations have an associated selection

probability, but unlike the space exploring random search algorithm, probabilities can

change over time and their distribution does not need to be uniform, i.e. LR 6= 0.

In fact, we have chosenLR = 1 to emphasise its fast convergence on encountered

performance enhancing transformations. The original PBIL algorithm considers binary

encodings of parameters and generates a population of solutions based on a fixed-

length probability vector, which had to be modified for this purpose.

Starting with a uniform probability distribution, sample points (i.e. transformation

sequences) are chosen and evaluated by executing the corresponding program. The

selection probabilities of the individual transformations are updated based on the suc-

cess (i.e. execution time) of the sequence as a whole. Transformations contributing to

better performance are rewarded while those resulting in performance losses are pe-

nalised. Thus, future sample points will include previously successful transformations

more frequently, and search their neighbourhood more intensively.
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Standard PBIL allows for random mutation within the probability vector, but we dis-

card this as we do not wish to incur the overhead. Finally we donot generate a popu-

lation based on a probability vector, but just one candidate. Depending on its success

we update the probability vector accordingly.

The high learning rate, lack of mutation and a single candidate per generation means

that the search is strongly focused on the result of feedback.

5.3 Experimental Setup

5.3.1 Processors and Compilers

The adaptive transformation scheme is evaluated against three different processors rep-

resenting different aspects of the embedded computing domain. Among the three em-

bedded processors are a high-performance floating-point digital signal processor, the

Analog Devices TigerSHARC TS-101 (see section 3.2.1), a multimedia processor, the

Philips TriMedia TM-1100 (see section 3.2.2), and an embedded processor derived

from a popular general-purpose processor architecture, the Intel Celeron 400 (see sec-

tion 3.2.3).

As back-end compilers we used Analog Devices’ VisualDSP++ 3.5 for the Tiger-

SHARC v7.0.1.5, Philips’ TriMedia v1.1y Software Development Environment (SDE

v5.3.4) for the TriMedia, and both Intel’s ICC 8.0 and the GNU GCC 3.3.3 for the

Celeron. The highest optimisation settings were used on the native compilers and exe-

cution times were measured using hardware cycle counters.

5.3.2 Benchmarks

The technique is evaluated on theUTDSP[40, 54] benchmark suite. Details are given

in section 3.1.1. This set of benchmarks contains compute-intensive DSP kernels as

well as applications composed of more complex algorithms and data structures. Many

of the programs are available in up to four coding styles (explicit vs pointer-based ar-

ray references, plain vs source-level software pipelined). Some of the benchmarks are

excluded from this study, due to the incompatibility between the differing interpreta-

tions of acceptable C syntax/semantic between SUIF and the back-end compilers. The
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TigerSHARC in particular is much stricter than SUIF in terms of the C accepted. Ad-

ditionally, some benchmarks are focused on bit manipulation which causes problems

due to conflicting endianness.

5.3.3 Program versioning

Transforming or rewriting a program at source level may havean impact on perfor-

mance. To illustrate this, consider each of the UTDSP benchmarks (see section 3.1.1)

which are supplied in up to four distinct versions. Firstly each is written using arrays

or pointers. These in turn may also be rewritten as source level software pipelined

versions. Although these versions are four independent sources, each version can be

readily derived from the other by pointer conversion/recovery [42, 23] or source-level

software-pipelining [58].

Figure 5.4 shows the average execution time of each version across the benchmarks on

each processor. On the TigerSHARC, the clean array version gives the best average

performance while the TriMedia prefers the pointer based version.

We consider two compilers, GCC and ICC, for the Celeron. Both compilers marginally

prefer the array based code over pointer based versions. In most cases, with the notable

exception of the TriMedia, the software pipelined versionsof the program perform

poorly.

From this set of data, we can conclude that source-level transformations will affect

performance and that this will depend on the processor, program and possibly the

underlying compiler.

Due to the variation in performance of the four different versions, all speedups in

this chapter are with respect to the best performing original code. In the case of the

TigerSHARC this is normally the array based original code while on the TriMedia it is

usually the pointer version.

5.3.4 Encoding Transformations

One of the main difficulties in selecting the best transformation sequence is that many

transformations are position dependent, i.e. only appliedto a part of the program.

Unlike global optimisations, we have to specify the location of the transformation.
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Figure 5.4: Relative speedup or slowdown for different coding styles per processor. The

data is normalised to the performance of the baseline array code

Furthermore, these transformations may be parameterised.This leads to two prob-

lems : firstly, the optimisation space now increases in size and, secondly, it becomes

asymmetric in description. This means search cannot proceed in a uniform manner.

To overcome this, the system employs a simple method to make the treatment of pa-

rameterised location specific transformations indistinguishable from the yes/no binary

decision of global optimisations such as constant propagation. This is achieved by

simply enumerating all possible parameters and all locations.

5.3.5 The COLO Transformation Framework

The chapter uses the iterative transformation framework called the COLO Tool (see

section 3.3.1 for more details) to carry out all experiments. This section briefly de-

scribes it, and the different optimisation algorithms usedto balance potentially con-

flicting search strategies.

Benchmark C code enters the COLO Tool and is translated into an intermediate rep-

resentation on which all transformations operate. After finishing the transformation

process, the IR is translated back into C code and compiled into an executable by the
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particular machine’s back-end C compiler making use of its most aggressive optimisa-

tion setting.

The COLO Tool makes extensive use of the Stanford SUIF compiler [29] (see section

3.3.1.1) to provide a C front-end, a code generator and a richselection of already

implemented transformations.

5.4 Results and Evaluation

This section presents, discusses and analyses the empirical results that were gained

using our iterative transformation tool on a number of processors. All results are found

after running the search algorithm for 500 evaluations.

5.4.1 Results

As stated in section 5.3.3, all speedups are with respect to the best performing original

program, giving a true evaluation of our approach. Thus, thebest original execution

time of the four possible versions of each program is selected for speedup comparison

with the highest optimisation level selected on the native compiler.

5.4.1.1 Platform Based Evaluation

Figures 5.5, 5.6, 5.7 and 5.8 show the performance improvements achieved by our

approach across processors and benchmarks. All the platforms benefited from itera-

tive search. The TigerSHARC had an average speedup of 1.73, the TriMedia 1.43,

the Celeron with GCC 1.54 and with ICC 2.14 with an overall average of 1.71. This

overall figure demonstrates the importance of high-level optimisation. Using a plat-

form independent approach we are able to reduce execution time on average by 41%,

outperforming any other approach.

Examining the TigerSHARC results (see figure 5.5) more closely we see there is much

variation. Surprisingly, the matrix multiplication routines can be improved by almost

a factor of 7 by completely flattening the code. As this is sucha well known routine,

one would have thought that the baseline compiler would do well here, but it appears

that the heuristic controlling the loop unroller in the backend compiler is unwilling to
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Figure 5.5: Speedup due to high-level transformation over the most aggressive back-

end compiler optimisation alone for TigerSHARC

Figure 5.6: Speedup due to high-level transformation over most aggressive back-end

compiler optimisation alone for Celeron/GCC
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Figure 5.7: Speedup due to high-level transformation over the most aggressive back-

end compiler optimisation alone for Celeron/ICC

Figure 5.8: Speedup due to high-level transformation over the most aggressive back-

end compiler optimisation alone for TriMedia



5.4. Results and Evaluation 73

Figure 5.9: Program speedup averaged across all platforms

be aggressive enough here to derive the necessary performance. The compiler for the

TigerSHARC is well respected in industry, and further supports the view that feedback

directed compilation outperforms static heuristics, especially in extreme scenarios.

The iterative scheme performs less well on the very small data sizes of FIR and IIR,

unlike the other processors. It also is unable to improve theperformance of the G721

encoder – a problem shared by all of the processors. This is likely due to the large

number of conditional branches present in these codecs, which makes them difficult to

optimise using high-level transformation.

A different picture emerges when considering the Celeron processor with GCC (see

figure 5.6) where the speedups are less variable. In direct contrast to the TigerSHARC,

large performance gains are achieved on the small data sizedIIR program. Good re-

sults are also found for the compression and edge detection applications. Like the

TigerSHARC, little performance was gained on the G721 encoder.

The largest performance gains were achieved with the ICC compiler on the Celeron.

This in itself is a surprising result given that it is the mostmature compiler here and

therefore should have proved difficult to improve upon. Likethe TigerSHARC it per-

forms well on the large matrix multiplication and the small FFT and poorly on the
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G721 encoder. However, it performs well on the small IIR, as with GCC, and shares

similar performance gains on edge detection and V.32 encoder. We will compare the

two compilers GCC and ICC for the Celeron in more detail below (see section 5.4.3).

The TriMedia has the lowest average speedup of 1.43 and like the TigerSHARC has

an uneven distribution of results with the large FFT achieving a speedup of almost

5. Once again it performs poorly on the G721 encoder, but unlike other platforms it

performs poorly on the V.32 decoder and compress benchmarks.

5.4.2 Benchmark Orientated Evaluation

Across all the benchmarks, only three of the benchmarks failto achieve the average

performance improvement of 1.25.LATNRMbenefits from loop unrolling, however,

due to cross-iteration dependencies the native compilers instruction scheduler cannot

take full advantage of the enlarged loop body.LMSFIRsuffers from a coding style

that introduces frequent conditional branches to the innermost loop. Similarly,G721

is limited in its transformation potential by many conditional branches between tiny

basic blocks.

Surprisingly, in four out of six cases high-level iterativesearch is able to speed up

programs to a greater extent for small rather than large datasizes. This is counter-

intuitive as many of the restructuring transformations only have any noticeable effect

when dealing large amounts of data and computation. Examining the output code, it

seems that in several cases the iterative search has completely unrolled or flattened

certain sections of code, turning loops into large basic blocks and act as an enabler

of baseline compiler optimisation. The large speedup of matrix multiplication on the

TigerSHARC is also due to this reason when applied to the innerloop.

5.4.3 GCC vs ICC

Using two compilers on one platform gives an insight into their effect on performance.

As expected, overall the ICC compiler outperforms the GCC and is approximately 1.22

times faster on average. However, after applying high leveltransformations on top of

GCC, we see an improvement on average of 1.54, outperforming ICCon its own.

This means that an automatic platform-independent approach could use a less mature

compiler as a baseline, and still outperform hand-crafted optimisers based on many
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Figure 5.10: Comparison of the two compilers for the Celeron. Results are normalised

to GCC performance before transformation.

years of work. Furthermore, it allows vendors to put less effort into their compiler,

reducing the time to market of their product, while giving higher performance.

The diagram also shows that applying transformations to ICC gives a speedup of more

than 2.5 relative to GCC alone. This also shows that a platform-independent approach

can also port and scale with improved baseline improvementsand is a complementary

approach to vendor improvements. This additional speedup is likely because of su-

perior low-level transformation within ICC. High-level transformation of code often

exposes significant opportunity for optimisation at a lowerlevel, and it seems this is

better exploited by ICC.

