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Abstract

Many optimisations in modern compilers have been tradiligrbased around using
analysis to examine certain aspects of the code; the contpgl#ristics then make a
decision based on this information as to what to optimisegr&ho optimise and to
what extent to optimise. The exact contents of these hegibive been carefully
tuned by experts, using their experience, as well as analytols, to produce solid
performance.

This work proposes an alternative approach — that of usiogeprstatistical analysis to
drive these optimisation goals instead of human intuittbrgugh the use of machine
learning.

This work shows how, by using a probabilistic search of thnagation space, we can
achieve a significant speedup over the baseline compilérthé highest optimisation
settings, on a number of different processor architectures

Additionally, there follows a further methodology for sp@®y up this search by be-
ing able to transfer our knowledge of one program to anofhieis thesis shows that,
as is the case in many other domains, programs can be sudbesspresented by
program features, which can then be used to gauge theitasityiand thus the appli-
cability of previously learned off-line knowledge. Empiog this method, we are able
to gain the same results in terms of performance, reducigjrtire taken by an order
of magnitude.

Finally, it is demonstrated how statistical analysis ofgyeams allows us to learn addi-
tional important optimisation information, purely by examg the features alone. By
incorporating this additional information into our modele show how good results
can be achieved in just one compilation.

This work is tested on real hardware, for both the embeddddyaneral purpose do-
main, showing its wide applicability.
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Chapter 1

Introduction

Automatiorhas been a defining characteristic of the latter 20th certwg have read-
ily accepted the assistance of machines and computers dadytives, allowing them
to perform tasks that humans could not accomplish at suadspedeed, a traditional
compileris in itself an example of automation, providing a means afstating high
level instructions into lower level instructions with a pabat has allowed the software
industry to flourish. However, the construction of the colergiself is a conspicuously
manual task, often involving substantial effort to buildiaitial prototype, and even
more to create the calibre of optimisation engine which ¢aties the quality of code
expected today.

This thesis investigates a means to significantly accelereg process of creating a
good optimising compiler bputomatically learninga good optimisation strategy. In
addition, it shows how such an compiler can substantialtpedorm a manually tuned

compiler over a number of benchmark suites.

1.1 The Problem

Time-to-market

Time-to-market is now a significant driving force in procassgesign/manufacture,
particularly in embedded systems. The stalling of the iaseein clock rates due to
transistor shrinkage has forced architects to explore ralaigorate design strategies
in order to preserve Moore’s Law. As microprocessors aretngty increasingly

9



10 Chapter 1. Introduction

complex [28], compilers are finding it harder to keep paceé, @ren more difficult to
obtain good performance.

At the same time, coding in assembly is slow and labouriond,can delay an em-
bedded systems project from design to market; thus we haveasing demand for
compiled code, with the compiler having decreasing abilityexploit the processor.
Further, the lack of a good optimising compiler poses a ehgk for the architect dur-
ing development, and can hamper the evaluation of architesfor compiled code.

There is a clear need for compilers which can provide quabtye for new and emerg-
ing platforms as soon as they are released.

Compiler performance

Frequently, optimising compilers are faced with difficuétaisions as to which opti-
misations to apply and in which order; taken together withrtultitude of other ex-

tremely taxing tasks the compiler must perform such as coldeduling and register
allocation (which themseves may all produce subtle interas between each other)
the task faced by an optimising compiler is indeed vast [B4, Praditional compilers

rely on manually written heuristics to counter this hugdrajsation problem, usually

with poor results[47].

There has been significant research interest in improviagénformance of optimis-
ing compilers for embedded systems, e.g. [41]. Such wodelgrfocuses on improv-
ing back-end, architecture specific compiler phases sudo@es generation, register
allocation and scheduling. However, the investment in evere sophisticated back-
end algorithms produces diminishing returns, and is ugsakcific to an architecture.

There exists an unwanted gap in performance between cahquitée and hand-written
code. Improving the performance of code on an embedded $soceould result in a
reduction in clock speed, and thus power consumption, dddead to less expensive
hardware being used.



1.2. Contributions 11

1.2 Contributions

This thesis presents methods to increase the performancengbiled code by re-
placing hand-tuned or arbitrary compiler heuristics wittistically derivedmachine
learningtechniques. In addition, these methods do not require mansstof experts’
time to tune, and can be simply and quickly regenerated far axehitectures with
excellent results.

Firstly, a probabilistic scheme for optimising embeddestams is presented, which
takes the idea of iterative compilation and extends it, daseruntime feedback, by

statistically determining which optimisations, and in waliniorder, provide good per-

formance for an embedded program. It uses this informataie basis for a proba-

bilistic search of the optimisation space, concentratiregsearch in known good areas
in order to gain further performance improvements in a cdppenber of iterations.

Secondly, prior experience of the effects of compiler opation on previously seen
programs is captured and used to greatly reduce the numlasahbfations necessary
to gain good performance. Capturing program charactegiagprogram featuregsee
in section 4.3) and using statistical analysis allows tblsesne to achieve results an
order of magnitude faster than previous work.

Finally, a third scheme is proposed which dispenses withckeatogether, and pro-
vides immediate performance improvement without incoreere. This technique
usesunsupervised learnintp train the system on a larger number of programs than
was possible previously, allowing better characterisatibthe program space by sta-
tistical techniques, and ultimately, better performamcene evaluation.

1.3 Structure

This thesis is structured as follows: chapter 2 describek walated to both search
based compiler techniques, where multiple compilatioagarformed, and non-search
based techniques which have only one evaluation. Workimgléd library generation
and choosing from a selection of heuristics is also desgrikhapter 3 gives a sum-
mary of the tools and infrastructure which were used to cautythe experiments in
this thesis. Chapter 4 provides an introduction to machiaelag from a compiler
perspective, and explains the techniques used in thisstheasdl by others. Chapter 5
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describes a probabilistic iterative search method for amimg single program perfor-
mance. In chapter 6, code features are employed to use psesxperience of similar
programs to prime the search, and in chapter 7, an unsupdreisstering-based ap-
proach is proposed which gives a better characterisatitimeadptimisation space, and
allows the number of evaluations to be reduced to one, thuseting search entirely.
Chapter 8 concludes the thesis, presenting a summary of theagbieved, an evalu-
ation of the work, a critical analysis and a look ahead to ipbsslirections for future
work.



Chapter 2

Related Work

This chapter provides a summary of related work in the are@aaahine learning tech-
niques. Section 2.1 discusses search-based compilerideelsrfor compilers and li-
brary generation, and section 2.2 details techniques barsedodelling the optimi-
sation space, using preditive models to predict performamd guide compilation,
both usingsupervised learningSection 2.3 details work which uses amsupervised
technique calledlusteringto examine benchmark suites.

Supervised Learning

Supervised learning is a term which includes a large numbkraoning methodolo-
gies, all of which rely on knowing the correct output for givieputs in the training
dataa priori. That is to say that a learning algorithm takes each traimpgt pat-
tern and produces an expected output — that expected ostpgh#n compared to the
known correct output, the differences recorded and thailegisystem updated to try
to minimise these differences. The most well-known exarmpkesupervised learning
technique idack-propagationn artificial neural networkgsee section 4.5.1.3).

This section deals with supervised learning techniquesti@®e2.1.1 discusses compiler-
based search techniques for the purpose of gaining the bssibfe optimisation of
code, and section 2.1.2 shows domain specific applicatiaeafch in the field of li-
brary generation. Section 2.2.1 shows how predictive niiodehas been used to pre-
dict the performance of a program without needing to runnt] section 2.2.2 shows
its use in predicting the best way to optimise, without searc

13



14 Chapter 2. Related Work

2.1 Search-based techniques

Intelligent search-based techniques can be thought of pe@atised example of on-

line supervised learning, in which the search strategy tatgd during the search.
They traverse an optimisation space, evaluating pointsahgpace and attempting to
find the best result. In this case, compiler transformatemesevaluated. The space
can be searched, and if structure can be observed, theropse@sults can be used to
determine where in the space is most profitable to searchplS&iexamples of this are

hill-climbersandgreedy algorithms

2.1.1 Compiler techniques

Work in this section focuses on searching the space of patdardnsformations at
compile time, in order to produce the best performance. iBhag extension otera-
tive compilation first used by Bodin et al.[7] and Kisuki et al.[47].

Iterative compilation (as proposed) is the random seagchinthe compiler optimi-

sation space for a particular program, evaluating as mamgas possible within a
constrained time. The evaluation consists of simply coimgpihe code with a given set
of optimisations, executing the binary and recording th&inie. The optimisations
which provide the fastest runtime are considered the besh&particular program
being compiled.

Bernstein et al. (1989)

One of the earliest pieces of work in this area is Bernsteih. §bh They used three
different heuristics, one after the other, to the problenshafosing a register to spill.
By measuring the results with a cost function, they could rieitee which produced
the best result. This is an example of a very limited, exhegisearch. Moss, Cavazos
et al. [44] tackled the problem of register allocation by lgpmm supervised learning to
this nave approach, using features of the code to determine wiaahstic to employ,
and thus saving the time of running and performing a costtfanon all three.
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Kulkarni et al. (2003)

Kulkarni et al. [36] use genetic algorithms and their VISTgtimisation framework
with a compiler based on VPO (Very Portable Optimizer) temipt to effectively
search the space of possible transformations, usingitereampilation. They report
on two different approaches: one which reduces the searehliy 65% on average
and another which reduced the number of generations by 68%selgoals seem so
similar as to be almost identical.

Optimisations are performed at a low level, on a RTL (registnsfer lists) represen-
tation. Optimising a single function with this approacheslaround ten minutes, with
applications taking hours or days. The vast majority of thmge is spend compiling
and linking the code rather than applying the transfornmaticuggesting either this
low level application of transformations is very efficieat,the compiler used takes a
long time to run.

Several techniques are employed to help cut the overall ternme. Firstly, a hash
table of all previous runs is kept. If the genetic algorithappens to chose a sequence
which has already been tested, then there is no need to tetsegquence. A second
hash table is kept which tracks all the effective transfdioms, disregarding those
which have no effect on the code. They use Cyclic RedundancykSHERC) on the
RTL representation. Data is only gathered using generalqeer CPUs, and thus may
not be applicable to the embedded domain.

Triantafyllis, Vachharajani and August (2003)

The authors consider the case of iterative compilation &regal purpose compilers
[61]. The long compilation times which might be acceptahléhie world of embedded
systems are not so in the general purpose world. This papeides a system called
Optimization-Space Exploration which is intended to dracadly cut the time spent
compiling.

Programs are separated into three classes, with iterativgitation being used on
each class to find the best sequence possible. Each of thesseglis split into a
further three subclasses, which are also searched for gtesbguence. This happens
one more time, meaning a three layer tree is built.
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When a novel program is compiled, the top three elements ofrdeeare used to
provide three transformation sequences. These are tri¢ioeomew program, and the
best element selected. The child nodes of this element areubked for the same
process, with again one of them being selected and the cbddshused. When this
process is finished, the best sequence obtained is chosém.isTdn attempt to use
the knowledge built offline using iterative compilation teathatically cut the search
to just nine runs. This is likely to work well if the programseach class are similar,
but this is hard to judge. The authors contend that progratufes are not sufficiently
informative for this process and so group programs by a mdigary method.

Cooper et al, (2004)

Cooper et al. [15] have performed a study into the effect ofieages of optimisations
on a program. The order in which transformations are apmédmake a huge dif-

ference to the quality of code produced. A certain transétiom may allow another

transformation to work more effectively afterwards, ort@asl may impede another, or
indeed both. Add to that the fact that this can equally applgroups of transforma-

tions and that the number of transformations which couldg@ied is unbounded in

length, and the optimisation space for this problem becom&ssive. In this paper,

the authors explore a subsection of the space exhaustiv@lygnsformations of up to

length 4) in order to try to characterise the full space, angley a number of search
techniques to try to find the best possible sequence.

They report that 80% of the local minima in the space are wifl% of the global
optimum. Such a landscape would seem to allow an easy seftioh gpace to get a
good answer, however, this is something that has generaediy bound to be difficult
in the past. For the cost of 200-4550 compilations, an imgmuent of 15-25% can be
obtained over the compiler baseline. Search algorithmd asea simple hill climber,
a greedy constructive algorithm and a genetic algorithne grieedy algorithm, as one
might expect, performs best over a small number of sequehoggever the genetic
algorithm does slight better if it is allowed to run for theximaum amount of iterations
(4550).

The graphs of the exhaustive space show that the questioansformation order is a
complex one indeed. The space is filled with local minima, amgears to be without
any obvious structure.
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Bennett et al. (2007)

This paper [4] combines a probabilistic iterative searahtfi@ best transformations
to apply to a program with an automatic exploration of prsoeslesign, though the
use of instruction set extensions (ISE). Bennett et al. (RA07only show significant
benefit in performing these tasks independently of one anpbiut also that consid-
erable additional performance can be gained by considén@egwo in a combined
optimisation space.

Compiler optimisations are performed at the source leveiguSIUIF1, and a tool
called Ipsolve built into the compiler from CoSy. This uses data-floapdy tem-

plates and basic block knowledge to generate a set of carddB templates for each
program, which can be searched through.

Using a simulator configured to a Intel XScale PXA270 proocgsshich has config-
urable extensions, and the UTDSP and STU-RT benchmarlssaiteaverage speedup
of 1.47 was obtained using the full search — this compareslipl09 for instruction
set explorations only, and 1.35 for compiler transformaionly. Thus it is clear that
these two values cannot be optimised independently; hawve not clear just how
complex this problem is.

Intuitively, combining two interacting, already complesoplems in an optimisation
space creates an even more complex problem. Though godts @supresented here,
it is unknown as to whether more sophisticated machine ilegm@pproaches dealing
with non-linear systems may show more utility.

2.1.2 Library Genereration

Using well-optimised libraries for often used pieces ofeigla simple way of speed-
ing up program execution. Well understood and computallipnaensive filters like
the fast Fourier transform and matrix multiplication arencoonly implemented in li-
braries. Since code is libraries is executed so often, amsliglly deemed to be critical
for performance, significant time can be spent in optimisiem.

The works in this section are application/domain specifianegles of search tech-
niques, used to optimise library code.
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Whaley et al. (2001)

ATLAS [64] is a tool for automatically generating extremefficient BLAS libraries
for particular processors and applications using empisearch. Consisting of a gen-
erator search module and a multiple implementations seacoctule, the tool attempts
to search across as wide an optimisation space as possiptedace a fast library.
This is at the cost of an extremely long search time — howekier,can be amortised
over many uses and a long period of time for very heavily udedry kernels such as
matrix multiplication.

The generator module consists of a code generator whiclvescemput parameters,
searches, and produces a kernel as output. The multipleimgpitation module then
searches through hand-written codes for the particuldicgtion, and ATLAS selects
the better of the final options provided by these two appresclthough ATLAS is
not a restructuring compiler, it does share many of the ctanstic of the same, and
is one of the first good implementations of stochastic searttis field, though it does
rely on hand-tuned code for much of its speed.

SPIRAL

The SPIRAL project [52] is the result of a collaboration of anrher of research
groups, but it primarily based out of Carnegie Mellon Uniugrand the University
of lllinois at Urbana-Champaign. The objective is to credibrary of platform-tuned
code for various different DSP architectures which implatmaost well known and
commonly used signal processing algorithms.

SPIRAL uses its own language (SPL) to represent the algositheing mathemati-
cal formulas and then uses this to generate code which ingriesithese algorithms.
Optimisations are performed over a more mathematicallgdéisan usual intermedi-
ate representation, using a feedback-driven approachaiflarkov decision process
combined with reinforcement learning. The SPIRAL projecsimgilar to the FFTW
project [24] (Fastest Fourier Transform in the West) in thases an intelligent search
strategy to attempt to find the best implementation of a sign@cessing algorithm,
however, FFTW is much more limited in terms of looking at atakgorithms as their
implementation is very closely tied to FFT whereas the SPIRAproach is general-
isable to any algorithm which can be represented in their IRguage.
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Epshteyn et al. (2005)

This work [20] takes two elements of previous work and corabithem effectively

for the purpose of fast library generation. Firstly, the raggh taken by the ATLAS

team, involving constructing an accurate empirical model processor and applica-
tion couplet, taking a very long time to generate useful ltssand a online search
based technique, similar to that employed by Cooper et a]. [15

Epshteyn et al. usActive Learningo achieve a much faster search than ATLAS. An
initial search point is analysed and its information gagldeand stored. The next search
point to be evaluated is then, rather than being determiaedamly or probabilisti-
cally as in [15] and [22], instead the search space is ewvaditatdetermine which point
contains the most information pertinent to the model beunty,vhich has not already
been amalgamated into the model. This process can only ootine and no#& priori.

The results are presented for a SGI R12000 MIPS-based porcastun UltraSPARC
[l and a Intel Pentium Il processor, showing a improvemaergpeed of library gen-
eration of 3 to 4 times the speed of ATLAS for similarly perfong libraries.

2.2 Predictive Modelling

Predictive modelling techniques use features (see sett¥mo attempt to characterise
an optimisation space. Using known correct points or egpiee search, a model can
be built which is a projected estimation of the real optirti@aspace. The model can
then be used to predict the best points in the space. Thisagpdiffers from that of
search because prior knowledge is used to predict results.

2.2.1 Performance Prediction

Evaluating the performance of an embedded architecturebeaa lengthy process.
Embedded processors generally have long runtimes compmaggheral purpose pro-
cessors, and sometimes have incompatible toolchains laradiés that make running
benchmarks difficult. Additionally, the development oflaitectures is limited by dif-
ficulty in evaluation. Since no hardware exists, simulatarsst be used, which are
usually slow, and take a long time to produce.
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Performance prediction attempts to address these protidgmpeedicting the runtime
of a benchmark, without actually running it.

Ipek et al. (2006)

The first work in this field came from research on hardwarek kteal. [34] proposed
an automatic system to drastically speed up hardware depigre exploration (ex-
ploring values such as memory latency, cache size ,etahoidh this work is in the
hardware field, it is possible that the same techniques mappkcable to the realm
of compiler optimisation.

Using an artificial neural network (ANN) model (see sectiob.4.3), they are able
to predict the result of variations in the hardware pararmsetgith excellent results.
With the model considering only 5% of the design space, itgradict performance to
within 2% error of the true value. In this circumstance, gss unlikely to be easily
applicable to software world as anything which causes ag#anthe program being
run, such as a program transformation, causes the systesquoe retraining - very
costly in time. However, it may be of interest at a concepliena!.

Cavazos et al. (2006)

Cavazos et al. [11] employ a similar approach for a compileeyldescribe a system
for predicting the performance of a new program on a knownpadiously explored
architecture. The technique is shown to be effective on tifflerdnt embedded archi-
tectures — a MIPS-based AMD Alchemy processor and a VLIW gssor, the Texas
Instruments C6713 floating point DSP. This attributes a degifegenerality to the
technique, that it may be applied to other processors tatally, a model of the pro-
cessor is built, using 640 training runs from a set of 10 berarks. The model used
is a standard feed-forward, back-propagation artificialraenetwork. These training
runs are randomly taken from a space of possible versiongdfgram, post transfor-
mation. A total of 5 different transformations are cons@tEIgiving a space containing
88000 points.

In addition to this, when a new program is to be evaluatedstadu 4 probing runs are
made on this new program. These are used to characterisewhgragram, and give
input to the existing model, which provides a predicted atiea time as output.



2.2. Predictive Modelling 21

The system used to characterise each program is based etidnsa This means
that instead of deriving information from a features-baapgroach where the source
code is analysed for attributes considered interestingXpents, the information is
derived from comparing the performance of the program wheawk transformations
are applied to how other programs in the training set haviopeed when the same
transformations were applied to them.

The selection of which transformations to use to discrin@rzest between training
programs (called canonical transformations) is producea liormal system of in-
formation theory, designed to reduce the redundancy in #te. dThis approach is
interesting as it removes the human element from the systins very difficult for
a compiler expert to predict what features might be usefluiding a good perfor-
mance model. Indeed, it is the critical task as no amountexferipost-hoc analysis
can produce a good solution when the original features usedfgpoor quality. It
is for this reason that this paper is of particular interastjt is the first to model a
program in this way.

However, although this ‘reactions’ based approach dogedse with the human ele-
ment, it does simplify the feedback available to the modeal thfference in execution
time. The authors argue that this is all that is necessaryiasinsically includes the
more complicated hidden information in this simple valuevibyue of this informa-
tion being explicitly actualised in the running of the prag, yet this seems difficult
to ascertain with any degree of certainty, given the vaeiatdture of the quality of
features.

If this technique performs well against features, as it ®shto in the paper, it is quite
possible that the features were of poor quality, and a bsétiewould have performed
differently. Unfortunately, the quality of features is agbusly difficult to quantify.
Given the extremely complicated, non-linear optimisaspace which has been shown
to be present in this kind of problem, it seems unlikely thattsa simple approach is
sufficient, although certainly helpful.

Dubach et al. (2007)

Dubach et al. [18] take an alternative approach to speedmigarning. Instead of
building models of programs and predicting which optim@atvould be suitable for
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a program, they model how programs perform on a specific psacethen generate
a prediction of the runtime of new programs supplied to thetesy, without actually
running them on real hardware.

This performance predictor can then be used in conjunctidmiterative compilation
techniques to improve their performance. The predictordeis of magnitude faster
than physically running the program on real hardware, aod #ddresses the bottle-
neck of iterative compilation - the long time necessary ttawbgood results; using
the predictor instead of real hardware allows many more ofiagprogram to be made
and better results to be obtained.

