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Abstract

This thesis investigates an asynchronous, miconet-based design model for

multithreaded architecture with reprogrammable hardware elements, targeted at

energy-conscious, high performance application in the mobile wireless sector.

We envisage that a synergistic combination of these features will bring benefits to

microprocessor architecture design. A novel architecture named Micronet-based

Asynchronous Processor System plus Reconfigurable Function Units (MAPS+) is

described in detail in this thesis, which combines hard-programmability, in the form of

field programmable logic, and soft-programmability in a multithreaded instruction set

architecture.

Compiler techniques for extracting speculative thread-level parallelism and

hardware-software partitioning were investigated in the thesis. The simulation results

for a subset of the MiBench benchmarks on an event-driven instruction set simulator of

the MAPS+ architecture demonstrates the performance improvement of different

combination of architecture design techniques and the trade-offs between performance

and power consumption.
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Chapter 1
Introduction

1.1 Problem Description

According to Moore's law, the number of transistors per square inch of integrated

circuits had doubled every year since the integrated circuit was invented

[ 101 ][ 102][ 103], and the circuit density has doubled approximately every 18 months.

The scaling of process geometries enables more transistors to be placed in a single

chip, with the integration of different types of devices and functions. As a result,

modern high performance microprocessors, e.g. Intel's Pentium IV [104], have more

than 100 million transistors on-die, and reached clock frequencies of more than 3.4

GHz. This trend will continue for in the foreseeable future, leading to chips with a

billion gates per square centimetre.

It is expected that silicon-based bulk Complementary Metal Oxide

Semiconductor (CMOS) technology will continue to be the mainstay of the

microelectronics industry for the next decade. The International Technology Roadmap

for Semiconductors (ITRS) report (2005 edition) [105] has indicated improvements in

technology scaling and processor performance. The forecast of decreasing half-pitch

die sizes of processors, Random Access Memories (RAMs) and flash memories in the

next 15 years is shown in Figure 1-1. It is expected that by the year 2020, CMOS

technology will have reached 14nm node and the on-die transistor count will cross 1.1

billion by the year 2012, and reach up to 7.2 billion by 2020. However, performing

more and more computations in less space at faster speeds presents enormous

technical challenges.
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Year

DRAM —m— PROCESSOR FLASH

Figure 1-1: International Technology Roadmap for Semiconductors report, 2005

edition [105],

The trends described above are accompanied by high clock frequency domain

implementation. Local clock frequencies are predicted to rise above 10 GHz by the

year of 2011, to reach 88 GHz by 2020 [105], which will make it difficult to maintain

global synchronisation. At present multiple clock frequencies are usually only

required to support off-chip accesses. In the future the number of individual clock

domains and the associated synchronisation problems are likely to increase

considerably. Even with a move towards multiple clock domains, the generation and

distribution of clocks with cycle times of much less than a nanosecond will be

problematic. Significant resources are already required to analyse and construct clock

distribution networks. Traditionally, the clock has been viewed as a simplifying

assumption providing opportunities to explore predictable behaviour and minimise

critical paths dominated by gate delays. The key requirement in applying a

synchronous approach efficiently is the ability to accurately predict on-chip delays, as

synchronous clock frequencies must be set by considering worst-case delays.

Difficulties in predicting delays and an increase in data-dependent delays will mean

that, on average, the amount of useful work performed in a clock cycle will drop.

Increases in clock frequencies, and greater transistor counts have also resulted in a

sharp growth in power consumption per chip. Higher power consumption means
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higher power costs and shorter battery lifetime of mobile applications. Despite the

fact that the supply voltage is decreasing for each chip generation, the total power

consumption is rising. For example, the average power consumption for high-end

microprocessors has already reached 150 W, and may exceed 300 W by the year 2018

[105], This increase in power will be largely due to rise in leakage current, higher

on-die clock frequency and higher levels of integration. It is expected that the power

supply voltage will reach about 0.7 V by 2018, resulting in an increase in current from

the present levels of about 130 A, to more than 400 A by 2018. Techniques for

reducing and managing power have become important factors in the design of all

high-performance Very Large Scale Integration (VLSI) systems due to the problems

of both supplying power and the costs associated with cooling the devices. Many of

the current low-power techniques have focussed on reducing the power dissipated

when transistors switch, which include: clock and signal gating, the use of multiple

on-chip supply voltages, the dynamic scaling of supply voltage and more recently,

dynamic reconfiguration of components to minimise load capacitances. Additional

techniques will also be required to handle the predicted increase in power due to

leakage currents, which is increasing by around a factor of five per process

generation.

As the complexity of VLSI circuit grows, system-wide synchronisation becomes

infeasible due to the lack of robustness in the fact of manufacturing variability, as the

CMOS transistor is subject to ever larger statistical variability in its behaviour.

Furthermore, it is difficult to try all combinations of inputs systematically and to

verify that the resulting behaviour is correct, and to analyse them accurately and

exhaustively for precise timing characteristics. When device sizes decrease to a point

some defects are unavoidable, such as minor imperfection in the manufacturing

process, random thermal fluctuations, or even cosmic rays can invalidate parts of a

circuit. Although some of the modern circuits do have error detection and correction

capabilities, these solutions are still not universally used in all parts of a processor

design.

Complex Electronic Design Automation (EDA) tools are required for synthesising

3



circuits described in a Hardware Description Language (HDL). However the

complexities of designing circuits in traditional HDL prolongs the time-to-market of a

product. Languages such as System C [189], Handel-C [190], and JHDL [191] raise

the level of abstraction for specifying system-on-chip designs, with the ability to

synthesise hardware.

1.2 Aim of the thesis

The aim of the thesis is to tackle some of problems described in previous section. It

investigates the impact of combining asynchronous design techniques, multithreaded

executions and runtime reconfigurations in microprocessor architectures, which could

lead to some solutions for existing problems in VLSI system design. A novel

architecture named MAPS+ is explored in detailed, which combines

hard-programmability, in the form of field programmable logic, and

soft-programmability in a multithreaded instruction set architecture. Compiler

techniques for extracting instruction-level parallelism (ILP) and thread-level

parallelism (TLP) have also been investigated in the thesis. Based on the simulation

results, the MAPS+ architecture demonstrates performance improvement for different

combination of architecture design techniques and power consumption trade-offs.

1.3 Thesis outline

The remaining chapters in the thesis are summarised as follows:

Chapter 2. This chapter introduces ideas from three background areas of research

which overlap in this thesis: asynchronous design, multithreaded architectures and

reconfigurable computing. Firstly, the role of asynchronous control in architectural

design is introduced, along with the advantages and disadvantages of such an

approach. An overview of previous work in this area is also presented. Secondly, the

multithreaded architecture is described, which includes multithreaded execution,

comparison between two multithreaded architectures, thread extraction mechanisms

4



and existing multithreaded processor designs. Finally reconfigurable computing

concepts are also reviewed, and related issues are introduced, such as FPGA

architectures with different coupling mechanisms, and compilation and evaluation

techniques.

Chapter 3. The MAPS+ architecture is described in detail. The MAPS+ architecture

combines hard-programmability, in the form of field programmable logic, and

soft-programmability in a multithreaded instruction set architecture. Techniques

enabling thread synchronisation, data value prediction and runtime reconfiguration are

described.

Chapter 4. The compilation techniques for generating multiple-threaded and

hardware-software partitioning codes are described in this chapter. Conventional loop

threading compilation and speculative thread partitioning techniques and

transformations have been investigated. Finally, automatic compilation techniques of

generating RFU operations for grouping arithmetic and logic operations are also

investigated.

Chapter 5. The chapter presents a simulation framework for the MAPS+ architecture

and its compilation framework. The SPAMSIM2 simulator is introduced, which

provides an integrated environment to model the functionalities of MAPS+, and to

evaluate its performance. The MAPS+ compiler is based on the SUIF2 and Machine

SUIF compilers. The Software Hardware Partitioner (SHP) and the Thread Analyser

(TA) compiler passes are also described, which implements the algorithms for

hardware-software and thread-level partitioning.

Chapter 6. The chapter summarises the benchmark programs that have been chosen

for evaluating the MAPS+ architecture. The configurations for the synchronous

baseline and the asynchronous MAPS+ architecture are introduced. With the

SPAMSIM2 simulator, performance, power and energy consumption results are

5



evaluated. Four sets of MAPS+ experiments were executed: asynchronous MAPS

against synchronous MIPS baseline; asynchronous MAPS+ RFU against synchronous

MIPS; asynchronous multithreaded MAPS against synchronous MIPS; asynchronous

multithreaded MAPS+ RFU against synchronous MIPS.

Chapter 7. This chapter presents conclusions for the thesis and proposes future work

to enhance the MAPS+ compiler for threading partitioning and hardware software

partitioning.
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Chapter 2
Background

2.1 Introduction

This chapter reviews three background areas of research for the MAPS+ architecture

design: asynchronous design, multithreaded architectures and reconfigurable

computing.

Firstly, the role of asynchronous control in architectural design is introduced,

along with the advantages and disadvantages of such an approach. An overview of

previous work in this area is also presented.

Then the principles of multithreaded architecture are described. Two design

mechanisms dominate current multithreaded architectures: Simultaneous

Multithreading (SMT) and Chip Multiprocessors (CMP). The features of existing

multithreaded architectures are also summarised, both academic and commercial

ones.

Finally concepts in reconfigurable computing concepts are reviewed, drawing

comprises between tightly-coupled and loosely-coupled reconfigurable architectures.

And the compilation and evaluation techniques for these architectures are also

introduced.

2.2 Asynchronous Design

Although asynchronous circuit design was first investigated in the 1950's by Huffman

and Muller, commercial circuit design has been dominated by synchronous

technology.

Synchronous design is characterised by certain fundamental assumptions: all
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signals are binary and time is discrete. The clock signal in a synchronous circuit

serves as a global timing reference for communicating data among the different units

in a system. The data communication is via pipelined latches, which use the clock as

an enabler signal.

The asynchronous design provides an alternative approach to circuit design. In an

asynchronous system there is no notion of a clock and all communication is explicit

using a channel that follows a handshaking protocol: the sender, after making the data

available, sends a request signal notifying the receiver, which processes (or stores) the

data and sends an acknowledgement back when it has finished. Advantages of

asynchronous design are summarised as follows:

• No clock skew: Asynchronous designs avoid problems due to clock skew in the

absence of a clock.

• Modularity: The asynchronous designs can be improved by modifying part of the

circuit without disturbing the rest of the circuit. In theory, the new blocks only

need to obey the communication protocol of the interface.

• Robustness: Delays in circuits can vary across different fabrication processes and

operating conditions. Asynchronous circuits are more tolerant to variants in

physical parameters, such as temperature, and power supply. The asynchronous

circuits do not have critical timing requirements, and can run as fast as the

operating conditions allow. Furthermore, they are able to guarantee the correctness

of their functionality regardless of the operating conditions.

• Low peak electromagnetic emissions: Electromagnetic emissions of circuits are

sources of side-channel leakage, which bring security threats to allow secret

information stored in cryptographic devices to be retrieved [117][118].

Asynchronous design reduces peak electromagnetic emissions and provides the

possibility to resist side-channel attacks [118].

However, asynchronous designs do have a number of disadvantages:

• Design complexity: The lack of global timing in the design of asynchronous
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circuits does introduce several problems, such as handling signal sequentially,

avoiding hazards and non-determinism, in order to ensure the correct behaviour.

As a result, different styles of asynchronous circuits have emerged, e.g. DI

[ 114][ 116] circuits, SI [116] circuits and QDI [115] circuits.

• Completion detection: By removing the global timing reference, the

asynchronous approach shifts the problem to generating a completion signal of

any operation. Extra hardware is required to maintain synchronisation among

blocks, which increases the complexity of the design process.

• Lack of design tools: Commercial Electronic Design Automation (EDA) tools for

design, simulation, synthesis, routing and verification of synchronous circuits

have been well developed. In contrast, tools and methodologies for asynchronous

design have been available in the academic community, industrial strength tools

are scarce.

• Testing problem: Testing asynchronous circuits is considered a difficult task.

Asynchronous circuits make extensive use of handshaking and the presence of a

fault is likely to cause the circuit to halt. Given the large scale space, exhaustively

testing of circuits are impractical. The characteristics of state-holding elements

together with the self-timed behaviour make it hard to test the feed-back circuitry.

• Performance measurement: For an asynchronous circuit, the time for

completing a task will depend on hardware delays and on the input data, which

means that the performance measurement is variable and the performance metric

is based on the average measure.

Apart from the points summarised in the previous sections, it is still unclear that

asynchronous circuits consume lower power than the synchronous counter part.

Traditionally, lower power consumption has been the most cited benefit of

asynchronous design. The absence of the global clock signal in asynchronous circuits

causes power consumption to be more evenly distributed over time. Also, an

asynchronous system activates only those parts of the circuit which are required and

the rest parts of the circuit that is not being used does not dissipate any power.
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However, it becomes debatable while clock gating power-saving [120] techniques and

more advanced chip fabrication processes (e.g. 60nm, 45nm) are introduced to

synchronous circuits. Clock gating techniques add additional logic to a circuit to

prune the clock tree and disable portions of the circuit. Our simulation results in

Chapter 6 show similar level of power consumptions of the asynchronous designs to

their synchronous counterpart.

Also average case performance is another advantage of asynchronous designs

used to be stated. Synchronous designs cannot avoid worst-case performance since all

possible computations must complete before results can be latched. Thus, a margin of

time is added to the clock speed to ensure that all blocks completed. By comparison,

asynchronous designs are free from this dilemma since the circuitry is capable of

sensing a computation's completion. However, with the improvement of fabrication

technology, a long and more precise pipeline design of processors, performance of

synchronous systems becomes very close to the asynchronous cases.

In the following sections, different asynchronous design methodologies are

discussed.

2.2.1 Asynchronous circuits classification

In asynchronous circuits, an event is a transition in the logic level due to changes in

the value on the wire. Due to varying delays through different logic paths, a particular

wire in a block of combinational logic may perform a number of transitions before

reaching a stable value. For an asynchronous circuit, it is important to ensure such

effects do not cause the circuit to malfunction. As a result, asynchronous circuits need

to make assumption about wire and gate delays. The models of asynchronous circuits

with different levels of timing assumptions are listed below:

Delay-insensitive (DI) circuits

In DI [ 114][116] circuits all transitions on gates or wires must be acknowledged
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before transitioning again. This condition stops unseen transitions from occurring, and

any transition on an input to a gate must be seen on the output of the gate before a

subsequent transition on that input is allowed to happen. This forces some input states

or sequences to become illegal. For example OR gates must never go into the state

where both inputs are one, as the entry and exit from this state will not be seen on the

output of the gate. Though the model is robust, the heavy restrictions cause the DI

circuits to be impractical.

Quasi delay-insensitive (QDI) circuits

QDI [115][116] circuits make no assumptions about the delays of any of the circuit's

elements, except to assume that certain fanouts are isochronic forks. Isochronic fork

allow signals to travel to two destinations and only receive an acknowledgement

signal from one. Both ends of isochronic forks see the transitions, such as the

acknowledging destination and the other end. Two kinds of isochronic forks have

been proposed, such as asymmetric and symmetric types. The asymmetric types

ensures that the signal will arrive at the acknowledging fork destination before or at

the same time as it will at the other fork destination, but the symmetric type ensures

that both fork destinations will be reached at the same time.

Speed-independent (SI) circuits

In SI [116] circuits, wire delays are assumed to be zero, or less than the minimum gate

delay and the circuit exhibits correct operation regardless of the delays in any circuit

elements. The assumption of zero wire delay is valid for small circuits.

2.2.2 Asynchronous communication and signalling

In the asynchronous system, components communicate with each other via a
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handshaking mechanism. In this scheme the sender is responsible for initiating the

transaction and the receiver responds when it is ready to receive.

The most efficient signalling convention is two-phase handshaking protocol.

Consecutive signals or events are indicated by alternating low-to-high and

high-to-low voltage transitions. The term two-phase [106] stems from the fact that

two events take place: the first phase is represented by the sender requesting transfer

data (1), and the second phase by the actual transfer of the data (2), as depicted in

Figure 2-1(a). The major advantages of two-phase handshaking, also known as

transition signalling or Non Return-to-Zero (NRZ) signalling, are that it is as fast and

as energy efficient as possible. However, in practice, additional logic and state

information may be required in each element, since logic devices tend to be sensitive

to voltage levels or only transitions in a particular direction.

The four-phase [107] [108] [109] signalling protocol uses the level of the

signalling wires to indicate the validity of data and its acceptance by the receiver.

When this signalling scheme is used to pass the request and acknowledge timing

information on a channel, a Return-to-Zero (RZ) phase is necessary so that the

channel signalling system ends up in the same state after a transfer as it was in before

the transfer. As shown in Figure 2-1 (b), four events take place in the case of the

four-phase: (1) the sender starts the transactions, (2) the receiver acknowledges, (3)

the sender stops sending the data, and (4) the receiver finishes the handshake. This

scheme thus uses twice as many signalling edges per transfer than its Two-phase

counterpart. Another characteristic of four-phase handshakes scheme is that the

second half of the handshake can be concurrent with the computation. This is

advantageous considering that transactions spend most of the time in computation

rather than communication. Four phase circuits can achieve higher performance and

lower costs than two phase implementations using level-sensitive technologies such as

CMOS.
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Figure 2-1: (a) Two-phase of handshake and, (b) four-phase of handshake.

2.2.3 Muller C-element

The Muller C-element [48] applies logical operations on the inputs and has relatively

simple gate logic design. Figure 2-2 shows the Muller C-element symbol, gate-level

implementations, and the truth table. The Muller C-element acts as the AND element

for events. As shown in the truth table, if both inputs are matched, its output reflects

that state. If the two inputs differ, the output retains its previous state using its internal

storage. When a transition is triggered, the Muller C-element will produce an event at

its output port. Such a model can be extended to the asymmetric C-element and some

inputs only affect the operation in one of the transitions.

d

-> y

a b y
0 0 0

0 1 No change
1 0 No change
1 1 1

Figure 2-2: (a) Muller C element, (b) Gate level implementation and (c) Truth table.

2.2.4 Data representation

The handshaking protocol described in Section 2.2.2 can also be used to transmit data.

As the simultaneous arrival of both data and request signals cannot be guaranteed

under a delay-insensitive model, a technique is required to detect when data is present.

The arrival of a particular bit of data is only possible if it produces an event on a wire.
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If the data was sent un-encoded this would mean that only those bits changed could be

detected.

The dual-rail encoding scheme [110] uses two wires to represent each bit of

information. Each transfer will involve activity on only one of the two wires for each

bit, and a dual-rail circuit thus uses 2n signals to represent n bits of information.

Timing information is also implicit in the code, in that it is possible to determine

when the entire data word is valid by detecting a level (for 4-phase signalling) or an

event (for 2-phase signalling) on one of the two rails for every bit in the word. A

separate signalling wire to convey data readiness is therefore unnecessary. Four-phase

dual-rail data encoding is popular for the QDI design style but, as with all dual-rail

techniques, it carries a significant area overhead in both excess wiring and the large

fan-in networks that it requires to detect an event on each pair of wires to determine

when the word is complete and the next stage of processing can begin. In practice, the

dual-rail encoding needs to detect when all of the bit-lines have returned to zero, for

which the AND gates must be replaced by Muller C-elements as described in the

previous section.

An alternative approach is to use the bundled-data [111] scheme to detect the

presence of data and introduce a safety margin by delaying the request event. Timing

information is passed on separate request and acknowledgment lines which allow the

sender to indicate the availability of data and the receiver to indicate its readiness to

accept more new data. Bundled-data encoding schemes contain inherent timing

assumptions in that the delay in the signal line indicating data readiness must be no

less than the delay in the corresponding data path.

Instead of using inherent timing assumptions for bundled-data scheme, a

completion detection can be achieved using Current-Sensing Completion Detection

(CSCD) [ 112][ 113]. But it is not typically implemented in bundled-data scheme.

CSCD monitors the transient-current flow, inherent in CMOS logic functions during

processing of input variables, to detect completion of a given operation. Single-rail

design is popular, mainly because its area requirements are similar to those of

synchronous design, as is the construction of any arithmetic components using this
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scheme.

2.2.5 Micropipeline

Micropipeline [48] is an asynchronous implementation of pipelines. As shown in

Figure 2-3, each stage has a bundled data (BD) interface, which is used to

communicate with the previous and next stages. Data is supplied at the inputs to the

system, and then a transition occurs on the R(in) wire. Then the local handshake

signals of each BD interface determine the earliest time at which the next stage may

receive the data. Logic blocks between different stages accomplish the computation

tasks on input data. The explicit delay elements must match the worst-case logic block

delay.

Micropipeline structure provides the benefit by direct implementation of the logic

blocks used in the synchronous designs. Therefore, a micropipeline can be

constructed from a synchronous pipeline by replacing the clocked level-sensitive

latches with the micropipeline control structure. De-synchronisation [ 121 ] [ 122] has

been suggested, whereby the clock distribution tree of traditional synchronous circuit

is replaced by standard handshaking circuits, allowing controllers to be implemented

using a direct-mapped method and datapaths are implemented using conversional

synthesis and matched delay elements.

Furthermore, because of the removal of lockstep with the global clock, the

micropipelined design provides better elasticity, and arbitration timing of data sending

and receiving can be guaranteed. The micropipeline also introduces some problems.

As the bounded-delay models are used in micropipelines, the data-path suffers

worst-case performance. Also testing difficulties are also one of the problems due to

the delay assumption made for different pipeline stages.
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Figure 2-3: Micropipeline block diagram.

2.2.6 Asynchronous architectures

The following section presents an overview of contemporary asynchronous

architectures, which includes academic and commercial asynchronous processors.

AMULET

The AMULET group at Manchester University has developed a number of

asynchronous ARM-compatible processors. AMULET1 [123] is an asynchronous

micropipelined versions of the ARM6 microprocessor. A two-phase, bundled-data

communication protocol is implemented. It relied on a lock FIFO to ensure

dependencies are respected. The width of the FIFO buffer is equal to the number of

registers, whereas the size of the buffer defines the number of pending write

operations. Each location consists of a bit that indicates which register is to be written.

Control logic ensures that at most one column attempts to write to a register. The

AMULET 1 design incorporates a number of concurrent units which cooperate to give

instruction level compatibility with the synchronous ARM architecture, which

includes an Address Unit, a register file, execution unit, and a memory unit. From

AMULET group's implementation, the AMULET 1 demonstrated a 70% performance
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enhancement over an ARM6 at 20MHz, with an overhead of 20% larger area size. It

delivered a power efficiency of 80MIPSAV, which was less than ARM6's 120

MIPSAV. However, AMULET 1 was a first generation of asynchronous

implementation, but the ARM6 was a highly efficient commercial processor which

has undergone several design iterations, so the performance was reasonable. The

approach did prove the feasibility of a large-scale asynchronous architecture.

The AMULET2 [109] improved on the AMULET 1 in several aspects. The

AMULET2 used the four-phase handshake scheme, which is faster and more power

efficient. AMULET2 provides a flexible pipeline design to allow unnecessary pipeline

stage to be bypassed, e.g. the memory access pipeline. This behaviour is advantageous

as it prevents the availability of independent ALU results depending on the

completion of earlier memory operations. As a result, a separate lock FIFO is

introduced for internally generated results and loads from memory. Write-After-Wrote

(WAW) hazards may be avoided by stalling the issue of an instruction until its

destination register is unlocked. Furthermore, a data forwarding mechanism reduced

pressure on the register file and the Branch prediction mechanism reduced the

percentage of prefetched instructions that were discarded when a branch was taken.

The AMULET2 demonstrated the potential for power efficiency of 280MIPSAV,

which was greater than ARM7.

The AMULET3 [124] [125] offers similar performance and functionality as the

ARM9TDMI microprocessor. A Thumb decoder was incorporated for full

compatibility with the Thumb instruction set, and a reorder buffer was incorporated at

the write-back stage. The reorder buffer replaced the register-lock FIFO buffer used in

previous AMULET designs. It enables data forwarding to be more dynamic and

flexible. The forwarding event can take place in parallel with the register write-back.

The reorder buffer shortens the path for results normally written and read immediately

via the register file, thus reducing the response time for results to be available. If the

instruction results do not need to be forwarded, then they written back in order.
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Micronet

Micronets [28] [29] [30] developed at the University of Edinburgh, are networks of

entities that compute concurrently and communicate asynchronously. The entities can

themselves be networks by a recursive fashion, leading to a practical model of system

design, allow mixture of both self-timed and clocked implementation of the entities.

As a generalisation of Sutherland's micropipelines, micronets explore both

fine-grained instruction-level parallelism and the actual execution costs of instruction

in the form by using fine-grain microagents. The micro agents in any stage can

operate concurrently, and microagents in the different stages communicate with each

other asynchronously. Program instructions only utilise the relevant microagents and

for just as long as is necessary.

In normal micropipelined architecture, the number of active instructions is never

greater than the number of pipeline stages, and at any time only a subset of the

resources in each of the stages is normally utilised. In micronets, the number of

instructions which may be active at any time is bounded by the number of

microagents. An instruction which does not require any of the resources within a stage

can skip it. Furthermore, the time spent by instructions in microagents may vary. Due

to these reasons instructions may overtake. This feature will be explored to implement

out-of-order instruction completion.

Because there are effectively a number of paths, different instructions need not

necessarily complete in the order they were initiated. Also, the micronet is controlled

at two levels: the data transfer between the microagents is controlled locally, whereas

the choice of micro-operations within the microagent and the destinations of the

results are controlled by the control unit or by other microagents. Communication

between microagents may occur either across dedicated lines or via shared buses. The

micro-operation control signals can also be used to prevent contention on shared

buses.
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MiniMIPS

The MiniMIPS [132] [133] processor based on the MIPS R3000 instruction set, was

designed and fabricated at Caltech between 1995 and 1998. The asynchronous circuits

of MiniMIPS are QDI, which are less conservative than DI and robust to physical

parameters variations. The robustness of QDI makes it possible to exchange energy

and throughput against each other through voltage adjustments.

The processor consists of 32 32-bit general-purpose registers, a program counter,

and two special-purpose registers for multiplication and division. Two 4KB caches are

also included: an instruction cache, and a direct-mapped write-through data cache. In

the MiniMIPS, all execution units are connected in parallel in the pipeline, and can

execute concurrently. As result, a number of techniques are used to improve the

performance, e.g. pipelined completion detection, pipelined caches, and the design of

a low-latency adder. Furthermore, techniques to optimise the number of pipeline

stages and buffering are also used, while guaranteeing correctness. Results are

simply reordered by polling functional units in the order they were used. This

technique is similar to the use of a result shift register, and is the simplest way in

which precise interrupts may be supported. Data forwarding is supported from one

instruction to its immediate successor. The cases when forwarding can take place are

detected during decode by maintaining a record of the previous instruction's

destination register.

This design was implemented in a full-custom hand layout. It was fabricated in

HP's 0.6 pm CMOS process. The power consumption of the processor was reported at

4.2 Watt (3.3 V) at 180 MIPS.

SCALP

The Superscalar low-power processor (SCALP) architecture [131] does not use a

global register bank but implements results forwarding schemes. Several instructions
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are fetched from memory at a time. Each instruction has a small number of easily

decoded bits that indicate which functional unit will execute it. The instruction issuer

is responsible for distributing the instructions to the various functional units on the

basis of these bits. A queue is associated with each operand required by each

functional unit. Queues provide buffering for both instructions and results, reducing

the need to stall the issue unit and the operation of functional units.

Though the design was aimed at reducing power consumption by increasing code

density and decreasing the overall complexity of the processor, it brought some

drawbacks to the architecture. The register-less scheme was hard to implement due to

non-deterministic behaviour introduced by control hazards and asynchronous

operation. Communication across braches is also problematic as the destination of the

result cannot be determined a priori. In this case a register bank functional unit is used.

Duplicate instructions are also introduced into the program to allow results to be

distributed to more than one destination. Overall performance is said to be lower than

expected, due to a combination of poor code density and the inability of the

architecture to expose and explore instruction level parallelism.

Philips 80C51 Microcontroller

Philips' asynchronous 8-bit 80C51 [126] [127] microcontroller was implemented by

using the Tangram toolset, which was a high-level language developed by Philips

Research Laboratories. The Tangram program can be compiled automatically into a

gate-level netlist, using handshake circuits as intermediate stage. The single-rail

bundled-data asynchronous implementation of the microcontroller was fabricated in a

0.5 pm CMOS process and showed a power advantage of a factor 4 compared to a

synchronous implementation in the same technology at a cost of twice the silicon

area.

The 80C51 microcontroller was built around the bus that acts as the

communication channel between any two registers. ALU places its output onto the
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bus, the Special Function Registers (SFRs) are the registers that handle the

communication between CPU and peripherals; RAM and ROM modules are available

as constant arrays, which are mapped onto a dedicated handshake component. These

components consist of a handshake wrapper around standard RAM and ROM

modules, to which a ready signal is added to provide completion detection of read or

write accesses.

PCA-1

Plastic Cell Architecture (PCA) [ 134] [ 135] [ 136] is a FPGA-like device using

asynchronous design proposed by NTT's Network Innovation Labs. As shown in

Figure 2-4, PCA is composed of the Built-in Parts (BP) and the plastic parts (PP), and

one plastic part has some basic cells. This hardware architecture consists of

programmable logics and on-chip network, which is similar to a Field-Programmable

Gate Array (FPGA) design.

Figure 2-4: Block diagram of a PCA architecture (reproduced from [134])

The PP is a programmable logic block. On the PP, self-timed circuits with

4-phase bundled data signalling are implemented. It includes a 3-bit asynchronous

finite state machine. This object implements the function of sending a series of

commands to the basic part immediately after the basic part has established a

connection with the plastic part. Array of basic cells are also integrated into the PP,

which are composed of four, 4-input-and-l-output Look-Up-Tables (LUTs).

The BP acts as switch or router as used in network-on-chip architectures and

provides configuration control for the LUT memory in PP side. The BP contains five
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input ports and five output ports. Within each input port, asynchronous state machines

are used to control the communication with neighbours. Asynchronous arbiters in the

output port select the output messages. Wormhole routing algorithms are used to pass

the messages around.

The benefit of the PCA asynchronous architecture is the ability to map the

Communicating Sequential processes (CSP) [137] model onto it. Concurrency can be

explored by dividing a problem into independent subtasks for parallel execution and

these tasks are mapped onto the PP. Communication is mapped to the BP with the

description of connections and control of programmable objects. The PCA is suitable

for Digital Signal Processing (DSP) applications with data parallelisms, but for

traditional embedded applications with complex control flows, it still lacks of the

processing ability due to the limitation of the reconfigurable logic.

Power consumption is proportional to the number of working objects on the chip

around 24 mW per PCA cell. PCA-1 was fabricated using a 0.35 pm CMOS standard

cell process operating at 3.3 V. It contains a 6x6 array of PCA cells and with each PP

containing 79 K transistors and BP containing 15 K transistors.

Sun UltraSPARC IHi

Though UltraSPARC Illi [128] processor was not a fully asynchronous design, it was

Sun's first commercial product with elements of asynchronous logic technology

incorporated in the synchronous SPARC V9 64-bit architecture. The processor's

memory controller includes asynchronous logic-based FIFO circuits in the memory

controller input/output section to absorb clock skew variations inherent in large chips

containing tens-of-millions transistors.

The processor has a 14-stage nonstalling pipeline that allows the concurrent

execution of four instructions per cycle in 6 execution units: 2 ALUs, 2 FPUs. 1

memory unit, and 1 branch unit. The translation look-aside buffer supports 8 KB, 64

KB, 512 KB, and 4 MB pages. The on-chip LI caches include a 64 KB data cache, a

32 KB instruction cache, a 2 KB data prefetch cache, and a 2 KB write-cache. All
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caches are 4-wayset associative. The instruction and data caches have parity

protection.

