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Summary

Code generation methods for digital signal processors are increasingly hampered by the
combination of tight timing constraints imposed by signal processing applications and
resource constraints implied by the processor architecture. Limited resource availability
in the context of pipelined loop schedules poses a problem for greedy scheduling heu-
ristics. Limited and distributed register capacity poses a problem for traditional methods
that perform scheduling and register binding in successive stages. This separation often
results in suboptimality (or even infeasibility) of the generated solutions because it ig-
nores the problem of phase coupling; since value lifetimes are determined by the sched-
ule, scheduling affects the solution space for register binding. As a result, traditional
methods need an increasing amount of help from the programmer (or designer) to arrive
at a feasible solution. Because this requires an excessive amount of design time and ex-
tensive knowledge of the processor architecture, there is a need for automated tech-
niques that can efficiently cope with the different constraints and the problem of phase
coupling.

The approach proposed in this thesis is based on analyzing the constraints to prune the
schedule search space. In this way, the scheduler is often prevented from making a de-
cision that inevitably violates one or more constraints. The main aspect of our model of
the schedule search space is the distance matrix, which holds the minimum and maxi-
mum timing delay between each pair of operations within a Basic Block. Low-order pol-
ynomial algorithms identify additional precedence (sequence) constraints that result
from the distance relations and the functional resource conflicts. The results of the anal-
yses are combined in the distance matrix by computing the longest paths induced by the
precedence constraints. Constraint Analysis interacts with the scheduler by expressing
schedule decisions in terms of additional sequence relations and updating the distance
matrix.

In order to minimize the register requirements or to satisfy register capacity constraints,
the freedom available for scheduling is exploited to serialize value lifetimes. Values are
identified that constitute a (potential) bottleneck for register binding, and the corre-
sponding lifetimes are subsequently serialized. Serializations are evaluated in the con-
text of the constraints and the distance matrix is updated accordingly. After the
serialization process, each completion of the schedule is guaranteed to induce a valid
register binding. In a similar way, the operations that access a register file can be serial-
ized such that the communicated values behave in a streamlined fashion. These values
can then be stored in a FIFO. FIFOs have the same addressing cost as registers in terms
of instruction bits, but they offer much larger storage capacity. This is convenient be-
cause register addressing constitutes about 60% of the code executed on VLIW proces-
sors. In a similar way register accesses are serialized in order to store the values in a stack
or a FILIFO.
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INTRODUCTION 3

Chapter
1 Introduction

The last few decades we have witnessed a rapid increase in the number of transistors
integrated on a chip. Consequently, we have also witnessed a rapid increase in the
amount of man years required to design a complex chip. This increase in design effort
must be controlled for at least two reasons. First, chip designers are a scarce resource.
Second, there is an enormous pressure to shorten the design time of a chip, because in
the consumer electronics market the company with the earliest market introduction of a
new product is to expect a large market share. There are basically three major directions
in which solutions are sought for controlling the design effort of complex chips:

» Design reuse: This comprises reusing (parts of) a design previously made. This can
be done in two ways: either some specification (layout or netlist) called intellectual
property [Behn97] is used as a part of a new design, or a design is made programma-
ble so that the chip itself can be used for different applications.

* The use of design tools at increasingly higher abstraction levels: It is clear that
designing a chip at the level of transistors is a tedious way of designing, because the
complexity is in the order of millions of basic elements. At the other extreme we can
specify the functionality of a chip in a high-level programming language such as C,
associated with a complexity in the order of hundreds (lines of code). The translation
of the C-code (or an intermediate abstraction level) to a transistor-level design is
automated using design tools. This translation is called silicon compilation. Design-
ing at a high abstraction level offers a very limited design effort. On the other hand,
the implementation is probably not the most efficient in terms of area, power con-
sumption, and performance. These last criteria are however becoming overshadowed
by the importance of a limited design effort.

» Programming in a high-level language: Programming a processor requires less effort
using a high-level language than using assembly language. Furthermore, high-level
code is much more portable and consequently reusable. Here we also need a transla-
tion from the high-level language to assembly language (a code compiler).

Surprisingly, silicon compilation and code compilation have a large overlap: In both
cases, some form of scheduling and register allocation have to be performed. These two
tasks are the subject of this thesis. The application domain on which we focus is called
digital signal processing

1.1 Digital signal processing

The area in which digital Very Large Scale Integration (VLSI) chips are applied can be
split roughly into two domains as indicated in Figure T.dntrol processingnddigital
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signal processingdDSP). Control processing typically involves a lot of decision mak-
Ing; actions are taken based on events generated by the environment in which the chip
is applied. Control processing can be further partitioned into the aregeneiral pur-

pose computingndreal-timeapplications. In general purpose computing (for personal
computers, networks, etc.), processor speed is the main optimization criterion, and
there are few hard constraints. Real-Time (RT) applications usually involve hard timing
constraints, and hardware cost is a secondary issue. The RT application domain com-
prises all sorts of regulators: for your heater and vacuum cleaner, but also for safety
critical situations like height control in air traffic, anti-skid systems for the brakes in
your car, etc. Control tasks are typically execusstjuentially mainly because the
application involves a lot of control dependencies. As a result, control processors often
have limited arithmetic resources, applied in a diversity of computations. This demand
for sequential processing and flexibility has led designers to make ugenefal pur-

pose processor&PP) instead of designing hardware dedicated for the application. As
a result, relatively cheap microcontrollers are applied in hundreds of products and sold
by the millions each year. When performance is an important issue (e.g. in personal
computers and workstations), the GPPs are pushed towards extremely high
clock-speeds. This kind of work involves complicated electrical design and tiresome
hand-made layout at the physical level. Few companies can afford making their own
high-performance GPP, which is justified only when the design is sold in large volume
and prices are high.

Digital VLSI application domain
control processing signal processing

general l{ | real regular
purposel]| | time

processin

Figure 1.1 Partitioning the application domain of digital VLSI chips

On the other hand, DSP involves a lot of regularity and synchronization; samples are
taken and signals are received at fixed periods of time, and the same processing tasks
are repeated over and over for each sample or signal. This application domain com-
prises among others audio and video processing, telecommunication, speech processing
and imaging. The regularity in the computations allows parallel processing, and there-
fore the amount of arithmetic units in DSP processors may be as high as several hun-
dreds, e.g. dedicated processors generated by the automated synthesis toolset Phideo
[Meer95]. In this way, performance is obtained by exploiting parallelism rather than
high clock speed, which is advantageous for a number of reasons:
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» Low clock speed requirements are interesting when considering power consumption.
For example, the I.MCIiC [Klei97], a single-chip MPEG-2 video encoder runs on 27
MHz. As a result, the power consumption is only 2.1 Watt. The DAB receiver
[Huis98], a single-chip for digital audio broadcast runs on just 12 MHz, consuming a
mere 0.5Watt.

» Low clock speed requirements also allow the use of widely available standard arith-
metic units and automated layout design tools for designing the processor primitives
(as opposed to hand-made and heavily pipelined designs). As a result, design activity
focuses on high-level and architectural level decisions using automated design tools,
which limits the design effort. For example, the I.MCiC mentioned above contains
4.5 million transistors, and is designed within 5 man year using both the Phideo tool-
set [Meer95] and the Mistral2 toolset [Strik95]. The DAB receiver (also mentioned
above) also contains 4.5 million transistors and is developed in 12 man years using
the Mistral2 toolset for several parts of the design.

» High clock speed requires a larggeline deptiHenn96]. Instructions remain in
the processor for several clock cycles, each representing a stage such as instruction
fetch, instruction decode, operand fetch, etc. These stages are called pipeline stages.
Consecutive instructions may remain in the processor simultaneously; when instruc-
tion i fetches its operands, instructiofil is in the decode stage. When the clock
speed is high, the number of pipeline stages (the pipeline depth) is necessarily high,
which is difficult to oversee both for a programmer and for a compiler. In the case of
the Tl C60 [TMS97], the performance was boosted with a 200 MHz clock. The
result is a pipeline depth between 7 and 11 clock cycles. This leaves the programmer
with tedious assembly programming, taking into account overlapping branch delays
(5 clock cycles), frequently flushing the pipeline, and looking 7-11 clock cycles
ahead which is especially mind-boggling when advanced scheduling techniques like
software pipelining are performed.

Summarizing, exploiting parallelism instead of high clock speed as a means to obtain
high performance in DSP applications is advantageous for chip design time, power con-
sumption, and some of the complexity of compiler design. However, efficient parallel
implementations are (often much) less flexible than using a GPP. Furthermore, a paral-
lel implementation also has some negative effect on the design of a compiler as well.
We will focus on these issues in more detail in the following sections, where processor
architectures are classified, and the process of mapping an application to a processor is
explained. In section 1.3 we will focus more on an alternative processor architecture
called VLIW, and see how this architecture relates to classical DSP architectures. Sec-
tion 1.4 introduces the basic module in the mapping approach taken in this thesis, the
constraint analyser. Section 1.5 gives an outline of this thesis.
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1.2 Mapping an application to an architecture

In this thesis a method is described for mapping a behavioural specification onto a proc-
essor architecture. Processor architectures can roughly be classified using two criteria:
programmabilityand instruction seirthogonality(Figure 1.2).

Instruction Set
Orthogonality

A
VLIW | ROMp-code -feprogrammable  .T1320C60 [TMS97]
Mistral2 ~ Mistral2 [Strik94]  -Trimedia TM-1 [Trim97]
-[Rau99]

compact -T1320C54

msitructlon FSM based {E:SL%E’??] _DSP56000

se -

controller _Philips EPICS [Woud94]
ASIC ASIP general™ Programmability

purpose
DSP

Figure 1.2 Classification of Processor Architectures

There are different degrees of programmability: ASICs are not programmable at all
(application specific). ASIPs are programmable, but their performance is tuned to a
specific application domain. General purpose DSPs are the most flexible processors that
exploit DSP characteristics.

Instruction set orthogonality reflects the ability to control different elements in the data
path independently from each other, often by letting independent fields of an instruction
control individual data path components [Laps96, p.90]. For example, the register used
for storing the result of an operatioris independent of the type of operatiarin con-

trast, a non-orthogonal instruction set allows certain operations to be performed on spe-
cialized registers only. This introduces a dependency between the instruction field that
specifies the operation and the instruction field that specifies the operands for this oper-
ation. Although a non-orthogonal instruction set can be encoded very efficiently (in
terms of number of instruction bits), this dependency between different instruction
fields has to be taken into account by the compiler. A non-orthogonal instruction set is
therefore a much more complex compiler target than an orthogonal instruction set. On
the other hand, encoding all the possibilities offered by orthogonal processors, neces-
sarily implies a large instruction set, and therefore, wide instruction words.
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Because each of the platforms in Figure 1.2 has its characteristic features, we will
briefly discuss the architectures and the way their features affect the mapping method-

ology.

1.2.1 ASICs

An Application Specific Integrated CircufASIC) is a chip dedicated to and designed

for a single application. The process of translating an ASIC specification to a chip lay-
out is calledsilicon compilation In Figure 1.3 the design steps of a silicon compiler are
depicted. The functionality of the chip is specified using a description language such as
VHDL [IEEES88], Silage, or some C dialect. High-Level synthesis, also called architec-
tural synthesis, takes the behavioural description as input, and generates a specification
for a so-called data-path and a controller. The data-path consists of functional units
(FUs) like multipliers and ALUs, memory, and an interconnection structure. These
building blocks are generated using so-called module generators. The controller
describes how the flow of data inside the data-path is managed in terms of states and
state transitions. The controller description is translated into a configuration of logic
gates (or, and, xor, nand, etc.) using logic synthesis. The final synthesis step, called lay-
out synthesis, creates a geometrical description of the layout using placement and rout-
ing techniques. The result is a number of layout masks, which are used in an IC foundry
to process silicon to chips.

In the case of high-level synthesis the following tasks have to be performed [McFa88]:

FU Selection: What kind and how many functional units are used in the data-path?

FU Binding:  To which functional units will operations be assigned?

Scheduling: ~ When will operations from the functional description be executed?

Register Binding: To which registers will values be assigned?

These four tasks are interrelated, but are difficult to perform simultaneously. Therefore,
high-level synthesis strategies solve each problem or a small combination of these
problems separately. Most high-level synthesis tools perform these tasks in the order
represented above. Interaction with the designer is essential, because as a result of the
heuristic nature of the underlying mapping algorithms, the compiler will most likely
make some decisions that do not comply with the designer’s objectives.

1.2.2 General purpose DSPs

General purpose DSPs (GPDSPs) [Laps96] are the most flexible processors used for
DSP applications (although general purpose CPUs are also making steps towards the
DSP domain with special multi-media instructions such as Intel's MMX). Characteris-
tic for programmable processors is that the compiler has to deal with a fixed architec-
ture, notably the number of functional units and registers, and the interconnect
structure. The controller of a programmable processor is micro coded. Instructions can
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Behavioural description

architecture BEHAVIOUR of FILTER is
process
variable a, b,c;
begin
wait until start event and start="1";
a:=in_portl * (5 + in_port2);

High-Level Synthesis

Controller description Data Path

Logic Synthesis Module Generation

Gate Network Module
Descriptions

Layout Generation

$ | —— O —

Layout Description L
I .

Figure 1.3 Silicon Compiler Overview taken from [heij96]

be loaded into the instruction memory containing all the information the processor
needs for proper execution. The register binding and the schedule can be altered by
altering the instruction code.

The first GPDSPs were not much more than simple general purpose microcontrollers
(like the MIPS R1000 or the Philips 80C51) extended with hardware performing
instructions that frequently occur in DSP applications. In filter applications for exam-
ple, multiplication of a value is most often succeeded by addition of the result with an
accumulate register. As a result, a fadaltiply Accumulate (MAC) uniand a corre-
sponding single-cycle MAC instruction are part of most GPDSP architectures and
instruction sets respectively. To further increase the performance of GPDSPs, the DSP
application domain was analysed for even more patterns: the high amoeguddrity

in DSP computations was soon exploited by allocating additional functional units on
the DSP, thus enabling more computations simultaneouslgdiallel). For example,

on the DSP5600x a multiply can be performed in parallel with a memory to register
move. Soon even mon@emory access bandwidtiias required. Bandwidth to back-
ground memory was increased (and access latency decreased) by integrating most of
the memoryon-chip Foreground memory was increased by eitimedti-port register

files or with adistributedregister file architecture. To alleviate the resulting pressure on
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the communication bus, largeommunication networksere allocated with multiple
on-chip buses. These extended memory architectures were subsequently augmented
with special addressing modessich as circular and bit-reversed addressing for FFT
computations. Dedicatealddress computation unif®\CUs) serve the memories that

can handle register-indirect addressing with post-increment for repetitive computations
on sequentially stored data. Regular loop structures present in most DSP algorithms are
supported and exploited dyardware loopsand arepeatinstruction. When used in a

small application area, application specific units boost the performance of GPDSPs
substantially, as do dedicated peripheral I/O devices.

Besides the exploitation of knowledge of the DSP domain, DSP processor development
remains affected by the developments in computer architecture [Henn96]. Most notable
are the effects oheavily pipeliningthe processor in order to obtain high clock speed.
Since the control hardware is also pipelined, a delayed branch control has to be dealt
with, including flushing the pipelinevhen the wrong branch has speculatively been
chosen. In order to circumvent some of the pipeline stages, intermediate results are
quickly available on bypass networks before writing them to a register file. These
bypasses are coordinated at run-time because all kinds of uncertainties (cache misses,
data dependent conditions, etc.) are difficult to anticipate at compile-time. For the same
reasons, a weak kind of run-time resource scheduling is performed esag/ation
tables This also offers a largevindowof instructions to choose from [Henn96], thus
increasing the opportunity for more parallel computation. Often programmability is
facilitated by allocating an expensive single register file with a relatively large capacity
and high access bandwidth.

These performance boosts for GPDSPs have characteristics that may be very disadvan-
tageous for some application areas, because of:

» Power consumption: reservation tables, bypass networks, a large multi-port register
file, and dynamic scheduling all consume an amount of power that is not really nec-
essary in the sense that it is not used solely for computation. All this power overhead
makes many general purpose DSPs unsuitable for mobile applications, where battery
lifetime dictates the usability of an apparatus.

* The hardware features mentioned above occupy valuable chip area and require a
large effort for designing the chip layout manually, as already mentioned in the intro-
duction. This is affordable in an industry with very high profits such as the
(Intel-type) microprocessor industry. In the consumer electronics industry on the
other hand, profits are just a fraction of the cost price of a chip. In this area, general
purpose DSPs are used only for prototyping and for a fast introduction of the first
generation of a new product in order to gain a profitable market share for later gener-
ations of the same product (with cheaper implementations).

For programming GPDSPs roughly the same tasks are identified as for the high-level
synthesis of ASICs (section 1.2.1). However, due to the fixed data path, FU selection is
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not part of the mapping process. In DSP compilation code selection is considered the
most dominant step [Rau99]. The tasks are usually executed in the following order:

» Code selection: Which machine instructions implement the specified behaviour?
* Instruction Scheduling: When will selected instructions be executed?

» Register Binding: To which registers will values be assigned?

Note that in the case of parallel processors an instruction may consist of a number of
elementary (arithmetic, load, etc.) operations that are fetched in the same clock cycle.
Code selection is the task of determining a set of instructions such that all operations
that have to be performed are contained in some instruction. Code selection has to be
performed prior to scheduling, because the scheduler is constrained by the instruction
set: the operations that are scheduled in the same clock cycle are not guaranteed to
combine to a single instruction unlesstructionsare scheduled rather thaperations

The large overhead in both performance and code size of compiler generated code over
manually coded assembly [Paul96] is for a large part due to disappointing results of
code selection methods. However, the effectiveness of these methods (and of code
selection in general) depends highly on the structure of the instruction set. The trans-
parency of the instruction set for code selection is usually denoted by the rather subjec-
tive term ‘orthogonality’, explained in Section 1.2. Depending on the availability of
memory space for certain application areas, either very compact instruction sets are
chosen and programming is done manually for the larger part [Woud94], or an orthogo-
nal instruction set is chosen and a large instruction memory is required [Schlan94].

1.2.3 ASIPs

In the previous two subsections we have seen that on the one hand ASICs lack flexibil-
ity but offer the most efficient solution in terms of performance, area, and power dissi-
pation. General Purpose DSPs on the other hand offer a lot of flexibility, but are often
not able to satisfy performance, area, or power dissipation requirements. Applica-
tion-Specific Instruction Processors (ASIPs) have become popular due to their advanta-
geous trade-off between the ASIC characteristics and the GPDSP’s flexibility. An ASIP
is a programmable processor tuned to a specific application domain. Often a large part
of the functional units consists of application specific units (ASUs), that efficiently per-
form computations characteristic for the application domain. It appears that the use of
these ASUs can reduce the power consumption of general purpose DSPs by factors in
the order of 10-100 [Meer99, section 5.5].

A micro coded controller provides flexibility, but as explained in the previous subsec-

tion, the necessary instructions occupy valuable chip area. This is especially true for
embedded applications (for which ASIPs are mostly used) where instruction memory is
kept on the same chip as the ASIP itself, together with other processors. Because
on-chip memory requires more area than off-chip stand-alone memory (mostly because
the memory has to be implemented by logic technology rather than the more area effi-
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cient memory technology), there is a hard pressure for minimizing the required amount
of instruction memory. The number of bits required to encode an instruction set is pro-
portional to the cardinality of the instruction set. ASIP designers have therefore care-
fully selected an instruction set based on profiling information of the application
domain. There is even some research effort to do this automatically[Alom93]. The
instruction set for an ASIP is thus a trade-off betweestmeasured by the instruction
width, andperformancaneasured by the number of operations that a single instruction
encodes [Paul95a]. The result is an instruction set with very little regularity or structure,
which does not provide a simple transparent processor model to a compiler. Program-
mability of ASIPs is often considered as an afterthought, partly because they are meant
to be programmed in assembly as a result of the pressure on highly optimized code with
high-volume electronics. Current compilers for these processors (and more general
fixed point DSPs) tend to produce an intolerably large overhead in code size and per-
formance [Zivo94].

However, due to the increasing competition in the consumer electronics sector, time to
market is gaining priority, which puts a lot of pressure on design productivity. Program-
ming ASIPs in a higher programming language like C is therefore becoming a neces-
sity, and research efforts in automated compilation techniques for ASIPs have increased
during the last decade.

The compiler steps are the same as for general purpose DSPs:

¢ Code selection: Which instruction will be executed?
* Instruction Scheduling: When will this instruction be executed?

* Register Binding: To which registers will values be assigned?

An orthogonal instruction set provides a transparent processor model for the scheduler
[Timm95], [Strik95], so that the task of code selection is alleviated and the emphasis is
placed on scheduling and register binding. However, for ASIP compilation there is usu-
ally an even larger emphasis placed on the task of code selection [Marw95], because
ASIP instruction sets and architectures typically exhibit more irregularity than general
purpose DSPs. This is amplified by the requirementraetfirgetability [Lann95],
[Paul95b]: A specific ASIP is designed for a narrow application domain. However,
making a compiler for each separate ASIP is simply too much effort. Instead, a single
‘parameterizable’ or retargetable compiler is designed, that makes certain assumptions
on the topology of the architecture, and the rest of the architecture information is read
from a machine description file, as depicted in Figure 1.4.

The processor architecture is specified using a machine description language such as
nML. The following architecture aspects are typically specified in such a language
[Rau99:

* number of functional units
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Target Software
Machine Specification
Description of applicatio

Retargetable compile

Targei
Machine
Code

Figure 1.4 Retargetable Compilation

* FU pipeline structure

* FU latencies and throughput

» set of opcodes that each FU can execute
* number of register files

* number of registers per register file

» addressability of the registers

* interconnect between the register files and FUs

Retargetability has a large effect on the range of techniques applied in code selection. A
processor specific compiler can exploit instructions that are very specific for the proces-
sor. Suppose for example, that a processor is able to encode two parallel moves from
memory to register in a single instruction, provided that the first move targets either
register r0 or rl, and the second move targets register r2 or r3. This highly efficient
instruction can be exploited by the compiler, but it requires processor specific ad-hoc
techniques to test the possibilities of exploiting this parallel instruction. It would cost an
intolerable amount of effort to retarget such a compiler. As a result, retargetable com-
pilers can only afford to employ generic methods such as graph matching and covering
algorithms [Liem94], [Praet94]. This has resulted in poor performance: Despite all the
research effort spent on the subject of code selection, current ASIP compilers perform 2
to 8 times worse than manually written assembly on both speed and code size [Paul96].

In the next section we will consider the VLIW processor architecture that provides a
compiler friendly processor model at the cost of larger code size.
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1.3 The Very Large Instruction Word architecture

The first generation of Very Large Instruction Word (VLIW) processors were developed
with the specific goal of making the architecture suitable for automatic code generation
[Fish83] [Rau82] by providing a highly orthogonal instruction set. These processors
typically provide higher levels of instruction-level parallelism (ILP), more registers,
and a regular interconnect. In this way a compiler is able to generate high-quality code
using systematic rather than ad hoc techniques. The data-path of a typical ASIP VLIW
architecture is given in Figure 1.5. A number of functional units (FUs) executes in par-
allel, each fetching its operands from dedicated or ‘weakly’ shared register files (RFs)
at the beginning of a clock cycle, and writing the result to another RF at the end of the
clock cycle. General purpose DSPs with a VLIW architecture often have one large reg-
ister file, such as the Trimedia TM-1 [Trim97], or two large register files, such as the
T1320C60 [TMS97].This will provide an easier compiler target for most tradi-

Instruction constant (load immediate, branch address, etc.)
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Figure 1.5 Data-path of a typical VLIW architecture

tional compiling techniques at the cost of expensive, slower, power inefficient
hardware and wider instructions, as will be shown in section 1.3.2. Distributed
register files such as in Figure 1.5 are more typical of ASIPs [Strik94].

1.3.1 Code generation for VLIW processors

In its ‘ideal’ form [Rau81], each functional unit is controlled by dedicated instruction
bits that are completely independent from the bits controlling other FUs. Therefore
every combination of operations is guaranteed to be encoded by an instruction word,
provided that these operations execute on different FUs. This has the following major
consequences:

 Instruction selection can be performaftter scheduling and register binding, thus
providing much more freedom for both scheduling and register binding.

* Instead of scheduling instructions, we can schedule individual operations.
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¢ |nstruction selection has become a trivial task

So the ‘ideal’ VLIW architecture eliminates all the difficulties that accompany instruc-
tion selection for less ‘regular’ architectures and shifts the emphasis on scheduling and
register binding, thus providing more opportunity to exploit the available parallelism.
‘Less’ ideal VLIW architectures pose only a limited restriction in that sense. The Tri-
media TM-1 [Trim97] processor for example, has 27 functional units, but for several
reasons each instruction is able to control only 5 functional units in parallel in the fol-
lowing way. Functional units are grouped in clusters, where each cluster is assigned one
of the fiveissue slotshat comprise an instruction word. The structure of this instruction
set architecture can be modelled for the scheduler in terms of ‘regular’ resource con-
straints [Bras99]. Furthermore, the compiler can be retargeted by regrouping functional
units and introducing resource constraints accordingly. We conclude that ‘regular’
Instruction set restrictions like issue slot constraints, can be taken into account during
scheduling without the difficulties associated with explicit instruction selection. More
recent research [Leij00] introduces constraints in the interconnect between functional
units and register files. Coping with such constraints is a topic of ongoing research
[Beko00].

Whereas the trend in general purpose processor design is towards increasingly higher
clock speeds for performance, the VLIW architecture is more focused on the parallel
execution of operations. Exploiting this ILP however, is a lot more difficult than
exploiting clock speed. So the VLIW architecture emphasizes scheduling not only
because instruction selection is less of a problem, but also because there is a lot more
pressure on the performance of the scheduler, or more specifically: the scheduler’s abil-
ity to exploit the parallelism available in the VLIW architecture. There are roughly two
ways the scheduler can exploit this paralleligahobal schedulingandloop scheduling.

In order to understand these scheduling mechanisms, a few words are spent on the way
an application algorithm is specified for the scheduler. Such an algorithm is divided into
so calledbasic blocks which consist of operations, and possibly other basic blocks
(hierarchically). The division into basic blocks is determined by the control flow within
the algorithm. For example, an if-then-else construct in basic block A will generate two
new basic blocks B and C that are part of A. Basic block B contains the operations (and
possibly basic blocks) specified in the then branch, and C contains those specified in the
else branch. Another example of a basic block is a while or for loop. Traditional sched-
uling techniques consider the operations in a single basic block. Therefore the ILP that
can be exploited is limited to the ILP present in one basic block. Global scheduling
extends the opportunity for exploiting ILP beyond the basic block boundaries induced
by if-then-else constructions, whereas loop scheduling extends the opportunity for
exploiting ILP by considering more iterations of the same loop.

The best-known implementation of global scheduling is probably Trace scheduling
[Fish81]. Most characteristic about global scheduling is that it extends the scheduling
window the set of instructions (or operations) examined for simultaneous execution
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[Henn96]. This is done using so calléeconversion:removing some of the boundaries
between Basic-Blocks. Extending the window can be done at compile time or at run
time. The idea is that if there are more operations within the scheduling window, the
scheduler has more opportunity to find combinations of operations that can execute
simultaneously. At any given time t, the window consists for a large part of operations
that are conditional, but at time t the value of this condition may not be known. These
operations are executed speculatively: only when the condition has been calculated it is
known whether the results of these operations will be used or disregarded. General pur-
pose DSPs rely for their performance for a very large part on global scheduling: effi-
cient schedules for general purpose DSPs with a VLIW architecture execute about half
of the operations speculatively [Ho0g99]. As a result of global scheduling operations
are often duplicated and encoded more than once in the program code. Global schedul-
ing therefore tends to increase code size. The importance of global scheduling for gen-
eral purpose DSPs is explained by the fact that control oriented code (where basic
blocks typically contain little ILP) comprises a large part of typical code mapped on
these processors.