This work uses code features derived from source to exprdesaiption of the pro-
grams, and an artificial neural network (ANN) model. Theyoréphat using an input
of 16 samples to the model, they are able to achieve a caoeletefficient of 0.65 to
the actual results, which rises to 0.8 when 128 samples laxgeal.

The process of building a predictor of performance is suthffgrent to that of a pre-
dictor of which optimisations to apply to a program, yet thedels generated must
be very similar. On an abstract level, the end result of eaiohgss (if one assumes
iterative compilation is coupled with the performance jiceat) is the same, yet the
processes are obviously different in methodology. Thisamithe question as to what
different information is being stored in these two appr@shf one approach is intrin-
sically better than the other, then one would expect thab#étier approach is that for
which the a model can best express the information beingadtoithin.

2.2.2 Predicting the best optimisation

Modelling has also been used to predict the best way to ogpdimiprogram. This in-

volves analysing a new program, then predicting the set tdfnigation options which

provide the best performance.

Lagoudakis and Littman (2000)

A number of different heuristics have been proposed for tbblpm of register alloca-
tion, and different heuristics are known to perform bettatifferent context. Selecting
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the correct heuristic for different contexts has been shimrenefit a performance by
Cavazos and Moss [9].

Rather than using an intelligent machine learning techniqueplace a hand-coded
heuristic, it can be much easier to use machine learninglgitopchoose between
several well-known heuristics for a particular purpose.e Hdvantage of this, other
than its simplicity, is that these heuristics are thoroygésted, trusted and understood
by compiler writers and it is therefore much easier to iniégisuch an approach into
a production compiler than a more sophisticated technique.

Work in the area of heuristic selection, but in a differenhtext is presented by
Lagoudakis and Littman [38] at Stanford. They created aesydbased on features
to select an algorithm for the abstract problems of orderssitzs selection and stan-
dard sorting. Order statistics selection is, given an uesgaarray of numbers, find the
nth element if the array were sorted in any given order, whdaeeany valid index of
the array. They were able to beat the two best standard edgwifor this procedure,
deterministic select and heap select, by forming a hybigdrithm which chose be-
tween the two. They applied a similar approach to standamtkenigal sorting by using
a hybrid of quicksort and insert sort.

Monsifrot et al. (2002)

Monsifrot et al. [43] contend with the problem of loop unnod) heuristics on both the
superscalar UltraSPARC and the VLIW-esque Itanium64. austd a manually writ-
ten heuristic, an automatically derived one is proposesedan decision trees. Here
only the question of whether to unroll or not is consideregying the unroll factor
to the underlying compiler. Loops are gathered from ungg@ecprograms written in
FORTRAN-77, and a heuristic is generated based on featuoksasudecision trees
are used (OCL1 software), which involves splitting a set oéolgjin a hyperspace over
and over until every object in a substance belong to the sdemss ethat is , to unroll
or not to unroll.

Results are presented using the Open Research Compiler foltamiem64 and Sun
UltraSPARC. On average the execution time is reduced to 9318%-®4 and 96%

on UltraSPARC of the baseline. Interestingly, if the deaidiees for the two proces-
sors are swapped, the performance benefit is reduced caatsligldurthering the case
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that separate models are needed for different processtigomations to gain optimal
performance.

Cavazos and Moss (2004)

The authors examine the problem of when it is profitable tdyapp optimisation,
in this case instruction scheduling, to a program in a jodime environment [9].
Although instruction scheduling in particular is examin#éeere is no reason why the
technique demonstrated here could not be put to use for ofpt@misations. The
language used is Java, and the compiler, JIKES RVM. The eutls® list scheduling
over basic blocks, using the critical path scheduling maaltdough they note that the
type of scheduler used is not important.

Within a just-in-time environment, it is always necessaryweigh the cost of opti-
misations which may make the code run faster against thealaspeedup likely to
be gained from such optimisations. The scheduling optiteisaan significantly im-
prove the running time of a program, but it also an expensptérosation to run in
terms of compilation time it would therefore be useful to béeao determine which
basic blocks particularly benefit from scheduling and thpsit to only these blocks.
This is the question which Cavazos and Moss attempt to answibisi paper, by em-
ploying machine learning.

The authors note that the just-in-time environment seyeesitrains what kind of tech-
niques can be used to decide whether to schedule, as thisgsrotitself adds to the
compilation time. It is therefore necessary to select a oekiluhich is inexpensive
both in terms of computational complexity and using a setafdres which are cheap
to obtain at runtime. Thus, any features based on the depeedgaph of the block
would be unsuitable as the DAG itself would be expensive toutate. Instead, all
possible instructions were classified into twelve categgreach which in the opinion
of the authors, have similar scheduling properties. Thaufea used therefore were
simply the percentages of each type of instruction withelihsic block.

Using rule set induction provided by the ‘Ripper’ tool, wha¢ &ffectively decision
trees are created for a binary classification problem. Tamnleg is supervised, done
using a training set to which the answer as to whether to sdbem not has been
manually determined.
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Results show that it is fairly rare that scheduling is effextvithin this just-in-time en-

vironment — the authors argue this makes it all the more sacg$or a cheap heuristic
to determine whether to schedule or not, however, they dalinettly compare how

well this system compares to simply never scheduling at &lle classification ac-
curacy is impressive however, with over 90% of the improventd scheduling the

whole program being obtained with only 25% of the time thisilgdake.

Stephenson and Amarasinghe (2005)

Stephenson and Amarasinghe [57] use two simple statisgiclahiques to try to predict
the correct unroll factor for the high-level loop unrollimgtimisation on a per loop
basis. Loop unrolling is one of the most important high-leygtimisations as it not
only removes some control flow overhead, but also allows timepiler greater scope
for gaining instruction level parallelism, as well as allog further optimisations to
take place on the loop. In this paper, the authors report a\&r@t improvement on
the SPEC 2000 benchmark suite using these techniques, witbdéction accuracy
of 65% for all loops in these benchmarks. Since these nundrersiot particularly
impressive, the paper concentrates on the time which coallgalsged by employing
machine learning techniques for this and similar probleatkar than employing a
large number of expensive compiler writers. These experisneere performed on
the Intel Itanium2 architecture and using the Open Researchp@&r[46]. Unroll
factors between 1 and 8 were considered.

In order to employ either of the techniques used in this pdpatures must be deter-
mined and extracted. As is common, the authors first prod88ddatures for consid-
eration — far too many for these simple linear techniquesattdie. A much smaller
subset of features were selected from this original set loydifferent means: Mutual
Information Scoring and a greedy selection algorithm. Mutaformation Scoring
is a method of ranking how much uncertainty can be removed fre overall result
(in this case the loop unroll factor) by knowing the value giaaticular feature. As is
pointed out, this method has the problem that interactietsden features (how much
of the uncertainty that is removed by feature 2 has already bemoved by feature 1)
are not considered. The greedy algorithm works by takindgp#st performing feature
using a given classifier, then combining it with the seconst eature, the third best
feature and so on.
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The five features selected using the greedy algorithm foreseaneighbours were:
number of operands, live range size, critical path lengthmimer of operations and
known tripcount. For the support vector machine, they wemalmer of floating point

operations, loop nest level, number of operands, numberasfdnes and number of
memory operations. Two different classifiers are used:

Nearest neighbours is a well known, statistical technigqueclassifying phenomena
based on available features. In this case, classifyingliuiacior from some feature
vector determined by the authors. Training involves mag@@ach input vector to a
point in some n-dimensional space (where n is the numberatfifes) whose correct
classification is knowm priori. Novel input vectors are classified by mapping them
to this space, then calculating the Euclidean distance dmivthe new point and all
the training points. The shortest distance is found and twelnnput is classified
according to the previously determined class of the netragsing point. A confidence
factor can be determined by considering the closest k neigistand comparing their
class.

It is obvious that this technique increases significantlgamplexity with the number
of features used and the number of training points allowed.

Secondly, Support Vector Machines (SVM) are used. A tradil SVM splits the data
into two classes by constructing a maximum-margin hypesl#he distance between
the closest examples to the hyperplane is maximised) sugphexpiane is derived by
solving a quadratic programming problem. This can be matlifigh some difficulty
to accommodate multiple classes as is used in this paper.

Unsupervised Learning

Unsupervised learning does not involve evaluating anytpairthe optimisation space.
Instead, it seeks to discover some structure in the inpatyfe) space or model the
probability distribution of the input data. This allows ascharacterise the space more
quickly by using a smaller number of points, representaiivitbe space in general.
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2.3 Clustering

Clustering is an unsupervised learning technique whichsssgkicture in the input
data, finding clusters of input points which broadly shameilsir features. From this,
it may be possible to classify the input data into sets, altngrto their proximity to

each cluster in feature space.

Joshi et al. (2006)

Joshi et al. examine benchmark similarity in MediaBench, Mi&eand SPEC CPU2000
benchmarks. The purpose is to reduce the time needed teaévaisystem using the
benchmark suites, and argues that only a subset need to betexeand profiled in
order to effectively estimate the average IPC, data cache mrais and speedup of the
whole benchmark suite, when varying the system and processo

Additionally, they evaluate the four generations of the SREPU benchmark series to
determine how much changes between each generation. Thelude that temporal
data locality gets progressively worse through the iteretiof SPEC CPU, however
the inherent program characteristics stay the same.

They accomplish this by using clustering on a rich featuacemlerived from simula-

tion using a custom tool called SCOPE, which is a derivativihefSimpleScalar v3.0

simulator. Features include instruction mix, control floahlhviour statistics such as
basic block size, branch direction, fraction of branch&sdaand fraction of forward-

taken branches, as well as register dependency distaneetetiaporal locality, data

spatial locality, and instruction locality.

This work has interesting implications for anyone wantingvaluate a new processor,
but has not enough time to run the whole benchmark suite. Mervthe work lacks
anything to compare the chosen clusters to, and thereftgdérd to say if the clus-
tering technique is is better than aiveaselection process. Additionally, the work is
intended to assist in estimating the performance of thelimeacks evaluated in the pa-
per, and it is not possible to gain a similar benchmark sutisetdifferent benchmark
suite, without running the whole suite through a slow sirtarland profiler.
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2.4 Summary

This chapter has described the related work in the area ahactiine learning in com-

piler optimisation. Firstly, techniques involving supesed learning were described,
including techniques which search the optimisation spawd,those which model the
optimisation space to predict a good answer. This incluttearly generation, per-

formance prediction, and performance maximisation. Seéigpan unsupervised ap-
proach was presented, using clustering to represent tivaisgtion space.
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Infrastructure

This chapter describes the infrastructure that faciktae research in this work — the
two primary compilers, SUIF and GCC, and the optimisationgedtich were used to
drive them. Section 3.1 details the benchmarks used intiesig, where section 3.2
does the same for platforms. Finally, the tools used areudgsa in section 3.3.

Using machine learning with compilers requires extremelyust infrastructure. Sig-
nificant training is often required, and this demands a lgrgntity of data. Generating
this data is only practically possible by using infrastuwetcapable of automatically
compiling and running thousands of programs without hunrampting.

Additionally, using many different transformation seqoesand optimisations stresses
the compiler in a way not usually tested for. This entailsggiptions which may never
have been used before in a particular combination, and @useceven a production-
level compiler to crash or do something unexpected. Thesefois important to have
robust infrastructure which can detect and compensatdéésetissues.

3.1 Benchmarks

Benchmark suites are collections of programs designed toaeaand allow the com-
parison of, the performance of compilers and processorgy @he designed to give
a thorough appraisal of the system by employing commonlg gséling techniques,
algorithms, and real world examples to test how well it pemf®. Since this thesis fo-
cuses on compiler optimisation, the processors remainanggd, allowing evaluation

29
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of the compiler. Two different benchmark suites are usedis thesis: UTDSP and
EEMBCv2. These focus on programs most commonly found in theeeiodd domain,
the primary target of this work.

3.1.1 UTDSP

UTDSP [29] is a benchmark suite created at the Universityasbiito which targets
DSPs. Written in C, the benchmarks are divided into the caitegof kernels and ap-
plications. The kernels represent the main computatiomechout in many embedded
programs, such as fast Fourier transforms and matrix nlickigion. The applications
are composed of more complex algorithms and data structliresdetails are shown
in figure 3.1. Many of the programs are available in up to fadiog styles (explicit

vs pointer-based array references, plain vs source-letare pipelined).

3.1.2 EEMBCv2

EEMBC [19] is a commercial benchmark suite targetting embddatchitectures. It
is the most commonly used benchmark suite in commercial dddzbsystems com-
parison, and consists of some of the most important progeandskernels in this area.

They are divided into automotive, consumer, networkindicefand telecom cate-
gories. EEMBCv2 takes the original v1 benchmarks, and adde modern consumer
and networking benchmarks, using up-to-date techniques.i3 shown in figure 3.2.

The suite comes with its own test harness, which can be usastifg program output
to check for inconsistencies, and additionally used totereacomposite ‘EEMBC
score’ of all the benchmarks when used in a formally specifiad (this is not done in
this thesis).

There are 55 benchmarks in total: 16 automotive, 5 conswhgeB networkingvl, 4
office, 6 telecoms, 13 consume? and 7 networking/2.
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Program Description

fft 1024 Radix-2, decimation-in-time

fft 256 Fast Fourier Transform (FFT)

fir 256 64 Finite Impulse Response (FIR)

fir 32.1 filter

iir 4.64 Infinite Impulse Response (1IR)

iir 1.1 filter

latnrm _32 64 _ o

atnrm 8.1 Normalised lattice filter

Imsfir _32.64 Least-mean-squared (LMS)

Imsfir 8.1 adaptive FIR filter

mult_10.10 , o

ot 4.4 Matrix multiplication

G721 encoder ITU ADPCM speech transcoder

G721 decoder ITU ADPCM speech decoder

V32.modem encoder| V.32 modem encoder

V32.modem decoder| V.32 modem encoder

compress Image compression using Discre
Cosine Transform

edgedetect Edge detection using 2D
convolution and Sobel operators

histogram Image enhancement using
histogram equalisation

Figure 3.1:

UTDSP benchmarks

te
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Benchmark category | Description

automotive Workload tests, Automotive algorithms, Signal processing

consumervl Image compression and decompression, Colour filtering and conversion
networking vl Routelookup, packetflow monitoring

office Beizer, Dithering, Text parsing

telecoms Autocorrelation, FFT, iFFT, Viterbi decoder

consumerv2 MPEG4 encode and decode, updated jpeg encode and decode
networking _v2 IP packet check, IP reassembly, QoS, TCP decoding

Figure 3.2: EEMBCv2 benchmark categories

3.2 Platforms

This thesis uses a number of platforms to evaluate this walkplatforms used are
real hardware implementations of the architecture, anginatlated or implemented
in an FPGA. Performance counters are used to give real-werltrmance numbers,
which are not influenced by unquantified behaviour in theesyslibraries, as can
happen when using simulators. Four different embeddedepsmes and a general-
purpose processor are targetted in this thesis. Addifignalcut-down version of
another general-purpose processor is used, which is baiggtted at the embedded
domain.

3.2.1 Analog Devices TigerSHARC

The TigerSHARC TS-101 is a high-performance embedded psocédsom Analog
Devices. It has an internal floating point engine, as welhasability to process 1, 8,
16 and 32 bit fixed-point, and process four 32-bit instruwtiper cycle. The manufac-
turers claim enough on-chip memory to cope with 64,000 geiifts[2]. This platform
does not use an OS, running in bare-metal mode.

3.2.2 Philips Trimedia

The Philips Trimedia (now made by NXP Semiconductors) is dimadia, VLIW,
embedded processor using the Harvard architecture. Plailgim [62] this processor
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can be efficiently programmed using only high-level langsggather than traditional
DSP assembly programming, and this makes it an interestatgtecture for compiler

evaluation. The version of the chip used in this thesis h&3P2bit geneal purpose
registers and 32KB instruction cache, 32KB data cache. dlatéorm does not use an
OS, running in bare-metal mode.

3.2.3 Intel Celeron

The Intel Celeron is a budget general-purpose processorfawared by Intel [31].
The chip generally shares architectural features with dipeof-the-line Intel proces-
sors, but with less features/cache to save money and eridrgyrocessor used in this
thesis runs at 400MHz, with 128KB of L2 cache.

In recent years, Intel has also marketed the Celeron as anailtee embedded pro-
cessor, stressing the low power consumption. This platiwas used with the Linux
OS, kernel version 2.4.20

3.2.4 AMD Alchemy Aul500

The AMD Alchemy Aul500 processor is a low power embedded SoCgssor using
the MIPS32 instruction set. The chip chip used in this worlsrat 500MHz, has 16kB
instruction cache and 16KB non-blocking data cache. Thatqim was used with the
Linux OS, kernel version 2.4.23

3.2.5 Texas Instruments C6713

The TI C6713 is a 32/64-bit high-end floating point DSP, a witlestered VLIW
processor with a 4KB instruction cache and a 4KB data cac [Bn chip there is
also 64K-Byte L2 unified cache/mapped RAM and 192K-byte aoll#i L2 mapped
RAM. This platform does not use an OS, running in bare-metaleno
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3.2.6 Intel Core2Duo E6750

The Intel Core2Duo [32] is a general-purpose dual-core msmecapable of running
in 32-bit or 64-bit mode. The version used in this thesis ran2.66GHz, has 4MB
of shared L2 cache and used 32-bit mode. This platform wa$wgk the Linux OS,
kernel version 2.6.24.

3.3 Compiler Tools

Two main tools are used in the course of this thesis: firs#yGRLO Tool, which em-
bodies the SUIF compiler [29], and a modified version of GCTedaMilepost GCC.
Milepost GCC differs from classic GCC in that the internal opsiations are exposed
and can be externally driven. These tools are necessaryngrae the optimisation
space which this work evaluates.

3.3.1 The COLO Tool

The COLO (COmpilers that Learn to Optimise) Tool is an optirieaframework,
developed at the University of Edinburgh, which drives setiio-source transforma-
tions in C and provides complete control of which transfaiores are applied and in
which order. The framework is written in Java, and incorpesahe SUIF compiler
from Stanford [29] (discussed later in section 3.3.1.1}a@ansformation engine.

C code enters the system and is translated into an interteedjaresentation on which
all transformations operate. The Optimisation Enginespoasible for deciding which

optimisations should be applied, and in which order; thagstis fully programmable

and interchangeable, allowing a variety of different ofgetion strategies to be used
within the framework. Having selected a transformationesah, transformations are
then applied by the Transformation Framework. After fimighthe transformation

process, the IR is translated back into C code and compikedexecutable by any

standard C compiler, depending on which platform is therdddiarget. The program

is then executed and profiled in the Profiler, collecting akea time and code size,

and the results fed back to the Optimisation Engine to altdwupdate itself based on
the success or failure of the chosen transformation schema.
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Figure 3.3: The COLO Optimisation framework Tool

Linker information such as the memory footprint of the colegiprogram is passed
back to the optimisation engine, which decides on the furtipgimisation strategy
based on this, and the additional timing information gagteérom profiled program
execution.

This process is then repeated until a set goal is reachel,asua maximum number
of iterations, or desired execution time achieved. The Bratutable with the desired
transformed code is the output of the process. This streicsutepicted in figure 3.3.

3.3.1.1 The SUIF Compiler

The SUIF compiler is used as the Transformation Engine of2®&O Tool. Itis a
openly released research compiler developed by the SUlpgroStanford [29]. SUIF
allows independently developed compilation passes wag&tteer using specified in-
termediate representation called SUIFIR. It is furnishethwai variety of high-level
optimisations which are applied at the SUIFIR level. Thesadformations can be
applied independently, and in any order. There are aroumtifi@dent transformations
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available, which are listed in Appendix A.

The compiler includes both C-89 and Fortran front-ends, hiyt the C front-end was
used in this work. The SUIF compiler was of particular ufiih this work as the IR
is sufficiently high-level to allow the complete reconstiac of source code, and thus
can be used as a source-to-source compiler.

The C code is first transformed into SUIFIR using the SUIFtfremd, which allows the
code to be transformed. Two different transformation systare used, which can be
used interchangeably: the 'porky’ SUIF stage, which alloata transformations, and
a unimodular loop transformation stage, which providessitaloop transformations
like unrolling and tiling. These transformations work oe tBUIFIR level.

Although SUIF source-to-source transformations are ptukarsing the compiler has
several drawbacks. It only accepts C-89 as an input langaagethus many modern
benchmarks are incompatible, or require significant timegoewritten in C-89. Ad-
ditionally, modern programs often take advantage of GNU téresions provided by
GCC, which are again incompatible with SUIF. A more robust cibenpvould allow
more complicated programs to be evaluated, and would takdilae to configure. For
these reasons, a second tool is used in this thesis: Mil€06t

3.3.2 Milepost GCC

Milepost GCC is a modified version of the GCC compiler develdpgthe Milepost
project [25]. This compiler does not do source-to-sourcinupation, but instead is
changed so that the internal optimisation phases are edjposkdriveable by an exter-
nal tool. The use of external tools allows sophisicated nmaclearning optimisation
strategies to be swapped in and out easily. This is achiesied) the GCC lIterative
Compilation Interface, part of Milepost GCC.