5.4.4 Evaluating transformations

Overall, loop transformations have been identified as the most beneficial class of trans-

formations in our framework. This category (cf. figure 5.3) is followed by the classes

of value propagation transformations and partial evaluation. The differences between

the remaining classes are too small to derive any significance from them.

Across all platforms and benchmarks, the focused search phase of the optimisation
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algorithm finds the best sequence 65% of the time with an average effective transfor-

mation sequence length of 4.1. For example, incompresson the TriMedia the best

sequence of transformations was hoist loop invariants, optimise function parameter

passing, globalise constants, scalarisation and flatten the main loop.

The remaining 35% of the time, the best transformation sequence was found by the

random phase where the absolute length was on average 40.1. This result looks sur-

prising at first. No high-level restructuring compiler research has suggested that such

sequence lengths are beneficial and they obviously contrastwith the focused search

results. However, as we are randomly selecting sequences between 1 and 80, then an

average around 40 is to be expected.

Furthermore, on examination it can be seen that there are many transformations in-

cluded which do have any impact on the code. These junk transformation sub-sequences

frequently contain repeated transformations or ones whichhave no effect on that par-

ticular program. Hence, the effective transformations sequence length is much shorter.

As PBIL only selects transformations that are guaranteed to have improved the pro-

gram in the past, then redundant sub-sequences are eliminated, and this gives much

shorter sequence lengths. This means that while long sequences may be beneficial, it

is sufficient for future work to consider short but effectivesequences, less than 10 in

length.

It is interesting to note that while the focused search finds the best optimisation 65%

of the time, it achieves an average performance gain of 1.57.Space exploration finds

the best solution less often, but achieves an average speedup of 2.00 in these cases,

justifying the choice of using two approaches to searching the space.

5.4.5 Distribution

Examining the probability distribution of the useful application of a transformation,

there are eight transformations or peaks labelled A-H in figure 5.11. There is much

commonality at first glance across the processors. Loop unrolling is by far the most

successful transformation. Although it is well known to improve performance, it is

surprising that it is so successful here as each of the nativecompilers applies unrolling

internally. This means that the heuristic employed by the native compiler is not capable

of extracting high performance from these benchmarks. Propagating known values and
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A - break up large expression trees, B - value propagation, C -hoisting of loop invariants, D - loop

normalisation, E - Loop unrolling, F - mark constant variables, G - dismantle array instructions, H -

function parameter passing optimisation.

Figure 5.11: Probability of transformation being successful

loop hoisting are also useful transformations, again surprising as a back-end compiler

should perform this. Less obviously, breaking up expression trees (A) so that they can

be effectively handled by the code generator proved useful.Finally changing arrays

into pointer traversal (G) is useful for machines with separate address generation units

while eliminating copies (H) reduces memory bandwidth.

If we focus now just on the TriMedia and TigerSHARC whose speedup profiles are

similar, then we see that there are also differences among the processors. Figure 5.12

shows the transformations ordered by overall effectiveness. At three points A, B and

C we see marked differences in the usefulness of transformations. This shows how

transformations can have different effects on different architectures.
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A - data layout analysis, B - control flow simplification, C - dismantle array references.

Figure 5.12: Highlighted differences in overall effectiveness of transformations

5.5 Conclusion

This chapter has described a probabilistic search algorithm for finding good source-

level transformation sequences for typical embedded programs written in C. Source-

to-source transformations have been shown to be not only highly portable, but also pro-

vide substantial scope for performance improvements. Two competing search strate-

gies provide a good balance between optimisation space exploration and focused search

in the neighbourhood of already identified good candidates.The work integrates both

parameter-less global and parameterised local transformations in a unified optimisa-

tion framework that can efficiently operate on a huge optimisation space spanned by

more than 80 transformations.

The empirical evaluation of this optimisation toolkit, based on three real embedded

architectures and kernels and applications from the UTDSP benchmark suite, has suc-

cessfully demonstrated that the approach is able to outperform any other existing ap-

proach and gives an average speedup of 1.71 across platforms.

Nevertheless, there is a significant drawback to this technique – the substantial amount

of compile and evaluation time required to achieve the results. This has to be balanced
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against the often very long runtimes of embedded programs, which can afford such

long compilation times, yet this is clearly an undesirable aspect of this technique.

The main reason for this very long compile time is that the optimisation of each pro-

gram is carried out individually, starting afresh each time. However, we know from

experience, as well as intuition, that similar code is oftensusceptible to similar optimi-

sation. If there was a way to automatically gauge the similarity between programs, we

should be able to prime our technique with previously acquired information – to learn

from experience – which could dramatically speed up search,and improve the results.

This learning compilerapproach is investigated in the next chapter.





Chapter 6

Knowledge Acquisition and

Transference

Iterative compilationhas raised the bar for what can be considered well-optimised,

machine-generated code [26, 47], by illustrating the significant performance gains still

available to compilers by purely automated techniques. In addition, it has demonstrated

that accessing these gains is an extremely difficult task dueto the complicated and

highly non-linear optimisation space.

Searching the optimisation space using iterative compilation can be an extremely time-

consuming task [7, 13]. As has been shown in chapter 5, probabilistic methods can be

used to help speed up this technique, and build up some knowledge of which opti-

misations are profitable to apply on a single program, but this knowledge is simply

discarded at the end of compilation, and the process must start over from scratch on a

new program.

In section 6.2, the scale of the problem facing compilers, and the wastefulness of previ-

ous techniques is discussed; in section 6.3 the experimental set up is outlined; section

6.4 describes how the optimisation space is characterised,and the interesting elements

of the space; section 6.5 describes how models can help solvethe problem, and how

to train the models; in section 6.6 the features are selectedand described; section 6.7

illustrates how the nearest neighbours technique can be used to achieve knowledge

transference; in section 6.8 the results of the experimentsare presented, and section

6.9 draws some conclusions from the data.

81
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6.1 Introduction

In this chapter, we describe a statistical technique to replace hand-written compiler

heuristics, which is capable of considering a highly non-linear optimisation space, with

many dimensions. We show how knowledge of a program can be gathered, modelled

and then applied to a completely new program, reducing the number of compilation

iterations needed to achieve an equivalent performance increase by an order of magni-

tude, compared to previous techniques.

This is achieved by building statistical models of each of our training programs (see

section 6.5), and employingcode featuresand a simple statistical technique called

nearest neighbours(see section 6.7) to determine which of our models a novel program

is most similar to, and thus which model to apply. This work isprimarily aimed at

embedded platforms, and thus two embedded processors are used for evaluation: the

Texas Instruments C6713 and the AMD Alchemy Au1500 MIPS32 based processor

(see sections 3.2.4 and 3.2.5).

In order to do this, we must be able to both represent the characteristics of a program in

a fashion amenable to machine learning techniques (so that we might know when our

learned knowledge is applicable), and employ a methodologyfor representing and up-

dating our understanding of the optimisation space, based on experience. The former

is tackled by means of using code features in section 6.6, andthe latter by building

a mathematical model of the optimisation space using statistical techniques, as de-

scribed in section 6.5. Critically, learned experience mustadditionally be allowed to

be transferredfrom programs used to train the system onto new programs never seen

before. This is discussed in section 6.7. Using these techniques achieves a substantial

reduction in the number of iterations required to produce good performance.

In this chapter, source-level transformations [22, 58] forembedded systems are consid-

ered, as in the previous chapter (see section 5.2.1). Such anapproach is, by definition,

highly portable from one processor to another and provides additional benefit to the

manufacturer’s highly tuned compiler.
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6.2 Motivation

Many optimisations in modern compilers have been traditionally based around using

analysis to examine certain aspects of the code; the compiler heuristics then make a

decision based on this information as to what to optimise, where to optimise and to

what extent to optimise. The exact contents of these heuristics have been carefully

tuned by experts, using their experience, as well as analytical tools, to produce solid

performance.

It is easy to deduce from this that characteristics of code are important in deciding

what and how to optimise. However, given the highly non-linear nature of optimisation

interactions [14, 26] and the limited scope of these heuristics – normally limited to a

simple linear calculation based only on local evidence – it is likely that a much better

method of guiding optimisation can be produced if a larger scope, both in terms of code

characteristics analysed and the assumed complexity of theoutput space, is utilised.

This chapter focuses primarily on embedded applications where performance is crit-

ical and, consequently, there has been a large body of work aimed at improving the

performance of optimising compilers, e.g. [41]. Most of this work focuses on improv-

ing back-end, architecture specific compiler phases such ascode generation, register

allocation and scheduling. However, the investment in evermore sophisticated back-

end algorithms produces diminishing returns. Iterative approaches based on back-end

optimisations consequently give relatively small improvements [13].

Solving this problem presents several major challenges: the difficulty of producing a

complex non-linear algorithm by hand and the difficulty of understanding which of the

many hundreds of program characteristics are important in deciding this. In this chap-

ter, we propose the answer to these challenges is to use machine learning techniques

to automatically derive a better optimisation methodology, built around experience of

what has gone before, and based on empirical evidence ratherthan an expert’s opinion.

In chapter 5, we saw how feedback-directed search can offer asolution to this problem,

but this technique alone takes a long time to reach a satisfactory result. A speedier

technique would allow better performance to be gained in a fixed time, or the same

performance to be obtained in a shorter time.
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Figure 6.1: Points corresponding to those transformation sequences whose perfor-

mance is within 5 % of the optimum for adpcm on the TI C6713. The contour is the

predicted area for good optimisations.

6.2.1 Search space

The reason for long search search times in iterative compilation [7, 26], and to a lesser

extent in chapter 5, is that determining the best high level sequence of transformations

for a particular program is non-trivial. Consider the diagram in figure 6.1 showing the

behaviour of theadpcm program on the Texas Instrument’s C6713. This diagram is an

attempt at plotting all of the good performing points (within 5% of the optimum) in

the space of all transformations of length 5, selected from aset of 14 transformations.

It therefore covers a space of size 145. It is difficult to represent a large 5 dimen-

sional space graphically, so each good performing transformation sequence (t1t2t3t4t5)

is plotted at position(t1t2) on the x-axis, which denotes prefixes of length 2, and posi-

tion (t3t4t5) on the y axis, which denotes suffixes of length 3. The most striking feature

is that minima are scattered throughout the space and findingthe very best is a difficult

task.

Prior knowledge about where good points are likely to be could focus our search,

allowing the minimal point to be found more quickly. Alternatively, given a fixed
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number of evaluations, we can expect improved performance if we know good areas

to search within.