As depicted in Figure 1.2, more application specific processors (ASIPs and ASICS)
may also employ the VLIW architecture. These processors are often embedded on a
chip together with instruction memory (or cache), and therefore code size has to be lim-
ited. The problems that VLIW architectures have with code size often limit their appli-
cation to time-critical code segments. On the other hand, time critical code consists
mostly of ‘regular’ loops that are executed many times. (In signal processing a general
rule of thumb is that 80% of the execution time is spent in 20% of the code.) These reg-
ular loops can be scheduled very efficiently by eitloep unrolling[Henn96] orloop
pipelining[Lam88](also called loop folding or software pipelining) or a combination of
both. Both techniques try to overlap the schedules of subsequent loop iterations in order
to exploit the available architectural parallelism.

Loop unrolling basically copies the operations in the loop body a number of times
before scheduling. The resulting loop is scheduled using a conventional scheduler. The
advantages of loop unrolling are that the scheduler can be kept simple, and that there is
more ‘room’ for optimization in the sense that every loop copy can be scheduled differ-
ently from the others. One disadvantage is that the beginning and end of the resulting
schedule will be relatively sparse (few operations can be executed in parallel) because
begin and end do not overlap unless loop pipelining is applied. This ‘overhead’ can be
minimized by a large unrolling factor. This measure combines badly with the main dis-
advantage of loop unrolling: the code size increases with approximately the same fac-
tor. Furthermore, since the problem instance also grows with the same factor, only
low-complexity scheduling algorithms can be used.

Loop folding demands that all overlapping loop bodies are scheduled in exactly the
same way. The advantage of this is that the same code is used for almost every loop iter-
ation (thus code size is limited) and that parallel code is obtained at every point in the
loop kernel. The main disadvantages are that special (intelligent) schedule algorithms
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are required, and that so callpdeambleand postamblecode must be added (see sec-
tion 2.2) outside the loop.

Research [Aiken95] suggests that loop pipelining is as effective as full loop unrolling,
while producing less code [Henn96]. In this thesis we will therefore focus on loop

pipelining.

1.3.2 Register file architecture

In this section the pros and cons of an architecture with one large multi-ported register
file and an architecture with multiple register files are discussed. Traditionally, the
‘ideal’ VLIW architecture contains a single large register file [Fish83], [Rau82]. From
the compiler perspective this architecture is indeed ideal: for each value, the register
binder has the full register address range at its disposal, and no copies of values need to
be generated, so the register pressure is relatively low and no additional communication
is required. Most other criteria are however in favour of distributing the registers over a
number of files. Since these criteria have gained importance during the last decade, it is
unlikely that in the future VLIW processors will be designed with a single large register
file. We mention some of these criteria below. Let W denote the number of words in a
register file, and let P denote the number of access ports. Furthermore, “a” is a constant
that depends on some design and technology parameters and ranges from .5 to 1.

» Power consumptiarfor a single access to the register file, the power consumption is

O(PIWA.

» Access delayThe access delay is of the same order as the power consumption for
one accessQ(P D\Na) . Access delay is often a persistent bottleneck in processor
design. In order to keep the delay within limits, parallel memories can be used (with
fewer ports), but consistency between these memories has to be maintained, which
has serious effects on both the (manual) design effort and the power consumption.

» Code size Code size is an important criterion for different reasons: for off-chip
instruction memory, power consumption for off-chip communication is the main rea-
son. For on-chip (embedded) instruction memory, area is more important. Code size
is for a large part determined by thestruction width In the following it will
become clear that a distributed register file architecture yields a smaller instruction
width than a single register file.

If all registers are concentrated in one register file, each access to this file has to
provide an address from the rangealff registers. The number of accesses to this
large register file amounts to 3 times the number of functional units that are
addressed in one instruction word, because it is assumed that a functional unit
fetches two operands and writes one result. Suppose there are 5 instruction slots
and 128 registers arranged in one file, such as in theédia TM-1 [Trim97].

These registers are addressed u5|img]128 =7 bits, so the number of bits used
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for register addressing in a single instruction word, amounts 3 [17) = 105

bits (guard operands are not taken into account in this calculation). If these 128
registers were distributed over 8 register files of 16 registers each, and each oper-
and for a functional unit can be taken from exactly one such register file, then the
address for each source operand takes oldgl16 = 4 bits. It is assumed that
the result of a computation can be routed to each register file, so the destination
operand has the full register address range at its disposal. Now the number of bits
used for register addressing in a single instruction word equals
5024+ 1007) = 75 bits, so in this example the single register file architec-
ture uses 40% more bits on register addressing than the distributed register file
alternative. If the number of register files would be larger, then the difference in
instruction width would be even more dramatic.

1.4 Constraint analysis

The aim of this thesis is to describe a good method of scheduling and register binding
for VLIW (and similar) architectures, both application specific and programmable. The
problems of scheduling and register binding are however fundamentally different for
programmable processors and non-programmable processors: For ASICs it is our aim
to minimize the number of registers (for the given constraint set). For a programmable
processor on the other hand, the number of registsgsin each register file is actually
irrelevant as long as this number does not exceed the numlaeadableregisters in

that file. It could even be advantageous to exploit all available registers in order to give
the scheduler more opportunity to satisfy the timing and resource constraints. For our
understanding of the similarities and differences between these two problems, we
define three types of feasibility:

» T-feasibility: Timing, precedence, and resource constraints are satisfied

» R-feasibility: T-feasibility extended with a register binding that is consistent with the
timing, precedence, and resource constraints.

» S-feasibility: R-feasibility, but now the register binding also has to respect fixed indi-
vidual register file sizes.

Search space:

R-infeasible

Figure 1.6 The search scope is restricted to the R-feasible region.
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For ASICs we try to find an R-feasible solution with the minimum number of registers,
and for programmable processors we need to find an arbitrary S-feasible solution. Note
that in both cases the solution has to be R-feasible. This observation suggests a modular
approach with a basic module that restricts the search scope to the R-feasible region, as
depicted in Figure 1.6. This module should also be able to detect infeasibility of the
constraint set in order to avoid a lengthy exhaustive search. We call this module the
constraint analysefMesm99]. The techniques in the constraint analyser constitute the
major contribution of this thesis.

1.5 Thesis outline

In the next chapter we will define the basic concepts necessary for understanding some
scheduling problems. After introducing the data flow graph model and discussing a
general scheduling problem, the two main scheduling and register binding problems are
formalized, and a solution approach is outlined. In chapter 3 we will see how the con-
straint analyser handles resource constraints, particularly in the context of loop pipelin-
ing. The way a given (partial) register binding is handled by the constraint analyser is
treated in chapter 4. The way the constraint analyser is used in finding an efficient
R-feasible solution (for ASICs) and an S-feasible solution (for programmable proces-
sors) is treated in chapter 4 as well. In chapter 5 we try to enforce lifetimes in such a
way that they fit in other types of register files, such as FIFOs and stacks, instead of
addressable register files. These (foreground) memory units have the advantage that the
address mechanism requires fewer instruction bits, whereas a potentially large storage
capacity can be provided. Chapter 6 provides a summary of the thesis.



Chapter
2 Operation Scheduling

In this chapter we will introduce the two fundamental problems that are the subject of
this thesis: operation scheduling for minimum register requirements (for ASICs) and
operation scheduling for fixed register file sizes (for reprogrammable architectures). In
Section 2.1 the basic scheduling model and some definitions are given. Section 2.2
extends the range of possible schedules by introducing the conckmpopipelining
Section 2.3 discusses the traditional high-level synthesis scheduling problem and infor-
mally illustrates the difficulty of finding a pipelined schedule. In Section 2.4 it is shown
how the constraints and problem specific characteristics are modelledDatad-low
Graphmodel of Section 2.1. Our two fundamental scheduling problems are defined in
Section 2.5. In Section 2.6 some inititialization issues are addressed for our scheduling
approach.

2.1 Definitions

We start with the definition of the most widely used RTL-level specification model for
an application program: the Data Flow Graph, (DFG) [Ku92].

Definition 2.1 (Data Flow Graph) A data flow graph is a tripl¢V,E O E, w) , where
» Vs the set of vertices (operations),

* E,OV xV is the set of directedataprecedence edges,

« E,OV xV isthe set of directesequencgrecedence edges, and

« w: E,0E, -~ Z describes the timing delay associated with a precedence edgg.

The main difference with DFG models like that from [Ku92] is the emphasis on
(sequence) edges. First, minimal delay between operations is associated with the edges
rather than the operations. Second, our methodology is heavily based on the concept of
precedence, modelled by sequence edges. Note that our definition of a DFG does not
require the graph to be acyclic.

An example of a DFG for an IIR filter application is found in Figure 2.1. Typical opera-
tions are arithmetic and logical calculations, address computations, memory-reads and
writes, i/0 operations, and application specific operations.
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Figure 2.1 : A data flow graph for an IIR filter

The precedence edges define a partial order on the executions of the operations. In this
thesis, whenever necessary, a distinction between data edges and sequence edges in a
DFG is visualized by drawing data edges with a solid edge, and sequence edges by a
dashed edge (e.g. operation 12 to operation 25 in Figure 2.1). Furthermore, data edges
have a default delay of one clock cycle and sequence edges have a default delay of zero
clock cycles. Most of the constraints that accompany a scheduling problem relate to the
start time of an operation, the time that its execution starts. The start times of the opera-
tions in a data flow graph comprise a schedule:

Definition 2.2 (schedule)s:V — N describes the start times of operations, where N
denotes the set of natural numbers. O

A schedule is constrained by precedence edges. A precedepes) with delay
w(v, v;) expresses that

s(v;) 2 s(v) +w(v, V)
In the text, whenevewr(v;, v;) 20 , a precederfegv,) will be indicated byv;.

Definition 2.3 (latency)l is the number of clock cycles required to execute a schedule.
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A schedule for the DFG in Figure 2.1 is found in Figure 2.2 a). Note that in this exam-
ple, each operation executes in one clock cycle. In Section 2.4 we will show how
multi-cycle executions are modelled using precedence constraints. In the schedule of
Figure 2.2 a) the operations are grouped (in columns) with respect to the functional
units they are mapped onto. When two operations are mapped to the same functional
unit they cannot execute simultaneously. There are other reasons why two operations
cannot execute in parallel, e.g. they transport the result of the computation over the
same bus. Alternatively, there may exist no instruction in the instruction set of a pro-
grammable processor encoding the parallel executiapaidy; although these opera-
tions are mapped to different functional units. These constraints preventing parallel
execution are calledesource constraintsand are given by the functionsc(v, v;)

V xV - {0,1}, defined by

L1 if viandvjhave a conflict

rsc( v, vj) =0 (2.1)
[J 0 otherwise
A resource constrainsc(v, v;)  expresses that
rso(v, v;) =10 s(%) #s(v) (2.2)

A valid schedule has to satisfy the resource constraints. Both the resource constraints
and the precedence constraints limit thestruction-Level Parallelism(ILP), the
number of operations that can execute in parallel. For loops, a particularly efficient way
of scheduling circumvents the limiting effect of most of the precedence constraints.

2.2 Pipelined schedules

In a loop construction thop body(represented by a DFG) is executed a number of
times. In a traditional schedule, iterationr 1 of the loop body is executed strictly after
the execution of thé" iteration. [Lam88] and [Go0s89] demonstrate a practical way to
overlap the executions of different loop body iterations, thus obtaining potentially much
more efficient schedules. This way of scheduling is cdlbeg folding, loop pipelining,

or software pipelining

Definition 2.4 (Initiation Interval Il) The Initiation Interval (1) is the period between
the start times of the execution of two successive loop iterations. O

Loop pipelining allows the execution of operations from iteratiom parallel with or

even after the execution of other operations from iteratiori . Compare for example
the two schedules in Figure 2.2 for the graph in Figure 2.1, one without pipelining, the
other pipelined in such a way that the initiation interval equals 7 clock cycles.
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Figure 2.2 a) Schedule for the DFG in Figure 2.1 b) pipelined schedule

The operations of iterationoriginally scheduled in the last 4 cycles are now executed
simultaneously with the first 4 cycles of iterationt 1 . In this case, the pipelined
schedule is obtained by pipelining amistingschedule, and loop pipelining causes a
57% increase in the throughput. Later we will see that an even more efficient schedule
is obtained when loops are pipelined in the process of constructing a schedule. How-
ever, this can only be done efficiently if the scheduler oversees the constraints present
between operations belonging to different loop iterations. Thus we should be able to
express precedence and timing relations that cross the loop boundary. It is useful for our
purpose to label these operations with their iteration index, so we, léeite tha!h
execution of operation C. Suppose we want to express in the DFG the fact that
C, - P, .. This precedence from;@ B, has consequences for the timing relation
between €and R, involving the time between successive initiations of a loop, the initi-
ation interval (II). This timing relation can be derived from the following equations.
Equation (2.3) expresses the constraint that the time between two successive loop initi-
ations is fixed to |l.

S(P,,) = s(P)+k0l (2.3)

Equation (2.4) expresses the consequences of a precedence relation for the starting
times of the operations.

(C = Piyy) = s(F ) 2s(C) (2.4)
Substituting (2.3) in (2.4) yields:

(C. - Pi,,) = s(P)=s(C)—k0l (2.5)
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Figure 2.3 Graphical representation of equation (2.5)
Equation (2.5) expresses the effect of a precedence rel@tion P, which effectively
has a delay-k I . When the precederCe- P, , has a timing deldle pro-
jected precedence relatid) — P,  effectively has a delayk [ Kerl equa-
tion (2.5) is visualized in Figure 2.3. Note that in equation (2.5) and Figure 2.3 the
implication is in two directions. This means that the precedé®ce P, is function-
ally equivalent to a preceden€g — P,  with delaly [l , Which can be expressed in
the DFG.

We have now found a way to derive so callater-iteration dependencigeam88] or

loop carried dependencielGovin94] from the normal precedence relations in the
data-flow graph and the initiation interval. We should however also be able to express
resource conflicts that cross loop boundaries. Therefore Equation (2.2) is generalized to
Equation (2.6).

rso(v, vj) =10 s(v) mod Il #s(v) mod Il (2.6)

The terms(v) mod Il is called théme potentialbf v;.

We are now ready to introduce the traditional High-Level Synthesis scheduling Prob-
lem.

2.3 The High-Level Synthesis scheduling Problem

The general high-level synthesis (feasibility) scheduling problem is formulated as fol-
lows:

Definition 2.5 (High-Level Synthesis Scheduling ProblemGiven are a DFG, a
function rs(v, v)) , an initiation interval Il, and a constraint on the latericy
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(completion time). Find a schedule s that satisfies the precedence constraints, the
resource constraints, and the timing constraints llland [

The high-level synthesis scheduling problem is NP-complete because it generalizes the
NP-complete problem of sequencing with release times and deadlines [Garey79,
p.236]. The corresponding optimization problems, minimizingr I, are therefore
NP-hard. As a result, many heuristic approaches can be found in the literature, an early
overview of which is given in [McFa90].

By far the most widely used type of schedule heuristic is cdifgeschedulindHu61].

List scheduling became well-known after the theoretical treatment in [Coff76], and was
introduced in the HLS community by [Girc84]. The basic algorithm works as follows:
Starting with clock cycle 0, clock cycles are ‘filled’ with operations. For each clock
cycle, a ‘ready-list’ is kept, containing those operations that are ‘ready’ to be scheduled
(that is, their predecessors have already been scheduled in earlier clock cycles). Opera-
tions are taken from the ready-list and scheduled at the current clock cycle. When some
operations in the ready-list have a resource conflict, an operation is selected based on a
priority function, and the remaining conflicting operations are moved to the ready list
corresponding to the subsequent clock cycle. In this way many variations of the basic
list-scheduler exist by granting priority based on, among others, the number of prede-
cessors or successors of an operation, the ASAP value, the ALAP value, the mobility,
etc. In [Thom90] some experiments are done with different priority functions. An over-
view of priority functions can be found in [Heij91].

Researchers from both the general-purpose computing [Rau81] and the HLS commu-
nity [Goos89] have used the list-scheduling principle for generating pipelined loop
schedules. It appears to be much more difficult to find good priority functions for gener-
ating pipelined schedules than for regular (non-pipelined) schedules. This disparity
stems from the fact that for pipelined schedules, resource conflicts have to be solved
between operations that belong to different loop iterations. The difficulty in handling
theseinter-iteration conflictsis illustrated with a small example in Figure 2.4. In this
figure, a precedence graph of 5 operations is given. In order to meet the constraint of 3
clock cycles on the initiation interval (Il), loop pipelining has to be applied (indicated
by the arrow in Figure 2.4 b and c). Because pipelining introduces extra code, we do
not want to fold more than once, which constrains the latency to 6 clock cycles. In Fig-
ure 2.4b the result of a list scheduler is shown. The left column contains the time poten-
tial. The list scheduler greedily schedules A, B, and C as soon as possible (ASAP), and
concludes that D cannot be scheduled. In Figure 2.4c a valid schedule is given. The key
to obtaining this schedule is to postpone B one clock cycle relative to its ASAP value.
However, most schedule heuristics (notably list-scheduling) are simply too greedy to
postpone operations. In Section 3.5 we will demonstrate that an approach based on ana-
lysing the constraints finds the only feasible schedule. In order to this efficiently, care
must be taken that the DFG model suffices for expressing most of the constraints and
constructions that are allowed.
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2.4 Modelling the constraints

In this Section we show how some of the constraints can be represented in the DFG
model introduced in Section 2.1. We start by expressing the latency in terms of a prece-
dence relation.

* Latency. In order to model latency, we introduce two (dummy) operations to our
DFG model: the source and the sink. The source operation is the ‘first’ operation,
and the sink operation is the ‘last’ one, so the start time of each operation is lower
bounded by the source operation, and upper bounded by the sink opera-
tion:0(v; O V): s(sourcg < s(v) <s(sink). A constraintl on the latency is now
modelled by an arc (sink, source) wir-|, illustrated in Figure 2.5. This is inter-
preted ass(sourcg = s(sink) —1 , which is equivalent 8¢sink) < s(source +1 , mean-
ing the sink operation may not be executed more thdack cycles after the start of
the source operation.

» Micro coded controller, randomly addressable register files and loop pipelining
We assume that the architecture contains a micro coded controller. As a conse-
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Figure 2.5 Modelling the latency

guence, the same code is executed every loop iteration. This implies that a communi-
cated value is written in the same register each iteration. When loop iterations
overlap, we have to ensure that a value is consumed before it is overwritten by the
next production. Since subsequent productions are exactly Il (initiation interval)
clock cycles apart, a value cannot be alive longer than Il clock cycles. So the opera-
tion C that consumes a value must execute within Il clock cycles after the operation
P that produced the value. Just like the latency constraint, a necessary and sufficient
translation to the precedence model is that for each data dependency (P,C) there is an
arc (C,P) withw = —II . Note that this constraint is not implied by all register file
models; in Section 5.1 we treat fifos which can contain values with a lifetime
exceeding the initiation interval.

Pipelined executions and multicycle operationsThese are operations that violate

our assumption of operations to take one clock cycle to execute. Conceptually, they
are split in a number of ‘stages’ for each clock cycle. In our model, an operation is
introduced for each stage of the execution. Subsequent stages are linked in time
using two sequence edges as indicated in Figure 2.6. For multicycle operations, A
and B occupy the same resource. Pipelined operations are allowed to overlap in time,
and therefore imply a resource conflict only between operations that correspond to
the same pipeline stage.

Scheduling decisionsWhen schedule decisions are taken during the process, the
schedule intervals of other operations are affected. Therefore it is desirable to be able
to express a schedule decision in the DFG, so that its effect can be analysed in the
context of the other constraints. Scheduling decisions may take different forms. A
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timing relation between two operations can be directly translated to a sequence edge.
When an operation A is fixed at a certain clock cycle ¢, we need two sequence edges
as indicated in Figure 2.7

* Resource conflicts and instruction set conflictdn Section 2.1 the resource conflict
modelrsc(v, v;) was introduced. In this thesis it is assumed that instruction set con-
flicts are expressed in the resource conflict model. Relatively simple instruction set
conflicts (e.g. that prevent the simultaneous execution of two types of operations)
can be expressed in this model by the method explained in [Timm95]. More general
issue slot constraints require more modelling effort [Bras99].

2.5 Problem formulation

In order to formulate the problem we need to state some assumptions:

» All operations have been mapped to functional units. This is often the case because
instruction selection is usually done prior to the scheduling phase (see for example
[Liem94]), thus providing a resource binding.

» All values communicated between operations have been mapped to register files. In
ASIP-architectures, a functional unit usually gets its operands from a specified regis-
ter file, so instruction selection (implicitly) determines the assignment of values to
register files. Within a register file there are multiple registers however, and the
assignment of values to these registers remains to be decided.
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» The controller is micro coded. One consequence is that in a pipelined loop a value
cannot reside in a certain register for a period longer thanrii@tion interval,
which is the period of initiating the schedule for a loop iteration. Another restriction
Is that a loop-body execution is the same for each loop index. This is not the case for
e.g. the Phideo processor architecture [Meer95], for which potentially better sched-
ules can be obtained.

» The initiation interval Il for each hierarchical level is fixed prior to scheduling. It can
be fixed by the designer. Otherwise, we start with a lower bound as explained in Sec-
tion 2.6. When this value of the Initiation Interval is not feasible, it is incremented.
Profiling suggests that the optimal Il is usually only one or two clock cycles away
from the lower bound.

In this thesis two different scheduling approaches are treated: omeifidmizing the
required number of registers (for ASIC design), the other for handixeyl register

files (for programming ASIPs). We will call them the unconstrained and the constrained
“Register Binding and Operation Scheduling Problem”, respectively. Both approaches
serialize value lifetimes during or prior to scheduling by introducing sequence edges.
The terms serializing and sequencing will be used as synonymes.

2.5.1 Minimizing the register count

The design of an ASIC typically concerns satisfying performance constraints while
minimizing some cost function. The main criteria involved in the cost function are area,
power consumption, and time to market. The register count affects all these criteria:

» area: although a register occupies silicon area, the physical regisietrtiee domi-
nant contribution of the register to the silicon area. The control required to address
this register is usually the dominant factor. For example, when a micro-coded con-
troller is used, going from 8 to 10 registers in some register file requires an additional
instruction bit for the extended address range. If the function is implemented with,
say, 5K instructions, the additional 2 registers cost 5K bit (embedded) instruction
rom (far more expensive than two physical registers).

* power consumption: power consumption within a register file grows with the size of
the register files. The main contribution however is (again) in accessing and commu-
nicating the additional instruction bits required for addressing the larger register file.

 time to market: when this is an important criterion programmable processors are usu-
ally preferred. If this solution is too expensive however, we rely orstimthesizabil-
ity of an ASIC. Synthesizability refers to the suitability of designing the ASIC with a
small effort. It is clear that synthesizability is improved by the usstahdardcom-
ponents and components that do not require a lot of (manual) effort to ‘push’ to the
required performance (timing). Larger register files require a larger depth of the mul-
tiplexer tree in the address decoding part, which is in the critical path of accessing
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the register file. Smaller register files therefore require less (manual) manipulation in
order to satisfy the timing requirements.

The problem of minimizing the number of registers is defined as follows.

Definition 2.6 (Unconstrained Register Binding and Operation Scheduling
Problem): Given a data flow graph (DFG), the functiosc(v, vi) , a binding of values

to register files, an initiation interval 1l, and a constraint on the latdndyind an
assignment of values to registers and a schedule s that satisfies the precedence
constraintsE; O E; , the resource constraints, and the timing constraints || andh

that the total number of registers is minimized. a

Because it is difficult to determine a register binding and a schedule simultaneously, we
decompose the problem into separate phases as depicted in Figure 2.8. First an initial Il
and an initial register binding are constructed. The determination of the initial 1l is
explained in Section 2.6. The initial register binding is such that all values assigned to a
certain register file are assigned to the same register. This register binding requires the
least number of registers but will usually be overconstrained (infeasible) in the sense
that the register binding is inconsistent with the timing constraints. The central part, the
constraint analyser (discussed in Chapters 3 and 4), generates additional precedence
constraints that are implied by the combination of all constraints, including the given
register binding. These additional precedences prune the schedule search space. They
will guide the scheduler and often prevent it from making a schedule decision leading
to infeasibility. When the constraint set leaves some room for different lifetime seriali-
zations, thelifetime sequencefon the right of the constraint analyser) chooses the
alternative that implies the smallest loss of schedule freedom. The constraint analyser
(together with the lifetime sequencer) completely replaces the register-binding con-
straints by precedence constraints. These precedences may cause the constraint set to be
infeasible. Aninfeasibility analysigdiscussed in Section 4.2) uses the administrative
bookkeeping done by the constraint analyser to identify the bottleneck in the constraint
set and the register binding. The ‘change register binding‘ block in Figure 2.8 subse-
quently eliminates this bottleneck by placing two values in different registers that were
previously assigned to the same register. This scheme is iterated until the constraint set
and the register binding are feasible. Finally, the precedences generated by the con-
straint analyser, are fed to a scheduler. The way the search space is traversed is illus-
trated in Figure 2.9: Starting from a mostly infeasible register binding, bottlenecks are
solved until the solution is just feasible, on the border between the R-infeasible and the
R-feasible region (see Section 1.4 for definitions of the different types of (in)feasibil-

ity).

An advantage of this approach is that in order to complete the schedule, a rather
straightforward scheduler can be used that is unaware of register binding issues.
Although the existence of a schedule is not strictly guaranteed after the constraint ana-
lyser, a schedule has always been found in practice when the constraints are very tight,
that is, when loop pipelining is applied. When the constraints are not very tight, some
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Figure 2.8 Global approach for minimizing the register count

Search space for minimum register count

Figure 2.9 In Figure 2.8 the (register binding) is incremented from the centre of the
overconstrained (R-infeasible) region to the border with the R-feasible region.

form of backtracking in the scheduler may be desirable. As the scheduler and its heuris-
tics are not critical in this approach, we will not focus on them in this thesis.

Note that a main characteristic of our approach is that we perform register bjpraing
to scheduling. This scheme provides more opportunity for finding an efficient register
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binding, because we are not constrained by a given schedule. From the perspective of
scheduling this allows to sacrifice schedule freedom with the explicit goal of obtaining
an efficient register binding.

After the basic techniques have been discussed in Chapters 3 and Section 4.1, Section
4.2 discusses the infeasibility analyser.

2.5.2 Handling fixed register file sizes

When compiling code for an ASIP (or other programmable processors) usifeyvas
registers as possible is not the ultimate goal: we would ratheallsgailable registers

and find a schedule that takes one clock cycle less to execute. Although minimizing the
register count is generally considered a wise approach, it may still yield an infeasible
register binding: it is conceivable that in some register files very few registers are
required at the cost of overloading another (small) register file. Therefore the problem
of handling fixed register file sizes is considered a separate problem that requires a tai-
lor-made approach. It is formulated as follows.