3.3.21 GCCICI

The GCC Interactive Compilation Interface (ICI) is an inteddor controlling the

internal optimisation decisions of the GCC compiler. It aothe complete substitu-
tion of default optimisation heuristics and the reordenirigransformations, beyond
the capabilities of command line options or pragmas. lmstéee optimisation can be
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Figure 3.4: Framework for Milepost GCC [25]

driven by shared libraries, though command line optionsstilieavailable. A list of
the optimisations available is found at [33].

The ICI replaces the GCC Controller (pass manager). Passescsgidrted by an
external plugin, choosing different optimisations thaa ttefault Controller. Addi-
tionally, the plugin can provide its own passes, implemeetatirely outside GCC.

3.3.2.2 GCC CCC Optimisation Framework

The GCC Continuous Collective Compilation Framework is tool tivedcompiler
optimisation, particularly through the GCC ICI (interfacd).contains a toolbox of
techniques which allow simple interaction with internal G@@&imisations, allowing
the user to automate the running of thousands of compikaiiotih different optimisa-
tion schemas. It allows extensions so that custom optiroisaelction algorithms can
be implemented and used within the tool.

Figure 3.4 shows how GCC CCC and Milepost GCC interact when trgiand de-
ploying a simple machine learning based compiler.
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3.4 Conclusion

This chapter has detailed the infrastructure which was urstfds thesis. Two embed-
ded benchmark suites have been compiled using both SUVierdoy the COLO Tool,
and Milepost GCC. A variety of platforms have been used, inopdSP-like plat-
forms like the Analog Devices TigerSHARC, the Philips Trineeti VLIW processor)
and a general purpose processor, the Intel Core2Duo.
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Introduction to Machine Learning

This chapter provides an introduction to machine learniagnfa compiler perspective,
explains some of the general concepts in machine learnthgianusses the techniques
used in this thesis, and in other work. Section 4.1 discustgsmachine learning is
useful for compilers, section 4.2 outlines the idea of maeHearning, section 4.3
explains the concept of features, section 4.4 shows how imadbarning is affected
by complexity, section 4.5 details some machine learniclgriegjues, section 4.6 shows
how machine learning techniques can be applied in the cemipéld and section 4.7
warns of some of the problems one may encounter when employachine learning.

4.1 Why use Machine Learning?

During the phases of optimisation and code generation, gitenmmakes hundreds
of decisions which impact the quality of the outputted cobfeleed, given the same
input C code, two properly implemented but different comaslare extremely unlikely
to produce the same output code, although the functionafityhat code would be
the same. This is because many of the decisions needed t&drelig the compiler
are dependent upon extremely complex scenarios, whereeétryshard to tell which
answer would give better code, and which worse. In additibese decisions have
interacting effects, meaning that one optimisation deaisvhich initially gives better
code, may in the end result in worse code being produced.

Traditional compilers tackle these problems by udiegristics These are effectively
vastly simplified, hand-generated models of the systemgchvailow the compiler to

39
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make an optimisation decision in a very small space of timie fhain reason why

code outputted is often different between compilers isdifégrent heuristics are often
employed, both with different estimates as to how the spabkesld be modelled. It

logically follows that if different heuristics are used iiffdrent compilers, either the

compiler with the best set of heuristics should be best foc@le generated (which
is demonstrably not the case) or that different sets of bgasi (and thus different

compilers) have more beneficial effects on some pieces o cwdr others. This

shows that heuristics are not a good solution, simply thewkgh has been used so
far.

This is the nub of the matter — that these heuristics are @ftenbetter than educated
guesses made by experienced compiler writers, whose pefme can vary wildly
over different code types, and have no statistical evide@ntd&ir provenance.

In some cases, such as code scheduling, very accuratetiosunesve been developed
which provide near perfect performance — their mapping ptiia to outputs is very

near that of the oracle. For register allocation too, gragburing heuristics (amongst
others) have been used to great effect, however, firstlgethelutions took a great deal
of effort to arrive at, and secondly, there exist even moraplex problems which a

compiler must deal with to obtain optimal results, which anlam could not hope to

tackle fully.

Therefore there is a need for systems which can quickly andrately provide an
answer to difficult, non-linear (see section 4.4) problenthiwa compiler, which can
be both quickly and reliably generated, and also are basedadrstatistical analysis
of the problem, rather than a human ad hoc view. Machine ilegrallows us to
generate more complicated models, which more accuratphgsent the complexity
of the problems at hand, and whose generation is based oe sdientific approach.
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4.2 What is Machine Learning?

The general paradigm of computation is classically:

INPUT — PROCESS — OUTPUT

Machine Learning (ML) fits very easily into this conceptsaltion. ML can be thought
of as computational process used to map a set of inputs tood @etputs, much like a
mathematical function. ML is useful to us when it is not itittely obvious what that
function is, such as is the case with many decisions an ogtigjicompiler makes. In a
traditional compiler, these hard choices are either nosickemed at all — being mapped
to a fixed number for all inputs — or else are made by manualiftemr and tuned
heuristics. ML can be used to replace these ad hoc heungiibsproper statistical
analysis and modeling, which much better express the triugenaf the problem.

A compiler may wish to know which transformation to apply hexhis problem can
be addressed using ML by representing the program as a \@&fatode featuregsee
section 4.3) which describe the program’s important charestics and comparing
this to a pre-prepared model of the system. By comparing thvgonegram to a model
which represents the learned past experience of the MLtteoGorrect transformation
can be selected. e.g.:

FEATURES—MODEL —TRANSFORMATIONS

Section 4.6.2 deals with how these models are constructg#dection 4.5 describes
how they function.

4.2.1 Supervised and Unsupervised Learning

Machine learning techniques can usually be classified impervised or unsupervised
techniques(a third general category, reinforcement iegralso exists, but is not dis-
cussed in this thesis).
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Supervised Learning

Supervised learning techniques rely on havadgelled datan the training stage — that

is input data, to which the correct answer is already knowsdimye other means. A
learning algorithm takes each training input pattern from fabelled data, and pro-
duces an expected output. That output is compared to therknowect output from
the labelled data, and the difference calculated. The ileguadgorithm then attempts
to change the variables within the algorithm to compensatéhe error, to learn from
past mistakes. The most well-known example of a supervisadhing technique is
back-propagationn artificial neural networkgsee section 4.5.1.3). Search techniques
can be thought of as a specialised form of online supervisarhing, in which the
search strategy is updated during the search.

Unsupervised Learning

Conversely, unsupervised learning does not use labelledadiall. Instead, it seeks to
discover some structure in the input (feature) space or fribdgrobability distribu-
tion of the input data. There is no feedback loop to allowreay from mistakes, and
so incorrect classifactions do not affect these algorithms

4.3 Program Features

One of the most vital elements in any machine learning enment is defining how
the modelling technique perceives the input — in our casg,rmodels can differentiate
between programs or sections of code, and how they can ghagesimilarity. We
need to be able to represent our inputs (programs) in a waghwintelligible to our
models — to this end, we emplapde features

A set of code features pertaining to a program consists ofctov®f real or binary

values which we hope accurately depicts the crucial charatts of that program.
The selection of good features is important to any machiamieg-based technique,
as without accurate and relevant inputs, a model cannot topeoduce pertinent
outputs.

Initial selection of features is a matter for expert opinibat statistical techniques can
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be used to help assess those features as to their relevathogycamdancy (see section
4.5.5). Some examples of features which are used in this amerkhe total number of
adds used in a program, the proportion of multiplicationshoits, and features related
to memory usage such as a count of loads and stores. A moikedeliscussion of the
features used in the experiments reported in this thesigas ¢n the relevant chapters.

4.4 Complexity in the Optimisation Space

Code optimisation within a compiler was always considerebet@ difficult problem
to solve, but no real evidence or analysis was produced to sfuite how difficult.
This is an important question as the complexity of the pnobieforms the type of
model to be used to confront it. The use of too simple a modillead errors due
to an inability to accurately represent the true system,tanccomplex a model may
lead tooverfitting(see section 4.7), which results in a more complicated ladouarate
model being imposed on a simple system.

4.4.1 Linear Problems

A significant proportion of problems do not in themselvesdu@e complex interac-
tions. A classification problem which can be solved by a sergitaight line is con-
sideredinear. The output of an OR logic gate given two inputs is a clasdinahrly
separableproblem.

It is obvious that a straight line is enough to separate batpui states. In any at-
tempt to solve the OR problem, or indeed any other linearlpropa linear modelling

technique is best used, such as logistic regression or sedegered neural network
(see section 4.5.1). It should be noted that some compitdriggms can be solved well
with linear modelling, as is shown by Cavazos and O’Boyle[h2lvever simply be-

cause a linear model works well on an issue is not proof irfiteat the problem is

intrinsically linear — rather it may be a linearisation of an® complicated system.
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4.4.2 Non-linear Problems

When a straight line is insufficient to separate classes gfututhe problem can be
consideredon-linear The XOR logic gate provides a classical non-linear proklem
figure 4.1

X2

A

Figure 4.1: XOR diagram — inside the oval area signal on output is '1’. Outside of this

area, output signal equals '0’. It is not possible to divide it by one line. [65]

Plainly, a single straight line alone cannot separate tleedasses — a more compli-
cated model is needed. Many compiler optimisation decssialhinto this category of
non-linearly separable problems.

Such a system can only be accurately modelled using a nearlkechnique, such as
non-linear regression, Hidden Markov Models (HMM), a kdisesl Support Vector
Machine or Multi-Layer Perceptron, amongst others (setmsed.5.1).

4.5 Machine Learning Techniques

The established field of machine learning has produced #mulssof techniques with
varying complexity for a multitude of tasks. Since the usenathine learning in com-
pilersis in its relative infancy, simple techniques areljkto produce the most success
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at this point. This section presents five commonly used nm&cleiarning techniques
which have been used in compilers.

4.5.1 Artificial Neural Network (ANN)

An Artificial Neural Network is a model and methodology of seaing, loosely based
on a biological brain. It is comprised of a number of simple &mghly connected

computational units, connected by weighted links whick@fthe communication be-
tween one neuron and another. It is by means of these welwttan ANN is able to

store information, and by changing and updating the weiglhassystematic way, that
itis able to ‘learn’.

4.5.1.1 Computation in a neuron

A neuron receives multiple signals as input, which it makesmaputation upon and
then sends an output through a different channel. This oiggben relayed as input
to other neurons.

The task a neuron performs is determined byaitsivation function It computes a
weighed sum of inputs, and compares it tiheesholdvalue,0. If the computed input
is greater than the threshold, the neuron is consideredvi® ‘fieed’ and a value of 1
is outputted. If less thaf, the neuron does not fire andl is outputted.

Thus,

This is known as aign functionand is ehard limit function Other activation functions

may also be used, such asigmoid functionY = rle,x), which is used in a standard

back-propagation network.

4.5.1.2 Single layered network

A single layered neural network can be used to solve linesaparable problems. For
this to occur, the neurons in the network must not only be tbkore information,
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but also be able to update that information to converge aghdiata supplied to it — to
‘learn’. The model representshgperplanen ann-dimensional space which divides
that space into two sections. The type of simple network rilesd here is called a
perceptron

The weights in the network are first initialised to randomuesl. The output of the
neuron is then calculated for thpth iteration (in the first casgg = 1)We use theign
activation functiordescribed above:

Y(p) = sign [_ixi(p)wi(p) - 9]

The weighted inputs must then be updated as follows, usmdetta rule

Wi(p+1) =wi(p)+oax(p)ep)

wheree(p) is the error for iteratiorp, defined as:

e(P) = Ydesired P) — Yactual(P)

anda is the learning rate. ThHearning ratespecifies how quickly a network is updated
in relation to the calculated error. A slower rate of leagim often advantageous as it
stops the network from oscillating between points of namsthe data.

This process is then repeated fo# 1 until the model has converged, or some other
stopping criterion has been met (see section 4.7.1). Tlslibidd can be changed to
move the decision boundary if that is desirable.

4.5.1.3 Multi-Layer Perceptron

TheMulti-Layer Perceptror{MLP) is a slightly more sophisticated form of neural net-
work. By employing an additiondlidden layerof neurons, this system can overcome
the limitation of a single-layered network of only beingeahbd accurately differentiate

in a linear space, and is capable of the representation afi-dimear space (see section
4.4). The network consists of three fully-connected lay#rsinput layer, the hid-
den layerand theoutput layer with each connection having a weight attached. Even
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further hidden layers may be used in some circumstanceb,asiwhen modelling a
discontinuous function.

MLP uses neurons in the same way as the single-layered mattko error can be
calculated in the same way, using the difference betweednedesnd actual output of
the network, and the delta rule for updating the weights. él@x, the appearance
of a hidden layer of neurons raises the further difficulty ofvhto assign ‘blame’
for the error in a network between the different nodes andyiatsi The traditional
methodology used isack-propagatiorof error.

_1
1+e X

This ensures that the output is between 0 and 1, and that thetdes is easy to

Instead of a sign activation functionsagmoid activation functiofy = ) is used.

calculate. This is important in calculating teeor gradient
The weights are first initialised to random values, unifgratistributed.

Where the nodes at the input layer, hidden layer and outpet laye respectively
referred to as, j,k respectively, the output at the hidden and output neuronsea
calculated as follows:

Y,(p) = sigmoid [_iXij (P)wij(p) — 91]

Yi(p) = sigmoid[
j

:Xik(p)ij(P) - 9k]

where n is the number of inputs to the hidden layer and m is timeter of inputs to
the output layer.

The error gradient for the output layéy] is then calculated:

3 (P) = Yk(P) [1—Yk(P)] &(p)

whereey(p) is the error for the iterationp) at the output layer:

&x(P) = Ydesiredk(P) — Yactualk(P)

The weights connecting to the output neurons can then beegbtta the next iteration:
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Wik(p+ 1) = wik(p) + ay;j(p)d(p)

wherea is the learning rate.

Similarly, the error gradient for the output laté;) is then calculated:

|
3i(p) =Yj(p) [1—-yj(p)] kzlék<p>wjk<p>

wherel is the number of output neurons.

The weights connecting to the hidden neurons can then beegta the next itera-
tion:

Wij (p+1) = wij(p) +ayi(p)dj(p)

This process is then repeated fo# 1 until the model has converged, or some other
stopping criterion has been met (see section 4.7.1). Adaethreshold® can be
changed to move the decision boundary if that is desirable

4.5.2 Independent and Identically Distributed Model

An Independent and Identically Distributed mod=insiders each element of that
model (for our purposes, each transformation) to be indegeinof each other with
respect to the effect it has in the optimisation space. Wavkitiat this is untrue in
many circumstances for the case of program transformathorist is still useful for
providing a simple model of the system. It is a normalisedridhigtion of probabil-
ity values which represents the usefulness of each transtoyn individually, without
reference to any possible interaction with others.

Under the independent model we assume that the probabilaysequence of trans-
formations being good is simply the product of each of théviddal transformations
in the sequence being good, i.e.:

L
P(s1,%,...,5) = _r!P(s).

HereP(s;) is the probability that the transformatispoccurs in good sequences.
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4.5.3 Markov Model

The IID model (above) is incapable of representing any atdton between transfor-
mations. This is unlikely to be a good model for represendéinigansformation space,
as we are aware that many transformationsegy@bling transformations that is, by
their actions they allow an another transformation to ostnfurther where before no
optimisation would be possible: i.e. loop unrolling may ege an opportunity for
common subexpression elimination between the head anditioé & loop that did not
exist before.

Similarly, we know that there exigthibiting transformationsthat while perhaps pro-

viding some optimisation themselves, may disable the effefuture transformations

which might eventually produce better optimisation overa¢. the conversion of a

for-loop to a while-loop which breaks a perfectly nestedsioucture and prevents loop
tiling from occurring safely.

For these reasons, it useful to use a model which repredeniateractions between
transformations — 8arkov chainprovides such ability.

A Markov chain for transformation sequences can be definéollagys:

L
P(s) = P(s1) |1 P(sis-1)-

wheres is a sequence of lengthands with i = 1,...,L is each position of the se-
quence with possible states taken fram= {t1,to,...,tn}. The equation above states
that the probability of a transformation applied in the s=te depends upon the trans-
formations that have been applied before.

The main assumption under this model is that these probabitio not change along
the sequence, they are the same at any position of the sexjuamt therefore the
model is often referred as a stationary Markov chain. Thessimplification prevents
the number of parameters of the model from increasing wélehgth of the sequences
considered.

4.5.4 Nearest Neighbours

Nearest neighbouris a very simple statistical technique, usually used forisglclas-
sification problemsFeatures (see section 4.3) from labelled data are extiztd that
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data projected ontodimensional space, whends the length of the feature vector.

When a new unlabelled feature vector is presented, it isiileddy attributing it to
the class of its closest neighbour in the feature spacellysiseng Euclidian distance.
The main advantages of this scheme are the simplicity ofdblenique and the lack
of any time required for training the model, whereas po&misadvantages include
significant computational complexity when a large amourabélled data is present
due to the need to calculate the distance between the new amguevery existing
labelling point in the space.

4.5.5 Principal Components Analysis

In general, any reduction in the dimensionality of a spack imevitably result in
some loss of information. A good dimensionality reductiechinique will preserve as
much of the information as possible that can be used to difteate between different
classes.

Principal Components Analysis (PCA) is an unsupervised iegtechnique (see sec-
tion 4.2.1) which helps in feature selection by removingdess which do not vary
across the feature space, whilst retaining those that do.

PCA is a linear transformation which produces a subspacemédmngger space that
possesses the greatest variance over that space - thaiig iteeiminates redundant
information and tries to encapsulate as much informatiomfthe original space in

a smaller number of principal components (which are a coatlun of the original
features), now used as the new features. It does this witkefeoence to the output
classification space, using only the input space, and caeaftre be classed as a type
of unsupervised learning. More formally, it is a rotationtloé coordinate system of
the original space of vectors of dimensionahtyo a new set of coordinates on a space
with dimensionalityr, wherer <m, such that the greatest variance by any projection of
the data set comes to lie on the first axis, the second gremtéise second axis and so
on. These axes are the principal components, ordered gneai and so the top five
principal components capture the most variance possililecan be used as features
for our nearest neighbours classifier.

Step 1.

Construct anx n matrixM, wheremis the number of programs ands the number of
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features. Each row is the original transposed feature vémtone program. Calculate
the empirical mean along each column and subtract that noeaga€h element in the
column to create a new matriX which has a zero empirical mean.

Step 2.

Calculate an x n covariance matri:

Pn><n — (pi,jv pi7j = COV(DlmIvDImJ))

whereDimy is thexth dimension of an Independent and Identically Distributextlel.
covis the standard covariance function:

cov(X,Y) = Zi”—l(K‘(ﬂ-_Xi)(Yi V)

Step 3

Calculate the unit eigenvectors and eigenvalues for squatexn. Create a new

n x n feature matrixQ, by reordering the eigenvalues by greatest first, then iegter
the corresponding eigenvectors ir@oso that the matrix contains these eigenvectors
in its columns. The vectors with the largest correspondiggre/alues represent the
vectors which exhibit the greatest variance.

Step 4

Select the first ordered eigenvectors or components frgpwherer is the number of
principal components wanted for use as features as thetmftPlCA, and enter them
into anmx r matrix S,

Step 5

Calculate the finatn x r feature vector3 :

T=9S'NT

4.6 Using Machine Learning with a Compiler

This section describes how machine learning can be used icotmpiler field. Firstly,
a search strategy is briefly detailed, followed by a methogé&formance prediction,
and finally, a means to predict the effects of code transfooma
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4.6.1 Searching an Optimisation Space

Given the huge optimisation space produced by attemptstimige a single program,
it makes sense that simply choosing one point in the spaa# sufficient to obtain the
best results. Itis therefore worthwhile to make multipkesipts to compile a program,
randomly selecting optimisations and test them one by osedovhich is best. This
is known as iterative compilation [26].

However, it is clear that this optimisation space is not manly distributed, rather it
has structure. This raises the question of how we can expiligitstructure to better
select which optimisations to test; a search strategy igdetwe There are numerous
search strategies which could be employed such as using eéigahgorithm or a
probabilistic search. Chapter 5 will consider a simple phasiic approach.

Probabilistic Search

For the case of testing ten transformations, which couldppdied in any order only
once, the potential optimisation space is aroun&® t0obviously not exhaustively
searchable. The simplest way of searching is just randonplgagn however we can
improve on this by building a probabilistic model online.

We can construct a probability vector, of which each elencentesponds to a single
transformation. Each element contains a probability Pre/fec P < 1. Elements may
be initialised to (6, or randomly initialised. A length of transformation seque must
be selected. This can either be determined randomly for eaghwithin specified
bounds, or fixed for all runs.

Once the length of sequence has been determined for thdaumahsformation vector
must be populated. This is done by selecting the requisiteben of transformations
with respect to their associated probability. The run cam poceed with the selected
transformations used, and the result recorded.

The probability vector must then be updated by using thetresthe run. An exam-

ple of how this might be done is to equally distribute the cesbility for the speedup
obtained among the transformations used, so that theiegponding elements in the
probability vector are multiplied by the speedup obtainteén normalised to 1. In
this way, transformations which contribute to a net speefithe program are grad-
ually more and more likely to be selected for each test rud,those which cause a



4.6. Using Machine Learning with a Compiler 53

reduction in speed are less likely to be selected. In this weysearch can focus on
the more profitable transformations, and combinationsetifeland select less useful
transformations less often.