The scalable design of UltraSPARC llli makes it possible to be extended to

four-way multiprocessing system by using the fast JBUS interconnect between

processors, which is a 200 MHz cache coherent SMP bus interface. The chip was

fabricated on Texas Instruments' 0.13 pm technology with copper interconnect

process, and achieved 1.28 GHz clock speed with average power consumption below

60 Watts.

ARM996HS

ARM996HS [129][130] is ARM's first commercially-available synthesizable 32-bit

CPU using asynchronous design technology provided by Handshake Solutions. The

ARM996HS is a 32-bit RISC processor core based on the ARMv5TE Instruction Set

Architecture (ISA). As shown in Figure 2-5, its core is based on a 5-stage integer

pipeline with fast 32-bit multiply-accumulate block. It has tightly coupled memories

for both instruction and data, each of which can be up to 4MB. Dual AMBA and

AHB-Lite synchronous buses provide the instruction and data interfaces. Specific

security enhancements for the ARM996HS core include a memory protection unit

(MPU) and the provision of non-maskable interrupts (NMI). A hardware divide

co-processor is also provided. The pipeline within the ARM996HS core mirrors the

normal ARMv5TE pipeline, with the exception that it is implemented as an

asynchronous design. The pipeline handshakes with the system controller to fetch

instructions and to load and store data.
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Figure 2-5: ARM996HS Core Block Diagram (reproduced from [129]).

From the ARM's benchmarks, the ARM996HS processor has been shown to

consume 2.8 times less power than the clock-gated ARM968E-S core - a

conventionally clocked processor with a similar specification to the ARM996HS.

2.3 Multithreaded architectures

Asynchronous architectures introduced in the previous section provide possible

solutions for high clock frequency, high power consumption in billion transistor

system design. In this section, alternative architectures that explore multiple threads

of control are described. A multithreaded architecture is able to pursue two or more

threads of control in parallel within the processor pipeline. The definition of a

hardware thread is an abstraction that represents an instruction stream that is able to

execute independent of another thread [138][139]. A multithreaded processor should

provide independent program counter, stack pointer and frame for each thread. In

addition to its private thread context, all threads share public resources such as heap

storage, shared static memory, and shared variables. Two alternative micro

architectures have been proposed to explore the thread level parallelism by

researchers: Simultaneous Multithreading (SMT) and Chip Multiprocessor (CMP).
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2.3.1 Thread level parallelism

Two parallelism techniques have been investigated in current architectural research:

Instruction Level Parallelism (LLP) and Thread Level Parallelism (TLP). These

techniques aim to improve the throughput of a processor by identifying independent

instructions that can execute in parallel and therefore can utilise parallel hardware.

Instruction level parallelism is usually explored by a multiple-issue superscalar

architecture using different hardware and software techniques, such as branch

prediction, register renaming, speculative execution, and out-of-order execution.

Thread level parallelism allows workload across different threads that can be issued to

separate execution pipelines. Thread level parallelism can be explicitly identified by a

programmer, or alternatively identified by a compiler or dedicated hardware

components.

2.3.2 Simultaneous Multithreading Architecture

SMT [ 140] [ 141 ] [ 142] processors extend wide-issue superscalar processors with

hardware that allows the processor to execute instructions from multiple threads of

control concurrently when possible, dynamically selecting and executing instructions

from many active threads simultaneously. SMT has the ability to use TLP and ILP

interchangeably for executing parallel applications. For a single threaded program, all

of the SMT processor's resources can be dedicated to that thread. Furthermore, when

more TLP exists, this parallelism can compensate for a lack of per-thread ILP. The

SMT is more like a conventional wide-issue superscalar without thread level

parallelism. In order to improve the throughput and keep the SMT pipeline busy,

advanced techniques in superscalar processors, such as branch prediction, register

renaming, out-of-order instruction issue, and non blocking caches are used. As shown

in Figure 2-6, latencies occurring in the execution of single threads are bridged by

issuing operations of the remaining threads loaded on the processor.
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Figure 2-6: Simultaneous Multithreading Architecture.

SMT architectures have several benefits, which are summarised below:

• The major benefit of SMT architecture is that the full issue bandwidth can be

utilised. Each thread context competes for SMT execution units to improve the

processor throughput. The issue bandwidth can be shared among different thread

contexts, and the issue units are able to fetch and issue instructions from several

threads in each cycle. Also the issue unit chooses the most appropriate execution

unit for execution; the prioritised issue scheme guarantees the load balances

across different threads. As a result SMT most effectively utilises the available

resources to achieve better throughput and improve program execution speed

significantly.

• SMT architectures have less chip area overhead as logical processors are
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increased. For example, a Pentium IV hyperthreading (SMT) version just requires

5% more extra transistors for one extra logical processor [146], which are used

for multiple program counter, instruction pointer and register files. Obviously, the

variation of extra chip area is implementation dependent, which is dependent on

the processor architecture chosen and components that need to be replicated.

On the other hand, the SMT architectures have drawbacks due to the complexity of

the design:

• The wide-issue stage design of SMT architecture requires a complex issue unit

to explore ILP and TLP as much as it can.

• A longer cycle time is necessary for the following reasons. Long and high

capacitance I/O wires span the large buffers, queues, and register files. Extensive

use of multiplexers and crossbars to interconnect these units adds more

capacitance. Delays associated with these wires will probably dominate the delay

along the CPU's critical path. Complicated logic requires more clock cycles to

keep clock period short and deeper pipeline increases the branch mispredict

penalty.

• Multiple threads share the same level-1 cache, TLB and branch predictor unit,

which causes contention, resulting in increase in cache misses.

• Finally, from an implementation point of view, the complexity increases design

time and verification costs.

2.3.3 Chip Multiprocessor Architecture

An alternative approach to the SMT is the CMP [143][144], CMP architecture

integrates two or more complete processors on a single chip. Every unit of a processor

is duplicated and used independently of its copies on the chip. As shown in Figure 2-7,

within each core of the CMP, a relatively narrow issue processor is implemented.

Each single thread processor provides moderate abilities to explore parallelism and it
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is completely independent and tightly integrated with its own cache.

TLP is exploited in CMP by partitioning programs into separate thread contexts,

which can run on separate processors. The CMP design has the following benefits:

• CMP increases layout efficiency, resulting in more functional units within the

same silicon area plus faster clock rates.

• CMP architecture is much less sensitive to poor data layout and poor

communication management, since the inter-processor communication latencies

are lower and bandwidths are higher.

• As the interconnects delays are becoming much slower than transistor gate delays

with current fabrication technology, it requires the processor architecture to be

partitioned into small, localised thread processing units, which favours CMP. Also,

due to the replication of thread processing units in the implementation, the design

and verification costs are under control.

The drawbacks of a CMP design are:

• The hardware partition of on-chip processors restricts performance. The hardware

partition results in smaller resources since the cache, TLBs, branch predictors,

and functional units are divided among the multiple thread processing units.

Hence single threaded programs cannot use resources from the other processor

cores, and the smaller cache size per thread processing unit causes increased miss

rate.

• A CMP chip is significantly larger than the size of a single-core chip and

therefore more expensive to manufacture.

• The traditional CMP approach of statically partitioning the chip resources

between threads may lead to wasted resources when one of the threads stalls due

to hazards or when the application lacks threads.

28



Thread Contextl Thread Context2

ISSUE UNIT 1
Synchronousation

ISSUE UNIT 2

EXECUTION
UNIT 1

EXECUTION
UNIT 2

EXECUTION
UNIT 3

EXECUTION
UNIT 4

Figure 2-7: Chip Multiprocessor Architecture.

2.3.4 Thread Extraction Mechanisms

In order to utilise the resources in the multithreaded architectures efficiently, thread

level parallelism of a program needs to be exploited. This can be done manually by

using explicit threading program mechanisms, or implicit threading programs via

automatic thread extraction methods.

Explicit multithreaded programs allow the programmer to express the thread

parallelism in a natural and flexible way. This is supported by using programming

languages, e.g. Java [151], or through run-time libraries, e.g. POSIX threads [152],

MPI [154], or through multithreaded directive pragmas inserted into a program, e.g.

OpenMp [153],
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Techniques for automatic thread extractions can be performed either at compile

time or at runtime. Dynamic or run-time approaches aim to use information that can

be collected at run-time to improve its performance. These techniques include load

balancing, dynamic process creation and dynamic scheduling. Static or compile-time

approach techniques only rely on information directly available from the source code

of the application. The following section concentrates on the automatic thread

extraction methods.

Run-time approaches

In a dynamic thread extraction approach, threads are created dynamically by the

hardware and executed speculatively. Dynamic multithreaded processor (DMT) [165]

is an example of implementation of this approach. A new thread is spawned when the

processor encounters a procedure call or a loop boundary. Each thread unit holds its

own states, such as the trace buffer, the program counter, and the load and store

queues. It shares with other threads the system resources such as the physical register

file, the waiting instruction buffers, and the instruction and data caches. Instructions

are fetched, dispatched, and executed out of order, and are completely re-ordered after

execution so that the final results are committed in order. The advantage of these

dynamic and out-of-order threads is that a look-ahead mechanism can be used to

search for potential parallelism far away from the currently executing instruction.

Compile-time approaches

Compile-time parallelisation approaches focus on partitioning the overall problem

into separate threads, allocating threads to different TPUs and synchronising the tasks

to ensure dependencies are respected. Automatic compile time parallelisation enables

a compiler to automatically exploit the parallelism inherent in the computation. A pure

implicitly parallel language does not need special directives, operators or functions to
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enable parallel execution. Two following two steps are used to identify parallelism.

At first, the compiler performs a data dependence analysis of the loop construct to

determine whether iterations of the loop can be executed independently. The loop

analyses include general loop restructuring, such as loop fusion, loop peeling, and

invariant code motion. In loops with independent iterations, vector computations are

carried out independently for every element. Loop iteration interleaving is used to

assign iteration to threads in an interleaved manner. Data dependence can sometimes

be dealt with, but it may incur additional overhead in the form of message passing,

synchronisation of shared memory, or some other method of thread communication.

The second step is to justify the parallelisation effort by comparing the theoretical

execution time of the code after parallelization to the code's sequential execution time,

as code does not always benefit from parallel execution. In practice, the extra

overhead associated with using multiple processors can dilute the potential speedup of

parallelised code.

Examples of automatic parallelising compiler include: McCAT [157], Panorama

[158], Polaris [159], PTRAN [160], and SUIF [161], Intel's C/C++ Compiler 9.0

[162], and IBM's CELL Processor compiler [163], Traditionally, automatic parallel

programming is applied to problems that are inherently parallelisable, those without

data dependencies.

Speculative multithreading

Speculative multithreading, also known as thread level speculation (TLS), is a

dynamic parallelisation technique that depends on out-of-order execution to achieve

speedup on multiprocessor CPU's. It enables threads to start execution before the

conditions on which they are dependent are resolved. As a result, mutual exclusion

and independence are not guaranteed, therefore any violations of independence

assumptions must be detected and resolved by the hardware. Apart from the control

speculation, data speculation is also employed to resolve data dependency among
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threads.

The Superthreaded [164] architecture at the University of Minnesota and the

Multiscalar [155] [156] architecture at University of Wisconsin enable speculative

multithreading at both architectural and compiler level. Multiscalar processors divide

a single-threaded program into a collection of tasks. In the architecture, a program is

represented as a Control Flow Graph (CFG), where basic blocks are nodes and arcs

represent the flow of control from one basic block to another and tasks are collections

of basic blocks. Processing units are organised in a circular queue, with a different

task assigned to each unit. Hardware support is provided to squash tasks if the

branches between tasks are incorrectly predicted. The global sequencer predicts the

next task which is one of the possible successors indicated in the current task

descriptor. Superthreaded architecture contains multiple thread processing units which

are connected by a unidirectional ring, and a thread can only fork a thread on the

successor processing unit. The architecture relies on a thread pipelining execution

model to facilitate overlapping between threads and the enforcement of run-time

inter-thread data dependences. Both hardware and software supports are needed for a

superthreaded processor for data dependency checking, parallelisation and

speculation.

The DMT processor enables the speculative multithreading without compiler

support. An adaptive thread predictor is used to assign priority to threads based on

collected runtime information, such as look-ahead distances and global history.

Thread-level control mis-speculation might cause high overhead due to wasted

execution time on squashed thread body. In order to keep the overhead low, many

techniques to expose high-confident branches to the control speculation have been

exploited based on compiler techniques or architecture designs.

For data value speculation, several value speculation techniques have been

proposed: Last value predictor [74][75], stride predictor [72][73], context-based

prediction [76][77], These techniques are based on the history pattern seen by

individual instruction operands.
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2.3.5 Multithreaded processors

A number of architectural techniques are incorporated in multithreaded architecture.

An SMT architectural model to evaluate the performance potential of simultaneous

multi-thread instruction issue was presented by Tullsen et al. [140]; Hirata et al.[ 148]

propose an architecture that dynamically packs instructions from different threads. A

SMT analytic model and its simulator were proposed by Yamamoto et al.[ 149] On the

other hand, CMP is also active research area: Hydra chip multiprocessor [144] is a

research processor designed at Stanford University, which evaluates the

shared-secondary-cache CMP; Venkata Krishnan[150] presented a CMP architecture

for speculative execution of sequential binaries without source re-compilation. The

following section provides a summary for existing commercial multithreading

processors.

ARM 11 MPcore

ARM 11 MPCore [147], Figure 2-8, is a newly developed CMP implementation of

ARM 11 micro architecture. The ARM 11 micro architecture has a configurable

number of processors, ranging from one to four. The ARM 11 core contains eight

pipeline stages, which includes two fetch stages, one decode stage, one issue stage,

and four stages for integer execution pipeline.

An important component for control cache coherency across several processors is

the Snoop Control Unit (SCU). In a CMP environment, each processor exposes logic

and control onto the system bus to allow each master to maintain coherency by

snooping into the other master's copy of memory. The SCU keeps communication

local, at full core speed, and provides the logic and state to ensure the implementation

of coherency is minimised. Because ARM 11 MPCore is targeted at real time

embedded systems, a fast-response interrupt system is also important. The separate

interrupt system is closely coupled to the processor cores, which removes the

bottleneck of shared system bus. In addition, each interrupt system contains a
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per-CPU aliased memory map, permitting the same code to run on any CPU without it

always needing to check its state before executing a command. Special broadcast

mode to allow a CPU to send a software interrupt to all other CPUs, is commonly

used to maintain some state between processors, a broadcast to all allows any CPU to

action the request, and a broadcast to self allows code to defer some interrupt action

back into the OS schedule queue. Another advanced feature of MPcore is the

Intelligent Energy Management (IEM), which is a HW/SW solution to dynamically

predict the required performance levels and scale the frequency and the voltage to the

minimum in order to get the work done. ARM's benchmark indicates an energy

saving for up to 50%, but the saving depends on the actual application.
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Figure 2-8: ARM MPCore processor block diagram (reproduced from [147]).

Intel Pentium IV with HT

Hyper-Threading Technology [146] is Intel's implementation of simultaneous

multi-threading technology. As shown in Figure 2-9 , Hyper-Threading Technology

makes a single physical processor appear as multiple logical processors, and each

logical processor holds a copy of the architecture state and the physical execution
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resources are shared by logical processor. Such a design enables the apparent

simultaneous execution of instructions from two logical processors.

Figure 2-9: Processor with Hyper-Threading Technology (reproduced from [146]).

The architecture state is the state of thread held in registers, including

general-purpose registers, the control registers, the advanced programmable interrupt

controller registers, and some machine state registers. Because every logical processor

holds its own interrupt controller, the interrupt requests will only be handled by that

specific logical processor.

In the instruction fetch stage, instructions are fetched from the Execution Trace

Cache (TC). Two sets of next-instruction-pointers independently track the progress of

the two software threads executing and the two logical processors arbitrate access to

the TC every clock cycle. The cache is 8-way set associative, and entries are replaced

based on a Least-recently-used (LRU) algorithm. Apart from the TC, a shared

microcode ROM is also used for storing the complex IA-32 instructions. Branch

prediction tables and return stacks are also used to hide control latencies. Each logical

processor has its own set of two 64-byte streaming buffers to hold instruction bytes in

preparation for the instruction decode stage. The decode logic is more complex than

that used in a RISC architecture due to inherent complexity of a CISC instruction set.

Therefore, the decode logic is shared by the two logical processors, and a coarser

level switching scheme is used. In order to improve the processor throughput, an

out-of-order execution engine is also implemented, which enables register renaming,

instruction re-ordering, tracing, and sequencing. The scheduler balances the
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instruction execution flow for different execution units. Each scheduler has its own

scheduler queue of eight to twelve entries from which it selects instructions to send,

based on dependent inputs and availability of execution resources. After the execution

stage, results are written back to the shared register pool directly, and the forwarding

logic is used to forward results and the re-order buffer and retirement logic guarantees

the architecture state is committed in program order.

As mentioned in the previous section, one benefit of the SMT (hyperthreading)

design is limited chip area overhead. From Intel's own benchmark, its HT

implementation used an additional 5% of the die area over a non-HT processor, yet

yielded performance improvements of 15-30%.

IBM POWER5

IBM's POWER5 [145] processor was released in 2004, which combines SMT and

CMP architecture design. The processor is single chip with dual-core POWER5, each

core has 8-way superscalar pipeline stage and is SMT-enabled. As a result, the chips

will look like four logical processors to the operating system. It is fabricated in a 130

nm process, and there is 24% area overhead per POWER5 core due to SMT

implementation.

In the SMT mode, the Power5 uses two separate instruction fetch address

registers to store the program counters for the two threads. Up to eight instructions

from the instruction cache can be fetched every cycle. Two threads share the

instruction cache and the instruction translation components, and only instructions

from the same thread can be fetched every cycle. Branch prediction methods have

been implemented in the POWER5 core by using three branch history tables. These

tables are shared resources across two logical threads. Also subroutine returns can be

predicted using a return stack, one for each thread. For instruction decoding, the

processor selects instructions from the fetch queues based on thread priorities. The

Power5 supports eight software-controller priority levels for each thread. The higher a
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thread's priority relative to other threads, the more of the processor's resources can it

monopolise. After all input operands are available, an instruction will be issued and

there is no distinction between instructions from different threads. Then normal

pipeline stages will proceed, including input registers reading, execution stage, and

writing results back.

Two major features were implemented in the Power5 design to improve the SMT

performance: Dynamic resources balancing and adjustable thread priority. The

dynamic resource-balancing enables two threads to execute on the same processor

seamlessly. Adjustable thread priority lets software determine when one thread should

have a greater share of execution resources. For example, a thread in a spin loop

waiting for a lock, or an idle thread can be given a lower priority and conversely

real-time tasks can be assigned a higher priority.

Sun UltraSPARC T1

Similar to the multithreading techniques used in IBM POWER5, the SPARC

UltraSPARC T1 [176] processor combines SMT and CMP architectural designs which

features CoolThreads technology in its design. The process contains eight processing

core with four threads per core, and as a result 32 simultaneous threads are available

to the operating system, which is even higher than POWER5.

Four memory controllers are embedded in the chip, which route data between the

processing cores and the memory and allows data to be transferred into the chip as

fast as it can be processed. The on-chip level-2 cache hides the long latency of

memory accesses. Also, the processor improves system security and delivers better

throughput via dedicated hardware crypto accelerators. The chip is fabricated in a 90

nanometre process, and each core operates at 1.2 GHz.

2.4 Reconfigurable computing

Reconfigurable computing presents a flexible and upgradeable approach to system
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design. As shown in Figure 2-10, currently available computing components can be

classified into four categories: processors, DSP, ASIC and FPGA, and each have

different levels of flexibility and energy efficiency [19].

The flexibility offered by processors allows a single machine to perform a

multitude of functions and be deployed in applications unanticipated at the time the

device was designed or manufactured. Processors have been the platform for

general-purpose computing. Similarly, the Digital Signal Processors (DSPs) have

been the work horse for telecommunication equipment. By changing the software

instructions, the functionality of the system is altered without changing the hardware.

The price for such flexibility is execution overhead. On the other hand, an Application

Specific Integrated Circuit (ASIC) is designed specifically to perform a given

computation efficiently in terms of speed and power. However, the circuit cannot be

altered after fabrication. This forces a redesign and refabrication of the chip for a

different application. In between it sits the Field Programmable Gate Arrays (FPGAs).
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Figure 2-10: The Power-flexibility gap.

The enabling technology for building reconfigurable computing systems was the

FPGA [20], FPGAs consist of an array of logic blocks, routing channels to

interconnect the logic blocks, and surrounding I/O blocks. Static RAM (SRAM) based

FPGAs use SRAM cells to control the functionality of the logic, I/O blocks, and

routing. They can be reprogrammed in-circuit arbitrarily often by downloading a

bitstream of configuration data to the device. FPGAs are fine-grained architectures

that operate on bit-wide data types and use Look-Up Tables (LUTs) as computing
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elements. Today's devices feature millions of gates of programmable logic, dense

enough to host complete computing systems, e.g. Xilinx provides the soft-core

processor MicroBlaze [166] which can be implemented in a Virtex IV that runs at

180MHz clock frequency. In the last decade, a new class of hybrid reconfigurable

computing devices has emerged, which promises to combine the flexibility of

processors with the efficiency of FPGAs. These hybrid designs provide the benefits of

on-demand functionality, on-demand accelerations and shorter time to market. In a

hybrid system, the coupling between the CPU core and the reconfigurable logic array

determines the type of applications that benefit most from the hybrid reconfigurable

processor.

The following sections outline the state of the art in designing reconfigurable

computing system. In the first section, the concepts for coupling reconfigurable logic

arrays into a computing system are outlined. The second section discusses

compilation, simulation and evaluation techniques for hybrid reconfigurable

computing systems that have been discussed.

2.4.1 Loosely-Coupled Reconfigurable Architectures

In a loosely-coupled reconfigurable architecture, the reconfigurable or dynamic unit is

usually implemented as a coprocessor. The unit is equipped with some extra hardware

to perform control flow operations and for accessing the memory. Figure 2-11

illustrates the block diagram of the loosely-coupled reconfigurable architecture.

Control and data flow between the CPU and the logic array

CPU Logic Array

Figure 2-11: A Loosely-Coupled Reconfigurable Architecture
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The PRISM [167] architecture was developed at Brown University. It links a

Motorola 68010 microprocessor running at 10 MHz to a board-based FPGA array

consisting of four Xilinx 3090 FPGAs. Speedup factors have been reported which

range from 5 to 50.

The Berkeley Garp [94][95] [96] architecture combines configurable logic with a

standard MIPS processor, all on the same chip. The configurable array is composed of

a matrix of logic blocks that are organized into 32 rows of 24 blocks. One block in

each row is a control block, and the remaining are logic blocks which can implement

2-bit operations. Four memory buses run vertically through the rows for moving

information into and out of the array. They can be used to transfer data and perform

accesses to memory. A separate wire network provides interconnection between the

logic blocks. The loading and execution of the configurations is under the control of

the main processor. A transparent integrated configuration cache holds the equivalent

of 128 rows of configurations (as 4 cached configurations for each row).

Reconfigurations from this cache take 4 cycles, irrespective of the number of rows.

The operation of the reconfigurable array is carried out by instructions which extend

the MIPS instruction set. The reconfigurable array, however, can cache data or access

memory independent of the MIPS core.

The NAPA C language [168] provides pragma directives so that the programmer

can specify where data is to reside and where computation is to occur with

statement-level granularity. Its compiler targets National Semiconductor's NAPA 1000

chip, performs semantic analysis of the pragma-annotated program and co-synthesises

a conventional program executable in combination with a configuration bit stream for

the adaptive logic. Compiler optimisations include the synthesis of hardware pipelines

for some loops.

2.4.2 Tightly-Coupled Reconfigurable Architectures

A tightly-coupled reconfigurable architecture (Figure 2-12), contains reconfigurable

hardware in the host processor to provide dynamic functional units. This allows for a
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traditional programming environment with the addition of custom instructions that

may change over the duration of program execution. The reconfigurable units execute

as dynamic functional units on the microprocessor datapath, with registers being used

to hold the input and output operands.

Individual control and data flow

Static functional units

Dynamic functional units

Figure 2-12: A Tightly-Coupled Reconfigurable Architecture

The PRISC is a proof-of-concept architecture [169], which is a 200-MHz RISC

CPU with an augmented datapath. The reconfigurable logic is integrated into the

microprocessor by adding one Programmable Functional Unit (PFU) in parallel with

existing Functional Units (FU), such as the ALU. A PFU is implemented as a regular

structure of interconnects and LUT. The complexity of functions that are implemented

in a PFU is such that their latency does not exceed the cycle time of the

microprocessor. Context switching amongst precompiled PFU images is supported

and different hardware functions are addressed through extensions to the existing

instruction set of the static CPU. The microprocessor-to-reconfigurable-logic interface

enables PFUs to make use of the existing datapath functionality such as source and

result operand handling as well as hazard detection and forwarding. Through this tight

integration of the PFU within the CPU, data and control flow overhead are kept at a

lower cost than in any of the reconfigurable computing systems discussed previously.

The purely combinational nature of the PFU requires tools to automatically extract

hardware functions from the application and generate hardware images with fine

granularities. Nonetheless, from their simulation, the SPECint92 benchmarks showed
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speedups ranging from 1.06 to 1.91 for the applications when executed on PRISC in

comparison with a software-only execution on a RISC machine, without the extra

PFU.

Northwestern University's Chimaera [63][170] architecture comprises the

following components: the Reconfigurable Array (RA), the Shadow Register File

(SRF), the Execution Control Unit (ECU), and the Configuration Control and Caching

Unit (CCCU). The operations are executed in the RA; the ECU decodes the incoming

instruction stream and directs execution. The ECU communicates with the control

logic of the host processor for coordinating execution of reconfigurable functional

unit (RFU) operations; the CCCU is responsible for loading and caching

configuration data; finally, the SRF provides input data to the RA for manipulation. In

the core of the RFU lies the RA, which is a collection of programmable logic blocks

organized as interconnected rows. The logic blocks contain lookup tables and carry

computation logic. Across a single row, all logic blocks share a fast-carry logic that is

used to implement fast addition and subtraction operations. By using such an

organisation, arithmetic operations such as addition, subtraction, comparison, and

parity can be supported very efficiently. The routing structure of Chimaera is also

optimised for such operations. During program execution, the RA may contain

configurations for multiple RFU instructions. Managing the RA-resident set of RFU

instructions is the responsibility of the ECU and the CCCU. The CCCU loads

configurations in the RA, provides fast access to recently-evicted configurations

through caching, and provides the interfaces necessary to communicate with the rest

of the memory hierarchy. The ECU decodes the instruction stream. It detects RFU

instructions and guides their execution through the RA and, if necessary notifies the

CCCU of recently-unloaded configurations.

There are several problems needed to be solved when building a tightly-coupled

computing architecture, the most important one being timing. The timing of the

components must be compatible, which is very critical as over timing components

will result in erroneous results. For example, adding a programmable functional unit

to PRISC architecture is not without its difficulties, since the reconfigurable
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component is usually 15 to 25 times slower than the processor. The second problem is

the issue of placement. In order to exchange configurations on reconfigurable units, it

requires ample spaces to place the new configurable elements, which incurs extra area

overheads. Finally, routing is the third issues which arise in these architectures, as the

functional units must have ports to connect to the reconfigurable logic.

2.4.3 Compilation and Evaluation techniques

The hybrid reconfigurable computing system relies on an efficient compiler to extract

hardware and software codes to run on the reconfigurable logic and the processor

respectively. For commercial programming environment, a manual partitioning still

dominates the market. Processor code and configuration data for the reconfigurable

logic arrays are hand-crafted and wrapped into library functions that are linked with

the user code. But this presents problems to software programmers with little

hardware knowledge. As a result, automatic HW/SW partitioning techniques have

been investigated by several researchers [95][96][173][174], constituting a research

field of its own within the reconfigurable computing domain. Common technique for

performing automatic HW/SW partitioning is described next.

The compiler constructs a control flow graph from the source program. Execution

times will be assigned to the basic blocks based on the profiling information. Finally

the most executed block will be chosen to generate hardware codes for the

reconfigurable logic. On the other hand, if the compiler lacks the run-time information

provided by compiler, inner loops of programs are good candidates for reconfigurable

fabrics. In this thesis, automatic HW/SW compilation techniques used for MAPS+

architecture are based on these techniques, but with some optimization procedures to

increase basic block size, which is similar to those used in Very-Long Instruction

Word (VLIW) architectures.

In the Onechip [ 171 ] [ 172] architecture, the modified SimpleScalar[175]

simulator is used, and black-box simulation module for the RFU is integrated. While a

RFU operation is decoded by the simulator, it will be issued by the RFU black-box.
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Then the input and output parameters and the execution latencies of different

configurations are modelled. As a result, the overall performance can be evaluated by

this approach. A similar black-box approach has been adopted by the Chimaera [63]

simulation environment, but with a different latency model. Its latency models are

based on counting the number of original instructions that are replaced by the RFU

operation. A more complex model is also proposed, which is based on hand-mapping

the RFU operations onto the reconfigurable array and measuring the number of

transistor levels in the critical path. Also reconfiguration overhead is also considered

as latency for executing a RFU operation.

In our simulations in Chapter 5, a similar black-box approach has been chosen.

But the latency model is based on a more accurate data obtained from the actual

FPGA synthesis tool. In addition to the latency model, a power consumption model

has also been implemented.

2.5 Summary

Several problems exist in current synchronous architectures, e.g. clock skews, high

power consumption, design and verification complexity and long time to market.

Alternative system design approaches have been proposed to address these problems.

In this chapter, a background survey of these techniques has been made, including

asynchronous design, multithreading execution and reconfigurable computing.

Asynchronous designs have a number of advantages, e.g. no clock skew,

modularity, robustness, lower peak electromagnetic emissions. But the asynchronous

designs also suffer from such problems: design complexity, problem of completion

and detection, lack of industry standard EDA tools, testing problems and performance

measurement. Traditionally, lower power and average case performance are two of the

benefits cited for by asynchronous designs. However, with progress in design and

clock-gating for synchronous circuits, these advantages are unclear.

Current multithreaded architectures are discussed, e.g. SMT and CMR The issues

in static and the dynamic thread extraction mechanisms are summarised. For a
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multithreaded architecture, thread level parallelism can be exploited to improve the

throughput of a processor by identifying independent threads that can execute in

parallel and can therefore utilise multiple thread processing units.

Finally, reconfigurable computing system and its compilation and simulation

environment have been introduced. The benefit of reconfigurable computing is the

ability to realise the flexibility of a software-based solution, while retaining the

execution speed of a more traditional, hardware-based approach.

Obviously, a major challenge in taking advantage of the benefits is how to

combine these design techniques, and how to implement a compilation flow to extract

the potential concurrency. The following chapters develop and characterise a number

of components and techniques used to integrate an asynchronous multithreaded

architecture augmented with a reconfigurable logic unit.
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Chapter 3
Asynchronous MAPS+

architecture

3.1 Introduction

This chapter introduces a hybrid architecture called MAPS+ "Micronet-based

Asynchronous Processor System Plus Reconfigurable Function Units" , based on the

MAPS architecture described earlier in [28][29][30]. MAPS+ is designed to provide

thread-level as well as instruction-level parallelism, and combines

hard-programmability, in the form of field programmable logic, and

soft-programmability in a multithreaded instruction set architecture. First, the top

level multithreaded architecture is described briefly, followed by detailed descriptions

of functional units. Then components enabling thread synchronisation, data value

prediction and runtime reconfiguration are described. Issues in asynchronous design,

speculative thread and asynchronous RFU are discussed at the end of the chapter.

3.2 The MAPS+ architecture

As discussed earlier in Chapter 2, micronets are networks of entities that compute

concurrently and communicate asynchronously. The entities are themselves networks

in a recursive fashion, leading to a hierarchical approach to system design. In its

purest form, the implementation of the micronet system will be free of any clocks,

with the entities being implemented using self-timed design techniques. However, the

micronet approach to system design does allow a mixture of both self-timed and
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synchronous implementations of the entities. Micronet-based multithreaded

architectures exploit concurrency at different levels: between threads, within threads

and between instructions. A coarse-grained level parallelism can be investigated using

loop analysis, and mapped to different threads. Fine-grained parallelism, such as

instruction level parallelism (ILP) [31] is mapped to Reconfigurable Function Units

(RFU). Within each Thread Processing Unit (TPU), there are functional units which

are either fixed or which can be configured.

The superscalar principle relies primarily on exploiting spatial parallelism, which

is achieved by running multiple operations concurrently on duplicated hardware. In

contrast, pipelining relies on exploiting temporal parallelism by overlapping multiple

operations on common hardware and operating with a faster clock. ILP is limited by

data dependencies between instructions, structural dependencies and also control

transfers in pipelined architectures. In MAPS+, the RFU accelerates applications by

customising reconfigurable fabric for computation-intensive tasks and executing

several operations in parallel. Thread level parallelism on MAPS+ architecture is

supported by switching thread context among different TPUs at run time. Thread

contexts are the machine state associated with the execution of a thread, including the

values of the program counter, data registers and status registers. As a result, MAPS+

is able to pursue two or more threads of control in parallel within the pipelines.

