

Constraint analysis for DSP code generation

Citation for published version (APA):
Mesman, B. (2001). Constraint analysis for DSP code generation. [Phd Thesis 1 (Research TU/e / Graduation
TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/4208ec2d-c268-4888-a1df-387b5875604e

Constraint Analysis for
 DSP Code Generation

On the cover: An abstract 3D view of a VLIW Processor architecture

 © Philips Electronics N.V. 2001
 All rights reserved. Reproduction in whole or in part is
 prohibited without written consent of the copyright owner
 Design: www.riffraff.nl

Constraint Analysis for
 DSP Code Generation

 proefschrift

ter verkrijging van de graad van doctor aan de
 Technische Universiteit Eindhoven, op gezag van de
 Rector Magnificus, prof.dr. M. Rem, voor een
 commissie aangewezen door het College voor
 Promoties in het openbaar te verdedigen
 op woensdag 23 mei 2001 om 16.00 uur

 door

 Bart Mesman

geboren te Eindhoven

digital
Dit proefschrift is goedgekeurd door de promotoren:

prof.Dr.-Ing. J.A.G. Jess
en
prof.dr.ir. J.L. van Meerbergen

Druk: Universiteitsdrukkerij, Technische Universiteit Eindhoven

CIP DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Mesman, Bart

Constraint Analysis for DSP Code Generation / Bart Mesman.-
Eindhoven: Eindhoven University of Technology
Thesis Eindhoven. -With summary in Dutch
ISBN 90-74445-52-7
Subject headings: scheduling, code generation, high-level synthesis, compilers,
signal processing

d the
van
co-
Ad-
ant
group
rm
oup
nk

where
Acknowledgements

I like to thank Jochen Jess for giving me the opportunity to perform research an
means to share the fruits with many people in the CAD community. I thank Jef
Meerbergen for his mentorship and support. I am gratefull to Koen van Eijk for our
operation and for the creation of the highly valued FACTS software. I owe thanks to
win Timmer for our many technical discussions and for his help in writing papers. I w
to express my gratitude to the philips research lab and the members of the ESAS
and the former digital VLSI group for providing an excellent environment to perfo
scientific research on industrially relevant topics. I am also thankfull to the ICS gr
that I still feel part of. I thank my parents and friends for their support. I like to tha
Grace and the personnel of La Folie. Many of the ideas expressed in this thesis
conceived there, and unfortunately, many more went up in smoke.

I owe thanks to many other people. I even owe thanks to Toin.

by the
and
bility
heu-

hods
often

it ig-
ched-
ional
arrive
nd ex-
tech-

hase

ne the
a de-

el of
maxi-
pol-
result
anal-
by the
essing
stance

aints,
s are
rre-
con-
the
valid

erial-
values
n terms
t be-
roces-
a stack
Summary

Code generation methods for digital signal processors are increasingly hampered
combination of tight timing constraints imposed by signal processing applications
resource constraints implied by the processor architecture. Limited resource availa
in the context of pipelined loop schedules poses a problem for greedy scheduling
ristics. Limited and distributed register capacity poses a problem for traditional met
that perform scheduling and register binding in successive stages. This separation
results in suboptimality (or even infeasibility) of the generated solutions because
nores the problem of phase coupling; since value lifetimes are determined by the s
ule, scheduling affects the solution space for register binding. As a result, tradit
methods need an increasing amount of help from the programmer (or designer) to
at a feasible solution. Because this requires an excessive amount of design time a
tensive knowledge of the processor architecture, there is a need for automated
niques that can efficiently cope with the different constraints and the problem of p
coupling.

The approach proposed in this thesis is based on analyzing the constraints to pru
schedule search space. In this way, the scheduler is often prevented from making
cision that inevitably violates one or more constraints. The main aspect of our mod
the schedule search space is the distance matrix, which holds the minimum and
mum timing delay between each pair of operations within a Basic Block. Low-order
ynomial algorithms identify additional precedence (sequence) constraints that
from the distance relations and the functional resource conflicts. The results of the
yses are combined in the distance matrix by computing the longest paths induced
precedence constraints. Constraint Analysis interacts with the scheduler by expr
schedule decisions in terms of additional sequence relations and updating the di
matrix.

In order to minimize the register requirements or to satisfy register capacity constr
the freedom available for scheduling is exploited to serialize value lifetimes. Value
identified that constitute a (potential) bottleneck for register binding, and the co
sponding lifetimes are subsequently serialized. Serializations are evaluated in the
text of the constraints and the distance matrix is updated accordingly. After
serialization process, each completion of the schedule is guaranteed to induce a
register binding. In a similar way, the operations that access a register file can be s
ized such that the communicated values behave in a streamlined fashion. These
can then be stored in a FIFO. FIFOs have the same addressing cost as registers i
of instruction bits, but they offer much larger storage capacity. This is convenien
cause register addressing constitutes about 60% of the code executed on VLIW p
sors. In a similar way register accesses are serialized in order to store the values in
or a FILIFO.

Table of Contents
 Acknowledgements
 Summary

1 Introduction
 1.1 Digital signal processing
 1.2 Mapping an application to an architecture
 1.2.1 ASICs
 1.2.2 General purpose DSPs
 1.2.3 ASIPs
 1.3 The Very Large Instruction Word architecture
 1.3.1 Code generation for VLIW processors
 1.3.2 Register file architectures
 1.4 Constraint analysis
 1.5 Thesis outline

2 Operation Scheduling
 2.1 Definitions
 2.2 Pipelined schedules
 2.3 The high-level synthesis scheduling problem
 2.4 Modelling the constraints
 2.5 Problem formulation
 2.5.1 Minimizing the register count
 2.5.2 Handling fixed register file sizes
 2.6 Initialization of the initiation interval

3 Scheduling with Resource Conflicts
 3.1 Introduction
 3.2 Schedule freedom
 3.3 Representing the search space: the distance matrix
 3.4 Related work in constraint analysis
 3.5 Sequencing as a result of resource conflicts
 3.6 Sequencing for an extended resource constraint model
 3.6.1 Sequencing for two resource instances
 3.6.2 Sequencing for N resource instances
 3.7 Schedule approach
 3.8 Complexity
 3.9 Experimental results

4 Register Binding for Randomly Addressable Register Files
 4.1 Lifetime serialization for a given binding
 4.1.1 Non-folded schedules
 4.1.2 Folded schedules

 4.2 Infeasibility Analysis
 4.3 Experimental results
 4.4 Incremental register binding for fixed register files
 4.4.1 Constructing a conflict graph
 4.4.2 Colouring and bottleneck identification
 4.5 Experimental results

5 Storage Models for Reduced Instruction Width
 5.1 Fifos
 5.1.1 Analysis of FIFO access ordering
 5.2 Stacks
 5.3 Filifo, a hybrid between FIFO and stack
 5.3.1 Analysis of FILIFO access ordering
 5.4 Loop pipelining
 5.5 Some practical issues
 5.5.1 Multiple consumers
 5.5.2 Architectures with mixed storage types
 5.6 Case study
 5.6.1 Implementation with randomly addressable registers
 5.6.2 Implementation with FIFOs and registers

6 Conclusions

 Literature
 Samenvatting
 Curriculum Vitae

INTRODUCTION 3

sistors
in the
effort
ource.

ause in
n of a
ctions

is can
tual
mma-

that
e the
can
s C,
ation
gn is
ign-

and,
con-
dowed

effort
-level
ransla-

oth
se two
alled

n be
Chapter

1 Introduction

The last few decades we have witnessed a rapid increase in the number of tran
integrated on a chip. Consequently, we have also witnessed a rapid increase
amount of man years required to design a complex chip. This increase in design
must be controlled for at least two reasons. First, chip designers are a scarce res
Second, there is an enormous pressure to shorten the design time of a chip, bec
the consumer electronics market the company with the earliest market introductio
new product is to expect a large market share. There are basically three major dire
in which solutions are sought for controlling the design effort of complex chips:

• Design reuse: This comprises reusing (parts of) a design previously made. Th
be done in two ways: either some specification (layout or netlist) called intellec
property [Behn97] is used as a part of a new design, or a design is made progra
ble so that the chip itself can be used for different applications.

• The use of design tools at increasingly higher abstraction levels: It is clear
designing a chip at the level of transistors is a tedious way of designing, becaus
complexity is in the order of millions of basic elements. At the other extreme we
specify the functionality of a chip in a high-level programming language such a
associated with a complexity in the order of hundreds (lines of code). The transl
of the C-code (or an intermediate abstraction level) to a transistor-level desi
automated using design tools. This translation is called silicon compilation. Des
ing at a high abstraction level offers a very limited design effort. On the other h
the implementation is probably not the most efficient in terms of area, power
sumption, and performance. These last criteria are however becoming oversha
by the importance of a limited design effort.

• Programming in a high-level language: Programming a processor requires less
using a high-level language than using assembly language. Furthermore, high
code is much more portable and consequently reusable. Here we also need a t
tion from the high-level language to assembly language (a code compiler).

Surprisingly, silicon compilation and code compilation have a large overlap: In b
cases, some form of scheduling and register allocation have to be performed. The
tasks are the subject of this thesis. The application domain on which we focus is c
digital signal processing.

1.1 Digital signal processing
The area in which digital Very Large Scale Integration (VLSI) chips are applied ca
split roughly into two domains as indicated in Figure 1.1:control processinganddigital

4 INTRODUCTION

k-
e chip

nal
, and

ing
com-

afety
in

often
and

. As
sold

sonal
high

ome
own

ume

s are
tasks

com-
essing

here-
l hun-
Phideo

han
signal processing(DSP). Control processing typically involves a lot of decision ma
ing; actions are taken based on events generated by the environment in which th
is applied. Control processing can be further partitioned into the areas ofgeneral pur-
pose computingandreal-timeapplications. In general purpose computing (for perso
computers, networks, etc.), processor speed is the main optimization criterion
there are few hard constraints. Real-Time (RT) applications usually involve hard tim
constraints, and hardware cost is a secondary issue. The RT application domain
prises all sorts of regulators: for your heater and vacuum cleaner, but also for s
critical situations like height control in air traffic, anti-skid systems for the brakes
your car, etc. Control tasks are typically executedsequentially, mainly because the
application involves a lot of control dependencies. As a result, control processors
have limited arithmetic resources, applied in a diversity of computations. This dem
for sequential processing and flexibility has led designers to make use ofgeneral pur-
pose processors(GPP) instead of designing hardware dedicated for the application
a result, relatively cheap microcontrollers are applied in hundreds of products and
by the millions each year. When performance is an important issue (e.g. in per
computers and workstations), the GPPs are pushed towards extremely
clock-speeds. This kind of work involves complicated electrical design and tires
hand-made layout at the physical level. Few companies can afford making their
high-performance GPP, which is justified only when the design is sold in large vol
and prices are high.

On the other hand, DSP involves a lot of regularity and synchronization; sample
taken and signals are received at fixed periods of time, and the same processing
are repeated over and over for each sample or signal. This application domain
prises among others audio and video processing, telecommunication, speech proc
and imaging. The regularity in the computations allows parallel processing, and t
fore the amount of arithmetic units in DSP processors may be as high as severa
dreds, e.g. dedicated processors generated by the automated synthesis toolset
[Meer95]. In this way, performance is obtained by exploiting parallelism rather t
high clock speed, which is advantageous for a number of reasons:

control processing

Figure 1.1 Partitioning the application domain of digital VLSI chips

Digital VLSI application domain
signal processing

general
purpose

real
time

regular
processing

INTRODUCTION 5

ption.
27

ver
ng a

rith-
itives
ctivity
tools,
ains
tool-
ned
using

ruction
stages.
truc-
k
high,
e of
he

mmer
lays
les
s like

btain
r con-
allel
paral-
well.
ssor
ssor is
cture
. Sec-
s, the
• Low clock speed requirements are interesting when considering power consum
For example, the I.MCiC [Klei97], a single-chip MPEG-2 video encoder runs on
MHz. As a result, the power consumption is only 2.1 Watt. The DAB recei
[Huis98], a single-chip for digital audio broadcast runs on just 12 MHz, consumi
mere 0.5Watt.

• Low clock speed requirements also allow the use of widely available standard a
metic units and automated layout design tools for designing the processor prim
(as opposed to hand-made and heavily pipelined designs). As a result, design a
focuses on high-level and architectural level decisions using automated design
which limits the design effort. For example, the I.MCiC mentioned above cont
4.5 million transistors, and is designed within 5 man year using both the Phideo
set [Meer95] and the Mistral2 toolset [Strik95]. The DAB receiver (also mentio
above) also contains 4.5 million transistors and is developed in 12 man years
the Mistral2 toolset for several parts of the design.

• High clock speed requires a largepipeline depth[Henn96]. Instructions remain in
the processor for several clock cycles, each representing a stage such as inst
fetch, instruction decode, operand fetch, etc. These stages are called pipeline
Consecutive instructions may remain in the processor simultaneously; when ins
tion i fetches its operands, instructioni+1 is in the decode stage. When the cloc
speed is high, the number of pipeline stages (the pipeline depth) is necessarily
which is difficult to oversee both for a programmer and for a compiler. In the cas
the TI C60 [TMS97], the performance was boosted with a 200 MHz clock. T
result is a pipeline depth between 7 and 11 clock cycles. This leaves the progra
with tedious assembly programming, taking into account overlapping branch de
(5 clock cycles), frequently flushing the pipeline, and looking 7-11 clock cyc
ahead which is especially mind-boggling when advanced scheduling technique
software pipelining are performed.

Summarizing, exploiting parallelism instead of high clock speed as a means to o
high performance in DSP applications is advantageous for chip design time, powe
sumption, and some of the complexity of compiler design. However, efficient par
implementations are (often much) less flexible than using a GPP. Furthermore, a
lel implementation also has some negative effect on the design of a compiler as
We will focus on these issues in more detail in the following sections, where proce
architectures are classified, and the process of mapping an application to a proce
explained. In section 1.3 we will focus more on an alternative processor archite
called VLIW, and see how this architecture relates to classical DSP architectures
tion 1.4 introduces the basic module in the mapping approach taken in this thesi
constraint analyser. Section 1.5 gives an outline of this thesis.

6 INTRODUCTION

proc-
riteria:

t all
to a

rs that

data
ction
used

spe-
d that
oper-

y (in
tion
et is
t. On
eces-
1.2 Mapping an application to an architecture
In this thesis a method is described for mapping a behavioural specification onto a
essor architecture. Processor architectures can roughly be classified using two c
programmability and instruction setorthogonality (Figure 1.2).

There are different degrees of programmability: ASICs are not programmable a
(application specific). ASIPs are programmable, but their performance is tuned
specific application domain. General purpose DSPs are the most flexible processo
exploit DSP characteristics.

Instruction set orthogonality reflects the ability to control different elements in the
path independently from each other, often by letting independent fields of an instru
control individual data path components [Laps96, p.90]. For example, the register
for storing the result of an operationv is independent of the type of operationv. In con-
trast, a non-orthogonal instruction set allows certain operations to be performed on
cialized registers only. This introduces a dependency between the instruction fiel
specifies the operation and the instruction field that specifies the operands for this
ation. Although a non-orthogonal instruction set can be encoded very efficientl
terms of number of instruction bits), this dependency between different instruc
fields has to be taken into account by the compiler. A non-orthogonal instruction s
therefore a much more complex compiler target than an orthogonal instruction se
the other hand, encoding all the possibilities offered by orthogonal processors, n
sarily implies a large instruction set, and therefore, wide instruction words.

Figure 1.2 Classification of Processor Architectures

Programmability

Instruction Set
Orthogonality

ASIC ASIP general
purpose
DSP

VLIW

compact
-DSP56000
-Philips EPICS [Woud94]

FSM based
controller

ROM -reprogrammable

-[Paul95b] -TI320C54

-TI320C60 [TMS97]
-Trimedia TM-1 [Trim97]

-[Leup97]

-[Rau99]
Mistral2 [Strik94]-Mistral2

µ-code

instruction
set

INTRODUCTION 7

will
thod-

d
lay-
re
ch as
tec-
cation
units
ese
roller
s and
ogic
d lay-
rout-
ndry

a88]:

ath?

d?

fore,
these
order
t of the
ely

ed for
ds the
ris-
itec-
nect
s can
Because each of the platforms in Figure 1.2 has its characteristic features, we
briefly discuss the architectures and the way their features affect the mapping me
ology.

1.2.1 ASICs
An Application Specific Integrated Circuit(ASIC) is a chip dedicated to and designe
for a single application. The process of translating an ASIC specification to a chip
out is calledsilicon compilation. In Figure 1.3 the design steps of a silicon compiler a
depicted. The functionality of the chip is specified using a description language su
VHDL [IEEE88], Silage, or some C dialect. High-Level synthesis, also called archi
tural synthesis, takes the behavioural description as input, and generates a specifi
for a so-called data-path and a controller. The data-path consists of functional
(FUs) like multipliers and ALUs, memory, and an interconnection structure. Th
building blocks are generated using so-called module generators. The cont
describes how the flow of data inside the data-path is managed in terms of state
state transitions. The controller description is translated into a configuration of l
gates (or, and, xor, nand, etc.) using logic synthesis. The final synthesis step, calle
out synthesis, creates a geometrical description of the layout using placement and
ing techniques. The result is a number of layout masks, which are used in an IC fou
to process silicon to chips.

In the case of high-level synthesis the following tasks have to be performed [McF

• FU Selection: What kind and how many functional units are used in the data-p

• FU Binding: To which functional units will operations be assigned?

• Scheduling: When will operations from the functional description be execute

• Register Binding: To which registers will values be assigned?

These four tasks are interrelated, but are difficult to perform simultaneously. There
high-level synthesis strategies solve each problem or a small combination of
problems separately. Most high-level synthesis tools perform these tasks in the
represented above. Interaction with the designer is essential, because as a resul
heuristic nature of the underlying mapping algorithms, the compiler will most lik
make some decisions that do not comply with the designer’s objectives.

1.2.2 General purpose DSPs
General purpose DSPs (GPDSPs) [Laps96] are the most flexible processors us
DSP applications (although general purpose CPUs are also making steps towar
DSP domain with special multi-media instructions such as Intel’s MMX). Characte
tic for programmable processors is that the compiler has to deal with a fixed arch
ture, notably the number of functional units and registers, and the intercon
structure. The controller of a programmable processor is micro coded. Instruction

8 INTRODUCTION

ssor
ed by

ollers
ing

am-
h an

and
DSP

s on

ister
-
ost of

on
be loaded into the instruction memory containing all the information the proce
needs for proper execution. The register binding and the schedule can be alter
altering the instruction code.

The first GPDSPs were not much more than simple general purpose microcontr
(like the MIPS R1000 or the Philips 80C51) extended with hardware perform
instructions that frequently occur in DSP applications. In filter applications for ex
ple, multiplication of a value is most often succeeded by addition of the result wit
accumulate register. As a result, a fastMultiply Accumulate (MAC) unitand a corre-
sponding single-cycle MAC instruction are part of most GPDSP architectures
instruction sets respectively. To further increase the performance of GPDSPs, the
application domain was analysed for even more patterns: the high amount ofregularity
in DSP computations was soon exploited by allocating additional functional unit
the DSP, thus enabling more computations simultaneously (inparallel). For example,
on the DSP5600x a multiply can be performed in parallel with a memory to reg
move. Soon even morememory access bandwidthwas required. Bandwidth to back
ground memory was increased (and access latency decreased) by integrating m
the memoryon-chip. Foreground memory was increased by eithermulti-port register
files or with adistributedregister file architecture. To alleviate the resulting pressure

Figure 1.3 Silicon Compiler Overview taken from [heij96]

High-Level Synthesis

Logic Synthesis Module Generation

Layout Generation

architecture BEHAVIOUR of FILTER is
process
 variable a, b,c;
begin
 wait until start event and start='1';
 a := in_port1 * (5 + in_port2);
 ...

Behavioural description

Controller description Data Path

Gate Network Module
Descriptions

Layout Description

INTRODUCTION 9

mented
FT
t
tions
s are

SPs

ment
table
d.
dealt

en
ts are
ese
isses,

same

s
y is
city

advan-

gister
nec-
head
attery

uire a
tro-

the
the

neral
first

ener-

-level
ion is
the communication bus, largercommunication networkswere allocated with multiple
on-chip buses. These extended memory architectures were subsequently aug
with special addressing modessuch as circular and bit-reversed addressing for F
computations. Dedicatedaddress computation units(ACUs) serve the memories tha
can handle register-indirect addressing with post-increment for repetitive computa
on sequentially stored data. Regular loop structures present in most DSP algorithm
supported and exploited byhardware loopsand arepeatinstruction. When used in a
small application area, application specific units boost the performance of GPD
substantially, as do dedicated peripheral I/O devices.

Besides the exploitation of knowledge of the DSP domain, DSP processor develop
remains affected by the developments in computer architecture [Henn96]. Most no
are the effects ofheavily pipeliningthe processor in order to obtain high clock spee
Since the control hardware is also pipelined, a delayed branch control has to be
with, including flushing the pipelinewhen the wrong branch has speculatively be
chosen. In order to circumvent some of the pipeline stages, intermediate resul
quickly available on bypass networks before writing them to a register file. Th
bypasses are coordinated at run-time because all kinds of uncertainties (cache m
data dependent conditions, etc.) are difficult to anticipate at compile-time. For the
reasons, a weak kind of run-time resource scheduling is performed usingreservation
tables. This also offers a largerwindowof instructions to choose from [Henn96], thu
increasing the opportunity for more parallel computation. Often programmabilit
facilitated by allocating an expensive single register file with a relatively large capa
and high access bandwidth.

These performance boosts for GPDSPs have characteristics that may be very dis
tageous for some application areas, because of:

• Power consumption: reservation tables, bypass networks, a large multi-port re
file, and dynamic scheduling all consume an amount of power that is not really
essary in the sense that it is not used solely for computation. All this power over
makes many general purpose DSPs unsuitable for mobile applications, where b
lifetime dictates the usability of an apparatus.

• The hardware features mentioned above occupy valuable chip area and req
large effort for designing the chip layout manually, as already mentioned in the in
duction. This is affordable in an industry with very high profits such as
(Intel-type) microprocessor industry. In the consumer electronics industry on
other hand, profits are just a fraction of the cost price of a chip. In this area, ge
purpose DSPs are used only for prototyping and for a fast introduction of the
generation of a new product in order to gain a profitable market share for later g
ations of the same product (with cheaper implementations).

For programming GPDSPs roughly the same tasks are identified as for the high
synthesis of ASICs (section 1.2.1). However, due to the fixed data path, FU select

10 INTRODUCTION

d the
r:

r?

er of
cycle.
tions
to be

uction
eed to

e over
lts of
f code
trans-
bjec-
of

ts are
ogo-
].

xibil-
issi-
ften
lica-
anta-
SIP

e part
er-

se of
tors in

sec-
e for

ory is
cause
cause
a effi-
not part of the mapping process. In DSP compilation code selection is considere
most dominant step [Rau99]. The tasks are usually executed in the following orde

• Code selection: Which machine instructions implement the specified behaviou

• Instruction Scheduling: When will selected instructions be executed?

• Register Binding: To which registers will values be assigned?

Note that in the case of parallel processors an instruction may consist of a numb
elementary (arithmetic, load, etc.) operations that are fetched in the same clock
Code selection is the task of determining a set of instructions such that all opera
that have to be performed are contained in some instruction. Code selection has
performed prior to scheduling, because the scheduler is constrained by the instr
set: the operations that are scheduled in the same clock cycle are not guarant
combine to a single instruction unlessinstructionsare scheduled rather thanoperations.
The large overhead in both performance and code size of compiler generated cod
manually coded assembly [Paul96] is for a large part due to disappointing resu
code selection methods. However, the effectiveness of these methods (and o
selection in general) depends highly on the structure of the instruction set. The
parency of the instruction set for code selection is usually denoted by the rather su
tive term ‘orthogonality’, explained in Section 1.2. Depending on the availability
memory space for certain application areas, either very compact instruction se
chosen and programming is done manually for the larger part [Woud94], or an orth
nal instruction set is chosen and a large instruction memory is required [Schlan94

1.2.3 ASIPs

In the previous two subsections we have seen that on the one hand ASICs lack fle
ity but offer the most efficient solution in terms of performance, area, and power d
pation. General Purpose DSPs on the other hand offer a lot of flexibility, but are o
not able to satisfy performance, area, or power dissipation requirements. App
tion-Specific Instruction Processors (ASIPs) have become popular due to their adv
geous trade-off between the ASIC characteristics and the GPDSP’s flexibility. An A
is a programmable processor tuned to a specific application domain. Often a larg
of the functional units consists of application specific units (ASUs), that efficiently p
form computations characteristic for the application domain. It appears that the u
these ASUs can reduce the power consumption of general purpose DSPs by fac
the order of 10-100 [Meer99, section 5.5].

A micro coded controller provides flexibility, but as explained in the previous sub
tion, the necessary instructions occupy valuable chip area. This is especially tru
embedded applications (for which ASIPs are mostly used) where instruction mem
kept on the same chip as the ASIP itself, together with other processors. Be
on-chip memory requires more area than off-chip stand-alone memory (mostly be
the memory has to be implemented by logic technology rather than the more are

INTRODUCTION 11

ount
pro-

care-
tion
The

tion
ture,
gram-

eant
e with
neral
per-

me to
am-
ces-

eased

duler
sis is
usu-
cause
eral

ver,
ingle
ptions
read

uch as
age
cient memory technology), there is a hard pressure for minimizing the required am
of instruction memory. The number of bits required to encode an instruction set is
portional to the cardinality of the instruction set. ASIP designers have therefore
fully selected an instruction set based on profiling information of the applica
domain. There is even some research effort to do this automatically[Alom93].
instruction set for an ASIP is thus a trade-off betweencostmeasured by the instruction
width, andperformancemeasured by the number of operations that a single instruc
encodes [Paul95a]. The result is an instruction set with very little regularity or struc
which does not provide a simple transparent processor model to a compiler. Pro
mability of ASIPs is often considered as an afterthought, partly because they are m
to be programmed in assembly as a result of the pressure on highly optimized cod
high-volume electronics. Current compilers for these processors (and more ge
fixed point DSPs) tend to produce an intolerably large overhead in code size and
formance [Zivo94].

However, due to the increasing competition in the consumer electronics sector, ti
market is gaining priority, which puts a lot of pressure on design productivity. Progr
ming ASIPs in a higher programming language like C is therefore becoming a ne
sity, and research efforts in automated compilation techniques for ASIPs have incr
during the last decade.

The compiler steps are the same as for general purpose DSPs:

• Code selection: Which instruction will be executed?

• Instruction Scheduling: When will this instruction be executed?

• Register Binding: To which registers will values be assigned?

An orthogonal instruction set provides a transparent processor model for the sche
[Timm95], [Strik95], so that the task of code selection is alleviated and the empha
placed on scheduling and register binding. However, for ASIP compilation there is
ally an even larger emphasis placed on the task of code selection [Marw95], be
ASIP instruction sets and architectures typically exhibit more irregularity than gen
purpose DSPs. This is amplified by the requirement ofretargetability [Lann95],
[Paul95b]: A specific ASIP is designed for a narrow application domain. Howe
making a compiler for each separate ASIP is simply too much effort. Instead, a s
‘parameterizable’ or retargetable compiler is designed, that makes certain assum
on the topology of the architecture, and the rest of the architecture information is
from a machine description file, as depicted in Figure 1.4.

The processor architecture is specified using a machine description language s
nML. The following architecture aspects are typically specified in such a langu
[Rau99]:

• number of functional units

12 INTRODUCTION

ion. A
oces-

from
ither
cient
-hoc
t an
com-
ering

ll the
orm 2
ul96].

es a
• FU pipeline structure

• FU latencies and throughput

• set of opcodes that each FU can execute

• number of register files

• number of registers per register file

• addressability of the registers

• interconnect between the register files and FUs

Retargetability has a large effect on the range of techniques applied in code select
processor specific compiler can exploit instructions that are very specific for the pr
sor. Suppose for example, that a processor is able to encode two parallel moves
memory to register in a single instruction, provided that the first move targets e
register r0 or r1, and the second move targets register r2 or r3. This highly effi
instruction can be exploited by the compiler, but it requires processor specific ad
techniques to test the possibilities of exploiting this parallel instruction. It would cos
intolerable amount of effort to retarget such a compiler. As a result, retargetable
pilers can only afford to employ generic methods such as graph matching and cov
algorithms [Liem94], [Praet94]. This has resulted in poor performance: Despite a
research effort spent on the subject of code selection, current ASIP compilers perf
to 8 times worse than manually written assembly on both speed and code size [Pa

In the next section we will consider the VLIW processor architecture that provid
compiler friendly processor model at the cost of larger code size.

Target

Retargetable compiler

Software

of application
Machine
Description

Specification

Target
Machine
Code

Figure 1.4 Retargetable Compilation

INTRODUCTION 13

ped
ation
sors
rs,
code
LIW

par-
RFs)
f the
reg-
the
i-

ient
ted

ion
fore
ord,
ajor

s

1.3 The Very Large Instruction Word architecture
The first generation of Very Large Instruction Word (VLIW) processors were develo
with the specific goal of making the architecture suitable for automatic code gener
[Fish83] [Rau82] by providing a highly orthogonal instruction set. These proces
typically provide higher levels of instruction-level parallelism (ILP), more registe
and a regular interconnect. In this way a compiler is able to generate high-quality
using systematic rather than ad hoc techniques. The data-path of a typical ASIP V
architecture is given in Figure 1.5. A number of functional units (FUs) executes in
allel, each fetching its operands from dedicated or ‘weakly’ shared register files (
at the beginning of a clock cycle, and writing the result to another RF at the end o
clock cycle. General purpose DSPs with a VLIW architecture often have one large
ister file, such as the Trimedia TM-1 [Trim97], or two large register files, such as
TI320C60 [TMS97].This will provide an easier compiler target for most trad

tional compiling techniques at the cost of expensive, slower, power ineffic
hardware and wider instructions, as will be shown in section 1.3.2. Distribu
register files such as in Figure 1.5 are more typical of ASIPs [Strik94].