This process can be repeated over and over until the reqoemrgormance is achieved
or a set amount of time has passed. The probability vectasistifor each new pro-
gram on the basis that different programs benefit in diffeney from transformation

4.6.2 Predicting Execution Time

Predicting the performance of a new piece of code is helphdmwanting to reduce
the time spent running the new code, either on real hardwa@) a simulator. Using
machine learning, we can make a prediction of the execuiioa of a new program
many orders of magnitude more quickly than a cycle-accisiatelator. This section
gives a basic overview of how such a system might be constiuct

Programs are needed to both train and evaluate the systemprégrams are then
partitioned into training and testing sets. The number ofpms needed for training
varies with both the type of the model employed and its corile If there is a
shortage of training data, then cross-validation (seemedt7.2) may be used.

Code features (see section 4.3) are determined and extfacteach program in both
the training and testing sets. There is a single featureovexdsociated with each
program. Each of the training programs are then executedhandexecution times
recorded. These training runs will provide the experiereszessary to build the model.

Models may be constructed in a number of different ways deipgron which model
is chosen (see section 4.5), for example the MLP model (set®oset.5.1.3). The
model is constructed by feeding each feature vector intortbéel, one at a time, and
supplying the corresponding execution time so that therenay be corrected. The
model should be trained on all inputs, over and over untilntoelel stabilises, while
also watching out for overfitting (see section 4.7.1). Thelaei's values are then locked
to the learned static values.
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FEATURES—MODEL—EXECUTION TIME GRAPH

Having trained the model, it can then be supplied with a nevgeen feature vector
from the testing set. The model will then output the prediagecution time, which

can be compared with the actual execution time for the realiere or simulator, in

order to evaluate the results.

4.6.3 Predicting Effects of Transformation

Evaluating the effectiveness of a particular transfororattan be time consuming,
particularly if the program must be run on a simulator. Iffpenance tuning is being
attempted, it is beneficial to be able to try as many diffetemtsformations as possible,
and the limiting factor is likely to be the time taken to ruretprograms. Machine
learning can assist in this problem by facilitating the ¢omgion of a model which
automatically predicts the speedup of a modified programndJsode features, and
a model which models performance independently of transtions, it is possible to
predict the impact not only of transformations used to amestthe model, but also
new transformations not seen before.

This is similar to the more general case of predicting exenuime (in the previous
section) but differs in that here the runtime of the basebre&ready known, and just
the difference a transformation would make needs to be gestli This approach is
taken by Cavazos et al.[11].

FEATURES —MODEL—CHANGE IN EXECUTION TIME

Program features must be selected, as described in secBoi)tra features which
describe the relative differences between both the orligiméitransformed program are
also used. Additionally, a set o&nonical transformationsiust be selected. These are
a set of transformations which is felt best characterisdrtesformation space - that
is giving the best coverage of the kinds of transformatioailable. The number of
transformations used is constrained by the time and resswaeailable, but has been
shown to work with as little as 4 [18].

The program to be modelled is then transformed using eadmesktcanonical trans-
formations in turn, and executed and its performance rechr@ong with the baseline.
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A model can then be built using feature-speedup pairs agdnpthe features of the
transformed program and the speedup obtained relativesiiba. A number of re-
gression models may be used (see section 4.5).

When a new transformation is to be evaluated, the baselireisdchnsformed, and the
code features extracted from that transformed programsé bede features are then
used as input to the model, with the output being the expesgeddup over baseline
of this transformed program.

4.7 The Pitfalls of Using Machine Learning

In this thesis, we show how machine learning can signifigamtitperform manually
derived heuristics and methodologies. Indeed, large sjpseale available using these
techniques, but it is important to remember that machinmieg is not a panacea. Itis
not simply a matter of removing a heuristic from a compileg aocketing in a model
in its place. There are significant difficulties to overcotmah in the selection and util-
isation of features, and in the training process of buildingodel. If the inputs to the
model are not of sufficient quality, no modelling technigs@phisticated or otherwise,
has any hope of providing good results. Similarly, if a madehot constructed and
evaluated properly, it may not represent the true optintsatpace correctly, instead
oversimplifying it, or attributing complexity where none fact exists. This section
discusses some of these programs and some potential sslutio

4.7.1 Overfitting

In order to provide the best results, a model ngesteralisehe space which it repre-
sents, allowing new, unseen, data points to be assignedaatiracy. A significant
danger to good generalisationogerfitting Overfitting is the attribution by a model of
a more complicated optimisation space than the underlyatg warrants. This might
mean mapping the noise in the data, or result from a lack @f pihts which suggest
complexity, where in fact there is none when more points evealed. An overfitted
model will produce poor predictions as any new data giveihéamodel is unlikely to

follow the complicated specifics of the training data.

An extreme case of overfitting is that of total training datemmorisation. Given a
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model capable of representing a sufficiently complex systamh as a MLP with

many hidden nodes, see section 4.5.1.3), and given enomghtdi train, the model

may simply represent a memorisation of the training datd, reot the general case.
This results in perfect or near perfect prediction of théntrey data, but not a true
representation of the space being modelled.

Thus, preventing overfitting is imperative when training adal. Many techniques
have been suggested to assist avoiding overfitting, sudieasarly-stop method, and
the most simple of which are good validation, the early st@gihod and Bayesian
priors.

The Early-stop Method

The early-stop method is a very simple, though not propedthematically analysable,
technique for preventing overfitting, and ensure genextadis in models which employ

iterative learning schemes such as gradient descent. Ttelnsdrained on the train-

ing set data as normal, causing the model to adjust to fit ttee dad the error rate to

gradually lower. However, instead of ceasing this trairaftgr the model and the data
have converged and the error rate is static, the learnirtgpgped early.

Choosing when to stop learning can be determined by congtaférrring to a separate
validation data set. After a fixed number of iterations, h&ag is temporarily halted,
and the model evaluated on the validation set. Learningpgheceeds for another fixed
number of iterations, and the same validation is done, aisddltepeated. When the
falling error rate on the validation set has reached its &weint, and the error rate
begins to rise, then the learning is halted and the model .fiked important to note
that the error rate on the training set may still be fallinghé stage, but it is necessary
to stop learning to enable generalisation.

If enough data points are available, it is advisable to usérd kabelled data set called
a testing set for further validation when using this methdaldis-is to ensure that there
is no overfitting toward the validation set. In reality, thedability of labelled data is
often low, and s@ross-validations used.



4.8. Summary 57
4.7.2 Cross-validation

Cross-validation is a technique for ensuring the generafitg model when labelled
data is scarce and must be used in the training of the modé&s. aldvantageous as
it allows almost all of the data to but used in training, whasll ensuring proper

validation of data, and thus good practice.

The data is partitioned intB segments, and the model trained usihg 1 segments.
The model is then evaluated using the remaining data segnidr@ model is then
rebuilt P times, each time omitting a different segment and evalgabim it. In an
extreme example, the data points can be partitioned ingiigl meaning as many
models as the number of data points need to be constructeslisThknown adeave-
one-out-cross-validatianThe main disadvantage of this scheme is the time and effort
involved in building a large number of models. When a modekiy\complex, it may
require a long time to complete training, even on modern mn&sh and this must be
taken into account.

4.7.3 Underfitting

Underfitting occurs when a model is used which is not capablkemresenting the

complexity of the underlying system for which it is being d4e represent, such as
a straight line to solve the XOR problem (see figure 4.1). Gsting and valida-

tion techniques can ensure that underfitting has not oatuaewell as using existing
knowledge of the complexity of the space and choosing maasrdingly.

4.8 Summary

This chapter has described the basics of machine learnimyhaw it can fit in a
compiler context. Sections 4.1 and 4.2 dealt with what nraekearning is and why
it is useful. Representing programs by means of features esgitded in section 4.3,
and the complexity of the problems has been discussed iilosetd, which directly
relates to which implementation of machine learning isljike be most successful.
Models capable of expressing different orders of compfexere presented in section
4.5. Examples have been given of how machine learning cae splecific compiler
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problems in section 4.6 , and a short guide to what can go wndren using machine
learning techniques given in section 4.7.



Chapter 5

Evolving Iterative Compilation

There exists an unwanted gap in performance between cahquitée and hand-written
code. Iterative compilation [7, 13, 26] narrowed this gaabgmpting a large number
of different optimisation strategies, and choosing the.bHse implication of this work
is that built-in compiler heuristics which select optintiea strategies are not doing as
good a job as is possible.

This chapter proposes a new approach to selecting comgaleformations — namely
probabilistic optimisation. It details how stochastic hwts can be used to select the
high-level transformations, directed by execution timedieack, where optimisation
space coverage is traded off against searching in known gagdns. Using such an
approach we achieve significant performance improvemeiis average over 1.71
across three different architectures. This approach csilydee transfered to other, or
even yet to be invented, processors and extract high lef/ptsformance unachievable
by traditional techniques with no additional native corapgffort.

Section 5.1 outlines the main problem and the motivationrakthis chapter; section
5.2 describes the probabilistic search approach; sect®giges details of our experi-
mental set up; section 5.4 presents our results and oursas#hereof and section 5.5
gives some brief conclusions.

59
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5.1 Motivation

Embedded systems designers are presented with a dilemrhantbcode their pro-
grams using assembly code, or to use a compiler. The fornreemiogh to offer — it
produces very fast, clean and small code, but comes at tbe @irthe significant time
required to code the program. In addition there is the cobtirofg an experienced as-
sembly programmer to carry out the work and the maintairtglslsues such assembly
code generates.

On the other hand, if a compiler could be used then these gmabhre reduced, but
it entails sacrificing execution speed and code size [67deédal, with the increasing
speed of embedded processors, chips are increasinglyapnoggd using high-level
languages as the benefits begin to outweigh the cost of aseate.

Time-to-market is now a significant driving force in embeddgstems, and with chips
becoming more complex, compilers are finding it harder tqpkzece, and even more
difficult to obtain good performance on these chips [50]. #¢ same time, coding
in assembly could delay this fast-moving field from desigmiarket; thus we have
increasing demand for compiled code, with the compiler ingndecreasing ability to
exploit the processor.

It is clear that a solution is necessary to this problem,atoee, there has been sig-
nificant research interest in improving the performance mifnaeising compilers for
embedded systems, e.g. [41]. Such work largely focuses prowing back-end, ar-
chitecture specific compiler phases such as code generatigister allocation and
scheduling. However, the investment in ever more sophigtcback-end algorithms
produces diminishing returns. This chapter proposes aignlto help counter this
problem.

Given that an embedded system typically runs just one prognaits lifetime, we
can afford much longer compilation times (e.g. in the ordesaveral hours) than in
general-purpose computing. In particular, feedback thceor iterative approaches
where multiple compiler optimisations are tried and the bekected, has been an area
of interest [51]. However, these techniques still give treédy small improvements as
they effectively restrict themselves to trying differeiaich-end optimisations.

In this chapter, an entirely distinct approach is considenamely using source-level
transformations for embedded systems. Such an approach definition highly
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portable from one processor to another and is entirely cemehtary to the efforts
of the manufacturers back-end optimisations.

While high-level approaches can deliver good performartcis, extremely difficult
to predict what the best transformation should be. It depdiadh on the underlying
processor architecture and the native compiler. Smallgdsmim the program — a new
release of the native compiler or the next generation psmres will all impact on
the transformation selection. Typically, high level restures have a static simpli-
fied model with which to guide transformation selection. dstbeen shown [14, 26],
however, that the optimisation space is highly non-lineef that such approaches are
unlikely to prove good solutions.

5.1.1 Motivating Example

High-level transformations are a portable, yet highly etffee way to improve perfor-
mance by assisting the back-end compiler to produce efficede. Deriving effi-
cient program transformation sequences, however, is aleangsk. For all but the
most basic programs, the interaction between the soursettre transformation, the
back-end compiler and its built-in optimisations and thdentying target architecture
cannot be easily analysed and exploited. Furthermorey@nugers frequently apply
their own program transformation to the program they wisimprove based on their
expert knowledge and experience with a specific processbitarcompiler. How-
ever, with each new generation of the processor, or everetbage of a new compiler
version, their knowledge becomes outdated. Furthermaw, processors and their
frequently immature compilers are a challenge for eachraragieveloper aiming at
high performance.

As an example, consider the program excerpt in figure 5. I¢@Imsfir  function is
part of the UTDSP [40] (see section 3.1LMSFIR benchmark. It computes a single
point of an N-tap adaptive finite impulse response (FIR) féigplied to a set of input
samples. The first of the twfor loops iterates over the input and coefficient vectors and
performs repeated multiply-accumulate (MAC) operationke $econd loop updates
the filter coefficient for the next run of this filter function.

In figure 5.1(b) the main differences due to transformationan optimised Analog
Devices TigerSHARC (see section 3.2.1) implementationisted. While the routine
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(a) Original implementation

void Imsfir(float input[], float output[],
float expected[], float coefficient]], float
gain)

{

int i;

float sum,term1,error,adapted,old _adapted;

sum = 0.0;

for (i = 0; i < NTAPS; ++i) {
sum += inputfi] * coefficient[i];

}

output[0] = sum;

error = (expected[0] - sum) * gain;

for (i = 0; i < NTAPS-1; ++i) {
coefficient(i] += input[i] * error;

}

coefficientNTAPS-1] = coefficient[NTAPS-2] +

(b) TS-101 implementation

« Loop totally unrolled
« Array references dismantled

« Loop totally unrolled
« Array references dismantled

(c) TriMedia implementation

— New temps. introduced

« Lowered to DO-WHILE loop
«— Pseudo 3-address code
« Linear pointer-based

array traversal

«— Loop totally unrolled

«— Pseudo 3-address code

« Linear pointer-based
array traversal

input[NTAPS-1] * error;

}

* See figure 5.2 for the specific example of this loop.

Figure 5.1: Differences between the original Imsfir implementation (a), and implemen-
tations for the TigerSHARC (b) and TriMedia (c) processors

has not changed semantically, it outperforms the routirfgume 5.1(a) by a factor of
1.75 on the TigerSHARC TS-101 processor. In this transformedion of the pro-
gram, both loops have been flattened and the array referdisseantled into explicit
base address plus offset computations.

On the Philips TriMedia (see section 3.2.2), however, diffié transformations pro-
duce the best performingsfirimplementation (see figure 5.1(c)). Here the speedup
of 1.2 is achieved by converting the fifst loop into ado-whileloop and flattening the
second. All array references have been converted to psiatet an almost 3-address
code produces the best result. The first loop of example i (s optimised form

data = input; coef = coefficient; sum = 0.0F;
i=0;
do
{
{
float *suif _tmp, *suif  _tmpo0;
suif _tmp = data;
data = data + 1;
terml = *suif _tmp;
suif _tmp0 = coef;
coef = coef + 1;
term2 = *suif  _tmp0;
sum = sum + terml * term2;
}
i=i+1
} while (/(8 <= i));

Figure 5.2: First loop of example 5.1(a) optimised for the TriMedia processor
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for the TriMedia is shown in figure 5.2.

This short example demonstrates how difficult it is to prethie best high-level trans-
formation for a new platform. Iterative compilers inteNearansformation and pro-
filed execution stages to actively search for good transition sequences. Portable,
optimising compilers, however, must be able to search anpiatly huge transforma-
tion space in order to find a successful sequence of tranaf@ns for a particular
program and a particular architecture. This chapter prepasrobabilistic search al-
gorithm that is able to examine a small fraction of the opgation space and still find
significant performance improvements.

5.2 Probabilistic Search

This section describes a scheme to intelligently searcliakieoptimisation space pre-
sented to a compiler. Using a combination of probabilisid andom search, the
compiler can focus in on the profitable optimisation seqesndout still gain good
enough coverage of the space to avoid becoming stuck in focama, and limiting
the scope of the search.

Selecting the best overall high-level transformation rallynconsists of selecting a
sequence of smaller transformations which are applied tobgvall of the program.

Given that certain transformations may be parameterisedefample, loop unrolling

is parameterised by the unroll factor), and that differemhbinations may be consid-
ered, selecting the best transformation is effectively ptimasation problem over the
space of all possible transformations.

This approach to program optimisation makes use of anitersinsformation frame-
work called the COLO Tool (see section 3.3.1) that alternglt@ses in which individ-
ual points of the optimisation space are sampled and theedit is evaluated. In par-
ticular, transformation sequences are constructed arlgbdpp the input program and
the resulting program is then executed to determine itopadnce. Thislynamigoro-
gram optimisation approach does not rely on model-baséid staalysis, but guides
the search on actual performance.
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/ Tra7sformatior168\Analysis 13
mlg Data 25 Computation 24

Loop CF Lower Layout Access Lower Part Eval Redun Elim  SimplifyLowet
5 4 10 9 /N 4 7 2 11

Val Prop Mem Type Lower
3 7 3 1

Figure 5.3: Transformation categorisation

5.2.1 Optimisation Space

In this chapter we consider 81 high level transformatiome\joled in appendix A), ap-
plicable to C programs and available within the SUIF [29]dzshsompiler framework
(see section 3.3.1.1). For convenience we have classifeed & shown in figure 5.3.
13 are in effect analysis phases that mark the IR enablieg tetnsformations which
actually modify the source. These transformations can &ssiled into three broad
groups; those aimed at modifying the program’s control-fldwase that modify the
actual computation performed and those focused on datehihitirther subdivided
into actual layout and access. These broad categories rénerfuefined as shown in
figure 5.3.

All categories contain lowering transformations whichnskate a complex structure
into a smaller one, i.e. unpacking a structure into its sofjmonents.

The control-flow transformations are aimed either at loapgformations or more gen-
eral control-flow changes. The data access transformatichgle value propagation,
modifying memory references and data type conversion. lligindie computation
based transformations include partial evaluations, rddoay elimination and code
simplification. This is by no means a definitive transforrmatiaxonomy, but provides
an overview of the options available.

5.2.2 Optimisation Algorithm

Central to the success of this technique is the optimisatgorighm hosted within the
optimisation engine of the COLO Tool framework. The huge silzthe optimisation
space and its complexity make it necessary to find a balanadd-off betweespace
explorationandfocused searchFor the benchmarks considered here, the size of the
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space is approximately 84 (81 transformations in any order, up to length 10). To
find good points, whilst keeping the number of sample poiatsl thus the number of
program runs) within reasonable limits, a probabilistgoaithm is employed.

Although the random search of the optimisation space leasighificant performance
improvement [26], it is, by definition, unable to direct etfband search for an opti-
mal point. If a transformation or sub-sequence is found twsi=iently perform well
or poorly, or indeed have no effect, we would like to use thi®imation to guide
the search. However, there is a natural tension betweeiwliagohardwiring of bi-
ased heuristics and cost-effective search. What is needegchnique that combines
an unbiased sampling of the transformation space with &dbcused attention on
good areas.

In order to overcome this dilemma of space exploration wsu$ed search, two simple,
yet powerful algorithms are combined, representing eachetwo domains. These
two algorithms compete with each other and within a fmakgestage the best of the
two individual solutions is chosen. To facilitate a broad @on-biased space cover-
age we have chosen a simpésdom searclas our space exploration algorithm. The
focused search is represented Igearchalgorithm inspired by a modifieBopulation-
based Incremental Learning (PBI[3] approach. Both algorithms can be considered
as two extreme cases of a continuum where the learning rafe 4s 1 for the PBIL
inspired technique andR = 0 for random search. In particular, in a competitive learn-
ing network the activations of the output units are compuaited the weights adjusted
according to the rules given by the following two equatiaBis [

output = ZW”- X input; (5.1)
]

Awij = LR x (inputj —wjj) (5.2)

A learning rateLR = 0 leads to constant weights which are not adjusted during the
search. On the other hand, a learning lla®e= 1 enforces strong adjustment to the
individual weights over changing input. These two alganthare discussed in the
following two sections.
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5.2.2.1 Space Exploration

Random search assigns a constant uniform probability bligion to the set of trans-
formations and chooses the next transformation solelydbasea value generated by
a pseudo-random number generator. In the case of paraseetéransformations, we
equally divide the assigned probability across all enuteeraersions. For example
if each transformation has a 0.1 probability of being selédiut there are 50 loop
unrolling options, then each of them is assigned a proliglmfi0.002.

The learning rate,.R, is 0 for random search as no information is carried acresa-it
tions of the algorithm and from equation 5.2 it follows tiat;; = O.

Both the transformation and the length of the transformasequence (up to some
upper limit) are determined by a random process. The randamcks algorithm does
not use the effectiveness of any transformations to ditecgarch.

5.2.2.2 Focused Search

PBIL is a stochastic search technique which aims to integyatetic algorithms and
competitive learning. It increases the probability of ati@pbeing selected whenever
a positive instance using that option is encountered.

In our stochastic optimisation algorithm, transformasidrave an associated selection
probability, but unlike the space exploring random seaftghraghm, probabilities can
change over time and their distribution does not need to hi@mm i.e. LR # 0.

In fact, we have chosebR = 1 to emphasise its fast convergence on encountered
performance enhancing transformations. The original PRjar&thm considers binary
encodings of parameters and generates a population oisw@ubased on a fixed-
length probability vector, which had to be modified for thispose.

Starting with a uniform probability distribution, sampleipts (i.e. transformation
sequences) are chosen and evaluated by executing thepmordésg program. The
selection probabilities of the individual transformatcare updated based on the suc-
cess (i.e. execution time) of the sequence as a whole. Tranafions contributing to
better performance are rewarded while those resulting ifopeance losses are pe-
nalised. Thus, future sample points will include previguslccessful transformations
more frequently, and search their neighbourhood more sintely.
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Standard PBIL allows for random mutation within the prob&pwector, but we dis-
card this as we do not wish to incur the overhead. Finally waatayenerate a popu-
lation based on a probability vector, but just one candidBtpending on its success
we update the probability vector accordingly.