6.2.2 Focused search

This chapter demonstrates a technique that learns off-line, ahead of time, a predictive

model to guide optimisation of a new program, based on learning from iterative eval-

uation of other programs – this predictive model suggests potentially good regions of

the space to search. In figure 6.1 the contour lines enclose those areas where our tech-

nique predicts there will be good points. Using this prediction we are able to reduce

the number of searches to achieve the same performance, thereby rapidly reducing the

cost of iterative search. This can be seen in figure 6.2, whichcompares random search

(averaged over 20 trials to be statistically meaningful) with and without the predic-

tive model focus. The x-axis denotes (logarithmic scale) the number of evaluations

performed by the search. The y-axis denotes the best performance achieved so far by

the search ; 0% represents the original code performance, 100% the maximum perfor-

mance achievable. It is immediately apparent that the predictive model rapidly speeds

up the search. For instance, after 10 evaluations, random searching achieves 38% of

the potential improvement available, while the focused search achieves 86%. As can

be seen from figure 6.2, such a large improvement would require over 80 evaluations

using random search, justifying further investigation of predictive models.

6.3 Experimental setup

This section describes the experimental setup used in this work, including the proces-

sors and benchmark suite used for evaluation, and the transformations considered for

an exhaustive study.

The experiments were driven by the COLO Transformation Framework Tool (see sec-

tion 3.3.1) which allows complete control of source-to-source transformation selection

and ordering.
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Figure 6.2: How close to the best performance random and the new focused search

achieve on the adpcm benchmark on the TI platform. The random algorithm achieves

38 % of the maximum improvement in 10 evaluations; the focused search 86%.

6.3.1 Platforms

The experiments were performed on two distinct platforms todemonstrate that our

technique is not specific to a particular processor – the Texas Instruments C6713 and

the AMD Alchemy Au1500 (see sections 3.2.1 and 3.2.4).

The TI C6713 is a high end floating point DSP, a wide clustered VLIW processor

with 256kB of internal memory. The programs were compiled using the TI’s Code

Composer Studio Tools Version 2.21 compiler with the highest-O3 optimisation level

and -ml3 flag (generates large memory model code).

The AMD Alchemy Au1500 processor is an embedded SoC processor using a MIPS32

core (Au1), running at 500MHz. It has 16kB instruction cacheand 16KB non-blocking

data cache. The programs were compiled with GCC 3.2.1 with the-O3 compile flag.

According to the manufacturer, this version/option gives the best performance - better

than later versions of GCC – and hence was used in our experiments.
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6.3.2 Benchmarks

The UTDSP[40, 54] benchmark suite was designed “to evaluate the quality of code

generated by a high-level language (such as C) compiler targeting a programmable dig-

ital signal processor (DSP)” [40]. This set of benchmarks contains small, but compute-

intensive DSP kernels as well as larger applications composed of more complex algo-

rithms. The size of programs ranges from 20-500 lines of codewhere the runtime is

usually below 1 second. However, these programs represent compute-intensive kernels

widely regarded as most important by DSP programmers and areused indefinitely in

stream-processing applications. This is the same benchmark suite as was used in the

previous chapter, and is described in section 3.1.1.

6.3.3 Compiler transformations

In this chapter, as in the previous chapter, source-to-source transformations are con-

sidered (many of these transformations also appear within the optimisation phases of

a native compiler[1]). These are applicable to C programs and available within the re-

structuring compiler SUIF (see section 3.3.1.1) [29]. Further details of the framework

are given in section 3.3.1.

For the purpose of this work, we have selected eleven transformations described and

labelled in table 6.1. As four loop unroll factors are considered (arbitrarily), this in-

creases the number of transformations considered to 14. Alltransformation sequences

of length 5 are then exhaustively evaluated, selected from these 14 options. This al-

lows the evaluation of the relative performance of our proposed techniques. In the later

evaluation section (see section 6.8), we also consider searching, non-exhaustively, in a

much larger space.

6.4 Characterising the space

Employing an exhaustive enumeration of all transformationoptions is the best, though

time-consuming, method to evaluate the optimisation space. This allows us to make

definitive statements about the space in terms of best available transformation, and to

evaluate optimisation selection techniques with reference to a fully known space.
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Label Transformation

1,2,3,4 Loop unrolling

f Loop flattening

n FOR loop normalisation

t Non-perfectly nested loop conversion

k Break load constant instructions

s Common subexpression elimination

d Dead code elimination

h Hoisting of loop invariants

i IF hoisting

m Move loop-invariant conditionals

c Copy propagation

Table 6.1: The labelled transformations used for the exhaustive enumeration of the

space. 1,2,3,4 corresponds to the loop unroll factor.

In order to characterise the optimisation space, all 145 transformation sequences are

exhaustively enumerated on both platforms. Table 6.2 summarises the performance

available; columns 2 and 3 refer to the TI while columns 4 and 5refer to the AMD

respectively.

The columns labelledImprov. (cols. 2 and 4) show the maximum reduction in exe-

cution time obtained on the TI and AMD within this exhaustively enumerated space.

Eight (out of twelve) benchmarks for Texas Instruments and eleven (out of twelve)

benchmarks for AMD achieved significant improvement. The best execution time re-

duction was 45.5% on the TI and 30.5% on the AMD. On average, a 15.2% reduc-

tion was achieved for the TI and 19.6% for the AMD. This translates into an average

speedup of 1.15 and 1.16 over the platform specific optimising compiler.

6.4.1 Best performing sequences

The columns labelledSeq. , (columns 3 and 5) in table 6.2 contain the best perform-

ing sequence for each benchmark on each machine. The individual letters within each

entry refer to the labelled transformations in table 6.1, e.g. i = if hoisting . These

entries show that the complexity and type of good transformation sequences is pro-
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TI AMD

Prog. Improv. Seq. Improv. Seq.

fft 3.64% {3nm} 4.49% {4hns}

fir 45.5% {4} 26.7% {3}

iir 16.3% {3h} 29.5% {h4}

latnrm 0.34% {nsch} 27.1% {csh4}

lmsfir 0.39% {1s} 30.3% {s3}

mult 0.00% {} 30.5% {4}

adpcm 24.0% {1ish} 0.75% {ism}

compress 39.1% {4s} 24.0% {hs4}

edge 5.06% {3} 23.1% {ch4}

histogram 0.00% {} 24.7% {4}

lpc 10.7% {sn2} 6.01% {h4cnm}

spectral 7.46% {n4} 8.53% {sh4}

Average 15.2% - 19.6% -

Table 6.2: Summary of optimisation space on the TI and AMD using exhaustive search.

gram dependent. While benchmarks such asfir and edgedetectfor the TI andfir,

mult andhistogramfor the AMD reach their best performance with single transforma-

tions, other benchmarks such asadpcmfor the TI andlpc for the AMD obtain their

minimum execution time with four and five-length sequences respectively. Similarly,

transformations that yield good performance on some benchmarks do not appear in

the best sequences of other programs. For example, on the AMDthe sequence{ism}

makesadpcm run at its minimum execution time; however, none of these three individ-

ual transformations is present in the best performing sequence ofedge detect . This

variance shows that different transformation sequences are needed for each different

program. Two kinds of model are evaluated to represent our programs in the following

section.
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6.5 Representing Experience - Using Models

6.5.1 The case for models

As we have seen in chapter 5, it is clearly the case that certain optimisations, and

indeed sequences of optimisations, are particularly suited to a particular program –

however, it takes a long time to find these optimisations, or areas of the optimisation

space. In order to speed up our search algorithms, we wish to focus our attention on

the most profitable areas of the optimisation space. To this end, a model is built for

each of our training programs, reflecting those transformation sequences for which the

program obtained good performance, in the hope that this knowledge can be effectively

transferred to new programs.

It is possible simply to record the best sequence achieved onother programs and hope

that it improves the current program, however, this technique has drawbacks. Firstly,

as the results in table 6.2 show, the best transformation on one program is never the

best on others. Since our goal is to achieve the best speedup possible, we can afford

to invest time to try several different optimisation sequences, and afford to be wrong

some of the time. Knowing the best sequence on another program only provides one

single option and cannot guide subsequent search within a larger space.

The alternative is to build intricate models that characterise the performance of all

transformation sequences. Here the problem is that the model can be easily overfitted

to the data, so that it cannot be generalised to other programs. Furthermore, such a

complex model would require extensive training data, whichmay be costly to gather

and is unrealistic in practice. In this section we consider two different models which

try to summarise the optimisation space without excessive overfitting.

6.5.2 Building the model

We consider (i) a simple independent distribution model and(ii) a more complex

Markov model. Both of these require relatively small amountsof training data to

construct and should be easy to learn from our training data.
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Independent identically distributed (IID) model

The IID model is a very simple approach to modelling. It assumes that all transforma-

tions are independent (i.e., there are no interactions between transformations). Even

though we know this is not the case, it still makes sense to start with this model as it is

one of the simplest, and is easier to learn with a small numberof datapoints than more

complex models. A simple approach may provide a good ’priming’ so that search can

uncover further speedup.

Consider a set ofN transformationsT = {t1, t2, . . . , tN}. Let s = s1,s2, . . . ,sL be a

sequence of transformationss of lengthL, where each elementsi is chosen from the

transformations inT . Under the independent model we assume that the probabilityof a

sequence of transformations being good is simply the product of each of the individual

transformations in the sequence being good, i.e.:

P(s1,s2, . . . ,sL) =
L

∏
i=1

P(si). (6.1)

HereP(t j) is the probability that the transformationt j occurs in good sequences. For

our data set we have chosen the set of good sequences to be those sequences that have

an improvement in performance of at least 95% of the maximum possible improve-

ment. This allows us to capture information about sequenceswhich are not quite the

best, but still do very well, expecting that they might be thebest for similar programs.

We calculateP(t j) by simply counting the number of timest j occurs in good sequences

and normalise the distribution i.e.∑N
i=1P(t j) = 1. We then record within a vector the

probability of each of theN = 14 transformations.

For each benchmark we can build this IID distribution, and refer to this as theIID-

oracle. It is an oracle in the sense that we can only know its value once we have

exhaustively enumerated the space, which in practice is unrealistic. Our goal is to be

able to predict this oracle by using machine learning techniques based on a training set

of programs in order to improve search. However, it is necessary to prove first that this

oracle distribution does indeed lead to better search algorithms.

Markov Model

Using the IID model, there is no way to represent interactions between transformations,

and thus any such information present is discarded. This is particularly restrictive in
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cases where there are transformations that enable the applicability of other transforma-

tions or when they only yield good performance after others are applied. It is therefore

useful to try to model these interactions between transformations, and to do this, we

use a Markov chain based model.

A Markov chain for transformation sequences can be defined asfollows:

P(s) = P(s1)
L

∏
i=2

P(si|si−1).

Under this scenario, the probability of a transformation occurring is dependent on

the transformations proceeding it. This model assumes thatthe probability does not

change along the sequence – i.e., it is the same at any position of the sequence, and

therefore the model is often referred as a stationary Markovchain. This oversimplifi-

cation prevents the number of parameters of the model from increasing with the length

of the sequences considered.