1.3.1 Code generation for VLIW processors
In its ‘ideal’ form [Rau81], each functional unit is controlled by dedicated instruct
bits that are completely independent from the bits controlling other FUs. There
every combination of operations is guaranteed to be encoded by an instruction w
provided that these operations execute on different FUs. This has the following m
consequences:

• Instruction selection can be performedafter scheduling and register binding, thu
providing much more freedom for both scheduling and register binding.

• Instead of scheduling instructions, we can schedule individual operations.

FU1 FU2 FU3 FU4

RF RF RF RF RF RF

Flags

Instruction constant (load immediate, branch address, etc.)

Figure 1.5 Data-path of a typical VLIW architecture

14 INTRODUCTION

uc-
g and
sm.
Tri-
eral
fol-
d one
ion
con-

tional
ular’
uring
ore
tional
arch

higher
rallel
an
only
t more
s abil-
two

e way
into

cks
hin
two
(and
in the

hed-
that

ling
uced
y for

uling
uling
tion
• Instruction selection has become a trivial task

So the ‘ideal’ VLIW architecture eliminates all the difficulties that accompany instr
tion selection for less ‘regular’ architectures and shifts the emphasis on schedulin
register binding, thus providing more opportunity to exploit the available paralleli
‘Less’ ideal VLIW architectures pose only a limited restriction in that sense. The
media TM-1 [Trim97] processor for example, has 27 functional units, but for sev
reasons each instruction is able to control only 5 functional units in parallel in the
lowing way. Functional units are grouped in clusters, where each cluster is assigne
of the fiveissue slotsthat comprise an instruction word. The structure of this instruct
set architecture can be modelled for the scheduler in terms of ‘regular’ resource
straints [Bras99]. Furthermore, the compiler can be retargeted by regrouping func
units and introducing resource constraints accordingly. We conclude that ‘reg
instruction set restrictions like issue slot constraints, can be taken into account d
scheduling without the difficulties associated with explicit instruction selection. M
recent research [Leij00] introduces constraints in the interconnect between func
units and register files. Coping with such constraints is a topic of ongoing rese
[Beko00].

Whereas the trend in general purpose processor design is towards increasingly
clock speeds for performance, the VLIW architecture is more focused on the pa
execution of operations. Exploiting this ILP however, is a lot more difficult th
exploiting clock speed. So the VLIW architecture emphasizes scheduling not
because instruction selection is less of a problem, but also because there is a lo
pressure on the performance of the scheduler, or more specifically: the scheduler’
ity to exploit the parallelism available in the VLIW architecture. There are roughly
ways the scheduler can exploit this parallelism:Global schedulingandloop scheduling.

In order to understand these scheduling mechanisms, a few words are spent on th
an application algorithm is specified for the scheduler. Such an algorithm is divided
so calledbasic blocks, which consist of operations, and possibly other basic blo
(hierarchically). The division into basic blocks is determined by the control flow wit
the algorithm. For example, an if-then-else construct in basic block A will generate
new basic blocks B and C that are part of A. Basic block B contains the operations
possibly basic blocks) specified in the then branch, and C contains those specified
else branch. Another example of a basic block is a while or for loop. Traditional sc
uling techniques consider the operations in a single basic block. Therefore the ILP
can be exploited is limited to the ILP present in one basic block. Global schedu
extends the opportunity for exploiting ILP beyond the basic block boundaries ind
by if-then-else constructions, whereas loop scheduling extends the opportunit
exploiting ILP by considering more iterations of the same loop.

The best-known implementation of global scheduling is probably Trace sched
[Fish81]. Most characteristic about global scheduling is that it extends the sched
window, the set of instructions (or operations) examined for simultaneous execu

INTRODUCTION 15

s
t run
, the
ecute
ions
ese
d it is
l pur-
effi-
t half

tions
hedul-
r gen-
basic
on

ICs)
on a

e lim-
pli-
sists
neral
reg-

of
order

es
r. The
ere is

iffer-
ulting
cause
n be
dis-

e fac-
only

the
p iter-

n the
ithms
[Henn96]. This is done using so calledif-conversion:removing some of the boundarie
between Basic-Blocks. Extending the window can be done at compile time or a
time. The idea is that if there are more operations within the scheduling window
scheduler has more opportunity to find combinations of operations that can ex
simultaneously. At any given time t, the window consists for a large part of operat
that are conditional, but at time t the value of this condition may not be known. Th
operations are executed speculatively: only when the condition has been calculate
known whether the results of these operations will be used or disregarded. Genera
pose DSPs rely for their performance for a very large part on global scheduling:
cient schedules for general purpose DSPs with a VLIW architecture execute abou
of the operations speculatively [Hoog99]. As a result of global scheduling opera
are often duplicated and encoded more than once in the program code. Global sc
ing therefore tends to increase code size. The importance of global scheduling fo
eral purpose DSPs is explained by the fact that control oriented code (where
blocks typically contain little ILP) comprises a large part of typical code mapped
these processors.

As depicted in Figure 1.2, more application specific processors (ASIPs and AS
may also employ the VLIW architecture. These processors are often embedded
chip together with instruction memory (or cache), and therefore code size has to b
ited. The problems that VLIW architectures have with code size often limit their ap
cation to time-critical code segments. On the other hand, time critical code con
mostly of ‘regular’ loops that are executed many times. (In signal processing a ge
rule of thumb is that 80% of the execution time is spent in 20% of the code.) These
ular loops can be scheduled very efficiently by eitherloop unrolling [Henn96] orloop
pipelining[Lam88](also called loop folding or software pipelining) or a combination
both. Both techniques try to overlap the schedules of subsequent loop iterations in
to exploit the available architectural parallelism.

Loop unrolling basically copies the operations in the loop body a number of tim
before scheduling. The resulting loop is scheduled using a conventional schedule
advantages of loop unrolling are that the scheduler can be kept simple, and that th
more ‘room’ for optimization in the sense that every loop copy can be scheduled d
ently from the others. One disadvantage is that the beginning and end of the res
schedule will be relatively sparse (few operations can be executed in parallel) be
begin and end do not overlap unless loop pipelining is applied. This ‘overhead’ ca
minimized by a large unrolling factor. This measure combines badly with the main
advantage of loop unrolling: the code size increases with approximately the sam
tor. Furthermore, since the problem instance also grows with the same factor,
low-complexity scheduling algorithms can be used.

Loop folding demands that all overlapping loop bodies are scheduled in exactly
same way. The advantage of this is that the same code is used for almost every loo
ation (thus code size is limited) and that parallel code is obtained at every point i
loop kernel. The main disadvantages are that special (intelligent) schedule algor

16 INTRODUCTION

c-

ling,
oop

ister
the

om
gister
eed to

cation
er a
e, it is
ster
in a

nstant
1.

n is

n for
essor
with
which
tion.

ip
rea-

size

ction

as to
is
are
l unit
slots

used
are required, and that so calledpreambleandpostamblecode must be added (see se
tion 2.2) outside the loop.

Research [Aiken95] suggests that loop pipelining is as effective as full loop unrol
while producing less code [Henn96]. In this thesis we will therefore focus on l
pipelining.

1.3.2 Register file architecture

In this section the pros and cons of an architecture with one large multi-ported reg
file and an architecture with multiple register files are discussed. Traditionally,
‘ideal’ VLIW architecture contains a single large register file [Fish83], [Rau82]. Fr
the compiler perspective this architecture is indeed ideal: for each value, the re
binder has the full register address range at its disposal, and no copies of values n
be generated, so the register pressure is relatively low and no additional communi
is required. Most other criteria are however in favour of distributing the registers ov
number of files. Since these criteria have gained importance during the last decad
unlikely that in the future VLIW processors will be designed with a single large regi
file. We mention some of these criteria below. Let W denote the number of words
register file, and let P denote the number of access ports. Furthermore, “a” is a co
that depends on some design and technology parameters and ranges from .5 to

• Power consumption: For a single access to the register file, the power consumptio
.

• Access delay: The access delay is of the same order as the power consumptio
one access, . Access delay is often a persistent bottleneck in proc
design. In order to keep the delay within limits, parallel memories can be used (
fewer ports), but consistency between these memories has to be maintained,
has serious effects on both the (manual) design effort and the power consump

• Code size: Code size is an important criterion for different reasons: for off-ch
instruction memory, power consumption for off-chip communication is the main
son. For on-chip (embedded) instruction memory, area is more important. Code
is for a large part determined by theinstruction width. In the following it will
become clear that a distributed register file architecture yields a smaller instru
width than a single register file.

If all registers are concentrated in one register file, each access to this file h
provide an address from the range ofall registers. The number of accesses to th
large register file amounts to 3 times the number of functional units that
addressed in one instruction word, because it is assumed that a functiona
fetches two operands and writes one result. Suppose there are 5 instruction
and 128 registers arranged in one file, such as in the Trimedia TM-1 [Trim97].
These registers are addressed using bits, so the number of bits

O P W
a⋅()

O P W
a⋅()

128log
2

7=

INTRODUCTION 17

128
oper-
the
that

ation
f bits
als
c-
r file

e in

nding
The
t for
r aim
able

give
r our
, we

the

ndi-
for register addressing in a single instruction word, amounts to
bits (guard operands are not taken into account in this calculation). If these
registers were distributed over 8 register files of 16 registers each, and each
and for a functional unit can be taken from exactly one such register file, then
address for each source operand takes only bits. It is assumed
the result of a computation can be routed to each register file, so the destin
operand has the full register address range at its disposal. Now the number o
used for register addressing in a single instruction word equ

bits, so in this example the single register file archite
ture uses 40% more bits on register addressing than the distributed registe
alternative. If the number of register files would be larger, then the differenc
instruction width would be even more dramatic.

1.4 Constraint analysis
The aim of this thesis is to describe a good method of scheduling and register bi
for VLIW (and similar) architectures, both application specific and programmable.
problems of scheduling and register binding are however fundamentally differen
programmable processors and non-programmable processors: For ASICs it is ou
to minimize the number of registers (for the given constraint set). For a programm
processor on the other hand, the number of registersusedin each register file is actually
irrelevant as long as this number does not exceed the number ofavailableregisters in
that file. It could even be advantageous to exploit all available registers in order to
the scheduler more opportunity to satisfy the timing and resource constraints. Fo
understanding of the similarities and differences between these two problems
define three types of feasibility:

• T-feasibility: Timing, precedence, and resource constraints are satisfied

• R-feasibility: T-feasibility extended with a register binding that is consistent with
timing, precedence, and resource constraints.

• S-feasibility: R-feasibility, but now the register binding also has to respect fixed i
vidual register file sizes.

5 3 7⋅()⋅ 105=

16log
2

4=

5 2 4⋅ 1 7⋅+()⋅ 75=

Search space:

R-feas

Figure 1.6 The search scope is restricted to the R-feasible region.

R-infeasible

18 INTRODUCTION

ers,
. Note
odular
ion, as
f the
e the
the

some
ng a
s are
con-
elin-
er is
cient
ces-
ch a
ad of
hat the
torage
For ASICs we try to find an R-feasible solution with the minimum number of regist
and for programmable processors we need to find an arbitrary S-feasible solution
that in both cases the solution has to be R-feasible. This observation suggests a m
approach with a basic module that restricts the search scope to the R-feasible reg
depicted in Figure 1.6. This module should also be able to detect infeasibility o
constraint set in order to avoid a lengthy exhaustive search. We call this modul
constraint analyser[Mesm99]. The techniques in the constraint analyser constitute
major contribution of this thesis.

1.5 Thesis outline
In the next chapter we will define the basic concepts necessary for understanding
scheduling problems. After introducing the data flow graph model and discussi
general scheduling problem, the two main scheduling and register binding problem
formalized, and a solution approach is outlined. In chapter 3 we will see how the
straint analyser handles resource constraints, particularly in the context of loop pip
ing. The way a given (partial) register binding is handled by the constraint analys
treated in chapter 4. The way the constraint analyser is used in finding an effi
R-feasible solution (for ASICs) and an S-feasible solution (for programmable pro
sors) is treated in chapter 4 as well. In chapter 5 we try to enforce lifetimes in su
way that they fit in other types of register files, such as FIFOs and stacks, inste
addressable register files. These (foreground) memory units have the advantage t
address mechanism requires fewer instruction bits, whereas a potentially large s
capacity can be provided. Chapter 6 provides a summary of the thesis.

ct of
and

s). In
n 2.2

infor-
wn

d in
uling

for

on
edges
ept of

es not

ra-
s and
Chapter

2 Operation Scheduling

In this chapter we will introduce the two fundamental problems that are the subje
this thesis: operation scheduling for minimum register requirements (for ASICs)
operation scheduling for fixed register file sizes (for reprogrammable architecture
Section 2.1 the basic scheduling model and some definitions are given. Sectio
extends the range of possible schedules by introducing the concept ofloop pipelining.
Section 2.3 discusses the traditional high-level synthesis scheduling problem and
mally illustrates the difficulty of finding a pipelined schedule. In Section 2.4 it is sho
how the constraints and problem specific characteristics are modelled in theData Flow
Graphmodel of Section 2.1. Our two fundamental scheduling problems are define
Section 2.5. In Section 2.6 some inititialization issues are addressed for our sched
approach.

2.1 Definitions
We start with the definition of the most widely used RTL-level specification model
an application program: the Data Flow Graph, (DFG) [Ku92].

Definition 2.1 (Data Flow Graph) A data flow graph is a triple , where

• V is the set of vertices (operations),

• is the set of directeddata precedence edges,

• is the set of directedsequence precedence edges, and

• describes the timing delay associated with a precedence edge.❏

The main difference with DFG models like that from [Ku92] is the emphasis
(sequence) edges. First, minimal delay between operations is associated with the
rather than the operations. Second, our methodology is heavily based on the conc
precedence, modelled by sequence edges. Note that our definition of a DFG do
require the graph to be acyclic.

An example of a DFG for an IIR filter application is found in Figure 2.1. Typical ope
tions are arithmetic and logical calculations, address computations, memory-read
writes, i/o operations, and application specific operations.

V Ed Es∪ w, ,()

Ed V V×⊆

Es V V×⊆

w: Ed Es∪ Z→

20 OPERATIONSCHEDULING

In this
ges in a
s by a
edges

of zero
to the
pera-

N

delay

ule.
The precedence edges define a partial order on the executions of the operations.
thesis, whenever necessary, a distinction between data edges and sequence ed
DFG is visualized by drawing data edges with a solid edge, and sequence edge
dashed edge (e.g. operation 12 to operation 25 in Figure 2.1). Furthermore, data
have a default delay of one clock cycle and sequence edges have a default delay
clock cycles. Most of the constraints that accompany a scheduling problem relate
start time of an operation, the time that its execution starts. The start times of the o
tions in a data flow graph comprise a schedule:

Definition 2.2 (schedule) describes the start times of operations, where
denotes the set of natural numbers. ❏

A schedule is constrained by precedence edges. A precedence with
 expresses that

In the text, whenever , a precedence will be indicated by .

Definition 2.3 (latency)l is the number of clock cycles required to execute a sched

alu

d3

acu

rd

ctrl

a2

b4

alu

d4c4

acu

rd
b5

alu

d5c5

e1

out

in

wr
1

acu
b3

ctrl

a3

0

1

2

3

25

26

27

12

15

16

13

14

28

acu

rd

ctrl

a1

b1

alu

d1

acu

rd
b2

alu

d2c2

17

18

19

20

21

22

23

c3

ctrl

24

c1

Figure 2.1 : A data flow graph for an IIR filter

s:V N→

vi vj,()
w vi vj,()

s vj() s vi() w vi vj,()+≥

w vi vj,() 0≥ vi vj,() vi vj→

OPERATIONSCHEDULING 21

am-
how
ule of
ional
tional
ations
r the
pro-
-
rallel
:

traints

way
s.

of
fter
to
uch

mple
, the
A schedule for the DFG in Figure 2.1 is found in Figure 2.2 a). Note that in this ex
ple, each operation executes in one clock cycle. In Section 2.4 we will show
multi-cycle executions are modelled using precedence constraints. In the sched
Figure 2.2 a) the operations are grouped (in columns) with respect to the funct
units they are mapped onto. When two operations are mapped to the same func
unit they cannot execute simultaneously. There are other reasons why two oper
cannot execute in parallel, e.g. they transport the result of the computation ove
same bus. Alternatively, there may exist no instruction in the instruction set of a
grammable processor encoding the parallel execution ofvi andvj although these opera
tions are mapped to different functional units. These constraints preventing pa
execution are calledresource constraints, and are given by the function

, defined by

(2.1)

A resource constraint expresses that

(2.2)

A valid schedule has to satisfy the resource constraints. Both the resource cons
and the precedence constraints limit theInstruction-Level Parallelism(ILP), the
number of operations that can execute in parallel. For loops, a particularly efficient
of scheduling circumvents the limiting effect of most of the precedence constraint

2.2 Pipelined schedules
In a loop construction theloop body(represented by a DFG) is executed a number
times. In a traditional schedule, iteration of the loop body is executed strictly a
the execution of theith iteration. [Lam88] and [Goos89] demonstrate a practical way
overlap the executions of different loop body iterations, thus obtaining potentially m
more efficient schedules. This way of scheduling is calledloop folding, loop pipelining,
or software pipelining.

Definition 2.4 (Initiation Interval II) The Initiation Interval (II) is the period between
the start times of the execution of two successive loop iterations. ❏

Loop pipelining allows the execution of operations from iterationi in parallel with or
even after the execution of other operations from iteration . Compare for exa
the two schedules in Figure 2.2 for the graph in Figure 2.1, one without pipelining
other pipelined in such a way that the initiation interval equals 7 clock cycles.

rsc vi vj,()
V V× {0,1}→

rsc vi vj,() 1 if viandvjhave a conflict

0 otherwise



=

rsc vi vj,()

rsc vi vj,() 1= s vi() s vj()≠⇒

i 1+

i 1+

22 OPERATIONSCHEDULING

ted
ned
a

edule
How-
resent
le to
or our

that
n
iti-
ns.
p initi-

tarting
The operations of iterationi originally scheduled in the last 4 cycles are now execu
simultaneously with the first 4 cycles of iteration . In this case, the pipeli
schedule is obtained by pipelining anexistingschedule, and loop pipelining causes
57% increase in the throughput. Later we will see that an even more efficient sch
is obtained when loops are pipelined in the process of constructing a schedule.
ever, this can only be done efficiently if the scheduler oversees the constraints p
between operations belonging to different loop iterations. Thus we should be ab
express precedence and timing relations that cross the loop boundary. It is useful f
purpose to label these operations with their iteration index, so we let Ci denote theith

execution of operation C. Suppose we want to express in the DFG the fact
. This precedence from Ci to Pi+k has consequences for the timing relatio

between Ci and Pi, involving the time between successive initiations of a loop, the in
ation interval (II). This timing relation can be derived from the following equatio
Equation (2.3) expresses the constraint that the time between two successive loo
ations is fixed to II.

(2.3)

Equation (2.4) expresses the consequences of a precedence relation for the s
times of the operations.

(2.4)

Substituting (2.3) in (2.4) yields:

(2.5)

23
4

24
28
14

22
19

27
13
3
5

16

21
18

26
12
2

20
17
15
25

1
0

0
1

3
4
5

2

6
7
8
9
10

in ctrl acu ram alu out
23
4

24
28
1416

12
2

21
18

26

1

17

0

0
1

3
4
5

2

6

c in ctrl acu ram alu out
3
5
22
19

27
13

25

20

15

II=7

Figure 2.2 a) Schedule for the DFG in Figure 2.1 b) pipelined schedule
a) b)

assigned
resources

tim
e

i 1+

Ci Pi k+→

s Pi k+() s Pi() k II⋅+=

Ci Pi k+→() s Pi k+() s Ci()≥⇔

Ci Pi k+→() s Pi() s Ci() k II⋅–≥⇔

OPERATIONSCHEDULING 23

ively

ua-
the

ion-
d in

he
press
zed to

rob-

fol-
Equation (2.5) expresses the effect of a precedence relation which effect
has a delay . When the precedence has a timing delayw, the pro-
jected precedence relation effectively has a delay . For eq
tion (2.5) is visualized in Figure 2.3. Note that in equation (2.5) and Figure 2.3
implication is in two directions. This means that the precedence is funct
ally equivalent to a precedence with delay , which can be expresse
the DFG.

We have now found a way to derive so calledinter-iteration dependencies[Lam88] or
loop carried dependencies[Govin94] from the normal precedence relations in t
data-flow graph and the initiation interval. We should however also be able to ex
resource conflicts that cross loop boundaries. Therefore Equation (2.2) is generali
Equation (2.6).

(2.6)

The term is called thetime potential of vi.

We are now ready to introduce the traditional High-Level Synthesis scheduling P
lem.

2.3 The High-Level Synthesis scheduling Problem
The general high-level synthesis (feasibility) scheduling problem is formulated as
lows:

Definition 2.5 (High-Level Synthesis Scheduling Problem)Given are a DFG, a
function , an initiation interval II, and a constraint on the latencyl

t A0

A1 B0

0
1
.
.

II

A2 B1

II+1
.
.

2xII

t A0

A1 B0

0
1
.
.

II

A2 B1

II+1
.
.

2xII

II

Figure 2.3 Graphical representation of equation (2.5)

II

Ci Pi→
k II⋅– Ci Pi k+→

Ci Pi→ w k II⋅– k 1=

Ci Pi k+→
Ci Pi→ k II⋅–

rsc vi vj,() 1= s vi() mod II s vj() mod II≠⇒

s vi() mod II

rsc vi vj,()

24 OPERATIONSCHEDULING

s, the

es the
ey79,

early

was
s:
ck
uled
pera-

some
d on a
list

basic
rede-
bility,
ver-

mmu-
loop
ner-
arity
olved
ling
is
t of 3
ted
e do
Fig-
oten-
), and
e key
lue.

dy to
n ana-
care
s and
(completion time). Find a schedule s that satisfies the precedence constraint
resource constraints, and the timing constraints II andl. ❏

The high-level synthesis scheduling problem is NP-complete because it generaliz
NP-complete problem of sequencing with release times and deadlines [Gar
p.236]. The corresponding optimization problems, minimizingl or II, are therefore
NP-hard. As a result, many heuristic approaches can be found in the literature, an
overview of which is given in [McFa90].

By far the most widely used type of schedule heuristic is calledlist-scheduling[Hu61].
List scheduling became well-known after the theoretical treatment in [Coff76], and
introduced in the HLS community by [Girc84]. The basic algorithm works as follow
Starting with clock cycle 0, clock cycles are ‘filled’ with operations. For each clo
cycle, a ‘ready-list’ is kept, containing those operations that are ‘ready’ to be sched
(that is, their predecessors have already been scheduled in earlier clock cycles). O
tions are taken from the ready-list and scheduled at the current clock cycle. When
operations in the ready-list have a resource conflict, an operation is selected base
priority function, and the remaining conflicting operations are moved to the ready
corresponding to the subsequent clock cycle. In this way many variations of the
list-scheduler exist by granting priority based on, among others, the number of p
cessors or successors of an operation, the ASAP value, the ALAP value, the mo
etc. In [Thom90] some experiments are done with different priority functions. An o
view of priority functions can be found in [Heij91].

Researchers from both the general-purpose computing [Rau81] and the HLS co
nity [Goos89] have used the list-scheduling principle for generating pipelined
schedules. It appears to be much more difficult to find good priority functions for ge
ating pipelined schedules than for regular (non-pipelined) schedules. This disp
stems from the fact that for pipelined schedules, resource conflicts have to be s
between operations that belong to different loop iterations. The difficulty in hand
theseinter-iteration conflictsis illustrated with a small example in Figure 2.4. In th
figure, a precedence graph of 5 operations is given. In order to meet the constrain
clock cycles on the initiation interval (II), loop pipelining has to be applied (indica
by the arrow in Figure 2.4 b and c). Because pipelining introduces extra code, w
not want to fold more than once, which constrains the latency to 6 clock cycles. In
ure 2.4b the result of a list scheduler is shown. The left column contains the time p
tial. The list scheduler greedily schedules A, B, and C as soon as possible (ASAP
concludes that D cannot be scheduled. In Figure 2.4c a valid schedule is given. Th
to obtaining this schedule is to postpone B one clock cycle relative to its ASAP va
However, most schedule heuristics (notably list-scheduling) are simply too gree
postpone operations. In Section 3.5 we will demonstrate that an approach based o
lysing the constraints finds the only feasible schedule. In order to this efficiently,
must be taken that the DFG model suffices for expressing most of the constraint
constructions that are allowed.

OPERATIONSCHEDULING 25

DFG
rece-

our
tion,
ower
pera-

n-
f

onse-
2.4 Modelling the constraints
In this Section we show how some of the constraints can be represented in the
model introduced in Section 2.1. We start by expressing the latency in terms of a p
dence relation.

• Latency. In order to model latency, we introduce two (dummy) operations to
DFG model: the source and the sink. The source operation is the ‘first’ opera
and the sink operation is the ‘last’ one, so the start time of each operation is l
bounded by the source operation, and upper bounded by the sink o
tion: . A constraintl on the latency is now
modelled by an arc (sink, source) withw=-l , illustrated in Figure 2.5. This is inter-
preted as , which is equivalent to , mea
ing the sink operation may not be executed more thanl clock cycles after the start o
the source operation.

• Micro coded controller, randomly addressable register files and loop pipelining.
We assume that the architecture contains a micro coded controller. As a c

A

B

0

1

2

pot

C

D ?
B

A

D

C

E

II=3

resource conflicts:A-D
B-D

a)

b)

A

-

0

1

2

pot

B

c)

C

D

E

latency = 6

Figure 2.4 Example with loop pipelining. a) precedence
graph b) list-schedule c) only feasible schedule in 6 clock

vi V∈(): s source() s vi() s sink()<≤∀

s source() s sink() l–≥ s sink() s source() l+≤

26 OPERATIONSCHEDULING

muni-
tions
y the
val)
pera-
ation
fficient
e is an
le

ime

e
, they
n is
time

ns, A
time,

nd to

, the
e able
in the
s. A
quence, the same code is executed every loop iteration. This implies that a com
cated value is written in the same register each iteration. When loop itera
overlap, we have to ensure that a value is consumed before it is overwritten b
next production. Since subsequent productions are exactly II (initiation inter
clock cycles apart, a value cannot be alive longer than II clock cycles. So the o
tion C that consumes a value must execute within II clock cycles after the oper
P that produced the value. Just like the latency constraint, a necessary and su
translation to the precedence model is that for each data dependency (P,C) ther
arc (C,P) with . Note that this constraint is not implied by all register fi
models; in Section 5.1 we treat fifos which can contain values with a lifet
exceeding the initiation interval.

• Pipelined executions and multicycle operations. These are operations that violat
our assumption of operations to take one clock cycle to execute. Conceptually
are split in a number of ‘stages’ for each clock cycle. In our model, an operatio
introduced for each stage of the execution. Subsequent stages are linked in
using two sequence edges as indicated in Figure 2.6. For multicycle operatio
and B occupy the same resource. Pipelined operations are allowed to overlap in
and therefore imply a resource conflict only between operations that correspo
the same pipeline stage.

• Scheduling decisions. When schedule decisions are taken during the process
schedule intervals of other operations are affected. Therefore it is desirable to b
to express a schedule decision in the DFG, so that its effect can be analysed
context of the other constraints. Scheduling decisions may take different form

source

sink

Figure 2.5 Modelling the latency

-l A
C

B

w II–=

OPERATIONSCHEDULING 27

edge.
edges

t
con-
n set
ions)
neral

cause
mple

es. In
egis-
s to
the
timing relation between two operations can be directly translated to a sequence
When an operation A is fixed at a certain clock cycle c, we need two sequence
as indicated in Figure 2.7

• Resource conflicts and instruction set conflicts. In Section 2.1 the resource conflic
model was introduced. In this thesis it is assumed that instruction set
flicts are expressed in the resource conflict model. Relatively simple instructio
conflicts (e.g. that prevent the simultaneous execution of two types of operat
can be expressed in this model by the method explained in [Timm95]. More ge
issue slot constraints require more modelling effort [Bras99].

2.5 Problem formulation
In order to formulate the problem we need to state some assumptions:

• All operations have been mapped to functional units. This is often the case be
instruction selection is usually done prior to the scheduling phase (see for exa
[Liem94]), thus providing a resource binding.

• All values communicated between operations have been mapped to register fil
ASIP-architectures, a functional unit usually gets its operands from a specified r
ter file, so instruction selection (implicitly) determines the assignment of value
register files. Within a register file there are multiple registers however, and
assignment of values to these registers remains to be decided.

B

A

-11

Figure 2.6 Modelling pipelined and multicycle operations

A

source

-cc

Figure 2.7 Modelling a schedule decision

rsc vi vj,()

28 OPERATIONSCHEDULING

value

tion
e for
hed-

an
Sec-
ed.
ay

ined
ches
ges.

hile
rea,
ia:

ress
con-
ional

ith,
tion

e of
mu-

r file.

usu-

h a

the
mul-
sing
• The controller is micro coded. One consequence is that in a pipelined loop a
cannot reside in a certain register for a period longer than theinitiation interval,
which is the period of initiating the schedule for a loop iteration. Another restric
is that a loop-body execution is the same for each loop index. This is not the cas
e.g. the Phideo processor architecture [Meer95], for which potentially better sc
ules can be obtained.

• The initiation interval II for each hierarchical level is fixed prior to scheduling. It c
be fixed by the designer. Otherwise, we start with a lower bound as explained in
tion 2.6. When this value of the Initiation Interval is not feasible, it is increment
Profiling suggests that the optimal II is usually only one or two clock cycles aw
from the lower bound.

In this thesis two different scheduling approaches are treated: one forminimizing the
required number of registers (for ASIC design), the other for handlingfixed register
files (for programming ASIPs). We will call them the unconstrained and the constra
“Register Binding and Operation Scheduling Problem”, respectively. Both approa
serialize value lifetimes during or prior to scheduling by introducing sequence ed
The terms serializing and sequencing will be used as synonyms.