The high learning rate, lack of mutation and a single candigar generation means
that the search is strongly focused on the result of feedback

5.3 Experimental Setup

5.3.1 Processors and Compilers

The adaptive transformation scheme is evaluated aganest tlifferent processors rep-
resenting different aspects of the embedded computing iorAanong the three em-

bedded processors are a high-performance floating-paitatsignal processor, the
Analog Devices TigerSHARC TS-101 (see section 3.2.1), aimettia processor, the
Philips TriMedia TM-1100 (see section 3.2.2), and an embddarocessor derived
from a popular general-purpose processor architectuedntiel Celeron 400 (see sec-
tion 3.2.3).

As back-end compilers we used Analog Devices’ VisualDSP#+f8r the Tiger-
SHARC v7.0.1.5, Philips’ TriMedia v1.1ly Software Developm&nvironment (SDE
v5.3.4) for the TriMedia, and both Intel's ICC 8.0 and the GNICG 3.3.3 for the
Celeron. The highest optimisation settings were used ondtieencompilers and exe-
cution times were measured using hardware cycle counters.

5.3.2 Benchmarks

The technique is evaluated on ti@ DSP[40, 54] benchmark suite. Details are given
in section 3.1.1. This set of benchmarks contains compugsive DSP kernels as
well as applications composed of more complex algorithnusdata structures. Many
of the programs are available in up to four coding stylesl{eixs pointer-based ar-
ray references, plain vs source-level software pipelin8d)me of the benchmarks are
excluded from this study, due to the incompatibility betwelee differing interpreta-
tions of acceptable C syntax/semantic between SUIF andatie&nd compilers. The
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TigerSHARC in particular is much stricter than SUIF in ternishe C accepted. Ad-
ditionally, some benchmarks are focused on bit manipulatrbich causes problems
due to conflicting endianness.

5.3.3 Program versioning

Transforming or rewriting a program at source level may hawvempact on perfor-
mance. To illustrate this, consider each of the UTDSP beacksn(see section 3.1.1)
which are supplied in up to four distinct versions. Firsthck is written using arrays
or pointers. These in turn may also be rewritten as sourcd Enftware pipelined
versions. Although these versions are four independentesueach version can be
readily derived from the other by pointer conversion/rezg\j42, 23] or source-level
software-pipelining [58].

Figure 5.4 shows the average execution time of each versimssthe benchmarks on
each processor. On the TigerSHARC, the clean array versi@s d¢ine best average
performance while the TriMedia prefers the pointer basedion.

We consider two compilers, GCC and ICC, for the Celeron. Both clemganarginally
prefer the array based code over pointer based versionsoghaases, with the notable
exception of the TriMedia, the software pipelined versiohghe program perform
poorly.

From this set of data, we can conclude that source-levesfivramations will affect
performance and that this will depend on the processor,ranogand possibly the
underlying compiler.

Due to the variation in performance of the four differentsiens, all speedups in
this chapter are with respect to the best performing orlginde. In the case of the
TigerSHARC this is normally the array based original codelevbn the TriMedia it is
usually the pointer version.

5.3.4 Encoding Transformations

One of the main difficulties in selecting the best transfdramasequence is that many
transformations are position dependent, i.e. only apgied part of the program.
Unlike global optimisations, we have to specify the locatwf the transformation.
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Figure 5.4: Relative speedup or slowdown for different coding styles per processor. The

data is normalised to the performance of the baseline array code

Furthermore, these transformations may be parameterisbi leads to two prob-
lems : firstly, the optimisation space now increases in simk aecondly, it becomes
asymmetric in description. This means search cannot pdaoege uniform manner.

To overcome this, the system employs a simple method to niekreéatment of pa-
rameterised location specific transformations indistisigable from the yes/no binary
decision of global optimisations such as constant propagatThis is achieved by
simply enumerating all possible parameters and all lonatio

5.3.5 The COLO Transformation Framework

The chapter uses the iterative transformation framewolieddéhe COLO Tool (see
section 3.3.1 for more details) to carry out all experimenfthis section briefly de-
scribes it, and the different optimisation algorithms usedhalance potentially con-
flicting search strategies.

Benchmark C code enters the COLO Tool and is translated intatarmediate rep-
resentation on which all transformations operate. Afteisfimg the transformation
process, the IR is translated back into C code and compitedaim executable by the
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particular machine’s back-end C compiler making use of iisthaggressive optimisa-
tion setting.

The COLO Tool makes extensive use of the Stanford SUIF com[2i83 (see section
3.3.1.1) to provide a C front-end, a code generator and asebbction of already
implemented transformations.

5.4 Results and Evaluation

This section presents, discusses and analyses the erhpascdts that were gained
using our iterative transformation tool on a number of pssoes. All results are found
after running the search algorithm for 500 evaluations.

5.4.1 Results

As stated in section 5.3.3, all speedups are with respeketbest performing original
program, giving a true evaluation of our approach. Thusbé original execution
time of the four possible versions of each program is setiftiespeedup comparison
with the highest optimisation level selected on the natwajgiler.

5.4.1.1 Platform Based Evaluation

Figures 5.5, 5.6, 5.7 and 5.8 show the performance improntsvachieved by our
approach across processors and benchmarks. All the pretfoenefited from itera-
tive search. The TigerSHARC had an average speedup of 1.&3Jrikedia 1.43,

the Celeron with GCC 1.54 and with ICC 2.14 with an overall averaigl.71. This

overall figure demonstrates the importance of high-levéintipation. Using a plat-
form independent approach we are able to reduce executmendn average by 41%,
outperforming any other approach.

Examining the TigerSHARC results (see figure 5.5) more cjoselsee there is much
variation. Surprisingly, the matrix multiplication ron@s can be improved by almost
a factor of 7 by completely flattening the code. As this is saetell known routine,
one would have thought that the baseline compiler would dblveee, but it appears
that the heuristic controlling the loop unroller in the baw® compiler is unwilling to
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Figure 5.5: Speedup due to high-level transformation over the most aggressive back-

end compiler optimisation alone for TigerSHARC
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Figure 5.6: Speedup due to high-level transformation over most aggressive back-end

compiler optimisation alone for Celeron/GCC
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Figure 5.7: Speedup due to high-level transformation over the most aggressive back-

end compiler optimisation alone for Celeron/ICC
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Figure 5.8: Speedup due to high-level transformation over the most aggressive back-

end compiler optimisation alone for TriMedia



5.4. Results and Evaluation 73

T T T T T T T T T T T T T T T T
FFTS FFTL FIRS FIRL IIRS IRL LAT LATL LMS LMS MUL MUL G721 G721 V32 V32 Com Ed. Hist
S S S L Cde Dcd Cd Dcd p Dct

Figure 5.9: Program speedup averaged across all platforms

be aggressive enough here to derive the necessary perfcemane compiler for the
TigerSHARC is well respected in industry, and further supgptire view that feedback
directed compilation outperforms static heuristics, egly in extreme scenarios.

The iterative scheme performs less well on the very smadl dees of FIR and IIR,
unlike the other processors. It also is unable to improveptréormance of the G721
encoder — a problem shared by all of the processors. Thikaly/ldue to the large
number of conditional branches present in these codecshwinakes them difficult to
optimise using high-level transformation.

A different picture emerges when considering the Celerorgssor with GCC (see
figure 5.6) where the speedups are less variable. In direttasi to the TigerSHARC,
large performance gains are achieved on the small data BRgmogram. Good re-

sults are also found for the compression and edge deteqgbipircations. Like the

TigerSHARC, little performance was gained on the G721 encoder

The largest performance gains were achieved with the ICC dengn the Celeron.
This in itself is a surprising result given that it is the mosdture compiler here and
therefore should have proved difficult to improve upon. Like TigerSHARC it per-
forms well on the large matrix multiplication and the smafTFand poorly on the
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G721 encoder. However, it performs well on the small IR, athWBCC, and shares
similar performance gains on edge detection and V.32 emcdde will compare the
two compilers GCC and ICC for the Celeron in more detail below &action 5.4.3).

The TriMedia has the lowest average speedup of 1.43 andhi&digerSHARC has

an uneven distribution of results with the large FFT aclmgva speedup of almost
5. Once again it performs poorly on the G721 encoder, bukerdther platforms it

performs poorly on the V.32 decoder and compress benchmarks

5.4.2 Benchmark Orientated Evaluation

Across all the benchmarks, only three of the benchmarkddadlchieve the average
performance improvement of 1.2RATNRMbenefits from loop unrolling, however,
due to cross-iteration dependencies the native compitsteuiction scheduler cannot
take full advantage of the enlarged loop bodyWSFIR suffers from a coding style
that introduces frequent conditional branches to the miost loop. SimilarlyG721
is limited in its transformation potential by many conditad branches between tiny
basic blocks.

Surprisingly, in four out of six cases high-level iteratisearch is able to speed up
programs to a greater extent for small rather than large slaés. This is counter-
intuitive as many of the restructuring transformationsydmve any noticeable effect
when dealing large amounts of data and computation. Exagitie output code, it
seems that in several cases the iterative search has ceiyppletrolled or flattened
certain sections of code, turning loops into large basickdcand act as an enabler
of baseline compiler optimisation. The large speedup ofimatultiplication on the
TigerSHARC is also due to this reason when applied to the iloogr.

543 GCCyvslICC

Using two compilers on one platform gives an insight intdrteéfect on performance.
As expected, overall the ICC compiler outperforms the GCC aagproximately 1.22
times faster on average. However, after applying high leegisformations on top of
GCC, we see an improvement on average of 1.54, outperformingol©@s own.
This means that an automatic platform-independent approagld use a less mature
compiler as a baseline, and still outperform hand-crafteithosers based on many
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Figure 5.10: Comparison of the two compilers for the Celeron. Results are normalised

to GCC performance before transformation.

years of work. Furthermore, it allows vendors to put lessréfito their compiler,
reducing the time to market of their product, while givinglmer performance.

The diagram also shows that applying transformations to 1R€sg speedup of more
than 2.5 relative to GCC alone. This also shows that a platiadapendent approach
can also port and scale with improved baseline improvenardgs a complementary
approach to vendor improvements. This additional speeslliggly because of su-
perior low-level transformation within ICC. High-level trsfiormation of code often
exposes significant opportunity for optimisation at a love»el, and it seems this is
better exploited by ICC.

5.4.4 Evaluating transformations

Overall, loop transformations have been identified as thet ineneficial class of trans-
formations in our framework. This category (cf. figure 58Jjallowed by the classes
of value propagation transformations and partial evatuatiThe differences between
the remaining classes are too small to derive any signifeefnoen them.

Across all platforms and benchmarks, the focused searcbepbiathe optimisation
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algorithm finds the best sequence 65% of the time with an geesffective transfor-
mation sequence length of 4.1. For examplecampreson the TriMedia the best
sequence of transformations was hoist loop invariantsmige function parameter
passing, globalise constants, scalarisation and flateemtin loop.

The remaining 35% of the time, the best transformation secgpievas found by the
random phase where the absolute length was on average 4fislresult looks sur-
prising at first. No high-level restructuring compiler rasgh has suggested that such
sequence lengths are beneficial and they obviously comtiieistthe focused search
results. However, as we are randomly selecting sequentesdr@ 1 and 80, then an
average around 40 is to be expected.

Furthermore, on examination it can be seen that there arg tmamsformations in-
cluded which do have any impact on the code. These junk wamstion sub-sequences
frequently contain repeated transformations or ones whiase no effect on that par-
ticular program. Hence, the effective transformationsisege length is much shorter.

As PBIL only selects transformations that are guaranteechwe mproved the pro-
gram in the past, then redundant sub-sequences are eljraatd this gives much
shorter sequence lengths. This means that while long segsienay be beneficial, it
is sufficient for future work to consider short but effectsequences, less than 10 in
length.

It is interesting to note that while the focused search filhesltest optimisation 65%
of the time, it achieves an average performance gain of ISpace exploration finds
the best solution less often, but achieves an average sped¢dl00 in these cases,
justifying the choice of using two approaches to searcHiegspace.

5.4.5 Distribution

Examining the probability distribution of the useful amaliion of a transformation,
there are eight transformations or peaks labelled A-H inréidull. There is much
commonality at first glance across the processors. Looplingas by far the most

successful transformation. Although it is well known to moye performance, it is
surprising that it is so successful here as each of the nativgilers applies unrolling
internally. This means that the heuristic employed by thveaompiler is not capable
of extracting high performance from these benchmarks. &ating known values and
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Figure 5.11: Probability of transformation being successful

loop hoisting are also useful transformations, again $sing as a back-end compiler
should perform this. Less obviously, breaking up expressiges (A) so that they can
be effectively handled by the code generator proved uséfulally changing arrays
into pointer traversal (G) is useful for machines with sepaaddress generation units
while eliminating copies (H) reduces memory bandwidth.

If we focus now just on the TriMedia and TigerSHARC whose sppeprofiles are
similar, then we see that there are also differences amangrticessors. Figure 5.12
shows the transformations ordered by overall effectivenés three points A, B and
C we see marked differences in the usefulness of transfmnsat This shows how
transformations can have different effects on differenhaectures.
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5.5 Conclusion

This chapter has described a probabilistic search algorftdr finding good source-
level transformation sequences for typical embedded progrwritten in C. Source-
to-source transformations have been shown to be not onihyyhpgrtable, but also pro-
vide substantial scope for performance improvements. Tovopeting search strate-
gies provide a good balance between optimisation spaceratioin and focused search
in the neighbourhood of already identified good candidal&ég. work integrates both
parameter-less global and parameterised local transfamsain a unified optimisa-
tion framework that can efficiently operate on a huge optatinis space spanned by
more than 80 transformations.

The empirical evaluation of this optimisation toolkit, lkdson three real embedded
architectures and kernels and applications from the UTDS#eltimark suite, has suc-
cessfully demonstrated that the approach is able to outperény other existing ap-

proach and gives an average speedup of 1.71 across platforms

Nevertheless, there is a significant drawback to this teglet the substantial amount
of compile and evaluation time required to achieve the tesiihis has to be balanced
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against the often very long runtimes of embedded prograrng;hacan afford such
long compilation times, yet this is clearly an undesiratdpesct of this technique.

The main reason for this very long compile time is that themjstation of each pro-

gram is carried out individually, starting afresh each tinkwever, we know from

experience, as well as intuition, that similar code is offesceptible to similar optimi-
sation. If there was a way to automatically gauge the siitylaetween programs, we
should be able to prime our technique with previously aaglinformation — to learn
from experience — which could dramatically speed up searthjmprove the results.
Thislearning compilerapproach is investigated in the next chapter.






Chapter 6

Knowledge Acquisition and

Transference

Iterative compilationhas raised the bar for what can be considered well-optimised
machine-generated code [26, 47], by illustrating the $icgnt performance gains still
available to compilers by purely automated techniquesdtiiteon, it has demonstrated
that accessing these gains is an extremely difficult tasktdube complicated and
highly non-linear optimisation space.

Searching the optimisation space using iterative comeiatan be an extremely time-
consuming task [7, 13]. As has been shown in chapter 5, pilidiaomethods can be
used to help speed up this technique, and build up some kdge/lef which opti-
misations are profitable to apply on a single program, b kihiowledge is simply
discarded at the end of compilation, and the process musiostr from scratch on a
new program.

In section 6.2, the scale of the problem facing compilerd,tha wastefulness of previ-

ous techniques is discussed; in section 6.3 the experitrsgitap is outlined; section

6.4 describes how the optimisation space is characte@aselthe interesting elements
of the space; section 6.5 describes how models can help g@varoblem, and how

to train the models; in section 6.6 the features are selestddlescribed; section 6.7
illustrates how the nearest neighbours technique can ke tosachieve knowledge

transference; in section 6.8 the results of the experimam@presented, and section
6.9 draws some conclusions from the data.

81
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6.1 Introduction

In this chapter, we describe a statistical technique toamphand-written compiler
heuristics, which is capable of considering a highly nordir optimisation space, with
many dimensions. We show how knowledge of a program can Ieigat, modelled
and then applied to a completely new program, reducing timebeu of compilation
iterations needed to achieve an equivalent performancease by an order of magni-
tude, compared to previous techniques.

This is achieved by building statistical models of each of taining programs (see
section 6.5), and employingode featuresand a simple statistical technique called
nearest neighbour&see section 6.7) to determine which of our models a novejrara

is most similar to, and thus which model to apply. This worlpignarily aimed at
embedded platforms, and thus two embedded processorseatdansevaluation: the
Texas Instruments C6713 and the AMD Alchemy Aul500 MIPS32dasocessor
(see sections 3.2.4 and 3.2.5).

In order to do this, we must be able to both represent the ctaarstics of a program in
a fashion amenable to machine learning techniques (so #hatight know when our
learned knowledge is applicable), and employ a methoddimgyepresenting and up-
dating our understanding of the optimisation space, basezkperience. The former
is tackled by means of using code features in section 6.6 tlanthtter by building
a mathematical model of the optimisation space using statigechniques, as de-
scribed in section 6.5. Critically, learned experience naggtitionally be allowed to
be transferredfrom programs used to train the system onto new programs seea
before. This is discussed in section 6.7. Using these tqaksiachieves a substantial
reduction in the number of iterations required to producedgeerformance.

In this chapter, source-level transformations [22, 58Himbedded systems are consid-
ered, as in the previous chapter (see section 5.2.1). Suappoach is, by definition,
highly portable from one processor to another and providettianal benefit to the
manufacturer’s highly tuned compiler.
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6.2 Motivation

Many optimisations in modern compilers have been tradiligroased around using
analysis to examine certain aspects of the code; the contpglaristics then make a
decision based on this information as to what to optimisegretio optimise and to
what extent to optimise. The exact contents of these hexgibave been carefully
tuned by experts, using their experience, as well as analyttols, to produce solid
performance.

It is easy to deduce from this that characteristics of co@eiraportant in deciding

what and how to optimise. However, given the highly nondineature of optimisation
interactions [14, 26] and the limited scope of these hdaasist normally limited to a

simple linear calculation based only on local evidence s likely that a much better
method of guiding optimisation can be produced if a largepsgboth in terms of code
characteristics analysed and the assumed complexity aiudpeit space, is utilised.

This chapter focuses primarily on embedded applicationsrevperformance is crit-
ical and, consequently, there has been a large body of workdat improving the
performance of optimising compilers, e.g. [41]. Most oithiork focuses on improv-
ing back-end, architecture specific compiler phases sudo@es generation, register
allocation and scheduling. However, the investment in evere sophisticated back-
end algorithms produces diminishing returns. Iterativerapches based on back-end
optimisations consequently give relatively small impnoneats [13].

Solving this problem presents several major challengesdifficulty of producing a

complex non-linear algorithm by hand and the difficulty oflerstanding which of the
many hundreds of program characteristics are importangédndehg this. In this chap-
ter, we propose the answer to these challenges is to use medelirning techniques
to automatically derive a better optimisation methodo|dmylt around experience of
what has gone before, and based on empirical evidence thdrean expert’s opinion.

In chapter 5, we saw how feedback-directed search can af@ugion to this problem,
but this technique alone takes a long time to reach a satsfacesult. A speedier
technique would allow better performance to be gained in edfitkme, or the same
performance to be obtained in a shorter time.
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Figure 6.1: Points corresponding to those transformation sequences whose perfor-
mance is within 5 % of the optimum for adpcm on the Tl C6713. The contour is the

predicted area for good optimisations.

6.2.1 Search space

The reason for long search search times in iterative cotigmif7, 26], and to a lesser
extent in chapter 5, is that determining the best high lesglisnce of transformations
for a particular program is non-trivial. Consider the diagria figure 6.1 showing the
behaviour of thedpcm program on the Texas Instrument’s C6713. This diagram is an
attempt at plotting all of the good performing points (witf5% of the optimum) in
the space of all transformations of length 5, selected framtaf 14 transformations.

It therefore covers a space of size®14t is difficult to represent a large 5 dimen-
sional space graphically, so each good performing trameftion sequence;ftstats)

is plotted at positioritito) on the x-axis, which denotes prefixes of length 2, and posi-
tion (ttsts) on the y axis, which denotes suffixes of length 3. The modtisgifeature

is that minima are scattered throughout the space and fitiokngery best is a difficult
task.

Prior knowledge about where good points are likely to be @datus our search
allowing the minimal point to be found more quickly. Altetivaly, given a fixed
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number of evaluations, we can expect improved performanee know good areas
to search within.

6.2.2 Focused search

This chapter demonstrates a technique that learns offdimead of time, a predictive
model to guide optimisation of a new program, based on lagrfiom iterative eval-
uation of other programs — this predictive model suggestsrially good regions of
the space to search. In figure 6.1 the contour lines enclose threas where our tech-
nique predicts there will be good points. Using this predicive are able to reduce
the number of searches to achieve the same performancehyhapidly reducing the
cost of iterative search. This can be seen in figure 6.2, wtochpares random search
(averaged over 20 trials to be statistically meaningfulhvand without the predic-
tive model focus. The x-axis denotes (logarithmic scale)ibmber of evaluations
performed by the search. The y-axis denotes the best pafam@nachieved so far by
the search ; 0% represents the original code performanfép ie maximum perfor-
mance achievable. It is immediately apparent that the ptigdimodel rapidly speeds
up the search. For instance, after 10 evaluations, randansliag achieves 38% of
the potential improvement available, while the focuseddeachieves 86%. As can
be seen from figure 6.2, such a large improvement would reaquier 80 evaluations
using random search, justifying further investigation rdgictive models.