Thus, the parameters of the model are the probability at the first position of the se-

quenceP(s1) and the transition matrixP(si|si−1) with i = 1, . . . ,L, which as before can

be learned from data by counting. Once again∑N
j=1P(s1 = t j)= 1 and∑N

j=1P(si = t j |si−1)=

1 must be satisfied.

As in section 4.1 the parameters of the model have been learned from those sequences

that have an improvement in performance at least 95% of the maximum possible im-

provement. Using this model gives a 14 x 14 matrix.

6.5.3 Speeding up search: Evaluating the potential of the mo dels

Baseline search

Two common methods used to search the transformation spacesare compared against:

a blind random search (RAND) and a slightly more sophisticated genetic algorithm

(GA). Random search generates a random string of transformations where each trans-

formation is equally likely to be chosen.

The genetic algorithm was configured in the same manner as ”best” GA in [16] with an

initial randomly selected population of 50. This follows the standard GA format, and

uses a two-point randomised crossover, and scaled fitness values as weights in making

reproductive choice. In addition, the algorithm employs a kind of ‘hash checking’
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Figure 6.3: Performance with respect to evaluations for the random (RAND) and ge-

netic (GA) search algorithms on the TI board. The x-axis denotes (logarithmic scale)

the number of evaluations performed by each search. The y-axis denotes the best per-

formance achieved so far by the search; 0 % represents the original code performance,

100% the maximum performance achievable. Results averaged over all benchmarks

system, where all new sequences are hashed and that hash stored. When new sequences

are generated, they are checked against previous hashes so that there is no duplication

of previously evaluated sequences. If a duplication is detected, the sequence mutates

until it becomes unique.

For the exhaustively enumerated space, both algorithms have similar performance as

can be seen in figures 6.3 and 6.4. Here, the best performance achieved so far by each

algorithm is plotted against how many program evaluations have been performed. This

plot is averaged over all programs. Improvements by either algorithm are more easily

achieved on the TI due to the much greater number of sequencesgiving a significant

speedup.

Both algorithms have similar overall performance, with the GA performing well on

the AMD in the early part of the search. However, random search performs better after

a large number of evaluations as the GA appears to more likelyto be stuck in local

minima. In both cases, however, large numbers of evaluations are needed to gain any

significant performance improvements.
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Figure 6.4: Performance with respect to evaluations for the random (RAND) and genetic

(GA) search algorithms on the MIPS board.

Oracle-based models

In order to test the effectiveness of models, a perfect ‘oracle’ model is constructed.

Each model is contructed using the results obtained from searching a particular pro-

gram’s space and then tested on each model-enabled search algorithm on thesame

benchmark; we call these two learned models:IID-oracle andMarkov-oracle. This

allows the models themselves to be tested independently from the knowledge transfer-

ence process, since each benchmark is evaluated using a model constructed from its

own data.

These ‘oracles’ form an upper-bound on the performance we can expect to achieve

when later trying to learn each model, assuming perfect knowledge transference. This

helps to evaluate whether such models can improve the search. Clearly, if the best a

model oracle can achieve is insignificant, it is not worth expending effort in trying to

learn it. Although it is clearly not valid to assume perfect knowledge transference and

to use models constructed for the very program being evaluated as is done here when

reporting results, it is useful to test the effectiveness ofthe modelling process.

Each baseline search algorithm is compared against this same algorithm using each

predictive model. For the random algorithm, instead of having a uniform probability
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Figure 6.5: TI: Random search versus IID-oracle and Markov oracle. Results averaged

over all benchmarks.
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Figure 6.6: TI: GA search versus IID-oracle and Markov oracle. Results averaged over

all benchmarks.
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Figure 6.7: AMD: Random search versus IID-oracle and Markov oracle. Results aver-

aged over all benchmarks.

0%

20%

40%

60%

80%

100%

 1  10  100  1000

P
er

ce
nt

 o
f M

ax
 Im

pr
ov

em
en

t A
va

ila
bl

e

Evaluations

22%

41%

72%

GA
GA-IID-ORC

GA-MAR-ORC

Figure 6.8: AMD: GA search versus IID-oracle and Markov oracle. Results averaged

over all benchmarks.
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of a transformation being selected, each model biases certain transformations over

others. In the case of the GA, the initial population is selected based on the model’s

probabilities and then the GA is allowed to evolve as usual.

Figure 6.5 depicts the average performance, over all our benchmarks, of the baseline

random algorithm against random search biased with the two oracles on the TI. Sim-

ilarly, Figure 6.6 depicts the performance of the baseline GA algorithm versus using

the two oracles to generate the initial population. In both figures, we see that the or-

acles can significantly speed up finding a good solution. For example, at evaluation

10, random achieves less than 35% of the maximum available performance. In con-

trast, random + IID-oracle achieves more than 70% of the available performance

and random + Markov-oracle achieves around 87% of the performance. Figures

6.7 and 6.8 depict a similar picture on the AMD architecture.On the AMD architec-

ture, our two oracles significantly improve the performanceof each baseline algorithm.

The baseline random search algorithm only achieves 22% of the available perfor-

mance after 10 evaluations. In contrast,random + IID-oracle achieves about 40%

of the available performance (twice better than base) andrandom + Markov-oracle

achieves 66% of the available performance. On average, the baseline algorithm needs

100 evaluations to achieve the same performance as the baseline + the Markov oracle

achieves with just 10 evaluations.

From these figures, it can be seen that the IID and Markov models have the potential to

dramatically improve the performance of both search algorithms. The next section de-

scribes how we can learn these models from previous off-lineruns to build a predictive

model.

6.6 Feature selection

The biggest difficulty in applying knowledge learned off-line to a novel input is con-

sidering exactly which portions of this knowledge are relevant to the new program.

It is shown that, as is the case in many other domains, programs can be successfully

represented by program features, which can then be used to gauge their similarity and

thus the applicability of previously learned off-line knowledge.

Initially, thirty-three loop-level features were identified, which were thought to de-

scribe the characteristics of a program well. These are given in table 6.3.



98 Chapter 6. Knowledge Acquisition and Transference

Features

for loop is simple?

for loop is nested?

for loop is perfectly nested?

for loop has constant lower bound?

for loop has constant upper bound?

for loop has constant stride?

for loop has unit stride?

number of iterations in for loop

loop step within for loop

loop nest depth

no. of array references within loop

no. of instructions in loop

no. of load instructions in loop

no. of store instructions in loop

no. of compare instructions in loop

no. of branch instructions in loop

no. of divide instructions in loop

no. of call instructions in loop

no. of generic instructions in loop

no. of array instructions in loop

no. of memory copy instructions in loop

no. of other instructions in loop

no. of float variables in loop

no. of int variables in loop

both int and floats used in loop?

loop contains an if-construct?

loop contains an if statement in for-construct?

loop iterator is an array index?

all loop indices are constants?

array is accessed in a non-linear manner?

loop strides on leading array dimensions only?

loop has calls?

loop has branches?

loop has regular control flow?

Table 6.3: Features used
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Figure 6.9: Percentage of the total information of the dataset explained by increasing

number of principle components.

6.6.1 Principal Component Analysis

Obviously, the selection of these program features is critical to the success of this

method, and so a well known statistical technique, principal component analysis (PCA)

[6], is employed to assist the selection.

In general, any reduction in the dimensionality of a space will inevitably result in

some loss of information. A good dimensionality reduction technique will preserve as

much of the information that can be used to differentiate between different classes as

possible. Details of PCA are given in section 4.5.5.

The 36 chosen features are used as input for the PCA process. PCAtells us that, in

this instance, due to redundancy and covariance in the features’ values, these thirty-six

features can be combined in such a way that they can be reducedto only five features,

whilst retaining 99% of the variance in the data (see figure 6.9). The output of this

process is a 5-D feature vector for each benchmark, containing these five condensed

feature values, which be used in our nearest neighbour classifier, explained in the next

section.



100 Chapter 6. Knowledge Acquisition and Transference

6.7 Knowledge Transference

Vital to the success of our modelling technique is the ability to apply the correct model

to a novel program input. This section shows how the selectedfeatures can be used to

gauge program similarity.

6.7.1 Nearest Neighbours

This chapter employs a nearest neighbours classifier (see section 4.5.4 and [6])to select

which of our previously analysed programs our new program ismost similar to. Learn-

ing using nearest neighbours is simply a matter of mapping each 5-D feature vector of

our training programs (all our benchmarks) onto a 5-D feature space.

When a novel program is compiled, it is first put through a feature extractor, and those

features processed by PCA, as described aboive in 6.6.1. The resulting 5-D feature

vector is mapped onto the 5-D feature space, and the Euclidean distance between it

and every other point in the space is calculated. The closestpoint is considered to be

the ‘nearest neighbour’ and thus the program associated with that point is the most

similar to the new program.

We can apply this process to each of our twelve benchmarks by using leave-one-out

cross-validation (see section 4.7.2), where we disallow the use as training data of the

feature vector associated with the program that is currently being evaluated – other-

wise a program would always select itself as its nearest neighbour. Having selected a

neighbour, a previously learned probability distributionfor that selected neighbour is

then used as the model for the new program to be iteratively optimised.

6.7.2 Evaluating learning

It is useful to know how close our learned distribution is to the oracle distribution for

both models, IID and Markov. Averaged across all benchmarks, the learned distribu-

tion achieves approximately 80% of the performance per evaluation of theIID-oracle

and theMarkov-oracleon the TI. On the AMD, we achieve a similar result – approxi-

mately 75 % of both oracles’ performance.

As the oracles have been shown to improve performance and we are able to achieve
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a significant percentage of their improvement, this suggests that both learned mod-

els should give significant performance improvement over existing schemes. This is

evaluated in the next section.

6.8 Results and Evaluation

This section evaluates the focused search approach on two optimisation spaces. The

first space is the exhaustively enumerated 145 space, described throughout this chapter.

The second is a much larger space of size 8220 i.e. transformation sequences of length

20 with each transformation selected from one of 82 possibletransformations available

in SUIF 1 [29]. This was achieved using the standard leave one-out-cross-validation

scheme (see section 4.7.2) i.e. learn the IID and Markov models based on thetraining

data from all other programsexceptfor the one about to be optimised ortested.

6.8.1 Evaluation on exhaustively enumerated space

Initially, both the baseline random and GA search algorithms were evaluated for 500

program evaluations, and their speedups recorded, using both the TI and AMD. The

same algorithms were then evaluated again in the same way, this time using the two

learned models: IID and Markov.