2.5.1 Minimizing the register count

The design of an ASIC typically concerns satisfying performance constraints w
minimizing some cost function. The main criteria involved in the cost function are a
power consumption, and time to market. The register count affects all these criter

• area: although a register occupies silicon area, the physical register isnot the domi-
nant contribution of the register to the silicon area. The control required to add
this register is usually the dominant factor. For example, when a micro-coded
troller is used, going from 8 to 10 registers in some register file requires an addit
instruction bit for the extended address range. If the function is implemented w
say, 5K instructions, the additional 2 registers cost 5K bit (embedded) instruc
rom (far more expensive than two physical registers).

• power consumption: power consumption within a register file grows with the siz
the register files. The main contribution however is (again) in accessing and com
nicating the additional instruction bits required for addressing the larger registe

• time to market: when this is an important criterion programmable processors are
ally preferred. If this solution is too expensive however, we rely on thesynthesizabil-
ity of an ASIC. Synthesizability refers to the suitability of designing the ASIC wit
small effort. It is clear that synthesizability is improved by the use ofstandardcom-
ponents and components that do not require a lot of (manual) effort to ‘push’ to
required performance (timing). Larger register files require a larger depth of the
tiplexer tree in the address decoding part, which is in the critical path of acces

OPERATIONSCHEDULING 29

on in

es

dence

ly, we
itial II

II is
to a

es the
ense
t, the
edence
iven
e. They
ding
iali-
the
alyser
con-
set to be
ive
traint
bse-
ere

int set
e con-
s illus-

are
d the
ibil-

ather
sues.
t ana-
tight,

ome
the register file. Smaller register files therefore require less (manual) manipulati
order to satisfy the timing requirements.

The problem of minimizing the number of registers is defined as follows.

Definition 2.6 (Unconstrained Register Binding and Operation Scheduling
Problem): Given a data flow graph (DFG), the function , a binding of valu
to register files, an initiation interval II, and a constraint on the latencyl. Find an
assignment of values to registers and a schedule s that satisfies the prece
constraints , the resource constraints, and the timing constraints II andl, such
that the total number of registers is minimized. ❏

Because it is difficult to determine a register binding and a schedule simultaneous
decompose the problem into separate phases as depicted in Figure 2.8. First an in
and an initial register binding are constructed. The determination of the initial
explained in Section 2.6. The initial register binding is such that all values assigned
certain register file are assigned to the same register. This register binding requir
least number of registers but will usually be overconstrained (infeasible) in the s
that the register binding is inconsistent with the timing constraints. The central par
constraint analyser (discussed in Chapters 3 and 4), generates additional prec
constraints that are implied by the combination of all constraints, including the g
register binding. These additional precedences prune the schedule search spac
will guide the scheduler and often prevent it from making a schedule decision lea
to infeasibility. When the constraint set leaves some room for different lifetime ser
zations, thelifetime sequencer(on the right of the constraint analyser) chooses
alternative that implies the smallest loss of schedule freedom. The constraint an
(together with the lifetime sequencer) completely replaces the register-binding
straints by precedence constraints. These precedences may cause the constraint
infeasible. Aninfeasibility analysis(discussed in Section 4.2) uses the administrat
bookkeeping done by the constraint analyser to identify the bottleneck in the cons
set and the register binding. The ‘change register binding‘ block in Figure 2.8 su
quently eliminates this bottleneck by placing two values in different registers that w
previously assigned to the same register. This scheme is iterated until the constra
and the register binding are feasible. Finally, the precedences generated by th
straint analyser, are fed to a scheduler. The way the search space is traversed i
trated in Figure 2.9: Starting from a mostly infeasible register binding, bottlenecks
solved until the solution is just feasible, on the border between the R-infeasible an
R-feasible region (see Section 1.4 for definitions of the different types of (in)feas
ity).

An advantage of this approach is that in order to complete the schedule, a r
straightforward scheduler can be used that is unaware of register binding is
Although the existence of a schedule is not strictly guaranteed after the constrain
lyser, a schedule has always been found in practice when the constraints are very
that is, when loop pipelining is applied. When the constraints are not very tight, s

rsc vi vj,()

Ed Es∪

30 OPERATIONSCHEDULING

euris-

ister

e
.

form of backtracking in the scheduler may be desirable. As the scheduler and its h
tics are not critical in this approach, we will not focus on them in this thesis.

Note that a main characteristic of our approach is that we perform register bindingprior
to scheduling. This scheme provides more opportunity for finding an efficient reg

scheduler

constraint
analyzerregister

binding precedence
resource constraints
register binding

yesno

timing

Figure 2.8 Global approach for minimizing the register count

timing

resource constraints
precedence

change

init
II &
reg.bind

feasible?
infeasi-
bility
analyzer

lifetime
sequencer

T-feas

Search space for minimum register count

Figure 2.9 In Figure 2.8 the (register binding) is incremented from the centre of th
overconstrained (R-infeasible) region to the border with the R-feasible region

R-feasible region

the border represents
the most efficient
register bindings

T-infeasible

R-infeasible
search process

OPERATIONSCHEDULING 31

tive of
ning

ection

s

g the
sible
are

blem
a tai-

es
II,
a

traints,

e con-
vious
t the

e the
, but
ini-

tead

ues
earch

, the
rep-

capac-
r of
f val-
effect

t the
that

he cor-
binding, because we are not constrained by a given schedule. From the perspec
scheduling this allows to sacrifice schedule freedom with the explicit goal of obtai
an efficient register binding.

After the basic techniques have been discussed in Chapters 3 and Section 4.1, S
4.2 discusses the infeasibility analyser.

2.5.2 Handling fixed register file sizes

When compiling code for an ASIP (or other programmable processors) using afew
registers as possible is not the ultimate goal: we would rather useall available registers
and find a schedule that takes one clock cycle less to execute. Although minimizin
register count is generally considered a wise approach, it may still yield an infea
register binding: it is conceivable that in some register files very few registers
required at the cost of overloading another (small) register file. Therefore the pro
of handling fixed register file sizes is considered a separate problem that requires
lor-made approach. It is formulated as follows.

Definition 2.7 (Constrained Register Binding and Operation Scheduling
Problem): Given a data flow graph (DFG), the function , a binding of valu
to register files, for each register file rf a fixed capacity c(rf), an initiation interval
and a constraint on the latencyl. Find an assignment of values to registers and
schedule s that satisfies the precedence constraints , the resource cons
the register file size constraints and the timing constraints II andl. ❏

The problem is decomposed into separate phases, as illustrated in Figure 2.10. Th
straint analyser and the lifetime sequencer work exactly as explained in the pre
subsection. The major difference to the approach in the previous section is tha
infeasibility analyser is replaced by the incremental register binder. Furthermor
register binding is initialized such that the binding is R-feasible (see Figure 2.11)
will possibly not respect the fixed register file sizes. Contrary to our approach for m
mizing the register count, we will remain in the R-feasible region from the start. Ins
of looking for anefficient solution in the R-feasible region, we are looking for anarbi-
trary solution in the S-feasible region. We do this by incrementally serializing val
until all register file sizes are respected. First, the constraint analyser restricts the s
scope to the R-feasible region. Similar to the infeasibility analyser in Figure 2.8
incremental register binder tries to identify a bottleneck, but now the bottleneck is
resented by a worst-case overlap of a number of value lifetimes that exceeds the
ity of the corresponding register file. In order to reduce the maximum numbe
overlapping values, the incremental register binder identifies one or more pair(s) o
ues that should be serialized. The constraint analyser subsequently calculates the
of this serialization on the mobility of all operations. This is necessary to preven
incremental register binder (in subsequent iterations) from making serializations
are not possible. The process is repeated until the register requirements respect t

rsc vi vj,()

Ed Es∪

32 OPERATIONSCHEDULING

case

in Fig-
tion
dis-

3 and
responding capacity. Serializations may be undone in a branch & bound manner in
the R-infeasible region is reached.

Figure 2.11 depicts the search space and the way it is traversed in the approach
ure 2.10. A major difference with our approach for the minimization problem (Sec
2.5.1) is that we remain in the R-feasible region. The incremental register binder is
cussed in Section 4.4 after our treatement of the basic techniques in Chapters
Section 4.1.

scheduler

constraint
analyzer

yesno

timing

Figure 2.10 Global approach for mapping to fixed register files

resource constraints
precedence

init II &

values

lifetime
sequencer

incremental
register binder

reg. binding

fit in
regs?

Search space for fixed Register Files

Figure 2.11 In Figure 2.10, the register binding is refined from the R-feasible
region to the border with the S-feasible region.

search process

R-feasible region

S-feasibleR-infeasible

T-feas

T-infeasible

OPERATIONSCHEDULING 33

nd
urce

ra-

e
ly if

it is
that

his is
rence
t prec-

s, we

the
2.6 Initialization of the initiation interval
The initiation interval is initialized with a lower bound, and incremented if the bou
cannot be met. A lower bound on the initiation interval results both from the reso
constraints and from the precedence edges.

First consider the resource constraints . We associate a so calledconflict
graphCG with in the following way. A node in CG corresponds to an ope
tion. There is an edge in CG between nodesvi andvj if and only if . Let

denote thechromatic indexof CG, which is the minimum number of colours (tim
potentials) required to colour CG. A valid schedule with II time potentials exists on
there exists a valid colouring with II colours. Therefore is a lower bound to II:

(2.7)

Another lower bound is determined by the precedences [Reit68]. In Section 2.2
derived that for two operations P and C, such that , it is necessary

. Rewriting this inequality (and rounding) yields

, (2.8)

where k equals the number of iterations this dependency crosses (). T
called the iteration distance between C and P, and is denoted by . The diffe
between the start times s(C) and s(P) is lower bounded by the delay of the longes
edence path from P to C in the DFG. This delay is called thedistanced(P,C). (formally
defined in Section 3.3) Because the inequality must hold for each pair of operation
conclude that

(2.9)

Combining inequalities (2.6) and (2.9) yields

(2.10)

Profiling suggests that the minimum initiation interval is in most cases equal to
lower bound in (2.10), and rarely more than one clock cycle away from it.

rsc vi vj,()
rsc vi vj,()

rsc vi vj,() 1=
γ

γ

II γ≥

Ci Pi k+→
s Pi() s Ci() k II⋅–≥

II s C() s P()–
k

----------------------------≥

Ci Pi k+→
id C,P()

II max vi vj,()
d vj vi,()

id vi vj,()
--------------------≥

II max γ max vi vj,()
d vj vi,()

id vi vj,()
--------------------,

 
 
 

≥

34 OPERATIONSCHEDULING

SCHEDULING WITH RESOURCECONSTRAINTS 35

t has
any

al and
. In
in the
arch,

appli-
erme-
mpiler
code

ssign-
, the
ment).
wing

uling
The

straint
re for
lated

is dis-
hich
Sec-

some

ction
rey79,
plete

most
mming
ti-
Chapter

3 Scheduling with Resource

Constraints

Scheduling operations that share a limited number of resources is a task tha
received attention from many different, often industrially related research areas. M
of the theoretical results stem from the area of operations research. A rather gener
certainly very popular ‘model’ in this area is called Job Shop Scheduling [Coff76]
electronic design automation, scheduling is considered to be a dominant step
high-level synthesis phase [McFa90]. The same is true in modern compiler rese
where parallel processors occur frequently as a compiler target. In most practical
cations the scheduling problem is interwoven with several other tasks, such as (int
diate) storage assignment and the assignment of operations to resources. In co
and High-Level Synthesis (HLS) research, these three tasks roughly comprise the
generation phase. In this thesis no attention is paid to the problem of resource a
ment. We have argued in Section 1.3.1 that for our target architectures (VLIW)
emphasis in code generation is on scheduling and register binding (storage assign
The interaction between scheduling and register binding is considered in the follo
chapters.

This chapter is structured as follows. In Section 3.1 an introduction to the sched
problem is given, justifying the constraint analysis approach taken in this thesis.
perspective of schedule freedom, essential for understanding the concept of con
analysis, is introduced in Section 3.2. The distance matrix, the central data structu
storing and combining constraint analysis results, is treated in Section 3.3. Re
work is discussed in Section 3.4. The way resource constraints are analysed
cussed in Section 3.5. In Section 3.6 the analysis is integrated with scheduling, w
comprises our approach for scheduling with resource constraints [Mesm97a]. In
tion 3.8 the complexity of this approach is discussed, and Section 3.9 shows
experimental results.

3.1 Introduction
The general High-Level Synthesis Scheduling Problem (HLSSP), introduced in Se
2.1, is a generalization of SS1, sequencing with release times and deadlines [Ga
p. 236]. Since SS1 is proven NP-complete in the strong sense, HLSSP is NP-com
in the strong sense as well. In order to keep run times within reasonable limits,
research focuses on heuristics rather than ‘exact’ methods such as Integer Progra
(IP) or Branch & Bound (B&B). Heuristics typically run fast without guaranteeing op

36 SCHEDULING WITH RESOURCECONSTRAINTS

e run
ty of
‘opti-
tion
ch as

till rely
tes a
case,

 valid.

ts.

of the
mality, whereas exact methods guarantee optimality but may require excessiv
times. However, the emphasis of typical scheduling problems is shifting: Feasibili
the schedule (satisfying the constraints) often plays a more important role than
mality’. The emphasis on satisfying constraints originates both from the applica
area (strict timing constraints) and efficient architectures (resource constraints), su
ASIPs. It is no surprise that the early research that focuses on these constraints, s
on the same old heuristics. This is illustrated in Figure 3.1. A heuristic genera
schedule. It is checked if this schedule satisfies the constraints. If this is not the
either

• The heuristic is run again, but using different ‘priorities’ (Section 2.3)

• A bottleneck is searched for, and a repair action is taken to make the schedule

• The designer or programmer is asked for ‘hints’ on how to solve certain conflic

This process may iterate many times, which becomes clear from the perspective
schedule scope, which is the search space depicted in Figure 3.2.

checkconstraints

scheduler

application

Figure 3.1 Traditional approach for satisfying constraints

(heuristic)

scope of heuristic scheduler

feas

Figure 3.2 The scope of a heuristic scheduler

SCHEDULING WITH RESOURCECONSTRAINTS 37

The
eration
on in
gion

raints
ely

n find
sible

takes
of the
ach is
ally to

und

. Care
solu-
per-

ction
aints)
way to
e and
mpre-
this

ive of
is point
intro-
In this figure, ‘feas’ indicates the region of solutions that satisfy all constraints.
area surrounding it represents the search scope of a heuristic scheduler. One it
through the scheduler in Figure 3.1 corresponds with one ‘randomly’ chosen soluti
the search space of Figure 3.2. The probability that this solution is in the feasible re
is proportional to the fraction of the search space that is feasible. So if the const
are very severe the probability of finding a feasible solution in an iteration is extrem
small. As a result many iterations may be required, and the scheduler may not eve
a feasible solution. Furthermore, there is no way of knowing if there exists a fea
solution at all.

For problems with tight constraints it is clearly desirable to have an approach that
these constraints much earlier and much more directly into account in the course
scheduling process, such as depicted in Figure 3.3. In this thesis such an appro
proposed. Constraints are analysed and exploited to prune the search space, ide
the one depicted in Figure 3.4. Either a (traditional) heuristic or a Branch & Bo

method can then be used to traverse this space by making schedule decisions
should be taken that after each decision the search space is pruned to eliminate
tions inconsistent with this decision. This pruning of the search space has to be
formed in a way that can be interpreted by the scheduler (heuristic or B&B). In Se
2.4 we saw that most of the practical constraints (except for the resource constr
can be modelled in terms of precedences. Precedences are therefore a powerful
express additional constraints that emerge from the combination of precedenc
resource constraints, and can therefore be used to make pruning information co
hensible for the scheduler. Providing simple but powerful pruning rules based on
observation, is the main contribution of this chapter.

The rest of this chapter is organized as follows. Section 3.2 provides a perspect
the search space (schedule freedom) that makes sense from the constraint analys
of view. In Section 3.3 a representation of this search space (distance matrix) is

constraints

scheduler

application

Figure 3.3 Constraint oriented approach for satisfying constraints

feas

Figure 3.4 Ideal search space

38 SCHEDULING WITH RESOURCECONSTRAINTS

ling:
actual
uced,

xity of

. In
.5) it

oper-
find

ruc-
ating
aints,
et of

of
ts, the

ferent

ge

hedule
e for
edule
ation.
con-

rom a
duced which is sufficient for expressing the information most relevant for schedu
ordering information. Section 3.4 discusses some related work. In Section 3.5 the
pruning rules are treated. In Section 3.6 the general scheduling approach is introd
integrating constraint analysis and scheduling. Section 3.8 discusses the comple
this approach and Section 3.9 shows some experimental results.

3.2 Schedule freedom
In Section 2.1 we have introduced the High-Level Synthesis Scheduling Problem
order to solve this problem (and the extended scheduling problem from Section 2
is convenient to describe the set of possible solutions, thesolution space. In this subsec-
tion we will describe the solution space as a range of possible start times for each
ation. Because this set of feasible start times is at least as difficult to find as it is to
a schedule, we will approximate it by the so called ASAP-ALAP interval, the const
tion of which is solely based on the precedence constraints . By gener
additional precedence constraints that are implied by the combination of all constr
the ASAP-ALAP interval provides an increasingly more accurate estimate of the s
feasible start times.

We start with a description of the solution space:

Definition 3.1 (set of feasible schedules)The set of feasible schedules S is the set
schedules such that each schedule satisfies the precedence constrain
resource constraints, and the timing constraints. ❏

An operation thus has a range of feasible start-times, each corresponding to a dif
schedule.

Definition 3.2 (set of feasible start times) ,
where N denotes the set of natural numbers. ❏

Definition 3.3 (actual schedule freedom)The actual schedule freedom is the avera
size of the set of feasible start times minus one:

❏

The minus one enforces that the actual schedule freedom equals zero when the sc
is completely fixed. The actual schedule freedom quantifies the amount of choic
making schedule decisions. For traditional schedule heuristics a large actual sch
freedom is advantageous because it gives the scheduler more room for optimiz
The actual schedule freedom is however defined by the constraints, so for tightly
strained scheduling problem instances a feasible solution cannot be expected f
heuristic scheduler.

Ed Es∪

s S∈

T vi() T vi() c N s S: svi()∈∃∈ c={ }=

1
V
------- T vi() 1–[]

vi V∈
∑⋅

SCHEDULING WITH RESOURCECONSTRAINTS 39

ule.
most

LAP
con-

de-

xists

clu-

et of

y the
dded
The set of feasible start times is formally as difficult to find as a feasible sched
Therefore, conservative estimates of the schedule interval are more practical. The
widely used estimate of the set of feasible start times is the so called ASAP-A
interval. It is based solely on the precedence constraints and the latency
straint.

For the definition of the ASAP-ALAP interval we need the notion of immediate pre
cessors and successors:

Definition 3.4 (immediate predecessors, successors)

❏

The ASAP (as soon as possible) value is defined as:

Definition 3.5 (ASAP value)

The latest possible start time is called the ALAP (as late as possible) value. It e
only if the latency (completion time) of the schedule is bounded. Letl denote the
latency constraint. Then ALAP(sink)=l, and for all other operations:

Definition 3.6 (ALAP value)

The start time of each operation must lie in between the ASAP and ALAP value in
sively:

(3.1)

Therefore the ASAP-ALAP interval is a conservative estimate of (contains) the s
feasible start times.

In this chapter we will extract sequencing constraints that are necessarily implied b
combination of all constraints. These sequencing constraints are then explicitly a

Ed Es∪

v V∈(): pred v()∀ u V∈ u v,() E∈{ }=

v V∈(): succ v()∀ u V∈ v u,() E∈{ }=

if pred v() ∅=

if pred v() ∅≠
ASAP v()

0

max
u pred v()∈

ASAP u() w u v,()+()






=

if succ v() ∅=

if succ v() ∅≠
ALAP v()

l 1–

min
u succ v()∈

ALAP u() w u v,()–()






=

vi V∈(): ASAP vi() s vi() ALAP vi()≤≤∀

❏

❏

40 SCHEDULING WITH RESOURCECONSTRAINTS

ter-
es is

rece-
made
flect

ched-
eration
ulting
re-

king
racy of
the

te of
efore

iffi-
ts in
from
d with
ls
arch
ch are
ection

of
],

per
new

e
per-
asible
ques

ervals
aver-
to the DFG as precedence constraints, yielding a narrowing of the ASAP-ALAP in
vals. This way an increasingly more accurate estimate of the set of feasible start tim
obtained. For most scheduling methods, either the ASAP-ALAP intervals or the p
dence constraints are an extremely important guideline. Schedule choices are
with respect to the available resources. When the ASAP-ALAP interval does not re
the actual schedule freedom very accurately, there will often come a point in the s
ule process where there are no available resources for an operation, and the op
cannot be scheduled. In this way, the precedence constraints and the res
ASAP-ALAP interval implicitly represent the ‘search scope’ of the scheduler. The
fore we also define the ‘apparent freedom’, also called mobility or slack.

Definition 3.7 (apparent schedule freedom, mobility, slack)The apparent schedule
freedom is the average size of the set of ASAP-ALAP intervals:

❏

Because the precedences and the ASAP-ALAP interval form the basis for ma
schedule decisions, the performance of a scheduler depends largely on the accu
this interval as an estimate of the set of feasible start times . When
ASAP-ALAP interval is an accurate estimate, the mobility is an accurate estima
the actual schedule freedom and vice versa. Therefore we will use the mobility b
and after the constraint analysis as a performance measure of the analysis.

Example. In Section 2.3 we showed an example (Figure 3.5) that illustrates the d
culty of greedy schedulers (particularly list-schedulers) to handle resource conflic
the context of pipelined loop schedules. We will now make the same observation
the perspective of schedule freedom. In Figure 3.5, the operations are annotate
their ASAP-ALAP intervals. The mobility according to Definition 3.7 equa
(1+1+1+1+1)/5= 1 clock cycle per operation, roughly corresponding to the se
space in Figure 3.2. In Figure 3.7 the subsequent steps of our scheduling approa
depicted in which sequencing constraints are added. These steps are justified in S
3.5, but are not relevant for this discussion. In Figure 3.7 b), a sequence edge
weight 4 is added. The new ASAP-ALAP intervals are: A=[0;0], B=[1;2], C=[2;3
D=[4;4], and E=[5;5]. The mobility is reduced to (0+1+1+0+0)/5= 0.4 clock cycle
operation. In Figure 3.7 d), a sequence edge of weight 2 is added. The
ASAP-ALAP intervals are: A=[0;0], B=[2;2], C=[3;3], D=[4;4], and E=[5;5]. Th
mobility is reduced to (0+0+0+0+0)/5= 0 clock cycle per operation. That is, every o
ation is fixed. This corresponds to the search space in Figure 3.4, where the fe
region consists of only one solution. In this particular example the pruning techni
are able to reduce the mobility to the exact schedule freedom.

3.3 Representing the search space: the distance matrix
In the previous section the search space was represented using ASAP-ALAP int
and the amount of schedule freedom was expressed as the mobility, which is the

1
V
------- ALAP vi() ASAP vi()–()

vi V∈
∑⋅

T vi()

A D→

A B→

SCHEDULING WITH RESOURCECONSTRAINTS 41

ing

the
s is

suit-
earch

-

basic
tion.
age cardinality of the ASAP-ALAP intervals. This representation offers the follow
advantages:

• It is a rather simple representation. For each operation two figures define
ASAP-ALAP interval. The memory requirements for administrating the interval
therefore in the order O(V).

• The transparency of the terminology appeals to the human mind and is therefore
able for discussing and explaining the concepts of schedule freedom and s
space pruning.

• This representation is easy to derive. Essentially adepth first search[Corm90, p.
477] has to be performed with a complexity of only O(V+E).

• It allows for a simple infeasibility check: if, for an interval [lb;ub], , no solu
tion exists.

However, the interval representation is not able to accurately represent the most
and important type of constraints for scheduling: ordering (precedence) informa

A

B

0

1

2

pot

C

D ?
B

A

D

C

E

II=3

resource conflicts:A-D
B-D

a)

b)

A

-

0

1

2

pot

B

c)

C

D

E

latency = 6

Figure 3.5 Example with loop folding. a) precedence graph
b) list-schedule c) only feasible schedule in 6 clock cycles

[0;1]

[ASAP;ALAP]

[1;2]

[2;3]

[3;4]

[4;5]

ub lb≤

42 SCHEDULING WITH RESOURCECONSTRAINTS

exe-
, as
n Fig-
cuting
.6a).

n-
dis-

e 3.5
the
ns is
com-
est

t
ce is

senta-
ssed
s.

ces
This is illustrated in Figure 3.6. Figure 3.6a) specifies that operation A should start
cuting at least one clock cycle before operation B. The ASAP-ALAP intervals
derived from this precedence constraint and the latency constraint, are depicted i
ure 3.6b). The interval representation suggests that operation B may start exe
strictly before operation A, which contradicts the precedence specified in Figure 3

In this section thedistance matrixis introduced, and it will be shown that this represe
tation isstrictly more accurate than the interval representation. In order to define
tance, first the concept of a path is introduced:

Definition 3.8 Definition 10 (path): A path of length d from operationvi to operation
vj is a single chain of precedencesvi vk vl vj that implies

. ❏

Definition 11 (distance): The distance d(vi, vj) from operationvi to vj is the length of
the longest path fromvi to vj. ❏

A path in the graph thus represents a minimum timing delay. For example, in Figur
the path indicates a minimum timing delay of 2 clock cycles between
start times of A and C. Finding the longest paths between each pair of operatio
equivalent to the all-pairs shortest path problem. The corresponding algorithmic
plexity is less than O(V3) [Corm90, Ch.26]. The distances corresponding to the long
paths can be administrated in a matrix called thedistance matrix, where entry dij repre-
sents the distance from operationvi to operationvj. In cyclic graphs, a path can exis
from an operation to itself. If the constraint set is feasible, the corresponding distan
always less or equal to zero. If not, the constraint set is infeasible.

The distance matrix representation is strictly more accurate than the interval repre
tion. This follows from Theorem 3.1 and the observation that the information expre
in the distance matrix cannot always be accurately expressed in terms of interval

B

A
1

a)

order: interval:

latency=4

b)

0

1

2

3

A B

t

Figure 3.6 The interval representation does not accurately represent preceden

→ → … → →
s vj() s vi() d+≥

A B C→ →

SCHEDULING WITH RESOURCECONSTRAINTS 43

ed: A
ub.
ded

pre-
orithm)

ple in
in the
con-

terval
ucture
-

av-
are

tions.
terval
f the

isfac-
allow
con-
s for
varia-
bina-
arch

onsist-
Theorem 3.1Any interval can be represented in terms of precedences.

Proof. An interval [lb;ub] for operation A means that

(3.2)

To represent this interval in the distance matrix the following precedences are add
precedence with weight lb and a precedence with weight -
Now by definition s(source)=0. According to inequality , the meaning of the ad
precedences is:

(3.3)

Now inequality (3.3) reduces to inequality (3.2), which proves the theorem. ❑

The proof shows how results from analyses on intervals, like [Timm95], can be re
sented as precedences, and therefore be combined (using the longest path alg
with the results of other types of analyses expressed as precedences. The exam
Figure 3.6 shows that the other way around is not true: the information expressed
distance matrix cannot always be accurately expressed in terms of intervals. We
clude that the distance matrix representation is strictly more accurate than the in
representation.The disadvantage of the distance matrix is that the data str
required to store it has a complexity of order O(V2), whereas the corresponding com
plexity for the interval representation is of order O(V). In this thesis we will rely he
ily on the process of serializing operations. For determining which serializations
useful it is important to have an accurate description of the relative order of opera
The analyses treated in this thesis therefore work on the distance matrix. The in
representation and the mobility will still be used to explain and discuss some o
concepts of constraint analysis.

3.4 Related work in constraint analysis
[Nuijt94] reports results on the TRCSP, the Time and Resource Constrained Sat
tion Problem. General constraint satisfaction techniques are employed that
(some) exploitation of the problem specific knowledge. For an instance of the
straint satisfaction problem (CSP) a set of variables is given, a domain of value
each variable, and a set of algebraic inequalities on the assignment of values to
bles. In TRCSP, a variable exists for each operation. The domain consists of com
tions of a set of resources and a start time. In [Nuijt94] widely used tree se
algorithms are employed. The emphasis is onconsistency checking, removing incon-
sistent values of unassigned variables when a variable is assigned. In this thesis c

s A() lb≥
s A() ub≤

source A→ A source→

s A() s source() lb+≥ lb=

s source() s A() ub–≥ s A() ub≤⇒

44 SCHEDULING WITH RESOURCECONSTRAINTS

ution.

-

ming
con-
and
mmu-
sched-
ver,
ase

ecu-
xecu-
t of a
n exe-
ence
creas-
other
keeps

orpo-
com-
s have
in
raint
tion,

is
esis,
aran-
tech-
iques

intro-
is pre-

ned in
95]
ency checking is called search space pruning, which comprises the major contrib
For the other tree search components,variable and value selection(making scheduling
or assignment decisions) anddead end handling(backtracking), relatively simple algo
rithms suffice according to [Nuijt94].

In [Kuch97] schedule constraints are expressed in Constraint Logic Program
(CLP), a generally applicable programming language for describing (linear)
straints. A branch & bound algorithm with depth-first-search is employed. Timing
resource constraints are satisfied, while minimizing system resources (mostly co
nication busses). The resource constraints are extended to handle loop pipelined
ules. For relatively small examples without pipelining, run-times are good. Howe
run-times tend to grow exponentially with the number of constraints, which incre
with the number of ‘processes’, and is much larger for pipelined schedules.