The MAPS+ architecture, as shown in Figure 3-1, is modelled at different levels

of abstraction: at the level of thread processing units with gross values for

computation and communication latencies and power costs, down to the handshaking

protocols of the micronet architecture which reflect more accurately the costs of speed

and power consumption. Quantifiable changes in the speed and power consumption

may be affected by program optimisations at the higher levels in the design

framework and partitioning the program between the soft- and hard-programmable

entities.
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Figure 3-1: Block diagram of MAPS+ architecture

3.3 The Switch model and inter-thread communications

Communication between TPUs is often implemented via shared memory with a single

on-chip bus [32][33][34][35], This approach has it drawbacks. The shared bus suffers

from poor contention and is a performance bottleneck when multiple TPUs are

competing for the memory. Figure 3-1 illustrates a mesh topology for connecting the

TPUs, which will alleviate the contentions in inter-TPU communications.

As shown in Figure 3-2, a switch block routes messages between source TPUs and

destination TPUs and the memory bank, and is situated at the intersection of vertical

and horizontal data channels. Each switch connects to four other neighbouring

switches or shared memory blocks via four interconnect ports named N (North), S

(South), E (East) and W (West). The switch is also linked to TPU via the L (Local)

port, which serves as thread communication interface for the TPU. Each port has two
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channels, one each for incoming and outgoing packets. Similar switch structures can

be found in synchronous Network On Chip (NOC) architectures [36] [37] [38] [39].

Self-timing logics are integrated into the switches and data communications between

any two TPUs is strictly mediated by a full handshake protocol. The input channel of

each port receives the data and the output channel is responsible for feeding outgoing

data into other switches. All the ports act independently, and the module can send and

receive data concurrently. Furthermore, in order to control data switching, an

asynchronous switch controller is required, which provides selection logic for

outgoing data and arbiter for incoming requests.

NorthOutPort NorthlnPort

Lo<

V
LocalOutPort

SouthOutPort

Figure 3-2: Block diagram of a switch

In order to fulfil the requirements of a reconfigurable MAPS+ architecture and

provide flexibility for run-time reconfiguration, a table routing method for inter-TPU

communications was chosen. A lookup table is placed in each switch, with entries

corresponding to each TPU, each shared memory blocks and the scheduler. Figure 3-3

depicts a sample address partitioning method for the MAPS+ architecture. Each group
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has a range of addresses associated with the destination block, and it starting with

START_ADDR and ending with END_ADDR.

INSTRUCTION_START_ADDRESS

INSTRUCTION_END_ADDRESS

DATA_START_ADDRESS

DATA_END_ADDRESS

SCHEDULER_START_ADDRESS

SCHEDULER_END_ADDRESS

TPU_0_END_ADDRESS

TPU_N_START_ADDRESS

TPU_N_END_ADDRESS

ROP_0_START_ADDRESS

ROP_N_END_ADDRESS

SHM_START_ADDRESS

SHM_END_ADDRESS

Figure 3-3: Address partitioning for destination blocks

Given a destination address, the corresponding entry in the table indicates which

outgoing ports should be used to forward the data. A sample look-up table is

illustrated in Table 3-1. The number of TPUs in the MAPS+ architecture has been

limited to 16, which indicates the upper bound on the number of concurrent threads

likely in embedded sequential applications.

Instructions

Data

Scheduler

TPU_0

TPU_1

TPU_n

ROP_0 Bitstream

ROP_n Bitstream

Share Memory Segment
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Start Address End Address Type Direction

instruction_start_addr instruction_end_addr INSTRUCTION NORTH

data_start_addr data end addr data NORTH

tpu_0_start_addr tpu_0_end_addr tpuo LOCAL

tpu_1_start_addr tpu_i_end_addr tpu1 EAST

tpu_2_start_addr tpu_2_end_addr TPU2 EAST

tpu_3_start_addr tpu_3_end_addr TPU3 SOUTH

rop_0_start_addr rop_0_end_addr MEM_BANK3 west

rop_ 1 _start_addr ROP_l_END_ADDR MEM_BANK4 west

shm_start_addr shm_end_addr mem_banko NORTH

Table 3-1 : A sample look up table for local port.

The input channel transmits incoming data to the selected output channels using

the lookup table. Address translator and selection logic blocks are attached to each

port, which are parts of the switch controller. A local port and its selection logics are

illustrated in Figure 3-4. For the incoming data, buffers operate as input queues for

temporarily storing data. When the destined output channel is ready, data is forwarded

to the destination via the crossbar. Wormhole routing [40] approach can be

implemented to provide fast data communications among TPUs. Packets are

segmented, with each switch required to store a fraction of the whole packet. Long

packets are distributed over several consecutive switches and do not require extra

buffer spaces. The selection logic passes channel requests to the output channels. The

direction of such request is decoded by the address translator. For example, if

DirectionJN direction request signal gets high, then the C-element to the North port

output channel issues a request. A dual-rail encoding method in the address translator is

needed to guarantee that output channel request signal does not arrive before the

direction signal has become stable.

Deadlocking occurs when network resources (e.g. link bandwidth or buffer space)

are suspended waiting for each other to be released, i.e., where one path is blocked

leading to the other being blocked in a cyclic fashion. There are several methods for

solving deadlock or livelock problems, e.g. dimension-ordering routing [41 ][42] and

virtual channels [43]. In dimension-ordered routing, the packets always route on one



dimension first, e.g., column first, upon reaching the destination row (or column), and

then switch to the other dimension until reaching the destination. Dimension-ordered

routing is deterministic: packets will always follow the same route for the same

source-destination pair. In the virtual channel approach, one physical channel is split

into several virtual channels. Virtual channels solve the deadlock problem while

achieving high performance. Nevertheless, this scheme requires a large buffer space for

the waiting queue of each virtual channel. For example, if one channel is split into four

virtual channels, it will use four times as much buffer space as a single channel. The

virtual channel arbitration also increases the complexity of circuit design. For the sake

of simplifying the MAPS simulator design, the dimension-ordered routing approach

was chosen. Therefore, contention cannot be avoided, and when it occurs, the packets

have to wait for the channel to be free.

Livelock represent a state in which one or more messages could be forever denied

of the resources they require to progress towards their destinations. Unlike deadlock,

livelock does not stop a packet's movement, but rather its progress towards its final

destination.

Routing can be minimal or nonminimal in terms of the path length [44][45].

Minimal routing algorithms guarantee shortest paths between source and target

addresses. In nonminimal routing, the packet can follow any available path between

source and target. Nonminimal routing offers great flexibility in terms of possible

paths, but can lead to livelock situations and increase the latency to deliver the packet.

In our simulation, a minimal routing was chosen, and livelock was avoided.
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Figure 3-4: Local Port and its selection logic block diagram

Input and output channels are connected by a 5 x 5 crossbar, which is formed by

multiplexers to aggregate every input to the output. A packet coming from an input port

may have a choice of multiple output channels, e.g., data of a local port can be

forwarded to north output, east output and so on. Similarly, multiple input ports may

request simultaneously access to the same output channel. As a result, access to output

port has to be arbitrated. On the output port, the arbiter decides which direction of the

waiting channel can proceed. Figure 3-5 depicts an arbiter for the output channel built

with tree arbiters and mutual exclusion elements. The tree arbiter, as shown in Figure

3-6 is a slightly modified version of that presented in [46][47], In order to simplify the

design, the blocks have been mapped to standard cells e.g. Mutual Exclusion Element.

It guarantees that the acknowledge signal, Ackl or Ack2 is not released until both the

corresponding request signals, Reql and Req2, and the acknowledge input Ack, are

lowered. The Muller C-elements in the feedback path grant compliance with a full

handshaking protocol. With the tree arbiter, selection signal will then be forwarded to

the output channel multiplexer and the appropriate data output will be chosen. The

arbitration method is fair amongst the four inputs and results in a "first come first

served" arbitration scheme. It is therefore guaranteed that the module can forward

data into the corresponding output channel.
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Figure 3-5: Local output port arbiter block diagram

Req

_1X

I
o

C

O-Select—

Mutual Exclusion Element

Req1 Req2

Figure 3-6: Tree arbiter with selection signal output block diagram

3.4 Thread Processing Unit

Multiple threads compete for shared computational resources. Therefore, hardware

thread processing units for thread collaboration and competition are integrated in the

MAPS+ architecture. Based on the micronet model, a TPU does not have a clock signal

or centralised control for passing data between architectural components. The

communicating microagents (CMs) effectively allow the functional units (FUs) to

transfer control signals between themselves and their neighbours. In order to exploit

data dependencies or variable delays, it is assumed that the CMs in the self-timed
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design can be modified so that they generate completion signals. Each TPU, as shown

in Figure 3-7, in turn, is a network of CMs and FUs, which includes instances of

Arithmetic and Fogic Units (AFUs), a Reconfigurable Functional Unit (RFU), a

Floating-Point Unit (FPU), a Memory Unit (MU), a Fetch Unit, a Branch Unit (BU), a

Thread Issue Unit (TIU), a Thread Control Unit (TCU), a thread speculation buffer, a

data value predictor, and instruction and data caches which reads from, and writes to,

the memory hierarchy via the switches.
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Figure 3-7: Thread Processing Unit block diagram.
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3.4.1 Communicating Microagent (CM)

CMs are responsible for receiving their FUs' micro-operation control signals from the

Control Unit (CU), returning the corresponding acknowledgement signal, obtaining the

operand data for that operation and presenting these to the FU, and if necessary,

returning the result of a micro-operation to the correct destination. Incoming signals

and outgoing signals of CM are displayed in Figure 3-8. In the absence of a clock, the

data transmissions have to be encoded to enable the receiver to recognise valid

information. A four-phase handshaking protocol was adopted for CM. This allows for a

simpler design through the use of various types of Muller C-elements and conventional

logic gates. In the case of control signals, although four-phase protocol would be

considered twice as expensive compared to a two-phase one, the same efficiency is

obtained as two back-to-back, two-phase handshakes by representing two events in

each cycle. CM can be implemented with two different approaches, which mainly

depends on how completion is determined: bundled data [48] [49] [51] or completion

detection [50] [51].

Snd_Req ^ JRcv_Ack
Sr|d Data EBHosKMport ^ Snd Data

^Snd-Ack M OutportB Snd.D^T^
From FU P rM To CM

Rcv_Rdy I UIVI
►| H| Rcv_Rdy ^

, Rcv-Data ■ Hostlnport ■ ^
£ H H. Rcv_Data
^Rcv_Done | Inport ^^ Rev Done

Figure 3-8: Communicating Microagent signals.

A bundled data design uses a worst-case model delay, designed to exceed the

longest path through the subsystem. This delay may be an inverter chain or a replicated

portion of the critical path. The main advantage is that a standard synchronous

single-rail implementation may be used, so implementations are easy to design, and

have low power and limited area. However, the key disadvantage is that completion is
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fixed to worst-case computation, regardless of actual data inputs. Figure 3-9 shows the

block diagram of CM input and output channels using bundled data method.

Snd_Req

From FU

Snd Data

Snd Ack

Delay Generator

Register

Rev Ack Rcv_Rdy

Snd_Data Rcv_Data

Rcv_Rdy
<

To FU

Rev Data

CM - Output Channel

Snd Done Rcv_Done

CM - Input Channel

Rev Done

Figure 3-9: Communicating Microagent model using bundled data method

A computation detection method detects when computation is actually completed.

The datapath is typically implemented in dual-rail, where each bit is mapped to a pair of

wires, which encode both the value and validity of the data. The key disadvantage, in

many applications, is that a completion detection network is usually required, adding

several gate delays between completion and its detection. Furthermore, the increased

wiring and switching activity often results in much greater area and power

consumption. Figure 3-10 shows the block diagram of CM input and output channels

using computation detection method.

Figure 3-10: Communicating Microagent model using completion detection method
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3.4.2 Fetch Unit and Branch Unit

The fetch unit takes the program counter as an instruction address and reads the

corresponding instruction from the instruction buffer, and outputs it to the instruction

register for decoding. In addition, the increment of the PC is also handled by the Fetch

Unit. The control transfer instructions could cause the execute stage to stall and have a

detrimental impact on the concurrency of the datapath. As a result, a branch unit has

been adopted into the TPU architecture, which is responsible for processing control

transfer instructions.

When a PC-related instruction is fetched from the buffer, it is passed directly to the

Branch Unit. Previous research [52][53][54] has demonstrated that static and dynamic

branch prediction techniques can reduce execution stage stall time and improve the

efficiency of a data path. In the static prediction, the compiler identifies branches that

are likely to be taken or not, and tags them. Then, when a branch instruction is fetched

that is likely to be taken, then its target is placed in the PC, and when one is probably

not taken, then normal PC increment is performed. However, some branches vary their

behaviour in ways that are predictable. Therefore, a simple dynamic branch predictor

based on the bimodal branch prediction technique is chosen for the MAPS architecture,

which uses run-time information to predict further branch outcomes. A table of

counters in the predictor is indexed by the low order address bits in the program

counter. For each taken branch, the appropriate counter is incremented. Likewise, for

each not-taken branch, the appropriate counter is decremented. The most significant bit

determines the prediction. Repeatedly taken branches will be predicted to be taken, and

repeated not-taken branches will be predicted to be not-taken.

The Fetch Unit and the Thread Issue Unit are decoupled by an asynchronous Fetch

Buffer which stores the predecessor's results. It relaxes the synchrony between the

fetch unit and the issue unit, allowing each stage to proceed at its own rate without

hindering the other, until the buffer becomes either full or empty. The Fetch Unit

continuously fetches instructions and places them in the buffer until either the buffer is

full or the unit stalls waiting for the Branch Unit to resolve a conditional branch.



3.4.3 Thread Issue Unit

The Thread Issue Unit (TIU) is responsible for obtaining instructions from the Fetch

Unit and deciding which functional unit to issue the instruction to. The type of the

instruction is decoded and the value of the operands will be fetched from the Register

File via the X_BUS and the Y_BUS. Also the destination register of the instruction is

locked and a tag for the results of the instruction is set to the register. In addition, the

TIU checks the result that is currently being written back because the updated value is

not yet available from the register file. Finally, the decoded instruction is queued into

the appropriate Functional Unit's latch.

Instructions are issued in-order from the fetch buffer, but can be executed out-of

order as soon as resources are available. To ensure out-of order issuing and maximum

concurrency between each of the issue processes, selection logic has to be implemented

independently. An arbiter is required for each issue port to provide a decision on

whether an instruction is ready to be issued to a functional unit. The TIU block diagram

is shown in Figure 3-11. A similar structure is used in the instruction length decoder of

the asynchronous CISC architecture- RAPPID [55],

Fetched Instruction Buffer

LlLuL 4
Instruction

Decoder_0

f

t
1

Issue Issue Issue Issue

Port 0 Port 1 Port_2 Port_k

4—I—I f

—► FU Requests

-► Operand Requests

—► Lock Requests

To FU To FU To FU

Figure 3-11: Block diagram of the Fetch Unit
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The Thread Issue Unit contains five core components: fetched instruction buffer,

instruction decoders, issue controller, switch network, and issue ports. The fetched

instruction buffer receives 32-bit MEPS-like instructions from the Fetch Unit. Then the

instruction decoder breaks a macro-instruction into multiple micro-operations,

whenever the instructions operates on more than two sources, or when the nature of

the operations requires a sequence of unrelated operations. The issue controller

checks all the specific conditions before macro-operations can be issued, e.g. whether a

specific functional unit is ready, the required operands are ready, and the destination

register is locked. As soon as the pre-requisite conditions are met, the control signals of

micro-operations will then be routed to the output port of the corresponding functional

unit.

The instruction decoder sub-module decodes an instruction into micro-operations

depending on the opcode of the instruction. The MlPS-like [57] [58] instruction set has

been chosen for the MAPS+ architecture, which keeps instruction size constant, and

bans the indirect addressing mode. As a result, the instruction decoder is simpler than

that used in CISC architecture. With additional of multithreaded, RFU and FPU

instructions to the basic MIPS instruction set, the MAPS+ instructions can be classified

into six groups according to their coding format.

• R-Type - This group contains all instructions that do not require an immediate

value, target offset, memory address displacement, or memory address to specify

an operand. This includes arithmetic and logic operations with all operands in

registers, shift instructions, and register direct jump instructions jalr and jr. All

R-type instructions use opcode '000000'.

• I-Type - This group includes instructions with an immediate operand, branch

instructions, and load and store instructions. All opcodes, except '000000, 0000lx,

and 0100xx', are used for I-type instructions.

• J-Type - This group consists of the two direct jump instructions. These instructions

require a memory address to specify their operand. J-type instructions use opcodes

'00001x\
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• FPU Instructions - This group consists of the floating-point unit instructions. FPU

instructions use '010001' opcode.

• Multithreaded instructions - This group consists of the thread-related instruction,

e.g. frk, wat,psg, sstp and cmt. Thread instructions use '010010' opcode.

• RFU Instructions - This group consists of the reconfigurable functional unit

instruction. RFU instruction uses '010011' opcode.

Multithreaded instructions are used for thread spawning, inter-thread

communication, and thread synchronisations. In this thesis, a subset of thread

instructions defined in [59] has been chosen. Descriptions of the detailed thread

instruction and operations in pseudo-C language are summarised in Table 3-2 and

Table 3-3.

Instruction Description & operations
frk $d, L Fork a new thread to execute target label L. Return

d=TRUE, if successful.

REG frk (address L) {
if (Find a free TPU) {

d = TRUE;
Associate start address L to new Thread;
Update thread information table;
Broadcast thread information to other TPU;
Acknowledge Scheduler;

}
else $d = FALSE;
return $d;

I
psg $sl,$s2 If guard register $sl is not set, ignore current operation;

Otherwise, the register si contains the destination thread
number, and data in register s2 will be passed to destination
thread. The received data is stored in a temporarily buffer.

void psg(REG $sl,REG $s2)
(if($sl) Send data in $s2 to destination thread $sl;}

Table 3-2 : Descriptions and operations of multithreaded instructions
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Instruction Description & operations
wat $sl, $s2 If guard register $sl is set, wait until data is received. The

received data is written in register $s2.

void wat(REG si, REG s2) {
if (si) {

Wait until data received;
Write Data to register s2;

}
I

sstp $sl, $s2 If guard register $sl is not set, the current operation will be
ignored. If current thread contains children threads, send
synchronisation stop signals to all of them. Until
synchronisation acknowledgement signals received, current
thread stops. Then activate the head thread of $s2

void sstp(REG si, REG s2) {
if (si) {

if (Contains children threads)
(

for (all the children threads)
(

Send synchronisation signals;
)
Wait synchronisation signals;

}
Stop current thread;
Activate head thread ofs2
Update thread information table;
Broadcast information to other TPU;
Acknowledge Scheduler;

)
)

cmt $sl If guard register $sl is set, wait for synchronisation signal
from scheduler and commit speculative store to memory.

void cmtfREG si) {
if (si) {

Wait for synchronisation signal;
Commit speculative store;

}
}

Table 3-3 : Descriptions and operations of multithreaded instructions
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Further, the format of the fields of the multithreaded instructions has been

illustrated in Table 3-4. When a multithreaded instruction is decoded, the TIU will issue

such instruction to the Thread Control Unit (TCU). In the frk instruction, the register

field specifies the destined register number for holding the thread spawning result. In

current MAPS simulator, a sixteen-bit immediate field is used to specify the target

address of the new thread, therefore code blocks sizes are limited to 64 KB. In order to

support large code blocks size, the target address length have to be extended. For

example, a thirty-two bit field can support up to 4GB code blocks size.

The rest of the multithreaded instructions have the same format for the fields. The

GUARD_REG guarantees the correctness of multithreaded instructions, e.g. if the

GUARDJREG is set to be TRUE, then the instruction will be issued to TCU; otherwise,

the TIU ignores such instructions and proceeds to decoding the next available one. As a

thread spawning operation might fail due to lack of TPU resources at run-time, the

guarding mechanism ensures the sequential operations are performed correctly.

Instruction opcode (6) function (5) rs(5) immediate (16)

frk $d,L 010010 00001 REG_NUM TARGET_LABEL
Instruction opcode (6) function (5) rs(5) rt(5) reserved(ll)

psg $sl,$s2 010010 00010 GUARD_REG DATA_REG N/A

wat $sl,$s2 010010 00011 GUARD_REG DST_REG N/A

cmt $s 1 010010 00100 GUARD_REG N/A N/A

sstp $sl,$s2 010010 00101 GUARD_REG HEAD_REG N/A

Table 3-4 : Format of multithreaded instructions with fields

In the MAPS+ architecture, the RFUs are tightly-coupled to the TPU architecture.

To configure the RFU to perform a specific computation, the configuration needs to be

loaded into the RFU, and the input to the RFU is fetched from TPU register file. By

grouping several instructions into single Reconfigurable Functional Unit Operation

(.ROP), there will be a number of source and destination registers in the ROP. Therefore

a normal 32-bit MIPS instruction is not adequate to hold the information for a ROP

instruction. The length of a ROP is 128 bits and the '010011' opcode is chosen. The

opcode is reserved for coprocessor instructions in MIPS instruction set. The reason
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choosing a 128-bit ROP instruction instead of using variable length is to simplify the

decoding logic. Also based on our observation of current simulated benchmarks, a

128-bit ROP is able to hold the information of grouped instructions. However, the

implementation limits the flexibility of ROP instruction.

Details of the fields are listed in Table 3-5. The seq field specifies the order of the

four words, and the issue controller has to guarantee that all four words are fetched and

decoded in the correct order. Thz function field specifies the ROP sequence number

(.ROP_NUM), which is used to load the corresponding RFU configuration from

memory. The ROP_NUM is a unique number for different RFU configuration bit

streams. With a lookup table, the sequence number can be translated into a memory

address, where the configuration binary can be loaded into RFU. The rs and rt fields

provide up to eight operands for an ROP instruction, and the rd field provides up to four

results that can be written back to register files. Zeros are filled in any of the unused

fields.

As the MAPS+ TPU architecture has two on-chip bus (X_BUS, Y_BUS), the

operands into the RFU have to be fetched sequentially. The throughput can be

improved by increasing the number of on-chip buses and operand fetch ports. In the

current two on-chip bus model, the order of operands fetched is controlled by the issue

controller, and the corresponding handshaking signals to synchronise RFU operations

is also controlled by it. The lock signal for the destination register will be issued to the

register file to avoid any incorrect write-back order.

Instruction opcode (6) seq (5) rs(5) rt(5) rd(5) function (6)

ropji
$dl,$dl,$d

2,$d4,$sl,$

s2,$s3,$s4,

$s5,$s6,$s7

,$8

010011 00000

(SEQ_NUM)

SRC_REG1 SRC_REG0 DST_REG0 00001(ROP_NUM)

010011 00001

(SEQ.NUM)

SRC_REG3 SRC_REG2 DST_REG1 00001 (ROP_NUM)

010011 00010

(SEQ_NUM)

SRC_REG5 SRC_REG4 DST_REG2 00001(ROP_NL'M)

010011 00011

(SEQ_NUM)

SRC_REG7 SRC_REG6 DST_REG3 00001(ROP_NLM)

Table 3-5 : Formats of the fields for reconfigurable functional unit instructions.
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3.4.4 Reconfigurable Functional Unit

A number of architectures [63][64][65] have coupled RFUs in their datapath. The

fabric of the RFU is based on multiple SRAM-based Field Programmable Gate Arrays

(SRAM-FPGAs), and the RFU customises the hardware to a specific application by

mapping it to the reconfigurable logic. The RFU is able to customise the hardware to a

specific application by mapping it to the reconfigurable logic and the fabrics is based on

multiple SRAM-based Field Programmable Gate Arrays (SRAM-FPGAs).

Traditionally, reconfigurable logic for a RFU is implemented in a synchronous manner.

Although designs for asynchronous FPGAs [63] [64] [65] have been proposed, the

commercial CAD tools are still designed for synchronous FPGAs. Several factors have

influenced the choice of a synchronous FPGA fabric for the RFU in the MAPS+

architecture, e.g. the lack of tools for designing and verifying an asynchronous FPGA,

manual check for the worst case timing of data path, and the difficulties in automatic

hardware code generation.

The RFU architecture for the MAPS+ is shown in Figure 3-12. Asynchronous

wrapper around the synchronous reconfigurable arrays provides the necessary

asynchronous-to-synchronous input interfaces and the synchronous-to-asynchronous

output interfaces. The implementation is similar to the coarse bundled data interface

used by Philips for their 8051 [126][127] memory interface.
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Figure 3-12: Block diagram of the Reconfigurable Functional Unit

The core of the RFU is the synchronous Reconfigurable Array, which contains

synchronous Logic Blocks similar to the Configurable Logic Blocks (CLBs) used in

Xilinx Virtex II FPGA [66], As shown in Figure 3-13, each logic block comprises

four similar slices with fast local feedback within the Logic Block. Two programmable

4-input LUT, carry arithmetic and logic gates, function multiplexers and two storage

elements are included in the logic block. The logic blocks can be programmed to

implement the functionality of basic logic (e.g. AND, OR, XOR, INVERT) or more

complex combinatorial functions. Furthermore, a hierarchy of programmable

interconnect allows the logic blocks of the reconfigurable array to be interconnected

and controlled by the configuration bitstream.
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CIN

Figure 3-13: Logic block diagram (reproduced from [66]).

The RFU is triggered by the Thread Issue Unit (TIU) control signals. When the

Configuration Management Module (CMM) receives the ROP_NUM of current active

RFU context, it performs a search on the table. If a matched context already exists in the

RFU cache, the CMM triggers a context switching operation by activating the context

layer in the RFU cache. RFU cache in the MAPS+ architecture is a multi-context

implementation, which can hold one or more entire configurations for the

reconfigurable array. As a result, the reconfiguration overhead can be reduced. In the

case of mis-matching of configuration context, the bitstream will be downloaded and

reconfiguration operations are then triggered. Therefore, the ROP suffers from

reconfiguration overhead, which might stall the MAPS+ processor. The configuration

bitstream is loaded from the shared memory via the fetching interface. After receiving

the configuration bitstream, the CMM is responsible for inserting the 32-bit

configuration chunks at the correct physical location in the reconfigurable cache. If the

cache is not large enough for holding the new configuration bitstream, a memory

replacing operation will need to be performed. The RFU supports the download of full

and partial configurations for any of the physical contexts.

The I/O interface to the Reconfigurable Array in the RFU component in Figure 3-12

shows that eight input operands and four output results are available. The control

signals from the TIU controls which input port of the RFU will be used to store the

current operands fetched via the X_BUS and the Y_BUS. After the execution in the
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Reconfigurable Array is complete, results are written back to the register file via the

Z_BUS. The Bus Driver controls the arbitration access to the Z_BUS.

Given that the synchronous reconfigurable array is embedded in the asynchronous

MAPS+ architecture, interface wrapper circuits are required to permit communication

between a locally synchronous module and the other asynchronous module. The I/O

interfaces are based on the GALS point-to-point communication scheme used in [67],

An interface between an asynchronous producer and a synchronous consumer is

shown in Figure 3-14 . When no data is being presented, the output clock is inverted

and then fed to a calibrated delay line to one of the inputs of an arbiter. This oscillatory

process continues and a stable clock signal is produced. After the arbiter grants the

input request, data is latched, and the synchronous reconfigurable logic will be

presented with a rising clock edge which latches the incoming data in the final set of

latches.

Figure 3-14: Interface between an asynchronous producer and a synchronous consumer

(reproduced from [67])

On the other hand, the results need to be written back. The interface between a

synchronous producer and an asynchronous consumer is shown in Figure 3-15.

Handshaking signals with the data are required to indicate to the asynchronous system

when new data is available. The synchronous state machine always waits for a

68



sync_ack signal between sending data items, the req signal will always toggle and data

will be sent correctly.

Figure 3-15: Interface between an asynchronous producer and a synchronous consumer

(reproduced from [67])

3.4.5 Thread Control Unit

The Thread Control Unit (TCU) controls the execution of the multithreaded

instructions and inter-thread communication and synchronisation. The MAPS+

architecture relies on the compiler to identify the threads which can execute

concurrently. The block diagram of the TCU is shown in Figure 3-16. After the TIU

decodes the instruction, thread control signals are passed to the TCU, and the

corresponding threading operations will be performed.

The Finite State Machine (FSM) Controller of the TCU provides the model for state

transitions triggered by control signals from TIU. A state register in the FSM stores the

current state of the TCU, which reflects the history of input changes. For example, if a

WATJR.EQ signal goes up (triggered by TIU), current state will be WAT_STATE. As a

result, the corresponding signals for MUX, I/O registers and asynchronous

handshaking will be generated. Asynchronous state machine design is unlike

synchronous synthesis, as logic must be implemented without hazards, and state codes
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must be chosen carefully to avoid critical races. The design of asynchronous FSM is

presented in [68],

TO Z_BUS UPDATE.PC TCU_ACK WAT_REQ PSG_REQ CMT_REQ SSTP_REQ

FRK REQ

!_BUS DATA FORK ADDR Y_BUS DATA
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Figure 3-16: Block diagram of Thread Control Unit

The FRK_REQ signal to the FSM controller triggers a fork operation, which

attempts to create a new thread in the next available TPU at the start address of the

target label. First, a preliminary check in the Thread Information Table is performed.

If no TPU is available, then the FSM controller will direct NACK signal back to the TIU

controller, and an INVALID (e.g. -1) value will be written back to the Z_BUS. If one or

more TPUs are available, then selection signals (via SELI, SEL2) will be forwarded to

the MUX. The fork_addr is a 16-bit immediate value issued by TIU, which is the target

thread start address, which is next forwarded to the scheduler via the switch. Finally,

the result of the fork result will be written back to the register.

For the destination TCU, the fork operations are different. The scheduler triggers

the destination TCU to start a new thread context from the target address. If the

SWITCH_RCV_REQ is raised, then the FSM controller raises the RCV_ACK signal to
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enable the fork command moving into the result register. The FSM controller updates

the PC and starts a new thread context.

When a TPU performs unsafe memory access operations, it operates speculatively

and the speculative buffer is enabled by setting the tag. Data is written into the

speculative buffer, instead of to the shared memory. When a CMT_REQ signal is

received, the TCU starts to check for violations of any speculative memory accesses. If

none is found, then these stores are flushed to the memory. If the thread stops without

committing these stores, then the speculative buffer is simply cleared. Any failure of

the cmt (COMMIT) operation causes the program counter to restore the last successful

committed point, and the register image will be rolled back.

While the tag of the speculative buffer is set for a load operation, the TPU should

see the latest version of the data as if the program has been executed in the sequential

order. It checks the load address in its own buffer. If the address is not found, then it

keeps looking in the predecessors' buffers via the switch. Finally, if the address is not

found in any of the predecessors' buffers, then the data will be loaded from the

memory. The information as to which threads are the predecessor of the current thread

is stored in the Thread Information Table in the TCU, which has similar data structure

and operations to the one described in Scheduler section 3.5 (p76). The scheduler will

always broadcast the updated thread information whenever any thread structure

changes.

In a non-speculative design, all thread-level parallelism is exposed by the compiler

using techniques such as data dependence analysis, and memory disambiguation. Due

to the lack of run-time information, compile-time thread partitioning will be

conservative, i.e. two instructions will be considered to be dependent unless proven

otherwise. Furthermore, for a speculative design, each speculative thread created is

then checked at runtime. If it is detected that a speculative thread reads a memory

location that is later written by a thread that comes earlier in the sequence, then that

memory violation would be spotted and the speculative thread is squashed. As a result,

hardware support for speculative thread operations is required. In the MAPS+

architecture, the hardware memory violation check block validates all speculative

71



memory operations. In the event of a violation, FSM controller triggers further rollback

operations.

As shown in Figure 3-16, the SSTPJREQ signal triggers a synchronisation stop for

the current thread context when the guard register is set. And the FSM controller sets

the current state to idle. More details of the synchronisation stop will be described in the

scheduler section 3.5. The pair wat and psg instructions perform inter-thread

communications. PSG_REQ starts a data passing operations to the destination TPU.

The FSM controller chooses the data on the XJBUS and Y_BUS as the XjOPERAND

and Y_OPERAND inputs, respectively. The Y_OPERRAND data will be written to

destination TPU, indicated by the TPU number stored in X_OPERAND. The overall

architecture is shown in Figure 3-16, which is highlighted in Figure 3-17.