The results for the TI are shown in figures 6.10 and 6.11, for the AMD in figures

6.12 and 6.13. On the TI, the learned IID based models achieveapproximately twice

the potential performance of either baseline algorithm after 10 evaluations (60%/62%

vs 32%/27%) . The learned Markov model does even better, achieving 79% of the

performance available after the same number of evaluations. The baseline algorithms

would need over 40 evaluations to achieve this same performance improvement. On

the AMD, the performance improvements are less dramatic, yet the learned Markov

based algorithms achieves more than twice the performance of the baseline algorithms

after 10 evaluations.
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Figure 6.10: TI: Random search versus IID-learned and Markov-learned. Results aver-

aged over all benchmarks.
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Figure 6.11: TI: GA search versus IID-learned and Markov-learned. Results averaged

over all benchmarks.
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Figure 6.12: AMD: Random search versus IID-learned and Markov-learned. Results

averaged over all benchmarks.
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Figure 6.13: AMD: GA search versus IID-learned and Markov-learned. Results aver-

aged over all benchmarks.
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Figure 6.14: Average speedups achieved over all benchmarks on TI for random search,

and the two learned models

6.8.2 Evaluation on large space

Experiments within an exhaustively enumerated space are useful as the performance

of a search algorithm can be evaluated relative to the absolute minima. However, in

practice when we wish to search across a large range of transformations, it is infeasible

to run exhaustive experiments. Instead, a random search for1000 evaluations is done

on each program space as off-line training data.

This time the evaluation centres around the performance achieved in the early parts of

iterative optimisation, and so the baseline random search algorithm and both learned

models are allowed to run for just 50 evaluations. As the genetic algorithm and random

search have the same behaviour for the first 50 evaluations, the GA was not separately

evaluated.

The speedups for each benchmark after 2, 5, 10 and 50 evaluations on the TI are

shown in figures 6.14, 6.15 and 6.16. Due to time constraints,only those benchmarks

with non-negligible speedup on the exhaustively enumerated space are evaluated. The

learned models both deliver good performance and the random+ IID learned model

achieves an average speedup of 1.26 after just 2 evaluations. Furthermore, the random
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Figure 6.15: Average speedups achieved over all benchmarks on AMD MIPS for ran-

dom search, and the two learned models

+ IID learned model achieves a greater average performance after 5 evaluations (1.34)

than the baseline random algorithm does after 50 evaluations (1.29).

Surprisingly, the IID learned model achieves better performance than the Markov

learned model after 50 evaluations 1.41 vs 1.30 speedup in contrast to the results of the

exhaustively enumerated space (see figures 6.10-6.13 ). Thereason is that the Markov

model needs a greater number of training evaluations than the IID model to model the

space accurately. Here we have only 1000 evaluations to build a model.

Similarly, the speedups for the AMD are shown after 2, 5, 10 and 50 evaluations on av-

erage in figure 6.15, and for each benchmark in figure 6.17. Again both learned models

significantly outperform the baseline random algorithm. Infact the random + Markov

learned model achieves a greater average performance (1.33) after 5 evaluations than

random does after 50 evaluations (1.32). It therefore achieves this level of performance

an order of magnitude faster - the same is also true for the TI.Once again random +

IID unexpectedly outperforms random + Markov at 50 evaluations. Thus after just 2

evaluations a speedup of 1.27 is found on average, almost three times the performance

of the baseline algorithm.

Finally, thesinglesequence that gives the best performance on average on the AMD
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TI 2 Evaluations 5 Evaluations 10 Evaluations 50 Evaluations

Benchmark R M I R M I R M I R M I

fft 1.00 1.00 1.00 1.01 1.01 1.34 1.00 1.01 1.65 1.34 1.21 1.81

fir 1.18 1.66 1.67 1.25 1.66 1.83 1.37 1.66 1.85 1.70 1.85 1.85

iir 1.14 1.20 1.19 1.18 1.23 1.19 1.19 1.23 1.21 1.19 1.23 1.23

adpcm 1.08 1.33 1.17 1.18 1.33 1.18 1.25 1.35 1.24 1.28 1.43 1.28

edge 1.08 1.13 1.27 1.15 1.13 1.28 1.21 1.13 1.28 1.25 1.13 1.29

lpc 1.09 1.05 1.13 1.10 1.05 1.16 1.10 1.10 1.18 1.24 1.12 1.27

spe 1.01 1.10 1.15 1.03 1.17 1.16 1.05 1.17 1.16 1.07 1.17 1.18

AVG 1.08 1.21 1.22 1.12 1.22 1.34 1.16 1.23 1.36 1.29 1.30 1.41

Figure 6.16: Speedups up achieved by random search (R), random + Markov learned

model (M), random + IID learned model (I) after 2, 5, 10 and 50 evaluations on each

benchmark on the TI processor. Random + IID learned model achieves greater average

performance (1.34) after 5 evaluations than random does after 50 evaluations (1.29).

in the small space ishimc3 . This gives an average speedup of 1.11, significantly less

than that achieved by random + Markov after just 2 evaluations. On the TI, there does

not exist a single sequence which gives any performance improvement on average.

The Markov predictor performs less well on the large space due to the reduced amount

of training data. This suggests that the IID model should initially be used on a new

platform when there is a relatively small amount of trainingdata available. Once suffi-

cient new data is accrued by iterative optimisation, it can be used for a second stage of

learning using the Markov model.

6.9 Conclusion

This chapter develops a new methodology to speed up iterative compilation. By em-

ploying predictive modelling, we can automatically focus any search on those areas

likely to give greatest performance increases, and thus dramatically reduce the number

of iterations necessary to achieve a given level of performance. Program features are
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AMD 2 Evaluations 5 Evaluations 10 Evaluations 50 Evaluations

Benchmark R M I R M I R M I R M I

fft 1.00 1.04 1.04 1.00 1.05 1.07 1.00 1.07 1.10 1.00 1.15 1.17

fir 1.22 1.33 1.46 1.28 1.44 1.51 1.37 1.44 1.54 1.48 1.55 1.94

iir 1.13 1.29 1.10 1.20 1.32 1.13 1.27 1.37 1.18 1.32 1.39 1.32

lat 1.04 1.48 1.40 1.23 1.53 1.43 1.32 1.53 1.52 1.41 1.53 1.53

lms 1.13 1.15 1.19 1.20 1.22 1.22 1.31 1.33 1.29 1.42 1.44 1.40

mul 1.05 1.54 1.85 1.26 1.89 1.88 1.48 1.89 1.90 1.69 1.92 1.93

adpcm 1.08 1.24 1.27 1.17 1.33 1.31 1.24 1.36 1.35 1.32 1.41 1.44

com 1.11 1.34 1.50 1.22 1.59 1.63 1.27 1.62 1.69 1.60 1.70 1.74

edge 1.10 1.11 1.20 1.21 1.16 1.25 1.29 1.26 1.30 1.32 1.31 1.34

his 1.08 1.27 1.16 1.21 1.31 1.29 1.28 1.32 1.33 1.33 1.33 1.36

lpc 1.00 1.00 1.05 1.00 1.02 1.09 1.00 1.04 1.13 1.06 1.09 1.23

spe 1.00 1.04 1.01 1.00 1.09 1.01 1.00 1.10 1.01 1.00 1.12 1.04

AVG 1.08 1.24 1.27 1.17 1.33 1.31 1.24 1.36 1.35 1.32 1.41 1.44

Figure 6.17: Speedups up achieved by random search (R), random + Markov learned

model (M), random + IID learned model (I) after 2, 5, 10 and 50 evaluations on each

benchmark on the AMD processor. Random + Markov learned model achieves greater

average performance (1.33) after 5 evaluations than random does after 50 evaluations

(1.32)

used to identify the most profitable areas of the optimisation space to search. Results

demonstrate that this approach is highly effective in speeding up iterative optimisation

for the embedded systems domain, but with 10 evaluations still necessary, it is not yet

well suited to the general purpose domain. The logical extension of this work is to cut

the number of evaluations right down to just one – making it nolonger a search-based

system, but asmart compilerwhich competes with, and surpasses a traditional com-

piler, with little or no extra time/resource outlay. The next chapter will demonstrate a

methodology which achieves just that.





Chapter 7

Learning More Efficiently

This chapter presents a method for dramatically reducing both the one-off training time

required to initialise the compiler, and reducing the number of compile-time iterations

required down to just one, bringing the utility of this approach into the general purpose

world. This is achieved by removing the inefficiency in learning and searching by fo-

cusing on the programs which best characterise the optimisation space of all programs.

In section 7.1, clustering is introduced as a means to gain coverage; in section 7.2,

the reasons why previous techniques have been inefficient are presented; section 7.3

details how these problems can be tackled by statistical techniques; in section 7.4 the

experimental set up is explained; section 7.5 presents empirical results and analysis

thereof, and section 7.6 draws some brief conclusions.

7.1 Introduction

As has been seen in chapters 5 and 6, it is possible to obtain considerable improve-

ment in execution speed by applying search and learning techniques to the problem

of transformation selection – however these techniques have considerable drawbacks.

Primarily, they take a long time to initialise; the trainingtime for the system is a signif-

icant cost, which can run to weeks, or even months. Secondly,the number of iterations

required to achieve significant performance gains at compile time is still too large for

many domains.

Although the work presented in chapter 6 improves on the number of iterations re-

109
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quired significantly, the 10 compile iterations still needed leaves it unsuitable for use

in most general purpose compiler work. In addition, even in the embedded domain

the traditional compiler paradigm – only compiling once with no feedback – is still by

far more frequently used than any iterative technique. I call this paradigm ‘one-shot

compilation’.

The partitioning of the feature-space and its effectiveness in selecting the best subset

of programs to learn on is at the heart of this chapter. It is demonstrated that, by stand-

ing back and using unsupervised learning before embarking on a time and resource

expensive iterative compilation search, we can significantly reduce the time and effort

required to train a smart, learning compiler.

Additionally, we show that by gaining a greater coverage of the whole space of pro-

grams in our training data, we can dispense with search altogether, and produce a

simple-to-use, one-shot compiler that gives excellent performance, exceeding the max-

imum O3 level of the compiler by 14% on average across all benchmarks considered.

7.2 Reasons for Inefficiency

In the approach taken in chapter 5, each program is considered individually. The prob-

abilistic model of the optimisation space is updated onlineas the search continues, and

then discarded at the end of the process. The inefficiency of discarding this information

is discussed in section 6.2 and remedied in section 6.5 of that chapter by employing

models to allow transference of knowledge of the optimisation space between different

programs.

However, there still exists considerable inefficiency in the learning process. This is due

to the often arbitrary nature of benchmarks – when we learn a model for a platform,

we want to learn about as much of the optimisation space as possible, and, given a

constrained amount of learning time, it is unclear as to how to best focus our efforts.