In [Timm95] a bipartite matching formulation is used to analyse the matching of ex
tion intervals of operations to execution intervals of resources. Reductions in the e
tion intervals are obtained by showing that some matchings can never be par
complete matching. The bipartite-matching approach is based on the concept of a
cution interval. It keeps the resource constraints fixed, while ‘relaxing’ the preced
constraints. The search space is pruned (intervals are reduced) by incorporating in
ingly more precedence constraints. The approach taken in this thesis works the
way around: it is based on sequence relations between operations, and therefore
the precedence relations fixed. Additional sequence relations are identified by inc
rating increasingly more resource constraints. Theorem 3.1 shows that these two
plementary analyses can be combined using the distance matrix. These analyse
been integrated in theFACTS environment [Mesm99c]. Furthermore, the analysis
[Timm95] provides a way to identify bottlenecks in the resource usage. In const
satisfaction terms this implies that the work is suitable for variable and value selec
and therefore it is currently the main scheduler inFACTS.

In [Eijk99] symmetry in the algorithm specification (in the Data Flow Graph)
exploited to prune the search space. Contrary to [Timm95] and the work in this th
feasible solutions in the search space may be eliminated. This is justified by the gu
tee that solutions remain which are essentially equivalent to those eliminated. Two
niques are proposed that automatically detect and utilize symmetry. These techn
are based on finding automorphisms (in terms of group theory). Both techniques
duce sequence edges between operations such that the feasibility of the problem
served while the symmetry is broken. The analysis results can therefore be combi
a straightforward manner using the distance matrix with the analyses from [Timm
and the work in this thesis. This work has also been integrated in theFACTS environ-
ment.

SCHEDULING WITH RESOURCECONSTRAINTS 45

tional
ource
.5.

ce-
.

tain a
l is to
s the
gth
dge
n in
-3
ed by
n in
les.
. The
at the
one

sym-
picted
e to
l result

e-
g.

ce
is
3.5 Sequencing as a result of resource conflicts
In this section two lemmas are introduced that assert the necessity of an addi
sequence constraint, resulting from the combination of existing sequence and res
constraints. The first lemma will help us to solve the schedule problem in Figure 3

Lemma 3.2:If d(vi, vj) 0 (mod II) and , we can add a sequence pre
dence edge (vi, vj) with weight without excluding any feasible schedules

Proof: The resource conflict causes the minimum distance d(vi, vj) to be
infeasible. Therefore the minimum distance is at least one clock cycle larger. ❏

In the schedule problem instance depicted in Figure 3.5, the key decision to ob
feasible schedule is to put a gap of one clock cycle between A and B. So our goa
derive that d(A,B) = 2. In Figure 3.7 this derivation is given. Figure 3.7a represent
complete original DFG model. In Figure 3.7a we see a path of len
3 0 mod II from A to D. According to Lemma 3.2 we can add a sequence e

of weight 4 because A and D have a resource conflict. This edge is draw
Figure 3.7b. There is a path of length 1+1-6+0+1 =
clock cycles. Because of the resource conflict D-B, this length has to be increas
one clock cycle. This gives a sequence edge of weight -2, as give
Figure 3.7c. We conclude by finding a path of length 4-2=2 clock cyc
In Figure 3.7d the associated sequence edge (A,B) of weight 2 is explicitly drawn
precedence relations now completely fix the schedule. The reader can verify th
[ASAP, ALAP] intervals based on the extended DFG of Figure 2.7d all contain just
clock cycle, and the mobility equals zero.

The second lemma we present in this chapter is more complicated, and involves
metry in the precedence graph. Consider the small piece of precedence graph de
in Figure 3.8. The distance from A to D is two clock cycles. However, B and C hav
be ordered because they have a resource conflict, and both possible orderings wil
in d(A,D)=3. Lemma 3.2 will not help us here. In DSP-algorithms this type of symm
try occurs frequently. Lemma 3.3 copes with this issue in the context of loop foldin

Lemma 3.3: For each pair of operationsvi andvj such that , if there is an
operation p such that (mod II), and an operation s such that

, we can add a sequence edge (p, s) with weight
d(p,vi) + d(vi,s) + 1

Proof: The resource conflict causes a minimum distan
to be infeasible. Therefore the minimum distance

at least one clock cycle larger. ❏

≡ rsc vi vj,() 1=
d vi vj,() 1+

rsc vi vj,() 1=

A B C D→ → →
≡

A D→
D E sink source A B→ → → → →

D B→
A D B→ →

rsc vi vj,() 1=
d p vi,() d p vj,()≡

d p vi,() d vi s,()+ d p vj,() d vj s,()+=

rsc vi vj,() 1=
d p vi,() d vi s,()+ d p vj,() d vj s,()+=

46 SCHEDULING WITH RESOURCECONSTRAINTS

ence

AP
be

G have
fol-
o
,H)
In Figure 3.8, operation p is A, and s is D. As a result of lemma Lemma 3.3 a sequ
edge may be added of weight d(A,B) + d(B,D) + 1 = 3.

In Figure 3.9, the symmetry is of a slightly different kind. As can be seen in the AS
schedule, the only way the minimum distance of 4 clock cycles from A to H can
realized, is to schedule operations B and G at the same potential. Because B and
a resource conflict, the distance from A to H is not 4, but 5 clock cycles. This also
lows from Lemma 3.3: d(A,B) = 1 and d(A,G) = 3, so d(A,B) d(A,G) (mod 2). Als
d(A,B) + d(B,H) = 4 and d(A,G) + d(G,H) = 4, so we may add a sequence edge (A
of weight 5.

B

A

D

C

E

II=3

resource conflicts:

a) b) c) d)

latency = 6

-6

sink

source

B

A

D

C

E

-6

sink

source

4

B

A

D

C

E

-6

sink

source

4

-2

B

A

D

C

E

-6

sink

source

4

-2

2

Figure 3.7 Derivation of a schedule for Figure 2.4

A-D

B-D

A D→

≡

SCHEDULING WITH RESOURCECONSTRAINTS 47

l
pera-

ed in
el of

ciated
unica-
ist that
3.6 Sequencing for an extended resource constraint mode
The previous section discussed some rules for serializing operations when two o
tions have a resource conflict according to the resource conflict model introduc
Section 2.1. An extension of Lemma 3.2 can be derived for a more general mod
resource constraints. In this model, also used by [Timm95], an operation is asso
with a number of resource usages. These include e.g. addition, read port, comm
tion bus, etc. For each resource usage a number of resource instances may ex

A

B C

D

resource conflict: B-C

d(A,D)=2 ?

Figure 3.8 Too much apparent mobility due to symmetry

A

B C

D E

F G

H

II=2

resource conflict: B-G

d(A,H)=4 ?

0

1
pot

A

BC

DE

FG

H

Figure 3.9 Applying rule 2 with loop folding

48 SCHEDULING WITH RESOURCECONSTRAINTS

y of a
quiva-
ses.
e. The
source
ation is
ea to n

.

(

t
either

ces are

e

perform this resource usage. In this thesis it is assumed that the execution dela
resource usage is independent of the specific resource instance. This model is e
lent to the resource conflict model introduced in Section 2.1 in the following two ca
The first is the situation that only one resource instance exists for a resource usag
other is the case that resource binding has been performed. In both cases re
usages are associated with a specific resource instance. In Section 3.6.1 the situ
discussed where two resource instances exist. Section 3.6.2 generalizes the id
resource instances.

3.6.1 Sequencing for two resource instances

We start with the case that no loop pipelining is applied. Letvi, vj, vk denote three oper-
ations that share a resource usage, of which two resource instances are available

Lemma 3.4If d(vi, vj) = 0 and d(vj, vk) = 0, we can add a sequence precedence edgevi,
vk) with weight 1 without excluding any feasible schedules. ❏

Proof: Suppose that the distances d(vi, vj) = 0 and d(vj, vk) = 0 are the minimum dis-
tances in a feasible schedule. Thenvi, vj, andvk all execute in the same clock cycle. Bu
this requires three resource instances, whereas only two are available. Therefore

or . Both cases result in . ❏

Lemma 3.4 is depicted in Figure 3.10.

We now generalize Lemma 3.4 to the case that loop pipelining is applied. Letvi, vj, vk
denote three operations that share a resource usage, of which two resource instan
available.

Lemma 3.5If d(vi, vj) 0 (mod II) and d(vj, vk) 0 (mod II), we can add a sequenc
precedence edge (vi, vk) with weight without excluding any feasi-
ble schedules. ❏

d vi vj,() 1≥ d vj vk,() 1≥ d vi vk,() d vi vj,() d vj vk,()+ 1≥ ≥

B

A

C

0

0

2 resources

B

A

C

0

0

1

Figure 3.10 Lemma 3.4

≡ ≡
d vi vj,() d vj vk,() 1+ +

SCHEDULING WITH RESOURCECONSTRAINTS 49

es
is
either
e

del a
read
f nor-
les

traint
order
tive
one

pera-
of

ore
lay of

uppose
are
Proof: Suppose that and are the minimum distanc
in a feasible schedule. Thenvi, vj, andvk all execute in the same time potential. But th
requires three resource instances, whereas only two are available. Therefore

or . Both cases result in a lower bound for th
distance ❏

Lemma 3.5 is depicted in Figure 3.11.

Example.Consider the example depicted in Figure 3.12. Operations F and G mo
pipelined multiplication (Section 2.4). We only consider the resource usage of a
port (two instances available) and a write port (two instances available). The use o
mal (randomly addressable) registers limits all value lifetimes to two (II) clock cyc
(Section 2.4), which justifies all the dashed backward edges with d=-2. This cons
set is infeasible, as the reader may find out when trying to construct a schedule. In
to prove infeasibility, Lemma 3.5 is repeatedly applied to the graph in a cumula
manner, as depicted in Figure 3.13, until . In this figure, each numbered row is
application of Lemma 3.5. In each row, the circled operations denote the role of o
tions vi, vj, andvk resp. In the first row, for example, there is a path from C to E
length 2 (= 0 mod II), and a path from E to G of length -2 (= 0 mode II). Theref
Lemma 3.5 applies, and a sequence edge from C to G can be added with a de
2-2+1=1 clock cycle.

3.6.2 Sequencing for N resource instances

We now generalize Lemma 3.5 to the case where N resources are available. So s
there exist operations that share a resource usage of which N
available. The following is an application of the well-known pigeon-hole principle.

Lemma 3.6 If d(vi, vi+ 1) 0 (mod II) for all , we can add a sequence
precedence edge (v0, vN-1) with weight without excluding any
feasible schedules. ❏

B

A

C

2 resources

B

A

C
Figure 3.11 Lemma 3.5

n II⋅

m II⋅

n II⋅

m II⋅

n m+() II⋅ 1+

d vi vj,() n II⋅= d vj vk,() m II⋅=

d vi vj,() n II⋅ 1+≥ d vj vk,() m II⋅ 1+≥
d vi vk,() d vi vj,() d vj vk,()+ n II⋅ m II⋅ 1+ +≥ ≥

v0 v1 … vN-1, , , V∈

≡ 0 i N 2–≤ ≤
1 d vi vi 1+,()

0 i N 2–≤ ≤
∑+

50 SCHEDULING WITH RESOURCECONSTRAINTS
F

G
1 -1

II=2 Resource usage:

A,C,E,G: write port (2 available)

Figure 3.12 The derivation in Figure 3.13 proves
infeasibility of the constraint set

B

A

D

C

E

d=-2

d=-2

d=-2

d=-2
1

1

1

1

1
d=-2

A,C,E,F: read port (2 available)

Figure 3.13 Deriving infeasibility of the constraint set in Figure 3.12

C
1

D
1 E -2

G C G1

F
1

G
1 E -2

D C
-2 F C-1

A
1

B
1 C 1

G F
-1 A F3

A
3

F
1 G -1

F C
-1 A C3

C
1

G
-1 F 1

G E
1 C E3

A
3

C
3 E -2

G A G5

A
5

G
-1 F 1

G E
1 A E7

G
-1

F
-1 C -2

B A
-2 G A-5

E
-2 G -1

F C
-1

E C-3

F
1

G
-5 A 7

E C
-3 F C1

F
1 C 1

G F
-1 infeasible!

1) write ports:

2) read ports:

3) read ports:

4) write ports:

5) read ports:

6) write ports:

7) read ports:

8) write ports:

9) write ports:

10) read ports:

SCHEDULING WITH RESOURCECONSTRAINTS 51

a
this
feasi-

mbi-
mma
t
olve
ach is
uning
sis are
duler.
d fea-
tions
n on
sential
is iter-
es are
ult,
aints
ly, in
only a
track-

ple as
ional
edule
con-
Proof: Suppose for . If these distances are minimal in
feasible schedule, then all execute in the same time potential. But
requires N+1 resource instances, whereas only N are available. Therefore in any
ble schedule there is at least onei: such that . As a result,

. ❏

3.7 Schedule approach
In the previous section we have shown some pruning rules for coping with the co
nation of precedence and resource constraints. The pruning rule resulting from Le
3.2 has been implemented and integrated in theFACTS code generation environmen
[Eijk00], [Mesm01]. In this section the pruning rules are used in an approach to s
the problem of scheduling with precedence and resource constraints. This appro
depicted in Figure 3.14. The idea is as follows: The constraint analyser uses the pr
rules to prune the search space as much as possible. The results of this analy
expressed in terms of additional sequencing relations which are provided to a sche
The scheduler makes a decision, which eliminates solutions previously considere
sible. By expressing the schedule decision in terms of additional sequencing rela
(Figure 2.7), the constraint analyser on its turn calculates the effect of this decisio
the search space. Additional sequencing constraints are added, which are the es
consequence of both the constraints and the schedule decision(s). This process
ated until the schedule is fixed. It should be emphasized again that the pruning rul
not guaranteed to eliminateeveryinfeasible solution from the search space. As a res
the scheduler may still make decisions that lead to infeasibility. When the constr
are very tight, a Branch & Bound method may therefore be desirable. Fortunate
this case the constraint analyser will effectively reduce the search space such that
limited number of schedule decisions are required. Furthermore, support for back
ing is offered by infeasibility detection, see Section 3.3.

The schedule approach is illustrated in Figure 3.15. This is almost the same exam
in Figure 3.5, but there is no constraint on the latency, and there is an addit
resource conflict C-D. Note that in this case, a list-scheduler would construct a sch
in the same way as in Figure 3.5b), and fail. This failure is not due to a latency
straint, but the result of the resource constraints.

d vi vi 1+,() ki II⋅= 0 i N 2–≤ ≤
v0 v1 … vN-1, , ,

0 i N 2–≤ ≤ d vi vi 1+,() ki II⋅>
d v0 vN 1–,() 1 d vi vi 1+,()

0 i N 2–≤ ≤
∑+≥

Analyzer Scheduler

sequencing
constraints

decision

additional

Figure 3.14 Global approach for scheduling

52 SCHEDULING WITH RESOURCECONSTRAINTS

are
e
muni-
d in
e edge
d

-D.

le 1.
e

The initial execution intervals (before any analysis or constraint modelling)
A=[0;], B=[1;], C=[2;], D=[3;], and E=[4;]. The mobility equals . Becaus
it is assumed that randomly addressable register files are used for storing the com
cated values, every value lifetime is restricted to the initiation interval II (explaine
Section 2.4). In Figure 3.15a) these constraints are added, as is the sequenc

of weight 4=II+1 as a result of the path of length 3 0(mo
II) from A to D and the resource conflict A-D (Lemma 3.2).

a) to b).There is a path of length -3 0 mod II, and a resource conflict C
As a result, a sequence edge of length -3+1=-2 is added.

b) to c).The scheduler schedules operation A at clock cycle 0, and B at clock cyc
The execution intervals are A=[0;0], B=[1;1], C=[2;4], D=[4;6], and E=[5;9]. Th
mobility equals 1.6 clock cycles per operation.

B

A

D

C

E

dii=3
resource conflicts:

A-D
B-D

B

A

D

C

E

d=4

d=-2

a) b)

B

A

D

C

E

d=4

d=-2

c)

d=-1

B

A

D

C

E

d=-2

d)

C-D

B

A

D

C

E

d=-2

e)

d=4d=4

d=4

d=-3

d=-3 d=-3 d=-3 d=-3

d=-5

d=-3

d=-3

d=-3

d=-3

d=-3 d=-3 d=-3

Figure 3.15 Illustrating the schedule approach from Figure 3.14

source

0

source source source source

0 0 0 0

d=-1
d=-1

∞ ∞ ∞ ∞ ∞ ∞

A D→ A B C D→ → → ≡

D C→ ≡
D C→

SCHEDULING WITH RESOURCECONSTRAINTS 53

a
ed.

ngth
nd

bably)
ple

rease
d the

d

lay of
ge is
xity is
t of the
so far,
nce
reduc-

edges)

(by at

s

3.2

is
hich
cap-
atrix
oppor-
c) to d).There is a path of length -1+0+4=3 0 mod II, and
resource conflict B-D. As a result, a sequence edge of length 3+1=4 is add

d) to e).There is a path of length -2+(-3)+(-1)+0=-6
0(mod II), and a resource conflict A-D. As a result, a sequence edge of le
-6+1=-5 is added. The execution intervals are A=[0;0], B=[1;1], C=[3;4], D=[5;5], a
E=[6;8].The mobility equals 0.6 clock cycles per operation.

The remaining search space is now completely feasible and the scheduler (pro
fixes operation C at clock cycle four, and operation E at clock cycle six. The exam
illustrates that one schedule decision may have a large effect on the mobility (dec
by 63%), and therefore it is useful to iterate between the constraint analyser an
scheduler.

3.8 Complexity
The complexity of the analysis is determined by two factors:

1. Updating the distance matrix

2. The analysis required for determining which sequence edge should be adde

We first consider the updates on the distance matrix. In the distance matrix the de
the longest path between each pair of operations is maintained. So if a new ed
added, the impact on the current longest paths has to be calculated. This comple
essentially determined by the number of paths that need to be updated as a resul
new sequence edge. Because we are only interested in the longest paths found
the number of updates equals V2 worst case. In most cases, the addition of a seque
edge will affect a few paths. In cases where a lot of paths need to be updated, the
tion in mobility will also be substantial.

An upper bound on the number of path updates (as a result of adding sequence
can be derived as follows. A path can have a length between -l and +l, wherel is the
constraint on the latency. Because a path is updated only if its length is increased
least one clock cycle), the number of times a path can be updated is at most 2l. Since
the maximum number of paths we keep track of, equals V2, the number of path update
can be at most . A single path update takes constant time.

Now we consider the complexity of applying Lemma 3.2 and Lemma 3.3. Lemma
is applied in the following way. For each resource conflictvi - vj it is checked whether
d(vi, vj) 0 (mod II) or d(vj, vi) 0 (mod II), in which case a sequence edge
added. One such iteration through all resource conflicts has a complexity |rsc|, w
denotes the number of resource conflicts. One iteration is usually not sufficient to
ture all the reductions attainable with Lemma 3.2. This is because the distance m
has changed after the sequence edges have been added, thereby providing more

B source A D→ → → ≡
B D→

D C B source A→ → → → ≡
D A→

2l V
2⋅

≡ ≡

54 SCHEDULING WITH RESOURCECONSTRAINTS

are
|rsc| is
er

.
s at
s of
re-
is not
e con-
in the

sup-
.4 for
y and
s the
lity of
tunity for applying Lemma 3.2. After a few iterations no additional reductions
obtained. There can be a resource conflict between every pair of operations, so
upper bounded by V2. Therefore the complexity of applying Lemma 3.2 is of ord

 = .

Lemma 3.3 is applied in the following way. For each resource conflictvi - vj it is
checked whether there exist p and s such that
There exist V2 pairs (p,s), so one iteration through all resource conflicts require
most computations. Therefore the complexity of applying Lemma 3.3 i
order = . Because this complexity is high and the cor
sponding search space reduction is small after applying Lemma 3.2, Lemma 3.3
applied in the experiments. The lemmas from Section 3.6 on the extended resourc
straint model have not been implemented and subsequently, are not applied
experiments as well.

3.9 Experimental results
Two experiments are reported in this section. The first experiment considers how
plementary our approach is to the approach of [Timm95], discussed in Section 3
both folded and non-folded schedules. The second experiment shows the efficac
efficiency of our constraint analysis on industrial applications, and it demonstrate
use of integrating constraint analysis and scheduling, as explained in 3.6. The qua
the analysis is measured by the reduction in mobility.

O l V
2⋅ rsc+() O l V

2⋅()

d p vi,() d vi s,()+ d p vj,() d vj s,()+=

O rsc V
2⋅()

O l V
2⋅ rsc V

2⋅+() O V
4()

r0 m2

+ -

w0 w1

11

11

m1

r1
1

a0

1

a1
1

1

11

1
1

resource binding:
a0 -> ACU

II = 6
latency = 8

a1 -> ACU
+ -> ALU
- -> ALU
m1, m2 -> ALU
r0 -> RAM
r1 -> RAM
w0 -> RAM
w1 -> RAM

Figure 3.16 Radix-2 butterfly used in first experiment

Resources:
1 ACU, 1 ALU, 1 RAM

-1
1

SCHEDULING WITH RESOURCECONSTRAINTS 55

erfly
od-
pera-
lded
axis.
ctions
pera-
e to
, that

event
would
ten-
tect
t that
y let-

hing
ound
d the
cles.
duc-

com-
hows
ome
le 3.1,
The first experiment considers two examples, the first of which is the radix-2 butt
shown in Figure 3.16. Because the multiplication is a multicycle operation, it is m
elled by two stages m1 and m2 as indicated in Section 2.4, making a total of 10 o
tions. The execution intervals for each operation are given in Figure 3.17 for the fo
schedule. In this figure, the time is represented in clock cycles at the horizontal
The operations are enumerated vertically. The white area represents the redu
obtained by both BSG and our analysis. For example, the execution interval of o
tion r0, based on ASAP and ALAP is [1, 5]. Both our method and BSG are abl
reduce this interval to [3,4]. The grey area is the reduction obtained by our analysis
BSG was not able to find.

Notice in this figure how reduction techniques such as BSG and our techniques pr
a greedy scheduler from making a wrong schedule decision. A greedy scheduler
schedule operation r0 in clock cycle 1, leaving no room for w1 in clock cycle 7 (po
tial 1), which is the only feasible start time for w1. Both our analysis and BSG de
that r0 can not be scheduled in clock cycle 1. However, BSG is unable to detec
operation + must precede operation -. A greedy scheduler can easily go wrong b
ting operation - precede operation +.

The second example concerns an IIR filter containing 23 operations, including fetc
the coefficients and data from memory. The latency is constrained to the lower b
value of 10 clock cycles. In Table 3.1 the results of the analysis on the radix2 an
IIR example are shown, expressed in the average mobility per operation in clock cy
For the radix2 schedules BSG is unable to find any reductions additional to the re
tions obtained by our method, so for this example there is no gain in accuracy by
bining the results of BSG analysis and our constraint analysis. The IIR example s
however that this is not generally true. BSG analysis is capable of deducing s
reductions that our techniques can not find, and vice versa. As can be seen in Tab

0 1 2 3 4 5

a0
a1
r1
r0

m1
m2

+
-

w0
w1

clock cycles (folded)

op
er

at
io

ns

reduction

additional

remaining

BSG &

reduction
our method only

freedom
after our method

Figure 3.17 Rad2 mobility per operation

our method

56 SCHEDULING WITH RESOURCECONSTRAINTS

ly. The

filter
loop
ds to

.The
cles,
clock
f 11

. In
xten-
ts the
could
umn
uring
ana-
combining the analyses provides larger reductions than both analyses separate
run times for both BSG and our analysis are negligible in this experiment.

The second experiment considers only our analysis and concerns the same IIR
used in the first experiment plus three loops present in FFT algorithms. The first
(FFTa) contains 40 operations, has a minimum latency of 13 clock cycles, and nee
be folded at least three times to realize an initiation interval of only 4 clock cycles
second loop(FFTb) contains 60 operations, has a minimum latency of 18 clock cy
and also needs to be folded at least three times to realize an initiation interval of 8
cycles. The third loop (Radix) contains 80 operations, has a minimum latency o
clock cycles, and is folded twice to realize an initiation interval of 4 clock cycles
Table 3.2 the results are shown.The run time of this experiment using the most e
sive analysis, is less than a second on a HP 9000/735. The last column depic
remaining mobility after analysing the first schedule decision a greedy scheduler
make (operation 23 at clock cycle 0). It is clear from the numbers in the sixth col
that substantial reductions can be made not only before scheduling, but also d
scheduling. This observation strengthens the idea of an interaction between the
lyzer and the scheduler.

Table 3.1 Average mobility for radix-2 butterfly and IIR

ASAP-
ALAP BSG our

method
com-
bined

rad2 non folded 1.20 .70 .70 .70
rad2 folded 1.20 .50 .10 .10

IIR non folded 2.70 1.61 1.83 1.52
IIR folded 2.70 1.61 1.74 1.43

Table 3.2 Mobility reduction for some folded loops.

experi-
ment

#operat
ions II latency

mobility
before

analysis

mobility
resource
analysis

mobility
after 1

decision

IIR 23 6 10 2.70 1.74 0.56

FFTa 40 4 13 4.46 3.41 2.41

FFTb 60 8 18 6.85 4.53 2.58

Rad4 81 4 11 5.29 2.82 2.08

REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES 57

Sec-
ection
is on
regis-
uces
ffi-
per-

t
er-

ister
epara-
nt, it
gis-

bind-
ccord-

d in
f

ussed
as to
This
ter, is

ve the
ntal
pects

oach

s cer-
d the
will
Chapter

4 Register Binding for Randomly

Addressable Register Files

Register binding is one of the three major code generation steps, as introduced in
tion 1.2, the other two being code selection and scheduling. We have argued in S
1.3.1 that for our target architectures (VLIW), the emphasis in code generation
scheduling and register binding. Traditional approaches deal with scheduling and
ter binding in separate stages to reduce the complexity of the problem. This introd
the problem ofphase coupling: a decision made in the first phase may lead to an ine
cient or even infeasible constraint set for the second phase. If register binding is
formed prior to scheduling, so calledanti-dependenciesare introduced that make i
difficult to satisfy tight timing constraints. On the other hand, if scheduling is p
formed prior to register binding, there is not much opportunity left to make a reg
binding that respects the capacities of the register files. Therefore, although the s
tion of scheduling and register binding results in methods that are run-time efficie
makes it much more difficult to cope with the interaction of timing, resource, and re
ter file capacity constraints.

In this thesis we have taken the perspective of considering scheduling and register
ing as a combined problem, and in Section 1.4 we have defined a search space a
ingly. In this chapter we discuss the two register binding problems introduce
Section 2.5: Finding anefficient (R-feasible) register binding in the context o
high-level synthesis, and finding an (S-feasible) binding that alsorespects individual
register file capacities. The general approaches for these problems have been disc
in Section 2.5. Both approaches rely heavily on the constraint analyser which h
cope with the constraints associated with a (partially) given register binding.
extension to the constraint analysis techniques discussed in the previous chap
treated in Section 4.1. In Section 4.2 these basic techniques are applied to sol
problem of minimizing the register requirements. The corresponding experime
results are reported in 4.3. In Section 4.4 it is shown how to find a schedule that res
individual register file capacity constraints. The experimental results of this appr
are given in Section 4.5.

4.1 Lifetime serialization for a given binding
The previous chapter introduced a methodology for finding a schedule that satisfie
tain resource-, timing-, and precedence constraints. In this section we will exten
techniques to analyse value conflicts that result from a given register binding. This

58 REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES

ovide
ty of a
er to
2 for
s are

iming
mple.
e

ve of
e

alled
be done by introducing basic lemmas similar to Lemma 3.2. These lemmas pr
necessary conditions (in terms of precedence relations) to guarantee the feasibili
given register binding. Section 4.1.1 is restricted to non-folded schedules in ord
explain the concept more clearly. The lemmas will be generalized in Section 4.1.
register conflicts that cross loop boundaries, which occur when folded schedule
considered.

4.1.1 Non-folded schedules
In this section two lemmas consider the combination of register, precedence and t
constraints for non-folded schedules. Their use is demonstrated with a small exa
What is the exact consequence of binding two valuesu andv to the same register? Sinc
u andv cannot be alive simultaneously, eitheru is consumed beforev is produced, or
vice versa, graphically depicted in Figure 4.1. Figure 4.2 gives a timing perspecti
the alternatives in Figure 4.1. In this figure,the solid lines indicate the occupation of th
register. The solid line Pv-Cv has to be placed either underneath or above the solid line Pu-Cu,
corresponding to the left and right alternative in Figure 4.1 respectively. This process is c
serializing the value lifetimes ofu andv.

Figure 4.1 Precedence as a result of bindingu andv to the same register

same reg
Cu

Pu

Cv

Pv

u

v

Cv

Pv

Cu

Pu

v

uCu

Pu

Cv

Pv

u v
or

Pu

Cu

Pv

Cv

time

Figure 4.2 Timing perspective of the alternatives in Figure 4.1

REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES 59

terms
ter 3,
on-

uc-
ntify
elim-

ath

path
wever,
ero.
hed-
The full consequence of binding two values to the same register is thus stated in
of precedences. The methodology of adding precedences, introduced in Chap
should therefore not be too difficult to extend to the problem of integrating the c
straint of a given register binding within the DFG model. This will be done by introd
ing lemmas similar to Lemma 3.2. The lemmas introduced in this chapter ide
situations where one of the alternatives in Figure 4.1 (and thus Figure 4.2) can be
inated.

Lemma 4.1: Let valueu, produced by operationPu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same register. If

 we can add a sequence precedence edge (Cu,Pv) with weight 0 without
excluding any feasible schedules. ❏

Lemma 4.1 is illustrated in Figure 4.3. A similar lemma is valid when there is a p
between the consumers of the values:

Lemma 4.2: Let valueu, produced by operationPu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same register. If

 we can add a sequence precedence edge (Cu,Pv) with weight 0 without
excluding any feasible schedules. ❏

Lemma 4.2 is illustrated in Figure 4.4. The last situation occurs when there is a
between the producer of one value and the consumer of the other. In this case ho
we can only exclude a possibility if the delay of the path is strictly greater than z
Otherwise the alternative sequentialization, , could still yield a feasible sc
ule whenPu and Cv are scheduled in the same clock cycle.