Definition 2.7 (Constrained Register Binding and Operation Scheduling
Problem): Given a data flow graph (DFG), the functiosc(v, v;) , a binding of values

to regqister files, for each register file rf a fixed capacity c(rf), an initiation interval Il,
and a constraint on the latenty Find an assignment of values to registers and a
schedule s that satisfies the precedence constrajisE, , the resource constraints,
the register file size constraints and the timing constraints Il.and [

The problem is decomposed into separate phases, as illustrated in Figure 2.10. The con-
straint analyser and the lifetime sequencer work exactly as explained in the previous
subsection. The major difference to the approach in the previous section is that the
infeasibility analyser is replaced by the incremental register binder. Furthermore the
register binding is initialized such that the binding is R-feasible (see Figure 2.11), but
will possibly not respect the fixed register file sizes. Contrary to our approach for mini-
mizing the register count, we will remain in the R-feasible region from the start. Instead

of looking for anefficient solution in the R-feasible region, we are looking foraahi-

trary solution in the S-feasible region. We do this by incrementally serializing values
until all register file sizes are respected. First, the constraint analyser restricts the search
scope to the R-feasible region. Similar to the infeasibility analyser in Figure 2.8, the
incremental register binder tries to identify a bottleneck, but now the bottleneck is rep-
resented by a worst-case overlap of a number of value lifetimes that exceeds the capac-
ity of the corresponding register file. In order to reduce the maximum number of
overlapping values, the incremental register binder identifies one or more pair(s) of val-
ues that should be serialized. The constraint analyser subsequently calculates the effect
of this serialization on the mobility of all operations. This is necessary to prevent the
incremental register binder (in subsequent iterations) from making serializations that
are not possible. The process is repeated until the register requirements respect the cor-
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Figure 2.11 In Figure 2.10, the register binding is refined from the R-feasible
region to the border with the S-feasible region.

responding capacity. Serializations may be undone in a branch & bound manner in case
the R-infeasible region is reached.

Figure 2.11 depicts the search space and the way it is traversed in the approach in Fig-
ure 2.10. A major difference with our approach for the minimization problem (Section
2.5.1) is that we remain in the R-feasible region. The incremental register binder is dis-
cussed in Section 4.4 after our treatement of the basic techniques in Chapters 3 and
Section 4.1.
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2.6 Initialization of the initiation interval

The initiation interval is initialized with a lower bound, and incremented if the bound
cannot be met. A lower bound on the initiation interval results both from the resource
constraints and from the precedence edges.

First consider the resource constraimtsv, v;) . We associate a so calfelict
graphCG with rs(v, v)) in the following way. A node in CG corresponds to an opera-
tion. There is an edge in CG between nodeandy; if and only if rsc(v, vj) = 1. Let

y denote thechromatic indexof CG, which is the minimum number of colours (time
potentials) required to colour CG. A valid schedule with Il time potentials exists only if
there exists a valid colouring with Il colours. Therefgre is a lower bound to II:

>y (2.7)

Another lower bound is determined by the precedences [Reit68]. In Section 2.2 it is
derived that for two operations P and C, such tRat- P, , it is necessary that
s(P,) =s(C) —k I . Rewriting this inequality (and rounding) yields

Il > [MW , (2.8)
k
where k equals the number of iterations this dependency cro€ses b | ). This is
called the iteration distance between C and P, and is denotel{®)P) . The difference

between the start times s(C) and s(P) is lower bounded by the delay of the longest prec-
edence path from P to C in the DFG. This delay is calleddisanced(P,C). (formally
defined in Section 3.3) Because the inequality must hold for each pair of operations, we
conclude that

d(v, v;)
Il zmax, J){Id(vj I)—‘ (2.9)

Combining inequalities (2.6) and (2.9) yields

(2.10)

[ d(v Vi)
| >maxw max,, ,){ wD

id(v;, J)

Profiling suggests that the minimum initiation interval is in most cases equal to the
lower bound in (2.10), and rarely more than one clock cycle away from it.
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Chapter

3 Scheduling with Resource
Constraints

Scheduling operations that share a limited number of resources is a task that has
received attention from many different, often industrially related research areas. Many
of the theoretical results stem from the area of operations research. A rather general and
certainly very popular ‘model’ in this area is called Job Shop Scheduling [Coff76]. In
electronic design automation, scheduling is considered to be a dominant step in the
high-level synthesis phase [McFa90]. The same is true in modern compiler research,
where parallel processors occur frequently as a compiler target. In most practical appli-
cations the scheduling problem is interwoven with several other tasks, such as (interme-
diate) storage assignment and the assignment of operations to resources. In compiler
and High-Level Synthesis (HLS) research, these three tasks roughly comprise the code
generation phase. In this thesis no attention is paid to the problem of resource assign-
ment. We have argued in Section 1.3.1 that for our target architectures (VLIW), the
emphasis in code generation is on scheduling and register binding (storage assignment).
The interaction between scheduling and register binding is considered in the following
chapters.

This chapter is structured as follows. In Section 3.1 an introduction to the scheduling
problem is given, justifying the constraint analysis approach taken in this thesis. The
perspective of schedule freedom, essential for understanding the concept of constraint
analysis, is introduced in Section 3.2. The distance matrix, the central data structure for
storing and combining constraint analysis results, is treated in Section 3.3. Related
work is discussed in Section 3.4. The way resource constraints are analysed is dis-
cussed in Section 3.5. In Section 3.6 the analysis is integrated with scheduling, which
comprises our approach for scheduling with resource constraints [Mesm97a]. In Sec-
tion 3.8 the complexity of this approach is discussed, and Section 3.9 shows some
experimental results.

3.1 Introduction

The general High-Level Synthesis Scheduling Problem (HLSSP), introduced in Section
2.1, is a generalization of SS1, sequencing with release times and deadlines [Garey79,
p. 236]. Since SS1 is proven NP-complete in the strong sense, HLSSP is NP-complete
in the strong sense as well. In order to keep run times within reasonable limits, most
research focuses on heuristics rather than ‘exact’ methods such as Integer Programming
(IP) or Branch & Bound (B&B). Heuristics typically run fast without guaranteeing opti-
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Figure 3.1 Traditional approach for satisfying constraints

mality, whereas exact methods guarantee optimality but may require excessive run
times. However, the emphasis of typical scheduling problems is shifting: Feasibility of
the schedule (satisfying the constraints) often plays a more important role than ‘opti-
mality’. The emphasis on satisfying constraints originates both from the application
area (strict timing constraints) and efficient architectures (resource constraints), such as
ASIPs. Itis no surprise that the early research that focuses on these constraints, still rely
on the same old heuristics. This is illustrated in Figure 3.1. A heuristic generates a
schedule. It is checked if this schedule satisfies the constraints. If this is not the case,
either

» The heuristic is run again, but using different ‘priorities’ (Section 2.3)
* A bottleneck is searched for, and a repair action is taken to make the schedule valid.
* The designer or programmer is asked for ‘hints’ on how to solve certain conflicts.

This process may iterate many times, which becomes clear from the perspective of the
schedule scope, which is the search space depicted in Figure 3.2.

scope of heuristic scheduler

Figure 3.2 The scope of a heuristic scheduler
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In this figure, ‘feas’ indicates the region of solutions that satisfy all constraints. The
area surrounding it represents the search scope of a heuristic scheduler. One iteration
through the scheduler in Figure 3.1 corresponds with one ‘randomly’ chosen solution in
the search space of Figure 3.2. The probability that this solution is in the feasible region
is proportional to the fraction of the search space that is feasible. So if the constraints
are very severe the probability of finding a feasible solution in an iteration is extremely
small. As a result many iterations may be required, and the scheduler may not even find
a feasible solution. Furthermore, there is no way of knowing if there exists a feasible
solution at all.

application constraints

o

scheduler

Figure 3.3 Constraint oriented approach for satisfying constraints

For problems with tight constraints it is clearly desirable to have an approach that takes
these constraints much earlier and much more directly into account in the course of the
scheduling process, such as depicted in Figure 3.3. In this thesis such an approach is
proposed. Constraints are analysed and exploited to prune the search space, ideally to
the one depicted in Figure 3.4. Either a (traditional) heuristic or a Branch & Bound

Figure 3.4 Ideal search space

method can then be used to traverse this space by making schedule decisions. Care
should be taken that after each decision the search space is pruned to eliminate solu-
tions inconsistent with this decision. This pruning of the search space has to be per-
formed in a way that can be interpreted by the scheduler (heuristic or B&B). In Section
2.4 we saw that most of the practical constraints (except for the resource constraints)
can be modelled in terms of precedences. Precedences are therefore a powerful way to
express additional constraints that emerge from the combination of precedence and
resource constraints, and can therefore be used to make pruning information compre-
hensible for the scheduler. Providing simple but powerful pruning rules based on this
observation, is the main contribution of this chapter.

The rest of this chapter is organized as follows. Section 3.2 provides a perspective of
the search space (schedule freedom) that makes sense from the constraint analysis point
of view. In Section 3.3 a representation of this search space (distance matrix) is intro-
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duced which is sufficient for expressing the information most relevant for scheduling:
ordering information. Section 3.4 discusses some related work. In Section 3.5 the actual
pruning rules are treated. In Section 3.6 the general scheduling approach is introduced,
integrating constraint analysis and scheduling. Section 3.8 discusses the complexity of
this approach and Section 3.9 shows some experimental results.

3.2 Schedule freedom

In Section 2.1 we have introduced the High-Level Synthesis Scheduling Problem. In
order to solve this problem (and the extended scheduling problem from Section 2.5) it
Is convenient to describe the set of possible solutionssahéion spaceln this subsec-

tion we will describe the solution space as a range of possible start times for each oper-
ation. Because this set of feasible start times is at least as difficult to find as it is to find
a schedule, we will approximate it by the so called ASAP-ALAP interval, the construc-
tion of which is solely based on the precedence constrapts E, . By generating
additional precedence constraints that are implied by the combination of all constraints,
the ASAP-ALAP interval provides an increasingly more accurate estimate of the set of
feasible start times.

We start with a description of the solution space:

Definition 3.1 (set of feasible scheduled)he set of feasible schedules S is the set of
schedules such that each schedslgé S satisfies the precedence constraints, the
resource constraints, and the timing constraints. [

An operation thus has a range of feasible start-times, each corresponding to a different
schedule.

Definition 3.2 (set of feasible start timesT(v,) )JT(v) = {cON|OsO S: ¢v;) = ¢},
where N denotes the set of natural numbers. O

Definition 3.3 (actual schedule freedomYhe actual schedule freedom is the average
size of the set of feasible start times minus one:

0 LGRS 0

The minus one enforces that the actual schedule freedom equals zero when the schedule
Is completely fixed. The actual schedule freedom quantifies the amount of choice for
making schedule decisions. For traditional schedule heuristics a large actual schedule
freedom is advantageous because it gives the scheduler more room for optimization.
The actual schedule freedom is however defined by the constraints, so for tightly con-
strained scheduling problem instances a feasible solution cannot be expected from a
heuristic scheduler.
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The set of feasible start times is formally as difficult to find as a feasible schedule.
Therefore, conservative estimates of the schedule interval are more practical. The most
widely used estimate of the set of feasible start times is the so called ASAP-ALAP
interval. It is based solely on the precedence constr&pts E, and the latency con-
straint.

For the definition of the ASAP-ALAP interval we need the notion of immediate prede-
cessors and successors:

Definition 3.4 (immediate predecessors, successors)

O(vOV):predv) = {uOV|(u, v) OE}

O(vOV):sucqv) = {uOV|(v,u) E} l
The ASAP (as soon as possible) value is defined as:

Definition 3.5 (ASAP value)

ASAP(Y) = E 0 if pred(v) = O I]
M) =8 M asap() +w(u W) if pred(v) # O
DJDpredv)

The latest possible start time is called the ALAP (as late as possible) value. It exists
only if the latency (completion time) of the schedule is bounded. |[Lé¢note the
latency constraint. Then ALAP(sink)=and for all other operations:

Definition 3.6 (ALAP value)

-1 if suco(v) = O
min [l

ALAP(v) = ) )(ALAP(U) YTRY) if succ(v) # O

QOooo

Usu
The start time of each operation must lie in between the ASAP and ALAP value inclu-
sively:

O(v; OV): ASAP(v;) < s(v) < ALAP (v;) (3.1)

Therefore the ASAP-ALAP interval is a conservative estimate of (contains) the set of
feasible start times.

In this chapter we will extract sequencing constraints that are necessarily implied by the
combination of all constraints. These sequencing constraints are then explicitly added
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to the DFG as precedence constraints, yielding a narrowing of the ASAP-ALAP inter-
vals. This way an increasingly more accurate estimate of the set of feasible start times is
obtained. For most scheduling methods, either the ASAP-ALAP intervals or the prece-
dence constraints are an extremely important guideline. Schedule choices are made
with respect to the available resources. When the ASAP-ALAP interval does not reflect
the actual schedule freedom very accurately, there will often come a point in the sched-
ule process where there are no available resources for an operation, and the operation
cannot be scheduled. In this way, the precedence constraints and the resulting
ASAP-ALAP interval implicitly represent the ‘search scope’ of the scheduler. There-
fore we also define the ‘apparent freedom’, also called mobility or slack.

Definition 3.7 (apparent schedule freedom, mobility, slack)'he apparent schedule
freedom is the average size of the set of ASAP-ALAP intervals:

1

|—V—| Dvgv(ALAP(Vi) —ASAP(v;)) U
Because the precedences and the ASAP-ALAP interval form the basis for making
schedule decisions, the performance of a scheduler depends largely on the accuracy of
this interval as an estimate of the set of feasible start timég) . When the
ASAP-ALAP interval is an accurate estimate, the mobility is an accurate estimate of
the actual schedule freedom and vice versa. Therefore we will use the mobility before
and after the constraint analysis as a performance measure of the analysis.

Example.In Section 2.3 we showed an example (Figure 3.5) that illustrates the diffi-
culty of greedy schedulers (particularly list-schedulers) to handle resource conflicts in
the context of pipelined loop schedules. We will now make the same observation from
the perspective of schedule freedom. In Figure 3.5, the operations are annotated with
their ASAP-ALAP intervals. The mobility according to Definition 3.7 equals
(1+1+1+1+1)/5= 1 clock cycle per operation, roughly corresponding to the search
space in Figure 3.2. In Figure 3.7 the subsequent steps of our scheduling approach are
depicted in which sequencing constraints are added. These steps are justified in Section
3.5, but are not relevant for this discussion. In Figure 3.7 b), a sequencéedde of
weight 4 is added. The new ASAP-ALAP intervals are: A=[0;0], B=[1;2], C=[2;3],
D=[4;4], and E=[5;5]. The mobility is reduced to (0+1+1+0+0)/5= 0.4 clock cycle per
operation. In Figure 3.7 d), a sequence edge B of weight 2 is added. The new
ASAP-ALAP intervals are: A=[0;0], B=[2;2], C=[3;3], D=[4;4], and E=[5;5]. The
mobility is reduced to (0+0+0+0+0)/5= 0 clock cycle per operation. That is, every oper-
ation is fixed. This corresponds to the search space in Figure 3.4, where the feasible
region consists of only one solution. In this particular example the pruning techniques
are able to reduce the mobility to the exact schedule freedom.

3.3 Representing the search space: the distance matrix

In the previous section the search space was represented using ASAP-ALAP intervals
and the amount of schedule freedom was expressed as the mobility, which is the aver-



SCHEDULING WITH RESOURCECONSTRAINTS 41

[ASAP;ALAP]

0:1] =3
’ Iatencly =6 . AD
resotirce conflict§B

[1;2] 0 A
pot 1 |g D?

2
[2;3]
b)
[3;4]
0 A C

pot 1 . | D
[4:5] 2 |B / E
)

a) C

O

Figure 3.5 Example with loop folding. a) precedence graph
b) list-schedule c) only feasible schedule in 6 clock cycles

age cardinality of the ASAP-ALAP intervals. This representation offers the following
advantages:

* |t is a rather simple representation. For each operation two figures define the
ASAP-ALAP interval. The memory requirements for administrating the intervals is
therefore in the order O(V).

* The transparency of the terminology appeals to the human mind and is therefore suit-
able for discussing and explaining the concepts of schedule freedom and search
space pruning.

» This representation is easy to derive. Essentialyepth first searcfCorm90, p.
477] has to be performed with a complexity of only O(V+E).

It allows for a simple infeasibility check: if, for an interval [Ib;ubJb< Ib , no solu-
tion exists.

However, the interval representation is not able to accurately represent the most basic
and important type of constraints for scheduling: ordering (precedence) information.
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This is illustrated in Figure 3.6. Figure 3.6a) specifies that operation A should start exe-
cuting at least one clock cycle before operation B. The ASAP-ALAP intervals, as
derived from this precedence constraint and the latency constraint, are depicted in Fig-
ure 3.6b). The interval representation suggests that operation B may start executing
strictly before operation A, which contradicts the precedence specified in Figure 3.6a).

order; t interval;

w N B O

A B
a) b)

Figure 3.6 The interval representation does not accurately represent precedences

In this section thelistance matrixs introduced, and it will be shown that this represen-
tation isstrictly more accurate than the interval representation. In order to define dis-
tance, first the concept of a path is introduced:

Definition 3.8 Definition 10 (path). A path of length d from operatioy to operation
V; is a single chain of precedences - v - -+ - Vv - V; that implies
(V) 2 (v) +d. 0

Definition 11 (distance) The distance d, v;) from operation; to y; is the length of
the longest path frong to v;. O

A path in the graph thus represents a minimum timing delay. For example, in Figure 3.5
the pathA - B - C indicates a minimum timing delay of 2 clock cycles between the
start times of A and C. Finding the longest paths between each pair of operations is
equivalent to the all-pairs shortest path problem. The corresponding algorithmic com-
plexity is less than O(¥) [Corm90, Ch.26]. The distances corresponding to the longest
paths can be administrated in a matrix calleddtstance matrixwhere entry gl repre-

sents the distance from operatignto operationy;. In cyclic graphs, a path can exist
from an operation to itself. If the constraint set is feasible, the corresponding distance is
always less or equal to zero. If not, the constraint set is infeasible.

The distance matrix representation is strictly more accurate than the interval representa-
tion. This follows from Theorem 3.1 and the observation that the information expressed
in the distance matrix cannot always be accurately expressed in terms of intervals.
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Theorem 3.JAny interval can be represented in terms of precedences.

Proof. An interval [Ib;ub] for operation A means that

A = |b

S(A) < ub (3:2)

To represent this interval in the distance matrix the following precedences are added: A
precedenceource— A with weight Ib and a precedeAce source with weight -ub.
Now by definition s(source)=0. According to inequality , the meaning of the added
precedences is:

s(A) =s(sourcg +1b = Ib

(3.3)
s(sourcg = s(A)—ub s(A)<ub

Now inequality (3.3) reduces to inequality (3.2), which proves the theorem. O

The proof shows how results from analyses on intervals, like [Timm95], can be repre-
sented as precedences, and therefore be combined (using the longest path algorithm)
with the results of other types of analyses expressed as precedences. The example in
Figure 3.6 shows that the other way around is not true: the information expressed in the
distance matrix cannot always be accurately expressed in terms of intervals. We con-
clude that the distance matrix representation is strictly more accurate than the interval
representation.The disadvantage of the distance matrix is that the data structure
required to store it has a complexity of order éIMNhereas the corresponding com-
plexity for the interval representation is of order O(V). In this thesis we will rely heav-

ily on the process of serializing operations. For determining which serializations are
useful it is important to have an accurate description of the relative order of operations.
The analyses treated in this thesis therefore work on the distance matrix. The interval
representation and the mobility will still be used to explain and discuss some of the
concepts of constraint analysis.

3.4 Related work in constraint analysis

[Nuijt94] reports results on the TRCSP, the Time and Resource Constrained Satisfac-
tion Problem. General constraint satisfaction techniques are employed that allow
(some) exploitation of the problem specific knowledge. For an instance of the con-
straint satisfaction problem (CSP) a set of variables is given, a domain of values for
each variable, and a set of algebraic inequalities on the assignment of values to varia-
bles. In TRCSP, a variable exists for each operation. The domain consists of combina-
tions of a set of resources and a start time. In [Nuijt94] widely used tree search
algorithms are employed. The emphasis isconsistency checkingemoving incon-
sistent values of unassigned variables when a variable is assigned. In this thesis consist-
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ency checking is called search space pruning, which comprises the major contribution.
For the other tree search componertgjable and value selectiofmaking scheduling

or assignment decisions) addad end handlingbacktracking), relatively simple algo-
rithms suffice according to [Nuijt94].

In [Kuch97] schedule constraints are expressed in Constraint Logic Programming
(CLP), a generally applicable programming language for describing (linear) con-
straints. A branch & bound algorithm with depth-first-search is employed. Timing and
resource constraints are satisfied, while minimizing system resources (mostly commu-
nication busses). The resource constraints are extended to handle loop pipelined sched-
ules. For relatively small examples without pipelining, run-times are good. However,
run-times tend to grow exponentially with the number of constraints, which increase
with the number of ‘processes’, and is much larger for pipelined schedules.

In [Timm95] a bipartite matching formulation is used to analyse the matching of execu-
tion intervals of operations to execution intervals of resources. Reductions in the execu-
tion intervals are obtained by showing that some matchings can never be part of a
complete matching. The bipartite-matching approach is based on the concept of an exe-
cution interval. It keeps the resource constraints fixed, while ‘relaxing’ the precedence
constraints. The search space is pruned (intervals are reduced) by incorporating increas-
ingly more precedence constraints. The approach taken in this thesis works the other
way around: it is based on sequence relations between operations, and therefore keeps
the precedence relations fixed. Additional sequence relations are identified by incorpo-
rating increasingly more resource constraints. Theorem 3.1 shows that these two com-
plementary analyses can be combined using the distance matrix. These analyses have
been integrated in theacTs environment [Mesm99c]. Furthermore, the analysis in
[Timm95] provides a way to identify bottlenecks in the resource usage. In constraint
satisfaction terms this implies that the work is suitable for variable and value selection,
and therefore it is currently the main scheduletaAaTs.

In [Eijk99] symmetry in the algorithm specification (in the Data Flow Graph) is
exploited to prune the search space. Contrary to [Timm95] and the work in this thesis,
feasible solutions in the search space may be eliminated. This is justified by the guaran-
tee that solutions remain which are essentially equivalent to those eliminated. Two tech-
niques are proposed that automatically detect and utilize symmetry. These techniques
are based on finding automorphisms (in terms of group theory). Both techniques intro-
duce sequence edges between operations such that the feasibility of the problem is pre-
served while the symmetry is broken. The analysis results can therefore be combined in
a straightforward manner using the distance matrix with the analyses from [Timm95]
and the work in this thesis. This work has also been integrated irAb®s environ-

ment.
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3.5 Sequencing as a result of resource conflicts

In this section two lemmas are introduced that assert the necessity of an additional
seqguence constraint, resulting from the combination of existing sequence and resource
constraints. The first lemma will help us to solve the schedule problem in Figure 3.5.

Lemma 3.21f d(v;, ) = 0 (mod Il) andrsc(v;, v;) = 1 , we can add a sequence prece-

dence edgev(, v) with weightd(v;, v;) + 1 without excluding any feasible schedules.

Proof: The resource confliatsc(v;, v)) = 1 causes the minimum distaneg ¢j to be

infeasible. Therefore the minimum distance is at least one clock cycle larger. [

In the schedule problem instance depicted in Figure 3.5, the key decision to obtain a
feasible schedule is to put a gap of one clock cycle between A and B. So our goal is to
derive that d(A,B) = 2. In Figure 3.7 this derivation is given. Figure 3.7a represents the
complete original DFG model. In Figure 3.7awe seeapathB -~ C - D of length

3 = 0 mod Il from A to D. According to Lemma 3.2 we can add a sequence edge
A - D of weight 4 because A and D have a resource conflict. This edge is drawn in
Figure 3.7b. There is a paih - E - sink - source~ A- B oflength 1+1-6+0+1 =-3
clock cycles. Because of the resource conflict D-B, this length has to be increased by
one clock cycle. This gives a sequence edge- B of weight -2, as given in
Figure 3.7c. We conclude by finding a path- D - B of length 4-2=2 clock cycles.
In Figure 3.7d the associated sequence edge (A,B) of weight 2 is explicitly drawn. The
precedence relations now completely fix the schedule. The reader can verify that the
[ASAP, ALAP] intervals based on the extended DFG of Figure 2.7d all contain just one
clock cycle, and the mobility equals zero.

The second lemma we present in this chapter is more complicated, and involves sym-
metry in the precedence graph. Consider the small piece of precedence graph depicted
in Figure 3.8. The distance from A to D is two clock cycles. However, B and C have to
be ordered because they have a resource conflict, and both possible orderings will result
in d(A,D)=3. Lemma 3.2 will not help us here. In DSP-algorithms this type of symme-
try occurs frequently. Lemma 3.3 copes with this issue in the context of loop folding.

Lemma 3.3 For each pair of operationgandy; such thatsc(v;, v)) = 1 , ifthere is an
operation p such thakp, v,) = d(p, vj) (mod 1), and an operation s such that
d(p, v;) +d(v;, ) = d(p, v;) +d(v;, ), we can add a sequence edge (p, s) with weight

d(pyy) + di,) + 1

Proof: The resource conflictrsc(v,v) =1 causes a minimum distance
d(p, v;) +d(v;, ) = d(p, v;) +d(v;, s) to be infeasible. Therefore the minimum distance is
at least one clock cycle larger. W
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11=3
latency = 6 A-D
resource conflicts: B-D

source source source source

T
T o

Y

Figure 3.7 Derivation of a schedule for Figure 2.4

In Figure 3.8, operation p is A, and s is D. As a result of lemma Lemma 3.3 a sequence
edgeA - D may be added of weight d(A,B) + d(B,D) + 1 = 3.

In Figure 3.9, the symmetry is of a slightly different kind. As can be seen in the ASAP
schedule, the only way the minimum distance of 4 clock cycles from A to H can be
realized, is to schedule operations B and G at the same potential. Because B and G have
a resource conflict, the distance from A to H is not 4, but 5 clock cycles. This also fol-
lows from Lemma 3.3: d(A,B) =1 and d(A,G) = 3,s0d(A,B) d(A,G) (mod 2). Also
d(A,B) + d(B,H) = 4 and d(A,G) + d(G,H) = 4, so we may add a sequence edge (A,H)

of weight 5.
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A
B
)

Figure 3.8 Too much apparent mobility due to symmetry

[1=2
6 resource conflict: B-G
B) (C)  aammsn
: a OlA /IZ\)E H
1/BC / FG

F @ ’

Figure 3.9 Applying rule 2 with loop folding

resource conflict: B-C

d(A,D)=2 ?

3.6 Sequencing for an extended resource constraint model

The previous section discussed some rules for serializing operations when two opera-
tions have a resource conflict according to the resource conflict model introduced in
Section 2.1. An extension of Lemma 3.2 can be derived for a more general model of
resource constraints. In this model, also used by [Timm95], an operation is associated
with a number of resource usages. These include e.g. addition, read port, communica-
tion bus, etc. For each resource usage a number of resource instances may exist that
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perform this resource usage. In this thesis it is assumed that the execution delay of a
resource usage is independent of the specific resource instance. This model is equiva-
lent to the resource conflict model introduced in Section 2.1 in the following two cases.
The first is the situation that only one resource instance exists for a resource usage. The
other is the case that resource binding has been performed. In both cases resource
usages are associated with a specific resource instance. In Section 3.6.1 the situation is
discussed where two resource instances exist. Section 3.6.2 generalizes the idea to n
resource instances.

3.6.1 Sequencing for two resource instances

We start with the case that no loop pipelining is applied.\;e¥, vi denote three oper-
ations that share a resource usage, of which two resource instances are available.