If it is the case that two sections of program code are virtually identical, then learning

two separate models for such a scenario is futile at best, andcould actively inhibit

some learning algorithms. Alternatively, if a new program is given to a pre-initialised

system for analysis, and that program is significantly different from what the models

in the compiler have used as their learning data set, then theresult is unlikely to be a

positive one.
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In order to counter this, a statistical approach to the selection of programs is used to

build the models at the learning stage of the compiler.

7.3 Learning what to Learn

In order to make the best use of the available time for training a smart compiler, we

must consider which programs to train over. In chapter 5, we considered only one

program at a time; in chapter 6, we proposed a scheme for allowing transference of

knowledge about one program to another – but in this case we had no choice as to

which programs we could use for training. The limited benchmark set used in chapter

6 necessitated the use of the entire benchmark suite for the purpose of training the

compiler, and so we might consider the distribution of the points chosen as essentially

random (or at least random with a bias towards the benchmarkschosen by the compiler

of the suite), or at the very least, arbitrary.

When considering a larger benchmark suite, it is not possibleto take this approach

because of the huge amount of time and resources it would require to train on each of

the programs in the suite. Indeed, even if one were somehow able to make enough time

and resources available for such an action, the space of programs considered would still

be limited to the space defined by the benchmark suite, and notthe infinite number of

possible programs one might conject.

Thus it is clear that a method is necessary to select which programs are the best candi-

dates for use in training. This chapter proposes using clustering of the feature-space to

achieve this. Using this technique, we can consider a large number of programs. These

programs are then partitioned according to their features into different clusters, which

broadly share similar features; by selecting the most typical program from each cluster

and using these to train our smart compiler, significantly greater speedup is achievable

than randomly selecting the programs.

7.3.1 Features and Feature Extraction

The features used in this chapter are the ratios of each assembly level instruction to

the total number of instructions executed by a program, i.e.the proportions of each

type of instruction used. This is a very simple feature set, which is easy to capture,
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and yet provides excellent performance. In addition, we useonly ARM assembly

instructions as our features, even through we evaluate on anIntel x86 processor. This

is to ensure that our technique is properly capturing information about the program, and

not some facet peculiar to a particular architecture. Hosteand Eeckhout [30] argue that

of a generic RISC architecture is capable of representing andcharacterising program

performance better than x86, and the ARM is used as an approximation a generic RISC

core.

Feature Extractor

Features were extracted by using the simulator SimIt-ARM v2.1 [55, 56]. The bench-

marks were compiled using a GCC v3.3.1, and then ran through the simulator. The

simulator counts the number of machine instructions used byeach benchmark, which

we use as the basis for our features. The use of GCC ensures thatalmost all code will

run through the simulator, making it relatively easy to extract features.

A pertinent question at this point is: why use a simulator to extract features? The

answer is that this is mainly due to time and resource constraints.

Primarily, using a simulator is an efficient use of time in infrastructure work – the

approach used in chapter 6 requires the use of the SUIF compiler [29] from Stanford,

which is old and unmaintained piece of software, which only accepts the ANSI C-89

standard. It therefore requires a considerable amount of work to make each program

in a modern benchmark suite compatible with SUIF. A new feature extractor could be

written from scratch, but this again is prohibitively expensive in terms of time.

The feature extraction stage should be considered as a lightweight profile stage, taking

very little time on a modern, fast machine. Although a simulator is normally a slow

tool for feature extraction, in principle, there is no reason why these instruction counts

could not be captured by an extremely lightweight and fast profiling tool – modern

JIT simulators can run significantly faster than real hardware[60] – and therefore we

assume this feature capture stage is fast.

A simulator also provides much additional information about a program not available

to a lightweight profiler, such as the efficacy of the cache lines and information about

the pipeline, etc., so all such information from the simulator output is discarded, and

does not form part of the feature set. The simulator is simplyused as a shortcut to
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Figure 7.1: Percentage of the total information of the dataset explained by increasing

number of principle components

obtain this information, without having to write a tool for this purpose.

Indeed, it is crucial to the success of this work that the analysis of a large number

of programs is fast as it relies on observing more programs than has been attempted

before.

Feature reduction with PCA

These features were then further reduced in number, using a technique calledPrincipal

Components Analysis(as was used in chapter 6). This technique reduces the dimen-

sionality of the feature space by examining the variance within the data, and while

preserving as much variance as possible, generating a new set of features which are

a linear combination of the original set. These resulting features are called Principal

Components (see section 4.5.5 and [6]).

It is possible to chart how much of the variance of the data is expressed with each

additional principal component, and this is shown in figure 7.1. Here we can see that

80% of the variance of the data can be expressed in just 9 principal components, and

thus we use these 9 principal components as our features. By expressing the features

in this way, we can attribute less importance to features which are highly correlated
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and thus may skew the results.

7.3.2 K-means clustering

The feature-space is clustered using thek-meansalgorithm, which is a simple stochas-

tic technique [6]. K-means clustering was selected becauseit is the simplest of the

clustering algorithms, and it makes sense to try the simplest first. The input to the al-

gorithm was the reduced feature set of 9 principal components, as described in section

7.3.1. Since the results of the k-means algorithm contain anelement of randomness

due to the initial placement of the cluster centroids, the algorithm was executed 50

times, which is enough to ensure the selection of the centroids with the lowest total

intra-cluster variance to maintain replicability of the experiment. We employed the

Euclidian distance metric to test for similarity, which is simply result of a standard

difference-squared distance equation between two points,overn dimensions (9 in this

case).

The algorithm treats the feature-space as a continuous space, where in reality it consists

of discrete points. For this reason, the program with the smallest Euclidian distance

between itself and each centroid is chosen as the archetype for each cluster.

Selecting the correct number of clusters

The k-means technique cannot determine the correct number of clusters which most

accurately depict the space, which must be supplieda priori. This presents the prob-

lem of how to choose how many clusters to represent a complex high-dimensional

space. This is a well known and difficult problem, and is a subject worthy of signif-

icant research on its own merits. Since this is not the primary purpose of this work,

we employed the technique suggested by Ray and Turi [53] whichbuilds on the sim-

ple premise of considering the proportion of the intra-cluster variance in respect to the

inter-cluster variance, and selecting the first local minimum of this value as the number

of considered clusters increases.

Intra-cluster variance can be defined as:

Sintra =
1
N

K

∑
i=1

∑
xεCi

‖x−zi‖
2
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and inter-cluster variance as:

Sinter = min
(

∥

∥zi−zj
∥

∥

2
)

, i = 1,2, ...,K−1, j = i +1, ...,K

Full details of the algorithm are provided in their publication[53].

The first local minimum encountered using this technique wasat 6 clusters, and this

is the value used throughout this chapter. This postulates that the optimisation space

considered in this chapter consists of 6 distinct regions which share similar character-

istics.

7.4 Experimental work

These experiments were carried out on an Intel Core 2 Duo E6750processor running

at 2.66GHz. The machine was running a stripped down version of Ubuntu Linux 8.04

with linux kernel version 2.6.24. The compiler used was the MILEPOST [25] version

of the GCC compiler version 4.2.2, which allows additional optimisations over and

above the default GCC to be accessed via compiler flags. The timing was carried

out using the CCC optimisation framework, also part of the MILEPOST project. The

techniques presented are evaluated on the EEMBCv2 [19] benchmark suite. When

a choice of dataset was offered by EEMBC, the default dataset was chosen. A few

programs were excluded due to difficulties with the MILEPOSTGCC compiler.

The following sections describe each experimental approach algorithmically:

7.4.1 Cluster-based Approach

Evaluation of the cluster-based approach was carried out asfollows:

1. Features are extracted from each of 44 programs in the benchmark suite (see

section 7.3.1). The features are then reduced to 9 principalcomponents, using

the PCA technique.

2. The feature-space is then clustered into 6 clusters, and the most typical programs

selected for each cluster, one for each (see section 7.3.2).Leave-one-out cross-
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validation (see section 4.7.2) is used, excluding each considered benchmark in

turn.

3. These 6 benchmarks are executed 4000 times, using random optimisation flags

in a similar manner to previous chapters. The set of flags providing the best

performance for each of these benchmarks is recorded.

4. Each benchmark’s features are inputted into the clustering model, which now

has 6 fixed cluster centroids. It then assigned to a cluster byconsidering the

cluster centroid nearest in Euclidian distance. This can beconsidered similar to

the nearest neighbours approach employed in chapter 6.

5. Having been assigned a cluster, the benchmark is compiledand executed, using

the best performing compiler flags associated with its cluster, and the execu-

tion time recorded. The benchmark is also compiled and executed using the O3

optimisation setting on the compiler as a baseline.

Although cross-validation (see section 4.7.2) is employed, its use or otherwise does

not affect the outcome of the experiments in this case, as removing a single point from

the feature-space does not affect the partition boundariessufficiently to cause a change

in the classification of any benchmark represented in the space. This is confirmed by

the empirical data.

7.4.2 Random Approach

Given that a limited amount of time and resources is available to train a smart compiler,

there must be some way of determining which benchmarks to usefor learning in a large

benchmark suite. The most obvious is simply to choose randomly.

Evaluation of the random approach was carried out as follows:

1. 6 benchmarks are randomly chosen from the set of 44, and their features ex-

tracted as above.

2. These 6 benchmarks are executed 4000 times, using random optimisation flags

in a similar manner to previous chapters. The set of flags providing the best

performance for each of these benchmarks is recorded.

3. Each benchmark’s features are inputted to a nearest neighbour classifier, plotting

the randomly selected programs as potential neighbours in the feature space. It
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can be then assigned of the 6 random points by considering thepoint nearest in

Euclidian distance.

4. Having been assigned the nearest random point, the benchmark is compiled and

executed, using the best performing compiler flags associated with that point,

and the execution time recorded. The benchmark is also compiled and executed

using the O3 optimisation setting on the compiler as a baseline.

5. This process is then repeated 1000 times to minimise the effect of randomly

choosing particularly good or bad points.

7.4.3 Iterative Approach

The iterative approach is included for purposes of comparison. This is a typical itera-

tive optimisation [26] implementation where each benchmark is executed 4000 times,

using random optimisation flags, as is done in the training stages of the previous two

approaches. The best execution time found is recorded. Using this value, it is possible

to see the potential for optimisation each program has.

7.5 Results and Analysis

The results of two experimental approaches are presented inthe table below. Firstly,

the results of our cluster-based smart compiler, where 6 cluster centroids have been

chosen by analysis, and in comparison, a smart compiler which uses an equal number

of randomly selected points. Additionally, the best available result found using stan-

dard iterative compilation over 4000 runs is presented to show to scope for improve-

ment available for each benchmark. All speedups are given relative to the standard

GCC compiler with the highest O3 optimisation level enabled.