6.3 Experimental setup

This section describes the experimental setup used in thik, wicluding the proces-
sors and benchmark suite used for evaluation, and the tnanafions considered for
an exhaustive study.

The experiments were driven by the COLO Transformation Fraorie Tool (see sec-
tion 3.3.1) which allows complete control of source-to+aauransformation selection
and ordering.
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Figure 6.2: How close to the best performance random and the new focused search
achieve on the adpcm benchmark on the TI platform. The random algorithm achieves

38 % of the maximum improvement in 10 evaluations; the focused search 86%.

6.3.1 Platforms

The experiments were performed on two distinct platformslémonstrate that our
technique is not specific to a particular processor — the Sitngtruments C6713 and
the AMD Alchemy Aul500 (see sections 3.2.1 and 3.2.4).

The TI C6713 is a high end floating point DSP, a wide clusteredwWIprocessor
with 256kB of internal memory. The programs were compileshgighe TI's Code
Composer Studio Tools Version 2.21 compiler with the high@& optimisation level
and -mlI3 flag (generates large memory model code).

The AMD Alchemy Au1500 processor is an embedded SoC procasst a MIPS32
core (Aul), running at 500MHz. It has 16kB instruction caahd 16KB non-blocking
data cache. The programs were compiled with GCC 3.2.1 with@3ecompile flag.
According to the manufacturer, this version/option givesbest performance - better
than later versions of GCC — and hence was used in our expgemen
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6.3.2 Benchmarks

The UTDSP[40, 54] benchmark suite was designed “to evaluate the tyuaflicode
generated by a high-level language (such as C) compilertiaggeprogrammable dig-
ital signal processor (DSP)” [40]. This set of benchmarkgtams small, but compute-
intensive DSP kernels as well as larger applications coegho§more complex algo-
rithms. The size of programs ranges from 20-500 lines of addere the runtime is
usually below 1 second. However, these programs represamute-intensive kernels
widely regarded as most important by DSP programmers andsae indefinitely in
stream-processing applications. This is the same benéhsoée as was used in the
previous chapter, and is described in section 3.1.1.

6.3.3 Compiler transformations

In this chapter, as in the previous chapter, source-toesomansformations are con-
sidered (many of these transformations also appear witl@roptimisation phases of
a native compiler[1]). These are applicable to C progranasaamailable within the re-
structuring compiler SUIF (see section 3.3.1.1) [29]. Rertdetails of the framework
are given in section 3.3.1.

For the purpose of this work, we have selected eleven tremsfitons described and
labelled in table 6.1. As four loop unroll factors are coesetl (arbitrarily), this in-
creases the number of transformations considered to 14rafléformation sequences
of length 5 are then exhaustively evaluated, selected flaset 14 options. This al-
lows the evaluation of the relative performance of our pegabtechniques. In the later
evaluation section (see section 6.8), we also consideclseg; non-exhaustively, in a
much larger space.

6.4 Characterising the space

Employing an exhaustive enumeration of all transformatiptions is the best, though
time-consuming, method to evaluate the optimisation spabés allows us to make
definitive statements about the space in terms of best blaileansformation, and to
evaluate optimisation selection techniques with refezdna fully known space.
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Label | Transformation

1,2,3,4| Loop unrolling

f Loop flattening

FOR loop normalisation

Non-perfectly nested loop conversion

Break load constant instructions

Common subexpression elimination

Dead code elimination

S>S|o|n | x|+ | >

Hoisting of loop invariants

IF hoisting

m Move loop-invariant conditionals

c Copy propagation

Table 6.1: The labelled transformations used for the exhaustive enumeration of the

space. 1,2,3,4 corresponds to the loop unroll factor.

In order to characterise the optimisation space, all ttdnsformation sequences are
exhaustively enumerated on both platforms. Table 6.2 sumesathe performance
available; columns 2 and 3 refer to the TI while columns 4 andfér to the AMD
respectively.

The columns labelletimprov.  (cols. 2 and 4) show the maximum reduction in exe-
cution time obtained on the Tl and AMD within this exhaustyvenumerated space.
Eight (out of twelve) benchmarks for Texas Instruments deten (out of twelve)
benchmarks for AMD achieved significant improvement. Thst legecution time re-
duction was 45.5% on the Tl and 30.5% on the AMD. On averagé&.2%4 reduc-
tion was achieved for the Tl and 19.6% for the AMD. This trate$ into an average
speedup of 1.15 and 1.16 over the platform specific optimpisompiler.

6.4.1 Best performing sequences

The columns labelle8eq. , (columns 3 and 5) in table 6.2 contain the best perform-
ing sequence for each benchmark on each machine. The indiMatters within each
entry refer to the labelled transformations in table 6.4, e= if hoisting . These
entries show that the complexity and type of good transftionasequences is pro-
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TI AMD
Prog. Improv. Seq. || Improv. Seq.
fft 3.64%| {3nm} 4.49%| {4hng
fir 45.5% {4} 26.7% {3}
iir 16.3%| {3h} 29.5% {h4}
latnrm 0.34% | {nsch 27.1%| {csh4
Imsfir 0.39%| {1s} 30.3% {s3}
mult 0.00% {} 30.5% {4}
adpcm 24.0% | {lish} 0.75% {ism}
compress| 39.1%| {4s} 24.0% {hs4}
edge 5.06% {3} 23.1% {ch4}
histogram|| 0.00% {} 24.7% {4}
Ipc 10.7%| {snZ 6.01% | {h4cnn}
spectral 7.46% | {n4} 8.53% {sh4}
Average 15.2% - 19.6% -

Table 6.2: Summary of optimisation space on the Tl and AMD using exhaustive search.

gram dependent. While benchmarks sucHiasand edgedetectfor the TI andfir,
multandhistogramfor the AMD reach their best performance with single transia-
tions, other benchmarks such adpcmfor the TI andlpc for the AMD obtain their
minimum execution time with four and five-length sequeneaspectively. Similarly,
transformations that yield good performance on some beadksrdo not appear in
the best sequences of other programs. For example, on the th¥Bequencéism}
makesadpcm run at its minimum execution time; however, none of thesedlimdivid-
ual transformations is present in the best performing secpiefedge _detect . This
variance shows that different transformation sequences@eded for each different
program. Two kinds of model are evaluated to represent mgrams in the following
section.
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6.5 Representing Experience - Using Models

6.5.1 The case for models

As we have seen in chapter 5, it is clearly the case that oeojatimisations, and

indeed sequences of optimisations, are particularly dudea particular program —
however, it takes a long time to find these optimisations,reas of the optimisation
space. In order to speed up our search algorithms, we wisbctesfour attention on
the most profitable areas of the optimisation space. To tis @ model is built for

each of our training programs, reflecting those transfaonaequences for which the
program obtained good performance, in the hope that thiwlauge can be effectively
transferred to new programs.

It is possible simply to record the best sequence achievexdiar programs and hope
that it improves the current program, however, this tecailjas drawbacks. Firstly,
as the results in table 6.2 show, the best transformatiomenpoogram is never the
best on others. Since our goal is to achieve the best speedsibfe, we can afford

to invest time to try several different optimisation seqees) and afford to be wrong
some of the time. Knowing the best sequence on another prnogndy provides one

single option and cannot guide subsequent search withirgarlapace.

The alternative is to build intricate models that charaséethe performance of all
transformation sequences. Here the problem is that the lnaddoe easily overfitted
to the data, so that it cannot be generalised to other pragr&uarthermore, such a
complex model would require extensive training data, whney be costly to gather
and is unrealistic in practice. In this section we considar tifferent models which

try to summarise the optimisation space without excessregfitting.

6.5.2 Building the model

We consider (i) a simple independent distribution model énda more complex
Markov model. Both of these require relatively small amouritdraining data to
construct and should be easy to learn from our training data.
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Independent identically distributed (1ID) model

The IID model is a very simple approach to modelling. It asssitiat all transforma-
tions are independent (i.e., there are no interactionsdmtwransformations). Even
though we know this is not the case, it still makes sense towith this model as it is
one of the simplest, and is easier to learn with a small nurabgatapoints than more
complex models. A simple approach may provide a good 'pryrso that search can
uncover further speedup.

Consider a set oN transformationsZ = {t;,to,...,tn}. Lets=s1,%,...,5 be a
sequence of transformatiosf lengthL, where each elemest is chosen from the
transformations irY. Under the independent model we assume that the probatfibty
sequence of transformations being good is simply the pitaefieach of the individual
transformations in the sequence being good, i.e.:

L
P(s1,%2,...,8) = _F!P(s)~ (6.1)

HereP(t) is the probability that the transformatiopoccurs in good sequences. For
our data set we have chosen the set of good sequences to bes#upences that have
an improvement in performance of at least 95% of the maximossiple improve-
ment. This allows us to capture information about sequentesh are not quite the
best, but still do very well, expecting that they might be blest for similar programs.
We calculateP(tj) by simply counting the number of timgsoccurs in good sequences
and normalise the distribution i.&:}; P(t;) = 1. We then record within a vector the
probability of each of thé&l = 14 transformations.

For each benchmark we can build this 11D distribution, anféméo this as thdID-
oracle It is an oracle in the sense that we can only know its values ame have
exhaustively enumerated the space, which in practice isalistic. Our goal is to be
able to predict this oracle by using machine learning tesgnes based on a training set
of programs in order to improve search. However, it is neangs® prove first that this
oracle distribution does indeed lead to better search ithgos.

Markov Model

Using the IID model, there is no way to represent interactimetween transformations,
and thus any such information present is discarded. Thiaricplarly restrictive in
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cases where there are transformations that enable thealpipty of other transforma-
tions or when they only yield good performance after othezsapplied. It is therefore
useful to try to model these interactions between transéitions, and to do this, we
use a Markov chain based model.

A Markov chain for transformation sequences can be definéollagys:

L
P(s) = P(s1) |1 P(ss-1)-

Under this scenario, the probability of a transformatiorcurong is dependent on
the transformations proceeding it. This model assumesthieaprobability does not
change along the sequence — i.e., it is the same at any positihe sequence, and
therefore the model is often referred as a stationary Madkam. This oversimplifi-
cation prevents the number of parameters of the model frene@sing with the length
of the sequences considered.

Thus, the parameters of the model are the probability at teegdosition of the se-
quenceP(sy) and the transition matriR(s|s_1) withi =1,...,L, which as before can

be learned from data by counting. Once aggh, P(s; =t;) = 1 andy™, P(s =tj|s 1) =
1 must be satisfied.

As in section 4.1 the parameters of the model have been @énoma those sequences
that have an improvement in performance at least 95% of thenmuen possible im-
provement. Using this model gives a 14 x 14 matrix.

6.5.3 Speeding up search: Evaluating the potential of the mo dels
Baseline search

Two common methods used to search the transformation speesmpared against:
a blind random search (RAND) and a slightly more sophistit@tenetic algorithm
(GA). Random search generates a random string of transfianmsavhere each trans-
formation is equally likely to be chosen.

The genetic algorithm was configured in the same manner a8"G@& in [16] with an
initial randomly selected population of 50. This followststandard GA format, and
uses a two-point randomised crossover, and scaled fitnesss\as weights in making
reproductive choice. In addition, the algorithm employsirsdkof ‘hash checking’



6.5. Representing Experience - Using Models 93

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Percent of Max Improvement Available

Evaluations

Figure 6.3: Performance with respect to evaluations for the random (RAND) and ge-
netic (GA) search algorithms on the Tl board. The x-axis denotes (logarithmic scale)
the number of evaluations performed by each search. The y-axis denotes the best per-
formance achieved so far by the search; 0 % represents the original code performance,

100% the maximum performance achievable. Results averaged over all benchmarks

system, where all new sequences are hashed and that hash $tiren new sequences
are generated, they are checked against previous hasles sioerre is no duplication
of previously evaluated sequences. If a duplication isaletk the sequence mutates
until it becomes unique.

For the exhaustively enumerated space, both algorithms &iavilar performance as
can be seen in figures 6.3 and 6.4. Here, the best performahisy@d so far by each
algorithm is plotted against how many program evaluati@weheen performed. This
plot is averaged over all programs. Improvements by eitlggarighm are more easily
achieved on the TI due to the much greater number of sequengeg a significant
speedup.

Both algorithms have similar overall performance, with th& @erforming well on
the AMD in the early part of the search. However, random gepecforms better after
a large number of evaluations as the GA appears to more ltkehe stuck in local
minima. In both cases, however, large numbers of evaluatioa needed to gain any
significant performance improvements.
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Figure 6.4: Performance with respect to evaluations for the random (RAND) and genetic
(GA) search algorithms on the MIPS board.

Oracle-based models

In order to test the effectiveness of models, a perfect letacodel is constructed.

Each model is contructed using the results obtained fronckeey a particular pro-
gram’s space and then tested on each model-enabled segoectihah on thesame
benchmark; we call these two learned modélB-oracle and Markov-oracle This
allows the models themselves to be tested independenttytfie knowledge transfer-
ence process, since each benchmark is evaluated using & cood&ucted from its
own data.

These ‘oracles’ form an upper-bound on the performance weegpect to achieve
when later trying to learn each model, assuming perfect keaye transference. This
helps to evaluate whether such models can improve the se@iehrly, if the best a
model oracle can achieve is insignificant, it is not worthenging effort in trying to
learn it. Although it is clearly not valid to assume perfencblledge transference and
to use models constructed for the very program being eveduas is done here when
reporting results, it is useful to test the effectivenesthefmodelling process.

Each baseline search algorithm is compared against thie s#gorithm using each
predictive model. For the random algorithm, instead of hg\a uniform probability
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Figure 6.5: TI: Random search versus lID-oracle and Markov oracle. Results averaged

over all benchmarks.
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Figure 6.6: Tl: GA search versus lID-oracle and Markov oracle. Results averaged over

all benchmarks.
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Figure 6.7: AMD: Random search versus IID-oracle and Markov oracle. Results aver-

aged over all benchmarks.
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Figure 6.8: AMD: GA search versus lID-oracle and Markov oracle. Results averaged

over all benchmarks.
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of a transformation being selected, each model biasesircargansformations over
others. In the case of the GA, the initial population is seledased on the model’s
probabilities and then the GA is allowed to evolve as usual.

Figure 6.5 depicts the average performance, over all ouctbearks, of the baseline
random algorithm against random search biased with the tacdes on the TI. Sim-
ilarly, Figure 6.6 depicts the performance of the baselideaByorithm versus using
the two oracles to generate the initial population. In baglries, we see that the or-
acles can significantly speed up finding a good solution. Kamgle, at evaluation
10, random achieves less than 35% of the maximum available performaimceon-
trast,random + IID-oracle achieves more than 70% of the available performance
andrandom + Markov-oracle  achieves around 87% of the performance. Figures
6.7 and 6.8 depict a similar picture on the AMD architectu®e the AMD architec-
ture, our two oracles significantly improve the performaoieach baseline algorithm.
The baseline random search algorithm only achieves 22% eofatlailable perfor-
mance after 10 evaluations. In contraahdom + IID-oracle achieves about 40%
of the available performance (twice better than base)amibm + Markov-oracle
achieves 66% of the available performance. On average abadibe algorithm needs
100 evaluations to achieve the same performance as theneasdehe Markov oracle
achieves with just 10 evaluations.

From these figures, it can be seen that the 11D and Markov rsddele the potential to
dramatically improve the performance of both search allgors. The next section de-
scribes how we can learn these models from previous offriine to build a predictive

model.

6.6 Feature selection

The biggest difficulty in applying knowledge learned ofidito a novel input is con-
sidering exactly which portions of this knowledge are rel@vto the new program.
It is shown that, as is the case in many other domains, pragam be successfully
represented by program features, which can then be usedi¢ge glaeir similarity and

thus the applicability of previously learned off-line kniedge.

Initially, thirty-three loop-level features were idengifi, which were thought to de-
scribe the characteristics of a program well. These arengivéable 6.3.
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Features

for loop is simple?

for loop is nested?

for loop is perfectly nested?

for loop has constant lower bound?

for loop has constant upper bound?

for loop has constant stride?

for loop has unit stride?

number of iterations in for loop

loop step within for loop

loop nest depth

no. of array references within loop

no. of instructions in loop

no. of load instructions in loop

no. of store instructions in loop

no. of compare instructions in loop

no. of branch instructions in loop

no. of divide instructions in loop

no. of call instructions in loop

no. of generic instructions in loop

no. of array instructions in loop

no. of memory copy instructions in loop

no. of other instructions in loop

no. of float variables in loop

no. of int variables in loop

both int and floats used in loop?

loop contains an if-construct?

loop contains an if statement in for-construc

loop iterator is an array index?

all loop indices are constants?

array is accessed in a non-linear manner?

loop strides on leading array dimensions on

y?

loop has calls?

loop has branches?

loop has regular control flow?

Table 6.3: Features used
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Figure 6.9: Percentage of the total information of the dataset explained by increasing

number of principle components.

6.6.1 Principal Component Analysis

Obviously, the selection of these program features iscatitio the success of this
method, and so a well known statistical technique, prin@pmponent analysis (PCA)
[6], is employed to assist the selection.

In general, any reduction in the dimensionality of a spack imévitably result in
some loss of information. A good dimensionality reductiechinique will preserve as
much of the information that can be used to differentiatevben different classes as
possible. Details of PCA are given in section 4.5.5.

The 36 chosen features are used as input for the PCA processtel€As that, in
this instance, due to redundancy and covariance in theréssatvalues, these thirty-six
features can be combined in such a way that they can be retiuoaty five features,
whilst retaining 99% of the variance in the data (see figugd.6The output of this
process is a 5-D feature vector for each benchmark, contaihiese five condensed
feature values, which be used in our nearest neighbourfidgisexplained in the next
section.
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6.7 Knowledge Transference

Vital to the success of our modelling technique is the abibtapply the correct model
to a novel program input. This section shows how the seldetttres can be used to
gauge program similarity.

6.7.1 Nearest Neighbours

This chapter employs a nearest neighbours classifier (stersé.5.4 and [6])to select
which of our previously analysed programs our new programdst similar to. Learn-
ing using nearest neighbours is simply a matter of mapping 8&D feature vector of
our training programs (all our benchmarks) onto a 5-D feagjrace.

When a novel program is compiled, it is first put through a feaaxtractor, and those
features processed by PCA, as described aboive in 6.6.1. €eBadting 5-D feature
vector is mapped onto the 5-D feature space, and the Eunlidiséance between it
and every other point in the space is calculated. The clggest is considered to be
the ‘nearest neighbour’ and thus the program associatddthatt point is the most
similar to the new program.

We can apply this process to each of our twelve benchmarksing leave-one-out

cross-validation (see section 4.7.2), where we disall@witbe as training data of the
feature vector associated with the program that is cugrdsging evaluated — other-
wise a program would always select itself as its neareshibeigr. Having selected a
neighbour, a previously learned probability distributfon that selected neighbour is
then used as the model for the new program to be iterativelyniged.

6.7.2 Evaluating learning

It is useful to know how close our learned distribution ishe pracle distribution for
both models, IID and Markov. Averaged across all benchmadheslearned distribu-
tion achieves approximately 80% of the performance peuet@n of thellD-oracle
and theMarkov-oracleon the Tl. On the AMD, we achieve a similar result — approxi-
mately 75 % of both oracles’ performance.

As the oracles have been shown to improve performance andenabée to achieve
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a significant percentage of their improvement, this suggsit both learned mod-
els should give significant performance improvement ovéstieeg schemes. This is
evaluated in the next section.

6.8 Results and Evaluation

This section evaluates the focused search approach on tivoisgtion spaces. The
first space is the exhaustively enumeratedlsiphice, described throughout this chapter.
The second is a much larger space of siz&€ &2. transformation sequences of length
20 with each transformation selected from one of 82 possialesformations available
in SUIF 1 [29]. This was achieved using the standard leavecateross-validation
scheme (see section 4.7.2) i.e. learn the 1ID and Markov hadiesed on th&aining
data from all other progranexceptor the one about to be optimised tested

6.8.1 Evaluation on exhaustively enumerated space

Initially, both the baseline random and GA search algorghwere evaluated for 500
program evaluations, and their speedups recorded, usiigtfe® TI and AMD. The

same algorithms were then evaluated again in the same wayjrtte using the two

learned models: 11D and Markov.

The results for the Tl are shown in figures 6.10 and 6.11, ferAMD in figures
6.12 and 6.13. On the TI, the learned 11D based models achippeoximately twice
the potential performance of either baseline algorithrarafO evaluations (60%/62%
vs 32%/27%) . The learned Markov model does even betterg@clgi 79% of the
performance available after the same number of evaluatibms baseline algorithms
would need over 40 evaluations to achieve this same perfuenanprovement. On
the AMD, the performance improvements are less dramaticthgelearned Markov
based algorithms achieves more than twice the performdribe baseline algorithms
after 10 evaluations.
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Figure 6.10: TI: Random search versus |ID-learned and Markov-learned. Results aver-

aged over all benchmarks.
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Figure 6.11: TI: GA search versus IID-learned and Markov-learned. Results averaged

over all benchmarks.
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Figure 6.12: AMD: Random search versus IID-learned and Markov-learned. Results

averaged over all benchmarks.
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Figure 6.13: AMD: GA search versus IID-learned and Markov-learned. Results aver-

aged over all benchmarks.
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Figure 6.14: Average speedups achieved over all benchmarks on Tl for random search,

and the two learned models

6.8.2 Evaluation on large space

Experiments within an exhaustively enumerated space a&feluss the performance
of a search algorithm can be evaluated relative to the atesolinima. However, in

practice when we wish to search across a large range of tramafions, it is infeasible
to run exhaustive experiments. Instead, a random seard®@fy evaluations is done
on each program space as off-line training data.