Lemma 3.4If d(v;, v;) = 0 and d{;, vi) = 0, we can add a sequence precedence egge (
vi) with weight 1 without excluding any feasible schedules. O

Proof: Suppose that the distances;d{;) = 0 and dy;, vi) = 0 are the minimum dis-
tances in a feasible schedule. Theny, andy, all execute in the same clock cycle. But

this requires three resource instances, whereas only two are available. Therefore either
d(vi, vj)) =1 ord(v, vy = 1. Both cases result id(v;, v,) = d(v;, v) +dvj,v)z1 . O

Lemma 3.4 is depicted in Figure 3.10.

0! 0ol
2 resources \
— B
0, 0, ,"
© ]

Figure 3.10 Lemma 3.4

We now generalize Lemma 3.4 to the case that loop pipelining is applied;, betv
denote three operations that share a resource usage, of which two resource instances are
available.

Lemma 3.51f d(v;, vj) = 0 (mod Il) and dy;, vi) = 0 (mod ), we can add a sequence

precedence edgg( Vi) with weightd(v;, v)) + d(v;, v) + 1 without excluding any feasi-

ble schedules. 0
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Figure 3.11 Lemma 3.5

Proof: Suppose thatl(v;, v)) = nOI and(v;,v,) = mOl  are the minimum distances
in a feasible schedule. Thep v;, andy, all execute in the same time potential. But this
requires three resource instances, whereas only two are available. Therefore either
d(vi, v)=2n Ol +1 or d(v;,v) =m0l + 1. Both cases result in a lower bound for the

distanced(v;, vi) 2 d(v;, vj) +d(v;, vy znOl +mOl +1 H
Lemma 3.5 is depicted in Figure 3.11.

Example.Consider the example depicted in Figure 3.12. Operations F and G model a
pipelined multiplication (Section 2.4). We only consider the resource usage of a read
port (two instances available) and a write port (two instances available). The use of nor-
mal (randomly addressable) registers limits all value lifetimes to two (Il) clock cycles
(Section 2.4), which justifies all the dashed backward edges with d=-2. This constraint
set is infeasible, as the reader may find out when trying to construct a schedule. In order
to prove infeasibility, Lemma 3.5 is repeatedly applied to the graph in a cumulative
manner, as depicted in Figure 3.13, until . In this figure, each numbered row is one
application of Lemma 3.5. In each row, the circled operations denote the role of opera-
tionsv;, v, andvy resp. In the first row, for example, there is a path from C to E of
length 2 (= 0 mod Il), and a path from E to G of length -2 (= 0 mode Il). Therefore
Lemma 3.5 applies, and a sequence edge from C to G can be added with a delay of
2-2+1=1 clock cycle.

3.6.2 Sequencing for N resource instances

We now generalize Lemma 3.5 to the case where N resources are available. So suppose
there exist operations,, vy, ..., vy; OV  that share a resource usage of which N are
available. The following is an application of the well-known pigeon-hole principle.

Lemma 3.61f d(v;, i4+1) = 0 (mod Il) for allO<i<N-2, we can add a sequence
precedence edge&y( w.1) With weight1 + ZN d(v;, v, ,) without excluding any
feasible schedules. OsisN-2 O
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[1=2 Resource usage:
A,C,E,F: read port (2 available)
A,C.E,G: write port (2 available)

Figure 3.12 The derivation in Figure 3.13 proves
infeasibility of the constraint set

1) write ports@i»D—1>®'—2>@ - clyc
2) read ports:@LGL@iDﬁ»[@ — L c
3) read ports:@ina—l»@i»c;i»@ — ASLE
4) write ports@i»F —1>@—1>F—1> — A3sC
5) read ports:@Lgi.@LgL.@ — c3L,E
6) write ports@i,ci,@;z,@ — A2, G
7) read ports:@ie;l,@i,gl_,® — ALLE
8) write ports@‘_l,p —1>©—2>B—2>@ — G 5, A
9) write ports@i@‘—lr F—1>© —pp E5C
10) read ports@i.gi’.@l. -3, — F 1l,¢c
SENCENLN = infeasible!

Figure 3.13 Deriving infeasibility of the constraint set in Figure 3.12



SCHEDULING WITH RESOURCECONSTRAINTS 51

Proof: Supposel(v,,v;, ;) = k;01 foO<i<N-2 . If these distances are minimal in a
feasible schedule, thew, v,, ..., vy, all execute in the same time potential. But this
requires N+1 resource instances, whereas only N are available. Therefore in any feasi-
ble schedule there is at least dn@<i <N -2 such thatd(v;, v, , ;) >k; Ol . As aresult,

d(vg, vy_p) 21+ EN d(v;, Vi , 1) - O
0<iSN-2

3.7 Schedule approach

In the previous section we have shown some pruning rules for coping with the combi-
nation of precedence and resource constraints. The pruning rule resulting from Lemma
3.2 has been implemented and integrated inHReTS code generation environment
[Eijk0O0], [MesmO01]. In this section the pruning rules are used in an approach to solve
the problem of scheduling with precedence and resource constraints. This approach is
depicted in Figure 3.14. The idea is as follows: The constraint analyser uses the pruning
rules to prune the search space as much as possible. The results of this analysis are
expressed in terms of additional sequencing relations which are provided to a scheduler.
The scheduler makes a decision, which eliminates solutions previously considered fea-
sible. By expressing the schedule decision in terms of additional sequencing relations
(Figure 2.7), the constraint analyser on its turn calculates the effect of this decision on
the search space. Additional sequencing constraints are added, which are the essential
consequence of both the constraints and the schedule decision(s). This process is iter-
ated until the schedule is fixed. It should be emphasized again that the pruning rules are
not guaranteed to eliminagyeryinfeasible solution from the search space. As a result,

the scheduler may still make decisions that lead to infeasibility. When the constraints
are very tight, a Branch & Bound method may therefore be desirable. Fortunately, in
this case the constraint analyser will effectively reduce the search space such that only a
limited number of schedule decisions are required. Furthermore, support for backtrack-
ing is offered by infeasibility detection, see Section 3.3.

The schedule approach is illustrated in Figure 3.15. This is almost the same example as
in Figure 3.5, but there is no constraint on the latency, and there is an additional
resource conflict C-D. Note that in this case, a list-scheduler would construct a schedule
in the same way as in Figure 3.5b), and fail. This failure is not due to a latency con-
straint, but the result of the resource constraints.

additional
sequencing
constraints

-

Analyzer Scheduler

g

decision

Figure 3.14 Global approach for scheduling
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The initial execution intervals (before any analysis or constraint modelling) are
A=[0; ], B=[1; 0], C=[2;x ], D=[3;»], and E=[4 ]. The mobility equal® . Because

it is assumed that randomly addressable register files are used for storing the communi-
cated values, every value lifetime is restricted to the initiation interval 1l (explained in
Section 2.4). In Figure 3.15a) these constraints are added, as is the sequence edge
A - D of weight 4=Il1+1 as aresultofthe path- B - C - D oflength=3  O(mod

II) from A to D and the resource conflict A-D (Lemma 3.2).

a)tob).Thereisapattb - C oflength-& 0 mod II, and a resource conflict C-D.
As a result, a sequence edge. C of length -3+1=-2 is added.

b) to ¢). The scheduler schedules operation A at clock cycle 0, and B at clock cycle 1.
The execution intervals are A=[0;0], B=[1;1], C=[2;4], D=[4;6], and E=[5;9]. The
mobility equals 1.6 clock cycles per operation.

dii=3 A-D

resource conflicts: B-D

C-D
source - source source source
v
0 0

I
I
d=-1

Figure 3.15 lllustrating the schedule approach from Figure 3.14



SCHEDULING WITH RESOURCECONSTRAINTS 53

c) to d). There is a patlB - source~ A- D of length -1+0+4=8 0 mod Il, and a
resource conflict B-D. As a result, a sequence &lgeD of length 3+1=4 is added.

d)toe).There is a pathD -~ C - B - source-» A of length -2+(-3)+(-1)+0=%
O0(mod II), and a resource conflict A-D. As a result, a sequence BdgeA of length
-6+1=-5 is added. The execution intervals are A=[0;0], B=[1;1], C=[3;4], D=[5;5], and
E=[6;8].The mobility equals 0.6 clock cycles per operation.

The remaining search space is now completely feasible and the scheduler (probably)
fixes operation C at clock cycle four, and operation E at clock cycle six. The example
illustrates that one schedule decision may have a large effect on the mobility (decrease
by 63%), and therefore it is useful to iterate between the constraint analyser and the
scheduler.

3.8 Complexity

The complexity of the analysis is determined by two factors:
1. Updating the distance matrix
2. The analysis required for determining which sequence edge should be added

We first consider the updates on the distance matrix. In the distance matrix the delay of
the longest path between each pair of operations is maintained. So if a new edge is
added, the impact on the current longest paths has to be calculated. This complexity is
essentially determined by the number of paths that need to be updated as a result of the
new sequence edge. Because we are only interested in the longest paths found so far,
the number of updates equalg Worst case. In most cases, the addition of a sequence
edge will affect a few paths. In cases where a lot of paths need to be updated, the reduc-
tion in mobility will also be substantial.

An upper bound on the number of path updates (as a result of adding sequence edges)
can be derived as follows. A path can have a length betwieand +#, wherel is the
constraint on the latency. Because a path is updated only if its length is increased (by at
least one clock cycle), the number of times a path can be updated is at m8sic2

the maximum number of paths we keep track of, equ&lsthe number of path updates

can be at mo2l V% . A single path update takes constant time.

Now we consider the complexity of applying Lemma 3.2 and Lemma 3.3. Lemma 3.2

is applied in the following way. For each resource conflicty it is checked whether

d(v;, vj) = 0 (mod Il) or d§;, vj) = O (mod II), in which case a sequence edge is
added. One such iteration through all resource conflicts has a complexity |rsc|, which
denotes the number of resource conflicts. One iteration is usually not sufficient to cap-
ture all the reductions attainable with Lemma 3.2. This is because the distance matrix
has changed after the sequence edges have been added, thereby providing more oppor-
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tunity for applying Lemma 3.2. After a few iterations no additional reductions are
obtained. There can be a resource conflict between every pair of operations, so |rsc| is
upper bounded by X! Therefore the complexity of applying Lemma 3.2 is of order

O(l V2 +]rsd) = O(l V).

Lemma 3.3 is applied in the following way. For each resource condjiety it is
checked whether there exist p and s such i@t v;) +d(v;, ) = d(p, v;) +d(v;, 5)

There exist  pairs (p,s), so one iteration through all resource conflicts requires at
mostO(|rsd V') computations. Therefore the complexity of applying Lemma 3.3 is of
order O(I V2 +|rsd OV®) = O(V*) . Because this complexity is high and the corre-
sponding search space reduction is small after applying Lemma 3.2, Lemma 3.3 is not
applied in the experiments. The lemmas from Section 3.6 on the extended resource con-
straint model have not been implemented and subsequently, are not applied in the
experiments as well.

3.9 Experimental results

Two experiments are reported in this section. The first experiment considers how sup-
plementary our approach is to the approach of [Timm95], discussed in Section 3.4 for

both folded and non-folded schedules. The second experiment shows the efficacy and
efficiency of our constraint analysis on industrial applications, and it demonstrates the

use of integrating constraint analysis and scheduling, as explained in 3.6. The quality of
the analysis is measured by the reduction in mobility.

=6 Resources:

1
1
@ latency =8 1 ACU, 1 ALU, 1 RAM
1

| resource binding:
a0 -> ACU

al -> ACU

+->ALU

-->ALU

m1, m2 -> ALU

ro -> RAM

rl1->RAM

w0 -> RAM

wl -> RAM

Figure 3.16 Radix-2 butterfly used in first experiment
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our method

[ additional
reduction
our method only
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after our method

01 23 45
clock cycles (folded)

Figure 3.17 Rad2 mobility per operation

The first experiment considers two examples, the first of which is the radix-2 butterfly
shown in Figure 3.16. Because the multiplication is a multicycle operation, it is mod-
elled by two stages m1 and m2 as indicated in Section 2.4, making a total of 10 opera-
tions. The execution intervals for each operation are given in Figure 3.17 for the folded
schedule. In this figure, the time is represented in clock cycles at the horizontal axis.
The operations are enumerated vertically. The white area represents the reductions
obtained by both BSG and our analysis. For example, the execution interval of opera-
tion r0, based on ASAP and ALAP is [1, 5]. Both our method and BSG are able to
reduce this interval to [3,4]. The grey area is the reduction obtained by our analysis, that
BSG was not able to find.

Notice in this figure how reduction techniques such as BSG and our techniques prevent
a greedy scheduler from making a wrong schedule decision. A greedy scheduler would
schedule operation r0 in clock cycle 1, leaving no room for w1l in clock cycle 7 (poten-
tial 1), which is the only feasible start time for wl. Both our analysis and BSG detect
that rO can not be scheduled in clock cycle 1. However, BSG is unable to detect that
operation + must precede operation -. A greedy scheduler can easily go wrong by let-
ting operation - precede operation +.

The second example concerns an IIR filter containing 23 operations, including fetching
the coefficients and data from memory. The latency is constrained to the lower bound
value of 10 clock cycles. In Table 3.1 the results of the analysis on the radix2 and the
IIR example are shown, expressed in the average mobility per operation in clock cycles.
For the radix2 schedules BSG is unable to find any reductions additional to the reduc-
tions obtained by our method, so for this example there is no gain in accuracy by com-
bining the results of BSG analysis and our constraint analysis. The IIR example shows
however that this is not generally true. BSG analysis is capable of deducing some
reductions that our techniques can not find, and vice versa. As can be seenin Table 3.1,
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combining the analyses provides larger reductions than both analyses separately. The
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run times for both BSG and our analysis are negligible in this experiment.

Table 3.1 Average mobility for radix-2 butterfly and IIR

ASAP- our | com-

ALAP | BSG | method| bined
rad2 non folded 1.20] .70 70 70
rad2 folded 1.20 .50 .10 .10
[IR non folded 270 | 161 1.83 1.5p
IIR folded 270 | 161 1.74] 1.43

The second experiment considers only our analysis and concerns the same IIR filter
used in the first experiment plus three loops present in FFT algorithms. The first loop
(FFTa) contains 40 operations, has a minimum latency of 13 clock cycles, and needs to
be folded at least three times to realize an initiation interval of only 4 clock cycles.The
second loop(FFTb) contains 60 operations, has a minimum latency of 18 clock cycles,
and also needs to be folded at least three times to realize an initiation interval of 8 clock
cycles. The third loop (Radix) contains 80 operations, has a minimum latency of 11
clock cycles, and is folded twice to realize an initiation interval of 4 clock cycles. In
Table 3.2 the results are shown.The run time of this experiment using the most exten-
sive analysis, is less than a second on a HP 9000/735. The last column depicts the
remaining mobility after analysing the first schedule decision a greedy scheduler could
make (operation 23 at clock cycle 0). It is clear from the numbers in the sixth column
that substantial reductions can be made not only before scheduling, but also during
scheduling. This observation strengthens the idea of an interaction between the ana-
lyzer and the scheduler.

Table 3.2 Mobility reduction for some folded loops.

. mobility | mobility | mobility
er);%?‘rt' #(i)(g)nesr a 1 latency before | resource| after1
analysis| analysis | decision
IR 23 6 10 2.70 1.74 0.56
FFTa 40 4 13 4.46 3.41 2.41
FFTb 60 8 18 6.85 4.53 2.58
Rad4 81 4 11 5.29 2.82 2.08
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Chapter

4 Register Binding for Randomly
Addressable Register Files

Register binding is one of the three major code generation steps, as introduced in Sec-
tion 1.2, the other two being code selection and scheduling. We have argued in Section
1.3.1 that for our target architectures (VLIW), the emphasis in code generation is on
scheduling and register binding. Traditional approaches deal with scheduling and regis-
ter binding in separate stages to reduce the complexity of the problem. This introduces
the problem ofphase couplinga decision made in the first phase may lead to an ineffi-
cient or even infeasible constraint set for the second phase. If register binding is per-
formed prior to scheduling, so calleahti-dependencieare introduced that make it
difficult to satisfy tight timing constraints. On the other hand, if scheduling is per-
formed prior to register binding, there is not much opportunity left to make a register
binding that respects the capacities of the register files. Therefore, although the separa-
tion of scheduling and register binding results in methods that are run-time efficient, it
makes it much more difficult to cope with the interaction of timing, resource, and regis-
ter file capacity constraints.

In this thesis we have taken the perspective of considering scheduling and register bind-
ing as a combined problem, and in Section 1.4 we have defined a search space accord-
ingly. In this chapter we discuss the two register binding problems introduced in
Section 2.5: Finding arefficient (R-feasible) register binding in the context of
high-level synthesis, and finding an (S-feasible) binding that edspects individual
register file capacitiesThe general approaches for these problems have been discussed
in Section 2.5. Both approaches rely heavily on the constraint analyser which has to
cope with the constraints associated with a (partially) given register binding. This
extension to the constraint analysis techniques discussed in the previous chapter, is
treated in Section 4.1. In Section 4.2 these basic techniques are applied to solve the
problem of minimizing the register requirements. The corresponding experimental
results are reported in 4.3. In Section 4.4 it is shown how to find a schedule that respects
individual register file capacity constraints. The experimental results of this approach
are given in Section 4.5.

4.1 Lifetime serialization for a given binding

The previous chapter introduced a methodology for finding a schedule that satisfies cer-
tain resource-, timing-, and precedence constraints. In this section we will extend the
techniques to analyse value conflicts that result from a given register binding. This will
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be done by introducing basic lemmas similar to Lemma 3.2. These lemmas provide
necessary conditions (in terms of precedence relations) to guarantee the feasibility of a
given register binding. Section 4.1.1 is restricted to non-folded schedules in order to

explain the concept more clearly. The lemmas will be generalized in Section 4.1.2 for

register conflicts that cross loop boundaries, which occur when folded schedules are
considered.

4.1.1 Non-folded schedules

In this section two lemmas consider the combination of register, precedence and timing
constraints for non-folded schedules. Their use is demonstrated with a small example.
What is the exact consequence of binding two valuasdv to the same register? Since

u andv cannot be alive simultaneously, eithers consumed before is produced, or

vice versa, graphically depicted in Figure 4.1. Figure 4.2 gives a timing perspective of
the alternatives in Figure 4.1. In this figutke solid lines indicate the occupation of the
register. The solid line YCY has to be placed either underneath or above the solid Hr@'pP
corresponding to the left and right alternative in Figure 4.1 respectively. This process is called
serializingthe value lifetimes ofi andv.

g=ntyrgd

Figure 4.1 Precedence as a result of bindingndv to the same register
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Figure 4.2 Timing perspective of the alternatives in Figure 4.1
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The full consequence of binding two values to the same register is thus stated in terms
of precedences. The methodology of adding precedences, introduced in Chapter 3,
should therefore not be too difficult to extend to the problem of integrating the con-
straint of a given register binding within the DFG model. This will be done by introduc-
ing lemmas similar to Lemma 3.2. The lemmas introduced in this chapter identify
situations where one of the alternatives in Figure 4.1 (and thus Figure 4.2) can be elim-
inated.

Lemma 4.1 Let valueu, produced by operatid? and consumed by‘Cand valuey,
produced by operation’Rnd consumed by'Creside in the same register. If
d(P", P") = 0 we can add a sequence precedence edte'(@ith weight 0 without

excluding any feasible schedules. O
same reg =

@ v @

< V

Figure 4.3 Lemma 4.1 for serializing value lifetimes

Lemma 4.1 is illustrated in Figure 4.3. A similar lemma is valid when there is a path
between the consumers of the values:

Lemma 4.2 Let valueu, produced by operatid? and consumed by'‘Cand valuey,
produced by operation’Rnd consumed by'Creside in the same register. If

d(c", c”) =0 we can add a sequence precedence edte’{@ith weight 0 without
excluding any feasible schedules. [

Lemma 4.2 is illustrated in Figure 4.4. The last situation occurs when there is a path
between the producer of one value and the consumer of the other. In this case however,
we can only exclude a possibility if the delay of the path is strictly greater than zero.
Otherwise the alternative sequentializatioh,» P" , could still yield a feasible sched-
ule whenP! and C are scheduled in the same clock cycle.

Lemma 4.3 Let valueu, produced by operatid? and consumed by'‘Cand valuey,
produced by operation’Rnd consumed by'Creside in the same register. If

d(P", c") = 1 we can add a sequence edg¥, (@) with weight 0 without excluding any
feasible schedules. W
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same reg
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- |

Figure 4.4 Lemma 4.2 for serializing value lifetimes

: d=1 same reg ﬂ
U“\ ﬁ u
© :

Figure 4.5 Lemma 4.3 for serializing value lifetimes

Lemma 4.3 is illustrated in Figure 4.5. The overall method of analysis is demonstrated
in Figure 4.6. In this figure, the sequence edge 7 is a resudtia$ analysisper-
formed in the front-end of the compiler. Apparently, operation 7 writes to a memory
location that could possibly be the same as operation 1 reads from. \tahresy in
Figure 4.6 reside in the same register, as do valuesdX. Because operation 1 con-
sumes values and operation 7 consumes valehe lifetime ofu has to precede the
lifetime of v as a result of the precedente- 7 (Lemma 4.2 applies). Therefore the
sequence edge - 8 is added. Now there is a pathl - 8 from the consumver of
to the consumer aof and Lemma 4.2 applies again. The sequence @dged is added
as a result. Any schedule heuristic can now find a schedule without violating the regis-
ter binding, which is not the case if the sequence edges were not added.

A larger example is given in Figure 4.7. It is a lIR filter application generated by the
Mistral2 toolset, to be scheduled in 11 clock cycles. Again, the sequEhce25 is a
result of alias analysis performed in the front-end of the compiler. The ASAP-ALAP
intervals prior to analysis are depicted in Figure 4.8. The operations (horizontal axis)
are grouped according to the resource binding. The vertical bars indicate the
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Figure 4.6 Example demonstrating the use of Lemma 4.2
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ASAP-ALAP intervals. For example, operation 13 (executed on the ACU) has [ASAP; ALAP]

=[1;7].

@ 4 registers contents
f1 a al, a2, a3
b b1,..., b5
@ all acu c cl... c5
d di,...,d5

e el

f f1

19
16 a2
@ @2
‘ d3 b4
@ 15 @ @93
3 % d4 RS
() -~awes (@)
2
all acu ¢S Yys
@ 1
el
E
Figure 4.7 : A complete data flow graph for an IIR filter
CTRL ACU RAM ALU

0 0 0 0
1 1 1 1
c 2 2 2 2
Y 3 3 3 3
C 4 4 4 4
| 5 5 5 5
6 6 6 6
e 7 7 7 7
S 8 8 8 8
9 9 9 9

4 23242814 221927133 211826122 201715251
operationi mobility= 3.60 clock cycles/operation

Figure 4.8 ASAP-ALAP intervals for the operations in Figure 4.7
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@ b3 4 registers contents
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al I bil,..., b5
22 a acu Cl,..., C5
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24 b1 el
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Figure 4.9 The DFG from Figure 4.7 after analysis
CTRL ACU RAM ALU

no—oxO
©ONOUIAWNRO
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©O~NOUIAWNRO

OO~NOUTRWNEFLO

4 23242814 221927133 2118 2612 2
operations
-

20171525 1

mobility= 1.56 clock cycles/operation
Figure 4.10 ASAP-ALAP intervals for the operations in Figure 4.9

The DFG and the ASAP-ALAP intervals after analysis are depicted in Figure 4.9 and
Figure 4.10 respectively. Application of Lemma 4.1 and Lemma 4.2 causes a substan-
tial reduction in the ASAP-ALAP intervals; the mobility drops from 3.60 to 1.56 clock
cycles per operation. The reason is that sequence edges accumulate: the introduction of
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one sequence edge causes a precedence that may again give rise to a situation suitable
for applying one of our lemmas again. New sequence edges result from old ones recur-
sively.

4.1.2 Folded schedules

In this section we extend the lemmas from Section 4.1.1 for serializing value lifetimes,
to handle pipelined loop schedules. An example demonstrates the use of the extended
lemmas.

time+"'
p

Q.
- c
+ +
P (BN
N N BN BN BN O S A B N S . ..

Figure 4.11 4 possible placements of-BY if the maximum folding factor equals 1

When schedules are not folded it is relatively simple to avoid overlapping lifetimes of
values residing in the same register. When loop iterations overlap in time, we also have
to take care that thé" lifetime of valuev does not overlap with the- 1% lifetime of

value u, depicted in Figure 4.11. This means we have to serialize value lifetimes
belonging to different loop iterations. The graph model however, makes no difference
between operationfand A, (where A denotes th&" execution of A), because it has

no notion of loop iteration. In Section 2.2 we showed the equivalence between the rela-
tion C; — P, and the relatiorC — P with time delayk I . This equivalence is
used to generalize the lemmas from Section 4.1.1. We derive a generalization of
Lemma 4.1 in the following way. First, we use the equivalence to translate the timing
delay ofk Ol at the left hand side of the arrow in Figure 4.12 to the iteration indices at
the right hand side. In Figure 4.13 we apply Lemma 4.1 directly on the operations that
are now annotated with the iteration index. In Figure 4.14 we translate the iteration
indices back to a timing relation from“@o P’. Lemma 4.1 is now easily generalized to
Lemma 4.4:

Lemma 4.4 Let valueu, produced by operatid? and consumed by'‘Cand valuey,
produced by operation’Rnd consumed by'Creside in the same register. If

d(P", P") =k Ol we can add a sequence edg®R) with weightk 01 without exclud-
ing any feasible schedules. [
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Figure 4.12 First step of generalizing Lemma 4.1.

u u
@ same reg
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Figure 4.13 Second step of generalizing Lemma 4.1.

u

equivalence K Ol
M --‘\ @
.: |

Figure 4.14 Third step of generalizing Lemma 4.1.

Lemma 4.4 is illustrated in Figure 4.15. Lemma 4.2 is generalized to Lemma 4.5:
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Lemma 4.5 Let valueu, produced by operatid? and consumed by“Cand valuey,
produced by operation’Rnd consumed by'Creside in the same register. If
d(c”, )=k Ol we can add a sequence edg¥,®) with weightk 01 without exclud-

ing any feasible schedules. [
@ . d=zkdl @
same reg
u ) ﬁ u
@ %
v e
© “

Figure 4.15 Lemma 4.4 for serializing value lifetimes

same reg
u ﬁ u
© P e
T G
© “

dekor

Figure 4.16 Lemma 4.5 for serializing value lifetimes

Lemma 4.5 is illustrated in Figure 4.16. Lemma 4.3 is generalized to Lemma 4.6:

Lemma 4.6 Let valueu, produced by operatid? and consumed by‘Cand valuey,
produced by operation’Rnd consumed by'Creside in the same register. If

d(P", c) =k Ol +1 we can add a sequence edg&R with weightk 01 without
excluding any feasible schedules. O

Lemma 4.6 is presented graphically in Figure 4.17. We illustrate the use of the lemmas
in this section with the example in Figure 4.18. It is similar to the example of Figure
2.4, but it is extended with a register binding. Value v, communicated from operation A
to B and value w, communicated from operation C to D, are bound to the same register.
The same resource conflicts and the same initiation interval are used, but there is no
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u same reg :
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Figure 4.17 Lemma 4.6 for serializing value lifetimes
constraint on the latency. The first step from a) to b) is the same as the first step in Fig-

ure 3.7.

Ldek0l+1

from b to c: Value v is produced by A and consumed by B. Value w is produced by

C and consumed by D. Lemma 4.6 applies becai{geD)=>4 = 101 +1 , SO we
can add a sequence edge (B,C) with weightl = 3 without excluding any feasible
schedules.