7.5.1 Results table

Speedups

Benchmark Clustered Approach Random approach Iterative Search
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Speedups

Benchmark Clustered Approach Random approach Iterative Search (4000 runs)

a2time01 0.96 0.99 1.05

aifftr01 1.17 1.18 1.45

aifirf01 1.05 0.67 1.18

aiifft01 1.04 1.03 1.29

basefp01 0.92 0.90 1.04

bitmnp01 1.02 0.90 1.07

cacheb01 1.48 1.23 1.72

canrdr01 1.02 0.86 1.32

idctrn01 1.09 0.66 1.14

iirflt01 0.99 0.96 1.11

matrix01 1.27 1.14 1.57

pntrch01 1.26 0.66 1.24

puwmod01 1.89 1.33 1.89

rspeed01 1.18 1.15 1.36

tblook01 1.31 1.14 1.44

ttsprk01 1.22 1.02 1.24

cjpeg 1.08 1.07 1.18

djpeg 1.05 1.09 1.28

autcor00 1.39 1.63 1.80

conven00 0.96 0.85 1.15

fbital00 0.96 0.93 1.13

fft00 1.20 1.23 1.39

viterb00 0.94 0.85 1.20

ospf 1.05 0.95 1.23

pktflow 1.52 1.34 1.50

routelookup 0.93 0.89 1.08

beizer 0.96 0.98 1.20

dither 1.19 1.07 1.31

rotate 0.99 0.98 1.02

text 0.98 0.96 1.02

aes 0.75 0.81 1.12

cjpegv2 1.05 1.11 1.21
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Speedups

Benchmark Clustered Approach Random approach Iterative Search (4000 runs)

djpegv2 1.09 1.19 1.41

huffde 1.09 1.03 1.23

mp4encode 1.03 0.98 1.13

mp4decode 0.90 0.88 1.06

rgbcmy 0.97 0.99 1.18

rgbhpgv2 0.93 1.00 1.22

rgbyiqv2 1.06 1.10 1.34

mp3player 2.71 1.41 2.65

tcp 1.09 0.92 1.10

ip reassembly 0.99 0.99 1.05

ospf 0.97 0.98 1.08

ip pktcheck 1.26 1.07 1.25

AVG 1.14 1.02 1.29

On average, using just one evaluation, our clustering-based approach yields a speedup

of 1.14 over the whole benchmark suite. This compares to a speedup of only 1.02 if

the smart compiler uses points selected at random.

The correctness of each of these best points was verified using the EEMBC internal

verification, which compares the produced output to the desired output.

7.5.2 Analysis

Our clustering-based approach performs significantly better than the random selection

approach because it represents the space of programs much better. By considering

a large number of programs before any training occurs, we cansuccessfully choose

which programs to use to train on. Since the space is not uniform, a random selection

is likely to bias itself towards selection of overly represented sections of the program-

space, whilst neglecting others. In this very complicated space, such disparity between

the actual program-space and what has been chosen to represent it inevitably results in

poor performance.
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Figure 7.2: Results for random, clustered and iterative approaches
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There are benchmarks for which our clustering trained smartcompiler fails to beat,

and in some cases does worse than, the baseline. While regrettable, this is not sur-

prising. Both compilers are taking a very difficult problem – the problem of program

optimisation – and giving the result most likely to be good according to some internal

model. However much pre-analysis is put into this problem, there is likely to be an

element of randomness in the output, resulting in occasional decreases in speed for a

small number of programs, even when using a generally more accurate model. This

pattern can also be observed by comparing two commercial compilers for the same

platform. The important aspect is that the clustering basedsmart compiler performs

significantly better on average.

It might be argued that one may wish to avoid the chance of a heavy drop in perfor-

mance, as is seen in theaesbenchmark, and thus should choose the baseline over our

smart compiler, but even this is not so. The use of the GCC O3 optimisation level as

1.00 – the baseline – is entirely arbitrary. It is possible toredraw the results table using

our smart compiler as the baseline, and instead comparing the GCC O3 performance

to this; given these values, it would be obvious that far larger performance drops would

occur by switching from our smart compiler back to GCC at O3.

Some particularly large speedups are achieved, such as 2.71for mp3player, and 1.89

for puwmod01. This is likely to be because of the very kernelised nature ofthese codes,

where changing a small section of code which is frequently used can have a large

impact on the resulting speedup. These codes also seem to be particularly amenable to

optimisation using particular loop unrolling factors.

There are also some benchmarks which perform poorly using clustering smart com-

piler, such asaes, which significantly slower than the baseline at O3. This is likely

because of the unusual coding style often inherent to encryption algorithms which is

not captured by our features. Optimisations which are useful other programs near to

aesin the feature space may in fact inhibit performance due to this unusual style.

This means that, on average, we can achieve slightly under half of the performance

improvement attained by iterative optimisation using 4000runs, in just a single evalu-

ation. Additionally, we achieve a 700% increase in the additional optimisation possible

by using our clustering-based approach rather than random selection, which shows it-

self not to be a viable option when no search of the space is allowed (indeed, as was

also shown in the previous chapter).
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Figure 7.3: Speedup achieved by using learning with an increasing number of randomly

selected programs

7.5.3 Increasing learning time and the efficacy of features

As shown above, training a smart compiler using only 6 randomly chosen points yields

very poor results when allowing only one evaluation (as opposed to search in the pre-

vious chapter). This, as has already been said, is the resulta poor representation of

the space of all programs. However, the number of randomly chosen points, 6, was

only considered as a fair comparison to the 6 cluster centroids chosen by the clustering

approach, and more, or indeed, fewer, can be considered:

Figure 7.3 shows how increasing the number of randomly selected programs used for

training the smart compiler increases the performance of the compiler. The experi-

ments were carried out in the manner described in section 7.4.2 except using different

numbers of points. Two important conclusions can be drawn from this: firstly, that in

order to achieve performance getting even near to our cluster based approach, we need

a very large number of programs to train on – 36 for a 1.10 speedup. This translates

as 120,000 extra training runs when compared to using 6 clustered points (assuming

4000 runs per point).
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The second, and possibly more important conclusion is as follows: the features used in

this work are indeed indicators of how to optimise a program.It is difficult to quantify

how good these features are as we have no other similar data tocompare it to, yet the

fact we can empirically show a correlation between closeness in terms of Euclidian

distance in the feature-space and the speedup obtained using a smart compiler is an

important one in itself, as it shows the features used here really make a difference.

If proximity in terms of distance in the feature-space made no difference to how a

program should be optimised, we should see no difference when training over an in-

creasing number of random points. Increasing the number of random points selected

for training decreases the average distance between any point in the space and its near-

est training point. The fact that this decrease in distance correlates very well with an

increase in performance indicates the features are performing well.

In machine learning, unsupervised, feature-only based techniques are usually validated

by success in empirical experiment, and this has been achieved in this chapter.

7.5.4 Applicability of results

These experiments were performed on a general-purpose architecture, the Intel Core 2

Duo. It is clear how single evaluation compilation is usefulin the general-purpose do-

main, however it is also useful in the embedded domain. Indeed, even though iterative

and search-based techniques have been available for years in the embedded domain,

their use is the exception rather than the rule. There are a number of good reasons for

this, including the difficulty in setting up search-based and iterative techniques, lack

of track-record producing a lack of trust, and the time and resources required. The

technique presented here is simple and easy to deploy, only requiring training in the

production stage of the compiler.

This work is relevant to the embedded domain in two importantways: firstly, it useful

by its own merits for the reasons given above and, secondly, it can be used as the

starting point for search-based techniques like the one proposed in chapter 6 – time

constraints prevented any such experiments in this work, but would be interesting as

future work.

Although there is no guarantee this work on a general-purpose processor is transfer-

able to the embedded domain, I believe we can and must take it as a ’proof of concept’.
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In reality, this experiment would be very hard to carry out onany embedded architec-

ture. This is because of the very large number of experimentsrequired to prove the

effectiveness of the technique (over 176,000 were carried out in this work). If such

an experiment were attempted on even a real embedded processor, yet alone a cycle-

accurate simulator, the time and resources required would quickly make the project

infeasible.

However, the main reason why so many experiments are necessary to show the tech-

nique works is not because of the time taken by the actual cluster-based program se-

lection proposed, but because of the multiple random selections needed to show the

improvement is not down to luck. If one accepts the ‘proof of concept’, then an em-

bedded smart compiler could be trained on this benchmark suite using only 24,000

training runs – a reduction of over 152,000. Indeed, the use of the ARM instruction

set as a basis for the features in this chapter which is evaluated on x86 indicates this

technique can work across platforms.

7.6 Conclusion

We have demonstrated that, by clustering in the feature-space, we can dramatically

reduce the amount of training required to achieve good performance using a smart

compiler, a reduction of over 120,000 runs. By cleverly selecting the training data to

be used, we can much better characterise the program-space with a small number of

points, rather than randomly selecting them.

In addition, we have shown that a smart compiler trained in this way gives an average

of 1.14 speedup on the EEMBCv2 benchmark suite over the O3 baseline in just one

evaluation. This was achieved by training on only 6 programs. We have further shown

that instruction ratios are useful features to use when considering this problem, and

that these features work across two different architectures.
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Conclusion and Future Work

This thesis has presented a new approach to constructing a compiler optimiser. Instead

of using expert knowledge, which is often based on rules of thumb, intuition or un-

quantifiable past experience, this approach relies on statistical evidence upon which

to base optimisation decisions. The method has proven highly effective in produc-

ing significant improvement in execution time over heavily developed compilers, both

proprietary and open source, and in addition, significantlyspeeds up the process of

building a good optimiser for a new platform.

This chapter presents a a summary of the work achieved in section 8.1, an evaluation

of the work in section 8.2 and a look ahead to possible directions for future work in

section 8.3.

8.1 Contributions

The number of different options available to a compiler has been shown to be truly

vast (see chapters 5 and 6). It is clear that it is not possibleto search all, or even much

more than a tiny fraction of this compiler optimisation space. Therefore, a compiler

engineer must consider a strategy for selecting the best optimisations, and the order

in which these optimisations apply. This thesis argues for astrategy employing the

power of statistical analysis through the use of machine learning to accomplish the

task of searching this n-dimensional, highly non-linear [14, 26] search space.

This thesis has addressed the issues of improving the performance of optimising com-

125
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pilers, and producing general, fast and inexpensive methods for tuning a compiler’s

optimisation stage, capable of customising itself to a variety of different architectures.

Using machine learning to control its optimiser, statistical information about the be-

haviour of programs can be analysed, evaluated and exploited by a compiler, enabling

it to make performance gains.

Further, this thesis suggests a means to bring the functionality of machine learning

based compilers toward the level of a traditional compiler,allowing the user to gain the

utility of statistical analysis without the need for search. This is achieved by allowing

the consideration of a larger and more representative training space.

8.1.1 Intelligently searching the optimisation space

Previous work [7, 26] in iterative compilation recognised the potential to outperform

traditional compiler heuristics by randomly searching through the optimisation space

– while this met with some success, it was at the cost of extremely long compilation

and evaluation time.