SWITCH ACK a DEST_THREAD_ADDR DATA
(From Switch) j (To SWITCH) (To SWITCH)

Figure 3-17: Logic for the psg instruction.

WATJREQ triggers a stall to wait for the incoming data, and the implementation is

shown in Figure 3-18.

Figure 3-18: Logic for the wat operation.
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3.4.6 Data Value Predictor

Thread level parallelism is limited due to the true data dependencies between producer

and consumer threads. Figure 3-19 shows a data dependency between the producer and

consumer threads, which causes the consumer to stall waiting for the result.

A
i
i
1 Holding
1
1
1

1
PSG WAT

Producer Thread

Consumer Thread

■Two thread contexts ►

Figure 3-19: Data dependency between the producer thread and consumer thread

One possible way to overcome the limitations imposed by data dependences is to

use data value prediction. The result of the wat instruction is predicted based on the

history of data value patterns, and passed on to subsequent instructions of the consumer

thread that depends on the result. When the value is finally available in the producer

thread via the psg instruction, the consumer compares the correct result with the value

predicted earlier. In Figure 3-20 (a), the values match, and the results of subsequent

dependent instructions are confirmed. On the other hand, as shown in Figure 3-20 (b), if

the values do not match, then a rollback operation is triggered in the consumer thread,

and the correct result is forwarded to instructions that required this value, and those

instructions are re-executed.
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Figure 3-20: (a) Correct data value prediction (b) Wrong data value prediction

In order to support data value prediction in the MAPS+ architecture, a hardware

implementation of the data value predictor was integrated in every TPU, which is used

to predict the result of data-producing instructions based on their past behaviour. It

records the recent results produced by previouspsg instruction, and predicts the result

of the wat instruction's next instance based on history results.

Several data value predictor have been proposed. The simplest form is the Last

Value predictor (LVP) [74][75] scheme. It stores the result produced when the

instruction was executed for the last time, and predicts the same value when the same

instruction is executed next. A Stride Value Predictor (SVP) [72][73] scheme assumes

that the stride between two consecutive values is constant, and works in the case of loop

induction variables and programs stepping through arrays in a regular fashion. A

Context-based Value Predictor (CVP) [76][77] scheme links a value to a context (an

ordered sequence of recent values) and predicts this value when the same context

occurs again. It is also capable of capturing constant and stride patterns to some degree,

but its learning phase is longer than the last value predictor or stride predictor. Hybrid

predictors [78][79] obtain good value prediction accuracy by combining multiple value

prediction schemes that exploit different data value locality patterns.

In this thesis, a hybrid version of the stride- and context-based predictors was

chosen, which is identical to the approaches used in [79] [80] [81]. As shown in Figure
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3-21 , the data value history table contains seven fields- Tag, State, Stride, Value,

Correctness of Stride Predictor (S_correctness) and Correctness of Context Predictor

(<Cjcorrectness), and the size of the table is 32 K. The Tag field stores the identity of

the wat instruction that is currently mapped to that entry, and the Value field stores the

last results. The State field has one of three values - Init, Transient and Steady. The

pattern decoder follows the history patterns and predicts one of the values when the

context repeats. When a wat instruction is received by the predictor, the hash function

will convert the program counter of the instruction into a unique tag. After receiving the

tag, the hybrid controller then generates a selection signal for the prediction scheme

with higher correctness ratio, either stride-based prediction or the context-based

prediction. The predicated data value will be stored in a temporary register, and the

value will be compared with the correct value received from PSG value. Finally the

prediction valid signal indicates whether current prediction was correct, and the

controller will update the data value history table.

Figure 3-21: Block diagram of hybrid of stride and context predictor.
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3.5 Scheduler

The MAPS+ architecture relies on both hardware and compiler support to extract

thread level parallelism, which provides the ability to simultaneously process multiple

threads. Each of these threads could correspond to different part of a program and runs

on one of the multiple hardware contexts available in the multiple TPU architecture. A

top scheduler is required to help schedule multiple threads spawning operations,

synchronise inter-TPU communications, sequence memory write orders and context

switching.

A Thread Information Table (Figure 3-22) is maintained in the scheduler to keep

track of the program order of the threads; threads are not necessary spawned in the

order in the original program, and speculative threads can spawn other threads

themselves. The scheduler will broadcast changes in the thread structures to the local

TCU of the TPUs.

Group 0

ThreadO Thread 1 Thread2 Thread3

r~ Group 1

-► Thread4

Group 2

Group 3

Thread Number 4

Allocated TPU TPU1

Age 3

Committed FALSE

Group ID Fork Destination
Address

Threads

0 40 0 1 2 3

1 80 0 4 5

2 120 4 6

3 130 0 8

Figure 3-22: Thread Information Tables in Scheduler.

When a request to spawn a thread is received by the scheduler, the availability of

TPUs is first checked. If all TPUs are busy, then the scheduler returns INVALID value
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back to the source TPU, which results in a serial execution of the following code rather

than failure; otherwise, the scheduler allocates a free TPU to the new thread context,

which is assigned a unique thread number. Simultaneously, the thread number is

returned back to the source TPU. Once the source TPU receives the new thread number

as a result of successful fork, it will send its register context to the destination TPU

(apart from the Stack Pointer register) via the switches. The scheduler allocates a

section of shared memory space for the new thread, and the new Stack Pointer (SP)
' points to the top of the new memory space, and the SP register value will be passed to

the destination TPU. Once the initialisation is complete, the new thread node will be

added into the corresponding group and updated thread information will be broadcast to

all the active TPUs. Finally, a RESET signal triggers the destination TPU to start the

new thread context.

Two fields in the thread node are required for cmt operations: the age field and the

committed field. An age field is a sequence number assigned to a new thread. The

successor thread has an increment age field of one from its predecessor. When a
I

thread is committed successfully, the age field of a successor thread is incremented by

the total number of threads in the current group. This method is particularly useful for

sequencing the order thread executions. Figure 3-23 illustrates the sequence for

updating these two fields.

AGE=0, COMMITED=FALSE

Figure 3-23: Thread Information Table updating sequence.
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Thread synchronisation is achieved through the cmt operations and the

synchronisation stop (sstp) operations. If a cmt request is received by the scheduler

before an acknowledgement can be granted, then it needs to guarantee that the

successors of this thread are already committed. As shown in Figure 3-23, the

committed flag specify the status of current thread, and the age field sequence the order

of the commit operation. As a result, if there are threads with younger age fields which

are not committed, then the request will be placed in a holding queue. Once the

requirement is met, the acknowledgement signal will be granted and its committed flag

will be set. The sstp operations are similar to commit operations and are required to

follow the sequence order of age fields. When receiving a sstp acknowledge from the

scheduler, the TCU will update the Thread Information Table and broadcast the

updated information to all active TPUs.

3.6 Discussion

The chapter has described the asynchronous MAPS+ architecture which supports

multithreaded execution, thread speculation, and reconfigurability provided by the

FPGA fabric in each node.

3.6.1 Micronet design style

A micronet-based [28] [29] [30] asynchronous hierarchical design style had been

adopted in the design of the MAPS+ architecture. Micronets are networks of entities

that compute concurrently and communicate asynchronously. The entities are

themselves networks in a recursive fashion, leading to a hierarchical approach to

system design. Self-timing logic is integrated into the switches and data

communications between any two TPUs strictly follows a full handshaking protocol.

The input channel of each port receives the data and the output channel is responsible

for feeding outgoing data into other switches. Within every TPU, the communicating

microagents effectively allow the functional units to transfer handshaking signals

between themselves and their neighbours.
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3.6.2 Speculative threads and data predictions

The MAPS+ architecture exploits thread-level parallelism via multiple Thread

Processing Units, which has proved to be an effective way to improve the performance

in several synchronous designs [32] [33] [34][35]. Speculative threading is supported by

the MAPS+ architecture, which provides higher degree of parallelism and a significant

gain in performance by removing constraints due to data dependencies. Successful

speculation leads to the speedup in the execution speed; if unsuccessful, the speculative

threads are squashed and the results discarded. Additional hardware components are

provided to trace memory and data dependencies to help recover the correct state. A

speculative buffer is integrated in each TPU to handle memory access violations. If a

speculative thread has read a memory location that has later been written to by a thread

that comes earlier in the sequence, then memory violation is spotted. A hybrid data

predictor helps to break the sequence order of the threads due to data dependencies,

allowing the speculative consumer threads to proceed without waiting for these values

to be produced by the producer threads. If the data value prediction was correct, then

the code is parallelised with gain in performance. Otherwise, the thread is squashed and

rerun with correct values. The benefit of speculation has to be weighed against the

requirement of a more complex hardware and extra energy consumption for thread

speculations. (See Chapter 6 for simulation results)

3.6.3 RFU with asynchronous wrapper

A Reconfigurable Functional Unit (RFU) has been introduced in previous architectures

[63][64][65]. which demonstrated the potential for achieving higher performance by

grouping several instructions into Reconfigurable Functional Unit Operation (ROP)

and executing on the FPGAs. But all these design have been used in synchronous

systems. Although asynchronous FPGAs been investigated in the past, e.g. AFPGAs

[69], Montage [70], PCA-1 [71], the lack of commercial asynchronous FPGA

implementation and availabilities of asynchronous FPGA CAD tools, have influenced
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our choice of a synchronous reconfigurable fabric design for the RFU. Asynchronous

wrapper around the FPGA results in islands of synchronous blocks in the asynchronous

MAPS+ architecture.

3.7 Summary

The MAPS+ architecture integrates the features of asynchronous design, multithreaded

architecture, thread speculation, data prediction and reconfigurable functional units for

the first time. The concurrency exposed in the architecture has to be exploited by a

compiler which is able to extract independent threads in the application software, and

instruction-level parallelism in individual threads. The design of the compiler is the

topic of the next chapter.

i

I
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Chapter 4
Compiler Design for
MAPS+ Architecture

4.1 Introduction

The MAPS+ architecture exploits both thread-level parallelism and instruction-level

parallelism, and combines a multithreaded instruction set architecture and field

programmable logic. To take advantage of the MAPS+ architecture, the compiler is

required to generate concurrent threaded code and partitioning between software and

hardware from the source program.

Most embedded applications are written in a combination of assembly code and

sequential high level languages such as C or C++ with complicated data structures and

control flows. Parallelisation methods in compilers have to make conservative

assumptions regarding data dependencies, which can reduce run-time performance

substantially. MAPS+ architecture provides the necessary hardware support to perform

run-time dependency checking and speculation on the control or data dependencies.

Therefore, compiler techniques are needed to take advantage of speculation. The

compiler can partition a program into parallel speculative threads without having to

prove their independence, while at runtime the underlying hardware checks whether

inter-thread data dependencies are preserved, and threads affected by any such

violation are re-executed. This chapter describes conventional loop threading

compilation and speculative thread partitioning and transformation techniques.
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MAPS+ architecture also requires the compiler to assemble RFU operations for the

reconfigurable logic. One possible solution is to manually extract hardware code from

sequential programs. Manual circuit description will create high-quality circuit designs.

However, it demands significant hardware knowledge of a programmer. Automatic

compilation techniques provide quick and easy ways to program the MAPS+

architecture, and makes reconfigurable hardware more accessible to general application

programmers. In this chapter, compilation techniques for generating reconfigurable

functional unit operations to perform the arithmetic and logic operations within the

program have been investigated.

4.2 Thread Analyser

Program constructs such as loop and repeatedly executed parts of programs are prime

candidates for thread partitioning. The sequential program is converted into the Static

Single Assignment (SSA) form representative, which helps the compiler in thread

identification.

4.2.1 Static Single Assignment (SSA)

A SSA [85] form can be employed as an efficient intermediate representation of

sequential programs for their analysis and optimisation. Many advanced compilation

techniques have been developed for optimisation [86] and parallelisation [87][88][89]

based on the SSA form. Each variable read in the SSA form is directly linked to one

definition. In order to allow this, ([)-nodes are inserted at program points where more

than one definition to a variable merges. A (f>-node has a (^-function on its right-hand

side (RHS). The (f>- function has one operand for each merged definition, and each

variable has exactly one definition. Variables are renamed to ensure that each variable

has exactly one definition, which is usually done by adding a version number as the

subscript of the original variable.

82



x=l;
y=i;

if (P) {

y=y+l;

}

x=x+y+2;

y2=y1+1;

y3=())(y2,y 1);
x2=xl+y3+2;

x 1=1;
y i=i;

Figure 4-1: A sample program and its SSA form.

An example program and its equivalent SSA form are illustrated in Figure 4-1. In the

program, there are two regular definitions that reach the reading of the variable y. One

definition reaches it at the top of the program with the assignment of "y=l", and the

other definition reaches the read via the if-then-branch. In order to indicate that both

these definitions reach the read, a (j)-node "y3 = (j)(y2, yl)" is inserted at the merge point

of the constant assignment, and the if-then-branch. This (j)-node has a ^-function to

represent a merging of the two definitions of y. A version number is also added to each

appearance of the original variable so that each version of the original variable is

defined only once, and the reading of a variable and the definition of the variable that

directly reaches the read use the same version number.

The benefit of using an SSA form is that it encodes control-flow information and

supports incremental updates to the SSA form during optimizations, such as

unreachable branch elimination. Furthermore, with the SSA form, all the data

dependences are illustrated clearly on the entry node of the loop body by using

(|)-nodes. The (j)-nodes allow the compiler to identify data dependences because there is

no aliasing in accessing these values, since all accesses must explicitly refer to the same

variable name and static instructions that access these values occur only in the body of

the loop being optimised, never in the procedures called from the loop. Therefore, it is

straightforward to identify all accesses to these values and to determine their last
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definitions and their first uses with SSA definition, resulting in an efficient

flow-insensitive dataflow analysis.

4.2.2 Loop Partitioning

Loop-level parallelism is exploited for generating threads for the multithreaded

MAPS+ architecture. Paralleling loops to extract concurrency in sequential programs

has been studied in several previous researches, such as the Agassiz compiler [61], and

the Hydra compiler [60], In general, the multithreaded instructions for loop bodies are

generated in two steps. Firstly, the benefit of parallelisation for each loop nest is

evaluated, and the most profitable loop levels for parallelisation will be selected.

Secondly, multithreaded code for spawning, committing, and synchronising threads is

generated, for executing loop nests in parallel on the MAPS architecture.

Loops are good candidates for thread generations. Loops constitute a significant

portion of the program execution time, and then it can have a large impact on program

performance. The steps for parallelising loops are summarised below:

1. Label each basic block with execution time provided the profiling information

in the SSA graph. Profiles provide more accurate expected number of iterations

and dynamic instructions in the loop.

2. The execution time of entry nodes of each loop are sorted in descending order.

3. A threshold of 10% of loop coverage is set. All the loops above threshold are

chosen as possible parallelising candidates.

4. Further refinements are used to filter the candidate loops. A small loop body

might not achieve much speedup when parallelised. If the total number of

instructions per loop invocation is less than 30, the loop will be taken out of the

candidate threads.

5. For partitioning nested loops, the compiler considers both the inner loop and the

outer loop for parallel execution. Depending on the available parallelism, the

structure of the loop bodies, and the load balancing, either the inner loop, or the

outer loop, or both can be designated as threads.
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6. Finally, the compiler will perform loop unrolling or loop blocking to increase

the size of each thread, and to provide each TPU with sufficient workload to

exploit instruction-level parallelism.

Once the candidate loops are identified, multithreaded code is next generated based

on the algorithm shown in Figure 4-2. After performing induction variable analysis, the

identified induction variables are placed into a vector with annotation. A loop may have

several induction variables, which are variables incremented or decremented by a

constant value in each iteration and cause loop-carried data dependencies. Several

induction variable recognition techniques have been proposed [90] [91] [92]. An

algorithm based on [90] was implemented in our compiler framework. Strongly

connected regions (SCR) in the SSA graph are used to find the basic linear induction

variable, which is required to satisfy the following constraints:

• The SCR contains only one (j)-function at the header of the loop.
• The SCR contains only addition and subtraction operators, and the right

operand of the subtraction is not part of the SCR.

• The other operand of each addition or subtraction is loop invariant.

• Any loads and stores are to unsubscripted variables.

A SCR that satisfies all of these constraints defines a family of basic linear

induction variables. After recognising the induction variables, the compiler selects one

induction variable as the primary one, and replaces other induction variables with linear

functions of the primary induction variable. By applying such induction variable

substitution, the compiler need only generate one target store for the primary induction

variable. Furthermore, the induction variable can be replaced by speculative operations

on the thread processing unit, which can greatly reduce the overhead for data

forwarding and synchronisation.
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Loop_partitioner ()

{

for each loop_body in candidate_loop_queue

{

/*Find the entry block ofcurrent loop body, append a fork instruction into the entry block, the destination address i s

the FRK_AFF_ADDR*/

fl= NEW_FORK_INST(FRK_AFF_ADDR);

b_entry = ENTRY_BLOCK(loop_body);

APPEND_INST(b_entry,fl);

b_aff=GENERATE_AFFILIATED_FORK_BLOCK(FRK_AFF_ADDR);

APPEND_BLOCK(loop_body,b_aff);

for each phi-node in loop_body

{

v_Ihs=LHS(phi_node); /*Choose the left hand side variable of the phi_node*/

if (v_lhs is induction_variable)

{

/*If v_lhs is an induction variable, then the linear induction instruction with the number current available TPU

will be placed in the fork affiliated block, and the PSG/WAT synchronise overhead will be reduced. *

OPCODE = GET_OPCODE(induction_inst);

indl = NEW_INST(OPCODE, TPU_NUMER):

lNSERT_FRONT(b_aff,indl);

)

else {

/*// v is an not induction variable, then a pair ofPSG/WAT instructions are needed to synchronise data passing. */

wat= NEW_WAT_INST(v_lhs);

/*Then go through the right hand side of the phi_node, then PSG instructions are needed

to place after the instruction where the RHS variable is defined*/

for each variable v_rhs in the RHS(phi_node)

{

inst=FIND_INSTUCTION_DEFINED(v_rhs);

/*Here we still pass the left hand side variable v_lhs, because after SSA restoration, a compensation

assignment instruction will be placed before the PSG instruction*/

psg = NEW_PSG_INST(v_lhs);

INSERT_AFTER_INSTRUCTION(inst.psg);

)

INSERT_AFTER(phi_node,wat); /*Finally insert the WAT instruction after the phijiode*/

/*After the SSA restoration, assignment instruction to LHS variables will be placed, phi_nodes removed */

RESTORE_SSA ():

Figure 4-2: Loop partitioning algorithm for the MAPS+ architecture.
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When generating the multithreading code, the compiler will append a FORK

affiliation block to the end of the loop body, which controls the spawn operations of the

current thread. Furthermore, the induction thread instructions are also added to the

block, which control the distance of the threaded loop body to match the available TPU

numbers. With the (f>-node, the compiler places a thread synchronisation instruction in

proper place for variable definitions and usage. As mentioned in the previous chapter,

two thread synchronisation instructions are used: psg and wat. For the right hand side of

a (j)—node, the compiler can identify the definition places for the current variable, where

the psg instruction for the producer thread will be placed. For the left hand side of the

(|)-node, the compiler can identify the usage place of current variable, where a wat

instruction will be placed. The wat instruction stalls execution until the value is

produced by the previous thread when prediction is disabled. When data value

prediction is enabled, the wat value could be produced by the data value predictor. Pairs

of instruction of psg and wat insertions need to meet a number of constraints listed

below, which are similar to those defined by B.Zheng [93]. A correct program can be

created by trivially placing all wat instructions at the beginning of each thread and all

psg instructions at the end of each thread to satisfy the first three constraints. However,

such a transformation would completely serialise execution. To remedy this situation,

two additional constraints, are used to improve performance.

1. A wat instruction must occur before any use of the variable on any path.

2. A psg instruction must occur after the last definition of the variable on any path.

3. A psg must occur for all synchronised variables on all possible execution paths.

4. A wat instruction should be placed as late as possible.

5. A psg instruction should be placed as early as possible.

Figure 4-3 shows a sample loop program in SSA form and its multithreaced version

using the loop partitioning algorithm in Figure 4-2. Obviously, the algorithm can be

improved by further optimisation techniques, such as loop unrolling, loop

normalisation, or loop skewing. Such techniques increase the granularity of parallel
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loops and increase the size of the computation stage, which will be executed in parallel,

and thus enable larger portions of threads to be overlapped.

(F)

Figure (a) Figure (b)

Figure 4-3: (a) A loop body in SSA form, (b) Its multithreaded version code.

4.2.3 Sequential Control-Code Partitioning

The sequential control-code partitioning algorithm is also based on the SSA

intermediate representation (IR) and the execution information obtained from the

point/edge profiling module. The granularity of partitioning is the basic block, i.e.,

either all the instructions inside a basic block are included in a thread, or none of them

are included. It means a basic block is not split across multiple threads. The SSA IR
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being used is the extended one with factored Use-Def [82] chains. An extended SSA

form has the following distinguishing properties:

1. Every use of a variable in the program has exactly one reaching definition

2. At confluence points in the CFG, merge function call ([(-functions are introduced. A

([(-function for a variable merges the values of the variable from distinct incoming

control flow paths, and has one argument for each control flow predecessor.

3. A linked list of variables and a list of modification cited for each variable are added

to each node. Such links are called Use-Def chains.

By using profiling techniques [83], one can obtain all the edge execution

information, including the run time of each instruction, and execution possibilities of

each edge. Figure 4-4 shows a pseudo-C program fragment translated into extended

SSA form with factored Use-Def chains and the execution possibility of each edge.

x=l;

y=l;
z=l;

if(P)
y=y«i;

if (Q) {
x=x+1;

}
z=100 *y;

}
x=y+2;
z=z*2+x;

Figure (a)

(E)

Figure (b)

Figure 4-4: (a) C program fragment in normal form; (b) Extended SSA with Use-Def

Chains of Variable y.
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The main problem of generating threads with data dependence is that if the

producer is encountered late and the consumer is encountered early, then many cycles

may be wasted waiting for the value to be communicated. The goal of data

dependence driven thread generation selection is that for a given data dependence

extending across several basic blocks, either the dependence is included within a thread

or it is exposed such that the resulting communication does not cause stalls. During

the selection of a starting point of speculative thread, the data dependence heuristic

steers the exploration of control flow paths to those basic blocks that are dependent on

the basic blocks that have been included in the thread. The data dependence heuristic

includes a basic block only if it is dependent on other basic blocks that are below the

threshold chosen. An approach of quantising the data dependencies can be found in

[84], Our approach is differentiated by implementing extended SSA to evaluate the data

dependencies, using profiling information, and providing estimated delay of each

instruction. Our implementation provides more accurate quantified data dependence

information.

With the extended SSA, one can obtain comprehensive data dependences

information. The data dependence count is the number of Use-Def chains coming into a

current basic node. If the dependence count is small, then this block is less dependent

on data from other blocks and may be a good target to begin a thread at the start of the

basic block. The dependences from distant threads are likely to be resolved earlier and

hence the current thread is less likely to wait for the data generated at that thread. Based

on these observations, an algorithm to calculate the Data Dependences Factor (DDF) of

each basic block in sequential program fragments was developed. A block with a DDF

of less than 1 should be a suitable choice as a thread starting point.

DDF (Bj)= 1/ DD_Length(V0) + 1/ DD_Length(Vi) + .... l/DD_Length(Vn) :

V<= { Vo, V].... Vn} is a set of variables used in basic block Bj;

DD_length(Vj) is the data dependency path length of variable Vj.
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The pseudo code for the algorithm to calculate the DD_Length is shown in Figure

4-5. The choices of path lengths are based on the estimated execution times of each

instruction for the MAPS architecture.

double DD_Length(BasicBlock b)
{

double length = 0;

for (Each used variable V) in basic block)
{

for (Each incoming use-def chain of Vi)
{

for (each Path Pj in the use-def chain)
{

length=length+Path_length(Pj)* Possibility;
/* The possibility of executing this

path, which is obtained from
path profiling pass*/

double Path_length (Path p)
1

for (each instruction I inside the Path p){
switch (Type of instruction I)
{

case Register Asignment:
return 1; /*MOV,LI.. */

case Memory Access:
return 4; /*SW/LW */

case Logical Operation:
return 1;/*SLL/XOR/AND..*/

case SUB/ADD Arithmetic:

return 2;
case Multiply/Division:

return 3;

}

Figure 4-5: Pseudo code for calculating Data Dependent Length.

The C program fragment in Figure 4-4 can be used to illustrate the algorithm. The

variable yl used in block B is defined in block A by the instruction "y 1=1" by

traversing back the Use-Def chain. There is one register assignment instruction along

the chain, the path length of the instruction "z=l" is 1. The possibility of executing path

A—> B, is 90 %, so the data-dependent path of yl is 1x90% = 0.9. As a result, the data

dependent factor DDF(y 1) = 1 /DD_Length(y 1) = 1 /0.9 = 1.1, which is greater than 1,

and this basic block is not a good candidate for spawning a new thread. A full list of the

DDF of each node is shown below:
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A: Entry Node, ignore

B: DDF (Block_B) = l/DD_Length(yl) = 1/(1*90%) = 1.1

C: DDF(Block_C) = l/DD_Legnth(xl) = 1/(2+1 *90%) = 0.34

D: DDF(Block_D) = l/DD_Length(y2) = 1/(0*10% + 1 * 90%) =1.1

E: DDF(Block_E) = l/DD_Length(y3) + l/DD_Length(z3)=

= 1/(1*10%+ 2 * 90% * 90 % + 90% * 3) +

1/(3+ 0*10%+ 0*90%) =0.55

The DDF of block C and block E are both less than 1, and are chosen as thread

starting points. The threaded pseudo code for program fragment in Figure 4-4(a) is

shown in Figure 4-6. Thread 2 and thread 3 are spawned from block A. However,

thread 2 is inside a conditional block, and if such a path is not taken, the context of the

whole thread will be discarded.

Thread_l:

x=l;

y=i;
z=l;
if (P) {

y=y«l;
Thread_2:

if (Q) 1
x=x+l;

}
z=100 * y;

1
Thread 3 :

x=y+2;
z=z*2+x;

Figure 4-6: Multithreaded version of the sequential control code in Figure 4-4(a).
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4.3 Hardware-Software partitioning

The MAPS+ architecture combines field programmable logic and a multithreaded

instruction set architecture, which requires a compilation module to perform hardware-

software partitioning between each TPU. Programs are partitioned into sections to be

executed on the reconfigurable hardware and other sections for executing in software

on the multithreaded MAPS ISA. In general, complex control sequences, such as

variable-length loops are more efficiently implemented in software, while configurable

logic is very effective in speeding up regular, repetitive data-path computations.

4.3.1 Profile guided HW/SW partitioning algorithm

Programmer-directed compiler directives have been used to mark sections of program

code for hardware compilation, e.g. the NAPA C [97] language provides pragma

statements to allow a programmer to specify whether a section of code is to be executed

in software on the Fixed Instruction Processor (FIP), or in hardware on the Adaptive

Logic Processor (ALP). Most automatic hardware and software partitioning algorithms

are based on mapping a loop construct onto configurable architectures. The Garp

[94][95][96] compiler attempts to accelerate loops by using pipelining techniques

similar to those used in VLIW compilers. The hardware blocks are chosen from hyper

blocks that have loops embedded within them.

In this thesis, automatic hardware-software partitioning methods have been

explored. The compiler uses cost functions based upon the amount of acceleration

gained through the execution of a code fragment in hardware to determine whether the

cost of configuration is overcome by the benefits of hardware execution. Loop

computations provide an opportunity for parallelising the computations on

reconfigurable architectures. But a loop-based analysis has some constraints. The

loop statements which can be executed on configurable logic should be "well behaved",

i.e.:
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• Constant step size for the index

• No functions call in loop body

• No pointer operations or arithmetic operations

• Statically computable memory accesses

It is not easy for loop constructs to satisfy all these conditions, which might limit the

utilisation of RFUs. A simple example CFG in Figure 4-7 is used to illustrate the

function call constraint.

Figure 4-7: Diagram shows a function call in a loop body (blocks in the shadow are

not included in hardware candidates).

Due to the function-call constraints of well-behaved loops, block D is not included

as a possible hardware candidate. The whole function f2 does not even loop inside the

function body, but the whole function will not be taken into account. Though function

inlining might be a possible solution, it could bring unpredictable explosion in the

program size. A point profile reports execution frequencies for nodes or edges in the

graph. Information provided by the path profile provides an important tool for

scalability, helping compilers to locate the regularly-used computation blocks.
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Figure 4-8: Point profiles with function inlining. (Numbers adjacent to nodes indicates

frequency of execution)

The function inlining technique consists of inserting the called function's code

rather than using a function call run-time mechanism. This is an optimising technique

that avoids the overhead created by a run-time stack-based function-calling

mechanism. But the drawback of function inlining is usually the increase in code space,

which is affected by the size of the inlined function, the number of call sites that are

inlined, and the opportunities for additional optimisations after inlining.

A further improvement is region-based compilation. This is a generalised trace

selection approach that partitions a program into units of compilation, or regions, based

on profile information. Using function inlining and restructuring a program into

regions, the region-based compiler has more freedom to perform code motion and other

analyses and optimisations across functions, while maintaining control over the

compilation unit size and content. Unlike traditional function inlining techniques,

region-based techniques provide a method for bounding the size of the unit of

compilation to better control optimisation costs. The core of the technique is the region

formation phase which partitions the program into regions using profile-guided

heuristics. Thus, the quality of the generated code depends greatly upon the ability of

the region formation phase to create regions that a global optimiser can effectively

transform in isolation for improved instruction-level parallelism in the RFU. The

potential benefits of region-based compilation include runtime performance
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improvements, greater scope for the instruction scheduler, improved control of code

growth, and better profile homogeneity. The benefits of region based formation mirror

those of full inlining with the added potential for further reducing code growth.

An algorithm used to locate hardware blocks for configurable logic in MAPS+

architecture using a path-driven method as shown in Figure 4-9, which is similar to

Hank's profile-sensitive region formation algorithm [98][99][ 100] used for exposing

instruction-level parallelism in VLIW architecture. One of the similarities between

VLIW architecture and reconfigurable computing architecture is the ability to exploit

instruction level parallelism. Therefore, algorithms used in VLIW can be adapted for

reconfigurable computing architecture.
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void HWLocality (BasicBlocks BS)

{

HardwareCandidates HWC;

medianFreq = The median frequency of all basic blocks in the whole program,

for (Basic Block bi in set of Basic Blocks BS)

f

exeFreqi = The execution frequency of block bi;

if (bi = MostFrequentBlock(BS) && exeFreqi >= medianFreq) {

seed = bi;

/* Remove seed block from basic block set BS.*/

BS = BS - seed;

/* Add seed block in to set of Hardware candidates set.*/

HWC = HWC + seed;

FunctionCallExtension(seed);

/* Choose the most frequent predecessor of seed inside set of Basic Blocks BS*/

pred = MostFrequentPredecessor(seed);

exeFreqPred = The execution frequency of block pred;

while (exeFreqPred > medianFreq) (

/* Remove seed block from basic block set BS.*/

BS = BS - pred:

/* Add predecessor block into Hardware candidate set HWC. */

HWC = HWC + pred:

FunctionCallExtension(pred);

temp = pred;

pred = MostFrequenctPredecessor(temp);

exeFreqPred = The execution frequency of block pred;

}

/* Choose the most frequent successor of seed inside set of Basic Blocks BS*/

succ = MostFreqenctSucessor(seed);

exeFreqSucc = The execution frequency of basic block succ;

while (exeFreqsucc > medianFreq) (

/* Remove seed block from basic block set BS. */

BS = BS - succ;

/* Add successor block into Hardware candidates set. */

HWC = HWC + succ;

FunctionCallExtension(succ);

temp = succ;

succ = MostFreqenctPredecessor(temp);

exeFreqSucc = The execution frequency of basic block succ;

)
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void FunctionCallExtension(BasicBlock b)

{

if (b contains function calls of FS)

{

for (each function Fi in set FS)

{

BSi = Basic blocks of function Fi;

/* A recursive call to extend the function call contained in the in Basic Block. */

HWLocality (BSi);

)

)

Figure 4-9: Algorithm for locating hardware blocks using profile-driven method.

The algorithm comprises of the following steps, which are performed until all the

possible blocks in the program have been included as hardware candidates.

Step 1: Find the median frequency - The median execution frequency is calculated

for the basic blocks in the program.