In Figure 4.19 a folded ASAP schedule is given that satisfies the newly added prece-
dence constraints, and thus also the resource constraints and the register binding. In
Figure 4.19, the leftmost column indicates timee potential(start time modulo II), so
operation C is scheduled in clock cycle 4, D in 5 etc. Notice that the constraints have
forced a gap of 2 clock cycles between operations B and C. A greedy scheduling
approach does not put gaps between operations, and would not have found a schedule
that satisfies all constraints.

The last basic lemma we introduce in this chapter generalizes a modelling issue dis-
cussed in Section 2.4: Lifetimes of values stored in randomly addressable registers are
not allowed to exceed the initiation interval, resulting for each data precedenc€
in a precedence constraigt - P with weight -II (Section 2.4). When more than one
value (the set of values W) is stored in a register r, the sum of the lifetimes It in this reg-
ister is not allowed to exceed the initiation interv@NIt(v) <l . S0

\%

D(uDW):It(u)s[II— DZV It(v)}s[ll— DZV minlt(v)}
\ /v \ /u

Lemma 4.7 Let W be the set of values that reside in a register r, and let mjrdgnote
the minimal lifetime of valuey (the distance from the producerwfo the last consumer
of v). Then valueu 0 W has a maximum lifetime equalte- D% minlt(v) . O

v /u

This upper bound on Itj can be modelled in the DFG as a sequence etfye P"
with weight 5 D% minlt(v)g-11 .
v /u
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resource conflicts:
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Figure 4.18 Derivation of a partial schedule

LY.

pOtlB/
2 |-/ o

Figure 4.19 Folded ASAP-Schedule for Figure 4.18

We have now covered the basic techniques used in the constraint analyser of Figure 2.8
and Figure 2.10. The next two sections demonstrate the use of these basic lemmas in
deriving a register binding.

4.2 Infeasibility Analysis

In this section we tackle the problem of minimizing the register count, as introduced in
Section 2.5.1. In that section the general approach is discussed, both using a flow dia-
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gram (repeated in Figure 4.20), and from the perspective of how the search space is tra-
versed (Figure 2.9). The process starts with an initial register binding. This register
binding requires the least number of registers but will usually be overconstrained
(infeasible) in the sense that the binding is inconsistent with the timing constraints.

The schedule analysis is often capable of detecting that the register binding together
with the constraint set yields an infeasible result. In order to make a sensible change in
the register binding, the infeasibility analyser in Figure 4.20 has to identify the bottle-
neck in the register binding. More precisely, we want the analyser to gsraadlest
infeasible subset of value conflictghere a conflict denotes two values residing in the
same register. This subset of value conflicts constitutes the cause of infeasibility. Identi-
fying such a subset of conflicts is tightly related to detecting infeasibility. The con-
straint analyser detects infeasibility based on the distance matrix in the following way:
When a path is found from an operationo itself (a cycle in the precedence graph),
and this path has a positive length, the operatiemforced to execute strictly before its

own start time, which is clearly not possible. So a precedence cycle of strictly positive
length indicates infeasibility.

Init

Il & ]

reg.bind

changéd vy constraint lifetime

register  timing analyzer sequencer
Al recedence

binding rpesource constraint

register binding

T

Infeasi- no
bility
analyze

yes

_ scheduler
timing

precedence _
resource constraints

Figure 4.20 Global approach for minimizing the register count

The source of the bottleneck is directly related to the way the positive length cycle
came into existence. For example, if in Figure 4.18 the latency is constrained to 6 clock
cycles, there was a sequence edge from the sink to the source with a delay of -6 clock
cycles. In Figure 4.18c that would yield a positive delay cycle, thus proving infeasibil-
ity. Most edges in the precedence cycle involve data precedences, one involves the
latency, and one involves a register conflict. The sequence BdgeC is a result of
two components: 1) the register conflict v-w, and 2) a path of length 4 from Ato D. The
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Figure 4.21 Example of a precedence graph

path from A to D consists of one sequence edge that is added as a result of the resource
conflict A-D and a pattA - D of length 3 that consists entirely of data precedences.
We can thus conclude that infeasibility is caused as a result of the following combina-
tion of factors: 1) a register conflict v-w, 2) a resource conflict A-D, 3) the latency con-
straint, and 4) data precedence. When all constraints are fixed except for the register
binding, we conclude that the decision to put the values v and w together in a single
register is the cause of infeasibility.

Another example is the graph depicted in Figure 4.21. The constraint set is infeasible
with the given register binding, which is derived as follows. The infeasibility analysis is
graphically depicted in Figure 4.22. Each block represents a path, and each downward
arrow represents an inference. The derivation is top down. ThelpatlG of length 2
(=I1) and register conflict c-f lead to the sequence eOge F of weight 11=2 as a con-
sequence of Lemma 4.5 (where k=1). The downward arrow shows that this sequence
edge is part of the path underneath. The second block from the top indicates a path
C - F of length 3. Together with the register conflict a-d this yields a sequence edge
C - D of weight 2 as a result of Lemma 4.5. In the third block the conflict a-d is used
again with the patlC -~ F of length 4 to add the sequence &tigeD of weight 4.
The block at the bottom shows that this sequence edge causes a positive precedence
cycleC - D -~ C withadelay 4 + (-2) = 2 clock cycles. The edge- C with delay -2

Is added because the lifetime of each value (in this case value c) cannot exceed Il clock
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Figure 4.22 Infeasibility analysis for Figure 4.21

cycles, so the consumer (D) must execute within 2 clock cycles after the producer (C).
As a result of this positive precedence cycle we conclude that the register binding is
infeasible.

The infeasibility analysis is done in bottom-up fashion, to identify exactly those
sequence edges and conflicts which have contributed to the positive precedence cycle.
The combination of register conflicts that yield infeasibility is identified as 1) a-d on
register 1 and 2) c-f on register 3. Note that the conflict b-e on register 2 did not contrib-
ute to the infeasibility, and thus it is useless to put the values b and e in separate regis-
ters. Instead we have to choose to ‘split’ either register 1 or register 3. Both decisions
yield a feasible schedule, as depicted in Figure 4.23.

O A B o] A
time l 1 C 1 B
2 regl: a,d 2 C regl: a
3 E D reg2:be 3 D reg2: b,e
reg3: c reg3: c,f

4 F reg4: f 4 E reg4: d
) ) F
6 G 6 G

a) b)

Figure 4.23 The only 2 feasible schedules for Figure 4.21 with changes in the
register binding
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In this approach a simple heuristic chooses the register conflict to be solved based on
the availability of registers in a certain register file, the number of times the conflict
appears in the conflict-list, etc.

As the reader may have noticed from the examples, the infeasibility analysis requires a
lot of administrative bookkeeping. Almost every path constructed during the longest
path analysis has to be kept in memory for reference. A feasible implementation requir-
ing a limited amount of memory to run, is only guaranteed if the storage of a path has a
memory cost of O(1). This is possible with the use ofaaifacency matriYCorm90],

which is based on the following fact of longest paths: if the longest path from Ato C
travels through B, then the part B to C is the longest path from B to C. As a result, the
only administration necessary for the path from A (row of the matrix) to C (column of
the matrix) is the first node on the path after A. To facilitate the infeasibility analysis,
we also administrate the first edge traversed on the path A to C. Each sequence edge on
its turn has a pointer to a register conflict (if there is one) and the matrix entry repre-
senting the path that gave rise to the edge. The complexity of the infeasibility analysis
is thus linear in the number of edges. Note however, that the amount of edges is not
bounded byV2 , since more than one sequence edge (with different delay) may be
added between each pair of operations. Also, we assume that the longest paths have
already been calculated in the constraint analyser.

4.3 Experimental results

Our implementation on a HP 9000/735 has been tested on the inner loops from 4
different real life industrial examples [Mesm98, Mesm99a]. The results are shown in

Table 4.1. The fifth column represents the number of iterations over the schedule
analyzer (see Figure 4.20) before a feasible solution was found. The last 2 columns
indicate the mobility of the operations in terms of average number of clock cycles per

operation. The 7th column indicates the mobility before the analysis, the last column

after analysis (what is left for the scheduler to fill in).

The first experiment concerns an IIR filter of 23 operations, including fetching the
coefficients and data from memory. The latency is constrained to the lower bound of ten
clock cycles. The other experiments concern FFT applications, the largest of which
holds 81 operations. Note in Table 4.1 that the run-times are mainly determined by the
number of iterations over the schedule analyzer. The number of iterations is a measure
of the difficulty of finding a register binding because it reflects the number of changes
made to the original binding in order to obtain a feasible schedule.

The mobility is decreased by a factor ranging from 3.6 (Rad4) to 13.2 (FFTb) as a result
of the schedule analysis. Because this decrease of mobility is due to the constraints, it is
a measure for the analyzers’ capability of directing the scheduler and preventing it from
making schedule decisions that violate the constraints.
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Table 4.1 Results of constraint analysis on DSP loop kernels

experi-| # oper-| Il con-| latency |# iter-| Run- ng)%?g'g mgft:glrty
ment | ations | straint| constraint| ations time analysis | analysis
IR 23 6 10 3 | 023  2.70 0.13 ]
FFTa 40 4 13 11| 17s 4.46 0.46
FFTb 60 8 18 20| 255% 6.85 0.52
Rad4 81 4 11 1| 085 4.93 1.38

We have included one more experiment to test the performance of our method on a
problem instance that was not constrained with respect to timing. It is a preliminary test
executed by Frontier Design, who are integrating our method within the Mistral2
toolset [Strik94]. The benchmark, Par2, contains 91 operations. The original schedule,
generated by the Mistral2 toolset, counts 61 clock cycles. As a result of the available
parallelism and the number of memory accesses the register binder required 6 registers
at the address generation unit. The schedule generated by our method, counts only 56
clock cycles and requires only 1 register at the address generation unit. Because of the
schedule freedom, a total of 111 schedule decisions had to be made by the lifetime
sequencer. Run time is less than a second. The efficient register binding of the new
schedule was expected, unlike the reduction in the number of clock cycles. This
reduction is explained as follows: Because of the serialization of the address lifetimes
the precedence graph became more regular. It is a well-known fact that heuristics such
as the list-scheduling are able to find more efficient schedules when the precedence
graph contains more regularity.

4.4 Incremental register binding for fixed register files

This section considers the problem of finding a register binding for programmable
processors. Contrary to the register binding task in High-Level Synthesis (previous sec-
tion), we are now dealing with a fixed capacity of the available register files. This char-
acteristic has two major consequences:

» Using adewregisters as possible is not the ultimate goal: instead of obtaining a min-
imal register binding we would rather uaé available registers and find a schedule
that takes one clock cycle less to execute.

» The number of registers required in a certain register file is not allowed to exceed the
capacity of that file.

The accepted way to deal with fixed register files in a compiler is to do register spilling
[Chai82]. When the register binding violates the register file capacity some values are
selected that are written to a (background) memory. Load and store operations are
inserted and the block of operations is rescheduled. This process is repeated until the
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capacity of each register file is respected. Because of the additional spill operations and
more extensive usage of load/store resources, severe timing constraints are unlikely to
be satisfied in the final schedule. As a result, embedded system designers go through
the effort of either 'helping’ the scheduler with pragmas (hints) or scheduling time crit-
ical code completely by hand. This requires extensive knowledge of the processor
architecture and instruction set and is very time consuming. Therefore it is desirable to
find an approach avoiding the generation of spill code and coping with severe timing
constraints. In this section we focus on such an approach. It integrates scheduling and
register binding, and thereby selectively uses the available schedule freedom to satisfy
all the constraints, including the timing and capacity constraints. (This work has been
done in cooperation with Carlos Alba Pinto and Koen van Eijk from the Eindhoven
University of Technology [Mesm99b], [Alba99].)

A formal problem formulation is given in Section 2.5.2. The global decomposition for
solving the Constrained Register Binding and Operation Scheduling Problem, is given
in Figure 4.24. The incremental register binder has to serialize value lifetimes incre-
mentally until all values assigned to a certain register file actually fit in this register file.
This has to be done incrementally, because serializing two values effects the mobility of
potentially all operations, and thus may prevent serializing other values. Therefore the
effect of serializing two values has to be computed by the constraint analyser before
other values are serialized. As a result, the focus of the process alternates between
deciding over a register binding and pruning the schedule search space accordingly
until the capacity constraints are satisfied. In Section 2.5.2 it is discussed how the
search space looks like and how it is traversed. This approach resembles (on an abstract
level) the way [Rau98] finds a resource binding and schedule.

The incremental register binder has to act very careful as to which values to serialize.
Only those actions should be taken that actually provide a ‘better’ fit of values to a reg-
ister file, otherwise schedule freedom is invested for no purpose. Therefore, an essential
feature of the incremental register binder is to identify the main bottlenecks violating
the register file capacities. This task is performed by analysing potential conflicts
between pairs of values before and during scheduling. In Section 4.4.1 it is shown how
potential conflicts are identified. In Section 4.4.2 these conflicts are analysed for poten-
tial bottlenecks by colouring a ‘worst case’ and ‘best case’ conflict graph. The approach
is demonstrated using a small example.

4.4.1 Constructing a conflict graph

A conflict graph is an undirected graph CG(RF) = (¥°), where the nodes in %ep-
resent the values in register file RF. There is an e(dge) [ E if the lifetimes of
andv overlap, and there iso edge(u, v) [ E° if the lifetimes ofi andv do not over-

lap. The triviality of the latter remark soon fades when we try to construct a conflict
graph in the case that the lifetimes are not fixed yet. Consider Figure 4.21 without
pipelining; not two, but three different relations may exist between two values:
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Figure 4.24 Global approach for mapping to fixed register files
* There is no overlap. This is the case e.qg. for values a and c.

» There is overlap. This is the case e.g. for values a and b in the clock cycle assigned to
the execution of operation C. We call tetsongoverlap.

» Unknown. This is the case e.g. for values b and e: if operation E precedes operation
C by at least one clock cycle, b and e overlap. If not, b and e have no overlap. Since
it is not yet determined whether or not E precedes C, it is simply unknown if b and e
overlap. We call thisveakoverlap.

For our purposes the following is the essential difference between strong and weak
overlap: Strongly overlapping values can never reside in the same register, but weakly
overlapping values can still be serialized. Serializing eliminates schedule freedom how-
ever. Because some distances increase (some paths become longer), the mobility of
individual operations is affected. This is disadvantageous because intuitively it becomes
'harder’ to find a feasible schedule. Therefore we want to select the values to serialize
carefully, such that on one hand, the amounpatentialoverlap (unknown + overlap)

in a potentially overloaded register file is reduced, and on the other hand, not too much
schedule freedom is sacrificed to obtain that goal. The potential overlap is computed by
considering the weak + strong overlap in the conflict graph. The three possible relations
between values are distinguished based on information from the distance matrix, our
central data base. In the following we will give formal definitions of the properties of
non, weak, and strong overlap. Subsequently, criteria based on distances are given and
proven to be equivalent to the formal criteria.

Non conflicting values.Valuesu andv have no conflict if their lifetimes can never over-
lap. There is no overlap between valueandyv if and only if the lifetime of v is con-
tained in the interval in between two successive lifetimesuofThis is depicted
graphically in Figure 4.25. The situation is captured by the following definition:
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Figure 4.25 Valuesu andv have no conflict

Definition 4.1 Valuesu andv have no conflict if and only if for each iteratiorthere
exists a corresponding iteratipsuch thad(C, P)) 20 andi(Cj, P{’, ;) 20 . O

Definition 4.1 is equivalent to the following criterion.

Theorem 4.8 Valuesu andv have no conflict if and only if

d(c’, P |, d(c’, P |5 4 41
I I @

Proof. Let k be the largest value such thda(tCu, PV) >k [l andllbe the largest value

such thald(CV Pu) >| 0l .Because we assume that the latency is bounded, such values
can always be found. Because for each operat|0t$(Ak) = s(AO) + kOl , We have
thatd(C P ) > k Ol is equivalent tarl(Ck, Po) >0 ,and thd(C P ) >| O isequiv-
alent to d(CO, Pk+1)>(k+1+l) 1 . Now Deflnltlon 4.1 applies if and only if
(k+1+1)0l =20. Becausdl >0 , this condition is equivalentke- |>-1 . Now by
definition

K = {d(C:, F’V)J (4.2)

and

| = {d“iv.’ P”)J (4.3)

so inequality (4.1) follows. O
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Strongly conflicting values.Valuesu andv have a strong conflict if their lifetimes over-
lap for sure. There is overlap between valuesdv if and only if the lifetime of v can
never be contained in the interval in between two successive lifetimes Dhis is
depicted graphically in Figure 4.26. The situation is captured by the following theorem:

Theorem 4.9 Valuesu andv have a strong conflict if and only if for each iteration
there exists a corresponding iteratjssuch thaid(P, C\j') >1 ancd:I(P\j', ch=1 . O

timey P:J_li
Ciu—1: P
P >I Y]
o
Pi“+1i
Cit1

Figure 4.26 Valuesu andv have a strong conflict

Proof. Suppose the execution order of opera’u@ns C @pd |s f|xed The fol-
lowing conditions cover the range of possibilities. Eltlajeprecedem, (d(Cj P, ) >0),
U; precedes (d(C P. ) > 0), orv; andy; overlap. Because these S|tuat|ons are mutu-

|
ally excluswe the condltlon for overlap is given by

~(d(C}, Pj) =0 0d(C, P)) = 0)

(4.4)
= =(d(Cj, P}) 20) O~ (d(C/, P)) 2 0)
= d(P C)>1Dd(P Cch=1
Theorem 4.9 follows. 0
For the non-folded case we haive= j . This corresponds to the case'thadedes

CY by one clock cycleand PY precede<" by one clock cycle. In Figure 4.21 for exam-
ple, values a and b have a strong conflict, as depicted in Figure 4.28.

Theorem 4.9 is equivalent to the following criterion.

Theorem 4.10 Valuesu andv have a strong conflict if and only if
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{d(c“, P") —1J N Ld(CV, PY) —1J -0 “5)
I [l

Proof. Let k be the largest value such tha(tPu, CV) >kl +1 andllee the largest

value such thabI(PV, C“) >| [l +1 . By the definition of Il, for each operation A:

A) = S(Ag +k Ol . Therefored(P", C") 2k 0l +1 is equivalent td(P, Cp) =1

and d(PV, Cu) >| [l +1 is equivalent t@l(P\('), CE) >(k+1)d01+1 .Now Theorem 4.9

applies if and only if(k+ 1) Ol =0 . Becausd >0 , this condition is equivalent to

k+1=0. Now by definition

‘= Ld(Pu, IcI:V)—lJ (4.6)
and

= Ld(PV, ﬁ:u)—lJ 4.7)
so inequality (4.5) follows. 0

Weakly conflicting values.There is weak overlap if both inequalities (4.1) and (4.5) are
invalid. In Figure 4.21 for example, values a and e weakly overlap, as depicted in Fig-
ure 4.28.

4.4.2 Colouring and bottleneck identification

In the previous section we showed how to construct a conflict graph with three possible
relations between values. In this section we use the conflict graph to identify two values
that should be serialized in order to reduce the potential overload on the corresponding
register file. The criteria for selecting these values are derived from a so caltaat-

ing of a conflict graph. In Figure 4.28 such a colouring is shown, where numbers are
used rather than colours. A valid colouring assigns each node in the conflict graph a
colour such that conflicting nodes (nodes connected by an edge) have different colours
assigned to them. A minimum colouring is a valid colouring with a minimum number
of colours. This number is called tlsromaticnumber and is a property of the conflict
graph. Because edges in the conflict graph model overlap in value lifetimes, a valid
(minimum) register binding can be extracted from a valid (minimum) colouring by
interpreting the colours as registers [Chai82]. We apply the exact sequential colouring
algorithm from [Coud97] to find a minimum colouring. Traditional colouring-based
methods for register binding construct a conflict grafter the value lifetimes are fixed
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Figure 4.27 DFG used to illustrate the serializing process

by a schedule. In that case, a minimum colouring corresponds directly to a minimum
register binding. In our method, a conflict graph is constructed paraal schedule. In

the previous section we saw that this results in an additional possible relation between
values: a weak conflict. In order to cope with this additional type of conflict, two differ-
ent conflict graphs are created: a weak conflict graph WCG, that includes both weak
and strong conflicts, and a strong conflict graph SCG, that includes only strong con-
flicts. The weak and strong conflict graphs associated with the DFG in Figure 4.27are
depicted in Figure 4.28. A minimum colouring of the weak conflict graph corresponds
to a pessimistic or worst case colouring; the chromatic index of WCG iapguer
bound to the number of registers requireaity completion of the schedule. Similarly,

a minimum colouring of the strong conflict graph corresponds to an optimistic or best
case colouring; the chromatic index of SCG isaer bound to the number of registers
required in any completion of the schedule. These bounds are used to steer the continu-
ation of the serializing process. If the capacity exceeds the upper bound, no further seri-
alization is required for that register file. If the lower bound exceeds the capacity, the
process is in an infeasible region of the search space, and backtracking is performed.

From a minimum colouring, for each nodein the conflict graph we extract the so
called saturation numberthe number of different colours in the neighbourhoodsof

(the nodes connected toin the conflict graph). In Figure 4.28a) for example, the
neighbourhood of node e consists of nodes a, b, ¢, and d. Colours 1 and 2 are used to
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Figure 4.28 Weak conflict (a) and strong (b) coloured conflict graph for
Figure 4.21 without pipelining.

colour the neighbourhood of node e, so the saturation number of node e equals 2. Simi-
larly, the saturation number of node a equals 2, and the saturation number of node c
equals 1. Saturation numbers are an indication of a bottleneck for the colouring algo-
rithm, because they indicate how many colours the algorithm requires in a subgraph of
the conflict graph. Saturation numbers in 8tengconflict graph indicate bottlenecks

that canmnot be solved by serializing value lifetimes, whereas saturation numbers in the
weakconflict graph indicate bottlenecks that oftesn be solved by serializing value
lifetimes. In Figure 4.28 for example, nodes a,b and e all have saturation number two.
Because that is the highest saturation number in the graph, these three nodes constitute
a bottleneck. This bottleneck can be reduced if one of the conflicts between them is
eliminated. The conflict a-e and b-e can be eliminated, but the conflict a-b cannot,
because it is a strong conflict.

Now we can explain the process of selecting two values, referreduaiady, for seri-
alization. Foru we choose a node which is primary a bottleneck in WCG. Because
many such bottlenecks may exist, we prefer nodes that also constitute a bottleneck in
SCG. So we use the highest saturation number in WCG as a first criterion and the high-
est saturation number in SCG as a second criterion. For vakechoose the highest
saturation number in WCG, since we are looking for bottlenecks in WCG. The second
criterion however is théowestsaturation number in the strong conflict graph, SCG.
The rationale behind this is that valueshould be such that it has the potential to be
serialized with many other values, which is not the case if it constitutes a bottleneck in
the strong conflict graph. Furthermore, we maintain the restrictionuthadv have a

weak conflict, because strong conflicts cannot be serialized, and values having no con-
flict need not be serialized.

We will use the example in Figure 4.27 to illustrate the binding process. The distance
matrix after applying resource constraint analysis (Lemma 3.2) is given in the same fig-
ure. It is used to construct the conflict graph in Figure 4.29. Because WCG is complete,
the priority function will generate a choice ofandv which is as sensible as any other.
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Figure 4.29 Distance matrix and conflict graph for Figure 4.27. A solid edge means
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Suppose that values b and e are selected for serialization. The constraint analysis
applies Lemma 4.4 on the distanBe- E of 3 (k=1) to serialize E with a delay

of 2 clock cycles, and on the distanée- B of -3 (k=-2) to seriakze B with a
delay of -4 clock cycles. The distance matrix and conflict graphs are updated, as indi-
cated in Figure 4.30. Now nodes a, c, d, and f have the highest saturation number in
WCG. These nodes all have the same saturation number in SCG, so values c and f are
chosen arbitrarily. As a result, the constraint analyser applies Lemma 4.4 on the dis-
tanceC - F of 3 (k=1) to serializ® - F with a delay of 2 clock cycles, and on the
distanceF - C of -3 (k=-2) to serializ& -~ C with a delay of -4 clock cycles. The
effect on the distance matrix and conflict graph is given in Figure 4.31. Note that the
mobility is reduced to zero, so the schedule is fixed. The strong conflict graph contains
the clique a, c, d, e, indicating that at least four registers are required. The schedule and
the two possible register bindings are given in Figure 4.32b). After the initial choice of
serializing b and e (Figure 4.30), we might also have selected a-d instead of c-f. The
resulting schedule and two possible register bindings are given in Figure 4.32a). For
this particular example, the choice of which values to serialize is not very crucial.

4.4.3 Lifetime sequencing

After the selection of values for serialization it needs to be deternfinedhese values
are serialized. In Figure 4.33 for example, valkiean be serialized inbetweep, and
U1, or inbetweeru;_; anduy;, or u; andu;,.q, etc. In our approach, we will first try the
earliest possibility to schedule valug If that yields infeasibility, then the™ earliest
possibility is tried, etc.
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Figure 4.30 The distance matrix and conflict graph corresponding to the example in
Figure 4.21 after serializing b-e. Bold faced numbers indicate updated values.
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Figure 4.31 The distance matrix and conflict graph corresponding to the example in
Figure 4.27 after serializing b-e and c-f. Bold faced numbers indicate updated values.
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Figure 4.32 The only 2 feasible schedules for Figure 4.28, and corresponding
register bindings.
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Figure 4.33 Several options are available for sequenciagdv

4.5 Experimental results

In this section, we present the experimental results [Mesm99b] obtained with the pro-
posed method implemented in thecTsenvironment [EijkOO]. All experiments are run
on a machine with a 233 MHz Pentium Il processor.

Because the proposed techniques are especially intended to handle inner loops of DSP
algorithms under tight timing constraints, we use the inner loop of a fast fourier trans-
form (FFT) algorithm, a fast discrete cosine transform (FDCT) algorithm and a Loeffler
algorithm that performs an 8-point 1-dimensional inverse discrete cosine transform.
Each example is mapped to a relatively simple architecture in which each resource type
has a dedicated register file. The characteristics of the various examples are shown in
Table 4.2. The latency shown in the third column is the minimum latency obtainable for
that constraint set. The table also shows the results obtained by a branch-and-bound
scheduler [Timm94] followed by a register binder based on exact minimum graph col-
ouring. These results are used as a reference point for the method proposed in this
paper.

Table 4.2 Examples and reference results

example | |V|, | E_d|| [Il/latency  time(s) RF sizes
fft256 30,43 4/13 0.1 3,3,1,2
fdct 42,43 18/18 0.1 9,4
loef 56,57 26/28 0.4 8,4,10

To evaluate the proposed method, we have applied it to the examples of Table 4.2 with
various register file capacity constraints. The branch-and-bound scheduler is used to
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complete the partial schedule resulting from value lifetime serialization. The results are
shown in Table 4.3.

For each problem instance, Table 4.3 lists the register file capacity constraints, the run
time (including the time needed for scheduling), and the impact of serialization on the

mobility of the operations (the numbers before respectively after the arrow denote the
mobility before and after serialization).

The experimental results for the example fft256 clearly show that the proposed method
Is steered by the individual register file constraints. Despite the presence of tight timing
and resource constraints, the approach is able to generate many different schedules
dependent on the settings of the individual capacity constraints. So if a certain register
file is potentially overloaded, the method will reduce this load, possibly by exploiting
the opportunities offered by other register files. We consider this feature very important
for handling heterogeneous register file architectures. By integrating the phases of
scheduling and register binding, our method is also able to significantly reduce the reg-
ister occupation compared to an approach that performs register binding a posteriori.
For the example ‘loef’, this results in a reduction of the total number of required regis-
ters from 22 to 15 registers.