This thesis has proposed a probabilistic method to search the optimisation space more

effectively and gain additional speedup, concentrating onprofitable areas and steering

away from code transformations which cause slow down, or no gain.

A probability vector is created, representing the likelihood of each transformation be-

ing chosen in a particular evaluation, and this is updated constantly, using runtime

feedback, to allow the search to focus. This is combined witha random search, so as

to avoid becoming stuck in local minima. Using this technique, a speedup of 1.71 is

achieved over the UTDSP benchmark suite on average, outperforming previous work.

8.1.2 Using prior knowledge

Probabilistic search helps a compiler focus on the good areas of the optimisation space,

but it does not do so quickly. This is because the knowledge ofwhich optimisations are

profitable to apply on a single program is simply discarded atthe end of compilation,

and the process must start over from scratch on a new program.

This thesis has proposed a system to capture this knowledge,and transfer it to new, un-

seen programs, allowing the same performance gains to be made in fewer evaluations.
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This knowledge transference is achieved by employing code features (see 4.3) to char-

acterise each program. Code features are used as a metric to compare each program’s

similarity, and thus the likely applicability of similar code transformation. Knowledge

capture is achieved by employing models to represent the success, or otherwise, of

transformations or transformation sequences for a particular program. Using both of

these techniques together, this thesis shows how the numberof iterations required for

equivalent performance can be reduced by an order of magnitude.

8.1.3 Eliminating search, characterising the program spac e and

selecting benchmarks

Although some work has been done on non-search based statistical compiler tech-

niques [57, 43], this research concentrated on single parameter tuning (like loop un-

rolling options) or evaluating two optimisations. The optimisation spaces examined in

these tasks do not suffer from the kind of combinatorial explosion seen when a large

number of transformation options are evaluated, nor do theygive the same scope for

improvement. This thesis has presented a one-shot compilersolution, based on statis-

tical analysis of the program space. No search occurs and thecompiler must decide on

an optimisation strategy based purely on prior knowledge, with no feedback.

Generating the initial training data for a learning compiler as seen in chapter 5, and

in [14, 15], is time-consuming. The selection of benchmarksfor training has not been

considered before, and instead, all available benchmarks in relatively small suites have

been used, using the same suite for evaluation of the technique. This is for two reasons:

firstly, because the effort required to get benchmark suitesrunning through proprietary

compilers and tools is not insignificant, and secondly, because the time available to

train the compiler is limited, and thus only a small number may be considered.

This thesis has proposed using unsupervised learning to circumvent these two issues.

Unsupervised learning considers the feature space of programs, without the final ob-

jective function – in this case, runtime – and so the cost of adding a new program to the

training set is simply that of extracting the features; there is no need to run the program

through the real hardware. This dramatically reduces the cost of adding a new program

to the training set, allowing a greater number to be considered, and, in turn, increases

the training set’s coverage of the program space.
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Using a simple form of unsupervised learning called k-meansclustering, this thesis has

shown how a learning compiler can best make use of its training time by concentrating

on those programs which best represent the wider program space. By exploiting this

extra coverage, the learning compiler was able to achieve a speedup of 1.14 on average

across the EEMBCv2 benchmark suite, in just a single evaluation. This represents just

under half of the speedup possible when using iterative search for 4000 evaluations.

The learning compiler required only 24,000 training runs inthe training stage to achieve

this result. In order to approach this result using random benchmark selection, 120,000

extra training runs were required. Additionally, when bothapproaches were limited to

just 24,000 training runs, we achieved a 700% increase in theadditional optimisation

possible by using our clustering-based approach rather than random selection.

8.2 Critical Analysis

The major goal of this thesis was to increase compiler performance by means of better

optimisation strategies, which reduce execution time of benchmarks. This goal has

been achieved, however there are additional costs that mustbe borne – in chapters 5 and

6, improvements in program execution time are traded off against longer compilation

time. In addition, a profiling stage is necessary to provide feedback, adding additional

infrastructure to a compiler toolchain, and meaning only code that has some readily

measurable goal can be optimised in this way.

In the field of embedded systems, such extra cost is often acceptable due to long run-

times for programs and mass replication. Even in the generalpurpose world, addi-

tional effort may be put into optimising a final release whichmay be copied many

times. However, a disparity between final code performance and that during develop-

ment, where compile time is more critical, is undesirable inboth cases; an embedded

systems manufacturer may not be aware of the extent to which performance gain is

possible until after the specifications of the system are set. This could render the im-

provement moot, as the system is already capable of performing the needed task with

the unoptimised code. Research into performance predictionand potential for optimi-

sation may counter this problem [18].

This thesis only considers execution time as an optimisation goal. While this is usu-

ally the primary concern of compiler users, other factors such as code size and power
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consumption can be important. The thesis would have benefitted from considering

these optimisation goals too, however this was not possibledue to the extra time and

infrastructure it would have required.

Moreover, optimisation based on search could be said to fallinto a ‘gap’ between two

areas of utility – that is that runtime is either not critical, in which case long compilation

time is unacceptable, or it is critical, in which case hand-coding of assembly code is

likely to produce the better result. Yet, embedded code is increasingly being written

in high-level languages due to the maintainability and time-to-market advantages it

confers, and it is necessary to provide a good solution for this growing market.

Comparison between different techniques is made more difficult by inconsistent in-

frastructure within this thesis – two different benchmark suites are used: UTDSP [29]

and EEMBCv2 [19]. The change of benchmark suite between chapters 6 and 7 inhibits

comparison between the techniques. However, this was necessary because the UTDSP

benchmark suite is small in number of benchmarks, and it is unlikely that the cluster-

ing based ‘whole picture’ technique of chapter 7 would be interesting or successful on

this suite.

Another change between chapters 5 and 6, and chapter 7 is the change in compiler

infrastructure between COLO Tool/SUIF and Milepost GCC due tothe progression of

infrastructure work over time. This makes the works more difficult to compare, and is

regrettable.

Difficulty with infrastructure and compiler compatibilityalso led to a mismatch in

the number of benchmarks considered on the two different architectures in chapter 6,

where an additional five benchmarks are considered on the AMDplatform over the TI.

This makes any comparison between the two architectures less persuasive, however it

was thought preferable to cutting the benchmark suite further on both systems.

In chapter 7, the use of a general-purpose processor differentiates this chapter from the

others. The use of an embedded processor in this chapter would have been preferable

to evaluate an embedded benchmark suite, however, this was not possible (see section

7.5.4).

Finally, parallelism is the greatest compiler challenge inan increasingly multi-core

world. This thesis does not address the issue of parallelismat all, purely dealing with

single-threaded optimisation. It is likely that the relevance of single-threaded optimi-

sation will decrease as that of parallelism increases.
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8.3 Future Work

This thesis has used some simple machine learning techniques to obtain significant

improvement in compiler performance by transformation selection and reordering. We

have seen that the optimisation space considered by these techniques is so vast and

complicated, that it is likely that more sophisticated machine learning algorithms will

be useful in improving them further.

One such example issemi-supervised learning, where both unsupervised learning and

supervised learning are combined, giving a good coverage ofthe space while still hav-

ing the potential to learn complex space properties. Another is the field ofactive learn-

ing, where the learning system itself can choose where there is alack of information

in the optimisation space and ask for a particular point to besampled. There is every

reason to believe that there is still gain to be made.

This thesis considered only execution time as an optimisation goal, however, as has

been previously stated, code size and power consumption areimportant too. Simply

targetting them individually could be done in exactly the same way as is done in this

thesis by changing the objective function. This is less interesting. However, multi-

objective learning might be considered, where execution time, code size and power

consumption are balanced against each other depending on requirements, which is a

difficult task not addressed in this thesis.

Finally, optimisation for multi-cores is becoming increasingly important. These more

complex processors pose different challenges to the compiler, and machine learning

could help in solving them. For instance, in the past, auto-parallelisation techniques

have performed poorly due to missing out on opportunities for parallelisation where

the dependencies in the code were not fully formally analysable, or where unnecessary

dependencies forbid the transformation. Machine learningcan assist by examining the

whole picture – auto-parallelisation techniques from the 90’s focused on loop paralel-

lism using only local analysis, and cannot take into accountlarger scale issues such as

data layout in memory or conflicting cache behaviour. Machine learning can be used to

take into account both the local and the global picture, making decisions at both levels

to benefit the program as a whole.
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8.4 Conclusion

This thesis has demonstrated that machine learning is a powerful tool which can be

harnessed by compiler engineers to automatically optimisehigh-level code. Statistical

analysis of program structure, content and runtime feedback has been shown to be a

better way to inform compiler optimisation than existing ad-hoc techniques.
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Appendix

Transformations in SUIF

Aggressively scalarise constant array references

Apply default SUIF transformations

Array Delinearisation

Array Padding

Bit Packing

Bounds Comparison Substitution

Break load constant instructions

Break up large expression trees

Chain multiple array references

Common Subexpression Elimination

Common Subexpression Elimination (no pointers)

Constant Folding

Constant Propagation

Control Simplification

Copy Propagation

Dead-Code Elimination

Dismantle abs instructions

Dismantle array instructions

Dismantle composite float and integer instructions

Dismantle composite float instructions

Dismantle divceil instructions

Dismantle divfloor instructions

Dismantle divmod instructions

Dismantle empty TREE FORs

Dismantle integer abs instructions

Dismantle integer max instructions
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Dismantle integer min instructions

Dismantle max instructions

Dismantle memcpy instructions

Dismantle min instructions

Dismantle multi-way branches

Dismantle non-constant FORs

Dismantle TREE BLOCKs

Dismantle TREE BLOCKs with empty symbol table

Dismantle TREE FORs

Dismantle TREE FORs with modified index variable

Dismantle TREE FORs with spilled index variables

Dismantle TREE LOOPs

Eliminate enumeration types

Eliminate struct copies

Eliminate sub-variables

Elimination of unused symbol

Elimination of unused types

Explicit array references

Extract array upper bounds

Find Fors

Fix address taken

Fix bad nodes

Fix LDC types

For Loop Normalisation

Forward Propagation

Global variable privatisation

Globalise local static variables

Guard FORs

Hoisting of loop invariants

If Hoisting

Improve array bound information

Induction Variable Detection

Kill redundant line marks

Lift call expressions

Loop flattening

Loop Tiling

Loop Unrolling

Mark constant variables

mod/ref Annotations

Move loop-invariant conditionals
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Privatisation

Put in explicit loads/stores for non-local variables

Reassociation

Reduction Detection

Replace call-by-reference

Replace constant variables

Scalarisation

Scalarise constant array references

Split deep fors

Strictly fix bad nodes

Turn imperfectly nested loops into perfectly nested loops

Unstructured control flow optimisation

Table A.1: List of source-to-source transformations used in SUIF
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