Step 2: Seed selection - From among all the basic blocks not yet included in the set of

hardware candidates, the block with the highest execution frequency is selected, and

the frequency must be greater than the median frequency. This is removed from the set

of basic blocks and inserted into the set of hardware candidates.

Step 3: Seed's function calls expansion - If function calls reach into the seed, then

they are expanded using a recursive procedure.

Step 4: Predecessors expansion - If the execution frequency of the predecessor is

greater than the median frequency, then it is removed from basic block set and added to

the hardware candidates set, and the recursive method is used to expand function calls.
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Step 5: Successors expansion - If the execution frequency of the successor is greater

than median frequency, then it is removed from the basic block set and added to the

hardware candidates set, and function calls are expanded using recursive methods.

The control flow graph of Figure 4-8 is used to illustrate the procedure of locating

hardware blocks. First the median frequency is calculated; next the seed block is

chosen from all the basic blocks, which is block B, because it has the highest execution

frequency. B's predecessor block A does not exceed the median frequency, so A is not

included in the hardware block candidates. D is the successor of seed block A that

exceeds the median frequency, and D contains a function call to function f2. So

recursively, blocks of F and H are added to hardware candidates. D's successor E also

has an execution frequency that is greater than the median frequency, so E is also

included in the hardware candidates set. The hardware extraction is shown in Figure

4-10.

Figure 4-10: Hardware extraction by using profile-driven algorithm. Shadows are the

hardware candidates.

As reconfigurable functional units in the MAPS+ architecture only support one

entry point for hardware blocks, re-entry blocks located in hardware needs to be

duplicated in software as depicted in Figure 4-11. The successors of block C and G are

blocks E and H, respectively. However, blocks E and H are chosen to generate
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hardware code, therefore these two blocks need to be duplicated to avoid re-entries in

hardware blocks. El and HI are duplicated blocks of E and H respectively. Then

MlPS-like instructions are generated for the software parts, and the FPGA netlist files

are generated for the hardware intermediate parts. The profile information for

hardware-software partitioning is based on the execution of a sequential application.

However, the decisions to determine if the right choice has been made are not profiled,

which can be improved in the future by using HW/SW profiling information to refine

the partitioning decisions.

Figure 4-11: The hardware and software blocks after code duplication.
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4.3.2 Control Data Flow Graph generation and synthesis

After the hardware blocks have been chosen from the program SSA intermediate form,

further optimisations are performed on the IR. A Data Flow Graph (DFG) is a

low-level, non-hierarchical and asynchronous program representation. DFGs can be

viewed as abstract hardware circuit diagrams without timing or resource contention

taken into account. From the SSA, the variables of chosen hardware blocks can be

mapped to edges in a dataflow graph, while primitive operations map to nodes. The

dataflow graph makes data dependences explicit, and is a convenient representation for

circuit generation. Data flow graphs are then mapped to circuits using the component

library in Xilinx Netlist Format (XNF) format by mapping edges onto wires and nodes

onto components. For the sake of simplifying implementations, we do not generate a

pipelined implementation for the RFU, nor does it support internal loop constructs.

Only combinational logics are supported in the current compiler version, which limits

the choice of hardware blocks deployed in hardware.

A component library has been implemented in the mapping stage during

compilation, which is similar as the approach used in Chimaera [63]. The use of a

component library greatly simplifies and speeds up the binding process. By

pre-designing commonly-used structures such as adders, multipliers, and counters,

circuit creation for configurable logic becomes largely an assembly of high-level

components, and only application-specific structures require detailed design. The

actual architecture of the reconfigurable device can be abstracted, provided only library

components are used, as these low-level details will already have been encapsulated

within the library structures. The benefit of using library macros is fast compilation.

Because the library structures have been pre-mapped, pre-placed, and pre-routed (at

least within the macro boundaries), the actual compilation time is reduced to the time

required to place the library components and route between them. An added benefit of

the architectural abstraction is that the use of library components can also facilitate

design migration from one architecture to another, because designers are not required to

learn a new architecture, but only to indicate the new target for the library components.
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However, this does require that a circuit library contain implementations for more than

one architecture. In the mapping stage, the compiler analyses the data flow graph of the

part that should be implemented in hardware. If a component matches a portion of the

graph, the corresponding macro is used for that part of the configuration. Finally the

netlist file for reconfigurable hardware is mapped from the DFG, and a MlPS-like

assembly code is generated.

A CRC-32 table construction program is used as an example to illustrate the

hardware netlist generation process, which is shown in Figure 4-12. The C program is

first pre-compiled by the SUIF2 compiler. Details of the MAPS+ simulation and

compilation framework will be introduced in Chapter 5. The output for the hardware is

a netlist file for a Xilinx FPGA. The output for the software part is a MlPS-like

assembly code. While calculating the CRC for a string, one can simply look up the

CRC table for each ASCII character and perform an XOR operation.

int main()

{
unsigned int c,j,i,l;
unsigned int k = 31;
unsigned int m = 1;
unsigned int poly = 0x4cl ldb7;
unsigned int crc_table[256];

for (i=0;i<256;i++)
1

c = i;
for (j=0;j<32;j++)
{

1 = (c»k) * poly;
c = (c«m) A 1;

}

crc_table[i]=c;

}
}

Figure 4-12: The CRC-32 table generation program
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Figure 4-13: Corresponding SSA form in SUIF_IR format, with $ nodes inserted at

the top of the blocks, for the CRC-32 table generation problem.
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Figure 4-13 illustrates the SSA representation of the program fragment in SUIF_IR

which is generated automatically. Two loops have been identified by the compiler, and

based on the profiling information the inner loop is executed more frequently and will

benefit from execution in hardware, and therefore chosen for mapping to hardware. The

DFG for the inner-most loop is illustrated in Figure 4-14, which excludes the

phi-functions and other loop-related functions. The primary input arcs entering the

graph (ml, c3, k, polyl) represent the values passed as input to the function. The DFG

shows function nodes, which denote operations that are members of the set of library

functions. Operations in the SSA intermediate representation are mapped to these

nodes in the graph. The DFG representation provides clues for synthesis of the function

in a modular fashion. It is automatically mapped to a Xilinx FPGA netlist. The

optimisation of this translation has not yet been investigated, which includes the refined

mapping procedure from macro libraries to hardware implementation, and fine-grained

choices of HW/SW partitioning.

Figure 4-15 illustrates the hardware structures from the component library that

instantiate the behavioural elements. The component library had many functional

design elements (primitives and macros) which were dependent on the device

architecture. New functionality was assembled by using these basic components, which

were implemented as C++ classes, e.g. a MULT32 component included input pins,

output pins definition and I/O signal for each pin. The external I/O pads for the whole

netlist file were also required. The only signals which were specified as external I/O

signals are those which connect to the external pins of the I/O symbols, such as input

pads polyl, kl, c3, ml or output pad c4. This information was produced when

generating the Xilinx Netlist File.
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Figure 4-14: The corresponding DFG for the inner-most loop.

Figure 4-15: Synthesised implementation of DFG.

The hardware netlist file was mapped from the DFG of Figure 4-14, which

contained mapped look-up tables and carry logic components, each annotated with a

LOC location constraint, and fed to the Xilinx ISE tools. The Xilinx Flow Engine
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merged all the input netlists and translated the netlist file into the Xilinx Native Generic

Database (NGD) format, which contained a logical description of the design and macro

library (NMC) files. Then the flow engine performed a logical Design Rule Check

(DRC) on the design in the NGD file. It then mapped the logic to the components in the

target Xilinx FPGA. The output design was a Native Circuit Description (NCD) file

that physically represented the design mapped to the components in the Xilinx FPGA.

The Xilinx flow engine then placed and routed (PAR) the design and output an NCD

file which was used by the bitstream generator. The PAR design used a combination of

cost-based and timing-driven methods. After the design had been completely routed,

the Flow Engine configured the device so that it would execute the desired function and

produced a configuration bitstream, a binary file that can be downloaded into the target

device. The design of the CRC-Table generator in Xilinx FPGA is displayed by

graphical application in the FPGA Editor in Figure 4-16, in which probes could be

inserted to examine the signal states.

1 ^ Xilinx FPGA Editor - test.ncd - [Arrayl]

Eds Edit View Jools Window Help -Ifllxl

Figure 4-16: The graphical display of the CRC-32 table construction implemented

in Virtex FPGA.
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From the Xilinx flow engine, performance estimations are obtained. The average

connection delay for this design was 1.946 ns, the maximum pin delay was

6.708 ns; the average connection delay on the 10 worst nets was 5.081 ns. All signals

were completely routed. All the delay information would be fed into the MAPS+

architecture, as explained in Chapter 5.

Finally the design was translated in to a VHDL file containing a netlist description

of the design in terms of Xilinx simulation primitives. It was used to perform a

back-end simulation using Modelsim. The post-synthesis simulation was a timing

simulation, which was important in verifying the operation of the circuit after the

worst-case placement and routing delays were calculated for the design. The

functionality of the CRC-Table generator design could be verified in the wave window

from Modelsim. Figure 4-17 displays the CRC calculation procedure for the ASCII

character "{" (ASC =123). The input included a signal 'kl' that controlled the right

shift steps, ml controlled the left shift steps, 'polyl'-the polynomial defined for

CRC-32, and the input and output values were 'c3' and 'c4\ The operation completed

after 32 clock cycles with the CRC for 123 being 0xCBFFD686.

==M wave - default

File tctt Cursor ^oom Format Window

aPB3! "te±fl<Sl<^Q«l!IIiHII!llI]i[SilII

fl n;s tn 4fi

Figure 4-17: The wave form of the CRC- 32 table construction simulated in

Modelsim.
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4.4 Summary

This chapter has described the compilation techniques for extracting threads from a

sequential program, partitioning between software and hardware, and the process of

compiling to the FPGA fabric. This enables the MAPS+ architecture to exploit

thread-level and instruction-level parallelism in the application program. The

multithreaded codes for loop bodies are generated in two steps: loop nest selection

procedure, and multithreaded code generation procedure. Furthermore, sequential

control codes are partitioned into speculative threads based on the data dependencies

calculation algorithm using the SSA form. A hardware software partitioning algorithm

based on the region-base compilation method has been investigated. Finally, a CRC-32

table generation program is used to illustrate the synthesis procedure using a data flow

graph.
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Chapter 5
Simulation and

Compilation Environment

5.1 Introduction

This chapter presents a simulation framework for the MAPS+ architecture described in

Chapter 3 and the compiler framework for implementing the algorithms described in

Chapter 4.

Firstly, a MAPS+ instruction set architecture simulator called SPAMSIM2 is

introduced. This consists of an event-driven simulation kernel design and the models of

different functional units. Furthermore, the power/energy consumption model is also

described in detail.

Secondly, the compiler framework in the thesis is based on the SUIF2 [5][6] and

Machine SUIF [7] compilation framework. The MAPS+ passes, such as Software

Hardware Practitioner (SHP) pass and Thread Analyser (TA) pass perform automatic

code generation from sequential C benchmark programs, and produce the executable

for the SPAMSIM2 simulator.

5.2 The SPAMSIM2 simulation environment

The MAPS+ architecture is modelled and simulated in SPAMSIM2 to generate timing

information using execution-driven simulation. Trace-driven simulation may provide a

relatively quick estimate of performance, but will often lack sufficient accuracy

because of the difficulty in characterising the behaviour of real programs stochastically.
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Also, generating accurate inter-thread traces is difficult, since changes in the

interleaving due to timing variations, or changes in the addresses themselves due to

timing-dependent program behaviour will not be reflected in the traces. As a result, an

execution-driven simulator was chosen to model the MAPS+ architecture.

5.2.1 Overview

The SPAMSIM2 simulator is outlined in Figure 5-1, and was implemented in C++. The

QuickThreads [2] package of the SPAMSIM2 kernel provides a portable interface to

machine-dependent code that performs thread initialisation and context-switching. The

simulator takes assembly code compiled for the MAPS+ architecture and simulates the

execution with different configurations. During the initialisation stage of the

SPAMSIM2 simulator, various parameters are read from the configuration file and can

be set separately, e.g. memory size, delay of each function unit, cache size, and

replacement policy. After initialisation, the parameters are set to global variables,

which can be accessed by each functional block of the simulator. Contents of the

register file and portions of the memory can be dumped to files on completion of the

simulation. By dumping the results of the benchmark simulation to a file, the

benchmark's execution can be verified.

Data cache behaviour is modelled using the Dinero IV cache simulator [3], This

provides a highly configurable model of cache behaviour. The basic idea is to

simulate a memory hierarchy consisting of various caches connected as one or more

trees, with reference sources at the leaves and a memory at each root. The Cache model

produces performance metrics (e.g., traffic to and from the memory) and allows cache

design options to be varied (e.g., write-back versus write-through, LRU vs. random

replacement, demand fetching versus prefetching).

Power dissipation issues are becoming a central issue in modern processor

architecture design. The power analysis and optimisation package of SPAMSIM2

simulation environment is based on Wattch[4], which is a framework for power
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estimation based on a suite of parameterisable power models for different hardware

structures, and on resource usage counts generated through simulation.

Figure 5-1: Class diagram of the SPAMSIM2 simulator.

5.2.2 Simulator kernel

The SPAMSEM2 simulator defines a computational procedure that mimics a set of

properties of the MAPS+ architecture and describes the behaviour of the MAPS+

architecture in response to stimulus from outside the system. As shown in Figure 5-1,

the MAPS+ architecture is modelled in a structural form, i.e. a functional description of

different components and the interconnections between datapath components. It

provides the platform for exchanging messages between entities and time-keeping.

Instead of using a gate-level simulation of the MAPS+ architecture with greater

in



overhead, the functionality of the architectural components was modelled at the

micro-operation and register transfer level, providing explicit description of the

interaction between components of the datapath.

To model system architecture with an execution-driven simulator, two main

programming paradigms dominate the simulation design. The first paradigm is

flow-driven, which follows its control flow pattern and changes course at branch point.

For example, the SimpleScalar [17] simulator core defines the main loop and executes

one iteration for each instruction until finished. Its kernel accounts for the progression

of execution time and counts the total number of clock cycles. This approach is suitable

for synchronous systems, as the global clocks are required to synchronise different

components within the system. The synchronous flow is easily to be mapped to the

main loop body, and each instruction is processed in a lock step fashion. In flow-driven

simulation, all activities in the current time step must cease before the processes of the

model are allowed to advance to the next time step.

However, in an asynchronous system, there is no global centralised clock and

every component operates autonomously, except to interact with other component in

the system. It requires the simulation model to operate asynchronously, advancing at

completely different rates. Each process maintains a local clock variable which

contains the current value of the simulated time. This value represents the process's

local view of the global simulated time and denotes how far in the simulated time the

corresponding process has progressed.

Therefore, the event-driven approach is usually chosen to model an asynchronous

system. In this approach, the driving force of the simulation which triggers actions is

the availability of events to be processed. Upon receipt of an input event, the process

will be activated to act upon the event and, as a result, update its local time, which is set

to the minimum next event time for that process. Processes are allowed to consume and

execute messages as soon as they become available, without having to wait for a global

clock to tick through periods of inactivity or for ether slower, but unrelated, processes

to advance. Each data item carries a time stamp which indicates the time up to which

data is valid, and the events which occur at different time instances are processed by the
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simulation kernel. The kernel contains an event loop and looks repeatedly for

information to process then perform a trigger function. As a result, the register handler

will be invoked to react to the event. The SPAMSIM2 simulator kernel falls into this

category. As shown in the class diagram Figure 5-1, the SPAMSIM2 kernel consists

of an event-driven based scheduling function, and entities and ports for representing

functional units and the communications.

I 5.2.3 Event scheduler

The context class implemented in the SPAMSIM2 simulation kernel contains the

functions to enable event scheduling, context switching as well as time-keeping. The

event scheduler of the kernel is responsible for scheduling event handlers. The kernel

holds a priority queue of pending events sorted by time-stamp. Whenever an event is a

trigger, its corresponding handler becomes runnable. A data structure called,

runnablejiandlers, maintains a set of handlers, with their associated trigger time, that

I are scheduled for the future. Each of these handlers is guaranteed to be triggered at the

associated time in the kernel. Events in the kernel are simulated chronologically and the

simulation clock is advanced after simulation event to the time of the next event.

Detailed flow chart of the scheduling function is depicted in Figure 5-2.

i
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Figure 5-2: Flow diagram for the event scheduler.
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Context switching of event handlers is realised by implementing a thread

operations wrapper on top of a threading package of QuickThreads [2], The

QuickThreads package consists of stack spaces for handler context switching. The

stack has no initialised state. While a context switch request is triggered, the stack saves

the old thread state, and then switches to the scheduler stack, but no scheduler state is

restored. The scheduler stack is simply used as a place to call a function on behalf of the

thread that just blocked. Likewise, when the new thread is started, no scheduler state is

saved. Because of the lightweight stateless thread switching scheme, the scheduler

implemented in QuickThreads is faster than the heavyweight scheduler used in

POSEX[152] thread packages and fulfils the requirement of the SPAMSIM2 kernel

design. The top-level thread wrapper provides a machine-independent interface and

operations, such as thread initialisation, execution and termination.

Each entity in the SPAMSIM2 simulator kernel maintains a local notion of time.

At the top-level, the global time depicts the total elapse time for the simulation. While

event messages are passed from one entity to another, time stamps are associated with

each event message. Whenever the handler becomes runnable, the handler's host

entity's local time is set to be equal to that of the entity's time stamp which triggers the

changes. The time stamp value applied to outgoing events of an entity is the total delay

of processing this event and the communication overhead. The global simulation time

will be updated to the local time of the entity with the greatest value.
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5.2.4 Asynchronous communication model

Asynchronous communication model is realised in the SPAMSIM2 by implementing a

class of communication port, and template class EVENT represents the event message

passing between entities. A port provides an entity with a means for connection and

communication with its surrounding entities. In SPAMSIM2, ports are able to handle

bi-directional communication (input, output). The C++ class for an asynchronous port

is illustrated as follows:

template <class EVENT> class port {

vector <EVENT> mjevents;

public:

void post (EVENT e);

EVENT receive();

void add_event (EVENT e, TTime t);

};

Whenever a post function within the sender port is invoked, the event message will

be passed to the connected receiver port. The messages are placed in the event list,

m_events via the add_event function. Along with the event message, the local time

stamp of the sender entity is also passed, and the event list will sort event messages by

the order of time stamp. The receive function will remove the top message from the

mjevents event list, and the actually received message will be passed back to the

receiver entity by the returning value.

In SPAMSIM2, the asynchronous communication channels are modelled as

bundled data encoding with the four-phase handshaking protocol. All the models are

wrapped into the Communication Microagents (CMs), which is illustrated as follows:
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class cm : public Entity

{

cm *otherCM;

Entity *host;

void DealAck();

void DealReq();

protected:

virtual void DealReqHigh();

virtual void DealAckHigh();

virtual void DealAckLow() ;

void DealData();

public:

port<bool> ack_port;

port<bool> req_port;

port<Data> data_port;

void Connect(cm *other);

};

This is the basic class interface for CMs. In the construction stage of a simulation

node (TPU), the connection between the receiver CM and the sender CM is defined by

the Connect function. Therefore, the corresponding ack_port, req_port and data_port

of the pair of CMs will be linked together. After the CM class is initialised, the

corresponding port handler will be registered to the kernel by the ADD_HANDLER

macro. The following is a sample to register the request event handler DealReq-.

ADD_HANDLER(req_port, DealReq);

Once a request signal is received, the handler of the receiver CM will be switched to

current context. If the request signal is high, the DealReqHigh function will be invoked

and the associated delay of handling the high request signal will be added to the time



stamp of the CM entity. Then an acknowledge signal is fed back to the sender CM. As a

result, the sender will pass the data to the receiver, and bring down the request

acknowledgement once the data transmission is finalised. Finally, the receiver

acknowledges back a low signal as a response to receiving the data successfully. The

following message sequence chart in Figure 5-3 illustrates the event messages

exchange sequence of implementing the 4-phase handshaking protocol in the CM

model.

I

Sender CM

<-

<-

data_port. post(DATA)

req_port. post(TRU E)

ack_port. post(TRU E)

req_port.post(FALSE)

ack_port. post( FALSE)

Receiver CM

->

Figure 5-3: Sequence diagram of implementing 4-phase handshake protocol in the
CM model.

I

5.2.5 Modelling function units

Entities are the basic building block within SPAMSIM2 simulator. Entities break

complex systems into more manageable components. Functional units are inherited

from entity classes. Each functional unit is a module, which allows internal data

representation and algorithms to be hidden from other functional units. This modular

)
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design makes the entire simulator easier to change and to maintain. Functional units

may be instantiated inside other units to create a hierarchy. A functional unit requires

that a string name be provided as part of the instantiation. The string name is used by

SPAMSIM2 kernel to assign a hierarchical name to the instance automatically. This

hierarchical name is formed by the concatenation of the parent's hierarchical name and

the string name of the child.

Functional units contain asynchronous ports, event handlers, and internal data.

Through these asynchronous ports, different functional units are able to communicate

and synchronise with each other. The entity model contains local simulation time

information, which indicates the time-stamp of the most recent event processed, and a

list of time-stamped events that have not yet been processed. Functional unit react when

they perceive a change at one or more input ports. An event message carrying the same

value as before is not considered to be an event. The incoming events are processed in

time-stamped order. A functional block model contains I/O ports, register event

handlers. The following C++ class illustrates the modelling of an ALU.
>

Class ALU : public Entity {

public:

port <Data> x_port,y_port,exe_port;

BusDriver *x_bus, *y_bus, *z_bus;

void x_port_handler();

void y_port_handler( );

void exec_port_handler();

| void eval ( ) ;

}

The ALU class contains execution port, and two data input ports x_port andy_port.

During the initialisation stage, the xjbus andyjbus are connected to x_port and y_port

respectively. As the z_bus is for data writeback only, no zjport is defined in the ALU

class. The exejport obtains decoded instructions from the TIU. And the x_port and

I
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y_port are used to receive fetched data from Register Bank via the xjbus and they_bus.

When all of the instructions have been evaluated, the results are written back to the

Register File via the zjbus. Figure 5-4 illustrates a sample interaction among the CMs

and the FU.

Execution Interface CM X_BUS Y_BUS ALU Z_BUS

exe_po^t.post(DATA)
->

x_port.pos1j(DATA)
_L_ ->

\ y_port.post(DATA)
>

eval

z_port.post(DATA)^

Figure 5-4: Sequence diagram of interactions among buses, CM and ALU module.

5.2.6 Architectural power model

Power consumption is a major concern for the architectural design. Firstly, most

embedded architectures are implemented in mobile devices, which have limited length

of battery life available. Secondly, the heat resulting from power dissipation has to be

removed using cooling methods.

Integrating a power estimator for programs executing on MAPS+ architecture

simulated in SPAMSIM2 is essential. Currently, most digital circuits are manufactured

in CMOS technology, such as microprocessors, microcontrollers, and static RAMs.
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Figure 5-5 illustrates a CMOS inverter which only uses significant power when its

transistors are switching between the on and off states.

J
vcc

— OUT

-==r GND

Figure 5-5: Static CMOS inverter.

CMOS circuits have three main sources of dissipation [182]: dynamic current,

short-circuit currents, and leakage currents. The total power dissipated during operation

can be expressed as: Ptotal = Pstalic + Pdynamic + Pshort.

Static Dissipation: The static dissipation can be expressed as: Pstatic = Ileak xVdd ,

where I[eak is the leakage current and Vm is the supply voltage. Static dissipation is

due to leakage current in the transistors when they are not switching. Ideally,

CMOS circuits have very little leakage current; however, the leakage current does

become significant for submicron feature sizes.

Dynamic Dissipation: The dynamic dissipation is given by:

Phnamic = ax f xCxVdd2 . In the equation, a term is an activity factor that

captures how many devices are active, / is the clock frequency, C is the total

switched capacitive load, and Vdd is the voltage supply.

Short Circuit Dissipation: The short circuit dissipation is expressed as:

Pshor, =vddx y shortW* > where vdd is the voltage supply, T is the switching
period, T is the flow between the supply voltage and ground when a CMOS logic

gate's output switches, and Ishon is the short circuit current. This is the power

consumed during the short time that both the pull-up and pull-down networks are

)
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conducting when the CMOS gate is switching. It typically increases the total power

consumption by 10% or less, unless the edge rates in the circuit is very slow. This is

usually ignored in back-of-the-envelope power calculations.

In this thesis, we have only considered the dynamic power dissipation. The Wattch

framework [4] has been integrated to provide power and energy consumption

estimation. Wattch provides switching capacitance models for structures in a processor.

Basic components have been developed, such as array structures, content-addressable

memories (cache), combinational logic and wires. These components are then used to

build a parameterised model for the MAPS+ architecture. Rather than using a power

density and area-based model, capacitances are calculated from wire delays and then

used to generate a cost for each activity. These costs can then be scaled by usage as

indicated by the activity counters. The counters are configured to measure events

which are significant to the energy consumption, and a model interprets these results to

estimate the total MAPS+ architecture power consumption. The accuracy of the model

is therefore determined by the amount of information available. Such a model has the

advantage of being used on-line efficiently, allowing the information obtained to be

used by power management algorithms. Current assumption of CMOS technology for

the MAPS+ processor architecture is 0.18um.

In the synchronous case, the power model assumes that the MlPS-like baseline

processor architecture are arranged into four groups: array structures, CAM,

combinational logic and wires, and clocking. While in the asynchronous MAPS+

architecture, the globally clock distribution network is replaced by communication

micro agents handling synchronisations between functional units. A CM contains

c-elements, added delay gates, and registers, which are used to handle 4-phase

handshaking protocol and bundled data communications. These extra asynchronous

control units add extra area overhead [ 11 ] [ 12]. Figure 5-6(a) shows a CMOS

schematic diagram of the C-element and Figure 5-6 (b) shows a schematic diagram the

double-edge flip-flop. The C-element implemented in static CMOS topology is first

introduced by Sutherland in his Micropipelines [48] research. The double-edged flip
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flop chosen in our simulator is identical to Tin Wai Kwan and Maitham Shams's

implementation [183], It contains two opposite polarity level sensitive latches and a

multiplexer. Two latches operate in either transparent mode or capture mode in

response to the level of the clock signal. Their simulation results show a 56% power

saving and 10% area overhead over static CMOS doubled-edge flip-flop

implementation. The power figures of these components were fed into the Wattch

power model for the SPAMSIM2.

Figure (a) Figure (b)

Figure 5-6: (a) Schematic diagram of CMOS C-element (reproduced from [48] ) (b)
Schematic diagram of CMOS double edge flip flop (reproduced from [188]).

Using the power-cost model, the SPAMSIM2 was able to compute power and

energy consumption based on the statistics of operations of the FUs, CMs, buses, and

the Memory module. The entities can update the power statistics by invoking

log_power function via the power_logger object. The following sequence diagram in

Figure 5-7 illustrates the detailed power logging process. While an event is triggered in

an entity, the corresponding handler invokes the log_power function with the elapsing

time of current operation, and then power consumption cost is fetched from the Wattch

power model. Finally, the power and energy consumption of the specific entity and

overall architecture are updated.
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Figure 5-7: Sequence diagram of logging power and energy consumption in
SPAMSIM2 simulator.

5.3 The MAPS+ compilation flow

The MAPS+ compilation framework was built on top of the Stanford SUIF2 [5] and

Harvard Machine SUIF [7] compiler infrastructure. The MAPS+ compiler takes a C

program as the source language. With different compiler passes, the source program is

then transformed into Intermediate Representations (IRs) and optimised for the

MAPS+ hardware architecture, to finally generate the target code. The compiler IRs

can communicate with each other with annotations, which are items of data associated

with nodes in the IR. The modular compiler passes allows a number of analysis routines

for different optimisations to exist simultaneously. For different MAPS+ architecture

configurations, different compiler passes can be chosen.
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5.3.1 Overview

The compilation flow of the MAPS+ compiler is depicted in Figure 5-8, which

performs the following functions in order: (1) the front-end SUIF parser to generate

language independent SUEF2 IR from C source code; (2) Backend Machine SUIF

passes to convert SUIF2 IR to virtual hardware platform SUIFvm; (3) CFG and SSA

generation; (4) multithreaded code generation based on the profiling information in the

SSA; (5) hardware and software code partitioning and hardware netlist block mapping;

(6) register allocation and code finalisation for the software part.

125



Figure 5-8: MAPS+ architecture compilation flow
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5.3.2 SUIF compiler

The Stanford University Intermediate Format (SUIF) [5] system is a compiler

infrastructure designed to support collaborative research and development of

compilation techniques. SUIF is able to take programs written in high level languages

such as C, FORTRAN and Java and transform them into assembly instructions while

permitting detailed program transformations based upon program representations. The

SUIF system implemented in the MAPS+ complier was the second version- SUIF2,

which was released in 1999.(In the context of this thesis, references to SUIF refer to

SUIF2.) The modular design of SUIF allows different program representation and

program analyses to be combined easily. Also the IRs enable the SUIF compiler to be

extensible into new areas of compiler and architecture research, which allows users to

create new instructions for new program construct semantics and new program

analysis.

The SUIF IR [184] file represents a number of basic programming constructs, and

a set of SUIF object nodes. Object nodes in SUIF IR are arranged in tree structures. The

SUIF IR object hierarchy is shown in Figure 5-9. At the top level, the Object,

SuifObject and AnnotableObject represent abstractions of the SUIF IR node. The

object class provides metaclass information or an IR node. SuifObject provides

user-level functions, e.g. printing, cloning, data structure traversals. AnnotableObject

allows derived information to be passed between different IRs. While the source

program was transformed by SUIF, the top level IR is represented by the FileSetBlock,

which contains global information of the program, symbol tables, and the procedure

definitions. Computation nodes derived from ExecutionObjects are the Statement and

Expression subclasses. Statements represent the changes to the execution path, such as

ForStatement, and IfStatement. Expressions capture different program semantics,

such as type definition, and address symbols.

Due to these loops and structures IRs cannot be directly translated into machine

code, a SUIF IR file will need to be transformed by replacing all the complex high-level

structural blocks with machine code like statements. Dismantler passes are used to
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conduct the tasks, e.g., the dismantler pass, dismantle_for_statements converts any for

statement in the intermediate code into a series of tests and branches that can later be

translated into machine instructions.

SULF passes are compiled into shared object files and can be dynamically loaded

by the SUIF driver. The SUIF script file named c2suif specify the orders to load SUIF

passes object files to create a SUIF IR file from the input C source file. Also the native

c pre-processor front-end and the SUIF file converter, and some dismantler needs to

specify in the script file.

Figure 5-9: SUIF IR object hierarchy

5.3.3 MachSUIF compiler backend

Machine SUIF (MachSUIF) [7] is an extensible infrastructure for constructing

compiler back ends based on the SUIF compiler framework. It is designed to ease the

process of developing a compiler backend for a new architecture. MachSUIF uses

SUIF's infrastructure to apply its passes. Because MachSUIF only deals with machine

instructions, it reduces SUIF's complexity by limiting accessible functionalities.

MachSUIF provides machine-specific compile-time optimisations to exploit the

underlying computer architecture. This is realised by a one-to-one correspondence

between MachSUIF IR instructions and machine instructions. As a result, MachSUIF
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provides a pass named do_s2m to translate the IR into the SUIF Virtual Machine

(SUIFvm). SUIFvm models instruction sets for a virtual RISC architecture. At this

stage, unlimited registers are available and architecture details are omitted, which ease

the implementation of the optimisation passes such as control flow analysis, and dead

code elimination.

5.3.4 MAPS+ target library

MachSUIF supports different target architectures by de-coupling the SUIFvm from

target-specific back ends. In order to support the MAPS+ architecture, a new target

library-maps was developed, which transformed the SUIFvm. The maps library

interprets the contents of SUIFvm, and the virtual instructions are then translated into

MlPS-like instruction set for the MAPS+ architecture. In addition to the MIPS ISA,

multithreaded instructions and reconfigurable function unit operations are defined,

which can be used by the optimisation passes, such as the thread Analyser pass, and the

HW/SW partitioning pass.

Apart from the instruction translation, another important task of the maps library is

to instantiate MAPS+ specific data structures. This includes the number and types of

register files, and the widths of registers. Machine-independent passes perform the

optimisations based on the MAPS+ architecture descriptions. In the maps library, the

Reglnfo object describes how the MAPS+ architecture manages registers and stack

space. This contains registers for storing the arguments, registers for storing procedure

call results, and constant register. The thirty-two registers in the MAPS+ architecture

are classified in Table 5-1:
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Category Descriptions Registers
Constant zero The register always stores constant

zero value.
$0

Temporary registers These are temporary placeholders for
execution. A procedure needs not to
these temporary registers before
modifying.