Lemma 4.3: Let valueu, produced by operationPu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same register. If

we can add a sequence edge (Cu, Pv) with weight 0 without excluding any
feasible schedules. ❏

d P
u

P
v,() 0≥

Cu

Pu

same reg

Cv

Pv

Cu

Pu

Cv

Pv

u u

v

v

Figure 4.3 Lemma 4.1 for serializing value lifetimes

d C
u

C
v,() 0≥

C
v

P
u→

d P
u

C
v,() 1≥

60 REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES

rated

ory

-

the
of

dded
egis-

the
is a

AP
axis)

the
Lemma 4.3 is illustrated in Figure 4.5. The overall method of analysis is demonst
in Figure 4.6. In this figure, the sequence edge is a result ofalias analysisper-
formed in the front-end of the compiler. Apparently, operation 7 writes to a mem
location that could possibly be the same as operation 1 reads from. Valuesu andv in
Figure 4.6 reside in the same register, as do valuesw andx. Because operation 1 con
sumes valueu and operation 7 consumes valuev, the lifetime ofu has to precede the
lifetime of v as a result of the precedence (Lemma 4.2 applies). Therefore
sequence edge is added. Now there is a path from the consumerw
to the consumer ofx and Lemma 4.2 applies again. The sequence edge is a
as a result. Any schedule heuristic can now find a schedule without violating the r
ter binding, which is not the case if the sequence edges were not added.

A larger example is given in Figure 4.7. It is a IIR filter application generated by
Mistral2 toolset, to be scheduled in 11 clock cycles. Again, the sequence
result of alias analysis performed in the front-end of the compiler.The ASAP-AL
intervals prior to analysis are depicted in Figure 4.8. The operations (horizontal
are grouped according to the resource binding. The vertical bars indicate

Cu

Pu

same reg

Cv

Pv

Cu

Pu

Cv

Pv

u u

v

v

Figure 4.4 Lemma 4.2 for serializing value lifetimes

Cu

Pu

Cv

Pv

Cu

Pu

Cv

Pv

u u

v

v

Figure 4.5 Lemma 4.3 for serializing value lifetimes

d 1≥ same reg

1 7→

1 7→
1 8→ 2 1 8→ →

2 9→

12 25→

REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES 61
0

1

5

7

8

9

u

v

x

Figure 4.6 Example demonstrating the use of Lemma 4.2

w-x

3

2

4

w

0

15

7

8

9

u

v

x

u-v

3

2

4

w

0

1

5

7

8

9 u

v

x

3

2

4

w

10

10

10

62 REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES

AP]
ASAP-ALAP intervals. For example, operation 13 (executed on the ACU) has [ASAP; AL
= [1; 7].

alu

d3

acu

rd

ctrl

a2

b4

alu

d4c4

acu

rd
b5

alu

d5c5

e1

out

in

wr
1

acu
b3

ctrl

a3

0

1

2

3

25

26

27

12

15

16

13

14

28

acu

rd

ctrl

a1

b1

alu

d1

acu

rd
b2

alu

d2c2

17

18

19

20

21

22

23

c3

ctrl

24

c1

ctrl 4

all acu

Figure 4.7 : A complete data flow graph for an IIR filter

f1

registers

a
b
c
d
e
f

a1, a2, a3
b1,..., b5
c1,..., c5
d1,..., d5
e1
f1

acu 5

all acu

contents

4 23 24 28 14

0
1
2
3
4
5
6
7
8
9

19 27 13

0
1
2
3
4
5
6
7
8
9

18 26 12

0
1
2
3
4
5
6
7
8
9

17 15 25

CTRL ACU RAM ALU

22 3 21 2 20 1

operations

Figure 4.8 ASAP-ALAP intervals for the operations in Figure 4.7

0
1
2
3
4
5
6
7
8
9

c
y
c
l
e
s

mobility= 3.60 clock cycles/operation

REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES 63

and
stan-
ck
tion of
The DFG and the ASAP-ALAP intervals after analysis are depicted in Figure 4.9
Figure 4.10 respectively. Application of Lemma 4.1 and Lemma 4.2 causes a sub
tial reduction in the ASAP-ALAP intervals; the mobility drops from 3.60 to 1.56 clo
cycles per operation. The reason is that sequence edges accumulate: the introduc

alu

d3

acu

rd

ctrl

a2

b4

alu

d4c4

acu

rd
b5

alu

d5c5

e1

out

in

wr
1

acu
b3

ctrl

a3

0

1

2

3

25

26

27

12

15

16

13

14

28

acu

rd

ctrl

a1

b1

alu

d1

acu

rd
b2

alu

d2c2

17

18

19

20

21

22

23

c3

ctrl

24

c1

ctrl 4

all acu

Figure 4.9 The DFG from Figure 4.7 after analysis

f1

registers
a
b
c
d
e
f

a1, a2, a3
b1,..., b5
c1,..., c5
d1,..., d5
e1
f1

1

acu 5

all acu

contents

0
1
2
3
4
5
6
7
8
9

4 23 24 28 14

0
1
2
3
4
5
6
7
8
9

19 27 13

0
1
2
3
4
5
6
7
8
9

18 26 12

0
1
2
3
4
5
6
7
8
9

17 15 25

CTRL ACU RAM ALU

22 3 21 2 20 1

c
y
c
l
e
s

operations

Figure 4.10 ASAP-ALAP intervals for the operations in Figure 4.9

mobility= 1.56 clock cycles/operation

64 REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES

suitable
recur-

es,
tended

s of
have

mes
ence
s
rela-
is

on of
ing

s at
that

ation
o

one sequence edge causes a precedence that may again give rise to a situation
for applying one of our lemmas again. New sequence edges result from old ones
sively.

4.1.2 Folded schedules
In this section we extend the lemmas from Section 4.1.1 for serializing value lifetim
to handle pipelined loop schedules. An example demonstrates the use of the ex
lemmas.

When schedules are not folded it is relatively simple to avoid overlapping lifetime
values residing in the same register. When loop iterations overlap in time, we also
to take care that theith lifetime of valuev does not overlap with thei+ 1th lifetime of
value u, depicted in Figure 4.11. This means we have to serialize value lifeti
belonging to different loop iterations. The graph model however, makes no differ
between operation Ai and Ai+ 1 (where Ai denotes theith execution of A), because it ha
no notion of loop iteration. In Section 2.2 we showed the equivalence between the
tion and the relation with time delay . This equivalence
used to generalize the lemmas from Section 4.1.1. We derive a generalizati
Lemma 4.1 in the following way. First, we use the equivalence to translate the tim
delay of at the left hand side of the arrow in Figure 4.12 to the iteration indice
the right hand side. In Figure 4.13 we apply Lemma 4.1 directly on the operations
are now annotated with the iteration index. In Figure 4.14 we translate the iter
indices back to a timing relation from Cu to Pv. Lemma 4.1 is now easily generalized t
Lemma 4.4:

Lemma 4.4: Let valueu, produced by operationPu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same register. If

 we can add a sequence edge (Cu,Pv) with weight without exclud-
ing any feasible schedules. ❏

time

Figure 4.11 4 possible placements of Pv-Cv if the maximum folding factor equals 1

ui+1

ui

ui+2

vi

Pi
u

Ci
u

Pi 1+
u

Ci 1+
u

Pi 2+
u

Ci 2+
u

Pi
v

Ci
v

Ci Pi k+→ C P→ k II⋅–

k II⋅

d P
u

P
v,() k II⋅≥ k II⋅

REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES 65
Lemma 4.4 is illustrated in Figure 4.15. Lemma 4.2 is generalized to Lemma 4.5:

Cu

Pu

equivalence

Cv

Pv
u

v

Figure 4.12 First step of generalizing Lemma 4.1.

k II⋅

u

v

Pk
u

Ck
u P0

v

C0
v

same reg

Figure 4.13 Second step of generalizing Lemma 4.1.

u

v

Pk
u

Ck
u P0

v

C0
v

u

v

Pk
u

Ck
u

P0
v

C0
v

Figure 4.14 Third step of generalizing Lemma 4.1.

Cu

Pu

Cv

Pv

u

v

k II⋅equivalence
u

v

Pk
u

Ck
u

P0
v

C0
v

66 REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES

mas
ure
n A
ister.
is no
Lemma 4.5: Let valueu, produced by operationPu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same register. If

we can add a sequence edge (Cu,Pv) with weight without exclud-
ing any feasible schedules. ❏

Lemma 4.5 is illustrated in Figure 4.16. Lemma 4.3 is generalized to Lemma 4.6:

Lemma 4.6: Let valueu, produced by operationPu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same register. If

 we can add a sequence edge (Cu,Pv) with weight without
excluding any feasible schedules. ❏

Lemma 4.6 is presented graphically in Figure 4.17. We illustrate the use of the lem
in this section with the example in Figure 4.18. It is similar to the example of Fig
2.4, but it is extended with a register binding. Value v, communicated from operatio
to B and value w, communicated from operation C to D, are bound to the same reg
The same resource conflicts and the same initiation interval are used, but there

d C
u

C
v,() k II⋅≥ k II⋅

Cu

Pu

same reg

Cv

Pv

Cu

Pu

Cv

Pv

u u

v

v

Figure 4.15 Lemma 4.4 for serializing value lifetimes

d k II⋅≥

k II⋅

Cu

Pu

same reg

Cv

Pv

Cu

Pu

Cv

Pv

u u

v

v

Figure 4.16 Lemma 4.5 for serializing value lifetimes

d k II⋅≥

k II⋅

d P
u

C
v,() k II⋅ 1+≥ k II⋅

REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES 67

Fig-

by
we

sible

rece-
ing. In

have
uling
hedule

e dis-
rs are

one
reg-
constraint on the latency. The first step from a) to b) is the same as the first step in
ure 3.7.

from b to c: Value v is produced by A and consumed by B. Value w is produced
C and consumed by D. Lemma 4.6 applies because , so
can add a sequence edge (B,C) with weight without excluding any fea
schedules.

In Figure 4.19 a folded ASAP schedule is given that satisfies the newly added p
dence constraints, and thus also the resource constraints and the register bind
Figure 4.19, the leftmost column indicates thetime potential(start time modulo II), so
operation C is scheduled in clock cycle 4, D in 5 etc. Notice that the constraints
forced a gap of 2 clock cycles between operations B and C. A greedy sched
approach does not put gaps between operations, and would not have found a sc
that satisfies all constraints.

The last basic lemma we introduce in this chapter generalizes a modelling issu
cussed in Section 2.4: Lifetimes of values stored in randomly addressable registe
not allowed to exceed the initiation interval, resulting for each data precedence
in a precedence constraint with weight -II (Section 2.4). When more than
value (the set of values W) is stored in a register r, the sum of the lifetimes lt in this
ister is not allowed to exceed the initiation interval: . So

Lemma 4.7: Let W be the set of values that reside in a register r, and let minlt(v) denote
the minimal lifetime of valuev (the distance from the producer ofv to the last consumer
of v). Then value has a maximum lifetime equal to . ❏

This upper bound on lt(u) can be modelled in the DFG as a sequence edge
with weight .

Cu

Pu

Cv

Pv

Cu

Pu

Cv

Pv

u u

v

v

Figure 4.17 Lemma 4.6 for serializing value lifetimes

same regd k II⋅ 1+≥

k II⋅

d A D,() 4≥ 1 II 1+⋅=
1 II⋅ 3=

P C→
C P→

lt v()
v W∈
∑ II≤

u W∈():lt u() II lt v()
v W v⁄∈

∑– II minlt v()
v W u⁄∈

∑–≤ ≤∀

u W∈ II minlt v()
v W u⁄∈

∑–

C
u

P
u→

minlt v()
v W u⁄∈

∑ 
  II–

68 REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES

re 2.8
mas in

d in
w dia-
We have now covered the basic techniques used in the constraint analyser of Figu
and Figure 2.10. The next two sections demonstrate the use of these basic lem
deriving a register binding.

4.2 Infeasibility Analysis
In this section we tackle the problem of minimizing the register count, as introduce
Section 2.5.1. In that section the general approach is discussed, both using a flo

B

A

D

C

E

II=3

resource conflicts:

a) b) c)

B

A

D

C

E

4

B

A

D

C

E

3

A-D

B-D

v

w

v

w

v

w

A-D v-w

Figure 4.18 Derivation of a partial schedule

A

B

0

1

2

pot

-

-

C

D

E

Figure 4.19 Folded ASAP-Schedule for Figure 4.18

II=3

REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES 69

is tra-
ister
ined
.

ether
ge in
ttle-

he
enti-
on-
way:
),

s
itive

ycle
clock
clock
ibil-
s the
ult of
The
gram (repeated in Figure 4.20), and from the perspective of how the search space
versed (Figure 2.9). The process starts with an initial register binding. This reg
binding requires the least number of registers but will usually be overconstra
(infeasible) in the sense that the binding is inconsistent with the timing constraints

The schedule analysis is often capable of detecting that the register binding tog
with the constraint set yields an infeasible result. In order to make a sensible chan
the register binding, the infeasibility analyser in Figure 4.20 has to identify the bo
neck in the register binding. More precisely, we want the analyser to give asmallest
infeasible subset of value conflicts, where a conflict denotes two values residing in t
same register. This subset of value conflicts constitutes the cause of infeasibility. Id
fying such a subset of conflicts is tightly related to detecting infeasibility. The c
straint analyser detects infeasibility based on the distance matrix in the following
When a path is found from an operationv to itself (a cycle in the precedence graph
and this path has a positive length, the operationv is forced to execute strictly before it
own start time, which is clearly not possible. So a precedence cycle of strictly pos
length indicates infeasibility.

The source of the bottleneck is directly related to the way the positive length c
came into existence. For example, if in Figure 4.18 the latency is constrained to 6
cycles, there was a sequence edge from the sink to the source with a delay of -6
cycles. In Figure 4.18c that would yield a positive delay cycle, thus proving infeas
ity. Most edges in the precedence cycle involve data precedences, one involve
latency, and one involves a register conflict. The sequence edge is a res
two components: 1) the register conflict v-w, and 2) a path of length 4 from A to D.

Figure 4.20 Global approach for minimizing the register count

scheduler

constraint
analyzerregister

binding precedence
resource constraints
register binding

yesno

timing

timing

resource constraints
precedence

change

init
II &
reg.bind

feasible?
infeasi-
bility
analyzer

lifetime
sequencer

B C→

70 REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES

source
ces.
ina-
on-
gister
ingle

sible
is is
nward
gth 2
con-
uence

path
edge
sed
ht 4.
edence
-2
clock
path from A to D consists of one sequence edge that is added as a result of the re
conflict A-D and a path of length 3 that consists entirely of data preceden
We can thus conclude that infeasibility is caused as a result of the following comb
tion of factors: 1) a register conflict v-w, 2) a resource conflict A-D, 3) the latency c
straint, and 4) data precedence. When all constraints are fixed except for the re
binding, we conclude that the decision to put the values v and w together in a s
register is the cause of infeasibility.

Another example is the graph depicted in Figure 4.21. The constraint set is infea
with the given register binding, which is derived as follows. The infeasibility analys
graphically depicted in Figure 4.22. Each block represents a path, and each dow
arrow represents an inference. The derivation is top down. The path of len
(=II) and register conflict c-f lead to the sequence edge of weight II=2 as a
sequence of Lemma 4.5 (where k=1). The downward arrow shows that this seq
edge is part of the path underneath. The second block from the top indicates a

of length 3. Together with the register conflict a-d this yields a sequence
of weight 2 as a result of Lemma 4.5. In the third block the conflict a-d is u

again with the path of length 4 to add the sequence edge of weig
The block at the bottom shows that this sequence edge causes a positive prec
cycle with a delay 4 + (-2) = 2 clock cycles. The edge with delay
is added because the lifetime of each value (in this case value c) cannot exceed II

A D→

BA

C

G

sink

source

ED

F

a b

c

d e

f

II=2
latency=7

Resource conflicts:

A-D
B-E
C-F
D-G

Figure 4.21 Example of a precedence graph

-7
A B C D E F G

A
B
C
D
E
F
G

0
-1
-2
-3
-4
-5
-6

0
0
-2
-3
-3
-5
-6

1
1
0
-2
-2
-3
-5

3
2
1
0
-1
-2
-3

3
3
1
0
0
-2
-3

4
4
3
1
1
0
-2

6
5
4
3
2
1
0

reg1: a,d
reg2: b,e
reg3: c,f

initial reg.bind:
(Section 4.2)

D G→
D F→

C F→
C D→

C F→ C D→

C D C→ → D C→

REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES 71

r (C).
ng is

ose
cycle.
on
trib-
regis-
sions

e

cycles, so the consumer (D) must execute within 2 clock cycles after the produce
As a result of this positive precedence cycle we conclude that the register bindi
infeasible.

The infeasibility analysis is done in bottom-up fashion, to identify exactly th
sequence edges and conflicts which have contributed to the positive precedence
The combination of register conflicts that yield infeasibility is identified as 1) a-d
register 1 and 2) c-f on register 3. Note that the conflict b-e on register 2 did not con
ute to the infeasibility, and thus it is useless to put the values b and e in separate
ters. Instead we have to choose to ‘split’ either register 1 or register 3. Both deci
yield a feasible schedule, as depicted in Figure 4.23.

C D
4

-2

a-d

C D
1

F
2

D F
1

G
1

c-f

Figure 4.22 Infeasibility analysis for Figure 4.21

Infeasibility results from conflicts:
1) a-d on reg1
2) c-f on reg3

C D
2

F
2

a-d

Figure 4.23 The only 2 feasible schedules for Figure 4.21 with changes in th
register binding

0
1
2
3
4
5
6

time
0
1
2
3
4
5
6

A B
C

DE
F

G

A
B

C
D

E
F

G

reg1: a,d
reg2: b,e
reg3: c
reg4: f

reg1: a
reg2: b,e
reg3: c,f
reg4: d

a) b)

72 REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES

ed on
flict

ires a
gest
quir-
as a

o C
, the
of

sis,
dge on
pre-
lysis
is not
y be

s have

om 4
n in
dule

umns
per

lumn

the
f ten
hich
y the
asure
ges

esult
ts, it is
from
In this approach a simple heuristic chooses the register conflict to be solved bas
the availability of registers in a certain register file, the number of times the con
appears in the conflict-list, etc.

As the reader may have noticed from the examples, the infeasibility analysis requ
lot of administrative bookkeeping. Almost every path constructed during the lon
path analysis has to be kept in memory for reference. A feasible implementation re
ing a limited amount of memory to run, is only guaranteed if the storage of a path h
memory cost of O(1). This is possible with the use of anadjacency matrix[Corm90],
which is based on the following fact of longest paths: if the longest path from A t
travels through B, then the part B to C is the longest path from B to C. As a result
only administration necessary for the path from A (row of the matrix) to C (column
the matrix) is the first node on the path after A. To facilitate the infeasibility analy
we also administrate the first edge traversed on the path A to C. Each sequence e
its turn has a pointer to a register conflict (if there is one) and the matrix entry re
senting the path that gave rise to the edge. The complexity of the infeasibility ana
is thus linear in the number of edges. Note however, that the amount of edges
bounded by , since more than one sequence edge (with different delay) ma
added between each pair of operations. Also, we assume that the longest path
already been calculated in the constraint analyser.

4.3 Experimental results

Our implementation on a HP 9000/735 has been tested on the inner loops fr
different real life industrial examples [Mesm98, Mesm99a]. The results are show
Table 4.1. The fifth column represents the number of iterations over the sche
analyzer (see Figure 4.20) before a feasible solution was found. The last 2 col
indicate the mobility of the operations in terms of average number of clock cycles
operation. The 7th column indicates the mobility before the analysis, the last co
after analysis (what is left for the scheduler to fill in).

The first experiment concerns an IIR filter of 23 operations, including fetching
coefficients and data from memory. The latency is constrained to the lower bound o
clock cycles. The other experiments concern FFT applications, the largest of w
holds 81 operations. Note in Table 4.1 that the run-times are mainly determined b
number of iterations over the schedule analyzer. The number of iterations is a me
of the difficulty of finding a register binding because it reflects the number of chan
made to the original binding in order to obtain a feasible schedule.

The mobility is decreased by a factor ranging from 3.6 (Rad4) to 13.2 (FFTb) as a r
of the schedule analysis. Because this decrease of mobility is due to the constrain
a measure for the analyzers’ capability of directing the scheduler and preventing it
making schedule decisions that violate the constraints.

V
2

REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES 73

on a
test

ral2
dule,

ilable
gisters
nly 56
of the
etime

new
This

times
such

dence

able
sec-

har-

min-
le

d the

lling
s are
s are
til the
Table 4.1 Results of constraint analysis on DSP loop kernels

We have included one more experiment to test the performance of our method
problem instance that was not constrained with respect to timing. It is a preliminary
executed by Frontier Design, who are integrating our method within the Mist
toolset [Strik94]. The benchmark, Par2, contains 91 operations. The original sche
generated by the Mistral2 toolset, counts 61 clock cycles. As a result of the ava
parallelism and the number of memory accesses the register binder required 6 re
at the address generation unit. The schedule generated by our method, counts o
clock cycles and requires only 1 register at the address generation unit. Because
schedule freedom, a total of 111 schedule decisions had to be made by the lif
sequencer. Run time is less than a second. The efficient register binding of the
schedule was expected, unlike the reduction in the number of clock cycles.
reduction is explained as follows: Because of the serialization of the address life
the precedence graph became more regular. It is a well-known fact that heuristics
as the list-scheduling are able to find more efficient schedules when the prece
graph contains more regularity.

4.4 Incremental register binding for fixed register files
This section considers the problem of finding a register binding for programm
processors. Contrary to the register binding task in High-Level Synthesis (previous
tion), we are now dealing with a fixed capacity of the available register files. This c
acteristic has two major consequences:

• Using asfewregisters as possible is not the ultimate goal: instead of obtaining a
imal register binding we would rather useall available registers and find a schedu
that takes one clock cycle less to execute.

• The number of registers required in a certain register file is not allowed to excee
capacity of that file.

The accepted way to deal with fixed register files in a compiler is to do register spi
[Chai82]. When the register binding violates the register file capacity some value
selected that are written to a (background) memory. Load and store operation
inserted and the block of operations is rescheduled. This process is repeated un

experi-
ment

oper-
ations

II con-
straint

latency
constraint

iter-
ations

Run-
time

mobility
before

analysis

mobility
after

analysis
IIR 23 6 10 3 0.2 s 2.70 0.13

FFTa 40 4 13 11 17 s 4.46 0.46
FFTb 60 8 18 20 25 s 6.85 0.52
Rad4 81 4 11 1 0.8 s 4.93 1.38

74 REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES

s and
ely to
rough

crit-
essor
ble to
ming
g and
atisfy

been
ven

for
given
cre-
file.
lity of
e the
efore
tween
dingly

the
bstract

alize.
reg-

sential
ting
flicts
how

oten-
oach

of

flict
hout
capacity of each register file is respected. Because of the additional spill operation
more extensive usage of load/store resources, severe timing constraints are unlik
be satisfied in the final schedule. As a result, embedded system designers go th
the effort of either ’helping’ the scheduler with pragmas (hints) or scheduling time
ical code completely by hand. This requires extensive knowledge of the proc
architecture and instruction set and is very time consuming. Therefore it is desira
find an approach avoiding the generation of spill code and coping with severe ti
constraints. In this section we focus on such an approach. It integrates schedulin
register binding, and thereby selectively uses the available schedule freedom to s
all the constraints, including the timing and capacity constraints. (This work has
done in cooperation with Carlos Alba Pinto and Koen van Eijk from the Eindho
University of Technology [Mesm99b], [Alba99].)

A formal problem formulation is given in Section 2.5.2. The global decomposition
solving the Constrained Register Binding and Operation Scheduling Problem, is
in Figure 4.24. The incremental register binder has to serialize value lifetimes in
mentally until all values assigned to a certain register file actually fit in this register
This has to be done incrementally, because serializing two values effects the mobi
potentially all operations, and thus may prevent serializing other values. Therefor
effect of serializing two values has to be computed by the constraint analyser b
other values are serialized. As a result, the focus of the process alternates be
deciding over a register binding and pruning the schedule search space accor
until the capacity constraints are satisfied. In Section 2.5.2 it is discussed how
search space looks like and how it is traversed. This approach resembles (on an a
level) the way [Rau98] finds a resource binding and schedule.

The incremental register binder has to act very careful as to which values to seri
Only those actions should be taken that actually provide a ‘better’ fit of values to a
ister file, otherwise schedule freedom is invested for no purpose. Therefore, an es
feature of the incremental register binder is to identify the main bottlenecks viola
the register file capacities. This task is performed by analysing potential con
between pairs of values before and during scheduling. In Section 4.4.1 it is shown
potential conflicts are identified. In Section 4.4.2 these conflicts are analysed for p
tial bottlenecks by colouring a ‘worst case’ and ‘best case’ conflict graph. The appr
is demonstrated using a small example.

4.4.1 Constructing a conflict graph

A conflict graph is an undirected graph CG(RF) = (Vc, Ec), where the nodes in Vc rep-
resent the values in register file RF. There is an edge if the lifetimesu
andv overlap, and there isno edge if the lifetimes ofu andv do not over-
lap. The triviality of the latter remark soon fades when we try to construct a con
graph in the case that the lifetimes are not fixed yet. Consider Figure 4.21 wit
pipelining; not two, but three different relations may exist between two values:

u v,() E
c∈

u v,() E
c∈

REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES 75

ed to

ration
ince

nd e

weak
eakly
how-
ility of
omes
ialize

much
ed by
tions
, our
of

en and

r-
• There is no overlap. This is the case e.g. for values a and c.

• There is overlap. This is the case e.g. for values a and b in the clock cycle assign
the execution of operation C. We call thisstrong overlap.

• Unknown. This is the case e.g. for values b and e: if operation E precedes ope
C by at least one clock cycle, b and e overlap. If not, b and e have no overlap. S
it is not yet determined whether or not E precedes C, it is simply unknown if b a
overlap. We call thisweak overlap.

For our purposes the following is the essential difference between strong and
overlap: Strongly overlapping values can never reside in the same register, but w
overlapping values can still be serialized. Serializing eliminates schedule freedom
ever. Because some distances increase (some paths become longer), the mob
individual operations is affected. This is disadvantageous because intuitively it bec
’harder’ to find a feasible schedule. Therefore we want to select the values to ser
carefully, such that on one hand, the amount ofpotentialoverlap (unknown + overlap)
in a potentially overloaded register file is reduced, and on the other hand, not too
schedule freedom is sacrificed to obtain that goal. The potential overlap is comput
considering the weak + strong overlap in the conflict graph. The three possible rela
between values are distinguished based on information from the distance matrix
central data base. In the following we will give formal definitions of the properties
non, weak, and strong overlap. Subsequently, criteria based on distances are giv
proven to be equivalent to the formal criteria.

Non conflicting values.Valuesu andv have no conflict if their lifetimes can never ove
lap. There is no overlap between valuesu andv if and only if the lifetime of v is con-
tained in the interval in between two successive lifetimes ofu. This is depicted
graphically in Figure 4.25. The situation is captured by the following definition:

scheduler

constraint
analyzer

yesno

timing

Figure 4.24 Global approach for mapping to fixed register files

resource constraints
precedence

init II &

values

lifetime
sequencer

incremental
register binder

reg. binding

fit in
regs?

76 REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES

alues
ave
-
f
y

Definition 4.1 Valuesu andv have no conflict if and only if for each iterationi there
exists a corresponding iterationj such that and . ❏

Definition 4.1 is equivalent to the following criterion.

Theorem 4.8: Valuesu andv have no conflict if and only if

(4.1)

Proof. Let k be the largest value such that and letl be the largest value
such that . Because we assume that the latency is bounded, such v
can always be found. Because for each operation A: , we h
that is equivalent to , and that is equiv
alent to . Now Definition 4.1 applies if and only i

. Because , this condition is equivalent to . Now b
definition

(4.2)

and

(4.3)

so inequality (4.1) follows. ❏

time

Pj
v

C j
v

vj

Pi
u

Ci
u

Pi 1+
u

Ci 1+
u

Pi 2+
u

Ci 2+
u

Figure 4.25 Valuesu andv have no conflict

d Ci
u

Pj
v,() 0≥ d Cj

v
Pi 1+

u,() 0≥

d C
u

P
v,()

II

d C
v

P
u,()

II
-----------------------+ 1–≥

d C
u

P
v,() k II⋅≥

d C
v

P
u,() l II⋅≥

s Ak() s A0() k II⋅+=
d C

u
P

v,() k II⋅≥ d Ck
u

P0
v,() 0≥ d C

v
P

u,() l II⋅≥
d C0

v
Pk 1+

u,() k 1 l+ +() II⋅≥
k 1 l+ +() II⋅ 0≥ II 0> k l 1–≥+

k d C
u

P
v,()

II
-----------------------=

l d C
v

P
u,()

II
-----------------------=

REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES 77

-

rem:

fol-

tu-

-

Strongly conflicting values.Valuesu andv have a strong conflict if their lifetimes over
lap for sure. There is overlap between valuesu andv if and only if the lifetime of v can
never be contained in the interval in between two successive lifetimes ofu. This is
depicted graphically in Figure 4.26. The situation is captured by the following theo

Theorem 4.9: Valuesu andv have a strong conflict if and only if for each iterationi
there exists a corresponding iterationj such that and . ❏

Proof. Suppose the execution order of operations , , , and is fixed. The
lowing conditions cover the range of possibilities. Eithervj precedesui (),
ui precedesvj (), or vj andui overlap. Because these situations are mu
ally exclusive, the condition for overlap is given by

(4.4)

Theorem 4.9 follows. ❏

For the non-folded case we have . This corresponds to the case that Pu precedes
Cv by one clock cycleand Pv precedesCu by one clock cycle. In Figure 4.21 for exam
ple, values a and b have a strong conflict, as depicted in Figure 4.28.

Theorem 4.9 is equivalent to the following criterion.