This time the evaluation centres around the performancieathin the early parts of
iterative optimisation, and so the baseline random sedgdrithm and both learned
models are allowed to run for just 50 evaluations. As the ieagorithm and random
search have the same behaviour for the first 50 evaluatioa& A was not separately
evaluated.

The speedups for each benchmark after 2, 5, 10 and 50 ewalsatn the Tl are
shown in figures 6.14, 6.15 and 6.16. Due to time constraomily, those benchmarks
with non-negligible speedup on the exhaustively enumdrspp@ce are evaluated. The
learned models both deliver good performance and the randdid learned model
achieves an average speedup of 1.26 after just 2 evaluakarthermore, the random
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Figure 6.15: Average speedups achieved over all benchmarks on AMD MIPS for ran-

dom search, and the two learned models

+ 1ID learned model achieves a greater average performdterebeevaluations (1.34)
than the baseline random algorithm does after 50 evalusa(ib29).

Surprisingly, the IID learned model achieves better penfomce than the Markov
learned model after 50 evaluations 1.41 vs 1.30 speeduminast to the results of the
exhaustively enumerated space (see figures 6.10-6.13 ye&ken is that the Markov
model needs a greater number of training evaluations treHEhmodel to model the
space accurately. Here we have only 1000 evaluations td auriodel.

Similarly, the speedups for the AMD are shown after 2, 5, ld%Mhevaluations on av-

erage in figure 6.15, and for each benchmark in figure 6.17irAgzth learned models

significantly outperform the baseline random algorithmfalct the random + Markov

learned model achieves a greater average performance @885 evaluations than
random does after 50 evaluations (1.32). It therefore aekithis level of performance
an order of magnitude faster - the same is also true for th©mte again random +
IID unexpectedly outperforms random + Markov at 50 evabrati Thus after just 2

evaluations a speedup of 1.27 is found on average, almest times the performance
of the baseline algorithm.

Finally, thesinglesequence that gives the best performance on average on the AM
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TI 2 Evaluations 5 Evaluations 10 Evaluations 50 Evaluations
Benchmark|| R M I R M I R M I R M I
fft 1.00|1.00| 1.00|[ 1.01| 1.01| 1.34|| 1.00| 1.01| 1.65| 1.34| 1.21| 1.81
fir 1.18| 166 | 1.67| 1.25| 1.66 | 1.83 | 1.37| 1.66| 1.85|| 1.70 | 1.85| 1.85
iir 114|120 119 1.18| 1.23| 1.19 1.19| 1.23| 1.21 || 1.19| 1.23| 1.23
adpcm 1.08| 1.33| 117 1.18| 1.33| 1.18 || 1.25| 1.35| 1.24 || 1.28 | 1.43 | 1.28
edge 1.08| 1.13| 1.27|| 1.15| 1.13 | 1.28 || 1.21| 1.13| 1.28|| 1.25| 1.13 | 1.29
Ipc 1.09| 1.05| 1.13|| 1.10| 1.05| 1.16|| 1.10| 1.10| 1.18|| 1.24 | 1.12 | 1.27
spe 101|110 115 1.03| 1.17| 1.16| 1.05| 1.17| 1.16|| 1.07| 1.17 | 1.18
AVG 1.08| 121|122 112| 122|134 1.16| 1.23| 1.36|| 1.29| 1.30| 1.41

Figure 6.16: Speedups up achieved by random search (R), random + Markov learned
model (M), random + IID learned model (1) after 2, 5, 10 and 50 evaluations on each
benchmark on the Tl processor. Random + 11D learned model achieves greater average

performance (1.34) after 5 evaluations than random does after 50 evaluations (1.29).

in the small space isimc3 . This gives an average speedup of 1.11, significantly less
than that achieved by random + Markov after just 2 evaluati@n the TI, there does
not exist a single sequence which gives any performanceowveptent on average.

The Markov predictor performs less well on the large spaestdihe reduced amount
of training data. This suggests that the IID model shouldalty be used on a new
platform when there is a relatively small amount of trainttaga available. Once suffi-
cient new data is accrued by iterative optimisation, it camged for a second stage of
learning using the Markov model.

6.9 Conclusion

This chapter develops a new methodology to speed up iteratimpilation. By em-

ploying predictive modelling, we can automatically focus/aearch on those areas
likely to give greatest performance increases, and thusatiaally reduce the number
of iterations necessary to achieve a given level of perfocaa Program features are
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AMD 2 Evaluations 5 Evaluations 10 Evaluations 50 Evaluations
Benchmark|| R M I R M I R M I R M I
fft 1.00| 1.04| 1.04| 1.00| 1.05| 1.07 || 1.00| 1.07| 1.10|| 1.00| 1.15| 1.17
fir 122 133|146 1.28| 1.44| 151 1.37| 1.44| 154 || 1.48| 1.55| 1.94
iir 113|129 110 1.20| 1.32 | 1.13|| 1.27| 1.37| 1.18|| 1.32| 1.39 | 1.32
lat 104|148 | 140 1.23| 153|143 1.32| 153|152 1.41| 1.53| 1.53
Ims 113| 1.15| 119 1.20| 1.22 | 1.22|| 1.31| 1.33| 1.29|| 142 | 1.44| 1.40
mul 105|154 | 185| 1.26| 1.89| 1.88| 1.48| 1.89| 190 1.69| 1.92 | 1.93
adpcm 1.08| 124|127 1.17| 1.33| 1.31|| 1.24| 1.36| 1.35|| 1.32| 1.41| 1.44
com 111 134|150 1.22| 159 | 1.63| 1.27| 1.62| 1.69 | 1.60| 1.70 | 1.74
edge 110|111 120 1.21| 1.16| 1.25|| 1.29| 1.26| 1.30|| 1.32| 1.31| 1.34
his 1.08| 127|116 1.21| 1.31| 1.29| 1.28| 1.32| 1.33|| 1.33| 1.33| 1.36
Ipc 1.00| 1.00| 1.05|| 1.00| 1.02 | 1.09| 1.00| 1.04 | 1.13|| 1.06 | 1.09 | 1.23
spe 1.00| 1.04|1.01|  1.00| 1.09| 1.01|| 1.00| 1.10| 1.01 || 1.00| 1.12| 1.04
AVG 1.08|1.24|1.27| 1.17| 1.33 | 1.31|| 1.24| 1.36| 1.35|| 1.32| 1.41| 1.44

Figure 6.17: Speedups up achieved by random search (R), random + Markov learned

model (M), random + IID learned model (I) after 2, 5, 10 and 50 evaluations on each

benchmark on the AMD processor. Random + Markov learned model achieves greater

average performance (1.33) after 5 evaluations than random does after 50 evaluations

(1.32)

used to identify the most profitable areas of the optimisasipace to search. Results

demonstrate that this approach is highly effective in sjpepdp iterative optimisation

for the embedded systems domain, but with 10 evaluatiolhgstiessary, it is not yet

well suited to the general purpose domain. The logical esxeenof this work is to cut

the number of evaluations right down to just one — making ikomger a search-based
system, but amart compilerwhich competes with, and surpasses a traditional com-
piler, with little or no extra time/resource outlay. The heRapter will demonstrate a

methodology which achieves just that.







Chapter 7

Learning More Efficiently

This chapter presents a method for dramatically reducitig the one-off training time
required to initialise the compiler, and reducing the nundieompile-time iterations
required down to just one, bringing the utility of this apact into the general purpose
world. This is achieved by removing the inefficiency in laaghand searching by fo-
cusing on the programs which best characterise the optinsspace of all programs.

In section 7.1, clustering is introduced as a means to garerage; in section 7.2,
the reasons why previous techniques have been inefficierprasented; section 7.3
details how these problems can be tackled by statisticahtgques; in section 7.4 the
experimental set up is explained; section 7.5 presentsramalpiesults and analysis
thereof, and section 7.6 draws some brief conclusions.

7.1 Introduction

As has been seen in chapters 5 and 6, it is possible to obtasidsyable improve-
ment in execution speed by applying search and learningnigeés to the problem
of transformation selection — however these techniques bamsiderable drawbacks.
Primarily, they take a long time to initialise; the trainitagne for the system is a signif-
icant cost, which can run to weeks, or even months. Secaimdlyyumber of iterations
required to achieve significant performance gains at cantjiie is still too large for
many domains.

Although the work presented in chapter 6 improves on the rurob iterations re-

109
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quired significantly, the 10 compile iterations still neddeaves it unsuitable for use
in most general purpose compiler work. In addition, everhim ¢émbedded domain
the traditional compiler paradigm — only compiling oncetwiio feedback — is still by
far more frequently used than any iterative technique. litbé paradigm ‘one-shot
compilation’.

The partitioning of the feature-space and its effectivenaselecting the best subset
of programs to learn on is at the heart of this chapter. It malestrated that, by stand-
ing back and using unsupervised learning before embarking tme and resource

expensive iterative compilation search, we can signiflgartiuce the time and effort

required to train a smart, learning compiler.

Additionally, we show that by gaining a greater coveragehefwhole space of pro-
grams in our training data, we can dispense with searchethtieg and produce a
simple-to-use, one-shot compiler that gives excellerfoperance, exceeding the max-
imum O3 level of the compiler by 14% on average across all lveracks considered.

7.2 Reasons for Inefficiency

In the approach taken in chapter 5, each program is considedlevidually. The prob-
abilistic model of the optimisation space is updated ordis¢he search continues, and
then discarded at the end of the process. The inefficienagcadiing this information
is discussed in section 6.2 and remedied in section 6.5 ofctiepter by employing
models to allow transference of knowledge of the optimisasipace between different
programs.

However, there still exists considerable inefficiency ia ldarning process. This is due
to the often arbitrary nature of benchmarks — when we learrodehfor a platform,
we want to learn about as much of the optimisation space ashpe@sand, given a
constrained amount of learning time, it is unclear as to hmWwest focus our efforts.
If it is the case that two sections of program code are vilgudentical, then learning
two separate models for such a scenario is futile at best,canttl actively inhibit
some learning algorithms. Alternatively, if a new prograngiven to a pre-initialised
system for analysis, and that program is significantly dfifé from what the models
in the compiler have used as their learning data set, therethét is unlikely to be a
positive one.
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In order to counter this, a statistical approach to the seleof programs is used to
build the models at the learning stage of the compiler.

7.3 Learning what to Learn

In order to make the best use of the available time for trgirsmart compiler, we

must consider which programs to train over. In chapter 5, amsidered only one

program at a time; in chapter 6, we proposed a scheme for iatiptransference of

knowledge about one program to another — but in this case @enbachoice as to

which programs we could use for training. The limited benahoset used in chapter
6 necessitated the use of the entire benchmark suite forutmoge of training the

compiler, and so we might consider the distribution of thefgochosen as essentially
random (or at least random with a bias towards the benchnohdsen by the compiler
of the suite), or at the very least, arbitrary.

When considering a larger benchmark suite, it is not possibkake this approach
because of the huge amount of time and resources it wouldregtpuirain on each of
the programs in the suite. Indeed, even if one were somehl@t@make enough time
and resources available for such an action, the space afggnsgconsidered would still
be limited to the space defined by the benchmark suite, antheanfinite number of
possible programs one might conject.

Thus itis clear that a method is necessary to select whiajranas are the best candi-
dates for use in training. This chapter proposes usingexiungf of the feature-space to
achieve this. Using this technique, we can consider a langger of programs. These
programs are then partitioned according to their featurtesdifferent clusters, which
broadly share similar features; by selecting the most gfggoogram from each cluster
and using these to train our smart compiler, significantbatgr speedup is achievable
than randomly selecting the programs.

7.3.1 Features and Feature Extraction

The features used in this chapter are the ratios of each afsé&wel instruction to
the total number of instructions executed by a program,the. proportions of each
type of instruction used. This is a very simple feature sdiictvis easy to capture,
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and yet provides excellent performance. In addition, we arslg ARM assembly
instructions as our features, even through we evaluate omt@inx86 processor. This
is to ensure that our technique is properly capturing infdtram about the program, and
not some facet peculiar to a particular architecture. HasteEeckhout [30] argue that
of a generic RISC architecture is capable of representingchachcterising program
performance better than x86, and the ARM is used as an appatigima generic RISC
core.

Feature Extractor

Features were extracted by using the simulator Simit-ARM y25, 56]. The bench-
marks were compiled using a GCC v3.3.1, and then ran througlsithulator. The
simulator counts the number of machine instructions useedoh benchmark, which
we use as the basis for our features. The use of GCC ensuresrtitet all code will
run through the simulator, making it relatively easy to agtifeatures.

A pertinent question at this point is: why use a simulator xtraet features? The
answer is that this is mainly due to time and resource cansira

Primarily, using a simulator is an efficient use of time inradtructure work — the
approach used in chapter 6 requires the use of the SUIF cenjp8] from Stanford,

which is old and unmaintained piece of software, which orgepts the ANSI C-89
standard. It therefore requires a considerable amount df twomake each program
in a modern benchmark suite compatible with SUIF. A new fesaéxtractor could be
written from scratch, but this again is prohibitively expem in terms of time.

The feature extraction stage should be considered as avkgitit profile stage, taking
very little time on a modern, fast machine. Although a sirtmias normally a slow
tool for feature extraction, in principle, there is no reasdy these instruction counts
could not be captured by an extremely lightweight and fasfilprg tool — modern
JIT simulators can run significantly faster than real hamj@d] — and therefore we
assume this feature capture stage is fast.

A simulator also provides much additional information ab@program not available
to a lightweight profiler, such as the efficacy of the cachediand information about
the pipeline, etc., so all such information from the simolaiutput is discarded, and
does not form part of the feature set. The simulator is sinyslgd as a shortcut to
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Figure 7.1. Percentage of the total information of the dataset explained by increasing

number of principle components

obtain this information, without having to write a tool fdms$ purpose.

Indeed, it is crucial to the success of this work that the ymislof a large number
of programs is fast as it relies on observing more programas tias been attempted
before.

Feature reduction with PCA

These features were then further reduced in number, useahaigue calle@®rincipal
Components Analysigs was used in chapter 6). This technique reduces the dimen-
sionality of the feature space by examining the variancéiwithe data, and while
preserving as much variance as possible, generating a nest fsatures which are

a linear combination of the original set. These resultirgjiees are called Principal
Components (see section 4.5.5 and [6]).

It is possible to chart how much of the variance of the dataxessed with each
additional principal component, and this is shown in figurk Here we can see that
80% of the variance of the data can be expressed in just ipainmcomponents, and
thus we use these 9 principal components as our features. Bgssing the features
in this way, we can attribute less importance to featureskwire highly correlated
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and thus may skew the results.

7.3.2 K-means clustering

The feature-space is clustered usingkhmeansalgorithm, which is a simple stochas-
tic technique [6]. K-means clustering was selected becdusdhe simplest of the

clustering algorithms, and it makes sense to try the simfikss. The input to the al-

gorithm was the reduced feature set of 9 principal companastdescribed in section
7.3.1. Since the results of the k-means algorithm contaialement of randomness
due to the initial placement of the cluster centroids, tlgoathm was executed 50
times, which is enough to ensure the selection of the celgnith the lowest total

intra-cluster variance to maintain replicability of thepeximent. We employed the
Euclidian distance metric to test for similarity, which isnply result of a standard

difference-squared distance equation between two pawsn dimensions (9 in this

case).

The algorithm treats the feature-space as a continuous sphere in reality it consists
of discrete points. For this reason, the program with thellssteEuclidian distance
between itself and each centroid is chosen as the archeatypadch cluster.

Selecting the correct number of clusters

The k-means technique cannot determine the correct nunilmusiers which most
accurately depict the space, which must be supg@iedori. This presents the prob-
lem of how to choose how many clusters to represent a comptgxcimensional
space. This is a well known and difficult problem, and is a sctyvorthy of signif-
icant research on its own merits. Since this is not the pymparpose of this work,
we employed the technique suggested by Ray and Turi [53] whudds on the sim-
ple premise of considering the proportion of the intra-t@usariance in respect to the
inter-cluster variance, and selecting the first local mummof this value as the number
of considered clusters increases.

Intra-cluster variance can be defined as:

2
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and inter-cluster variance as:

Shter = min<||zi —z Hz) =12 K—1j=i+1,..K

Full details of the algorithm are provided in their publica{53].

The first local minimum encountered using this technique ata® clusters, and this
is the value used throughout this chapter. This postulatesthe optimisation space
considered in this chapter consists of 6 distinct regiongkvkhare similar character-
istics.

7.4 Experimental work

These experiments were carried out on an Intel Core 2 Duo Epitis@ssor running
at 2.66GHz. The machine was running a stripped down verdibibontu Linux 8.04
with linux kernel version 2.6.24. The compiler used was tHeBPOST [25] version
of the GCC compiler version 4.2.2, which allows additionatimgsations over and
above the default GCC to be accessed via compiler flags. Thegtimas carried
out using the CCC optimisation framework, also part of the MPEST project. The
techniques presented are evaluated on the EEMBCv2 [19] bexrkhsnite. When
a choice of dataset was offered by EEMBC, the default datasetcivasen. A few
programs were excluded due to difficulties with the MILEPGSTC compiler.

The following sections describe each experimental appragyorithmically:

7.4.1 Cluster-based Approach

Evaluation of the cluster-based approach was carried dotlewss:

1. Features are extracted from each of 44 programs in thenberk suite (see
section 7.3.1). The features are then reduced to 9 princgraponents, using
the PCA technique.

2. The feature-space is then clustered into 6 clusters Jenehost typical programs
selected for each cluster, one for each (see section 71322ye-one-out cross-
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validation (see section 4.7.2) is used, excluding eachideresd benchmark in
turn.

. These 6 benchmarks are executed 4000 times, using ranolomisation flags

in a similar manner to previous chapters. The set of flagsigimy the best
performance for each of these benchmarks is recorded.

Each benchmark’s features are inputted into the cluganodel, which now
has 6 fixed cluster centroids. It then assigned to a clusterobgidering the
cluster centroid nearest in Euclidian distance. This cacdmsidered similar to
the nearest neighbours approach employed in chapter 6.

Having been assigned a cluster, the benchmark is conguilé@xecuted, using
the best performing compiler flags associated with its elusind the execu-
tion time recorded. The benchmark is also compiled and egdausing the O3
optimisation setting on the compiler as a baseline.

Although cross-validation (see section 4.7.2) is employisduse or otherwise does

not affect the outcome of the experiments in this case, asvigim a single point from

the feature-space does not affect the partition boundsuitéisiently to cause a change

in the classification of any benchmark represented in theespghis is confirmed by

the empirical data.

7.4.2 Random Approach

Given that a limited amount of time and resources is avalaibtrain a smart compiler,

there must be some way of determining which benchmarks ttoutearning in a large

benchmark suite. The most obvious is simply to choose rahdom

Evaluation of the random approach was carried out as follows

1. 6 benchmarks are randomly chosen from the set of 44, amdf#fagures ex-

tracted as above.

2. These 6 benchmarks are executed 4000 times, using rangtomisation flags

in a similar manner to previous chapters. The set of flagsigiray the best
performance for each of these benchmarks is recorded.

3. Each benchmark’s features are inputted to a nearestbmigblassifier, plotting

the randomly selected programs as potential neighboutseifeature space. It
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can be then assigned of the 6 random points by consideringainé nearest in
Euclidian distance.

4. Having been assigned the nearest random point, the bankhsrcompiled and
executed, using the best performing compiler flags assutiatth that point,
and the execution time recorded. The benchmark is also ¢edw@nd executed
using the O3 optimisation setting on the compiler as a haseli

5. This process is then repeated 1000 times to minimise fleetedf randomly
choosing particularly good or bad points.

7.4.3 lterative Approach

The iterative approach is included for purposes of comparighis is a typical itera-
tive optimisation [26] implementation where each benchnsiexecuted 4000 times,
using random optimisation flags, as is done in the trainingest of the previous two
approaches. The best execution time found is recordedgliisisi value, it is possible
to see the potential for optimisation each program has.

7.5 Results and Analysis

The results of two experimental approaches are presentibe itable below. Firstly,
the results of our cluster-based smart compiler, where gt@licentroids have been
chosen by analysis, and in comparison, a smart compilerhwises an equal number
of randomly selected points. Additionally, the best avagaresult found using stan-
dard iterative compilation over 4000 runs is presented twvsto scope for improve-
ment available for each benchmark. All speedups are giviativie to the standard
GCC compiler with the highest O3 optimisation level enabled.