$l-$8, $22-$28
(not include
$26)

Saved registers Saved registers are used to store
values that a caller may need after a

procedure call.

$9-$15

Argument registers Arguments to a procedure are stored in
the register set. If the arguments
number exceeds six, the rest will be
stored in the stack.

$ 16-$21

Procedure result For a procedure with return result, the
value or the address of the data

structure is stored in the register.

$26

Stack pointer The register is initialised to be a

pointer to a block of reserved memory.
The value grows from bottom to top,
which is used for dynamic allocated
data structures at run time.

$30

Heap pointer The register is initialised to be a

pointer to a block of reserved memory.
The value grows from top to bottom,
which is used for allocating memory

space for data structures at design
time.

$29

Return address Whenever a procedure is called, the
return address is stored in this register.
It indicates where execution should

resume after completion of the
procedure.

$31

Table 5-1 : Register categories of the MAPS+ target library

5.3.5 CFG/SSA generation

Many MachSUIF passes need a CFG as the basic data structure. The MachSUIF CFG

passes provides a useful compile-time data abstraction for graph-based

transformations. It packs a procedure's instruction list into basic blocks, which enables
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efficient block reordering without having to splice the instructions into a new linear

order, which allow programs to insert instructions into nodes, to move instruction

around, and to add new nodes to CFG IR.

On top of the MachSUIF CFG pass, a custom-designed SSA pass has been

implemented, which provides useful information for data-flow analysis and

optimisations as described in Section 4.2.1. In the SSA pass, phi-nodes are

implemented in the phi_node class inherited from MachSUIF Instr class. Each source

variable and destination variables defined in phi-nodes have a unique name. The

phi_node class maintains a matching table of the variables to restore the SSA. The SSA

pass takes a CFG IR as input, and by invoking the function SSA_Build, the

optimisation pass can generate a SSA form. For further variable usage and definition

analysis, the get_use_link function provides traversal Use-Def link. After all the

optimisations are completed, the phi-nodes need to be removed and the SSA IR will be

restored into a normal CFG IR, which is done by invoking the function SSA_Restore.

5.3.6 Software-Hardware Partitioner pass

The Software Hardware Partitioner (SHP) pass is an implementation of the algorithm

described in Section 4.3. Profiling information is generated by the SPAMSIM2 by

running the original MIPS code (without HW/SW partitioning and thread partitioning).

The run-time instruction count information is written into file "pathprofile". The SHP

pass is able to characterise specific basic blocks as hot execution path, by using the

information from "pathprofile". The rest of the basic blocks represent non-critical parts

of the application. With the grouping algorithm, one or several candidate basic blocks

are grouped together to form the hardware blocks.

Then data-flow analysis is performed on these hardware blocks by using the data

flow graph generation class DFG and the SSA pass. The SSA IR provides the

information of available expressions, live variables, and reaching definitions. Also each

variable in the hardware block just has a unique name, which eases the difficulty of
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hardware netlist generation. The DFG class determines how these hardware blocks

manipulate data flowing in and what the output data for these blocks are.

Once the DFG is generated, the SHP will perform a one-to-one mapping to a

hardware netlist from the macro library. The macro library of the different functional

blocks for the RFU simulations are generated by the CORE generator and then

synthesised on the Xilinx ISE tool flow. The power consumption and delay information

are taken into the SHP passes and provided a macro-lib for the compilation tool flow.

The black box descriptions of hardware operations for RFU are summarised in the

following Table 5-2.

Category Descriptions
Input Pins Describe the input pins of current hardware black

box.

Output Pins Describe the output pins of current hardware black
box.

ROP Group of the data flow graphs descriptions, which
will be evaluated by the RFU in SPAMSIM2
simulator.

Size Estimated logic cells numbers of current hardware
block size from information provided by the macro

library.
Delay Estimated delay of current hardware block in

nano-seconds.

Current Estimated current to drive current hardware block.

This information is obtained from Xilinx XPower

tool, and will be used by SPAMSIM2 to estimate
power consumption and energy consumptions.

Table 5-2 : Hardware black box description.

After the hardware blocks are extracted, the corresponding ROP instructions will

be placed into the original source program body. Each ROP instruction has a unique

sequential number, which provides a reference for the SPAMSIM2 simulator to load

the corresponding hardware block box. The input and output pins of the hardware black

box are mapped to the source variables and destination variables of the ROP

instruction. The rest of the software codes remain the same as MIPS ISA form.
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5.3.7 Thread Analyser pass

The Thread Analyser pass (TA) is the pass of the implementation of the threaded

partitioning algorithms described in Section 4.2. The TA pass exploits loop-level

parallelism and speculative threads, which requires underlying MAPS+ architecture

hardware support. Along with the loop information and Control Flow Analyser (CFA)

pass [186], the TA is able to partition the sequential C code into multithreaded MIPS

assembly code for the multithread SPAMSIM2 simulation environment.

From the profiling information, the TA pass is able to evaluate the benefit of

parallelisation for each loop nest, and choose the most profitable loop nests for

parallelisation. Loop induction variables are identified via the control flow analyser

pass. The loop-carried control dependencies can be speculated. From the data

dependence analysis, the TA will also try to locate the appropriate places for

speculative threads in sequence code body. Data value predictor supported in MAPS+

architecture provides the possibilities to improve thread-level parallelism among

speculative threads.

5.3.8 Register Allocation

The MachSUIF provides a register allocation pass (Raga), which uses graph colouring

algorithm [ 185] for register allocation. Algorithm implemented in raga creates a graph

to represent variables and conflicts between variables. A colouring is then a

conflict-free assignment. If the number of colours used is less than the number of

registers, then a conflict-free register assignment is possible. If the conflictive register

assignment happens, the Raga pass has to insert register spills to save values in

memory. The Raga does not determine the position of each spill on the stack, and the

code finalisation pass will resolve the memory address allocation.
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5.3.9 Code flnalisation

Code finalisation pass (Fin) is responsible for the final translation work. It allocates the

stack frame for each compiled procedures. The Fin pass also adds code to save and

restore callee-saved registers. The symbolic reference to the stack-frame locations are

replaced by effective-address expressions with specific frame offsets. Also prologue

code and epilogue code for the MAPS+ architecture are introduced.

5.3.10 Code Generation

After the code is finalised, the MAPS+ compiler needs to print the assembly code. An

assembly code printer named m2s performs this task, which is a modification of

original MachSUIF m2a pass. The code generation pass has been extended to handle

the multithreaded instructions and ROP instructions and the pass is capable of

generating header bootstraps to invoke the main functions.

5.3.11 Standard C library emulation

The benchmark programs invoke several C library functions which are not provided in

the SUIF/MACHSUIF compilation framework. The detlibcf 16] package was chosen

for the MAPS+ compiler to provide the statically-linked standard C library, which

contains the system call wrappers and commonly used standard C functions with small

binary size. The dietlibc source codes are compiled by the SUIF C compiler into SUIF

IRs. With the SUIF link tool, the library and the benchmark programs will be linked

into one big SUIF IR, which can be analysed and optimised by the SHP/THP passes.

Finally the C I/O functions are compiled into low-level system calls. The SPAMSIM2

provides a similar mechanism to execute these system calls as the one used in the

SimpleScalar[17] simulator. SPAMSIM2 simulator emulates the system calls by

translating them to equivalent host operating-system call and executes the calls on the

benchmark program's behalf. For example, a fwrite() function is executed in the

following order: 1) When fwrite() is invoked, the source code body provide by dietlibc
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will be executed. 2) The control is passed to write function by the dietlibc function call.

3) Then a write() system call function is emulated in the SPAMSIM2 simulator, write

buffer data are passed from SPAMSIM2 memory space to operating system memory

space and the result of execution will be written back to the result register of the

SPAMSIM2 simulator, which will be accessed by the benchmark program.

5.4 Summary

The simulation and compilation framework have been described in detail in this

chapter. The SPAMSIM2 simulator have been introduced, which models different

aspects of an MAPS+ architecture, such as handshaking protocols conducted by CMs,

event-driven communication kernel for the asynchronous design, and different

functional units for performing execution. Then the power and energy consumption

model based on the Wattch power analysis tool has been introduced in detailed.

Furthermore, the compilation framework implementing the algorithms described

in Chapter 4 are also introduced. The framework based on the SUIF2 and MachSUIF

infrastructure. The passes perform the software hardware partitioning functions for

deploying codes into RFUs and other functional units, and thread partitioning functions

for spreading code into different TPUs. The next chapter describes the results of

executing the benchmarks on MAPS+ architecture.

>

I
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Chapter 6
Experimental Results

6.1 Introduction

This chapter presents experimental results from the SPAMSEM2 simulator, which

provides performance, power and energy consumption evaluation of the MAPS+

architecture for the execution of benchmark programs.

Firstly, the benchmark programs are summarised. Then the simulation

environment setup for the synchronous baseline and the asynchronous MAPS+

architecture are introduced. The performance and energy consumption results are

presented, which are divided into four sections. With different configuration files for

the SPAMSIM2 simulator, the results show the trade-off between performance, power

and energy consumption in a synchronous MIPS baseline architecture, asynchronous

MAPS architecture, asynchronous MAPS+RFU architecture, multithreaded MAPS

architecture, and multi-threaded MAPS+RFU architecture, respectively.

6.2 Benchmark programs

There is a growing demand for mobile devices to support multiple services, such as

mobile office applications, multimedia services, wireless communications,

video/audio codecs, compression and error correction algorithms. Therefore, ten

benchmark programs were chosen to represent these aspects of embedded

applications.

Dijkstra's algorithm for shortest path calculation was chosen as it is used for

routing packets in networking applications; the Patricia program represents routing
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tables in networking applications. Two programs were included from the security

applications category: BLOWFISH - a symmetric block cipher algorithm, and SHA -

an algorithm for secure hashing. Telecommunication programs are another important

category in our benchmark programs. The final category represents program

commonly used in communications, such as Fast Fourier Transform (FFT) algorithm,

the GSM and ADPCM audio codec algorithms, the frequency hopping generator for

Bluetooth [14] baseband, and the CRC32 error correction algorithm, and a data

compression algorithm - GZIP. These benchmark programs were obtained from

different sources, mainly from the MiBench [1] benchmark set, the frequency hopping

program from Bluetooth baseband test bed and GZIP program from SPEC2000[15].

More details on the benchmark programs are listed in Appendix A.

The C source files of the benchmarks (with minor modifications for input and

output purposes) were compiled into MIPS like assembly codes for execution on the

SPAMSIM2 simulator. For the simulations to be tractable, medium-sized datasets

were chosen as input for the MiBench. The benchmarks were executed until

completion with the average number of the instructions in each benchmark being

around 90-120 million. The average simulation time for a benchmark was between 50

to 60 minutes on a Pentium IV 3.2 GHz desktop with 2GB memory.

6.3 Simulation setup

The SPAMSIM2 can be configured to run in different modes, such as synchronous

mode, asynchronous mode, RFU mode, multithreaded mode, and a combination of

these modes. Details of the configuration file and the invoking script can be found in

Appendix B.

The parameters of the baseline synchronous processor shown in Table 6-1 are

based on the MIPS 4K processor [8] using the 180nm CMOS process. The speed

chosen for the synchronous baseline process is 250 MHz. It uses a 5-stage pipeline with

a configurable instruction issue width - choice of 1, 2 and 4. The baseline processor

contains thirty-two, 32-bit general-purpose registers used for scalar integer operations
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and address calculations. In addition, there are two extra registers for the Program

counter (PC) and Thread Number (TNUM). The register file consists of two read

ports and one write port and is fully bypassed to minimise operation latency in the

pipeline. The Dinero IV Cache model provides a highly configurable cache module. In

the baseline processor model, the size of instruction cache is 8K bytes and 4-way set

associative, with a line size of 16 bytes and a LRU replacement policy. The data cache

is 16K bytes in size and has similar setup as the instruction cache. The same 180nm

CMOS process was chosen for the asynchronous MAPS+ architecture, with similar

setup for different functional units. Whilst clock frequency is not applicable for the

MAPS+, a mean operating rate was measured on SPAMSIM2 simulator, which is about

320 MHz with an average latency of 3.125 ns. In the comparison [11] of a synchronous

Manchester carry chain adder to asynchronous Manchester carry chain adder, the

asynchronous case has a 40% premium in extra. Alex Branover et al.[ 12] state that the

area overhead for converting synchronous circuits into asynchronous ones is relatively

smaller for larger circuits. In their experiments, the asynchronous circuits were about

16% larger than the original synchronous one. Based on these researches, we estimate

there is a 20-30% area overhead for the asynchronous MAPS+ over the original

synchronous MIPS.
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Synchronous Baseline Asynchronous MAPS+
Clock Frequency 250MHz (4 ns per cycle) 320 MHz (Average latency is

3.125 ns)
Instruction Cache 16K, Replace-LRU, Write 16K, Replace-LRU, Write

back-Always, Delay -(1 cycle) back-Always
Data Cache 8K, Replace-LRU, Write 8K, Replace-LRU, Write

back-Always, Delay- 1 cycle back-Always
Register Number-34, Delay-1 cycle Number- 34

Arithmetic logic Number- 1/2/3/4, Delay-1/2/3 Number- 1/2/3/4

unit cycles
Floating point unit Number - 1, Delay -2/3/4/5

cycles
Number - 1

Reconfigurable 1 - Delay estimated via Xilinx 1 - Delay estimated via Xilinx
Functional Unit ISE Tool, ISE Tool,

Superscalar FETCH_WIDTH 1/2/4 , FETCH_WIDTH 1/2/4,
features ISSUE_WIDTH 1/2/4 ISSUE_WIDTH 1/2/4

Memory Size- 32Mb, Delay - 20 cycles 32Mb

Data Forwarding Enabled Enabled i

Thread Processing 1 1/2/3/4/5/6/7/8

Unit

Table 6-1 : Configuration of synchronous multithreaded MAPS+ vs. baseline

The delay parameters used in asynchronous MAPS+ simulator are listed in Table

6-2. The model uses the same memory/cache delay values and register files accesses

values as the synchronous baseline processor. The delay parameters are based on the

180nm CMOS models used in [9][10], with assumption of improvement in technology.

The execution of instructions on the MAPS+ model consists of different levels of

micro-operations, e.g. Instruction Issue, register requests, ALU/FPU operations,

memory access, and register write back. Programmable logics for RFU are fabricated in

the same 180nm CMOS process as the rest of MAPS+ architecture. And parameters for

RFU were obtained using Xilinx Alliance tool for a Virtex II FPGA. The latencies of

different micro operations are randomised delays generated by the MAPS+ simulator

within the range of minimum and maximum delay, and taking into account data

dependent execution speeds. The values of the simulation time for the same benchmark

might vary due to the randomised delay, but the asynchronous handshaking protocol

via communication microagent in the MAPS+ architecture still guarantees repeatable
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simulation results, whereas the execution time for a simulation depend on several

factors: such as instruction type, data, and resource dependencies, and the sequence of

instructions. In the asynchronous case, the dependencies between successive

instructions introduce stalls in the issue units, by waiting for the results of previous

instruction, whereas in the synchronous model, the availability of these results

availability can be predicted exactly.

Delay- Min Value (ns) Delay- Max Value (ns)
Communication

Micro-agent
0.5 1.0

X_BUS/Y_BUS/Z_BUS 0.5 1.0

Register Delay 1 2

Control Unit 2 4

Arithmetic logic unit 3 10

Floating point unit 6 20

Memory Management Unit 2 4

Thread Issue Unit 2 4 !
Cache Delay 4 4

Memory Delay 80 80

Table 6-2 : Asynchronous MAPS+ Delay Models for 0.18pm CMOS process.

Four sets of simulations have been chosen to test the impact of small parameters

changes on the relative performance of MAPS+ architecture simulator. The

parameters of the first set has 2 ns increase over the original setting presented in Table

6-2, followed by 4 ns, 6 ns and 8 ns increases respectively. The normalised simulation

results against the original results are summarised in Figure 6-1, which shows a linear

increment in simulation time. For each set with 2 ns, 4 ns, 6 ns and 8 ns increases over

the original setting, the average normalised simulation times against original ones are

2.1, 3.1, 4.5 and 5.7 respectively. And the relative performance differences are

105.9%, 102.5%, 145.1%, 116.3%. It demonstrates that the increases in parameters

settings impact the relative performance linearly.
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Sensitivity Tests

- GZIP ADPCM_ENCODE —K—BLOW_FBH
- DDKSTRA 1 FFT PATRICIA

GSM Average

Figure 6-1: Sensitivity analysis of the SPAMSIM2 simulator

6.4 Single-threaded asynchronous MAPS

This section investigates the performance improvements for the ten benchmarks

executing on the asynchronous MAPS architecture normalised against the

synchronous MIPS baseline. The corresponding performance, power efficiency,

power consumption break-down, energy dissipation diagrams and the trend in energy

growth are also analysed.

6.4.1 Benchmark analysis

The distribution of instructions in the ten benchmarks is listed in Table 6-3. These

figures depend on the application, the processor's instruction set and the compiler, but

not on any architectural parameters of the processor such as the number of functional

units, or cache sizes. The integer arithmetic instructions dominate, as a majority of the

MiBench programs perform arithmetic-intensive signal processing relying on

fixed-point data. The cryptography algorithms - Blowfish and SHA, and the

frequency hopping generator HOP are characterised by code operating on bit-level

data, which are performed using repeated logic operations, which explains the higher

percentage of logic instructions. The audio codec, ADPCM encoder, and the
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compression algorithm, GZIP are control intensive, as demonstrated by the higher

number of branch instructions. Both the FFT and Patricia employ floating point

operations.

Instruction classes

Benchmarks Load Store Arithmetic Logic Multiply Divide Branch Floating Point Other

HOP 1.29 0.62 55.18 25.87 1.64 15.33 0.00 0.07

GZIP 13.67 7.74 54.42 6.26 3.56 14.36 0.00 0.00

ADPCM_EN 4.40 0.75 61.52 5.56 2.92 24.84 0.00 0.00

BLOWFISH 11.94 4.62 61.66 8.35 3.27 10.16 0.00 0.00

CRC32 15.74 6.31 58.27 4.71 0.79 14.18 0.00 0.00

DIJKSTRA 21.54 6.02 51.36 0.41 6.14 14.52 0.00 0.00

FFT 9.94 5.76 48.23 3.33 14.70 5.41 12.36 0.28

PATRICIA 13.19 7.45 58.33 2.63 0.45 16.80 1.14 0.01

SHA 12.36 5.74 60.84 7.66 3.21 10.19 0.00 0.00

GSM 11.83 2.11 62.52 0.54 16.48 6.52 0.00 0.00

Average 11.59 4.71 57.23 6.53 5.31 13.23 1.35 0.04

Table 6-3 : Instruction distribution for the benchmarks

6.4.2 Performance and power efficiency

The performance and power consumption were analysed based on the Wattch power

model. For fair comparison, the synchronous MIPS, without, and with clock gating

technology, were compared to the asynchronous MAPS architecture. Clock gating

technology is an effective means for reducing average power consumption in

synchronous processors. For example, the MIPS M4K [188] core contains fine

grained clock gating technology, and Azuro's PowerCentric [187] provides

fully-integrated clock gating, clock-tree synthesis, and vectorless power analysis

solution for ARM embedded processor cores.

Three types of architectures were compared in Table 6-4. For the Clock

distribution tree model, a one-level H-tree is a common clock distribution topology,

was implemented. The wire lengths of the tree was obtained from the MIPS 4K [8]

specification (2.25 mm2 in a 180 nm process). Wattch tool provides functions to

estimate the clock-tree power based on the clock-tree length. For the power model of

synchronous MIPS architecture without clock gating, it was assumed that the full
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clock power is consumed every cycle, irrespective of activity in the architecture. The

second model is a synchronous MIPS architecture with similar clock-tree model using

clock gating, which contains an idle factor for representing the ratio of power

consumed in the combinational logic when idle. An idle factor of 10% is assumed in

the simulation, with no reduction in performance when clock gating is introduced in

the architecture. The third model is the asynchronous MAPS architecture, which

employs handshaking protocols as implemented in the SPAMSIM2 simulator, and

therefore the components consume no power when idle. The factor is set to 0%. The

average speed and power consumption of the three models therefore summarised in

Table 6-4 were obtained by executing the ten benchmarks introduced in Section 6.2.

The asynchronous MAPS architecture has an average speed of 200 MIPS, which

is a 27.6% improvement over synchronous MIPS. The power consumptions for the

three architectures are 214 mw for a synchronous MIPS, 72 mw for a synchronous

MIPS with clock gating techniques, and 77 mW for asynchronous MAPS. From these

figures, one can conclude that both clock gating and asynchronous designs are able to

reduce power consumption. Taking into account that the errors in the absolute power

figures are likely to be at least 10%, we would consider the clock gated MIPS and

asynchronous MAPS power requirement are similar. Traditionally, asynchronous

designs are considered to consume less power than the corresponding synchronous

designs. However, this will not always be true when fabrication processes improve

and clock gating techniques mature.

In the simulations, the clock-gated MIPS has a 2182 MIPS/W power efficiency,

which is an improvement of 198% over the synchronous MIPS. The asynchronous

MAPS has a 2585 MIPS/W power efficiency, which is an improvement of 253% over

the synchronous MIPS and 18.4% over the synchronous clock gated MIPS. In the

context of the thesis, the synchronous baseline refers to the synchronous clock gated

MIPS architecture.
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Synchronous MIPS
architecture without

clock gating

Synchronous MIPS
architecture with

clock gating
(Synchronous MIPS
baseline)

Asynchronous
MAPS

architecture

Process 180 nm 180 nm 180 nm

Supply voltage 1.8 V 1.8 V 1.8 V

Average speed 157 MIPS 157 MIPS 200 MIPS

Average power

consumption
214 mW 72 mW 77 mW

Power

efficiency
732 MIPSAV 2182 MIPSAV 2585 MIPSAV

Table 6-4 : Performance and power efficiency comparisons of synchronous MIPS and
asynchronous MAPS architecture

6.4.3 Performance speedup

Figure 6-2 shows the performance improvement for the ten benchmarks executing on

the asynchronous MAPS architecture normalised against the clock-gated synchronous

MIPS baseline. The processors, both synchronous and asynchronous, were configured

to explore the impact of increasing the number of ALUs from one to four. Multiple

instructions could be fetched and issued in the same cycle. The data dependencies

between instructions limit the exploitable parallelism with average speedups in the

synchronous architecture limited to 12.2%, 14.6%, and 15.1% for 2 ALUs, 3 ALUs

and 4 ALUs, respectively.

The asynchronous MAPS architecture exploits fine-grained concurrency by

executing micro-operations concurrently. The improvements of the asynchronous

MAPS over the baseline for the average speedup are 35.0%, 41.5%, 42.8% and 42.9%

for 1 ALU, 2 ALUs, 3 ALUs, and 4 ALUs, respectively.

The Dijkstra benchmark has a relatively low improvement in the asynchronous

MAPS with an average improvement of just 14.6%. The reason is due to the high

frequencies of load- and store-memory operations in the Dijkstra benchmark. It has a

distribution of 21.5% load instructions (read data from memory or cache) and 6.02%
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distribution rate of store instructions (write data to memory or cache). Given that fully

asynchronous memory systems are difficult to implement, the cache and memory are

the same in both asynchronous MAPS and the synchronous MIPS baseline, although

the latter has an extra asynchronous handshake wrapper to handle communication

between the asynchronous data path and the synchronous memory system.

HOP GZIP ADPCM BLOW FISH CRC32 DIJKSTRA FFT PATRICIA SHA GSM
ENCODE

d Sync MIPS Baseline 1 ALU ■ Sync MIPS Baseline 2ALUs □ Sync MIPS Baseline 3ALUs □ Sync MIPS Baseline 4ALUs
■ Async MAPS 1ALU □ Async MAPS 2ALUs ■ Async MAPS 3ALUs □ Async MAPS 4ALUs

Figure 6-2: Speedup of asynchronous MAPS compared to synchronous MIPS baseline

with variable number of ALUs.

6.4.4 Energy consumption

As stated in Section 5.2.6, the power and energy analysis tool in the SPAMSIM2

simulator is based on the Wattch power tool. The normalised energy breakdown for

each benchmark is shown in Figure 6-3, Figure 6-4, and Figure 6-5. On average,

about 33.2% of energy in the synchronous clock gated MIPS baseline with one ALU

configuration is spent in the instruction cache and 14.1% in the data cache. In contrast,

the asynchronous MAPS architecture spends about 32.9% of the energy in the

instruction cache, and 12.3% in the data cache. The energy spent in the cache

contributes a substantial proportion of the total energy in both synchronous and

asynchronous cases.
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Around 13.5% of energy in the synchronous baseline is spent in the clock. In the

MAPS architecture, the global clock is replaced by CMs for synchronisation. The

CMs consume 2.3% of the energy in the MAPS model, which is much less than the

clock energy in the synchronous baseline. Floating-point units are expensive in terms

of both area and power consumption, and their high latencies are usually difficult to

hide. In the simulation, two floating-point benchmarks were executed. In the case of

FFT, the proportion of energy spent in FPU is 32.7% in the synchronous clock-gated

MIPS, and 21.5% in MAPS, and in the case of Patricia, the proportions are 39.4% in

synchronous MIPS baseline, and 37.2% in MAPS, respectively.
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the asynchronous MAPS architecture
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As shown in Table 6-4, the power consumption of MAPS is similar to

synchronous clock-gated MIPS, within 10% margin of error. However, MAPS

provides the potential to explore average case performance instead of worst case

performance. Therefore, the MAPS simulation demonstrates less energy consumption

and the average energy savings are 9.3% for one-ALU case, 12.2% for two-ALU case,

20.3% for three-ALU case, and 28.4% for four-ALU case.

Furthermore, for investigating the scalability issues of synchronous and

asynchronous architectures, Figure 6-6 depicts the normalised increase in energy

consumption for the synchronous MIPS and asynchronous MAPS with different ALU

numbers. The average increase in energy for the MAPS architecture is 2.7% per ALU

compared to 11.0% for synchronous MIPS. These results show that asynchronous

MAPS architecture scales better.
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6.5 Single-threaded asynchronous MAPS+ RFU

The asynchronous MAPS architecture with integrated Reconfigurable Fictional Unit

(RFU) has been described on Chapter 3 and the ten benchmarks outlined in section

5.6.2 were chosen to exercise the performance of the single-thread asynchronous

MAPS+RFU architecture. Programs were compiled via the SHP pass, which

implements the algorithms described on Chapter 4.

6.5.1 Benchmark analysis

Instruction distribution for the benchmarks with hardware and software partitioning is

listed in Table 6-5. With the reconfigurable functional unit, group of arithmetic, shift

and logic operations of the sequential code within one basic block or across several

basic blocks were converted into a single ROP, and internal data parallelism of the

RFUs will accelerate the execution speed of the program. In the HOP benchmark,

hand-coded optimisation arranged several shift and logical operations in one single

basic block, leading to a higher ratio of hardware code extraction. However, extracting

floating-point operations have been avoided given that complexity of implementing

them in field programmable logic.

Instruction Classes

Benchmarks Load Store Arithmetic Logic Multiply Divide Branch Floating Point ROP Other

HOP 0.77 0.48 28.95 1.95 0.75 11.93 0.00 55.12 0.05

GZIP 11.21 6.79 47.34 4.76 2.42 12.95 0.00 14.55 0.00

ADPCM_EN 1.27 0.65 49.23 3.54 0.00 21.40 0.00 23.90 0.00

BLOWFISH 10.08 4.54 52.82 6.97 2.85 10.06 0.00 12.68 0.00

CRC32 13.17 5.44 49.64 3.10 0.78 13.96 0.00 13.92 0.00

DIJKSTRA 14.51 4.62 29.42 0.30 1.29 11.46 0.00 38.40 0.00

FFT 9.58 5.72 46.38 3.29 13.49 5.37 12.27 3.64 0.27

PATRICIA 11.37 7.36 50.25 0.73 0.37 16.45 1.12 12.34 0.01

SHA 10.74 5.33 58.12 6.40 2.81 9.67 0.00 6.93 0.00

GSM 11.03 1.41 56.72 0.23 15.29 6.24 0.00 9.08 0.00

Average 9.37 4.23 46.89 3.13 4.00 11.95 1.34 19.06 0.03

Table 6-5 : Instruction distribution of benchmarks with HW/SW partition
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The HOP kernel consists mainly of bit manipulation and shift operations and has a

simple control flow as shown in Figure 6-7, which leads the SHP compiler pass to

extract group of instruction to form ROPs. In order to improve the performance of

programs running on the MAPS+ architecture, hand-coded optimisation of the source

code is sometimes needed to group more arithmetic and logic operation into ROPs.

C

Figure 6-7: Block diagram of HOP selection kernel for the Bluetooth baseband.

The SHP extracts the hardware code from the sequential C automatically. While the

ROP instructions are inserted into the MIPS assembly code, dummy hardware block

descriptions will also be generated by the compiler. Table 6-6 shows the binary code

size after hardware and software partitioning. The estimated bitstream size of FPGA

logic blocks are based on the Virtex [20] configuration information provided by

Xilinx.

Baseline binary size (bytes) HW/SW binary size (bytes) ROP Number

HOP 1548 55884 4 !
GZIP 217031 607471 40

ADPCM_EN 151097 164649 2

FFT 152208 295828 5

GSM 231071 448055 30

CRC32 152932 165716 3

BLOWFISH 191179 215976 9

Dijkstra 191179 274699 13

PATRICIA 159117 362029 15

SHA 152177 186357 5

GSM 231071 448055 30

Table 6-6 : Baseline binary size and HW/SW binary size.
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As mentioned in Table 5-2 in Section 5.3.6, the hardware parameters for a ROP

are obtained from Xilinx Alliance and XPower tools. The information for a specific

ROP is loaded into the SPAMSIM2 simulator. Data parallelism provided by RFUs

comes with the extra overhead, which includes time to load configuration from

memory, and time to deploy configuration on FPGA's SRAM. For a specific ROP, the

normalised overhead is the ratio of time of loading and deploying the configuration

onto the FPGA to the time of executing the instruction. Equation 6-1 shows how one

measures the average normalised overhead in a benchmark. TIMEioadi„g r0pj is the
time to load ROPi from memory into RFU, TIMEDepioying_ropj is the time to deploy

ROPi to RFU's configurable fabric, and TIMEExecutwg_ropj is the time for executing the

ROPi

n TIMF + T1MF
Overhead = (t W"«-rop-'h timew_rop_,.

Equation 6-1: Average normalised overhead of reconfiguring ROP

In a synchronous system, the normalised overhead is an illustration of cycles of

reconfiguring a ROP instruction. Figure 6-8 illustrates the normalised overhead

measure on the synchronous MIPS baseline with RFU. There are no RFU caches and

multi-context switching enabled in the simulation.

Figure 6-8: Quantised reconfiguration overhead of the benchmarks
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From this figure, it is clear that the ROP operations incur higher overheads for

loading and deploying. Without mechanisms to hide the overhead, reconfigurable

functional unit is unable to bring any benefit to accelerating the execution speed. The

actual time for executing a ROP is illustrated in Equation 6-2. We assume the

configuration of a ROP is loaded once. In order to match the ROPi actual executing

time {TIMEActuai Executing_ropJ) with the ideal executing time TIMEExecuting_roPj, it is

required to execute the ROPi as much as possible. The execution number of such

ROPi is EXEC_NUMBERropj. However, this execution number is controlled by the

program, and can not be optimised at run-time.

TIMEFxecut. rnn . x Overhead .
TIME . = TIMF H Executing _rop_i rop_iAcutal

_ Executing _ rop _ i Executin _ rop _ i EXEC NLJMfBER

Equation 6-2: Actual time for executing a ROP

Combining Equation 6-1 and Equation 6-2, one can conclude that reducing

loading and deploying times of a ROP results in lower overhead. Caches can be used

to hide the latency of loading data access time. RFU caches are introduced into the

MAPS+RFU architecture. Furthermore, multiple contexts are used to reduce the

deploying time.

6.5.2 Performance and power efficiency

In this section, performance and power efficiency are analysed on the MAPS+

architecture with RFU. From Table 6-7, the average speed of the benchmark is 212.1

MIPS, which is a 35.4% improvement over the synchronous clock-gated baseline.