Table 4.3 Results of proposed method

example | RF caps time (s) mobility
fft256 1,4,1,2 0.1 0.7 - 0.3
2,2,1,2 0.4 2.3 - 0.0

2,3,1,1 0.8 2.1 - 0.0

3,2,1,1 0.9 2.1 - 0.0

4,1,1,2 0.1 0.7 - 04

fdct 9,4 2.3 95 - 4.0
6, 4 2.7 95 - 2.0

8,2 0.9 95 - 14

loef 8,4, 10 3.5 144 . 3.1
4,3,8 4.9 144 - 1.0
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Chapter

5 Storage Models for Reduced
Instruction Width

In the introduction of this thesis it was described how important code size and, closely
related, instruction width are. This importance is even stronger for processors with
instruction memory embedded on the same chip. The observation was made that often
more than half of the instruction bits is used for addressing registers. This suggests that
an important decrease in code size can be obtained by questioning the need for the flex-
ibility offered by conventional register addressing mechanisms, and consequently, lim-
iting the range of addressing possibilities, albeit artificially. In this chapter we will
consistently apply the same strategy used in this thesis: modelling some constraints in
terms of serializing alternatives and rules for choosing those alternatives that keep the
solution in the feasible region. In this chapter the “constraints” we wish to model are
due to a restricted mechanism for register addressing with the objective of reducing
code size. The techniques presented here are limited to serializing operations such that
designated values can share the same address. Assigning the values to addresses (simi-
lar to assigning values to registers) is considered outside the scope of this thesis and is a
topic of ongoing research [Alba0Q].

The rest of this section is organized as follows. In Section 5.1 we take a FIFO as a stor-
age model and introduce the line of reasoning to extract essential serializing rules. In
Section 5.2 a STACK is used as storage medium. In Section 5.3 a new hybrid of a FIFO
and a STACK called FILIFO is analysed. Section 5.4 generalizes the analyses of the
first three sections to the case that loop pipelining is applied. Section 5.5 discusses
some practical issues. A case study is performed in Section 5.6 to show the effective-
ness of some of the storage models.

5.1 FIFOs

The FIFO (first in first out) model is illustrated in Figure 5.1. Values are written into the
FIFO at the top and read from the bottom. Since we are merely interested in the way the
FIFO model affects the ordering of operations accessing the FIFO, we abstract from
any implementations of the FIFO model itself. We also assume that the capacity of the
FIFO is sufficient for all practical applications. The name “FIFO” is due to the observa-
tion that a value first written is consequently first read. Characteristic of this model is
that values are not overwritten but rather shifted down. This implies that contrary to
randomly accessible registers (Section 2.4), value lifetimes are not limited to the initia-
tion interval in case of loop pipelining, because older values are not overwritten. As a
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result, multiple iterations of the same valug, (s 1 Uj; o, €tc.) can be simultaneously
present in the FIFO. So although a FIFO has some restrictions, it also provides a feature
that randomly addressable register files do not have.

5.1.1 Analysis of FIFO access ordering

Our analysis is similar to the one in chapter 4. Only conflicts between two values are
considered. When conflicts are resolved between each pair of values, the whole set of
values is guaranteed to ‘fit’ in the same storage unit (FIFO). Basically, two overlapping
valuesu andv can relate to each other in four different ways as depicted in Figure 5.2.

time
—
ue—eo * * > > o
= « RIS R «
4 4 \‘4 < M
\Y} *~ o > o e . *
(@) (b) (c) (d)

Figure 5.2 Potentially overlapping valuasandv

In this figure, a horizontally drawn line represents the lifetime of a value produced by
its left side node, and consumed by its right side node. The relation between two values
Is characterized by the order of their successive write and read accesses. This order is
denoted in Figure 5.2 by the diagonal dotted arrows. For example, relation (a) is charac-
terized by three order®®” ~ P' P' - c" ,ar@' - ¢’ , where P denotes the pro-
ducer and C denotes the consumer of the corresponding value. Whenwahegare
addressed in the same way, situations (a) and (c) are equivalent as are (b) and (d).
Therefore we restrict our analysis to situations (a) and (b) without loss of generality.
Note that situation (a) is feasible for our FIFO model, but situation (b) contradicts the
first-in first-out ordering. Situation (b) is characterized by two partial ordets: P’

andC’ - C" . From the infeasibility of this situation we extract the rule that if either
one of these two orders occurs, the other one cannot. Thus the following two lemmas
are derived.

Vo
out+

Figure 5.1 FIFO model
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Lemma 5.1 Let valueu, produced by operatior'Rnd consumed by“Cand value,
produced by operation’Rnd consumed by'Creside in the same FIFO. If

d(P", P") = 0 we can add a sequence precedence edfy€\(Owith weight 1 without
excluding any feasible schedules. [

I N

Figure 5.3 Lemma 5.1 for serializing value lifetimes

Same FIFO

Lemma 5.1 is illustrated in Figure 5.3. This lemma restricts the possibilities to situation
(a) and the situation that the lifetime of valueompletely precedes that of vale

Lemma 5.2 Let valueu, produced by operatior'Rnd consumed by“Cand value,
produced by operation’Rnd consumed by'Creside in the same FIFO. If

d(c", c”) =0 we can add a sequence precedence edg@/{Rvith weight 1 without
excluding any feasible schedules. [

: o

Figure 5.4 Lemma 5.2 for serializing value lifetimes

Same FIFO

Lemma 5.2 is illustrated in Figure 5.4. This lemma also restricts the possibilities to sit-
uation (a) and the situation where valueompletely precedes value

5.2 STACKs

The STACK model is illustrated in Figure 5.5. Values are both written to and read from
the top of the STACK. A STACK is therefore also called a LIFO (last in first out).
Again we assume that the capacity of the STACK is sufficient for all practical applica-
tions.
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in¢ TOUt

Figure 5.5 STACK model

Because two values can only be read using the same read pointer we restrict the analy-
sis to situations (a) and (b) in Figure 5.6.

time
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Figure 5.6 Potentially overlapping valuasandv

With respect to feasible overlapping lifetimes, the STACK case is the reverse of the
FIFO case. Situation (b) is a feasible on the STACK case, but situation (a) is not. Situa-
tion (a) is characterized by three ordés.— P P',- c" ,&d- C’' ,where P
denotes the producer and C denotes the consumer of the corresponding value. Infeasi-
bility of situation (a) thus implies that the combination of these three orderings is not
allowed. So whenever either two of these orderings are present, the third one has to be
negated. This observation yields the following three lemmas.

Lemma 5.3 Let valueu, produced by operatior’'RRnd consumed by“Cand value,
produced by operation’Rnd consumed by'Creside in the same STACK. If

d(P’, P)=0 andd(P’,C")=0 we can add a sequence precedence edg@'|@ith
weight 1 without excluding any feasible schedules. O

.
.
.
.
.
.
u ’

Figure 5.7 Lemma 5.3 for serializing value lifetimes

same STACK
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Lemma 5.3 is illustrated in Figure 5.7. This lemma limits the possibilities to situation
(b) in Figure 5.6.

Lemma 5.4 Let valueu, produced by operatiort'and consumed by“Cand valuey,
produced by operation’Rnd consumed by'Creside in the same STACK. If
d(P’,c"y=0 andd(C",C")=0 we can add a sequence precedence eYd&)(®Rith
weight 1 without excluding any feasible schedules. O

same STACK ,""
u ﬁ
® u

T ©
e

Figure 5.8 Lemma 5.4 for serializing value lifetimes

Lemma 5.4 is illustrated in Figure 5.8. This lemma also limits the possibilities to situa-
tion (b) in Figure 5.6, where valuasandv are swapped.

Lemma 5.5 Let valueu, produced by operatiort'RRnd consumed by“Cand valuey,
produced by operation’Rnd consumed by'Creside in the same STACK. If
d(P’, P)=0 andd(C",Cc")=0 we can add a sequence precedence etge’ @ith

weight 0 without excluding any feasible schedules. O
I same STACK u
D D
T P
Y,

5

Figure 5.9 Lemma 5.5 for serializing value lifetimes

Lemma 5.5 is illustrated in Figure 5.9. This lemma limits the possibilities to the situa-
tion where valuel completely precedes value



90 SrORAGE MODELS FORREDUCED INSTRUCTIONWIDTH

5.3 FILIFO, a hybrid between FIFO and STACK

The FILIFO (first in last in first out) model is designed as a storage unit that provides
more flexibility than both a STACK and a FIFO, without increasing the number of con-
trol bits too much (at most one additional bit). It is a hybrid of a STACK and a FIFO
because two values relate to each other in either a FIFO-like manner (Figure 5.12 a), in
a STACK-like manner (Figure 5.12 b), or they simply do not overlap.

The FILIFO is illustrated in Figure 5.10. Values are written into the FILIFO at the top
and can be read either from the top or the bottom. When a value is read from the top, we
say it is s-read, because it resembles the behaviour of a STACK. When a value is read
from the bottom, we say it is f-read, because it resembles the behaviour of a FIFO. The
determination whether a value is s-read or f-read we wilreatl pointer assignment.

in¢ Tout

Vo
out¢
Figure 5.10 FILIFO model

5.3.1 Analysis of FILIFO access ordering

First we observe that the way two value lifetimes are allowed to relate to each other
depends on whether these values are s-read or f-read. For example: if both values are
f-read they relate to each other as two values in a FIFO (Section 5.1), but if they are
both s-read they relate to each other as two values on a STACK (Section 5.2). The
reverse is also true. Whether two values can be s-read or f-read depends on the way the
corresponding value lifetimes relate to each other. For example, if valaedv relate

to each other as in Figure 5.12 (a), valuean only be f-read. We conclude that read
pointer assignment and scheduling are interrelated problems, just as register binding
and scheduling are interrelated problems (chapter 4). There is however an important
difference between register binding and ‘read pointer assignment’. In chapter 4 we
made explicit register binding decisions (during scheduling) to prevent the scheduler
from violating the capacity constraints of the register files. Explicit ‘read pointer
assignment’ decisions are not necessary because we have no constraints similar to the
capacity constraints of register files. Instead we allow the scheduler to use the available
schedule freedom, and the read pointer assignment will follow implicitly from the
schedule. This can only work under the following conditions:

» The serializing (and assignment) rules should describe sufficient conditions to
exclude all infeasible situations. The rules thus can serve as a verification. If the
completed schedule satisfies these rules, all values assigned to the same FILIFO are
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guaranteed to fit in there. This requires a thorough (complete) analysis of all infeasi-
ble situations. Furthermore, we should take care that the rules proecessary
conditions only.

* As we have seen in the example above, some access orderings imply a certain read
pointer assignment and similarly, some (partial) read pointer assignments imply a
certain access ordering. In order to cover all infeasible situations, we need to exhaus-
tively consider all combinations of pointer assignments and access orderings.

We use the scheme depicted in Figure 5.11 to cope with the interaction between pointer

assignment and scheduling. Because the application of the sequencing rules works

accumulative (new precedences and pointer assignments trigger the rules, thus causing
new precedences and pointer assignments, etc.), constraint analysis is repeated until no
further serializations or pointer assignments are obtained.

sch_eqlule
constraint fecision
analysis scheduler
L
for FILIFO additional

precedence
constraints

Figure 5.11 Constraint analysis runs along with the scheduler

Algorithm 5.1 (constraint analysis for FILIFO).

for all v in Y assigned to storage unit SU of type FILIFO
for all u<>v in Y assigned to SU
for all lem in Lemmas on FILIFO
check Lemma lem on v and u and add corresponding sequence edge

First we try to find situations where infeasibility is implied by a single valu@nly one
situation implies infeasibility: the case where valuis s-read and the lifetime exceeds
the initiation interval 1l. So if either one of these two conditions is true, the other one
cannot. This leads to the following two lemmas:

Lemma 5.6 Let valuev, produced by operation’Rnd consumed by'\QGeside in a FIL-
IFO. If d(P, C") > 1l we can assign‘@o the f-read pointer without excluding any fea-
sible schedules. W

Lemma 5.7 Let valuev, produced by operation’Rnd consumed by'\Qeside in a FIL-
IFO. If CVis assigned to the s-read pointer, the lifetime ofinnot exceed Il, so we can
add a sequence precedence eddeR{ with weight -1l without excluding any feasible
schedules. W
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The analysis for two values will be more complicated. A number of situations should be
distinguished with respect to the read pointer assignment. A value can be either s-read
(s), f-read (f), or no decision is yet made (x). There are six combinations of accesses on
two valuesu/v: x/x, x/f, x/s, f/f, s/f, and s/s. These situations are analysed as follows.

u/v = f/f: Both values are accessed by the f-read pointer. The corresponding producers
and consumers have to satisfy the rules associated with a FIFO, so Lemma 5.1 and
Lemma 5.2 apply.

u/v = s/s Both values are accessed by the s-read pointer. The corresponding producers
and consumers have to satisfy the rules associated with a STACK, so Lemma 5.3 to
Lemma 5.5 apply.
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Figure 5.12 Potentially overlapping valuasandv

u/v = s/f. Valueu s s-read and is f-read. Two situations, (a) and (b) in Figure 5.12, are
infeasible for the same reason. Values put on the STACK, and before it is consumed,
valuev is put on top of it; nowu cannot be read untlis gone, and vice versa. So infea-
sibility is implied by the combination of" — P’ anB’ - C" . From the infeasibility

of this situation we extract the rule that if either one of the two orders occurs, the other
one cannot. Thus the following two lemmas are derived.

Lemma 5.8 Let valueu, produced by operatior'Rnd consumed by“Cand value,
produced by operation’Rnd consumed by'Creside in the same FILIFO. Lebe
s-read and be f-read. Ifd(P", P") =0 we can add a sequence precedence edge"jC

with weight O without excluding any feasible schedules. [
ﬂ same FILIFO ﬂ
u(s) > u(s)
@ v(f) @
v(f)

Figure 5.13 Lemma 5.8 for serializing value lifetimes
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Lemma 5.8 is illustrated in Figure 5.13. This lemma restricts the possibilities to the sit-
uation that the lifetime of valuecompletely precedes that of vale

Lemma 5.9 Let valueu, produced by operatior'Rnd consumed by“Cand value,
produced by operation’RRnd consumed by'(reside in the same FILIFO. Letbe
s-read and be f-read. Ifd(P’, C") =0 we can add a sequence precedence eddge'(P
with weight 1 without excluding any feasible schedules.

ﬂ same FILIFO ,/ :
u ﬁ
V ) (e

Figure 5.14 Lemma 5.9 for serializing value lifetimes

Lemma 5.9 is illustrated in Figure 5.14. This lemma restricts the possibilities to situa-
tions (c) and (d) in Figure 5.12 and the situation where watwecedes value.

u/v = x/x: Neither value has been assigned a read port. Remember that two value life-
times relate to each other in either a FIFO-like or a STACK-like manner (or both). This
means that no serializing constraints can be derived from any combination of value life-
times. But some relations do enforce the use of a certain read pointer. In Figure 5.12 (a)
valueu can only be f-read, and in Figure 5.12 (b) valwan only be s-read.

Lemma 5.10Q Let valueu, produced by operation"fand consumed by'Cand valuey,
produced by operation’Rnd consumed by'(reside in the same FILIFO. If

d(P, P =0, d(P',c")=0andd(c", c") = 0, then &can be f-read without excluding
any feasible schedules. O

Lemma 5.11 Let valueu, produced by operation“”and consumed by'‘Cand valuey,
produced by operation’Rnd consumed by'Creside in the same FILIFO. If

d(P", P") =0 andd(C’, C") =0 , then &can be s-read without excluding any feasible
schedules. O

u/v = x/f: Valuev is f-read, and the read access on valug not yet assigned. The only
infeasible situation is Figure 5.12 (b). Because this was also the only infeasible situa-
tion in theul/v = f/f case, we refer to Lemma 5.1 and Lemma 5.2. Some situations do
enforce a read pointer assignment, but these situations are already covered by preceding
lemmas: Situation (d) in Figure 5.12 imposes valut be s-read, which is already
implied by Lemma 5.11. In the case that bofY: -~ P’ dld- C" | itis necessary
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thatC" - C", and that valua be f-read. This situation is covered by a combination of
Lemma 5.1 and Lemma 5.10.

u/v = s/x Valueu is s-read, and the read access on valigenot yet assigned to a read
pointer. The only infeasible situation is Figure 5.12 (a). Because this was also the only
infeasible situation in the/v = s/scase, we refer to Lemma 5.3 to Lemma 5.5. Some
situations do enforce a pointer assignment, but these situations are already covered by
preceding lemmas: Situation (c) in Figure 5.12 imposes valiebe f-read, which is
already implied by Lemma 5.10. In the case that weth- P’ and. c" , Itis nec-
essary that value be s-read. This situation is covered by a combination of Lemma 5.3
and Lemma 5.11.

5.4 Loop pipelining

When a pipelined schedule is desired, we not only have to take care dmatv fit in

the same FILIFO (or FIFO or STACK), but also thqtandvj fit in the same FILIFO.

This is illustrated in Figure 5.15. In this figure, a solid line segment represents a value
lifetime, a dotted line segment represents an ‘empty’ time slot. Valuasdy; are seri-

alized and therefore fit in the same STACK, but valugs andv, behave in a typical
FIFO-manner and do not fit together in a STACK. We conclude that we have to broaden
our scope beyond loop boundaries. We have already done this in Section 4.1.2 for ran-
domly addressable register files, and we will do the same for FIFOs, STACKs and FIL-
IFOs.

time+"': """"""""""
P
i ‘u- u andv in same STACK
u |
o |
Pit1 | APY
Uz .-\
Ciu+l IA"-‘-- VI
- “Cv
(8] ] .
Piso ‘ '
Ui+2
u
Ci+2 ’
:

Figure 5.15 Serializing within the same iteration is not sufficient for pipelining

In Section 2.2 we showed the equivalence between the rel@tion P, ., and the rela-
tion C —» P with time delay—k [l . This equivalence has been used in Section 4.1.2 to
generalize the lemmas from Section 4.1.1. We derive a generalization of Lemma 5.1 in
a similar way: First, we use the equivalence to translate the timing delai ofi in
Figure 5.16 (a) to the iteration indices in Figure 5.16 (b). The additional sequence edge
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in Figure 5.16 (c) is obtained from (b) by directly applying Lemma 5.1. In Figure 5.16
(d) the iteration indices have been translated back to the timing domain and a timing
relation from C'to CV (with delay—k 01 ) is the result. Lemma 5.1 is now generalized
to Lemma 5.12.

—k i

et

Figure 5.16 Generalization of Lemma 51

Lemma 5.12 Let valueu, produced by operation"rand consumed by'‘Cand valuey,
produced by operation’Rnd consumed by'Creside in the same FIFO. If

d(P", P") = —k 01 we can add a sequence precedence edg&€\(Cwith weight

1 -k Ol without excluding any feasible schedules. O

The generalization of Lemma 5.2 is now straightforward:

Lemma 5.13 Let valueu, produced by operation"fand consumed by'Cand valuey,
produced by operation’Rnd consumed by'Creside in the same FIFO. If

d(c", c”)=—k Ol we can add a sequence precedence edg@/{Rvith weight

1 -k Ol without excluding any feasible schedules. [

The STACK lemmas are a little harder to generalize because a sequence edge is added
as a result ofwo paths instead of one (which is the case with a FIFO). These paths are
indicated in Figure 5.18 (a); one has length-l [l , the othewk I . These paths
are not completely independent; as a result®fu) < II and the Path P’ — C"

of length—(k + 1) OI , which lower bound&T(u) , itis derived thilat- |>-1 . But as

long as this is the cask,andl may be arbitrary integers. Because of the relative inde-
pendence of these two parameters, we can use the equivalence between timing and
indexes in two different ways. In Figure 5.18, we observe the conflict betwgand

v;, and in Figure 5.17 the conflict betweep andy; is analysed. In Figure 5.18 (b)
Lemma 5.3 applies il=0 , so ik+1<0 , which finally results in a sequence edge

c’ = c" with lengthl 01 . In Figure 5.17 (b) Lemma 5.3 applies under the same con-
dition (k + I < 0), which finally results in a sequence ec[g\éa c" with lengitll

Since both sequence edges may be added under the same condition, the generalization
of Lemma 5.3 results in Lemma 5.14:

Lemma 5.14 Let valueu, produced by operation"fand consumed by'Cand valuey,
produced by operation’Rnd consumed by'Creside in the same STACK. If
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d = —(k+ )0l
€Y (b)

Figure 5.18 Second generalization of Lemma 5.3

(d)

d(P", Py =-1 01 d(P’',Cc")>=—k0Olandk + 1< 0 we can add a sequence edde)
with weightmax{ | 01, -k 01} without excluding any feasible schedules. [

Lemma 5.4 is generalized to Lemma 5.15 following the same line of reasoning.

Lemma 5.15 Let valueu, produced by operation"fand consumed by'Cand valuey,
produced by operation’Rnd consumed by'Creside in the same STACK. If

d(P’, c"y=—k 0Ol d(c",c)=- O1andk+ 1< 0 we can add a sequence eddeR{p
with weightmax{ | 01, -k 01} without excluding any feasible schedules. O

Deriving Lemma 5.16 from Lemma 5.5 also follows this line of reasoning but the
weight of the resulting sequence edge is different.

Lemma 5.18 Let valueu, produced by operation"fand consumed by'Cand valuey,
produced by operation’Rnd consumed by'Creside in the same STACK. If

d(P", P") =k 01 andd(c",c’)=- 01 we can add a sequence edde ) with
weightmin{ -l OI, -k 011} without excluding any feasible schedules. O

With respect to the u/v = s/f case for FILIFOs, Lemma 5.8 and Lemma 5.9 are general-
ized to Lemma 5.17 and Lemma 5.18 respectively.
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Lemma 5.17 Let valueu, produced by operation"fand consumed by'Cand valuey,
produced by operation’Rnd consumed by'(reside in the same FILIFO. Letbe
s-read and be f-read. Ifd(P", P") =—I I  we can add a sequence precedence edge (C
PY) with weight—I 01 without excluding any feasible schedules. O

Lemma 5.18 Let valueu, produced by operation"fand consumed by'Cand valuey,
produced by operation’RRnd consumed by'Creside in the same FILIFO. Letbe

s-read and be f-read. Ifd(P', C") = Ol we can add a sequence precedence ege (P
PY) with weight 1 —1 01 without excluding any feasible schedules. W

Lemma 5.10 and Lemma 5.11 for deriving a read port are generalized to Lemma 5.19
and Lemma 5.20 respectively.

Lemma 5.19 Let valueu, produced by operation"fand consumed by'Cand valuey,
produced by operation’Rnd consumed by'Creside in the same FILIFO. If

d(P", P)=-k0Ol, d(P’,c")y=-1 01, andd(C", C") =-m 01 , wheré >k, m , then'C
can be f-read without excluding any feasible schedules. [

Lemma 5.20Q Let valueu, produced by operation"fand consumed by'Cand valuey,
produced by operation’Rnd consumed by'Creside in the same FILIFO. If

d(P, P,) =—k 0l andd(C’,C"y =101 , wherd >k , then'@an be s-read without
excluding any feasible schedules. [

We have generalized the rules from the previous section so that we are now able to ana-
lyse the constraints generated from the different storage models in the context of loop

pipelining. The next section considers some practical issues involved in applying the

proposed analysis to real-life applications and a broad range of architectures.

5.5 Some practical issues

The previous sections laid the foundations for coping with unconventional storage
models. In this section we make some more generalizations that allow us to apply the
analysis rules to a broader range of practical situations. These situations are

» multiple consumers of the same value

 using different RF models in the same architecture

5.5.1 Multiple consumers

When a value in a storage unit is allowed to be consumed more than once (if a read
access can be non-destructive), an extensive number of different access orderings
become possible. For example, suppose that in some Basic Block wialeensumed

three times, by operatiors, C, ,a@d respectively. Itis allowedtigtvritten in

a FILIFO and s-read bg; , that subsequently valigpushed on top of and popped,
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Vis s-read again, a number of values, among whichre pushed on top, amds f-read
destructively. The way relates to the other values depends on which consumersof
considered. When considering, viw relate as s/s, but when consideri@y v/w
relate as f/s in the example. The way to cope with this ambiguity is now straightfor-
ward: instead of considering a valuave consider groduction-consumption paior

P-C pair for short. Since a value in our terminology can only be produced once, Algo-
rithm 5.1 is extended to Algorithm 5.2 in order to cope with multiple consumers of the
same value.

Algorithm 5.2 (constraint analysis for FILIFO).

for all v in Y assigned to storage unit SU of type FILIFO
for all u<>v in Y assigned to SU
for all CY and C
for all lem in Lemmas on FILIFO
check Lemma lem on B, P!, CY, and C", and add corresponding sequence edge

5.5.2 Architectures with mixed storage types

Suppose we have an architecture containing a variety of storage models, so one file is a
FIFO, another a STACK or a FILIFO, and some files are randomly addressable. Let
type(SU) denote the type of storage unit SU. Algorithm 5.2 is extended to Algorithm
5.3 in order to cope with multiple storage types. Note that register files are not consid-
ered in this scheme; for register files an explicit register binding decision has to be
taken before the constraint analyser is able to reduce the search space accordingly, see
Figure 4.20.

Algorithm 5.3 (constraint analysis for mixed storage types)

for all storage units SU of type register, FIFO, STACK, or filifo
for all vin Y assigned to SU
for all u<>v in Y assigned to SU
for all CY and C
for all lem in Lemmas on type(SU)
check Lemma lem on B, P!, CY, and C", and add corresponding sequence edge

5.6 Case study

In order to understand how the techniques treated in this chapter can be applied, let us
spend a few words on the status of the work. Chapter 4 started with a discussion on life-
time serialization for a given register binding. These ‘basic’ techniques were subse-
quently used in sections 4.2 and 4.4 to generate a register binding. The status of the
techniques presented here are ‘basic’ in the same sense. The techniques work for values
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that have been assigned to a FIFO, STACK, or filifo. However, FIFO or STACK assign-
ment is a topic of ongoing research [Alba00] considered outside the scope of this thesis.
In this section we will demonstrate in a high-level synthesis context the effectiveness of
FIFO addressing and the tool support for exploring the possibilities offered by these
addressing schemes.