Theorem 4.10: Valuesu andv have a strong conflict if and only if

d Pi
u

C j
v,() 1≥ d Pj

v
Ci

u,() 1≥

time

Pj
v

C j
v

vj

Pi 1–
u

Ci 1–
u

Pi
u

Ci
u

Pi 1+
u

Ci 1+
u

Figure 4.26 Valuesu andv have a strong conflict

Pi
u

Ci
u

Pj
v

C j
v

d Cj
v

Pi
u,() 0≥

d Ci
u

Pj
v,() 0≥

d Cj
v

Pi
u,() 0≥ d Ci

u
Pj

v,() 0≥∨()¬

d Cj
v

Pi
u,() 0≥()¬ d Ci

u
Pj

v,() 0≥()¬∧=

d Pi
u

C j
v,() 1≥ d Pj

v
Ci

u,() 1≥∧=

i j=

78 REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES

A:

,

9

to

re
Fig-

sible
alues
nding

are
ph a

olours
ber
t
valid
by
uring
ed
(4.5)

Proof. Let k be the largest value such that and letl be the largest

value such that . By the definition of II, for each operation

. Therefore, is equivalent to

and is equivalent to . Now Theorem 4.

applies if and only if . Because , this condition is equivalent

. Now by definition

(4.6)

and

(4.7)

so inequality (4.5) follows. ❏

Weakly conflicting values.There is weak overlap if both inequalities (4.1) and (4.5) a
invalid. In Figure 4.21 for example, values a and e weakly overlap, as depicted in
ure 4.28.

4.4.2 Colouring and bottleneck identification
In the previous section we showed how to construct a conflict graph with three pos
relations between values. In this section we use the conflict graph to identify two v
that should be serialized in order to reduce the potential overload on the correspo
register file. The criteria for selecting these values are derived from a so calledcolour-
ing of a conflict graph. In Figure 4.28 such a colouring is shown, where numbers
used rather than colours. A valid colouring assigns each node in the conflict gra
colour such that conflicting nodes (nodes connected by an edge) have different c
assigned to them. A minimum colouring is a valid colouring with a minimum num
of colours. This number is called thechromaticnumber and is a property of the conflic
graph. Because edges in the conflict graph model overlap in value lifetimes, a
(minimum) register binding can be extracted from a valid (minimum) colouring
interpreting the colours as registers [Chai82]. We apply the exact sequential colo
algorithm from [Coud97] to find a minimum colouring. Traditional colouring-bas
methods for register binding construct a conflict graphafter the value lifetimes are fixed

d C
u

P
v,() 1–

II

d C
v

P
u,() 1–

II
--------------------------------+ 0≥

d P
u

C
v,() k II⋅ 1+≥

d P
v

C
u,() l II⋅ 1+≥

s Ak() s A0() k II⋅+= d P
u

C
v,() k II⋅ 1+≥ d Pk

u
C0

v,() 1≥

d P
v

C
u,() l II⋅ 1+≥ d P0

v
Ck

u,() k l+() II⋅ 1+≥

k l+() II⋅ 0≥ II 0>

k l 0≥+

k d P
u

C
v,() 1–

II
--------------------------------=

l d P
v

C
u,() 1–

II
--------------------------------=

REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES 79

mum

ween
er-
weak
con-
7are
nds

,
best
s
ntinu-

r seri-
, the

ed.

o
f
e
sed to
by a schedule. In that case, a minimum colouring corresponds directly to a mini
register binding. In our method, a conflict graph is constructed for apartial schedule. In
the previous section we saw that this results in an additional possible relation bet
values: a weak conflict. In order to cope with this additional type of conflict, two diff
ent conflict graphs are created: a weak conflict graph WCG, that includes both
and strong conflicts, and a strong conflict graph SCG, that includes only strong
flicts. The weak and strong conflict graphs associated with the DFG in Figure 4.2
depicted in Figure 4.28. A minimum colouring of the weak conflict graph correspo
to a pessimistic or worst case colouring; the chromatic index of WCG is anupper
bound to the number of registers required inanycompletion of the schedule. Similarly
a minimum colouring of the strong conflict graph corresponds to an optimistic or
case colouring; the chromatic index of SCG is alowerbound to the number of register
required in any completion of the schedule. These bounds are used to steer the co
ation of the serializing process. If the capacity exceeds the upper bound, no furthe
alization is required for that register file. If the lower bound exceeds the capacity
process is in an infeasible region of the search space, and backtracking is perform

From a minimum colouring, for each nodev in the conflict graph we extract the s
calledsaturation number, the number of different colours in the neighbourhood ov
(the nodes connected tov in the conflict graph). In Figure 4.28a) for example, th
neighbourhood of node e consists of nodes a, b, c, and d. Colours 1 and 2 are u

BA

C

G

sink

source

ED

F

a b

c

d e

f

II=2
latency=7

Resource conflicts:

A-D
B-E
C-F
D-G

Figure 4.27 DFG used to illustrate the serializing process

-7
A B C D E F G

A
B
C
D
E
F
G

0
-1
-2
-3
-4
-5
-6

0
0
-2
-3
-3
-5
-6

1
1
0
-2
-2
-3
-5

3
2
1
0
-1
-2
-3

3
3
1
0
0
-2
-3

4
4
3
1
1
0
-2

6
5
4
3
2
1
0

80 REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES

Simi-
ode c
algo-
ph of
s

the

two.
nstitute
m is

nnot,

use
eck in
high-
t
cond
G.
be
ck in

o con-

ance
e fig-
plete,
r.
colour the neighbourhood of node e, so the saturation number of node e equals 2.
larly, the saturation number of node a equals 2, and the saturation number of n
equals 1. Saturation numbers are an indication of a bottleneck for the colouring
rithm, because they indicate how many colours the algorithm requires in a subgra
the conflict graph. Saturation numbers in thestrongconflict graph indicate bottleneck
that cannot be solved by serializing value lifetimes, whereas saturation numbers in
weakconflict graph indicate bottlenecks that oftencan be solved by serializing value
lifetimes. In Figure 4.28 for example, nodes a,b and e all have saturation number
Because that is the highest saturation number in the graph, these three nodes co
a bottleneck. This bottleneck can be reduced if one of the conflicts between the
eliminated. The conflict a-e and b-e can be eliminated, but the conflict a-b ca
because it is a strong conflict.

Now we can explain the process of selecting two values, referred to asu andv, for seri-
alization. Foru we choose a node which is primary a bottleneck in WCG. Beca
many such bottlenecks may exist, we prefer nodes that also constitute a bottlen
SCG. So we use the highest saturation number in WCG as a first criterion and the
est saturation number in SCG as a second criterion. For valuev we choose the highes
saturation number in WCG, since we are looking for bottlenecks in WCG. The se
criterion however is thelowestsaturation number in the strong conflict graph, SC
The rationale behind this is that valuev should be such that it has the potential to
serialized with many other values, which is not the case if it constitutes a bottlene
the strong conflict graph. Furthermore, we maintain the restriction thatu andv have a
weak conflict, because strong conflicts cannot be serialized, and values having n
flict need not be serialized.

We will use the example in Figure 4.27 to illustrate the binding process. The dist
matrix after applying resource constraint analysis (Lemma 3.2) is given in the sam
ure. It is used to construct the conflict graph in Figure 4.29. Because WCG is com
the priority function will generate a choice ofu andv which is as sensible as any othe

a b

c

de

f

a) b)

Figure 4.28 Weak conflict (a) and strong (b) coloured conflict graph for
Figure 4.21 without pipelining.

1 2

3

1

1

1

a b

c

de

f

1 2

2

1

1

1

REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES 81

alysis
lay
a

indi-
ber in
d f are

dis-
the
he
t the
tains
le and
e of
. The
). For

ans
Suppose that values b and e are selected for serialization. The constraint an
applies Lemma 4.4 on the distance of 3 (k=1) to serialize with a de
of 2 clock cycles, and on the distance of -3 (k=-2) to serialize with
delay of -4 clock cycles. The distance matrix and conflict graphs are updated, as
cated in Figure 4.30. Now nodes a, c, d, and f have the highest saturation num
WCG. These nodes all have the same saturation number in SCG, so values c an
chosen arbitrarily. As a result, the constraint analyser applies Lemma 4.4 on the
tance of 3 (k=1) to serialize with a delay of 2 clock cycles, and on
distance of -3 (k=-2) to serialize with a delay of -4 clock cycles. T
effect on the distance matrix and conflict graph is given in Figure 4.31. Note tha
mobility is reduced to zero, so the schedule is fixed. The strong conflict graph con
the clique a, c, d, e, indicating that at least four registers are required. The schedu
the two possible register bindings are given in Figure 4.32b). After the initial choic
serializing b and e (Figure 4.30), we might also have selected a-d instead of c-f
resulting schedule and two possible register bindings are given in Figure 4.32a
this particular example, the choice of which values to serialize is not very crucial.

4.4.3 Lifetime sequencing
After the selection of values for serialization it needs to be determinedhowthese values
are serialized. In Figure 4.33 for example, valuevj can be serialized inbetweenui-2 and
ui-1, or inbetweenui-1 andui, or ui andui+1, etc. In our approach, we will first try the
earliest possibility to schedule valuevj. If that yields infeasibility, then the 2nd earliest
possibility is tried, etc.

a b

c

de

f

Figure 4.29 Distance matrix and conflict graph for Figure 4.27. A solid edge me
strong overlap. A dashed edge means weak overlap. II=2

A B C D E F G
A
B
C
D
E
F
G

0
-1
-2
-3
-4
-5
-6

0
0
-2
-3
-3
-5
-6

1
1
0
-2
-2
-3
-5

3
2
1
0
-1
-2
-3

3
3
1
0
0
-2
-3

4
4
3
1
1
0
-2

6
5
4
3
2
1
0

B E→ C E→
E B→ F B→

C F→ D F→
F C→ G C→

82 REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES

in
.

in
lues.

g

A B C D E F G
A
B
C
D
E
F
G

0
-1
-2
-3
-4
-5
-6

0
0
-1
-3
-3
-4
-6

1
1
0
-2
-2
-3
-5

3
2
1
0
-1
-2
-3

3
3
2
0
0
-1
-3

4
4
3
1
1
0
-2

6
5
4
3
2
1
0

Figure 4.30 The distance matrix and conflict graph corresponding to the example
Figure 4.21 after serializing b-e. Bold faced numbers indicate updated values

a b

c

de

f

A B C D E F G
A
B
C
D
E
F
G

0
-1
-2
-3
-4
-5
-6

1
0
-1
-2
-3
-4
-5

2
1
0
-1
-2
-3
-4

3
2
1
0
-1
-2
-3

4
3
2
1
0
-1
-2

5
4
3
2
1
0
-1

6
5
4
3
2
1
0

Figure 4.31 The distance matrix and conflict graph corresponding to the example
Figure 4.27 after serializing b-e and c-f. Bold faced numbers indicate updated va

a b

c

de

f

Figure 4.32 The only 2 feasible schedules for Figure 4.28, and correspondin
register bindings.

0
1
2
3
4
5
6

time
0
1
2
3
4
5
6

A B
C

DE
F

G

A
B

C
D

E
F

G

reg1: a,e
reg2: b,d
reg3: c
reg4: f

reg1: a,d
reg2: b,e
reg3: c
reg4: f

reg1: a
reg2: b,c
reg3: d
reg4: e,f

reg1: a
reg2: b,e
reg3: c,f
reg4: d

a) b)

OR OR

REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES 83

pro-

f DSP
ans-
ffler
form.
e type
wn in

e for
bound
col-

in this

with
ed to
4.5 Experimental results
In this section, we present the experimental results [Mesm99b] obtained with the
posed method implemented in theFACTSenvironment [Eijk00]. All experiments are run
on a machine with a 233 MHz Pentium II processor.

Because the proposed techniques are especially intended to handle inner loops o
algorithms under tight timing constraints, we use the inner loop of a fast fourier tr
form (FFT) algorithm, a fast discrete cosine transform (FDCT) algorithm and a Loe
algorithm that performs an 8-point 1-dimensional inverse discrete cosine trans
Each example is mapped to a relatively simple architecture in which each resourc
has a dedicated register file. The characteristics of the various examples are sho
Table 4.2. The latency shown in the third column is the minimum latency obtainabl
that constraint set. The table also shows the results obtained by a branch-and-
scheduler [Timm94] followed by a register binder based on exact minimum graph
ouring. These results are used as a reference point for the method proposed
paper.

To evaluate the proposed method, we have applied it to the examples of Table 4.2
various register file capacity constraints. The branch-and-bound scheduler is us

Table 4.2 Examples and reference results

example |V|, | E_d | II/latency time(s) RF sizes

fft256
fdct
loef

30,43
42,43
56,57

4/13
18/18
26/28

0.1
0.1
0.4

3,3,1,2
9,4

8,4,10

time

Pj
v

C j
v

vj

Pi 1–
u

Ci 1–
u

Pi
u

Ci
u

Pi 1+
u

Ci 1+
u

Figure 4.33 Several options are available for sequencingu andv

84 REGISTERBINDING FOR RANDOMLY ADDRESSABLEREGISTERFILES

s are

e run
the

e the

ethod
ming
edules
gister
ting
rtant
es of
reg-

eriori.
gis-
complete the partial schedule resulting from value lifetime serialization. The result
shown in Table 4.3.

For each problem instance, Table 4.3 lists the register file capacity constraints, th
time (including the time needed for scheduling), and the impact of serialization on
mobility of the operations (the numbers before respectively after the arrow denot
mobility before and after serialization).

The experimental results for the example fft256 clearly show that the proposed m
is steered by the individual register file constraints. Despite the presence of tight ti
and resource constraints, the approach is able to generate many different sch
dependent on the settings of the individual capacity constraints. So if a certain re
file is potentially overloaded, the method will reduce this load, possibly by exploi
the opportunities offered by other register files. We consider this feature very impo
for handling heterogeneous register file architectures. By integrating the phas
scheduling and register binding, our method is also able to significantly reduce the
ister occupation compared to an approach that performs register binding a post
For the example ‘loef’, this results in a reduction of the total number of required re
ters from 22 to 15 registers.

Table 4.3 Results of proposed method

example RF caps time (s) mobility

fft256 1, 4, 1, 2
2, 2, 1, 2
2, 3, 1, 1
3, 2, 1, 1
4, 1, 1, 2

0.1
0.4
0.8
0.9
0.1

0.7 0.3
2.3 0.0
2.1 0.0
2.1 0.0
0.7 0.4

fdct 9, 4
6, 4
8, 2

2.3
2.7
0.9

9.5 4.0
9.5 2.0
9.5 1.4

loef 8, 4, 10
4, 3, 8

3.5
4.9

14.4 3.1
14.4 1.0

→
→
→
→
→

→
→
→

→
→

STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH 85

sely
with

t often
ts that
e flex-
, lim-
will
ints in
p the

l are
ucing
ch that
s (simi-

nd is a

stor-
es. In
FIFO
f the

usses
ctive-

the
y the
from
f the

rva-
el is
ry to
nitia-
As a
Chapter

5 Storage Models for Reduced

Instruction Width

In the introduction of this thesis it was described how important code size and, clo
related, instruction width are. This importance is even stronger for processors
instruction memory embedded on the same chip. The observation was made tha
more than half of the instruction bits is used for addressing registers. This sugges
an important decrease in code size can be obtained by questioning the need for th
ibility offered by conventional register addressing mechanisms, and consequently
iting the range of addressing possibilities, albeit artificially. In this chapter we
consistently apply the same strategy used in this thesis: modelling some constra
terms of serializing alternatives and rules for choosing those alternatives that kee
solution in the feasible region. In this chapter the “constraints” we wish to mode
due to a restricted mechanism for register addressing with the objective of red
code size. The techniques presented here are limited to serializing operations su
designated values can share the same address. Assigning the values to addresse
lar to assigning values to registers) is considered outside the scope of this thesis a
topic of ongoing research [Alba00].

The rest of this section is organized as follows. In Section 5.1 we take a FIFO as a
age model and introduce the line of reasoning to extract essential serializing rul
Section 5.2 a STACK is used as storage medium. In Section 5.3 a new hybrid of a
and a STACK called FILIFO is analysed. Section 5.4 generalizes the analyses o
first three sections to the case that loop pipelining is applied. Section 5.5 disc
some practical issues. A case study is performed in Section 5.6 to show the effe
ness of some of the storage models.

5.1 FIFOs
The FIFO (first in first out) model is illustrated in Figure 5.1. Values are written into
FIFO at the top and read from the bottom. Since we are merely interested in the wa
FIFO model affects the ordering of operations accessing the FIFO, we abstract
any implementations of the FIFO model itself. We also assume that the capacity o
FIFO is sufficient for all practical applications. The name “FIFO” is due to the obse
tion that a value first written is consequently first read. Characteristic of this mod
that values are not overwritten but rather shifted down. This implies that contra
randomly accessible registers (Section 2.4), value lifetimes are not limited to the i
tion interval in case of loop pipelining, because older values are not overwritten.

86 STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH

y
ature

s are
set of
ping
5.2.

d by
alues
rder is
arac-
ro-

d (d).
ality.
the

er
mas
result, multiple iterations of the same value (ui, ui+ 1, ui+ 2, etc.) can be simultaneousl
present in the FIFO. So although a FIFO has some restrictions, it also provides a fe
that randomly addressable register files do not have.

5.1.1 Analysis of FIFO access ordering
Our analysis is similar to the one in chapter 4. Only conflicts between two value
considered. When conflicts are resolved between each pair of values, the whole
values is guaranteed to ‘fit’ in the same storage unit (FIFO). Basically, two overlap
valuesu andv can relate to each other in four different ways as depicted in Figure

In this figure, a horizontally drawn line represents the lifetime of a value produce
its left side node, and consumed by its right side node. The relation between two v
is characterized by the order of their successive write and read accesses. This o
denoted in Figure 5.2 by the diagonal dotted arrows. For example, relation (a) is ch
terized by three orders: , , and , where P denotes the p
ducer and C denotes the consumer of the corresponding value. When valuesu andv are
addressed in the same way, situations (a) and (c) are equivalent as are (b) an
Therefore we restrict our analysis to situations (a) and (b) without loss of gener
Note that situation (a) is feasible for our FIFO model, but situation (b) contradicts
first-in first-out ordering. Situation (b) is characterized by two partial orders:
and . From the infeasibility of this situation we extract the rule that if eith
one of these two orders occurs, the other one cannot. Thus the following two lem
are derived.

v3
v6
v2
v9

Figure 5.1 FIFO model

in

out

time

u

v

(a)
Figure 5.2 Potentially overlapping valuesu andv

(b) (c) (d)

P
u

P
v→ P

v
C

u→ C
u

C
v→

P
u

P
v→

C
v

C
u→

STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH 87

tion

sit-

rom
t).

lica-
Lemma 5.1: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same FIFO. If

 we can add a sequence precedence edge (Cu, Cv) with weight 1 without
excluding any feasible schedules. ❏

Lemma 5.1 is illustrated in Figure 5.3. This lemma restricts the possibilities to situa
(a) and the situation that the lifetime of valueu completely precedes that of valuev.

Lemma 5.2: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same FIFO. If

 we can add a sequence precedence edge (Pu, Pv) with weight 1 without
excluding any feasible schedules. ❏

Lemma 5.2 is illustrated in Figure 5.4. This lemma also restricts the possibilities to
uation (a) and the situation where valueu completely precedes valuev.

5.2 STACKs
The STACK model is illustrated in Figure 5.5. Values are both written to and read f
the top of the STACK. A STACK is therefore also called a LIFO (last in first ou
Again we assume that the capacity of the STACK is sufficient for all practical app
tions.

d P
u

P
v,() 0≥

Cu

Pu

same FIFO

Cv

Pv
u

v

Figure 5.3 Lemma 5.1 for serializing value lifetimes

Cu

Pu

Cv

Pv
u

v

d C
u

C
v,() 0≥

Cu

Pu

same FIFO

Cv

Pv
u

v

Figure 5.4 Lemma 5.2 for serializing value lifetimes

Cu

Pu

Cv

Pv
u

v

88 STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH

analy-

f the
itua-

e P
nfeasi-
not
to be
Because two values can only be read using the same read pointer we restrict the
sis to situations (a) and (b) in Figure 5.6.

With respect to feasible overlapping lifetimes, the STACK case is the reverse o
FIFO case. Situation (b) is a feasible on the STACK case, but situation (a) is not. S
tion (a) is characterized by three orders: , , and , wher
denotes the producer and C denotes the consumer of the corresponding value. I
bility of situation (a) thus implies that the combination of these three orderings is
allowed. So whenever either two of these orderings are present, the third one has
negated. This observation yields the following three lemmas.

Lemma 5.3: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same STACK. If

 and we can add a sequence precedence edge (Cv, Cu) with
weight 1 without excluding any feasible schedules. ❏

Figure 5.5 STACK model

v3
v6
v2
v9

in out

time

u

v

(a)
Figure 5.6 Potentially overlapping valuesu andv

(b)

P
u

P
v→ P

v
C

u→ C
u

C
v→

d P
u

P
v,() 0≥ d P

v
C

u,() 0≥

Cu

Pu

same STACK

Cv

Pv
u

v

Figure 5.7 Lemma 5.3 for serializing value lifetimes

Cu

Pu

Cv

Pvu

v

STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH 89

tion

tua-

tua-
Lemma 5.3 is illustrated in Figure 5.7. This lemma limits the possibilities to situa
(b) in Figure 5.6.

Lemma 5.4: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same STACK. If

 and we can add a sequence precedence edge (Pv, Pu) with
weight 1 without excluding any feasible schedules. ❏

Lemma 5.4 is illustrated in Figure 5.8. This lemma also limits the possibilities to si
tion (b) in Figure 5.6, where valuesu andv are swapped.

Lemma 5.5: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same STACK. If

 and we can add a sequence precedence edge (Cu, Pv) with
weight 0 without excluding any feasible schedules. ❏

Lemma 5.5 is illustrated in Figure 5.9. This lemma limits the possibilities to the si
tion where valueu completely precedes valuev.

d P
v

C
u,() 0≥ d C

u
C

v,() 0≥

Cu

Pu

same STACK

Cv

Pv
u

v

Figure 5.8 Lemma 5.4 for serializing value lifetimes

Cv

Pv

Cu

Pu

vu

d P
u

P
v,() 0≥ d C

u
C

v,() 0≥

Cu

Pu

same STACK

Cv

Pv
u

v

Figure 5.9 Lemma 5.5 for serializing value lifetimes

Cv

Pv

v

Cu

Pu

u

90 STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH

ides
on-
FO
a), in

top
p, we

s read
. The

other
es are
y are
. The
ay the

d
inding
ortant
4 we
duler
ter

r to the
ilable
the

s to
f the
FO are
5.3 FILIFO, a hybrid between FIFO and STACK
The FILIFO (first in last in first out) model is designed as a storage unit that prov
more flexibility than both a STACK and a FIFO, without increasing the number of c
trol bits too much (at most one additional bit). It is a hybrid of a STACK and a FI
because two values relate to each other in either a FIFO-like manner (Figure 5.12
a STACK-like manner (Figure 5.12 b), or they simply do not overlap.

The FILIFO is illustrated in Figure 5.10. Values are written into the FILIFO at the
and can be read either from the top or the bottom. When a value is read from the to
say it is s-read, because it resembles the behaviour of a STACK. When a value i
from the bottom, we say it is f-read, because it resembles the behaviour of a FIFO
determination whether a value is s-read or f-read we will callread pointer assignment.

5.3.1 Analysis of FILIFO access ordering

First we observe that the way two value lifetimes are allowed to relate to each
depends on whether these values are s-read or f-read. For example: if both valu
f-read they relate to each other as two values in a FIFO (Section 5.1), but if the
both s-read they relate to each other as two values on a STACK (Section 5.2)
reverse is also true. Whether two values can be s-read or f-read depends on the w
corresponding value lifetimes relate to each other. For example, if valuesu andv relate
to each other as in Figure 5.12 (a), valueu can only be f-read. We conclude that rea
pointer assignment and scheduling are interrelated problems, just as register b
and scheduling are interrelated problems (chapter 4). There is however an imp
difference between register binding and ‘read pointer assignment’. In chapter
made explicit register binding decisions (during scheduling) to prevent the sche
from violating the capacity constraints of the register files. Explicit ‘read poin
assignment’ decisions are not necessary because we have no constraints simila
capacity constraints of register files. Instead we allow the scheduler to use the ava
schedule freedom, and the read pointer assignment will follow implicitly from
schedule. This can only work under the following conditions:

• The serializing (and assignment) rules should describe sufficient condition
exclude all infeasible situations. The rules thus can serve as a verification. I
completed schedule satisfies these rules, all values assigned to the same FILI

Figure 5.10 FILIFO model

v3
v6
v2
v9

in

out

out

STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH 91

easi-

n read
ply a
haus-

ointer
works
ausing
until no

s
one

-

guaranteed to fit in there. This requires a thorough (complete) analysis of all inf
ble situations. Furthermore, we should take care that the rules providenecessary
conditions only.

• As we have seen in the example above, some access orderings imply a certai
pointer assignment and similarly, some (partial) read pointer assignments im
certain access ordering. In order to cover all infeasible situations, we need to ex
tively consider all combinations of pointer assignments and access orderings.

We use the scheme depicted in Figure 5.11 to cope with the interaction between p
assignment and scheduling. Because the application of the sequencing rules
accumulative (new precedences and pointer assignments trigger the rules, thus c
new precedences and pointer assignments, etc.), constraint analysis is repeated
further serializations or pointer assignments are obtained.

Algorithm 5.1 (constraint analysis for FILIFO).

for all v in Y assigned to storage unit SU of type FILIFO
for all u<>v in Y assigned to SU

for all lem in Lemmas on FILIFO
check Lemma lem on v and u and add corresponding sequence edge

First we try to find situations where infeasibility is implied by a single valuev. Only one
situation implies infeasibility: the case where valuev is s-read and the lifetime exceed
the initiation interval II. So if either one of these two conditions is true, the other
cannot. This leads to the following two lemmas:

Lemma 5.6: Let valuev, produced by operation Pv and consumed by Cv reside in a FIL-
IFO. If we can assign Cv to the f-read pointer without excluding any fea
sible schedules. ❏

Lemma 5.7: Let valuev, produced by operation Pv and consumed by Cv reside in a FIL-
IFO. If Cv is assigned to the s-read pointer, the lifetime ofv cannot exceed II, so we can
add a sequence precedence edge (Cv, Pv) with weight -II without excluding any feasible
schedules. ❏

constraint
analysis
for FILIFO

scheduler
additional
precedence
constraints

schedule
decision

Figure 5.11 Constraint analysis runs along with the scheduler

d P
v

C
v,() II>

92 STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH

d be
s-read
es on
s.

ucers
1 and

ucers
5.3 to

re
d,
-
y
ther
The analysis for two values will be more complicated. A number of situations shoul
distinguished with respect to the read pointer assignment. A value can be either
(s), f-read (f), or no decision is yet made (x). There are six combinations of access
two valuesu/v: x/x, x/f, x/s, f/f, s/f, and s/s. These situations are analysed as follow

u/v = f/f : Both values are accessed by the f-read pointer. The corresponding prod
and consumers have to satisfy the rules associated with a FIFO, so Lemma 5.
Lemma 5.2 apply.

u/v = s/s: Both values are accessed by the s-read pointer. The corresponding prod
and consumers have to satisfy the rules associated with a STACK, so Lemma
Lemma 5.5 apply.

u/v = s/f: Valueu is s-read andv is f-read. Two situations, (a) and (b) in Figure 5.12, a
infeasible for the same reason. Valueu is put on the STACK, and before it is consume
valuev is put on top of it; nowu cannot be read untilv is gone, and vice versa. So infea
sibility is implied by the combination of and . From the infeasibilit
of this situation we extract the rule that if either one of the two orders occurs, the o
one cannot. Thus the following two lemmas are derived.

Lemma 5.8: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same FILIFO. Letu be
s-read andv be f-read. If we can add a sequence precedence edge (Cu, Pv)
with weight 0 without excluding any feasible schedules. ❏

time

u

v

(a)
Figure 5.12 Potentially overlapping valuesu andv

(b) (c) (d)

P
u

P
v→ P

v
C

u→

d P
u

P
v,() 0≥

Cu

Pu

same FILIFO

Cv

Pv
u(s)

v(f)

Figure 5.13 Lemma 5.8 for serializing value lifetimes

Cv

Pv

v(f)

Cu

Pu

u(s)

STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH 93

sit-

itua-

life-
his
life-

12 (a)

itua-
s do
ceding

ary
Lemma 5.8 is illustrated in Figure 5.13. This lemma restricts the possibilities to the
uation that the lifetime of valueu completely precedes that of valuev.

Lemma 5.9: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same FILIFO. Letu be
s-read andv be f-read. If we can add a sequence precedence edge (Pv, Pu)
with weight 1 without excluding any feasible schedules.

Lemma 5.9 is illustrated in Figure 5.14. This lemma restricts the possibilities to s
tions (c) and (d) in Figure 5.12 and the situation where valuev precedes valueu.

u/v = x/x: Neither value has been assigned a read port. Remember that two value
times relate to each other in either a FIFO-like or a STACK-like manner (or both). T
means that no serializing constraints can be derived from any combination of value
times. But some relations do enforce the use of a certain read pointer. In Figure 5.
valueu can only be f-read, and in Figure 5.12 (b) valuev can only be s-read.