However, the improvement over an asynchronous MAPS with one ALU is reduced by

6.1%. It shows that the RFU contributes a small amount to the speedup and to the

overall performance. As extra hardware is introduced, such as the RFU and RFU

cache, more power is consumed. In the simulation, the average power consumption is

388 mW with a 439.9% increase over the synchronous clock gated MIPS and 391.5%
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increase over the asynchronous MAPS. Also the power efficiency is reduced to 547

MIPS/W.

These results show that RFU is not an efficient way for accelerating normal

applications on a battery-driven embedded environment. In the asynchronous

MAPS+RFU architecture setup, we have to trade an extra 392% power for a 6%

performance improvement. Even though with automatic HW/SW partitioning

techniques in the compiler, one still needs to carefully choose suitable applications for

such reconfigurable computing architecture, e.g. baseband processing, hardware

optimised video and audio codecs.

Asynchronous MAPS+ RFU architecture

Average speed 212 MIPS

Average power consumption 388 mW

Power efficiency 547 MIPS/W

Table 6-7 : Performance and power efficiency of MAPS+RFU architecture

6.5.3 Performance Speedup

The technique to hide the reconfiguration latency is important to improve the

performance of a reconfigurable computing system. In previous research [18] has

investigated configuration compression, configuration caching and configuration

prefetching techniques for reconfigurable systems. The caching technique increases

the likelihood of the required configuration being present on-chip. It is claimed that

the configuration caching technique can reduce the reconfiguration overhead by a

factor of 2.5 to 10. The RFU cache is similar to a data cache, which holds the

configuration in the RFU internal memory to reduce reconfiguration overhead. In the

simulations, LRU algorithm is used to replace the configuration at runtime. A

multiple-context [21][22] RFU is integrated in the MAPS+ architecture, which has

multiple layers of bitstreams and activates a different layer at different times.

In order to evaluate the impact of increasing the RFU cache on the overall

performance of the MAPS+ architecture, the benchmark programs were simulated on
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the SPAMSIM2 simulator with one ALU with different cache sizes (64 K, 128 K, 256

K, 512 K, 1024 K, and 2048 K).

The diversity of ROPs configuration size and latency among different benchmark

programs leads to very different cache requirements. In the HOP selector benchmark,

the performance of MAPS+ with 32 K RFU is 99.2% slower than the asynchronous

MAPS. The performance is only improved marginally by increasing the RFU cache to

128 K, but it still exhibits a 94.6% slowdown. The main reason for the slowdown is

the inadequate RFU cache provided, and the MAPS processor has to stall until

completion of the RFU's configuration. For the majority of benchmarks, a cache size

of 128K is adequate. Inadequate cache sizes decrease performance, whereas a large-

sized cache does not improve performance either, as seen in the cases of ADPCM and

CRC32 benchmarks.

A configurable cache adds flexibility to the RFU. From the simulation, one can

find out the optimised cache configuration for different applications. Several methods

[23][24] [25][26] enable tuning of cache parameters to the needs of the applications. In

Albonesi et al's design [24], there is partitioning of the data into one or more

sub-arrays for each cache way. Decision logic and gating hardware for disabling the

operation of particular ways, and software-visible register for signalling hardware to

enable/disable particular ways are used to disable a subset of the ways in a set

associative cache during periods of modest cache activity. This approach trades off a

small performance degradation for energy savings. Zhang et al [26]'s configurable

cache design allows the ways to be concatenated to form either a direct-mapped or

2-way set associative cache.

In the current SPAMSIM2 simulator, such techniques have not been implemented

and the cache sizes are optimised manually. Implementation of these automatic cache

configuration methods in the MAPS+RFU architecture is left as future work. By

adapting these methods, one is able to optimise MAPS+ architecture by fine-tuning

the cache parameters at runtime to achieve the best performance. The impact of

increasing the RFU cache size on the energy consumption is analysed in the next

section.
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The normalised speedup of MAPS+RFU over asynchronous MAPS architecture

with one ALU is illustrated in Figure 6-9. Average speedups for the MAPS+RFU

against asynchronous MAPS are -70.5%, -43.6%, -14.7%, -13.3%, 10.5%, 10.5% and

10.5% with 32K, 64K, 128K, 256K, 512K, 1024K and 2048K RFU cache sizes,

respectively. The highest speedup of 47.6% is achieved with the HOP benchmark with

a 128K RFU cache. Hand-coded optimisations were performed on the HOP

algorithms, which reduces the control-flow complexities and increases the basic block

sizes. Excluding the HOP benchmark, the average speedups achieved are -67.3%,

-37.9%, -21.6%, -20.1%, 6.4%, 6.4%, and 6.4% with 32K, 64K, 128K, 256K, 512K,

1024K and 2048K RFU cache sizes, respectively. Without the hand-coded

optimisations, the average speedups are quite small.

The above simulation results show that a reasonably large sized cache and manual

optimisation applications are critical for the MAPS+RFU architecture. It trades extra

hardware, power and development time for improving performance. However, the

price of a large size cache, the complexity of implementing the configurable cache,

and the extra power consumption might inhibit chip manufacturers from introducing

the reconfigurable computing elements into hand-held embedded processors.

Therefore, the reconfigurable computing architecture, such as the MAPS+RFU might

be more suitable for applications such as set-top boxes.
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Furthermore, the performance of MAPS+RFU is evaluated by comparing the

MAPS+RFU performance with the synchronous clock gated MIPS baseline and the

asynchronous MAPS architecture with ALUs ranging from one to four. The average

performance improvements are around 49.2%, 10.5%, 5.4%, 4.4% and 4.4% for

MAPS+RFU compared to the synchronous clock-gated MIPS, and MAPS with 1, 2, 3,

and 4 ALUs respectively. By taking away the hand-coded optimised HOP benchmark,

the average performance improvements are reduced to 43.8%, 6.4%, 2.4%, 1.7% and

1.7% for MAPS+RFU against synchronous clock-gated MIPS, and MAPS with 1, 2, 3,

and 4 ALUs respectively. In the case of the SHA and GSM benchmarks, the

MAPS+RFU architecture can not surpass the MAPS with two ALUs version. The

reasons for the RFU performing badly are mainly because of the complex control

paths in these applications, frequent memory accesses, and reconfiguration overhead.

These results show that MAPS+RFU achieves performance similar to a

super-scalar MAPS architecture with multiple ALUs in most of the un-optimised

applications, but it also consumes more energy (explained in more detail in the next

section). Therefore, un-optimised applications are not recommended on a

MAPS+RFU architecture.

HOP GZIP ADPCM BLOW FISH CRC32 DIJKSTRA FFT PATRICIA SHA GSM

ENCODE

O MAPS+RFU vs Sync Baseline H MAPS+RFU vs MAPS I ALU □ MAPS+RFU vs MAPS 2ALUs
□ MAPS+RFU vs MAPS 3ALUs ■ MAPS+RFU vs MAPS 4ALUs

Figure 6-10: Speedup of the asynchronous MAPS+RFU architecture over the

synchronous clock gate MIPS baseline and asynchronous MAPS.
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6.5.4 Energy consumption

The flexibility of the RFU is provided by the programmable FPGA fabric. In the

asynchronous MAPS+RFU architecture, the synchronous FPGA was integrated with

CMs to support asynchronous handshaking protocols. The FPGAs trade additional

silicon area and power consumption for flexibility. Routing tracks consume some

amount of energy each time they switch. In addition, the programmable switch and

cache memory for storing the configuration bitstreams increase the energy dissipation

of FPGAs.

Detailed energy consumptions are displayed in Figure 6-11, Figure 6-12 and

Figure 6-13. The RFU and the RFU cache contribute to large proportions of the total

energy dissipation. Although small cache consumes less power, inadequate cache sizes

significantly degrade the system performance, with a longer elapsed execution time,

and the total energy consumption increase. However, when the cache size reaches an

optimal size, the energy consumption will be reduced due to performance

improvement.

From the observations on these energy consumptions figures, one can figure that

different benchmarks have quite different requirements for RFU cache. As mentioned

in the previous section, a configurable cache provides benefits by fine tuning cache

parameters, and enabling/disabling cache banks. Obviously, the flexibility comes at a

price, as it requires extra control logic and a heuristic learning algorithm [23] [24] to

teach the cache. But these algorithms are beyond the scope of this thesis, and should be

studied in the future.
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Figure 6-11: Energy dissipation breakdown by functional units in the asynchronous

MAPS+RFU architecture for different cache sizes.
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Figure 6-12: Energy dissipation breakdown by functional units in the asynchronous

MAPS+RFU architecture for different cache sizes.
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■ RFU Cache □ Branch Unit □ ALU 1
■ Clock ■ FPU

Figure 6-13: Energy dissipation breakdown by functional units in the asynchronous

MAPS+RFU architecture for different cache sizes.

Figure 6-14 displays the normalised energy consumption increase for asynchronous

MAPS+RFU normalised against asynchronous MAPS for different cache size. The

energy consumption increase is on average 2283%, 836%, 737%, 880%, 287%, 436%

and 638% with 32K, 64K, 128K, 256K, 512K, 1024K and 2048K respectively. These

figures demonstrate that RFU is expensive to implement. Again, this will become

factors for not introducing RFUs in embedded processors where energy consumption

is critical.

163



BC
u
4>
S

fcd
"O

J
"cs
s
u
o
z

Async MAPS+RFU MAPS+RFU MAPS+RFU MAPS+RFU MAPS+RFU MAPS+RFU
MAPS 64K 128K 256K 512K 1024K 2048K

GZIP
CRC32
GSM

ADPCM_ENCODE
PATRICIA

BLOW FISH
SHA

(a) Benchmarks with lower variability

120

wo
L.
W
c
U
■o

J
~a
E
u
o
Z

Async MAPS+RFU MAPS+RFU MAPS+RFU MAPS+RFU MAPS+RFU MAPS+RFU
MAPS 64 K 128K 256K 512K 1024K 2048K

-♦—HOP DURST RA • FFT

(b) Benchmarks with higher variability

Figure 6-14: Energy consumption for asynchronous MAPS+RFU with different cache

sizes normalised against asynchronous MAPS architecture.
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6.6 Multithreaded asynchronous MAPS

The aim of the multithreaded experiments was to explore the scalability of a

multithreaded environment and the trade-off between performance and energy

consumption by varying the number of active TPUs. The impact of speculative

threads was also evaluated.

6.6.1 Benchmark analysis

In order to explore thread-level parallelism, the benchmarks were analysed with the

thread partitioning compiler pass. As illustrated in Table 6-8, different numbers of

multithreaded instructions are automatically extracted by the compiler. In the

experiment, the ADPCM encoder provides the highest level of instruction distribution

rate of multi-threaded instructions, which is about 18%. This is because the main

body of the ADPCM encoder is a loop body which takes 16-bit linear PCM samples

and converts them to 4-bit samples, yielding a compression rate of 4:1, and does not

involve complex control flows that are found in the GZIP or GSM benchmarks. The

thread-level parallelism is also dependent on other factors, such as data dependencies

between adjacent loop bodies. Detailed speedup results will be discussed in the next

section.

Instruction Classes

Benchmarks Load Store Arithmetic Logic Multiply Divide Branch Floating Point Multi Thread Other

HOP 1.38 0.76 46.46 23.94 6.29 14.19 0.00 6.91 0.06

GZIP 12.45 7.06 52.33 5.67 3.22 13.00 0.00 6.26 0.00

ADPCM_EN 3.61 0.62 50.45 4.56 2.40 20.37 0.00 17.98 0.00

BLOWFISH 11.94 4.57 59.11 8.18 3.50 9.96 0.00 2.75 0.00

CRC32 14.91 5.98 55.23 4.47 0.75 13.44 0.00 5.23 0.00

DIJKSTRA 20.83 5.88 51.18 0.39 5.92 14.00 0.00 1.79 0.00

FFT 10.04 5.78 46.70 3.33 14.80 5.42 12.39 1.26 0.28

PATRICIA 12.93 7.39 57.33 2.52 0.43 16.15 1.10 2.12 0.01

SHA 11.55 5.36 60.75 7.16 3.00 9.52 0.00 2.66 0.00

GSM 11.70 2.06 59.70 0.52 16.04 6.36 0.00 3.62 0.00

Average 11.14 4.54 53.92 6.08 5.63 12.24 1.35 5.06 0.04

Table 6-8 : Instruction distribution of benchmarks with multithreaded instruction
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6.6.2 Performance and power efficiency of non-speculative maps

In this section, simulations have been executed on MAPS architecture with

non-speculative threads with different numbers of TPU. The number of ALUs in each

TPU was set to 2, as it was observed in Section 6.4 that larger numbers of ALU had

limited improvement in speedup. All the benchmarks contain a certain number of

loops, which were the main target for threads extracted by SHP compiler pass. No

thread level control speculations and data predications were enabled.

The average speeds, power consumption and power efficiency are shown in Table

6-9. With more TPUs, the power consumption increases. The average power increase

per TPU is 33 mW. Due to inefficient thread-level parallelism, the power efficiency is

reduced from 2036 MIPS/W to 1154 MIPS/W. As a result, in order to fully exploit the

potential of multithreaded MAPS+ architecture, more advanced threaded control and

extraction techniques are needed.

Speed Power Power efficiency
MAPS w th 2 TPUs 234 MIPS 115 mW 2036 MIPS/W

MAPS w th 3 TPUs 261 MIPS 145 mW 1798 MIPS/W

MAPS w th 4 TPUs 282 MIPS 175 mW 1612 MIPS/W

MAPS w th 5 TPUs 306 MIPS 210 mW 1459 MIPS/W

MAPS w th 6 TPUs 322 MIPS 246 mW 1311 MIPS/W

MAPS w th 7 TPUs 349 MIPS 280 mW 1244 MIPS/W

MAPS w th 8 TPUs 363 MIPS 314 mW 1154 MIPS/W

Table 6-9 : Performance and power efficiency of non-speculative multithreaded
MAPS architecture.

6.6.3 Contention of MAPS with non-speculative threads

As discussed in Chapter 3, the top level architecture of the multithreaded MAPS is

similar to a Network-on-Chip processor. TPUs communicate with each other via

switches. Each switch is connected to a local TPU, and has four directions to connect

to neighbouring switches or the shared buses to access shared memory and the

166



scheduler. The topology of the TPUs and switches are arranged in a mesh network.

In order to evaluate how the switch buffers affect the contention in the MAPS

on-chip network, we configured the switch with different buffer sizes and executed

the ten benchmarks on the SPAMSIM2 simulator. The buffer sizes ranged from two

words (eight bytes), four words, eight words, sixteen words, to thirty-two words. Each

set of simulation doubled the buffer size of the previous set. And the TPUs numbers

are set from two to eight.

A data packet is requested to be sent from one switch to the forwarding switch,

and should the latter be busy to receive such a packet, then contention occurs and

congestion is recorded in the simulator. Therefore, the congestion rate is the ratio of

the total number of stalled packets to the total number of packets passed in the

multithreaded MAPS on-chip network. The congestion rates of the MAPS

architecture with different switch buffer sizes for the ten benchmarks are shown in

Figure 6-15 with the numbers of TPU ranging from two to eight.

The simulation results show that congestion rates are reduced when the size of

switch buffer is increased as would be expected. It is mainly due to the fact that when

a switch buffer is large enough, data packets can be stored in the forwarding switch's

local buffer in the event of contention, and no stall need occur. Therefore, contention

is avoided with the resulting increase in performance. The average congestion rates

are 9.3%, 8.65%, 7.46%, 5.10% and 0.59% for multithreaded MAPS with 2-, 4-, 8-,

16- and 32-word switch buffers, respectively. To improve the multithreaded MAPS

performance and reduce the congestion rate, extra memory and power are required.

This is a trade-off between memory, power and performance.
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Figure 6-15: Congestion rates for multithread MAPS with different switch buffer sizes
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The impact of increasing TPU numbers on the contention for multithreaded

MAPS's on-chip network was also investigated. The same set of simulation results are

displayed in Figure 6-16, with the TPU numbers along the X-axis and congestion rate

along the Y-axis.

When the switch buffer was set to thirty-two words, most of the contention was

avoided irrespective of the number of TPUs. However, when the switch buffer is

smaller than or equal to sixteen words, different benchmarks behave quite differently.

For example, the main trend in the congestion for HOP, Dijkstra, FFT, Patricia and

SHA benchmarks is a fall or maintenance of a certain level when TPU numbers are

increased. The congestion rates for the other benchmarks rise when TPU numbers are

increased.

From an examination of the threaded source codes of different benchmarks, this

behaviour is caused by the overhead due to inter-thread communication and shared

memory accesses. The main threads generated in the HOP, Dijkstra, FFT, Patricia and

SHA are from the outer loops of the applications. The inter-TPU communications

occur when data is required to be passed from the current iteration (source TPU) to

the next iteration (destination TPU) in the loop body. This benchmark contains weak

data dependency between different loop bodies and the amount of inter-TPU

communications is small. The contentions in these benchmarks are caused by shared

memory access. Therefore, more communications channels are provided to access the

shared memory when the TPU number is increased, and less contention occur.

On the other hand, the GZIP, ADPCM_ENCODE, CRC32 and GSM benchmarks

are data encoding applications. For example, in the GZIP application, each iteration

needs to search a matching string in the source data based on the previous iteration's

search, and placed in the hash table, which results in large amounts of inter-TPU

communication. As a result, when TPU numbers are increased, the total amount of

inter-TPU communication also increases, and the probably of contention is greater.

169



MAPS2 MAPS 3 MAPS4 MAPS 5 MAPS6 MAPS 7 MAPS 8

TPUs TPUs TPUs TPUs TPUs TPUs TPUs

8 WORDs 16 WORDs -

ADPCM ENCODE

0.80%

0.70%

a 0.60%
<2 0.50%

J 0.40%

| 0.30%
Q 0.20%

0.10%

0.00%

MAPS2 MAPS 3 MAPS4 MAPS 5 MAPS 6 MAPS 7 MAPS 8

TPUs TPUs TPUs TPUs TPUs TPUs TPUs

MAPS 2 MAPS 3 MAPS4 MAPS 5 MAPS 6 MAPS 7 MAPS 8

TPUs TPUs TPUs TPUs TPUs TPUs TPUs

MAPS 2 MAPS 3 MAPS4 MAPS 5 MAPS 6 MAPS 7 MAPS 8

TPUs TPUs TPUs TPUs TPUs TPUs TPUs

MAPS 2 MAPS 3 MAPS 4 MAPS 5 MAPS 6 MAPS 7 MAPS 8

TPUs TPUs TPUs TPUs TPUs TPUs TPUs

MAPS2 MAPS 3 MAPS4 MAPS 5 MAPS 6 MAPS 7 MAPS8

TPUs TPUs TPUs TPUs TPUs TPUs TPUs

8 WORDs X 16 WORDs-

MAPS2 MAPS 3 MAPS 4 MAPS 5 MAPS 6 MAPS 7 MAPS 8

TPUs TPUs TPUs TPUs TPUs TPUs TPUs

MAPS2 MAPS 3 MAPS4 MAPS 5 MAPS 6 MAPS 7 MAPS 8

TPUs TPUs TPUs TPUs TPUs TPUs TPUs

MAPS 2 MAPS 3 MAPS 4 MAPS 5 MAPS 6 MAPS 7 MAPS 8

TPUs TPUs TPUs TPUs TPUs TPUs TPUs

MAPS 2 MAPS 3 MAPS 4 MAPS 5 MAPS 6 MAPS 7 MAPS 8
TPUs TPUs TPUs TPUs TPUs TPUs TPUs

Figure 6-16: Congestion rates of multithread MAPS with different TPU numbers
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6.6.4 Speedup of MAPS with non-speculative threads

The performance of all ten benchmarks for the multithreaded MAPS architecture with

non-speculative threads was compared to the sequential versions on single-threaded

asynchronous MAPS architecture. The switch buffer size was set to thirty-two words,

which is the optimised setting to avoid contention. Normalised speedups are displayed

in Figure 6-17.

Only half of the multithreaded versions of the benchmarks deliver speedups over

the sequential programs. The HOP benchmark offers almost linear improvement when

TPU numbers are increased. This is because the main body in HOP benchmark

contains no loop-carried data and each thread size is reasonable large. The

performances of benchmarks BLOWFISH and FFT saturate after 4 TPUs. The

maximum performance speedups are 139.1% for BLOWFISH, and 17.5% for FFT

respectively. GZIP and GSM gain a small improvement in the multithreaded version,

the maximum performance speedups are 0.75% for GZIP and 3% for GSM. On the

other hand, five of the benchmarks were far worse in the multithreaded cases. The

performance reductions are 13.6% for ADPCM_ENCODE, 7.6% for CRC32, 11.0%

for Dijkstra, 5.6% for Patricia, and 3.5% for SHA.

The simulation results show that data dependencies in the embedded applications

are hazards for improving performance in multithreaded applications. Without

mechanisms to resolve these dependencies either in compile- or run-time, a

multithreaded MAPS architecture is not the best choice.
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Figure 6-17: Normalised speedup for the multithreaded asynchronous MAPS

architecture without speculative threads
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The main reason for the performance reduction is inter-thread data dependency

resulting in TPU's having to stall waiting for the arrival of dependent values. Extra

overhead for thread context switching also slows down the overall performance.

Figure 6-18 illustrates the control flow and inter-thread data dependency for the

ADPCM_ENCODE benchmark multithreaded program.

>■ Control Flow > Inter-thread data dependency

Figure 6-18: Control flow and data dependencies of ADPCM_ENCODE benchmark

on multithreaded MAPS with 4 TPUs.

I

Figure 6-19, Figure 6-20, and Figure 6-21 provide normalised execution times

(broken down into five parts), evaluation times of normal (non-threaded) instructions,

evaluation times of threaded instructions, context copying and loading times, and

waiting times for synchronisation. The graphs confirm that the majority of

benchmarks suffer data dependencies across different threads, in which

synchronisation times dominate the total execution times. For example, in the case of
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the GZIP benchmark, average synchronisation time for stalled TPUs is 47.9% of the

total execution time; in the case of the ADPCM_ENCODE benchmark, the stall time

due to inter-thread data dependency is 89.2%. As a result, compiler techniques and

hardware architectures are required to extract more thread level parallelism from

traditional sequential benchmark programs.

□ NORMAL_EXEC ■ THREAD_EXEC □ CONTEXT_COPY □ CONTEXT,.LOAD ■ WAIT„SYNC

Figure 6-19: Execution time breakdown for TPUs without speculation.
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□ NORMAL_EXEC B THREAD_EXEC □ CONTEXT_COPY □ CONTEXT_LOAD ■ WAIT_SYNC

Figure 6-20: Execution time breakdown for TPUs without speculative threads.
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O NORMAL_EXEC H THREAD_EXEC □ CONTEXT_COPY □ CONTEXT_LX)AD ■ WAIT_SYNC

Figure 6-21: Execution time breakdown for TPUs without speculative threads.
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6.6.5 Energy consumption of MAPS without speculative threads

The normalised energy consumptions of the multithreaded versions compared to the

asynchronous single-threaded MAPS architecture is shown in Figure 6-22, which

shows a trend of linear increase in energy for all the benchmarks. The two-TPU

version shows the maximum rate of increase of 62.6%, due to resource duplication,

resource sizing and extra overhead for context switching. For greater than two TPUs,

the average overall energy increases by 25.7 %.

□ MAPS 2TPUs ■ MAPS 3TPUs □ MAPS 4TPUs □ MAPS 5TPUs ■ MAPS 6TPUs □ MAPS 7TPUs ■ MAPS 8TPUs

Figure 6-22: Normalised energy consumption of the multithreaded benchmarks

without speculative threads

More detailed energy breakdown for each TPU and inter-thread communication

are shown in Figure 6-23, Figure 6-24 and Figure 6-25. In most of benchmarks, thread

executions is distributed fairly to different TPUs, and the energy contribution of each

TPU are similar. However, for the GZIP and SHP benchmarks, TPU-1 contributes

more to energy consumption than other TPUs. This is because the bodies of the
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spawned threads are much smaller than the main thread bodies. For GZIP, the energy

consumptions of TPU-1 are 56.7%, 40.2%, 32.1%, 26.4%, 22.4%, 19.5% and 17.1%

for multithreaded MAPS with 2, 3, 4, 5, 6, 7, and 8 TPUs respectively. These figures

match the execution time distributions presented in the previous section. One of the

benefits of asynchronous systems is that no power is dissipated when TPUs are in an

idle state. Therefore, asynchronous design can potentially help multithreaded

architectures to reduce power consumption.

Inter-thread communication energy consumptions are mainly contributed by the

MAPS on-chip buses and switches. The inter-thread communication energy increases

as the number of TPU increase. For example, the energy dissipation in inter-thread

communication for the HOP benchmark is 8.7%, 9.0%, 15.3%, 23.5%, 33.5%, 33.9%,

and 37.2% for multithreaded MAPS, with 2, 3, 4, 5, 6, 7, and 8 TPUs, respectively.

HOP GZIP

2 TPUs 3 TPUs 4 TPUs 5 TPUs 6 TPUs 7 TPUs 8 TPUs 2 TPUs 3 TPUs 4 TPUs 5 TPUs 6 TPUs 7 TPUs 8 TPUs

□ Inter-thread □ TPU1 □ TPU2 □ TPU3 ■ TPU4 □ TPU5 ■ TPU6 □ TPU7 ■ TPU8

Figure 6-23: Normalised energy breakdown of the multithreaded benchmarks without

speculative threads
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CRC32 DIJKSTRA

2 TPUs 3 TPUs 4 TPUs 5 TPUs 6 TPUs 7 TPUs 8 TPUs 2 TPUs 3 TPUs 4 TPUs 5 TPUs 6 TPUs 7 TPUs 8 TPUs

□ Inter-thread BTPU1 □ TPU2 □ TPU3 ■ TPU4 □ TPU5 ■ TPU6 □ TPU7 ■ TPU8

Figure 6-24: Normalised energy breakdown of the multithreaded benchmarks without

speculative threads
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Figure 6-25: Normalised energy breakdown of the multithreaded benchmarks without

speculative threads
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6.6.6 Performance and power efficiency of speculative threads

In Section 6.6.4, the performance of the multithreaded asynchronous architecture

shows limited speedup. Due to control and data dependencies, large portions of the

execution time are wasted in synchronisation while executing the benchmarks

non-speculatively. To fully explore the potential of the multithreaded MAPS

architecture and extract parallelism from sequential programs, further optimisations

are required. In Chapters 4 and 5, techniques for extracting speculative threads in

control flows and data value predictions were implemented as the SHP pass in the

MAPS+ compiler. The multithreaded benchmarks were executed on the MAPS

architecture with corresponding hardware support.

As shown in Table 6-10 , the average speed of the two TPUs case is 338 MIPS,

which has a 69% improvement over the asynchronous MAPS. As the number of TPU

increases, the average speedup improves linearly. However, the speedup comes at the

price of extra hardware and power consumption. More complicated hardware logic to

control predictions and extra memories for storing predicated data are introduced,

resulting in extra power being consumed. In the two-TPU case, the average power

consumption is 161 mW, which is an increase at 108%. Due to linear increase in

speed and power consumption, the power efficiency is maintained at a constant level

with increase in the number of TPUs. The average power efficiency is 1874 MIPS/W.

Speed Power Power efficiency
MAPS w th 2 TPUs 338 MIPS 161 mW 2104 MIPS/W

MAPS w th 3 TPUs 453 MIPS 228 mW 1988 MIPS/W

MAPS w th 4 TPUs 555 MIPS 293 mW 1894 MIPS/W

MAPS w th 5 TPUs 657 MIPS 354 mW 1857 MIPS/W

MAPS w th 6 TPUs 737 MIPS 410 mW 1797 MIPS/W

MAPS w th 7 TPUs 836 MIPS 471 mW 1775 MIPS/W

MAPS w th 8 TPUs 911 MIPS 532 mW 1710 MIPS/W

Table 6-10 : Performance and power efficiency of the speculative multithreaded
MAPS
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6.6.7 Contention in MAPS with speculative threads

The impact of speculative thread execution on the multithreaded MAPS architecture

is investigated in this section. Contention within the MAPS on-chip network is

quantised, and congestion rates are measured on the multithreaded MAPS with, and

without speculation. Similar to the simulation on the non-speculative MAPS, the

speculative version runs on the SPAMSIM2 simulator by configuring the switch's

( buffer size from an init size of two words, and doubling up to thirty-two words. The

results are shown in Figure 6-26.

The total amount of data packets transmitted on the network affects the

congestion rate. As more packets are transmitted on the network within a period of

time, greater is the probability of contention. Simulation results show that speculative

threads can have both positive as well as negative impact on the contention within the

network. For example, in the case of mis-speculation, the spawned thread codes are

required to be rolled back and the correct piece of codes re-executing. If the
*

mis-spawned codes contain memory access operations, then extra overhead is brought

to the network, and increasing the chances of network contention. On the other hand,

a thread speculated correctly has a positive impact on the network, with reduced

number of data packets and resulting lower congestion.

In our simulation, HOP, GZIP, FFT and GSM have similar curves for both the

non-speculative and speculative cases. For the ADPCM_ENCODE and CRC32

benchmarks, congestion rates are increased in the speculative case. BLOWFISH,

Dijkstra, Patricia and SHA benchmarks have reduced congestion rates for the
* speculative multithreaded MAPS.
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Figure 6-26: Comparison of congestion rates of multithreaded MAPS with

non-speculative threads and speculative threads
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6.6.8 Speedup of MAPS with speculative threads

The performance of all the ten benchmarks for the multithreaded MAPS architecture

with speculative threads and data predictions were compared to the sequential version

executing on asynchronous MAPS architecture.

First the performance of the value predictor was evaluated and the simulation

results are illustrated in Figure 6-27. Two sets of value prediction behaviour were

simulated. Value predictor handles the shared memory accesses by using a history

buffer to record the data patterns. Data can also be passed between TPUs via registers.

The register value predictor uses a history table similar to the memory value predictor.

Two predictors share the same history buffer of size 32K.

The HOP benchmark has a zero prediction rate for the register values is because

no data passes between TPUs. ADPCM_ENCODE has zero prediction rate on the

memory value prediction because the generated thread body contains memory access

of PCM audio data and the data patterns cannot easily be captured by the history table.

In most cases, the register value prediction performs better, and the correctness of

prediction is above 70% (excluding the HOP benchmark), varying between 39.6% and

92.4%. The input data also affects the behaviour of the value predictor.

Prediction rate

120.00%

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%

□ Memory

■ Register

□ Average

0 Memory H Register □ Average

Figure 6-27: Predication rates of value predictor
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The normalised speedup for different benchmarks is illustrated in Figure 6-28. All

the benchmarks demonstrate different levels of speedups in the speculative

multithreaded MAPS over the single-threaded asynchronous MAPS.

The maximum speedup exhibited by GZIP is 43.73% in speculative

multithreaded MAPS with eight TPUs, and 60.1% for SHA on eight-TPU MAPS.

These two applications have reasonable high accuracy in value predictions, e.g.

41.4% for memory value prediction of GZIP, 95.9% for register value prediction of

GZIP, 75.3% for memory prediction of SHA, and 92.3% for register valued prediction

of SHA. However, the threaded program bodies are not long enough to the spread

over different TPUs fairly, and the main thread on TPU-1 dominates the execution

time. Therefore, the speedup achieved on these two benchmarks is quite limited. HOP

has no data dependencies between threads, and therefore the performances on

speculative multithreaded MAPS and non-speculative MAPS are quite similar. For

ADPCM_ENCODE, FFT, Patricia, CRC32, Dijkstra and GSM, the accuracy of value

predictors are quite different, with the value predictor for helping MAPS to break the

data dependencies between TPUs.

The average speedup for the speculative multithreaded MAPS is 55.5%, 109.0%,

157.4%, 204.2%, 240.4%, 286.1% and 320.40% for 2-, 3-, 4-, 5-, 6-, 7-, and 8-TPU

versions, respectively.
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Figure 6-28: Normalised speedup for the multithreaded asynchronous MAPS

architecture with speculative threads
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The breakdown in the normalised execution times in Figure 6-29, Figure 6-30

and Figure 6-31 gives insights into the effectiveness of the MAPS architecture. The

compiler-optimised multithreaded benchmarks perform better than the

non-speculative cases on all the experiments. Our simulations demonstrate speculative

threads and data value prediction techniques are important to extract parallelism from

traditional sequential programs. In the case of a mis-speculation, the current context

of the mis-speculated thread has to be squashed and its memory and register states

will be discarded. However a correctly-speculated thread will commit its memory and

register states to the parent threads and guarantee progress. A new category called

SQUASH is introduced for timing information for handling squashed operations,

including squashed thread codes, restarting TPU pipeline, registers' states, and reload

cache buffers.