7.5.1 Results table

Speedups

Benchmark | Clustered Approach Random approach Iterative Search
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Speedups
Benchmark || Clustered Approaclﬁ Random approach Iterative Search (4000 runs
a2time01 0.96 0.99 1.05
aifftr0l1 1.17 1.18 1.45
aifirf01 1.05 0.67 1.18
aiifftol 1.04 1.03 1.29
basefp01 0.92 0.90 1.04
bitmnp01 1.02 0.90 1.07
cacheb01 1.48 1.23 1.72
canrdrOl 1.02 0.86 1.32
idctrn01 1.09 0.66 1.14
iirflt01 0.99 0.96 1.11
matrix01 1.27 1.14 1.57
pntrchO1 1.26 0.66 1.24
puwmodO1l 1.89 1.33 1.89
rspeed01 1.18 1.15 1.36
tblook01 1.31 1.14 1.44
ttsprk01 1.22 1.02 1.24
cjpeg 1.08 1.07 1.18
djpeg 1.05 1.09 1.28
autcorO0 1.39 1.63 1.80
conven00 0.96 0.85 1.15
fbitalOO 0.96 0.93 1.13
fft00 1.20 1.23 1.39
viterb00 0.94 0.85 1.20
ospf 1.05 0.95 1.23
pktflow 1.52 1.34 1.50
routelookup 0.93 0.89 1.08
beizer 0.96 0.98 1.20
dither 1.19 1.07 1.31
rotate 0.99 0.98 1.02
text 0.98 0.96 1.02
aes 0.75 0.81 1.12
Cjpegv2 1.05 1.11 1.21
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Speedups
Benchmark || Clustered Approach Random approach Iterative Search (4000 runs
djpegv2 1.09 1.19 1.41
huffde 1.09 1.03 1.23
mp4encode 1.03 0.98 1.13
mp4decode 0.90 0.88 1.06
rgbcmy 0.97 0.99 1.18
rgbhpgv2 0.93 1.00 1.22
rgbyiqv2 1.06 1.10 1.34
mp3player 2.71 1.41 2.65
tcp 1.09 0.92 1.10
ip reassembly 0.99 0.99 1.05
ospf 0.97 0.98 1.08
ip pktcheck 1.26 1.07 1.25
AVG 1.14 1.02 1.29

On average, using just one evaluation, our clusteringebapproach yields a speedup

of 1.14 over the whole benchmark suite. This compares to edsypeof only 1.02 if

the smart compiler uses points selected at random.

The correctness of each of these best points was verified tissnEEMBC internal

verification, which compares the produced output to therddsiutput.

7.5.2 Analysis

Our clustering-based approach performs significantlyebdttan the random selection

approach because it represents the space of programs miieh &y considering

a large number of programs before any training occurs, wesaanessfully choose

which programs to use to train on. Since the space is notumjfa random selection

is likely to bias itself towards selection of overly reprets sections of the program-

space, whilst neglecting others. In this very complicapets, such disparity between

the actual program-space and what has been chosen to r@pté@sevitably results in

poor performance.
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There are benchmarks for which our clustering trained se@rtpiler fails to beat,
and in some cases does worse than, the baseline. While adxeetthis is not sur-
prising. Both compilers are taking a very difficult problemhe fproblem of program
optimisation — and giving the result most likely to be goodading to some internal
model. However much pre-analysis is put into this probldmeré is likely to be an
element of randomness in the output, resulting in occabmeaeases in speed for a
small number of programs, even when using a generally maneraie model. This
pattern can also be observed by comparing two commerciapibers for the same
platform. The important aspect is that the clustering basedrt compiler performs
significantly better on average.

It might be argued that one may wish to avoid the chance of ayhap in perfor-
mance, as is seen in tle@sbenchmark, and thus should choose the baseline over our
smart compiler, but even this is not so. The use of the GCC QO&gattion level as
1.00 — the baseline — is entirely arbitrary. It is possiblestdraw the results table using
our smart compiler as the baseline, and instead compare@&@C O3 performance

to this; given these values, it would be obvious that fardapgerformance drops would
occur by switching from our smart compiler back to GCC at O3.

Some particularly large speedups are achieved, such asd.i#ip3player and 1.89
for puwmodO1This is likely to be because of the very kernelised natutb@de codes,
where changing a small section of code which is frequentgdusan have a large
impact on the resulting speedup. These codes also seem &othmeifarly amenable to
optimisation using particular loop unrolling factors.

There are also some benchmarks which perform poorly usumfering smart com-
piler, such asaes which significantly slower than the baseline at O3. Thisksly
because of the unusual coding style often inherent to etioryplgorithms which is
not captured by our features. Optimisations which are lsgther programs near to
aesin the feature space may in fact inhibit performance dueitouthusual style.

This means that, on average, we can achieve slightly undeohthe performance

improvement attained by iterative optimisation using 40, in just a single evalu-
ation. Additionally, we achieve a 700% increase in the aold# optimisation possible
by using our clustering-based approach rather than randteat®n, which shows it-

self not to be a viable option when no search of the spaceawead (indeed, as was
also shown in the previous chapter).
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Figure 7.3: Speedup achieved by using learning with an increasing number of randomly

selected programs

7.5.3 Increasing learning time and the efficacy of features

As shown above, training a smart compiler using only 6 rarlgamosen points yields
very poor results when allowing only one evaluation (as gppdo search in the pre-
vious chapter). This, as has already been said, is the r@gdor representation of
the space of all programs. However, the number of randombgeh points, 6, was
only considered as a fair comparison to the 6 cluster catgrchosen by the clustering
approach, and more, or indeed, fewer, can be considered:

Figure 7.3 shows how increasing the number of randomly tedgarograms used for
training the smart compiler increases the performance efctimpiler. The experi-
ments were carried out in the manner described in sectio &xept using different
numbers of points. Two important conclusions can be draam fihis: firstly, that in
order to achieve performance getting even near to our clbased approach, we need
a very large number of programs to train on — 36 for a 1.10 ggeedhis translates
as 120,000 extra training runs when compared to using 6ecktpoints (assuming
4000 runs per point).
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The second, and possibly more important conclusion is &sAfel the features used in
this work are indeed indicators of how to optimise a progrtns. difficult to quantify
how good these features are as we have no other similar datertpare it to, yet the
fact we can empirically show a correlation between clossmeserms of Euclidian
distance in the feature-space and the speedup obtainegl aisimart compiler is an
important one in itself, as it shows the features used halgymmake a difference.

If proximity in terms of distance in the feature-space madedifference to how a
program should be optimised, we should see no differencenwiraening over an in-
creasing number of random points. Increasing the numbearafam points selected
for training decreases the average distance between amyiptihe space and its near-
est training point. The fact that this decrease in distaceetates very well with an
increase in performance indicates the features are parfgnwell.

In machine learning, unsupervised, feature-only basduhtques are usually validated
by success in empirical experiment, and this has been aghiawthis chapter.

7.5.4 Applicability of results

These experiments were performed on a general-purposiegtane, the Intel Core 2
Duo. It is clear how single evaluation compilation is usefithe general-purpose do-
main, however it is also useful in the embedded domain. lhdeeen though iterative
and search-based techniques have been available for yetlrs embedded domain,
their use is the exception rather than the rule. There arerdauof good reasons for
this, including the difficulty in setting up search-based &grative techniques, lack
of track-record producing a lack of trust, and the time armbueces required. The
technique presented here is simple and easy to deploy, egiyring training in the
production stage of the compiler.

This work is relevant to the embedded domain in two imponteants: firstly, it useful
by its own merits for the reasons given above and, secondbgn be used as the
starting point for search-based techniques like the onpgs@d in chapter 6 — time
constraints prevented any such experiments in this workwbuld be interesting as
future work.

Although there is no guarantee this work on a general-pe@rposcessor is transfer-
able to the embedded domain, | believe we can and must takea ijpaoof of concept’.
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In reality, this experiment would be very hard to carry outamy embedded architec-
ture. This is because of the very large number of experimeafsired to prove the
effectiveness of the technique (over 176,000 were carnigdrothis work). If such
an experiment were attempted on even a real embedded prgogsisalone a cycle-
accurate simulator, the time and resources required wauiltkly make the project
infeasible.

However, the main reason why so many experiments are negdesshow the tech-
nique works is not because of the time taken by the actualeshimsed program se-
lection proposed, but because of the multiple random setexcheeded to show the
improvement is not down to luck. If one accepts the ‘proof @hecept’, then an em-
bedded smart compiler could be trained on this benchmatk siging only 24,000
training runs — a reduction of over 152,000. Indeed, the iskeoARM instruction
set as a basis for the features in this chapter which is elealuan x86 indicates this
technique can work across platforms.

7.6 Conclusion

We have demonstrated that, by clustering in the featureespase can dramatically
reduce the amount of training required to achieve good padace using a smart
compiler, a reduction of over 120,000 runs. By cleverly sbgcthe training data to
be used, we can much better characterise the program-spidica small number of
points, rather than randomly selecting them.

In addition, we have shown that a smart compiler trainedigway gives an average
of 1.14 speedup on the EEMBCv2 benchmark suite over the O3ibaseljust one
evaluation. This was achieved by training on only 6 prograis have further shown
that instruction ratios are useful features to use whenideriag this problem, and
that these features work across two different architesture



Chapter 8

Conclusion and Future Work

This thesis has presented a new approach to constructingaileo optimiser. Instead
of using expert knowledge, which is often based on rules o, intuition or un-
guantifiable past experience, this approach relies orsstati evidence upon which
to base optimisation decisions. The method has provenyhefféctive in produc-
ing significant improvement in execution time over heaviégyeloped compilers, both
proprietary and open source, and in addition, significaspigeds up the process of
building a good optimiser for a new platform.

This chapter presents a a summary of the work achieved iloee®tl, an evaluation
of the work in section 8.2 and a look ahead to possible dmastfor future work in
section 8.3.

8.1 Contributions

The number of different options available to a compiler hasrbshown to be truly
vast (see chapters 5 and 6). It is clear that it is not possidearch all, or even much
more than a tiny fraction of this compiler optimisation spad herefore, a compiler
engineer must consider a strategy for selecting the beshisptions, and the order
in which these optimisations apply. This thesis argues fstrategy employing the
power of statistical analysis through the use of machinenleg to accomplish the
task of searching this n-dimensional, highly non-lineat, [26] search space.

This thesis has addressed the issues of improving the psafare of optimising com-

125
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pilers, and producing general, fast and inexpensive mestfadtuning a compiler’'s
optimisation stage, capable of customising itself to aetgrof different architectures.
Using machine learning to control its optimiser, statatinformation about the be-
haviour of programs can be analysed, evaluated and explojt@ compiler, enabling
it to make performance gains.

Further, this thesis suggests a means to bring the funditpmd machine learning

based compilers toward the level of a traditional comp#d#owing the user to gain the
utility of statistical analysis without the need for sear@lis is achieved by allowing
the consideration of a larger and more representativeigaspace.

8.1.1 Intelligently searching the optimisation space

Previous work [7, 26] in iterative compilation recognisée potential to outperform
traditional compiler heuristics by randomly searchingtigh the optimisation space
— while this met with some success, it was at the cost of ex@hgfong compilation
and evaluation time.

This thesis has proposed a probabilistic method to seaecbgtimisation space more
effectively and gain additional speedup, concentratingrafitable areas and steering
away from code transformations which cause slow down, oraio.g

A probability vector is created, representing the liketidamf each transformation be-
ing chosen in a particular evaluation, and this is updatetstamtly, using runtime
feedback, to allow the search to focus. This is combined witandom search, so as
to avoid becoming stuck in local minima. Using this techeiga speedup of 1.71 is
achieved over the UTDSP benchmark suite on average, oatpeng previous work.

8.1.2 Using prior knowledge

Probabilistic search helps a compiler focus on the goodsarthe optimisation space,
but it does not do so quickly. This is because the knowledgehith optimisations are

profitable to apply on a single program is simply discardetth@tend of compilation,

and the process must start over from scratch on a new program.

This thesis has proposed a system to capture this knowladderansfer it to new, un-
seen programs, allowing the same performance gains to be méelver evaluations.
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This knowledge transference is achieved by employing cedtifes (see 4.3) to char-
acterise each program. Code features are used as a metrimpaueeach program’s
similarity, and thus the likely applicability of similar de transformation. Knowledge
capture is achieved by employing models to represent theesac or otherwise, of
transformations or transformation sequences for a pdatigrogram. Using both of
these techniques together, this thesis shows how the nushiierations required for
equivalent performance can be reduced by an order of matmitu

8.1.3 Eliminating search, characterising the program spac e and

selecting benchmarks

Although some work has been done on non-search basedisthtimpiler tech-
niques [57, 43], this research concentrated on single parantuning (like loop un-
rolling options) or evaluating two optimisations. The opBation spaces examined in
these tasks do not suffer from the kind of combinatorial esigin seen when a large
number of transformation options are evaluated, nor do ¢fing/ the same scope for
improvement. This thesis has presented a one-shot corspilaion, based on statis-
tical analysis of the program space. No search occurs armbthpiler must decide on
an optimisation strategy based purely on prior knowledgta mo feedback.

Generating the initial training data for a learning compds seen in chapter 5, and
in [14, 15], is time-consuming. The selection of benchmdokdraining has not been

considered before, and instead, all available benchmanedatively small suites have

been used, using the same suite for evaluation of the tesénikhis is for two reasons:

firstly, because the effort required to get benchmark suitesing through proprietary

compilers and tools is not insignificant, and secondly, beeahe time available to

train the compiler is limited, and thus only a small numbeya considered.

This thesis has proposed using unsupervised learningdonoirent these two issues.
Unsupervised learning considers the feature space of @aresyrwithout the final ob-
jective function — in this case, runtime — and so the cost dfregla new program to the
training set is simply that of extracting the features; ¢hemo need to run the program
through the real hardware. This dramatically reduces tseaf@dding a new program
to the training set, allowing a greater number to be conettleand, in turn, increases
the training set’s coverage of the program space.
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Using a simple form of unsupervised learning called k-medunstering, this thesis has
shown how a learning compiler can best make use of its trgitiime by concentrating
on those programs which best represent the wider prograoesBy exploiting this
extra coverage, the learning compiler was able to achiepeedsip of 1.14 on average
across the EEMBCv2 benchmark suite, in just a single evaluatibis represents just
under half of the speedup possible when using iterativechdar 4000 evaluations.

The learning compiler required only 24,000 training runthmtraining stage to achieve
this result. In order to approach this result using randontbmark selection, 120,000
extra training runs were required. Additionally, when bafiproaches were limited to
just 24,000 training runs, we achieved a 700% increase iaddé&ional optimisation
possible by using our clustering-based approach ratharrtredom selection.

8.2 Critical Analysis

The major goal of this thesis was to increase compiler perémce by means of better
optimisation strategies, which reduce execution time ofchenarks. This goal has
been achieved, however there are additional costs thatadirne — in chapters 5 and
6, improvements in program execution time are traded ofiresgjdonger compilation
time. In addition, a profiling stage is necessary to provakrback, adding additional
infrastructure to a compiler toolchain, and meaning onlglecthat has some readily
measurable goal can be optimised in this way.

In the field of embedded systems, such extra cost is ofterptadale due to long run-
times for programs and mass replication. Even in the gemengdose world, addi-
tional effort may be put into optimising a final release whioay be copied many
times. However, a disparity between final code performancetlaat during develop-
ment, where compile time is more critical, is undesirableoth cases; an embedded
systems manufacturer may not be aware of the extent to whadiermance gain is
possible until after the specifications of the system areHeis could render the im-
provement moot, as the system is already capable of perigrthe needed task with
the unoptimised code. Research into performance prediatidrpotential for optimi-
sation may counter this problem [18].

This thesis only considers execution time as an optimisagmal. While this is usu-
ally the primary concern of compiler users, other factoighsas code size and power
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consumption can be important. The thesis would have besgfitorn considering
these optimisation goals too, however this was not posslildeto the extra time and
infrastructure it would have required.

Moreover, optimisation based on search could be said tintalla ‘gap’ between two
areas of utility — that is that runtime is either not critidgalwhich case long compilation
time is unacceptable, or it is critical, in which case handiag of assembly code is
likely to produce the better result. Yet, embedded codedseamsingly being written
in high-level languages due to the maintainability and timenarket advantages it
confers, and it is necessary to provide a good solution fergtowing market.

Comparison between different techniques is made more diffiguinconsistent in-
frastructure within this thesis — two different benchmaukes are used: UTDSP [29]
and EEMBCv2 [19]. The change of benchmark suite between cisfptnd 7 inhibits
comparison between the techniques. However, this was segdsecause the UTDSP
benchmark suite is small in number of benchmarks, and itligelg that the cluster-
ing based ‘whole picture’ technique of chapter 7 would beresting or successful on
this suite.

Another change between chapters 5 and 6, and chapter 7 ihdémge in compiler
infrastructure between COLO Tool/SUIF and Milepost GCC duiaéoprogression of
infrastructure work over time. This makes the works moré&dalift to compare, and is
regrettable.

Difficulty with infrastructure and compiler compatibilitglso led to a mismatch in
the number of benchmarks considered on the two differemitaxctures in chapter 6,
where an additional five benchmarks are considered on the Abdfiorm over the TI.
This makes any comparison between the two architectureplsuasive, however it
was thought preferable to cutting the benchmark suite éurtim both systems.

In chapter 7, the use of a general-purpose processor diffates this chapter from the
others. The use of an embedded processor in this chapted Wwaué been preferable
to evaluate an embedded benchmark suite, however, thisatg®ssible (see section
7.5.4).

Finally, parallelism is the greatest compiler challengeamincreasingly multi-core
world. This thesis does not address the issue of parallelisai, purely dealing with

single-threaded optimisation. It is likely that the relega of single-threaded optimi-
sation will decrease as that of parallelism increases.
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8.3 Future Work

This thesis has used some simple machine learning techmiquebtain significant
improvement in compiler performance by transformatioestbn and reordering. We
have seen that the optimisation space considered by thelseidees is so vast and
complicated, that it is likely that more sophisticated maeHearning algorithms will
be useful in improving them further.

One such example semi-supervised learningvhere both unsupervised learning and
supervised learning are combined, giving a good coverateeapace while still hav-
ing the potential to learn complex space properties. Amagtde field ofactive learn-
ing, where the learning system itself can choose where therdarskaof information

in the optimisation space and ask for a particular point tgdrapled. There is every
reason to believe that there is still gain to be made.

This thesis considered only execution time as an optinasisagoal, however, as has
been previously stated, code size and power consumptiomg@tant too. Simply
targetting them individually could be done in exactly thensaway as is done in this
thesis by changing the objective function. This is lessregtng. However, multi-
objective learning might be considered, where executiow ticode size and power
consumption are balanced against each other dependingjomements, which is a
difficult task not addressed in this thesis.

Finally, optimisation for multi-cores is becoming incregagy important. These more
complex processors pose different challenges to the cempgihd machine learning
could help in solving them. For instance, in the past, ag@jbelisation techniques
have performed poorly due to missing out on opportunitieptoallelisation where
the dependencies in the code were not fully formally andlgsar where unnecessary
dependencies forbid the transformation. Machine learoargassist by examining the
whole picture — auto-parallelisation techniques from t@is Socused on loop paralel-
lism using only local analysis, and cannot take into acctanger scale issues such as
data layout in memory or conflicting cache behaviour. Mael@arning can be used to
take into account both the local and the global picture, n@akliecisions at both levels
to benefit the program as a whole.
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8.4 Conclusion

This thesis has demonstrated that machine learning is arpdweol which can be
harnessed by compiler engineers to automatically optitngie-level code. Statistical
analysis of program structure, content and runtime feddbhas been shown to be a
better way to inform compiler optimisation than existinglaat techniques.
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Appendix

Transformations in SUIF

Aggressively scalarise constant array references

Apply default SUIF transformations

Array Delinearisation

Array Padding

Bit Packing

Bounds Comparison Substitution

Break load constant instructions

Break up large expression trees

Chain multiple array references

Common Subexpression Elimination

Common Subexpression Elimination (no pointers)

Constant Folding

Constant Propagation

Control Simplification

Copy Propagation

Dead-Code Elimination

Dismantle abs instructions

Dismantle array instructions

Dismantle composite float and integer instructions

Dismantle composite float instructions

Dismantle divceil instructions

Dismantle divfloor instructions

Dismantle divmod instructions

Dismantle empty TREE FORs

Dismantle integer abs instructions

Dismantle integer max instructions
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Dismantle integer min instructions

Dismantle max instructions

Dismantle memcpy instructions

Dismantle min instructions

Dismantle multi-way branches

Dismantle non-constant FORs

Dismantle TREE BLOCKs

Dismantle TREE BLOCKs with empty symbol table
Dismantle TREE FORs

Dismantle TREE FORs with modified index variable
Dismantle TREE FORs with spilled index variables

Dismantle TREE LOOPs

Eliminate enumeration types

Eliminate struct copies

Eliminate sub-variables

Elimination of unused symbol

Elimination of unused types

Explicit array references

Extract array upper bounds
Find Fors
Fix address taken

Fix bad nodes
Fix LDC types
For Loop Normalisation

Forward Propagation

Global variable privatisation

Globalise local static variables
Guard FORs
Hoisting of loop invariants

If Hoisting

Improve array bound information

Induction Variable Detection

Kill redundant line marks

Lift call expressions

Loop flattening

Loop Tiling

Loop Unrolling

Mark constant variables

mod/ref Annotations

Move loop-invariant conditionals
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Privatisation

Put in explicit loads/stores for non-local variables

Reassociation

Reduction Detection

Replace call-by-reference

Replace constant variables

Scalarisation

Scalarise constant array references

Split deep fors

Strictly fix bad nodes

Turn imperfectly nested loops into perfectly nested logps

Unstructured control flow optimisation

Table A.1: List of source-to-source transformations used in SUIF
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