Lemma 5.10: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same FILIFO. If

, and , then Cu can be f-read without excluding
any feasible schedules. ❏

Lemma 5.11: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same FILIFO. If

 and , then Cv can be s-read without excluding any feasible
schedules. ❏

u/v = x/f: Valuev is f-read, and the read access on valueu is not yet assigned. The only
infeasible situation is Figure 5.12 (b). Because this was also the only infeasible s
tion in theu/v = f/f case, we refer to Lemma 5.1 and Lemma 5.2. Some situation
enforce a read pointer assignment, but these situations are already covered by pre
lemmas: Situation (d) in Figure 5.12 imposes valueu to be s-read, which is already
implied by Lemma 5.11. In the case that both: and , it is necess

d P
v

C
u,() 0≥

Cu

Pu

same FILIFO

Cv

Pv
u

v

Figure 5.14 Lemma 5.9 for serializing value lifetimes

Cv

Pv

Cu

Pu

vu

d P
u

P
v,() 0≥ d P

v
C

u,() 0≥ d C
u

C
v,() 0≥

d P
u

P
v,() 0≥ d C

v
C

u,() 0≥

P
u

P
v→ P

v
C

u→

94 STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH

of

d
only
e

red by

ec-
5.3

alue

aden
r ran-
FIL-

rela-
.2 to
5.1 in

in
edge
that , and that valueu be f-read. This situation is covered by a combination
Lemma 5.1 and Lemma 5.10.

u/v = s/x: Valueu is s-read, and the read access on valuev is not yet assigned to a rea
pointer. The only infeasible situation is Figure 5.12 (a). Because this was also the
infeasible situation in theu/v = s/scase, we refer to Lemma 5.3 to Lemma 5.5. Som
situations do enforce a pointer assignment, but these situations are already cove
preceding lemmas: Situation (c) in Figure 5.12 imposes valuev to be f-read, which is
already implied by Lemma 5.10. In the case that both and , it is n
essary that valuev be s-read. This situation is covered by a combination of Lemma
and Lemma 5.11.

5.4 Loop pipelining
When a pipelined schedule is desired, we not only have to take care thatu andv fit in
the same FILIFO (or FIFO or STACK), but also thatui andvj fit in the same FILIFO.
This is illustrated in Figure 5.15. In this figure, a solid line segment represents a v
lifetime, a dotted line segment represents an ‘empty’ time slot. Valuesui andvi are seri-
alized and therefore fit in the same STACK, but valuesui+1 andvi behave in a typical
FIFO-manner and do not fit together in a STACK. We conclude that we have to bro
our scope beyond loop boundaries. We have already done this in Section 4.1.2 fo
domly addressable register files, and we will do the same for FIFOs, STACKs and
IFOs.

In Section 2.2 we showed the equivalence between the relation and the
tion with time delay . This equivalence has been used in Section 4.1
generalize the lemmas from Section 4.1.1. We derive a generalization of Lemma
a similar way: First, we use the equivalence to translate the timing delay of
Figure 5.16 (a) to the iteration indices in Figure 5.16 (b). The additional sequence

C
u

C
v→

P
u

P
v→ P

v
C

u→

time

Figure 5.15 Serializing within the same iteration is not sufficient for pipelining

ui+1

ui

ui+2

vi

u andv in same STACK

Pi
v

Ci
v

Pi
u

Ci
u

Pi 1+
u

Ci 1+
u

Pi 2+
u

Ci 2+
u

Ci Pi k+→
C P→ k II⋅–

k– II⋅

STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH 95

.16
ming
ed

added
s are
aths

s
e-
g and

)
ge
on-

.
lization
in Figure 5.16 (c) is obtained from (b) by directly applying Lemma 5.1. In Figure 5
(d) the iteration indices have been translated back to the timing domain and a ti
relation from Cu to Cv (with delay) is the result. Lemma 5.1 is now generaliz
to Lemma 5.12.

Lemma 5.12: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same FIFO. If

 we can add a sequence precedence edge (Cu, Cv) with weight
without excluding any feasible schedules. ❏

The generalization of Lemma 5.2 is now straightforward:

Lemma 5.13: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same FIFO. If

 we can add a sequence precedence edge (Pu, Pv) with weight
without excluding any feasible schedules. ❏

The STACK lemmas are a little harder to generalize because a sequence edge is
as a result oftwo paths instead of one (which is the case with a FIFO). These path
indicated in Figure 5.18 (a); one has length , the other . These p
are not completely independent; as a result of and the path
of length , which lower bounds , it is derived that . But a
long as this is the case,k andl may be arbitrary integers. Because of the relative ind
pendence of these two parameters, we can use the equivalence between timin
indexes in two different ways. In Figure 5.18, we observe the conflict betweenu0 and
vl, and in Figure 5.17 the conflict betweenuk and vl is analysed. In Figure 5.18 (b
Lemma 5.3 applies if , so if , which finally results in a sequence ed

with length . In Figure 5.17 (b) Lemma 5.3 applies under the same c
dition (), which finally results in a sequence edge with length
Since both sequence edges may be added under the same condition, the genera
of Lemma 5.3 results in Lemma 5.14:

Lemma 5.14: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same STACK. If

k II⋅–

same

Figure 5.16 Generalization of Lemma 5.1

Pu

Pv

Cu

Cv

k– II⋅ P0
u

Pk
v

C0
u

Ck
v

P0
u

Pk
v

C0
u

Ck
v

Pu

Pv

Cu

Cv

k– II⋅

k– II⋅

u u u u

v v v vFIFO

(a) (b) (c) (d)

d P
u

P
v,() k II⋅–≥

1 k II⋅–

d C
u

C
v,() k II⋅–≥

1 k II⋅–

l– II⋅≥ k– II⋅≥
LT u() II≤ P

u
P

v
C

u→ →
k l+() II⋅– LT u() k l+ 1–≥

d 0≥ k l+ 0≤
C

v
C

u→ l II⋅
k l+ 0≤ C

v
C

u→ k– II⋅

96 STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH

the

eral-
and we can add a sequence edge (Cv, Cu)
with weight without excluding any feasible schedules. ❏

Lemma 5.4 is generalized to Lemma 5.15 following the same line of reasoning.

Lemma 5.15: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same STACK. If

and we can add a sequence edge (Pv, Pu)
with weight without excluding any feasible schedules. ❏

Deriving Lemma 5.16 from Lemma 5.5 also follows this line of reasoning but
weight of the resulting sequence edge is different.

Lemma 5.16: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same STACK. If

 and we can add a sequence edge (Cu, Pv) with
weight without excluding any feasible schedules. ❏

With respect to the u/v = s/f case for FILIFOs, Lemma 5.8 and Lemma 5.9 are gen
ized to Lemma 5.17 and Lemma 5.18 respectively.

d P
u

P
v,() l II⋅–≥ d P

v
C

u,() k II⋅–≥ k l+ 0≤
max l II⋅ k– II⋅,{ }

d P
v

C
u,() k II⋅–≥ d C

u
C

v,() l II⋅–≥ k l+ 0≤
max l II⋅ k– II⋅,{ }

d P
u

P
v,() k II⋅–≥ d C

u
C

v,() l II⋅–≥
min l– II⋅ k– II⋅,{ }

same

Figure 5.17 First generalization of Lemma 5.3

Pu

Pv

Cu Cv

l– II⋅ Pk
u

P0
v

Ck
u C0

v

Pk
u

P0
v

Ck
u

C0
v

Pu

Pv

Cu Cv

l– II⋅

k– II⋅

u u u u

v v v vFIFO

(a) (b) (c) (d)

k– II⋅

k l+() II⋅– k l+() II⋅–

same

Figure 5.18 Second generalization of Lemma 5.3

Pu

Pv

Cu Cv

l– II⋅ P0
u

Pl
v

C0
u Cl

v

P0
u

Pl
v

C0
u

Cl
v

Pu

Pv

Cu Cv

l– II⋅

l II⋅

u u u u

v v v vSTACK

(a) (b) (c) (d)

k– II⋅ d

d k l+() II⋅–=

STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH 97

(C

(P

5.19

o ana-
f loop
g the

rage
ly the

read
erings
Lemma 5.17: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same FILIFO. Letu be
s-read andv be f-read. If we can add a sequence precedence edgeu,
Pv) with weight without excluding any feasible schedules. ❏

Lemma 5.18: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same FILIFO. Letu be
s-read andv be f-read. If we can add a sequence precedence edgev,
Pu) with weight without excluding any feasible schedules. ❏

Lemma 5.10 and Lemma 5.11 for deriving a read port are generalized to Lemma
and Lemma 5.20 respectively.

Lemma 5.19: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same FILIFO. If

, , and , where , then Cu

can be f-read without excluding any feasible schedules. ❏

Lemma 5.20: Let valueu, produced by operation Pu and consumed by Cu, and valuev,
produced by operation Pv and consumed by Cv, reside in the same FILIFO. If

 and , where , then Cv can be s-read without
excluding any feasible schedules. ❏

We have generalized the rules from the previous section so that we are now able t
lyse the constraints generated from the different storage models in the context o
pipelining. The next section considers some practical issues involved in applyin
proposed analysis to real-life applications and a broad range of architectures.

5.5 Some practical issues
The previous sections laid the foundations for coping with unconventional sto
models. In this section we make some more generalizations that allow us to app
analysis rules to a broader range of practical situations. These situations are

• multiple consumers of the same value

• using different RF models in the same architecture

5.5.1 Multiple consumers
When a value in a storage unit is allowed to be consumed more than once (if a
access can be non-destructive), an extensive number of different access ord
become possible. For example, suppose that in some Basic Block, valuev is consumed
three times, by operations , , and respectively. It is allowed thatv is written in
a FILIFO and s-read by , that subsequently valueu is pushed on top ofv and popped,

d P
u

P
v,() l II⋅–≥

l– II⋅

d P
v

C
u,() l– II⋅≥

1 l II⋅–

d P
u

P
v,() k II⋅–≥ d P

v
C

u,() l– II⋅≥ d C
u

C
v,() m II⋅–≥ l k m,≥

d Pu Pv,() k– II⋅≥ d C
v

C
u,() l II⋅≥ l k≥

C1
v

C2
v

C3
v

C1
v

98 STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH

tfor-

lgo-
the

le is a
. Let
thm
nsid-
o be
gly, see

let us
n life-
bse-
of the
values
v is s-read again, a number of values, among whichw, are pushed on top, andv is f-read
destructively. The wayv relates to the other values depends on which consumer ofv is
considered. When considering ,v/w relate as s/s, but when considering ,v/w
relate as f/s in the example. The way to cope with this ambiguity is now straigh
ward: instead of considering a valuev we consider aproduction-consumption pair, or
P-C pair for short. Since a value in our terminology can only be produced once, A
rithm 5.1 is extended to Algorithm 5.2 in order to cope with multiple consumers of
same value.

Algorithm 5.2 (constraint analysis for FILIFO).

for all v in Y assigned to storage unit SU of type FILIFO
for all u<>v in Y assigned to SU

for all Cv and Cu

for all lem in Lemmas on FILIFO
check Lemma lem on Pv, Pu, Cv, and Cu, and add corresponding sequence edge

5.5.2 Architectures with mixed storage types
Suppose we have an architecture containing a variety of storage models, so one fi
FIFO, another a STACK or a FILIFO, and some files are randomly addressable
type(SU) denote the type of storage unit SU. Algorithm 5.2 is extended to Algori
5.3 in order to cope with multiple storage types. Note that register files are not co
ered in this scheme; for register files an explicit register binding decision has t
taken before the constraint analyser is able to reduce the search space accordin
Figure 4.20.

Algorithm 5.3 (constraint analysis for mixed storage types)

for all storage units SU of type register, FIFO, STACK, or filifo
for all v in Y assigned to SU

for all u<>v in Y assigned to SU
for all Cv and Cu

for all lem in Lemmas on type(SU)
check Lemma lem on Pv, Pu, Cv, and Cu, and add corresponding sequence edge

5.6 Case study
In order to understand how the techniques treated in this chapter can be applied,
spend a few words on the status of the work. Chapter 4 started with a discussion o
time serialization for a given register binding. These ‘basic’ techniques were su
quently used in sections 4.2 and 4.4 to generate a register binding. The status
techniques presented here are ‘basic’ in the same sense. The techniques work for

C2
v

C3
v

STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH 99

ign-
hesis.
ss of
hese

inner
sults
etched
0R1 to
e com-
tions
the

cles
that have been assigned to a FIFO, STACK, or filifo. However, FIFO or STACK ass
ment is a topic of ongoing research [Alba00] considered outside the scope of this t
In this section we will demonstrate in a high-level synthesis context the effectivene
FIFO addressing and the tool support for exploring the possibilities offered by t
addressing schemes.

For this purpose we will use the example shown in Figure 5.19. It represents the
loop of an in-place FFT algorithm. The label in-place refers to the fact that the re
of the computation are written back to the same address where the samples are f
(in order to save memory). This explains the long data edges of the addresses a
a3R2: these addresses are used both for fetching samples at the beginning of th
putation, and for storing the results at the end of the computation. The opera
required for fetching the multiplication coefficients are omitted. The purpose of
exercise is to obtain a pipelined schedule with an initiation interval of four clock cy
thereby minimizing the number of addresses required for executing the schedule.

M1

a0R1

x0r1

M2

a2R2

x2r2

M1

a1R1

x1r1

M2

a3R2

x3r2

next iteration

M1 M2 M1 M2

inc

a0

rd0

a1

rd1

a2

rd2

a3

rd3

ml1

wr2

ml0

wr0

ml2

wr1

ml3

wr3

as1

as3

as2

as4

acu acu acuacu

+ +

++

x x x x

Figure 5.19 DFG of an FFT inner loop

γ0

γ2 γ1 γ3

ε0 ε1 ε2

ε3

ϕ0 ϕ1 ϕ2 ϕ3

lc

δ0
δ1 δ2 δ3

100 STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH

tional
cu), a

lier,
me an
. All
icted
. For
ge file

,
re the

sters.
tended

es is
to alu
igure
write
uals
The data-path architecture is depicted in Figure 5.20. The smallest set of func
resources required to obtain this goal consists of an address computation unit (a
rd/wr port on memory M1, a rd/wr port on memory M2, a complex adder, a multip
and an incrementer for the loop counter. For reasons of convenience we assu
architecture with a single storage file consisting of registers, FIFOs, and STACKs
functional units have rd/wr access to this file. The instruction encoding is also dep
in Figure 5.20. The opcodes of each functional unit is assumed to take three bits
each read (write) port, the address of the source (destination) operand in the stora
is encoded. The number of control bits for addressing the storage file equals
wherea represents the number of addresses in the file. For the default architectu
total number of control bits therefore equals =.

5.6.1 Implementation with randomly addressable registers

This design was originally implemented with the usual randomly addressable regi
Because the lifetimes of the addresses a0R1 to a3R2 necessarily exceed the in
initiation interval of four clock cycles, the designer manually inserted so calledrename
or move operations to move a value to another register. Each of the address
renamed twice to enable II=4, as indicated in Figure 5.21 by the operations alu10
23, executed by functional units b1 and b2. Therefore, the default architecture in F
5.20 needs to be extended with two functional units b1 and b2, and two read and
ports on the storage file. Therefore the total number of control bits eq

 = .

alog

6 3 10 8+() alog⋅+⋅ 18 18 alog⋅+

Figure 5.20 Default VLIW architecture and instruction format for
mapping the DFG in Figure 5.19

acu mult M1 M2 inc
complex
adder

storage file

caddacu mult M1 M2 inc

opcodes 8 write addresses 10 read addresses

instruction format

8 3 12 10+() alog⋅+⋅ 24 22 alog⋅+

STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH 101

s per
.1 s).
e
more

igure

er of
FIFO.
, it is
addi-
With this constraint set, the minimum latency of the schedule according toFACTSequals
13 clock cycles. The initial mobility (based on asap-alap) equals 4.56 clock cycle
operation, and is reduced to 2.29 clock cycles after constraint analysis (run-time: 0
The least amount of registers, for whichFACTS is able to find a schedule is 17. Th
mobility was thereby decreased to 0 in 1.07 seconds run time. Since there are 8
global variables alive during execution of the DFG which are not represented in F
5.21, the total number of control bits equals = 134.

5.6.2 Implementation with FIFOs and registers

In this section we will add FIFOs to the architecture in order to decrease the numb
addresses.The largest gain is obtained by placing the values a0R1-a3R2 in a
Because these values are read twice and we use a FIFO with destructive read
decided that each address is written to both a FIFO and a register. This requires an

M1

a0R1

x0r1

M2

a2R2

x2r2

M1

a1R1

x1r1

M2

a3R2

x3r2

next iteration

M1 M2 M1 M2

b1

b2

b1

b2

b1

b2

b1

b2

inc

alu10

alu20

alu12

alu22

alu11

alu21

alu13

alu23

a0

rd0

a1

rd1

a2

rd2

a3

rd3

ml1

wr2

ml0

wr0

ml2

wr1

ml3

wr3

as1

as3

as2

as4

a0

a0d1

a0d2

a1

a1d1

a1d2

a2

a2d1

a2d2

a3

a3d1

a3d2

acu acu acuacu

+ +

++

x x x x

Figure 5.21 Transformed DFG for implementation with registers

γ0

γ2 γ1

δ0

γ3

δ1 δ2 δ3

ε0 ε1 ε2

ε3

ϕ0 ϕ1 ϕ2 ϕ3

lc

24 22 25log⋅+

102 STORAGEMODELS FORREDUCEDINSTRUCTIONWIDTH

als

3R2
ity to
the
. Two
rans-
ters,

ables,
ss
tional write port on the storage file. The amount of control bits then equ

Initially, the mobility equals 3.31 clock cycles per operation. The values a0R1-a
can all be put in one FIFO, but the corresponding constraints reduce the mobil
zero according toFACTS (run-time: 0.1 s). Nine more registers are required to store
remaining values, so the total amount of addresses in the storage file equals ten
more FIFOs are added, and iteratively the values with the longest lifetimes are t
ferred to a FIFO. In this way, a schedule is obtained with three FIFOs and four regis
for a total of seven addresses. Eight more registers are required for the global vari
so the total number of control bits equals = 94, which is 30 bit le
than the situation where only registers were used.

18 19 alog⋅+

18 19 15log⋅+

CONCLUSIONS 103

ation
ation
plica-

dule
itably
in the

s
me-

ken in
other

re tight
ion in
In our
k on a

re-
the

ctly
tc. The
quence
uting

sacri-
ts the
rrent
ng a
experi-
plica-

urrent
con-
rther
es.
Chapter

6 Conclusions

In this thesis an approach for DSP code generation is presented based onconstraint
analysis. This technique is inspired by the observation that traditional code gener
methods require too much help and expertise from a designer to satisfy the combin
of timing, resource, and storage constraints encountered when mapping DSP ap
tions onto embedded processors. Using constraint analysis, a scheduler isguidedrather
than hamperedby these constraints: By using the constraints to prune the sche
search space, the scheduler is often prevented from making a decision that inev
violates one or more constraints. Some of these techniques have been integrated
research code generation toolFACTS[Eijk00], [Mesm01] together with some technique
following the same philosophy like execution interval analysis [Timm95] and sym
try analysis [Eijk99].

We have considered the problem of phase coupling: the problem that decisions ta
one phase of the code generation process effect the freedom of movement in the
phases. We have argued that this problem cannot be ignored when constraints a
and efficient solutions are desired. Traditional methods that perform code generat
separate stages are often not able to find an efficient or even feasible solution.
approach, the problem of phase coupling is addressed by letting all analyses wor
single unified representation of the schedule search space, thedistance matrix, which is
the core layer in theFACTS hierarchy indicated in Figure 6.1. This is an effective rep
sentation because it administrates relative timing, which is important for solving
scheduling problem. Any information regarding relative timing can be dire
expressed in the distance matrix, such as schedule decisions, precedences, e
results of the analyses discussed in this thesis are also expressed in terms of se
constraints and can therefore be combined in the distance matrix simply by comp
the longest paths between all pairs of operations.

This approach to integrate scheduling and register binding enables a compiler to
fice schedule freedom selectively in order to obtain a register binding that respec
individual register file capacities. This feature is considered important given the cu
trend towards a distributed register file architecture. The efficiency of implementi
strong interaction between several code generation stages is supported by the
mental results (Sections 4.3 and 4.5) that feature reasonable run times for DSP ap
tions that are constrained in the timing, resource, and storage domain. In the c
FACTSimplementation, constraint analysis is performed by applying all techniques
secutively until no further progress is obtained; the performance can be fu
improved by developing more efficient strategies to combine the various techniqu

104 CONCLUSIONS

fea-
tion

duce
ilar
, we
ters,

related

ring
ble to
nal
men-

htfor-
orks

-
atrix.

trig-
r con-
plicit

deter-

al-
n

l-
Current research in the context of constraint analysis andFACTS focuses on the follow-
ing topics.

• a search strategy for binding values to registers in arotating register file [Rau82].
This storage file is similar to a randomly addressable register file with the added
ture of automatic register renaming to allow value lifetimes to exceed the initia
interval.

• a search strategy for assigning values to FIFOs [Alba00]. This could help to re
code size and to allow value lifetimes to exceed the initiation interval. A sim
strategy is planned for STACKs. From our experience with FIFOs and STACKs
hope to formulate a strategy for targeting storage files that consist of regis
FIFOs, and STACKs.

• a search strategy for the assignment of operations to functional resources, and
to that, the assignment of values to storage files.

An interesting question arises with respect to the general applicability of the colou
approach of Section 4.4. Does this approach work for registers only? Or is it possi
define weak and strong conflicts in the context of FIFOs, STACKs, or functio
resources, such that the colouring approach is reused effectively for the above
tioned assignment problems? Preliminary results [Alba00] suggest that a straig
ward adaptation of the rules for strong and weak conflicts to a FIFO mechanism w
satisfactory.

Another research question relates to theFACTS hierarchy given in Figure 6.1. Appar
ently, some constraints can effectively be expressed at the level of the distance m
Other constraints can be coped with on-the-fly by letting corresponding ‘rules’ be
gered by refinements in the search space (the distance matrix). This is not true fo
straints related to limited storage capacity in the register files. These require an ex
search strategy to satisfy. For a given constraint, no guidelines are available for

DFG
d-matrix

basic CA-
techniques

search
strategies

• Lifetime Serialization (Section 4.4), Minimize
latency or Initiation Interval

• Execution interval analysis, resource constraint an
ysis (Ch. 3), symmetry analysis, register (Sectio
4.1), FIFO, STACK, filifo (Ch. 5)

• Precedence, fixed latency and initiation interval, re
ative timing, schedule decisions (Section 2.4)

Figure 6.1 TheFACTS hierarchy

CONCLUSIONS 105

lines
xam-
ions
4.4 or

hicle

IPs
t

mining at which level in Figure 6.1 an approach should be defined. Such guide
would be helpful in formulating an approach for some architectural features. For e
ple, it is unclear whether a memory addressed indirectly with (post)-modify opt
[Bart92] should be handled by determining a search strategy such as in Section
by defining rules such as in Section 5.1.

TheFACTStool is used at the Eindhoven University of Technology as a research ve
for research in code generation.FACTS functionality is being integrated in the A|RT
toolset from Frontier Design, Leuven, Belgium in order to design and program AS
with a VLIW architecture. At Philips researchFACTSis applied in the COCOON projec
as part of the compiler targeted at a VLIW architecture.

106 CONCLUSIONS

LITERATURE 107

ol.

g
,

n-
n

ess
SP
gn,

r
e,

h
vol.

nd
hed-

IP
.

he

d A.
er

hn
Literature

[Aiken95] A. Aiken, A. Nicolau, S. Novack, “Resource-Constrained Software
Pipelining”, IEEE transactions on parallel and distributed systems, v
6, no. 12, pp. 1248-1270, December 1995

[Alom93] A. Alomary, T. Nakata, Y. Honma, M. Imai, and N. Hikichi, “An ASIP
instruction set optimization algorithm with functional module sharin
constraint”, Proc. IEEE/ACM Int. Conf. on Computer-Aided Design
pp. 526-532, 1993

[Alba99] C. Alba-Pinto, B. Mesman, and C.A.J. van Eijk, “Register Files Co
straint Satisfaction during Scheduling of DSP code”, Proc. Symp. o
Integrated Circuits and Systems Design, pp. 74-77, 1999

[Alba00] C. Alba-Pinto, C.A.J. van Eijk, B. Mesman, and J.A.G. Jess, “Addr
Satisfaction for Fifo and Stack Storage Files during Scheduling of D
Algorithms”, Proc. Symp. on Integrated Circuits and Systems Desi
pp. 107-112, 2000

[Bash99] S. Bashford and R. Leupers, “Constraint Driven Code Selection fo
Fixed-Point DSPs", Proc. ACM/IEEE Design Automation Conferenc
pp. 817-822, 1999

[Bart92] D.H. Bartley, “Optimizing stack frame accesses for processors wit
restricted addressing modes”, Software-Practice and Experience,
22, no. 2, pp. 101-110, Februari 1992

[Beko00] M.J.G. Bekooij, B. Mesman, C.A.J. van Eijk, J.L. van Meerbergen, a
J.A.G. Jess, "Constraint Analysis for operation assignment and sc
uling in FACTS", CDROM Proc. Int. Conf. on Signal Processing
Applications & Technology, 2000

[Behn97] B. Behnam and G. Saucier, “IP Catalog: The Catalist of Worldwide
business”, Int. Workshop on Logic and Architectural Synthesis, pp
55-60, 1997

[Bras99] R.A.C. Braspenning, “Modeling Issue Slot Constraints with
Resources”, trainee report, Eindhoven University of Technology, T
Netherlands, 1999

[Catt98] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtegale, an
Vandecappele, “Custom Memory Management Methodology”, Kluw
Academic Publishers, 1998

[Chai82] G. Chaitin, “Register allocation and spilling via graph coloring”, ACM
Symp. on Compiler Construction, pp. 98-105, 1982

[Coff76] E.F. Coffman Jr, “Computer and Job Shop Scheduling Theory”, Jo
Wiley & Sons, New York, 1976

/

w

ital
teit

od-
on

ti-

,

-
r

vel
rd

om-
uly

.

ide

/

[Corm90] T.H. Cormen, C.E. Leiserson, R.L. Rivest, “Introduction to Algo-
rithms”, MIT Press, 1990

[Coud97] O. Coudert, ‘‘Exact coloring for real-life graphs is easy,’’ Proc. ACM
IEEE Design Automation Conference, pp. 121-126, 1997.

[Demi94] G. De Micheli, “Synthesis and Optimization of Digital Circuits”, Ne
York, McGraw-Hill, 1994

[Depu93] F. Depuydt, “Register optimization and scheduling for real-time dig
signal processing architectures”, Ph.D. thesis, Katholieke Universi
Leuven, 1993.

[Eich95] A.E. Eichenberger, E.S. Davidson and S.G. Abraham, “Optimum m
ulo schedules for minimum register requirements”, Proc. Int. conf.
Supercomputing, pp. 31-40, 1995

[Eijk99] C.A.J. van Eijk, E.T.A.F Jacobs, B. Mesman and A.H. Timmer “Iden
fication and Exploitation of Symmetry in DSP Algorithms”, Proc.
IEEE conf. on Design Automation and Test in Europe, pp. 602-608
1999

[Eijk00] C.A.J. van Eijk, B. Mesman, C.A. Alba-Pinto, Q. Zhao, M.J.G. Bek
ooij, J.L. van Meerbergen, and J.A.G. Jess, “Constraint Analysis fo
Code Generation: Basic Techniques and Applications inFACTS“, ACM
Trans. on Design Automation of Electronic Systems, vol. 5, no. 4,
Oktober 2000

[Fara98] P. Faraboschi, G. Desoli and J.A. Fisher, “Clustered Instruction-Le
Parallel Processors”, Technical report HPL-98-204, Hewlett-Packa
1998

[Fish81] J.A. Fisher, “Trace scheduling: a technique for global microcode c
paction”, IEEE Trans. on computers, vol. 30, no. 7, pp. 478-490, J
1981

[Fish83] J.A. Fisher, “Very long instruction word architectures and the
ELI-512”, Proc. 10th Ann. Int. Symp. on Computer Architecture, pp
140-150, 1983

[Garey79] M.R. Garey and D.S. Johnson, “Computers and intractability: A gu
to the theory of NP-completeness”, Freeman, 1979

[Girc84] E.F. Girczyc and J.P. Knight, “An ADA to Standard Cell Hardware
Compiler Based on Graph Grammars and Scheduling”, Proc. IEEE
ACM Int. Conf. on Computer-Aided Design, pp. 726-731, 1984

[Goos89] G. Goossens, J. Vandewalle and H. De Man, “Loop optimization in
register-transfer scheduling for DSP-systems”, Proc. ACM/IEEE
Design Automation Conference, pp. 826-831, 1989

[Govin94] R. Govindarajan, E.R. Altman, and G.R. Gao, “Minimizing register
requirements under resource-constrained rate-optimal software
pipelining”, Proc. Int. Symp. on Microarchitecture, pp. 85-94, 1994

LITERATURE 109

ma-
e,

ntita-

n-

-

-

tion

ir-

,

nce
,

E.
ur-

-
,

r
d

nd
d

da-
[Hart92] R. Hartmann, “Combined scheduling and data routing for program
ble ASIC systems”, Proc. European Design Automation Conferenc
pp. 486-490, 1992

[Henn96] J.L. Hennessy and D.A. Patterson, “Computer architecture, a qua
tive approach”, Morgan Kaufmann 1996

[Heij91] M.J.M. Heijligers, “Time Constrained Scheduling for High Level Sy
thesis”, Masters Thesis, Eindhoven University of Technology, 1991

[Heij96] M.J.M. Heijligers, “The Application of Genetic Algorithms to
High-Level Synthesis”, Ph.D. Thesis, Eindhoven University of Tech
nology, 1996

[Hoog99] J. Hoogerbrugge and L. Augusteijn, “Instruction Scheduling for Tri
Media”, Journal of Instruction-Level Parallelism (http://www.jilp.org),
vol. 1, no. 1, Februari 1999

[Hu61] T.C. Hu, “Parallel sequencing and assembly line problems”, Opera
Research, no.9, pp. 841-848, 1961

[Huis98] J.A. Huisken, M.J.G. Bekooij, G.C.M. Gielis, P.W.F. Gruijters and
F.P.J. Welten, “A Power-Efficient Single-Chip OFDM Demodulator
and Channel Decoder for Multimedia Broadcasting”, Solid-State C
cuits Conference, digest of technical papers pp. 40-41, 1998

[Hwang91] C-T. Hwang, Y-C. Hsu, and Y-L Lin, “Scheduling for functional
pipelining and loop winding “ IEEE Design Automation Conference
pp. 764-769, 1991

[IEEE88] IEEE standard 1076-1987, IEEE Standard VHDL Language Refere
Manual, New York: Institute of Electrical and Electronics Engineers
1988.