\

I
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Figure 6-31: Execution time breakdown forTPUs with speculative threads.

6.6.9 Energy consumption of MAPS with speculative threads

The performance improvement in the multithreaded MAPS architecture with

speculative threads comes at a price. The speculative techniques require hardware

support for run-time speculation, longer time for run-time optimisation, which result

in higher power consumption. The power and energy consumption of the predictors,

e.g. speculative-thread predictor, data value predictor, memory space for holding

history tables are modelled in the SPAMSIM2 simulator based on the models provides

by CACTI toolset [27],

Normalised energy consumption of ten benchmarks on the speculative

multithreaded MAPS against the single-threaded asynchronous MAPS are shown in

Figure 6-32. The average increase in energy consumption is 40%, 50%, 59%, 71%,

82%, 92% and 103% for speculative multithreaded MAPS with 2, 3, 4, 5, 6, 7, and 8

TPUs, respectively. Energy consumption increases by 11% for each TPU.
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□ MAPS 2TPUs ■ MAPS 3TPUs □ MAPS 4TPUs □ MAPS 5TPUs ■ MAPS 6TPUs □ MAPS 7TPUs ■ MAPS 8TPUs

Figure 6-32: Normalised energy consumptions of the multithreaded benchmarks with

speculative threads

Comparisons between normalised energy breakdown for the multithreaded

benchmarks in non-speculative MAPS and speculative MAPS are shown in Figure

6-33, Figure 6-34 and Figure 6-35. Energy is spent on the value predictor, which

includes that spent on read/write history table, searching history table for a specific

memory address or register value and predicting the possible values. Total buffer size

for memory and register value predictor is set to 32K. The GZIP benchmark spends

7.5% of the energy on value predictor and the SHA benchmark spends 4.8% energy

on value predictor.

In the HOP benchmark, the non-speculative and speculative versions spend

similar levels of energy. This is because no inter-thread data dependencies exist. The

other nine benchmarks spend less energy in the three-TPU cases and above. The

applications run faster, and although extra power is required for value prediction, it

still benefits the system leading to lower energy consumption, overall.
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Figure 6-33: Comparison of normalised energy breakdowns of the multithreaded

benchmarks on non-speculative MAPS and speculative MAPS.
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Figure 6-34: Comparison of normalised energy breakdowns of the multithreaded

benchmarks on non-speculative MAPS and speculative MAPS.
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Figure 6-35: Comparison of normalised energy breakdowns of the multithreaded

benchmarks on non-speculative MAPS and speculative MAPS.

6.7 Multithreaded asynchronous MAPS+ RFU

In this section, all the compiler optimisation passes were enabled to explore

thread-level and data-level parallelism simultaneously.

6.7.1 Benchmark analysis

The instruction distribution of nine benchmark programs is listed in Table 6-11.

Because of the large size of the GSM program and several unexpected bugs while

compiling the GSM program with thread partitioning and the hardware/software

partitioning pass, the GSM program has been omitted in our final set of benchmarks.
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I
Load Store Arithmetic Logic Multiply

Divide

Branch Floating

Point

ROP Multi

Thread

Other

HOP 0.60 0.41 16.68 1.27 3.12 7.73 0.00 66.39 3.76 0.03

GZIP 10.44 6.30 45.46 4.41 2.27 12.00 0.00 13.33 5.78 0.00

ADPCM_EN 1.00 0.51 38.55 2.77 0.00 16.76 0.00 25.61 14.79 0.00

BLOWFISH 10.39 4.49 52.91 6.83 3.36 9.87 0.00 9.41 2.72 0.00

CRC32 12.40 5.12 47.47 2.91 0.73 13.15 0.00 13.10 5.11 0.00

DIJKSTRA 12.01 4.20 26.58 0.27 1.16 10.30 0.00 44.18 1.32 0.00

FFT 8.89 5.30 40.03 0.77 12.51 4.98 11.38 14.80 1.10 0.25

PATRICIA 11.23 7.28 49.39 0.72 0.37 16.02 1.09 11.78 2.10 0.01

SHA 10.18 5.17 53.75 3.48 2.76 9.19 0.00 12.91 2.57 0.00

Average 8.57 4.31 41.20 2.60 2.92 11.11 1.39 23.50 4.36 0.03

Table 6-11: Instruction distribution of benchmarks with HW/SW partition and

multithreaded instruction

6.7.2 Performance and power efficiency

All the architectural modes described in the previous sections were integrated to

maximise the speedup in asynchronous MAPS+RFU architecture. Two levels of

> optimisations were executed to extract thread-level parallelism for multiple TPUs and

instruction-level parallelism supported by RFUs. With the same speculative-thread

predictor and data-value predictor as implemented in the previous section, speculative

threads and rollback operations were also supported.

The average speeds, power consumption and power efficiencies of the nine

benchmarks on the multithreaded MAPS+RFU are listed in Table 6-12. The average

speeds are 386 MIPS, 551 MIPS, 716 MIPS, 885 MIPS, 1056 MIPS, 1201 MIPS, and

1403 MIPS for speculative multithreaded MAPS+RFU with 2, 3, 4, 5, 6, 7 and 8

TPUs, respectively. The speedups against single-threaded asynchronous MAPS are

1 93%, 176%, 259%, 343%, 428%, 506% and 602% for 2, 3, 4, 5, 6, 7 and 8 TPUs,

respectively, which provides the best performance among all the experiments.

However, more complex hardware logic and higher power consumption are the

prices to the paid for performance gains. The average increase in power consumption

compared to the asynchronous MAPS are 339%, 613%, 827%, 1045%, 1266%,

1466% and 1716% for 2-, 3-, 4-, 5-, 6-, 7-, and 8-TPU versions, respectively. The high

power consumption of integrating reconfigurable functional unit brings great barrier
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for introducing such design in embedded processor architecture for most the

applications.

Average speed Power

consumption
Power efficiency

MAPS+ RFU with 2 TPUs 247 MIPS 386 mW 640 MIPSAV

MAPS+ RFU with 3 TPUs 275 MIPS 551 mW 498 MIPS/W

MAPS+ RFU with 4 TPUs 296 MIPS 716 mW 414 MIPSAV

MAPS+ RFU with 5 TPUs 316 MIPS 885 mW 357 MIPSAV

MAPS+ RFU with 6 TPUs 329 MIPS 1056 mW 311 MIPSAV

MAPS+ RFU with 7 TPUs 321 MIPS 1210 mW 265 MIPSAV

MAPS+ RFU with 8 TPUs 384 MIPS 1403 mW 274 MIPSAV !

Table 6-12: Performance and power efficiency of asynchronous multithreaded MAPS
architecture plus RFU.

6.7.3 Contention

The contention in the on-chip network for multithreaded MAPS+RFU architecture are

quantised by using the congestion rates, as summarised in Figure 6-38. These

diagrams compare the congestion rates of the nine benchmarks in the speculative

multithreaded MAPS, and the speculative multithreaded MAPS+RFU. Switch buffer

sizes are set to two, four, eight, sixteen, and thirty-two words, respectively. Results

shown in the diagram are average numbers of the different settings. In order to

illustrate the impact on the network performance due to changes in TPU numbers, the

average congestion rates are summarised for increasing TPU numbers. Most of the

benchmarks have higher congestion rates executing on the multithreaded

MAPS+RFU compared to the multithreaded MAPS. Extra network loadings are

needed for ROP configuration fetching.
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Figure 6-36: Comparison of congestion rates of the speculative multithreaded MAPS

and the speculative multithreaded MAPS+RFU
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6.7.4 Speedup

Individual speedup of each benchmark is analysed in this section. Due to the register-
value passing and memory access patterns in speculative multithreaded MAPS+RFU

which are similar to the multithreaded MAPS, the accuracies for value predictors on

both architectures are quite similar. Details of the value prediction behaviour can be

referred to Section 6.6.8.

Comparisons of performance for the benchmarks on multithreaded MAPS+RFU

with different TPU number configurations are presented in Figure 6-37. Most of

benchmarks perform better on the speculative multithreaded MAPS+RFU than the

MAPS architecture. However, the improvement achieved is quite limited, when the

extra hardware needed and power consumption overhead are also considered.

For example, the ADPCM_ENCODE benchmark speedup on the multithreaded
MAPS+RFU over the single-threaded asynchronous MAPS are 28%, 36%, 56%, 60%,

82%, 85% and 109% on 2-, 3-, 4-, 5-, 6-, 7-, and 8-TPU versions, respectively. The

performances are just slightly better than the multithreaded MAPS, e.g. 16%, 23%,

41%, 45%, 64%, 65% and 89% on 2, 3, 4, 5, 6, 7 and 8 TPUs, respectively. The actual

improvement provided by the RFU operations is quite limited.

The FFT benchmark performs worse on the speculative multithreaded MAPS+,

compared to the speculative multithreaded MAPS. The performance improvements by

increasing TPU numbers are quite small. It is because the thread analyser and the

software/hardware partitioning compiler searching for the hot spots on the same

sequential code of a program, and parts of the threaded code are executed in the

hardware blocks. Therefore, the threads generated on the multithreaded MAPS+RFU

are less than in the case of the multithreaded MAPS architecture. Therefore, even with

extra ROPs, the FFT performance on multithreaded MAPS+RFU is not as good as the

one on multithreaded MAPS.
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Figure 6-37: Normalised speedup for the multithreaded MAPS+RFU architecture
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6.7.5 Energy consumption

The improvement in speed on speculative multithreaded MAPS+RFU comes at a

price of extra energy dissipation in the reconfigurable logic and caches for storing

configuration data. The implementation of reconfigurable functional unit was based

on synchronous FPGA fabric which scales poorly with the number of TPUs. As a

result, the energy efficiencies for multithreaded MAPS+ are the worst among all the
versions. The normalised energy consumption of the nine benchmarks is displayed in

Figure 6-38. The average increases in energy consumption in the speculative
multithreaded MAPS over single-threaded asynchronous MAPS is 367%, 542%,

720%, 902%, 1088%, 1277% and 1455% for the 2-, 3-, 4-, 5-, 6-, 7- and 8-TPU cases

respectively.
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Figure 6-38: Normalised energy consumption of the benchmarks on multithreaded

MAPS+RFU architecture

6.8 Summary

This chapter has presented simulation results for the asynchronous MAPS+
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architecture. The SUIF/MACHSUIF compiler was chosen to perform thread

partitioning and hardware code extraction, and assembly machine codes were

generated for the asynchronous MAPS+ based processor. The MAPS+ architecture

and the compiler algorithms have been evaluated by compiling a set of C benchmarks
and simulating their output in the execution-driven instruction-level simulator. These

benchmarks cover algorithms commonly used in embedded platforms, e.g. error

correction, audio codecs, compression and encryption.

From our simulations, the average power consumption of synchronous

clock-gated MIPS is 72 mW, and the power of asynchronous MAPS is 78 mW. Taking

account that the error in the estimated power figures is at least 10%, one can conclude

that the power consumption of synchronous clock-gated MIPS and asynchronous

MAPS are similar. The normalised power performance of asynchronous MAPS

against the synchronous clock-gated MIPS is shown in Figure 6-39. In both cases, the

power performance is reduced when increasing ALU numbers. Due to lack of
instruction-level parallelisms, the ALUs are saturated as numbers reach three or four.

The improvement of the asynchronous MAPS over the synchronous clock-gated

MIPS is 8% for ALU-1 cases, 11% for ALU-2, 19% for ALU-3, and 27% for ALU-4.

Therefore, the asynchronous MAPS architecture provides better scalabilities when the

system reaches a saturated state. In the asynchronous architecture, the idle

components will not consume power until it is activated. This is why the

asynchronous cases provided slightly better power performance over the synchronous

clock gated MIPS in saturation. However, the asynchronous MAPS imposes extra

area overhead due to handshaking logic. Based on the MAPS architecture, the

estimated area overhead will be 30-40% over the corresponding synchronous MIPS

architecture.
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Figure 6-39: Normalised power performance of the asynchronous MAPS against

synchronous clock gated MIPS

SHP compiler module converts groups of arithmetic, shift and logic operations

into RFU operations by using the path-profiling information. The RFU cache

configurations are also significantly affect the overall performance of a MAPS+

^ architecture. Analysis of the impact of scaling RFU cache on MAPS architecture
shows that an under-size RFU cache will greatly slow down the performance and

increase energy consumption due to the overhead of reconfiguring RFU. A 512K RFU

cache with four contexts provides an optimal performance speedup and energy

consumption. However, the price of introducing large sized cache into embedded

processors, high power consumptions, and difficulties of designing high performance
HW/SW partitioning algorithms are the factors for not introducing RFU in the

power-critical embedded environment.

The normalised power performance of the asynchronous MAPS+RFU against

) synchronous clock gated MIPS, asynchronous MAPS with 1, 2, 3, and 4 ALUs are

shown in Figure 6-39. The MAPS+RFU is not considered as a power efficient

approach when compares to all the architecture setting mentioned above. The average

power performance of MAPS+RFU are reduced to 39% of synchronous clock-gated

MIPS, 36% of asynchronous MAPS with 1 ALU, 38% of 2 ALUs MAPS, 39.7% of 3

ALUs MAPS, and 40.2% of 4 ALUs MAPS.
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Figure 6-40: Normalised power performance of the asynchronous MAPS+RFU

against different architecture settings

Multithreaded MAPS architecture relies on the thread partitioning compiler

module to extract thread-level parallelism. However, loop-carried dependencies force

most of the threads to execute sequentially. Extra overhead for thread

synchronisations and context switching also slows down the multithreaded version.

Hardware components are implemented in the multithreaed MAPS+ architecture and

provide speculative threads, coupled with control-flow and data-value predictors to

break the dependence among loops. Buffers are required for squashing mis-speculated

threads and restore memory and register states. All the configurations are brought

together in the asynchronous multithreaded MAPS+RFU architecture with enabled

speculative-threads and data value predictor.

Summaries of the normalised power performance of the speculative multithreaded
MAPS and the speculative multithreaded MAPS+RFU against asynchronous

single-threaded MAPS are displayed in Figure 6-41. The speculative multithreaded

MAPS has better power performance than the multithreaded MAPS+RFU. The

power performance of multithreaded MAPS over single-threaded MAPS are 68%,

64%, 60%, 57%, 53%, 50% and 48% for 2-, 3-, 4-, 5-, 6-, 7- and 8-TPU cases,

respectively.

Because reconfigurable logic is power hungry, the power performance drops
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significantly when RFUs are integrated into multithreaded MAPS. The normalised

power performance of multithreaded MAPS+RFU against single-threaded MAPS

are 21%, 16%, 13%, 11 %, 9%, 8% and 8% for 2-, 3-, 4-, 5-, 6-, 7-, and 8-TPU cases,

respectively. The approach of reconfigurable computing is therefore not a good

solution for power critical embedded approaches.

Figure 6-41: Comparison of the normalised average power performances of the

speculative multithreaded MAPS and the speculative multithreaded MAPS+RFU
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Chapter 7
Conclusions and Future

work

7.1 Summary

This thesis brings together different areas of research: asynchronous architecture

design, multithreading, and reconfigurability for hardware-software partitioning. The

resulting MAPS+ architecture has been modelled and simulated in an instruction-level

simulator for benchmarking programs representative of mobile wireless applications.

The adoption of a micronet-base model offers potential advantages of a recursive

design style of a network of TPUs, where each TPU is a network of functional units.

Multithreaded execution is effective in exploring coarse-grain parallelism at the

thread-level using speculative methods to minimise the effect of data dependencies on

concurrent thread execution. Reconfigurable architectures promise to become a

valuable alternative to conventional computer devices by accelerating frequently-used

programs in reconfigurable arrays.

The MAPS+ architecture explores concurrency at different levels: between

threads, within threads and between instructions. Coarse-grained thread level

parallelisms are mapped to TPUs. Threads can execute concurrently with other

threads, allowing parallelism to be expressed. Data predictions for speculative threads
are supported by a hardware hybrid data predictor using stride-based and

context-based prediction techniques. Fine-grained instruction level parallelism is

mapped to the RFU. The RFU accelerates applications by customising reconfigurable
fabric for compute-intensive tasks and executing several operations in parallel.

Within each TPU, the functional units are connected via communication
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microagents, which handle the flow of information among the FU and with the

Register Bank. The CMs negotiate local data transfers by using a four-phase,

request-acknowledge handshaking protocols. At the top level, TPUs are connected via

switches, which route messages from source TPUs to their destination TPUs and

shared memory. Each switch is able to be connected to four other neighbouring

switches or shared memory blocks via four interconnect ports. The handshaking

signals among TPUs are also negotiated by the Switches.

The compiler framework based on SUIF2 generates code for the MAPS+

architectures. The MAPS+ architecture provides hardware components to perform

run-time dependence checking and speculation on the control or data dependences,

e.g. the data value predictors and the thread speculative buffer. Loop bodies are

always hotspots for thread generations. An algorithm for thread partitioning and data

dependence instruction insertions based on the static single assignment has been

developed. For the sequential control paths, compiler techniques to partition a

program into parallel speculative threads are investigated. Based on the profiling

information, the algorithm tries to minimise the control dependence and data

dependence among speculative threads. Due to the support from underlying hardware

checks, the compiler does not need to guarantee the independence of threads.

The MAPS+ architecture requires the compiler to aid in the creation of

configurations for RFU operations using reconfigurable logic. Automatic compilation

techniques for generating reconfigurable functional unit operations to perform the

arithmetic and logic operations within the program have been investigated, which

provides a quick and easy way to program the MAPS+ architecture and makes the use

of reconfigurable hardware more accessible to general application programmers. The

algorithm to locate blocks for configurable logic is based on a profile-sensitive region
formation algorithm. After the hardware block selection, a data flow graph is

generated within the basic blocks, and are mapped into reconfigurable array using the

hardware component library.

The SPAMSIM2 simulation environment is used to model the MAPS+ in C++.

The QuickThreads package of the SPAMSIM2 kernel provides a portable interface to

machine-dependent code that performs thread initialisation and context-sv/itching.
The simulator takes assembly code compiled for the MAPS+ architecture and
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simulates execution with different configurations. During the initialisation stage of the
SPAMSIM2 simulator, various parameters are read from the configuration file and

can be set separately, e.g. memory size, delay of each function unit, cache size,

replacement policy, etc. After initialisation, the parameters are set to global variables,

which can be accessed by each functional blocks of the simulator. Contents of

Register File and portions of Memory can be dumped to files on completion of the

simulation. By dumping the results of the benchmark simulation to a file, the

benchmark's execution can be verified. Data cache behaviours are simulated by

using the Dinero IV cache simulator and the power analysing and optimising is based

on Wattch power estimation tool.

The experimental results based on the SPAMSIM2 simulator have demonstrated

the trade-offs between performance and energy consumption for different

configurations of MAPS+ architectures: synchronous MIPS baseline, asynchronous

MAPS, asynchronous MAPS+RFU, multithreaded MAPS, and multithreaded

MAPS+RFU architecture.

7.2 Future Work

There are several issues have not been addressed in this thesis, which can be extended

in future research.

7.2.1 Architecture Development

The following sections summarises possible future works to improve the MAPS+

architecture performance and evaluate the architecture in actual hardware.

Extend architecture to SMT

The current MAPS+ architecture is based on a CMP design, which is divided into
distributed multiple thread processing unit, and each running a separate concurrent

thread. Though the current architecture is relatively simple to implement in hardware
and easy to extend and reuse the threaded processing unit, the resources are not fully
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shared among logical threads. From the experimental results in the singled thread
MAPS+ architecture section, the average performance improvement from two ALU to

three ALU is limited, which is mainly due to the relatively simple pipeline design of

the threading processing unit restricts the ability to exploit deeper level of ILP. It's

believed that the performance of the MAPS can be improved by introducing SMT

design into the thread processing unit, similar to the commercial processor introduced

in Chapter 2, such as IBM'S POWER5 [145], Sun's UltraSPARC T1 [176], which

forms a global CMP architecture, inside each TPU. Therefore, unused issue slots in

TPU can be decreased by eliminating both vertical and horizontal waste. In order to

support SMT in TPU, the size of register file need to be increased to hold several

logical threads states.

Implement hardware registers renaming logic

In the current MAPS+ architecture, the register renaming is performed by the

compiler, but this approach still has some drawbacks. It is difficult for the compiler to

avoid reusing register without large code size increases. For example, in a loop, a

successive iteration would have to use different registers, which requires replicating
the code. Also in the MIPS instruction set chosen for the MAPS+ architecture, the

register number is limited to 32, which limit the effect of software register renaming

schemes.

On the other hand, the hardware register renaming logic selects a new destination

for the instruction. As a result, the subsequent references to the result are directed to

the new physical destination register. Therefore, false-dependencies are removed at

runtime. This logic can be implemented by maintaining an explicit register mapping
table [177]. This table records the current logical to physical mapping for each

register and enables a sequential state to be restored in the event of an interrupt.
Instead of using register mapping table, a reservation station scheme [178] is an

alternative mechanism for register renaming. In the scheme, every register

referenced for reads is looked up in both the indexed future file and the rename file.

The future file read gives the value of that register, if there is no outstanding
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instruction yet to write to it. When the instruction is placed in an issue queue, the

values read from the future file are written into the corresponding entries in the

reservation stations. Register writes in the instruction cause a new, unready tag to be

written into the rename file. The tag number is usually serially allocated in instruction
order.

Comparisons with asynchronous reconfigurable array

i

In current MAPS+ architecture, the reconfigurable functional unit is implemented in

synchronous reconfigurable logic array with asynchronous wrapper, in order to reuse

an existing FPGA architecture and CAD tools. However, current synchronous FPGA

are not designed to produce hazard free signals, and hazards may be introduced by the

circuit decomposition performed by technology mappers for synchronous FPGA

architectures. Arbitration is a common function used in asynchronous circuits and

current FPGA architectures provide no support for building the special circuitry

needed in arbiters for providing clean output signals from the meta-stable states.
I

Arbiters can be built in synchronous FPGAs, but require careful design and have a

finite chance of failure. Therefore asynchronous reconfigurable fabrics are alternative

options to implement the asynchronous RFU. MONTAGE [70] and AFPGA [69]

provide the base architecture designs. Therefore performance comparisons can be
made to investigate the chip area, performance, energy consumption trade-offs
between synchronous RFU implementation and fully asynchronous RFU.

Hardware Implementations
i

The SPAMSIM2 is a C++ simulator for the MAPS+ architecture. The functions and

handshaking protocols are modelled by event-driven simulation kernel of the
SPAMSIM2. With the detailed simulation of the MAPS+ architecture, we believe that

it is possible to construct processor architecture based on the MAPS+ design. Balsa

[179] is framework from University of Manchester for synthesising asynchronous

hardware systems and a language for describing such systems. The implementation of
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MAPS+ on Balsa can be compiled into an asynchronous communicating network
from a set of handshake components. The functions can be verified and deadlock

during execution of a program could be avoided. Furthermore, the design can be

mapped to different cell libraries for silicon foundries or libraries for programmable

gate arrays. Therefore, the evaluation of the potential performance bottlenecks in a

silicon design can be in investigated.

7.2.2 Compiler Improvement
>

The following sections summaries some possible future work to improve the MAPS+

compiler design.

Improve Hardware code generation

Due to current limitations of our hardware/software partitioning pass design, we are

not able to generate pipelined implementation and loop construction in RFU.

\ Therefore limited speedups are achieved from our simulation. So improving the

hardware code generation by using pipelined logics for loop constructions is one

possible future research. Further, in our MAPS compilation frameworks, the hardware
codes generated for RFU are in XNF format, which is proprietary netlist description

language and is becoming obsolete. Electronic Design Interchange Format (EDIF)

[181] is a much more common format used to exchange design data between different
CAD systems, and between CAD systems and Printed Circuit fabrication and

assembly. Its syntax has been designed for easy machine parsing and is similar to

LISP. By their very nature, the EDIF standards are used by most EDA vendors.
' Replacement with EDIF generation would provide broader FPGA output suitable for

latest FPGA CAD tools.

Scheduling algorithm
i

In order to improve the ILP performance, one could implement fine-grained
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scheduling algorithms in the compilation framework. This is done by re-ordering
instructions of a program at run-time. A scheduling algorithm for asynchronous

architecture called Penalise True Dependency was presented in [10]. The algorithm

aims to minimise stalls due to data dependencies and resource contentions by

scheduling instructions within basic blocks. This method could be extended to global

optimisation using this metric on techniques such as code motion, code and tail

duplication, and blocks merging.

Migrate to more realistic compilation framework

Current compilation framework is based on the SUIF/MACHSUIF compiler system,

which is well suited for the implementation of the compiler prototype, because

various specialised functions can be implemented separately and communicate via

internal program and annotations. Basic structures, such as procedures, loop and

branched are easily recognised from the intermediate format. However, the complex

intermediate format design passed among different compiler modules slows down the

overall compilation speed. A possible solution is to port the thread partitioning and

hardware software partition algorithms to more realistic open source compiler

framework, such as GCC [180], MIPS target code and several optimisations, such

SSA generation, Register Allocation, Profiling are also supported in GCC, which
would improve the compilation speed while still maintaining the functionality of the

thread partitioning and hardware and software partitioning for the MAPS+

architecture.

7.3 Conclusion

The main contribution of the thesis is the experimental evolution of microprocessor-

framework consisting of advanced design techniques, e.g. asynchronous design

techniques, multithreaded execution and runtime reconfiguration. As well as the

compilation framework for threao generation, hardware and software partitioning are

also investigated in detail.
In the MAPS+ architecture design, solutions are presented for the following
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aspects: an asynchronous switch model based on the existing synchronous NOC

incorporating asynchronous handshaking protocol; a hierarchical architecture based

on the Micronet-based asynchronous architecture; a RFU design that integrates

synchronous Field Programmable Logic in the asynchronous architecture, with

interfaces for asynchronous to synchronous and synchronous to asynchronous

inter-connections; a detailed Thread Control Unit for inter-TPU communications; a

Data Value Predictor based on existing hybrid data predictor; a scheduler design for

synchronising TPUs.

Compiler techniques for MAPS+ architecture are investigated on SUIF2 and

Machine SUIF compiler environment. Loop parallelising techniques are implemented

based on existing loop-partitioning techniques. Also mechanisms of identifying

speculative threads by analysis data dependence between basic blocks are also

investigated based on data dependence analysis. Solutions of partitioning hardware

and software codes using regional based block formation algorithms are also

presented. By using macro libraries, hardware blocks are mapped to FPGA netlist.

Estimated power consumption and delay are parameters for ROP black box.

An asynchronous multithreaded simulation framework with a RFU is presented,

and the performance of different processor configurations is evaluated. The simulation

results show that asynchronous and clock-gated synchronous design consumes a

similar level of power based on the 180nm process technology. There is an estimated

20-30% area overhead of the single-threaded asynchronous MAPS over the

synchronous counterpart. However, based on the similar architecture setup (e.g. the

same number of ALUs, same memory/cache sizes) the asynchronous case provides

better performance. The asynchronous case also demonstrates better scalabilities

when increasing the number of ALUs, and the energy increase per ALU is less than
that in synchronous case.

Due to the limitations of our HW/SW partitioning algorithms design (no pipeline
and loop structured support in RFU), the simulation results of the MAPS+RFU

architecture show a small performance improvement over the asynchronous case. An
under-size RFU cache greatly slows down the performance and increase energy

consumption due to the overhead of reconfiguring RFU. Reconfigurable logic is

power hungry, the power performance drops significantly when RFUs are integrated
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into the multithreaded MAPS. It is still not economic to adopt reconfigurable

computing techniques in power-critical embedded processors under current

technology.

The multithreaded MAPS degrades its performance when increasing TPU

numbers. The main reason for the performance reduction is inter-thread data

dependency resulting in TPU's having to stall waiting for the arrival of dependent

values. Extra overhead for thread context switching also slows down the overall

\ performance. The simulation results show that data dependencies in the embedded

applications bring greater hazards for improving performance of multithreaded

applications. Without mechanisms to resolve these dependencies, a multithreaded

MAPS architecture is not the best choice.

Speculative multithreaded MAPS achieve good performance improvement over

the single-threaded case. But it comes with prices of by replicating the TPUs, adding
hardware logics for data prediction, and using more memory for buffering history data.

It is a trade-off between hardware complexity, power consumption, and performance.

I
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Appendix A
List of Benchmark programs

Category Benchmark name Floating point Descriptions
Network Dijkstra No The Dijkstra benchmark constructs a

large graph in an adjacency matrix

representation and then calculates the
shortest path between every pair of nodes

using repeated applications of Dijkstra's
algorithm. Dijkstra's algorithm is a well
known solution to the shortest path
problem and completes in 0(n2) time.

Network Patricia yes A Patricia tries is a data structure used in

place of full trees with very sparse leaf
nodes. Branches with only a single leaf
are collapsed upwards in the tree to

reduce traversal time at the expense of
code complexity. Often, Patricia tries are

used to represent routing tables in
network applications. The input data for
this benchmark is a list of IP traffic from

a highly active web server for a 2 hour

period. The IP numbers are disguised.

Security BLOWFISH

encrypt/decrypt:

no Blowfish is a symmetric block cipher
with a variable length key. It was

developed in 1993 by Bruce Schneider.
Since its key length can range from 32 to

448 bits, it is ideal for domestic and

exportable encryption. The input data
sets are a small ASCII text file.

Security SHA no SHA is the secure hash algorithm that
produces a 160-bit message digest for a

given input. It is often used in the secure

exchange of cryptographic keys and for
generating digital signatures.

Telecommuni

cation

FFT yes This benchmark performs a Fast Fourier
Transform and its inverse transform on

an array of data. Fourier transforms are

used in digital signal processing to find
the frequencies contained in a given
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input signal. The input data is a

polynomial function with pseudorandom

amplitude and frequency sinusoidal
components.

Telecommuni

cation

GSM encode/decode No The Global Standard for Mobile (GSM)
communications [18] is the standard for
voice encoding/decoding in Europe and

many countries. It uses a combination of
Time- and Frequency-Division Multiple
Access to encode/decode data streams.

The input data is small and large speech
samples.

Telecommuni

cation

ADPCM

encode/decode

No Adaptive Differential Pulse Code
Modulation (ADPCM) is a variation of
the standard Pulse Code Modulation

(PCM). A common implementation takes
16-bit linear PCM samples and converts

them to 4-bit samples, yielding a

compression rate of 4:1. The input data
are small speech samples.

Telecommuni

cation

CRC32 No This benchmark performs a 32-bit Cyclic

Redundancy Check (CRC) on a file.
CRC checks are often used to detect

errors in data transmission. The data

input is the sound files from the ADPCM
benchmark.

Telecommuni

cation

HOP no Hop selector generates a hopping

sequence that uses the address and clock
from the master as inputs. This sequence

determines the "pseudo-random"

hopping order at which transmissions
occur.

Compression GZIP no GZIP (GNU zip) is a popular data

compression program written by
Jean-Loup Gailly for the GNU project.
GZIP uses Lempel-Ziv coding (LZ77) as

its compression algorithm. SPEC's
version of gzip performs no file I/O other
than reading the input. All compression
and decompression happens entirely in
memory.

Table A-l: List of Benchmark programs
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Appendix B
Power consumption breakdown

Average power

consumption of
synchronous MIPS
architecture (without clock
gating)

Average power

consumption of
synchronous MIPS
architecture (with clock

gating)

Average power

consumption of
asynchronous MAPS
architecture

Clock 52.41 mW 5.77 mW 0.00 mW

Communication

Microagent

0.00 mW 0.00 mW 2.28 mW

Control Unit 1.77 mW 1.32 mW 1.24 mW

Issue Unit 7.28 mW 4.89 mW 5.60 mW

Register File 4.62 mW 2.17 mW 4.08 mW

Instruction

Cache

50.70 mW 27.05 mW 31.96 mW

Data Cache 46.93 mW 10.91 mW 11.57 mW

On Chip Bus 0.97 mW 1.00 mW 1.47 mW

Memory Unit 17.13 mW 6.36 mW 8.86 mW

Branch Unit 12.95 mW 5.50 mW 5.11 mW

ALU 17.80 mW 6.81 mW 5.12 mW

Total 212.55 mW 71.78 mW 77.29 mW

Table B-l: Power consumption breakdown
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