For this purpose we will use the example shown in Figure 5.19. It represents the inner
loop of an in-place FFT algorithm. The label in-place refers to the fact that the results
of the computation are written back to the same address where the samples are fetched
(in order to save memory). This explains the long data edges of the addresses aOR1 to
a3R2: these addresses are used both for fetching samples at the beginning of the com-
putation, and for storing the results at the end of the computation. The operations
required for fetching the multiplication coefficients are omitted. The purpose of the
exercise is to obtain a pipelined schedule with an initiation interval of four clock cycles
thereby minimizing the number of addresses required for executing the schedule.

ao a2 acu acu al 6.3

aOR1 a2R2 alR1 a3R2
v v

v
rdO rdz@ @rdl rd3@
xOrl\4 /<2r2 xlrl\‘ >/x3r2
Yy

asl
Y

2

0

»/ v |
> X

mlo mil

next iteration |

€3
0 q) 1 ¢ 2 (I) 3
wr0 Wr wrl wr3

Figure 5.19 DFG of an FFT inner loop
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The data-path architecture is depicted in Figure 5.20. The smallest set of functional
resources required to obtain this goal consists of an address computation unit (acu), a
rd/wr port on memory M1, a rd/wr port on memory M2, a complex adder, a multiplier,
and an incrementer for the loop counter. For reasons of convenience we assume an
architecture with a single storage file consisting of registers, FIFOs, and STACKs. All
functional units have rd/wr access to this file. The instruction encoding is also depicted
in Figure 5.20. The opcodes of each functional unit is assumed to take three bits. For
each read (write) port, the address of the source (destination) operand in the storage file
iIs encoded. The number of control bits for addressing the storage file dqogds] :
wherea represents the number of addresses in the file. For the default architecture the
total number of control bits therefore equélsB+ (10+ § [Jloga] 18+ 18] log a]

storage file

complex .
adder acu | | mult M1 M2 inc
15— |
opcodes 8 write addresses 10 read addresses

M2 |inc
[ [T T1

caddacu mult M1 |
I I A

instruction format

Figure 5.20 Default VLIW architecture and instruction format for
mapping the DFG in Figure 5.19

5.6.1 Implementation with randomly addressable registers

This design was originally implemented with the usual randomly addressable registers.
Because the lifetimes of the addresses aOR1 to a3R2 necessarily exceed the intended
initiation interval of four clock cycles, the designer manually inserted so cedieaime

or move operations to move a value to another register. Each of the addresses is
renamed twice to enable [I=4, as indicated in Figure 5.21 by the operations alul0 to alu
23, executed by functional units b1 and b2. Therefore, the default architecture in Figure
5.20 needs to be extended with two functional units b1 and b2, and two read and write
ports on the storage file. Therefore the total number of control bits equals
8B+ (12+ 10 loga] = 24+ 22 loga|.
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With this constraint set, the minimum latency of the schedule accordipgdos equals

13 clock cycles. The initial mobility (based on asap-alap) equals 4.56 clock cycles per
operation, and is reduced to 2.29 clock cycles after constraint analysis (run-time: 0.1 s).
The least amount of registers, for whiehcTs is able to find a schedule is 17. The
mobility was thereby decreased to 0 in 1.07 seconds run time. Since there are 8 more
global variables alive during execution of the DFG which are not represented in Figure
5.21, the total number of control bits equ2ds+ 227 log 25] = 134.

5.6.2 Implementation with FIFOs and registers

In this section we will add FIFOs to the architecture in order to decrease the number of

addresses.The largest gain is obtained by placing the values aOR1-a3R2 in a FIFO.
Because these values are read twice and we use a FIFO with destructive read, it is
decided that each address is written to both a FIFO and a register. This requires an addi-

Ic

aluto 28t alu12 6 alull s2
y V> v g alul3 p1
a0d1l 0 a2dT><Tald1l 3 a3dl
) alu?2
@&MZO as alu22 b2 b 54 alu23 @y
[ N %, 5
a0d?2 5 3 a3d2
a2d‘>< ald2
X -0 > X g " X
mlo mIl Umlz ml

next |terat|on

I8z

Figure 5.21 Transformed DFG for implementation with registers
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tional write port on the storage file. The amount of control bits then equals
18+ 190 loga |

Initially, the mobility equals 3.31 clock cycles per operation. The values aOR1-a3R2
can all be put in one FIFO, but the corresponding constraints reduce the mobility to
zero according teACTs (run-time: 0.1 s). Nine more registers are required to store the
remaining values, so the total amount of addresses in the storage file equals ten. Two
more FIFOs are added, and iteratively the values with the longest lifetimes are trans-
ferred to a FIFO. In this way, a schedule is obtained with three FIFOs and four registers,
for a total of seven addresses. Eight more registers are required for the global variables,
so the total number of control bits equdl8+ 19 log 15] = 94, which is 30 bit less
than the situation where only registers were used.
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Chapter

6 Conclusions

In this thesis an approach for DSP code generation is presented basedsiraint
analysis This technique is inspired by the observation that traditional code generation
methods require too much help and expertise from a designer to satisfy the combination
of timing, resource, and storage constraints encountered when mapping DSP applica-
tions onto embedded processors. Using constraint analysis, a scheduligieidrather

than hamperedby these constraints: By using the constraints to prune the schedule
search space, the scheduler is often prevented from making a decision that inevitably
violates one or more constraints. Some of these techniques have been integrated in the
research code generation tealcTs[Eijk00], [MesmO01] together with some techniques
following the same philosophy like execution interval analysis [Timm95] and symme-
try analysis [Eijk99].

We have considered the problem of phase coupling: the problem that decisions taken in
one phase of the code generation process effect the freedom of movement in the other
phases. We have argued that this problem cannot be ignored when constraints are tight
and efficient solutions are desired. Traditional methods that perform code generation in
separate stages are often not able to find an efficient or even feasible solution. In our
approach, the problem of phase coupling is addressed by letting all analyses work on a
single unified representation of the schedule search spaagdisthace matrixwhich is

the core layer in theAacTs hierarchy indicated in Figure 6.1. This is an effective repre-
sentation because it administrates relative timing, which is important for solving the
scheduling problem. Any information regarding relative timing can be directly
expressed in the distance matrix, such as schedule decisions, precedences, etc. The
results of the analyses discussed in this thesis are also expressed in terms of sequence
constraints and can therefore be combined in the distance matrix simply by computing
the longest paths between all pairs of operations.

This approach to integrate scheduling and register binding enables a compiler to sacri-
fice schedule freedom selectively in order to obtain a register binding that respects the
individual register file capacities. This feature is considered important given the current
trend towards a distributed register file architecture. The efficiency of implementing a
strong interaction between several code generation stages is supported by the experi-
mental results (Sections 4.3 and 4.5) that feature reasonable run times for DSP applica-
tions that are constrained in the timing, resource, and storage domain. In the current
FACTSimplementation, constraint analysis is performed by applying all techniques con-
secutively until no further progress is obtained; the performance can be further
improved by developing more efficient strategies to combine the various techniques.
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/- Lifetime Serialization (Section 4.4), Minimize

search latency or Initiation Interval

strategies

basic CA- ——* » Execution interval analysis, resource constraint anal-

ysis (Ch. 3), symmetry analysis, register (Section

techniques 4.1), FIFO, STACK, filifo (Ch. 5)
(?FG : » Precedence, fixed latency and initiation interval, rel-
-matrix

ative timing, schedule decisions (Section 2.4)

Figure 6.1 TheFACTS hierarchy

Current research in the context of constraint analysisraads focuses on the follow-
ing topics.

* a search strategy for binding values to registers mtating register file [Rau82].
This storage file is similar to a randomly addressable register file with the added fea-
ture of automatic register renaming to allow value lifetimes to exceed the initiation
interval.

» a search strategy for assigning values to FIFOs [Alba00]. This could help to reduce
code size and to allow value lifetimes to exceed the initiation interval. A similar
strategy is planned for STACKs. From our experience with FIFOs and STACKs, we
hope to formulate a strategy for targeting storage files that consist of registers,
FIFOs, and STACKSs.

» asearch strategy for the assignment of operations to functional resources, and related
to that, the assignment of values to storage files.

An interesting question arises with respect to the general applicability of the colouring
approach of Section 4.4. Does this approach work for registers only? Or is it possible to
define weak and strong conflicts in the context of FIFOs, STACKSs, or functional
resources, such that the colouring approach is reused effectively for the above men-
tioned assignment problems? Preliminary results [Alba00] suggest that a straightfor-
ward adaptation of the rules for strong and weak conflicts to a FIFO mechanism works
satisfactory.

Another research question relates to HaeTs hierarchy given in Figure 6.1. Appar-
ently, some constraints can effectively be expressed at the level of the distance matrix.
Other constraints can be coped with on-the-fly by letting corresponding ‘rules’ be trig-
gered by refinements in the search space (the distance matrix). This is not true for con-
straints related to limited storage capacity in the register files. These require an explicit
search strategy to satisfy. For a given constraint, no guidelines are available for deter-
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mining at which level in Figure 6.1 an approach should be defined. Such guidelines
would be helpful in formulating an approach for some architectural features. For exam-
ple, it is unclear whether a memory addressed indirectly with (post)-modify options
[Bart92] should be handled by determining a search strategy such as in Section 4.4 or
by defining rules such as in Section 5.1.

TheFAacTstool is used at the Eindhoven University of Technology as a research vehicle
for research in code generatiomcTs functionality is being integrated in the A|RT
toolset from Frontier Design, Leuven, Belgium in order to design and program ASIPs
with a VLIW architecture. At Philips researéiacTsis applied in the COCOON project

as part of the compiler targeted at a VLIW architecture.
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Samenvatting

Methoden voor code generatie voor digitale signaal processoren (DSP) worden in toen-
emende mate belemmerd door de combinatie van stringente tijdsbeperkingen opgelegd
door DSP applicaties, en de resource beperkingen opgelegd door de processor architec-
tuur. Indien loop pipelining wordt toegepast vormt de beperkte beschikbaarheid van

resources een probleem voor 'greedy’ scheduling heuristieken. De beperkte beschik-
baarheid van registers, gedistribueerd over de processor, vormt een probleem voor
oplossingesmethoden die de taken van scheduling en register toewijzing in opeenvol-
gende fasen uitvoeren. Door deze scheiding kunnen vaak suboptimale of zelfs geen

oplossingen gegenereerd worden, omdat het probleem van fase koppeling genegeerd
wordt; doordat de levens intervallen van variabelen worden bepaald door het schedule,
Is scheduling mede bepalend voor de zoekruimte voor register toewijzing. Als gevolg
hiervan hebben traditionele methoden in toenemende mate hulp nodig van de program-
meur (of ontwerper) om een geldige oplossing te vinden. Omdat dit een buitensporige
ontwerpinspanning vereist en een verregaande bekendheid met de processor architec-
tuur, is er behoefte aan geautomatiseerde methoden die efficient om kunnen gaan met de
verschillende beperkingen en randvoorwaarden en met het probleem van fase koppeling.

De benadering voorgesteld in dit proefschrift is gebaseerd op analyse van de randvoor-
waarden om de schedule zoekruimte in te perken. Op deze manier wordt vaak
voorkomen dat de scheduler een beslissing neemt die onherroepelijk leidt tot schending
van de randvoorwaarden. Het belangrijkste aspect van ons model van de schedule
zoekruimte is de afstandsmatrix, waar de minimum and maximum tijdsrelaties worden

bijgehouden tussen elk paar operaties in een Basic Block. Algoritmen met een lage com-
plexiteit worden gebruikt om extra volgorde relaties te identificeren die genoodzaakt
zijn door de combinatie van tijdsrelaties in the afstandsmatrix en de resource beperkin-
gen in de processor architectuur. De resultaten van de analyses worden gecombineerd in
the afstandsmatrix door het berekenen van de langste paden geinduceerd door de gege-
nereerde volgorde relaties. Interactie tussen de scheduler en Constraint Analyse wordt
bewerkstelligd door schedule beslissingen uit te drukken in extra volgorde relaties en de

afstandsmatrix aan te passen.

Teneinde de register benodigdheden te minimaliseren of de beperkingen op de register
capaciteit te respecteren, wordt de vrijheid in het schedule domein benut om de leven-
sintervallen van variabelen te serializeren. Variabelen die een potentieel knelpunt vor-
men voor register toewijzing worden geidentificeerd, en hun levensintervallen
geserializeerd. Deze serializaties worden geevalueerd in the context van de randvoor-



waarden en de afstandsmatrix wordt aangepast. Na het serializatieproces komt elke com-
pletering van het schedule gegarandeerd overeen met een geldige register toewijzing. Op
soortgelijke wijze is het mogelijk de lees- en schrijfacties op een register file te ordenen
zodat de gecommuniceerde variabelen zich gedragen volgens een stroomgebaseerd
schema. Deze variabelen kunnen dan worden opgeslagen in een FIFO. In termen van in-
structie bitten hebben FIFO’s dezelfde adresseringskosten als registers, maar bieden
een veel grotere opslagcapaciteit. Dit is interessant doordat register adressering bij
VLIW processoren ongeveer 60% van de programmacode bepaalt. Op soortgelijke wi-
jze worden lees- en schrijfacties geordend teneinde variabelen te kunnen opslaan in een
stack of een FILIFO.
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1. Bij het ontwerp van een instructie set dient een afweging te worden gemaakt tussen
de uitdrukkingskracht van de instructie set en de efficientie waarmee de compiler om
kan gaan met de beperkingen die daaruit voortvloeien.

2. Tijdens het genereren van een schedule kunnen beslissingen genomen worden die
inconsistent zijn met de randvoorwaarden. Dit wordt dan vaak pas laat opgemerkt,
waardoor veel beslissingen teniet gedaan moeten worden, en lange rekentijden
ontstaat. Om dit te voorkomen is het voor sommige randvoorwaarden zinnig om een
analyse te doen, terwijl voor andere randvoorwaarden een expliciete zoek strategie
met identificatie van bottlenecks een betere oplossing vormt (H.6).

3. Hoewel de afstands matrix een complexere representatie is van de schedule
zoekruimte dan de zogenaamde executie interval representatie [Timmer], leent de
eerste zich beter voor het respecteren van de register file capaciteit. Dit komt doordat
precedentie relaties meer zeggen over de registerbezetting dan tijdsintervallen van
operaties (H.3 & 4).

A.H. Timmer, "From Design Space Exploration to Code Generation", Ph.D. thesis,
Eindhoven University of Technology, The Netherlands, 1995

4. De constraint analyse technieken uitgelegd in dit proefschrift werken efficienter bij
de scheduling problematiek dan meer algemeen toepasbare "constraint satisfaction”
technieken [Kuchcinski]. Bij de eerstgenoemde zijn namelijk zowel de data struc-
turen als de daarop opererende algoritmes toegesneden op de scheduling problema-
tiek (H.3).

K. Kuchcinski, "Embedded system synthesis by timing constraints solving”, Proc.
Int. Symp. on System Synthesis, pp. 50-57, 1999

5. Door de sterk toenemende maskerkosten bij nieuwe generaties van de fabricage
technologie voor ICs neemt het belang toe van herconfigureerbare IC architecturen.



. Bij het besteden van computer tijd aan het oplossen van moeilijke problemen dient
een balans gevonden te worden tussen het aantal beslissingen (oplossingen) dat
geevalueerd wordt en het aantal foute beslissingen (oplossingen) dat vermeden wordt
door analyse van de zoekruimte.

. De werking van de constraint analyse technieken uitgelegd in dit proefschrift laat
zich vergelijken met de werking van ons brein. Daar kunnen complexe gedachten
ontstaan door interactie van een grote hoveelheid zeer primitieve elementen (neuro-
nen). Zo kunnen, door veelvuldig toepassen van elementaire regels van constraint
analyse, complexe redenaties ontstaan over de oplossingsruimte van een scheduling
probleem.

. Het korte termijn denken van productgroepen remt de ontwikkeling tot het ontwer-
pen op een hoger niveau van abstractie, omdat een hogere prioriteit verleend wordt
aan het halen van een deadline dan aan training in dit niveau van ontwerpen en de
daarbij behorende ontwerpgereedschappen.

. Dat de automatisering heeft toegeslagen in alle denkbare bezigheden op het kantoor
blijkt wel uit de observatie dat zelfs de traditionele term “"paperware" is verdrongen
door de term "powerpointware".

10.Wanneer de waarde van een strategie doorgedrongen is tot de hogere management

lagen in een groot bedrijf, ontstaat veelvuldig de situatie dat de strategy concepten
een doel op zich worden. Daarbij wordt voorbijgegaan aan de mogelijkheid dat het
nastreven van zo'n strategie soms meer werk kost dan het originele doel. Zo kan de
dwang tot hergebruik van hardware of software blokken teneinde de ontwerpinspan-
ning te verminderen, juist een enorme ontwerpinspaning met zich meebrengen.

11.Dat een Nederlandse vertaling van Engels geschreven technische tekst niet altijd

begrijpelijker is voor niet-Engelstaligen, blijkt wel uit dit proefschrift.

12.Vooral mannen hebben nogal eens moeite te herkennen wanneer ze gevoelsmatig

gemanipuleerd worden. De volgende uitspraak is een handige vuistregel voor deze
mannen: Als je je schuldig voelt en je kan niet goed uitleggen waarom, dan ben je
gemanipuleerd.

13.\Volgens de evolutietheorie ontstaan nieuwe rassen doordat de natuurlijke selectie-

criteria die wezens bevoordelen die zich meer hebben aangepast aan de omstandig-
heden waarin ze leven. De zingevingsvraag van veel mensen is in deze context dan
meer een vraag om onzin dan om zin.
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	1.2.2 General purpose DSPs
	General purpose DSPs (GPDSPs) [Laps96] are the most flexible processors used for DSP applications...
	The first GPDSPs were not much more than simple general purpose microcontrollers (like the MIPS R...
	Besides the exploitation of knowledge of the DSP domain, DSP processor development remains affect...
	These performance boosts for GPDSPs have characteristics that may be very disadvantageous for som...
	• Power consumption: reservation tables, bypass networks, a large multi-port register file, and d...
	• The hardware features mentioned above occupy valuable chip area and require a large effort for ...

	For programming GPDSPs roughly the same tasks are identified as for the high-level synthesis of A...
	• Code selection: Which machine instructions implement the specified behaviour?
	• Instruction Scheduling: When will selected instructions be executed?
	• Register Binding: To which registers will values be assigned?

	Note that in the case of parallel processors an instruction may consist of a number of elementary...

	1.2.3 ASIPs
	In the previous two subsections we have seen that on the one hand ASICs lack flexibility but offe...
	A micro coded controller provides flexibility, but as explained in the previous subsection, the n...
	However, due to the increasing competition in the consumer electronics sector, time to market is ...
	The compiler steps are the same as for general purpose DSPs:
	• Code selection: Which instruction will be executed?
	• Instruction Scheduling: When will this instruction be executed?
	• Register Binding: To which registers will values be assigned?

	An orthogonal instruction set provides a transparent processor model for the scheduler [Timm95], ...
	Figure 1.4 Retargetable Compilation
	The processor architecture is specified using a machine description language such as nML. The fol...
	• number of functional units
	• FU pipeline structure
	• FU latencies and throughput
	• set of opcodes that each FU can execute
	• number of register files
	• number of registers per register file
	• addressability of the registers
	• interconnect between the register files and FUs

	Retargetability has a large effect on the range of techniques applied in code selection. A proces...
	In the next section we will consider the VLIW processor architecture that provides a compiler fri...



	1.3 The Very Large Instruction Word architecture
	The first generation of Very Large Instruction Word (VLIW) processors were developed with the spe...
	Figure 1.5 Data-path of a typical VLIW architecture
	1.3.1 Code generation for VLIW processors
	In its ‘ideal’ form [Rau81], each functional unit is controlled by dedicated instruction bits tha...
	• Instruction selection can be performed after scheduling and register binding, thus providing mu...
	• Instead of scheduling instructions, we can schedule individual operations.
	• Instruction selection has become a trivial task

	So the ‘ideal’ VLIW architecture eliminates all the difficulties that accompany instruction selec...
	Whereas the trend in general purpose processor design is towards increasingly higher clock speeds...
	In order to understand these scheduling mechanisms, a few words are spent on the way an applicati...
	The best-known implementation of global scheduling is probably Trace scheduling [Fish81]. Most ch...
	As depicted in Figure 1.2, more application specific processors (ASIPs and ASICs) may also employ...
	Loop unrolling basically copies the operations in the loop body a number of times before scheduli...
	Loop folding demands that all overlapping loop bodies are scheduled in exactly the same way. The ...
	Research [Aiken95] suggests that loop pipelining is as effective as full loop unrolling, while pr...

	1.3.2 Register file architecture
	In this section the pros and cons of an architecture with one large multi-ported register file an...
	• Power consumption: For a single access to the register file, the power consumption is .
	• Access delay: The access delay is of the same order as the power consumption for one access, . ...
	• Code size: Code size is an important criterion for different reasons: for off-chip instruction ...

	If all registers are concentrated in one register file, each access to this file has to provide a...


	1.4 Constraint analysis
	The aim of this thesis is to describe a good method of scheduling and register binding for VLIW (...
	• T-feasibility: Timing, precedence, and resource constraints are satisfied
	• R-feasibility: T-feasibility extended with a register binding that is consistent with the timin...
	• S-feasibility: R-feasibility, but now the register binding also has to respect fixed individual...

	Figure 1.6 The search scope is restricted to the R-feasible region.
	For ASICs we try to find an R-feasible solution with the minimum number of registers, and for pro...


	1.5 Thesis outline
	In the next chapter we will define the basic concepts necessary for understanding some scheduling...


	2 Operation Scheduling
	In this chapter we will introduce the two fundamental problems that are the subject of this thesi...
	2.1 Definitions
	We start with the definition of the most widely used RTL-level specification model for an applica...
	Definition 2.1 (Data Flow Graph) A data flow graph is a triple , where
	• V is the set of vertices (operations),
	• is the set of directed data precedence edges,
	• is the set of directed sequence precedence edges, and
	• describes the timing delay associated with a precedence edge. o
	The main difference with DFG models like that from [Ku92] is the emphasis on (sequence) edges. Fi...

	Figure 2.1 : A data flow graph for an IIR filter
	An example of a DFG for an IIR filter application is found in Figure 2.1. Typical operations are ...
	The precedence edges define a partial order on the executions of the operations. In this thesis, ...

	Definition 2.2 (schedule) describes the start times of operations, where N denotes the set of nat...
	A schedule is constrained by precedence edges. A precedence with delay expresses that
	In the text, whenever , a precedence will be indicated by .

	Definition 2.3 (latency) l is the number of clock cycles required to execute a schedule.
	A schedule for the DFG in Figure 2.1 is found in Figure 2.2 a). Note that in this example, each o...

	(2.1)
	A resource constraint expresses that

	(2.2)
	A valid schedule has to satisfy the resource constraints. Both the resource constraints and the p...


	2.2 Pipelined schedules
	In a loop construction the loop body (represented by a DFG) is executed a number of times. In a t...
	Definition 2.4 (Initiation Interval II) The Initiation Interval (II) is the period between the st...
	Loop pipelining allows the execution of operations from iteration i in parallel with or even afte...

	Figure 2.2 a) Schedule for the DFG in Figure 2.1 b) pipelined schedule
	The operations of iteration i originally scheduled in the last 4 cycles are now executed simultan...

	(2.3)
	Equation (2.4) expresses the consequences of a precedence relation for the starting times of the ...

	(2.4)
	Substituting (2.3) in (2.4) yields:

	(2.5)
	Figure 2.3 Graphical representation of equation (2.5)
	Equation (2.5) expresses the effect of a precedence relation which effectively has a delay . When...
	We have now found a way to derive so called inter-iteration dependencies [Lam88] or loop carried ...

	(2.6)
	The term is called the time potential of vi.
	We are now ready to introduce the traditional High-Level Synthesis scheduling Problem.


	2.3 The High-Level Synthesis scheduling Problem
	The general high-level synthesis (feasibility) scheduling problem is formulated as follows:
	Definition 2.5 (High-Level Synthesis Scheduling Problem) Given are a DFG, a function , an initiat...
	The high-level synthesis scheduling problem is NP-complete because it generalizes the NP-complete...
	By far the most widely used type of schedule heuristic is called list-scheduling [Hu61]. List sch...
	Researchers from both the general-purpose computing [Rau81] and the HLS community [Goos89] have u...

	Figure 2.4 Example with loop pipelining. a) precedence graph b) list-schedule c) only feasible sc...

	2.4 Modelling the constraints
	In this Section we show how some of the constraints can be represented in the DFG model introduce...
	Figure 2.5 Modelling the latency
	• Latency. In order to model latency, we introduce two (dummy) operations to our DFG model: the s...
	• Micro coded controller, randomly addressable register files and loop pipelining. We assume that...
	• Pipelined executions and multicycle operations. These are operations that violate our assumptio...

	Figure 2.6 Modelling pipelined and multicycle operations
	• Scheduling decisions. When schedule decisions are taken during the process, the schedule interv...

	Figure 2.7 Modelling a schedule decision
	• Resource conflicts and instruction set conflicts. In Section 2.1 the resource conflict model wa...


	2.5 Problem formulation
	In order to formulate the problem we need to state some assumptions:
	• All operations have been mapped to functional units. This is often the case because instruction...
	• All values communicated between operations have been mapped to register files. In ASIP-architec...
	• The controller is micro coded. One consequence is that in a pipelined loop a value cannot resid...
	• The initiation interval II for each hierarchical level is fixed prior to scheduling. It can be ...

	In this thesis two different scheduling approaches are treated: one for minimizing the required n...
	2.5.1 Minimizing the register count
	The design of an ASIC typically concerns satisfying performance constraints while minimizing some...
	• area: although a register occupies silicon area, the physical register is not the dominant cont...
	• power consumption: power consumption within a register file grows with the size of the register...
	• time to market: when this is an important criterion programmable processors are usually preferr...

	The problem of minimizing the number of registers is defined as follows.
	Definition 2.6 (Unconstrained Register Binding and Operation Scheduling Problem): Given a data fl...
	Because it is difficult to determine a register binding and a schedule simultaneously, we decompo...

	Figure 2.8 Global approach for minimizing the register count
	Figure 2.9 In Figure 2.8 the (register binding) is incremented from the centre of the overconstra...
	An advantage of this approach is that in order to complete the schedule, a rather straightforward...
	Note that a main characteristic of our approach is that we perform register binding prior to sche...
	After the basic techniques have been discussed in Chapters 3 and Section 4.1, Section 4.2 discuss...


	2.5.2 Handling fixed register file sizes
	When compiling code for an ASIP (or other programmable processors) using as few registers as poss...
	Definition 2.7 (Constrained Register Binding and Operation Scheduling Problem): Given a data flow...
	The problem is decomposed into separate phases, as illustrated in Figure 2.10. The constraint ana...

	Figure 2.10 Global approach for mapping to fixed register files
	Figure 2.11 depicts the search space and the way it is traversed in the approach in Figure 2.10. ...

	Figure 2.11 In Figure 2.10, the register binding is refined from the R-feasible region to the bor...


	2.6 Initialization of the initiation interval
	The initiation interval is initialized with a lower bound, and incremented if the bound cannot be...
	First consider the resource constraints . We associate a so called conflict graph CG with in the ...
	(2.7)
	Another lower bound is determined by the precedences [Reit68]. In Section 2.2 it is derived that ...

	, (2.8)
	where k equals the number of iterations this dependency crosses (). This is called the iteration ...

	(2.9)
	Combining inequalities (2.6) and (2.9) yields

	(2.10)
	Profiling suggests that the minimum initiation interval is in most cases equal to the lower bound...
	o
	o



	3 Scheduling with Resource Constraints
	Scheduling operations that share a limited number of resources is a task that has received attent...
	This chapter is structured as follows. In Section 3.1 an introduction to the scheduling problem i...
	3.1 Introduction
	The general High-Level Synthesis Scheduling Problem (HLSSP), introduced in Section 2.1, is a gene...
	Figure 3.1 Traditional approach for satisfying constraints
	• The heuristic is run again, but using different ‘priorities’ (Section 2.3)
	• A bottleneck is searched for, and a repair action is taken to make the schedule valid.
	• The designer or programmer is asked for ‘hints’ on how to solve certain conflicts.
	This process may iterate many times, which becomes clear from the perspective of the schedule sco...

	Figure 3.2 The scope of a heuristic scheduler
	In this figure, ‘feas’ indicates the region of solutions that satisfy all constraints. The area s...

	Figure 3.3 Constraint oriented approach for satisfying constraints
	For problems with tight constraints it is clearly desirable to have an approach that takes these ...

	Figure 3.4 Ideal search space
	The rest of this chapter is organized as follows. Section 3.2 provides a perspective of the searc...


	3.2 Schedule freedom
	In Section 2.1 we have introduced the High-Level Synthesis Scheduling Problem. In order to solve ...
	We start with a description of the solution space:
	Definition 3.1 (set of feasible schedules) The set of feasible schedules S is the set of schedule...
	An operation thus has a range of feasible start-times, each corresponding to a different schedule.

	Definition 3.2 (set of feasible start times ) , where N denotes the set of natural numbers. o
	Definition 3.3 (actual schedule freedom) The actual schedule freedom is the average size of the s...
	o
	The minus one enforces that the actual schedule freedom equals zero when the schedule is complete...
	The set of feasible start times is formally as difficult to find as a feasible schedule. Therefor...
	For the definition of the ASAP-ALAP interval we need the notion of immediate predecessors and suc...

	Definition 3.4 (immediate predecessors, successors)
	o
	The ASAP (as soon as possible) value is defined as:

	Definition 3.5 (ASAP value)
	The latest possible start time is called the ALAP (as late as possible) value. It exists only if ...

	Definition 3.6 (ALAP value)
	The start time of each operation must lie in between the ASAP and ALAP value inclusively:

	(3.1)
	Therefore the ASAP-ALAP interval is a conservative estimate of (contains) the set of feasible sta...
	In this chapter we will extract sequencing constraints that are necessarily implied by the combin...

	Definition 3.7 (apparent schedule freedom, mobility, slack) The apparent schedule freedom is the ...
	o
	Because the precedences and the ASAP-ALAP interval form the basis for making schedule decisions, ...

	Example
	In Section 2.3 we showed an example (Figure 3.5) that illustrates the difficulty of greedy schedu...
	Figure 3.5 Example with loop folding. a) precedence graph b) list-schedule c) only feasible sched...


	3.3 Representing the search space: the distance matrix
	In the previous section the search space was represented using ASAP-ALAP intervals and the amount...
	• It is a rather simple representation. For each operation two figures define the ASAP-ALAP inter...
	• The transparency of the terminology appeals to the human mind and is therefore suitable for dis...
	• This representation is easy to derive. Essentially a depth first search [Corm90, p. 477] has to...
	• It allows for a simple infeasibility check: if, for an interval [lb;ub], , no solution exists.

	However, the interval representation is not able to accurately represent the most basic and impor...
	Figure 3.6 The interval representation does not accurately represent precedences
	In this section the distance matrix is introduced, and it will be shown that this representation ...

	Definition 3.8 Definition 10 (path): A path of length d from operation vi to operation vj is a si...
	Definition 11 (distance): The distance d(vi, vj) from operation vi to vj is the length of the lon...
	A path in the graph thus represents a minimum timing delay. For example, in Figure 3.5 the path i...
	The distance matrix representation is strictly more accurate than the interval representation. Th...

	Theorem 3.1 Any interval can be represented in terms of precedences.
	Proof
	An interval [lb;ub] for operation A means that
	(3.2)
	To represent this interval in the distance matrix the following precedences are added: A preceden...

	(3.3)
	Now inequality (3.3) reduces to inequality (3.2), which proves the theorem. q
	The proof shows how results from analyses on intervals, like [Timm95], can be represented as prec...



	3.4 Related work in constraint analysis
	[Nuijt94] reports results on the TRCSP, the Time and Resource Constrained Satisfaction Problem. G...
	In [Kuch97] schedule constraints are expressed in Constraint Logic Programming (CLP), a generally...
	In [Timm95] a bipartite matching formulation is used to analyse the matching of execution interva...
	In [Eijk99] symmetry in the algorithm specification (in the Data Flow Graph) is exploited to prun...

	3.5 Sequencing as a result of resource conflicts
	In this section two lemmas are introduced that assert the necessity of an additional sequence con...
	Lemma 3.2 :If d(vi, vj)0 (mod II) and , we can add a sequence precedence edge (vi, vj) with weigh...
	Proof: The resource conflict causes the minimum distance d(vi, vj) to be infeasible. Therefore th...
	In the schedule problem instance depicted in Figure 3.5, the key decision to obtain a feasible sc...

	Figure 3.7 Derivation of a schedule for Figure 2.4
	The second lemma we present in this chapter is more complicated, and involves symmetry in the pre...

	Figure 3.8 Too much apparent mobility due to symmetry
	Lemma 3.3 : For each pair of operations vi and vj such that , if there is an operation p such tha...
	Proof: The resource conflict causes a minimum distance to be infeasible. Therefore the minimum di...
	In Figure 3.8, operation p is A, and s is D. As a result of lemma Lemma 3.3 a sequence edge may b...

	Figure 3.9 Applying rule 2 with loop folding
	In Figure 3.9, the symmetry is of a slightly different kind. As can be seen in the ASAP schedule,...


	3.6 Sequencing for an extended resource constraint model
	The previous section discussed some rules for serializing operations when two operations have a r...
	3.6.1 Sequencing for two resource instances
	We start with the case that no loop pipelining is applied. Let vi, vj, vk denote three operations...
	Lemma 3.4 If d(vi, vj) = 0 and d(vj, vk) = 0, we can add a sequence precedence edge (vi, vk) with...
	Proof: Suppose that the distances d(vi, vj) = 0 and d(vj, vk) = 0 are the minimum distances in a ...
	Lemma 3.4 is depicted in Figure 3.10.

	Figure 3.10 Lemma 3.4
	We now generalize Lemma 3.4 to the case that loop pipelining is applied. Let vi, vj, vk denote th...

	Lemma 3.5 If d(vi, vj)0 (mod II) and d(vj, vk)0 (mod II), we can add a sequence precedence edge (...
	Figure 3.11 Lemma 3.5
	Proof: Suppose that and are the minimum distances in a feasible schedule. Then vi, vj, and vk all...
	Lemma 3.5 is depicted in Figure 3.11.

	Figure 3.12 The derivation in Figure 3.13 proves infeasibility of the constraint set
	Example
	Consider the example depicted in Figure 3.12. Operations F and G model a pipelined multiplication...
	Figure 3.13 Deriving infeasibility of the constraint set in Figure 3.12


	3.6.2 Sequencing for N resource instances
	We now generalize Lemma 3.5 to the case where N resources are available. So suppose there exist o...
	Lemma 3.6 If d(vi, vi+1)0 (mod II) for all , we can add a sequence precedence edge (v0, vN-1) wit...
	Proof: Suppose for . If these distances are minimal in a feasible schedule, then all execute in t...



	3.7 Schedule approach
	In the previous section we have shown some pruning rules for coping with the combination of prece...
	Figure 3.14 Global approach for scheduling
	The schedule approach is illustrated in Figure 3.15. This is almost the same example as in Figure...

	Figure 3.15 Illustrating the schedule approach from Figure 3.14
	The initial execution intervals (before any analysis or constraint modelling) are A=[0;], B=[1;],...

	a) to b)
	There is a path of length -30 mod II, and a resource conflict C-D. As a result, a sequence edge o...

	b) to c)
	The scheduler schedules operation A at clock cycle 0, and B at clock cycle 1. The execution inter...

	c) to d)
	There is a path of length -1+0+4=30 mod II, and a resource conflict B-D. As a result, a sequence ...

	d) to e)
	There is a path of length -2+(-3)+(-1)+0=-6 0(mod II), and a resource conflict A-D. As a result, ...
	The remaining search space is now completely feasible and the scheduler (probably) fixes operatio...


	3.8 Complexity
	The complexity of the analysis is determined by two factors:
	1. Updating the distance matrix
	2. The analysis required for determining which sequence edge should be added
	We first consider the updates on the distance matrix. In the distance matrix the delay of the lon...
	An upper bound on the number of path updates (as a result of adding sequence edges) can be derive...
	Now we consider the complexity of applying Lemma 3.2 and Lemma 3.3. Lemma 3.2 is applied in the f...
	Lemma 3.3 is applied in the following way. For each resource conflict vi - vj it is checked wheth...


	3.9 Experimental results
	Two experiments are reported in this section. The first experiment considers how supplementary ou...
	Figure 3.16 Radix-2 butterfly used in first experiment
	The first experiment considers two examples, the first of which is the radix-2 butterfly shown in...
	Notice in this figure how reduction techniques such as BSG and our techniques prevent a greedy sc...

	Figure 3.17 Rad2 mobility per operation
	The second example concerns an IIR filter containing 23 operations, including fetching the coeffi...

	Table 3.1 Average mobility for radix-2 butterfly and IIR

	rad2 non folded
	1.20
	.70
	.70
	.70
	rad2 folded
	1.20
	.50
	.10
	.10
	IIR non folded
	2.70
	1.61
	1.83
	1.52
	IIR folded
	2.70
	1.61
	1.74
	1.43
	The second experiment considers only our analysis and concerns the same IIR filter used in the fi...
	Table 3.2 Mobility reduction for some folded loops.


	4 Register Binding for Randomly Addressable Register Files
	Register binding is one of the three major code generation steps, as introduced in Section 1.2, t...
	In this thesis we have taken the perspective of considering scheduling and register binding as a ...
	4.1 Lifetime serialization for a given binding
	The previous chapter introduced a methodology for finding a schedule that satisfies certain resou...
	4.1.1 Non-folded schedules
	In this section two lemmas consider the combination of register, precedence and timing constraint...
	Figure 4.1 Precedence as a result of binding u and v to the same register
	Figure 4.2 Timing perspective of the alternatives in Figure 4.1
	The full consequence of binding two values to the same register is thus stated in terms of preced...

	Lemma 4.1 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 4.3 Lemma 4.1 for serializing value lifetimes
	Lemma 4.1 is illustrated in Figure 4.3. A similar lemma is valid when there is a path between the...

	Lemma 4.2 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 4.4 Lemma 4.2 for serializing value lifetimes
	Lemma 4.2 is illustrated in Figure 4.4. The last situation occurs when there is a path between th...

	Lemma 4.3 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 4.5 Lemma 4.3 for serializing value lifetimes
	Lemma 4.3 is illustrated in Figure 4.5. The overall method of analysis is demonstrated in Figure ...

	Figure 4.6 Example demonstrating the use of Lemma 4.2
	A larger example is given in Figure 4.7. It is a IIR filter application generated by the Mistral2...

	Figure 4.7 : A complete data flow graph for an IIR filter
	Figure 4.8 ASAP-ALAP intervals for the operations in Figure 4.7
	Figure 4.9 The DFG from Figure 4.7 after analysis
	Figure 4.10 ASAP-ALAP intervals for the operations in Figure 4.9
	The DFG and the ASAP-ALAP intervals after analysis are depicted in Figure 4.9 and Figure 4.10 res...


	4.1.2 Folded schedules
	In this section we extend the lemmas from Section 4.1.1 for serializing value lifetimes, to handl...
	Figure 4.11 4 possible placements of Pv-Cv if the maximum folding factor equals 1
	When schedules are not folded it is relatively simple to avoid overlapping lifetimes of values re...

	Figure 4.12 First step of generalizing Lemma 4.1.
	Figure 4.13 Second step of generalizing Lemma 4.1.
	Lemma 4.4 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Lemma 4.4 is illustrated in Figure 4.15. Lemma 4.2 is generalized to Lemma 4.5:

	Figure 4.14 Third step of generalizing Lemma 4.1.
	Lemma 4.5 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 4.15 Lemma 4.4 for serializing value lifetimes
	Figure 4.16 Lemma 4.5 for serializing value lifetimes
	Lemma 4.5 is illustrated in Figure 4.16. Lemma 4.3 is generalized to Lemma 4.6:

	Lemma 4.6 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 4.17 Lemma 4.6 for serializing value lifetimes
	Lemma 4.6 is presented graphically in Figure 4.17. We illustrate the use of the lemmas in this se...
	from b to c: Value v is produced by A and consumed by B. Value w is produced by C and consumed by...

	In Figure 4.19 a folded ASAP schedule is given that satisfies the newly added precedence constrai...

	Figure 4.18 Derivation of a partial schedule
	The last basic lemma we introduce in this chapter generalizes a modelling issue discussed in Sect...

	Lemma 4.7 : Let W be the set of values that reside in a register r, and let minlt(v) denote the m...
	This upper bound on lt(u) can be modelled in the DFG as a sequence edge with weight .

	Figure 4.19 Folded ASAP-Schedule for Figure 4.18
	We have now covered the basic techniques used in the constraint analyser of Figure 2.8 and Figure...



	4.2 Infeasibility Analysis
	In this section we tackle the problem of minimizing the register count, as introduced in Section ...
	The schedule analysis is often capable of detecting that the register binding together with the c...
	Figure 4.20 Global approach for minimizing the register count
	The source of the bottleneck is directly related to the way the positive length cycle came into e...
	Another example is the graph depicted in Figure 4.21. The constraint set is infeasible with the g...

	Figure 4.21 Example of a precedence graph
	Figure 4.22 Infeasibility analysis for Figure 4.21
	The infeasibility analysis is done in bottom-up fashion, to identify exactly those sequence edges...

	Figure 4.23 The only 2 feasible schedules for Figure 4.21 with changes in the register binding
	In this approach a simple heuristic chooses the register conflict to be solved based on the avail...
	As the reader may have noticed from the examples, the infeasibility analysis requires a lot of ad...


	4.3 Experimental results
	Our implementation on a HP 9000/735 has been tested on the inner loops from 4 different real life...
	The first experiment concerns an IIR filter of 23 operations, including fetching the coefficients...
	The mobility is decreased by a factor ranging from 3.6 (Rad4) to 13.2 (FFTb) as a result of the s...
	Table 4.1 Results of constraint analysis on DSP loop kernels

	IIR
	23
	6
	10
	3
	0.2 s
	2.70
	0.13
	FFTa
	40
	4
	13
	11
	17 s
	4.46
	0.46
	FFTb
	60
	8
	18
	20
	25 s
	6.85
	0.52
	Rad4
	81
	4
	11
	1
	0.8 s
	4.93
	1.38
	We have included one more experiment to test the performance of our method on a problem instance ...
	4.4 Incremental register binding for fixed register files
	This section considers the problem of finding a register binding for programmable processors. Con...
	• Using as few registers as possible is not the ultimate goal: instead of obtaining a minimal reg...
	• The number of registers required in a certain register file is not allowed to exceed the capaci...

	The accepted way to deal with fixed register files in a compiler is to do register spilling [Chai...
	A formal problem formulation is given in Section 2.5.2. The global decomposition for solving the ...
	The incremental register binder has to act very careful as to which values to serialize. Only tho...
	Figure 4.24 Global approach for mapping to fixed register files
	4.4.1 Constructing a conflict graph
	A conflict graph is an undirected graph CG(RF) = (Vc, Ec), where the nodes in Vc represent the va...
	• There is no overlap. This is the case e.g. for values a and c.
	• There is overlap. This is the case e.g. for values a and b in the clock cycle assigned to the e...
	• Unknown. This is the case e.g. for values b and e: if operation E precedes operation C by at le...

	For our purposes the following is the essential difference between strong and weak overlap: Stron...
	Non conflicting values
	Values u and v have no conflict if their lifetimes can never overlap. There is no overlap between...
	Figure 4.25 Values u and v have no conflict
	Definition 4.1 Values u and v have no conflict if and only if for each iteration i there exists a...
	Definition 4.1 is equivalent to the following criterion.

	Theorem 4.8 : Values u and v have no conflict if and only if
	(4.1)

	Proof
	Let k be the largest value such that and let l be the largest value such that . Because we assume...
	(4.2)
	and

	(4.3)
	so inequality (4.1) follows. o


	Strongly conflicting values
	Values u and v have a strong conflict if their lifetimes overlap for sure. There is overlap betwe...
	Theorem 4.9 : Values u and v have a strong conflict if and only if for each iteration i there exi...
	Figure 4.26 Values u and v have a strong conflict
	Proof. Suppose the execution order of operations , , , and is fixed. The following conditions cov...

	(4.4)
	Theorem 4.9 follows. o
	For the non-folded case we have . This corresponds to the case that Pu precedes Cv by one clock c...
	Theorem 4.9 is equivalent to the following criterion.

	Theorem 4.10 : Values u and v have a strong conflict if and only if
	(4.5)

	Proof
	Let k be the largest value such that and let l be the largest value such that . By the definition...
	(4.6)
	and

	(4.7)
	so inequality (4.5) follows. o


	Weakly conflicting values
	There is weak overlap if both inequalities (4.1) and (4.5) are invalid. In Figure 4.21 for exampl...


	4.4.2 Colouring and bottleneck identification
	In the previous section we showed how to construct a conflict graph with three possible relations...
	Figure 4.27 DFG used to illustrate the serializing process
	Figure 4.28 Weak conflict (a) and strong (b) coloured conflict graph for Figure 4.21 without pipe...
	From a minimum colouring, for each node v in the conflict graph we extract the so called saturati...
	Now we can explain the process of selecting two values, referred to as u and v, for serialization...

	Figure 4.29 Distance matrix and conflict graph for Figure 4.27. A solid edge means strong overlap...
	We will use the example in Figure 4.27 to illustrate the binding process. The distance matrix aft...

	Figure 4.30 The distance matrix and conflict graph corresponding to the example in Figure 4.21 af...
	Figure 4.31 The distance matrix and conflict graph corresponding to the example in Figure 4.27 af...
	Figure 4.32 The only 2 feasible schedules for Figure 4.28, and corresponding register bindings.

	4.4.3 Lifetime sequencing
	After the selection of values for serialization it needs to be determined how these values are se...
	Figure 4.33 Several options are available for sequencing u and v


	4.5 Experimental results
	In this section, we present the experimental results [Mesm99b] obtained with the proposed method ...
	Because the proposed techniques are especially intended to handle inner loops of DSP algorithms u...
	Table 4.2 Examples and reference results


	fft256
	fdct
	loef
	30,43
	42,43
	56,57
	4/13
	18/18
	26/28
	0.1
	0.1
	0.4
	3,3,1,2
	9,4
	8,4,10
	To evaluate the proposed method, we have applied it to the examples of Table 4.2 with various reg...
	For each problem instance, Table 4.3 lists the register file capacity constraints, the run time (...
	The experimental results for the example fft256 clearly show that the proposed method is steered ...
	Table 4.3 Results of proposed method

	fft256
	1, 4, 1, 2
	2, 2, 1, 2
	2, 3, 1, 1
	3, 2, 1, 1
	4, 1, 1, 2
	0.1
	0.4
	0.8
	0.9
	0.1
	0.70.3
	2.30.0
	2.10.0
	2.10.0
	0.70.4
	fdct
	9, 4
	6, 4
	8, 2
	2.3
	2.7
	0.9
	9.54.0
	9.52.0
	9.51.4
	loef
	8, 4, 10
	4, 3, 8
	3.5
	4.9
	14.43.1
	14.41.0

	5 Storage Models for Reduced Instruction Width
	In the introduction of this thesis it was described how important code size and, closely related,...
	The rest of this section is organized as follows. In Section 5.1 we take a FIFO as a storage mode...
	5.1 FIFOs
	The FIFO (first in first out) model is illustrated in Figure 5.1. Values are written into the FIF...
	Figure 5.1 FIFO model
	5.1.1 Analysis of FIFO access ordering
	Our analysis is similar to the one in chapter 4. Only conflicts between two values are considered...
	Figure 5.2 Potentially overlapping values u and v
	Lemma 5.1 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 5.3 Lemma 5.1 for serializing value lifetimes
	Lemma 5.1 is illustrated in Figure 5.3. This lemma restricts the possibilities to situation (a) a...

	Lemma 5.2 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 5.4 Lemma 5.2 for serializing value lifetimes
	Lemma 5.2 is illustrated in Figure 5.4. This lemma also restricts the possibilities to situation ...



	5.2 STACKs
	The STACK model is illustrated in Figure 5.5. Values are both written to and read from the top of...
	Figure 5.5 STACK model
	Because two values can only be read using the same read pointer we restrict the analysis to situa...

	Figure 5.6 Potentially overlapping values u and v
	With respect to feasible overlapping lifetimes, the STACK case is the reverse of the FIFO case. S...

	Lemma 5.3 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 5.7 Lemma 5.3 for serializing value lifetimes
	Lemma 5.3 is illustrated in Figure 5.7. This lemma limits the possibilities to situation (b) in F...

	Lemma 5.4 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 5.8 Lemma 5.4 for serializing value lifetimes
	Lemma 5.4 is illustrated in Figure 5.8. This lemma also limits the possibilities to situation (b)...

	Lemma 5.5 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 5.9 Lemma 5.5 for serializing value lifetimes
	Lemma 5.5 is illustrated in Figure 5.9. This lemma limits the possibilities to the situation wher...


	5.3 FILIFO, a hybrid between FIFO and STACK
	The FILIFO (first in last in first out) model is designed as a storage unit that provides more fl...
	The FILIFO is illustrated in Figure 5.10. Values are written into the FILIFO at the top and can b...
	Figure 5.10 FILIFO model
	5.3.1 Analysis of FILIFO access ordering
	First we observe that the way two value lifetimes are allowed to relate to each other depends on ...
	• The serializing (and assignment) rules should describe sufficient conditions to exclude all inf...
	• As we have seen in the example above, some access orderings imply a certain read pointer assign...

	We use the scheme depicted in Figure 5.11 to cope with the interaction between pointer assignment...
	Figure 5.11 Constraint analysis runs along with the scheduler
	Algorithm 5.1 (constraint analysis for FILIFO).
	   for all v in Y assigned to storage unit SU of type FILIFO
	      for all u<>v in Y assigned to SU
	         for all lem in Lemmas on FILIFO
	            check Lemma lem on v and u and add corresponding sequence�edge
	First we try to find situations where infeasibility is implied by a single value v. Only one situ...
	Lemma 5.6 : Let value v, produced by operation Pv and consumed by Cv reside in a FILIFO. If we ca...
	Lemma 5.7 : Let value v, produced by operation Pv and consumed by Cv reside in a FILIFO. If Cv is...
	The analysis for two values will be more complicated. A number of situations should be distinguis...
	u/v = f/f: Both values are accessed by the f-read pointer. The corresponding producers and consum...
	u/v = s/s: Both values are accessed by the s-read pointer. The corresponding producers and consum...

	Figure 5.12 Potentially overlapping values u and v
	u/v = s/f: Value u is s-read and v is f-read. Two situations, (a) and (b) in Figure 5.12, are inf...

	Lemma 5.8 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 5.13 Lemma 5.8 for serializing value lifetimes
	Lemma 5.8 is illustrated in Figure 5.13. This lemma restricts the possibilities to the situation ...

	Lemma 5.9 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 5.14 Lemma 5.9 for serializing value lifetimes
	Lemma 5.9 is illustrated in Figure 5.14. This lemma restricts the possibilities to situations (c)...
	u/v = x/x: Neither value has been assigned a read port. Remember that two value lifetimes relate ...

	Lemma 5.10 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	Lemma 5.11 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	u/v = x/f: Value v is f-read, and the read access on value u is not yet assigned. The only infeas...
	u/v = s/x: Value u is s-read, and the read access on value v is not yet assigned to a read pointe...




	5.4 Loop pipelining
	When a pipelined schedule is desired, we not only have to take care that u and v fit in the same ...
	Figure 5.15 Serializing within the same iteration is not sufficient for pipelining
	In Section 2.2 we showed the equivalence between the relation and the relation with time delay . ...

	Figure 5.16 Generalization of Lemma 5.1
	Lemma 5.12 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	The generalization of Lemma 5.2 is now straightforward:

	Lemma 5.13 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	The STACK lemmas are a little harder to generalize because a sequence edge is added as a result o...

	Lemma 5.14 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	Lemma 5.4 is generalized to Lemma 5.15 following the same line of reasoning.

	Lemma 5.15 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	Deriving Lemma 5.16 from Lemma 5.5 also follows this line of reasoning but the weight of the resu...

	Lemma 5.16 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	With respect to the u/v = s/f case for FILIFOs, Lemma 5.8 and Lemma 5.9 are generalized to Lemma ...

	Figure 5.17 First generalization of Lemma 5.3
	Figure 5.18 Second generalization of Lemma 5.3
	Lemma 5.17 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	Lemma 5.18 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	Lemma 5.10 and Lemma 5.11 for deriving a read port are generalized to Lemma 5.19 and Lemma 5.20 r...

	Lemma 5.19 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	Lemma 5.20 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	We have generalized the rules from the previous section so that we are now able to analyse the co...


	5.5 Some practical issues
	The previous sections laid the foundations for coping with unconventional storage models. In this...
	• multiple consumers of the same value
	• using different RF models in the same architecture

	5.5.1 Multiple consumers
	When a value in a storage unit is allowed to be consumed more than once (if a read access can be ...
	Algorithm 5.2 (constraint analysis for FILIFO).
	   for all v in Y assigned to storage unit SU of type FILIFO
	      for all u<>v in Y assigned to SU
	         for all Cv and Cu
	            for all lem in Lemmas on FILIFO
	               check Lemma lem on Pv, Pu, Cv, and Cu, and add corresponding sequence�edge


	5.5.2 Architectures with mixed storage types
	Suppose we have an architecture containing a variety of storage models, so one file is a FIFO, an...
	Algorithm 5.3 (constraint analysis for mixed storage types)
	for all storage units SU of type register, FIFO, STACK, or filifo
	   for all v in Y assigned to SU
	      for all u<>v in Y assigned to SU
	         for all Cv and Cu
	            for all lem in Lemmas on type(SU)
	               check Lemma lem on Pv, Pu, Cv, and Cu, and add corresponding sequence�edge



	5.6 Case study
	In order to understand how the techniques treated in this chapter can be applied, let us spend a ...
	For this purpose we will use the example shown in Figure 5.19. It represents the inner loop of an...
	Figure 5.19 DFG of an FFT inner loop
	The data-path architecture is depicted in Figure 5.20. The smallest set of functional resources r...

	Figure 5.20 Default VLIW architecture and instruction format for mapping the DFG in Figure 5.19
	5.6.1 Implementation with randomly addressable registers
	This design was originally implemented with the usual randomly addressable registers. Because the...
	Figure 5.21 Transformed DFG for implementation with registers
	With this constraint set, the minimum latency of the schedule according to facts equals 13 clock ...


	5.6.2 Implementation with FIFOs and registers
	In this section we will add FIFOs to the architecture in order to decrease the number of addresse...
	Initially, the mobility equals 3.31 clock cycles per operation. The values a0R1-a3R2 can all be p...



	6 Conclusions
	In this thesis an approach for DSP code generation is presented based on constraint analysis. Thi...
	We have considered the problem of phase coupling: the problem that decisions taken in one phase o...
	Figure 6.1 The facts hierarchy
	This approach to integrate scheduling and register binding enables a compiler to sacrifice schedu...
	Current research in the context of constraint analysis and facts focuses on the following topics.
	• a search strategy for binding values to registers in a rotating register file [Rau82]. This sto...
	• a search strategy for assigning values to FIFOs [Alba00]. This could help to reduce code size a...
	• a search strategy for the assignment of operations to functional resources, and related to that...

	An interesting question arises with respect to the general applicability of the colouring approac...
	Another research question relates to the facts hierarchy given in Figure 6.1. Apparently, some co...
	The facts tool is used at the Eindhoven University of Technology as a research vehicle for resear...
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	Samenvatting
	Methoden voor code generatie voor digitale signaal processoren (DSP) worden in toenemende mate be...
	resources een probleem voor ’greedy’ scheduling heuristieken. De beperkte beschikbaarheid van reg...
	oplossingen gegenereerd worden, omdat het probleem van fase koppeling genegeerd wordt; doordat de...
	De benadering voorgesteld in dit proefschrift is gebaseerd op analyse van de randvoorwaarden om d...
	bijgehouden tussen elk paar operaties in een Basic Block. Algoritmen met een lage complexiteit wo...
	afstandsmatrix aan te passen.
	Teneinde de register benodigdheden te minimaliseren of de beperkingen op de register capaciteit t...
	soortgelijke wijze is het mogelijk de lees- en schrijfacties op een register file te ordenen zoda...
	een veel grotere opslagcapaciteit. Dit is interessant doordat register adressering bij VLIW proce...
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