[Klei97] R.P. Kleihorst, A. van der Werf, W.H.A. Bruls, W.F.J. Verhaegh and
Waterlander, “MPEG2 video encoding in consumer electronics”, Jo
nal of VLSI Signal Processing no.17, pp. 241-253, 1997

[Ku92] D.C. Ku and G. De Micheli, “High-level synthesis of ASICs under tim
ing and synchronization constraints“, Kluwer Academic Publishers
1992.

[Kuch97] K. Kuchcinski, “Embedded system synthesis by timing constraints
solving”, Proc. Int. Symp. on System Synthesis, pp. 50-57, 1999

[Lam88] M. Lam, “Software Pipelining: An effective scheduling technique fo
VLIW machines”, ACM Conf. on Programming Language Design an
Implementation, pp. 318-328, 1988

[Lann95] D. Lanneer, J. van Praet, A. Kifli, K. Schoofs, W. Geurts, F. Thoen, a
G. Goossens, “CHESS: retargetable code generation for embedde
DSP processors”, in [Marw95]

[Laps96] P. Lapsley, J. Bier, A. Shoham and E.A. Lee, “DSP Processor Fun
mentals”, Berkeley Design Technology, 1996

ed-
ns

in

-

ion
t

ing

ed-
s-

vel
.

-

rf,

,

Int.

k-

ed-

gis-
[Leij00] J. Leijten, M. Bekooij, A. Bink, H. van Gageldonk, J. Hoogerbrugge
and B. Mesman, "COCOON: Core and Compiler Codesign for Emb
ded DSP", CDROM Proc. Int. Conf. on Signal Processing Applicatio
& Technology, 2000

[Leup96] R. Leupers and P. Marwedel, “Algorithms for address assignment
DSP code generation”, Proc. IEEE/ACM Int. Conf. on Compu-
ter-Aided Design, pp. 109-112, 1996

[Leup97] R.Leupers, “Retargetable code generation for digital signal proces
sors”, Kluwer Academic Publishers, 1997

[Liem94] C. Liem, T. May and P. Paulin, “Instruction-set matching and select
for DSP and ASIP code generation”, Proc. European Design & Tes
Conference, pp. 31-37, 1994

[Liao95] S. Liao, S. Devadas, K. Keutzer, S. Tjiang and A. Wang, “Storage
assignment to decrease code size”, Proc. ACM Conf. on Programm
Language Design and Implementation, pp. 186-195, 1995

[Marw95] P. Marwedel and G. Goossens (editor), “Code Generation for Emb
ded Processors”, Kluwer Academic Publishers, Boston, Massachu
setts, 1995

[McFa88] M. C.SJ. McFarland, A.C. Parker and P. Camposano, “The High-Le
Synthesis of Digital Systems”, Proc. of the IEEE, vol. 78, no. 2, pp
301-318, Februari 1990

[McFa90] M. C.SJ. McFarland, A.C. Parker and P. Camposano, “Tutorial on
High-level synthesis”, Proc. ACM/IEEE Design Automation Confer
ence, pp. 330-336, 1988

[Meer95] J.L. van Meerbergen, P. Lippens, W. Verhaegh and A. van der We
“PHIDEO: High-level synthesis for high-throughput applications”,
Journal of VLSI Signal Processing, vol. 9, pp. 89-104, 1995

[Meer99] J.L. van Meerbergen, “Embedded Multimedia Systems on Silicon”
Nat.Lab. Unclassified Report UR 802/99, Januari 1999.

[Mesm97a] B. Mesman, M.T.J. Strik, A.H. Timmer, J.L. van Meerbergen, and
J.A.G. Jess, “Constraint analysis for DSP code generation”, Proc.
Symp. on System Synthesis, pp. 33-40, 1997

[Mesm97b] B. Mesman, M.T.J. Strik, A.H. Timmer, J.L. van Meerbergen, and
J.A.G. Jess, “Constraint Driven Loop Pipelining”, International Wor
shop on Logic and Architectural Synthesis, pp. 205-211, 1997

[Mesm97c] B. Mesman, M.T.J. Strik, A.H. Timmer, J.L. van Meerbergen, and
J.A.G. Jess, “An Integrated Approach to Register Binding and Sch
uling”, Proc. ProRisc, pp. 415-425, 1997

[Mesm98] B. Mesman, M.T.J. Strik, A.H. Timmer, J.L. van Meerbergen, and
J.A.G. Jess, “A constraint driven approach to loop pipelining and re
ter binding”, Proc. IEEE conf. on Design Automation and Test in
Europe, pp. 377-383, 1998

LITERATURE 111

m-

ul-
oc.

an
tion:

99

sis
o-

D.

is of

av-
,

ol
trial
anu-

xi-

,

al
-

set

e
M

n eas-
ific
[Mesm99a] B. Mesman, A.H. Timmer, J.L. van Meerbergen, and J.A.G. Jess,
“Constraint analysis for DSP code generation”, IEEE Trans. on Co
puter-Aided Design, vol. 18, no. 1, Januari 1999

[Mesm99b] B. Mesman, C.A. Alba-Pinto, and C.A.J. van Eijk, “Efficient Sched
ing of DSP Code on Processors with Distributed Register files”, Pr
Int. Symp. on System Synthesis, pp. 100-106, 1999

[Mesm99c] B. Mesman, C.A.J.van Eijk, C.A. Alba-Pinto, M.G.J. Bekooy, J.L. v
Meerbergen, and J.A.G. Jess, ‘‘Constraint analysis for code genera
basic techniques and their applications inFACTS’’, presented at the Int.
Workshop on Software and Compilers for Embedded Systems, 19

[Mesm01] B. Mesman, C.A.J.van Eijk, and M.G.J. Bekooy, “Constraint Analy
for Scheduling DSP Code”, submitted to Int. Static Analysis Symp
sium, 2001

[Nuijt94] W.P.M. Nuijten, “Time and Resource Constrained Scheduling”, Ph.
Thesis, Eindhoven University of Technology, 1994

[Papa82] C.H. Papadimitriou and K. Steiglitz, “Combinatorial optimization:
algorithms and complexity”, prentice-hall, 1982

[Park88] N. Park and A.C. Parker, “Sehwa: A Software Package for Synthes
Pipelines from Behavioral Specifications”, IEEE Trans. on Compu-
ter-Aided Design, vol. 7, no. 3, pp. 356-370, March 1988

[Paul89] P.G. Paulin and J.P. Knight, “Force-directed scheduling for the beh
ioural sythesis of ASIC’s”, IEEE Trans. on Computer-Aided Design
vol. 8, no. 6, pp. 661-679, June 1989

[Paul95a] P.G. Paulin, C. Liem, T.C. May, and S. Sutarwala, “DSP design to
requirements for embedded systems: a telecommunications indus
perspective”, J. VLSI Signal Processing, vol.9, no.1-2, pp.23-47, J
ari 1995

[Paul95b] P.G. Paulin, C. Liem, T.C. May, and S. Sutarwala, “FlexWare: a fle
ble firmware development environment”, in [Marw95]

[Paul96] P.G. Paulin and C. Liem, “Embedded Systems: Trends and Tools”
tutorial notes, European Design & Test Conference, 1996

[Pot92] M. Potkonjak and J. Rabaey, “Scheduling algorithms for hierarchic
data control flow graphs”, Int. Journal of Circuit Theory and Applica
tions, vol. 20, pp. 217-233, 1992

[Praet94] J.V. Praet, G. Goossens, D. Lanneer and H. de Man, “Instruction
definition and instruction selection for ASIPs”, Proc. Int. Symp. on
High-Level Synthesis, pp. 11-16, 1994

[Rao99] A. Rao and S. Pande, “Storage Assignment using Expression Tre
Transformations to Generate Compact and Efficient DSP Code”, AC
Computer Architecture News, vol. 27, no1, pp. 39-42, 1999

[Rau81] B.R. Rau and C.D. Glaeser , “Some scheduling techniques and a
iliy schedulable horizontal architecture for high performance scient

.

ort
oc.

llo-

o-

m-
d

,

l-
rs

nik
al-
0,

ffi-
sign

fic

 of
.

e
n
 2,
computing”, Proc. of the 14th Workshop on Microprogramming, pp
183-198, 1981

[Rau82] B.R. Rau, C.D. Glaeser and E.M. Greenawalt, “Architectural supp
for the efficient generation of code for horizontal architectures”, Pr
Symp. on Architectural Support for Programming Languages and
Operating Systems, pp. 96-99, 1982

[Rau92] B.R. Rau, M. Lee, P.P. Tirumalai and M.S. Schlansker, “Register a
cation for software pipelined loops”, Proc. Conf. on Programming
Language Design and Implementation, pp. 283-299, 1992

[Rau96] B.R. Rau, “Iterative Modulo Scheduling”, Int. Journal of Parallel Pr
gramming, vol. 24, no. 1, pp. 3-64, Februari 1996

[Rau98] B.R. Rau, V. Kathail and S. Aditya, “Machine-description driven co
pilers for epic processors”, Tech. Rep. HPL-98-40, Hewlett Packar
research labs, 1998

[Rau99] B.R. Rau, V. Kathail and S.A. Gupta, “Machine-description driven
compilers for EPIC and VLIW processors”, Design Automation for
Embedded Systems, vol. 4, no. 3, pp. 71-118, March 1999

[Reit68] R. Reiter, “Scheduling parallel computation”, Journal of the ACM,
vol.15, pp. 590-599, 1968

[Rimey89] K.E. Rimey, “A compiler for application-specific signal processors”
Ph.D. thesis, University of California at Berkeley, 1989

[Romp92] K. van Rompaey, I. Bolsens, and H. De Man”, “Just in time schedu
ing” , Proc. IEEE Int. Conf. on Computer Design: VLSI in Compute
and Processors, pp. 295-300, 1992

[Schlan94] M.S. Schlansker, B.R. Rau, S. Mahlke, V. Kathail, R. Johnson, S. A
and S.G. Abraham, “Achieving High Levels of Instruction-Level Par
lelism with Reduced Hardware Complexity“, Tech. Rep. HPL-96-12
Hewlett Packard research labs, 1994

[Strik95] M.T.J. Strik, J.L. van Meerbergen, A.H. Timmer and J.A.G. Jess, “E
cient code generation for in-house DSP-cores”, Proc. European De
& Test Conference, pp. 244-249, 1995

[Strik94] M.T.J. Strik, “Efficient code generation for application domain speci
processors”, Eindhoven University of Technology IVO-report, ISBN
90-5282-390-1, 1994

[Sudar97] A. Sudarsanam, S. Liao and S. Devadas, “Analysis and evaluation
address arithmetic capabilities in custom DSP architectures”, Proc
ACM/IEEE Design Automation Conference, pp. 287-292, 1997

[Sugi96] N. Sugino, M. Myiazaki, S. Iimuro and A. Nishihara, “Improved cod
optimization method utilizing memory addressing and its applicatio
to compilers”, Proc. IEEE Int. Symp. on Circuits and Systems, vol.
pp. 249-252, 1996

LITERATURE 113

and
:
90

or
-

n",
s,

-

r-

s”,

er
on

A
f.
[Thom90] D.E. Thomas, E.D. Lagnese, R.A. Walker, J.A. Nestor, J.V. Rajan
R.L. Blackburn, Algorithmic and Register-Transfer Level Synthesis
The System Architect's Workbench, Kluwer Academic Publisher, 19

[Timm95a] A.H. Timmer, M.T.J. Strik, J.L. van Meerbergen and J.A.G. Jess,
“Conflict modelling and instruction scheduling in code generation f
in-house DSP cores”, Proc. ACM/IEEE Design Automation Confer
ence, pp. 593-598, 1995

[Timm95b] A.H. Timmer, "From Design Space Exploration to Code Generatio
Ph.D. thesis, Eindhoven University of Technology, The Netherland
1995

[TMS97] “TMS320C60xx CPU and Instruction Set Reference Guide”, Texas
Instruments 1997

[Trim97] “Trimedia TM-1 Media Processor Data Book”, Philips Semiconduc
tors, Trimedia Product Group, 1997

[Verh97] W.F.J Verhaegh, P.E.R. Lippens, E.H.L. Aarts and J.L. van Meerbe
gen,“Multidimensional periodic scheduling: A solution approach”,
Proc. EuropeanDesign & Test Conference, pp. 468-474, 1997

[Woud94] R. Woudsma, “EPICS, a flexible approach to embedded DSP core
CDROM Proc. Int. Conf. on Signal Processing and Application and
Technology, 1994

[Zhao00] Q. Zhao, C.A.J. van Eijk, C.A. Alba Pinto and J.A.G. Jess, “Regist
binding for predicated execution in DSP applications.”, Proc. Symp.
Integrated Circuits and Systems Design, pp. 113-118, 2000

[Zivo94] V.Zivojnovic, J.M. Velarde, C. Schlaeger and H. Meyr, “DSPStone -
DSP oriented Benchmarking Methodology”, CDROM Proc. Int. Con
on Signal Processing and Application and Technology, 1994

SAMENVATTING 115

toen-
gelegd
rchitec-
an
schik-

voor
nvol-
en

egeerd
edule,
volg
gram-
orige
rchitec-
met de
peling.

voor-
vaak
nding
edule
rden
com-
aakt
erkin-
eerd in
e gege-
wordt

en de

gister
even-
t vor-
llen

dvoor-
Samenvatting

Methoden voor code generatie voor digitale signaal processoren (DSP) worden in
emende mate belemmerd door de combinatie van stringente tijdsbeperkingen op
door DSP applicaties, en de resource beperkingen opgelegd door de processor a
tuur. Indien loop pipelining wordt toegepast vormt de beperkte beschikbaarheid v
resources een probleem voor ’greedy’ scheduling heuristieken. De beperkte be
baarheid van registers, gedistribueerd over de processor, vormt een probleem
oplossingesmethoden die de taken van scheduling en register toewijzing in opee
gende fasen uitvoeren. Door deze scheiding kunnen vaak suboptimale of zelfs ge
oplossingen gegenereerd worden, omdat het probleem van fase koppeling gen
wordt; doordat de levens intervallen van variabelen worden bepaald door het sch
is scheduling mede bepalend voor de zoekruimte voor register toewijzing. Als ge
hiervan hebben traditionele methoden in toenemende mate hulp nodig van de pro
meur (of ontwerper) om een geldige oplossing te vinden. Omdat dit een buitensp
ontwerpinspanning vereist en een verregaande bekendheid met de processor a
tuur, is er behoefte aan geautomatiseerde methoden die efficient om kunnen gaan
verschillende beperkingen en randvoorwaarden en met het probleem van fase kop

De benadering voorgesteld in dit proefschrift is gebaseerd op analyse van de rand
waarden om de schedule zoekruimte in te perken. Op deze manier wordt
voorkomen dat de scheduler een beslissing neemt die onherroepelijk leidt tot sche
van de randvoorwaarden. Het belangrijkste aspect van ons model van de sch
zoekruimte is de afstandsmatrix, waar de minimum and maximum tijdsrelaties wo
bijgehouden tussen elk paar operaties in een Basic Block. Algoritmen met een lage
plexiteit worden gebruikt om extra volgorde relaties te identificeren die genoodz
zijn door de combinatie van tijdsrelaties in the afstandsmatrix en de resource bep
gen in de processor architectuur. De resultaten van de analyses worden gecombin
the afstandsmatrix door het berekenen van de langste paden geinduceerd door d
nereerde volgorde relaties. Interactie tussen de scheduler en Constraint Analyse
bewerkstelligd door schedule beslissingen uit te drukken in extra volgorde relaties
afstandsmatrix aan te passen.

Teneinde de register benodigdheden te minimaliseren of de beperkingen op de re
capaciteit te respecteren, wordt de vrijheid in het schedule domein benut om de l
sintervallen van variabelen te serializeren. Variabelen die een potentieel knelpun
men voor register toewijzing worden geidentificeerd, en hun levensinterva
geserializeerd. Deze serializaties worden geevalueerd in the context van de ran

e com-
ng. Op
enen
aseerd
van in-
den

ing bij
e wi-
in een
waarden en de afstandsmatrix wordt aangepast. Na het serializatieproces komt elk
pletering van het schedule gegarandeerd overeen met een geldige register toewijzi
soortgelijke wijze is het mogelijk de lees- en schrijfacties op een register file te ord
zodat de gecommuniceerde variabelen zich gedragen volgens een stroomgeb
schema. Deze variabelen kunnen dan worden opgeslagen in een FIFO. In termen
structie bitten hebben FIFO’s dezelfde adresseringskosten als registers, maar bie
een veel grotere opslagcapaciteit. Dit is interessant doordat register adresser
VLIW processoren ongeveer 60% van de programmacode bepaalt. Op soortgelijk
jze worden lees- en schrijfacties geordend teneinde variabelen te kunnen opslaan
stack of een FILIFO.

CURRICULUM VITAE 117

ind-
as a

ma-
at the
oup
d the
the

nd a
esis,
Curriculum Vitae

Bart Mesman received the Electrical Engineering Degree (with honors) from the E
hoven University of Technology, the Netherlands, in 1995. From 1995 to 1999 he w
member of the digital VLSI group at Philips Research in Eindhoven and the Infor
tion and Communication Systems group of the electrical engineering department
University of Technology in Eindhoven. Since 1999 he is a member of the gr
Embedded Systems Architectures on Silicon at Philips Research in Eindhoven an
Eindhoven Embedded Systems Institute. Bart Mesman is currently working in
COCOON project with the explicit goal of co-designing a processor architecture a
code generation methodology. His research interests include High-Level Synth
ASIP-architectures and code generation for embedded DSPs.

ssen
r om

n die
rkt,

n
een

tegie

t de
ordat
 van

sis,

r bij
ction"
c-

blema-

c.

ge
uren.
Stellingen
behorende bij het proefschrift

Constraint Analysis for
DSP Code Generation

van Bart Mesman

Technische Universiteit Eindhoven, 23 Mei 2001

1. Bij het ontwerp van een instructie set dient een afweging te worden gemaakt tu
de uitdrukkingskracht van de instructie set en de efficientie waarmee de compile
kan gaan met de beperkingen die daaruit voortvloeien.

2. Tijdens het genereren van een schedule kunnen beslissingen genomen worde
inconsistent zijn met de randvoorwaarden. Dit wordt dan vaak pas laat opgeme
waardoor veel beslissingen teniet gedaan moeten worden, en lange rekentijde
ontstaat. Om dit te voorkomen is het voor sommige randvoorwaarden zinnig om
analyse te doen, terwijl voor andere randvoorwaarden een expliciete zoek stra
met identificatie van bottlenecks een betere oplossing vormt (H.6).

3. Hoewel de afstands matrix een complexere representatie is van de schedule
zoekruimte dan de zogenaamde executie interval representatie [Timmer], leen
eerste zich beter voor het respecteren van de register file capaciteit. Dit komt do
precedentie relaties meer zeggen over de registerbezetting dan tijdsintervallen
operaties (H.3 & 4).

A.H. Timmer, "From Design Space Exploration to Code Generation", Ph.D. the
Eindhoven University of Technology, The Netherlands, 1995

4. De constraint analyse technieken uitgelegd in dit proefschrift werken efficiente
de scheduling problematiek dan meer algemeen toepasbare "constraint satisfa
technieken [Kuchcinski]. Bij de eerstgenoemde zijn namelijk zowel de data stru
turen als de daarop opererende algoritmes toegesneden op de scheduling pro
tiek (H.3).

K. Kuchcinski, "Embedded system synthesis by timing constraints solving", Pro
Int. Symp. on System Synthesis, pp. 50-57, 1999

5. Door de sterk toenemende maskerkosten bij nieuwe generaties van de fabrica
technologie voor ICs neemt het belang toe van herconfigureerbare IC architect

ient
at
wordt

at
ten
euro-
aint
duling

er-
ordt

n de

antoor
gen

ement
pten
 het
an de
span-
.

ltijd

atig
eze

n je

ctie-
andig-
t dan
6. Bij het besteden van computer tijd aan het oplossen van moeilijke problemen d
een balans gevonden te worden tussen het aantal beslissingen (oplossingen) d
geevalueerd wordt en het aantal foute beslissingen (oplossingen) dat vermeden
door analyse van de zoekruimte.

7. De werking van de constraint analyse technieken uitgelegd in dit proefschrift la
zich vergelijken met de werking van ons brein. Daar kunnen complexe gedach
ontstaan door interactie van een grote hoveelheid zeer primitieve elementen (n
nen). Zo kunnen, door veelvuldig toepassen van elementaire regels van constr
analyse, complexe redenaties ontstaan over de oplossingsruimte van een sche
probleem.

8. Het korte termijn denken van productgroepen remt de ontwikkeling tot het ontw
pen op een hoger niveau van abstractie, omdat een hogere prioriteit verleend w
aan het halen van een deadline dan aan training in dit niveau van ontwerpen e
daarbij behorende ontwerpgereedschappen.

9. Dat de automatisering heeft toegeslagen in alle denkbare bezigheden op het k
blijkt wel uit de observatie dat zelfs de traditionele term "paperware" is verdron
door de term "powerpointware".

10.Wanneer de waarde van een strategie doorgedrongen is tot de hogere manag
lagen in een groot bedrijf, ontstaat veelvuldig de situatie dat de strategy conce
een doel op zich worden. Daarbij wordt voorbijgegaan aan de mogelijkheid dat
nastreven van zo’n strategie soms meer werk kost dan het originele doel. Zo k
dwang tot hergebruik van hardware of software blokken teneinde de ontwerpin
ning te verminderen, juist een enorme ontwerpinspaning met zich meebrengen

11.Dat een Nederlandse vertaling van Engels geschreven technische tekst niet a
begrijpelijker is voor niet-Engelstaligen, blijkt wel uit dit proefschrift.

12.Vooral mannen hebben nogal eens moeite te herkennen wanneer ze gevoelsm
gemanipuleerd worden. De volgende uitspraak is een handige vuistregel voor d
mannen: Als je je schuldig voelt en je kan niet goed uitleggen waarom, dan be
gemanipuleerd.

13.Volgens de evolutietheorie ontstaan nieuwe rassen doordat de natuurlijke sele
criteria die wezens bevoordelen die zich meer hebben aangepast aan de omst
heden waarin ze leven. De zingevingsvraag van veel mensen is in deze contex
meer een vraag om onzin dan om zin.

	Acknowledgements
	Summary
	Table of Contents
	1 Introduction
	The last few decades we have witnessed a rapid increase in the number of transistors integrated o...
	• Design reuse: This comprises reusing (parts of) a design previously made. This can be done in t...
	• The use of design tools at increasingly higher abstraction levels: It is clear that designing a...
	• Programming in a high-level language: Programming a processor requires less effort using a high...

	Surprisingly, silicon compilation and code compilation have a large overlap: In both cases, some ...
	1.1 Digital signal processing
	The area in which digital Very Large Scale Integration (VLSI) chips are applied can be split roug...
	Figure 1.1 Partitioning the application domain of digital VLSI chips
	On the other hand, DSP involves a lot of regularity and synchronization; samples are taken and si...
	• Low clock speed requirements are interesting when considering power consumption. For example, t...
	• Low clock speed requirements also allow the use of widely available standard arithmetic units a...
	• High clock speed requires a large pipeline depth [Henn96]. Instructions remain in the processor...

	Summarizing, exploiting parallelism instead of high clock speed as a means to obtain high perform...

	1.2 Mapping an application to an architecture
	In this thesis a method is described for mapping a behavioural specification onto a processor arc...
	Figure 1.2 Classification of Processor Architectures
	There are different degrees of programmability: ASICs are not programmable at all (application sp...
	Instruction set orthogonality reflects the ability to control different elements in the data path...
	Because each of the platforms in Figure 1.2 has its characteristic features, we will briefly disc...

	1.2.1 ASICs
	An Application Specific Integrated Circuit (ASIC) is a chip dedicated to and designed for a singl...
	Figure 1.3 Silicon Compiler Overview taken from [heij96]
	In the case of high-level synthesis the following tasks have to be performed [McFa88]:
	• FU Selection: What kind and how many functional units are used in the data-path?
	• FU Binding: To which functional units will operations be assigned?
	• Scheduling: When will operations from the functional description be executed?
	• Register Binding: To which registers will values be assigned?

	These four tasks are interrelated, but are difficult to perform simultaneously. Therefore, high-l...

	1.2.2 General purpose DSPs
	General purpose DSPs (GPDSPs) [Laps96] are the most flexible processors used for DSP applications...
	The first GPDSPs were not much more than simple general purpose microcontrollers (like the MIPS R...
	Besides the exploitation of knowledge of the DSP domain, DSP processor development remains affect...
	These performance boosts for GPDSPs have characteristics that may be very disadvantageous for som...
	• Power consumption: reservation tables, bypass networks, a large multi-port register file, and d...
	• The hardware features mentioned above occupy valuable chip area and require a large effort for ...

	For programming GPDSPs roughly the same tasks are identified as for the high-level synthesis of A...
	• Code selection: Which machine instructions implement the specified behaviour?
	• Instruction Scheduling: When will selected instructions be executed?
	• Register Binding: To which registers will values be assigned?

	Note that in the case of parallel processors an instruction may consist of a number of elementary...

	1.2.3 ASIPs
	In the previous two subsections we have seen that on the one hand ASICs lack flexibility but offe...
	A micro coded controller provides flexibility, but as explained in the previous subsection, the n...
	However, due to the increasing competition in the consumer electronics sector, time to market is ...
	The compiler steps are the same as for general purpose DSPs:
	• Code selection: Which instruction will be executed?
	• Instruction Scheduling: When will this instruction be executed?
	• Register Binding: To which registers will values be assigned?

	An orthogonal instruction set provides a transparent processor model for the scheduler [Timm95], ...
	Figure 1.4 Retargetable Compilation
	The processor architecture is specified using a machine description language such as nML. The fol...
	• number of functional units
	• FU pipeline structure
	• FU latencies and throughput
	• set of opcodes that each FU can execute
	• number of register files
	• number of registers per register file
	• addressability of the registers
	• interconnect between the register files and FUs

	Retargetability has a large effect on the range of techniques applied in code selection. A proces...
	In the next section we will consider the VLIW processor architecture that provides a compiler fri...

	1.3 The Very Large Instruction Word architecture
	The first generation of Very Large Instruction Word (VLIW) processors were developed with the spe...
	Figure 1.5 Data-path of a typical VLIW architecture
	1.3.1 Code generation for VLIW processors
	In its ‘ideal’ form [Rau81], each functional unit is controlled by dedicated instruction bits tha...
	• Instruction selection can be performed after scheduling and register binding, thus providing mu...
	• Instead of scheduling instructions, we can schedule individual operations.
	• Instruction selection has become a trivial task

	So the ‘ideal’ VLIW architecture eliminates all the difficulties that accompany instruction selec...
	Whereas the trend in general purpose processor design is towards increasingly higher clock speeds...
	In order to understand these scheduling mechanisms, a few words are spent on the way an applicati...
	The best-known implementation of global scheduling is probably Trace scheduling [Fish81]. Most ch...
	As depicted in Figure 1.2, more application specific processors (ASIPs and ASICs) may also employ...
	Loop unrolling basically copies the operations in the loop body a number of times before scheduli...
	Loop folding demands that all overlapping loop bodies are scheduled in exactly the same way. The ...
	Research [Aiken95] suggests that loop pipelining is as effective as full loop unrolling, while pr...

	1.3.2 Register file architecture
	In this section the pros and cons of an architecture with one large multi-ported register file an...
	• Power consumption: For a single access to the register file, the power consumption is .
	• Access delay: The access delay is of the same order as the power consumption for one access,
	• Code size: Code size is an important criterion for different reasons: for off-chip instruction ...

	If all registers are concentrated in one register file, each access to this file has to provide a...

	1.4 Constraint analysis
	The aim of this thesis is to describe a good method of scheduling and register binding for VLIW (...
	• T-feasibility: Timing, precedence, and resource constraints are satisfied
	• R-feasibility: T-feasibility extended with a register binding that is consistent with the timin...
	• S-feasibility: R-feasibility, but now the register binding also has to respect fixed individual...

	Figure 1.6 The search scope is restricted to the R-feasible region.
	For ASICs we try to find an R-feasible solution with the minimum number of registers, and for pro...

	1.5 Thesis outline
	In the next chapter we will define the basic concepts necessary for understanding some scheduling...

	2 Operation Scheduling
	In this chapter we will introduce the two fundamental problems that are the subject of this thesi...
	2.1 Definitions
	We start with the definition of the most widely used RTL-level specification model for an applica...
	Definition 2.1 (Data Flow Graph) A data flow graph is a triple , where
	• V is the set of vertices (operations),
	• is the set of directed data precedence edges,
	• is the set of directed sequence precedence edges, and
	• describes the timing delay associated with a precedence edge. o
	The main difference with DFG models like that from [Ku92] is the emphasis on (sequence) edges. Fi...

	Figure 2.1 : A data flow graph for an IIR filter
	An example of a DFG for an IIR filter application is found in Figure 2.1. Typical operations are ...
	The precedence edges define a partial order on the executions of the operations. In this thesis, ...

	Definition 2.2 (schedule) describes the start times of operations, where N denotes the set of nat...
	A schedule is constrained by precedence edges. A precedence with delay expresses that
	In the text, whenever , a precedence will be indicated by .

	Definition 2.3 (latency) l is the number of clock cycles required to execute a schedule.
	A schedule for the DFG in Figure 2.1 is found in Figure 2.2 a). Note that in this example, each o...

	(2.1)
	A resource constraint expresses that

	(2.2)
	A valid schedule has to satisfy the resource constraints. Both the resource constraints and the p...

	2.2 Pipelined schedules
	In a loop construction the loop body (represented by a DFG) is executed a number of times. In a t...
	Definition 2.4 (Initiation Interval II) The Initiation Interval (II) is the period between the st...
	Loop pipelining allows the execution of operations from iteration i in parallel with or even afte...

	Figure 2.2 a) Schedule for the DFG in Figure 2.1 b) pipelined schedule
	The operations of iteration i originally scheduled in the last 4 cycles are now executed simultan...

	(2.3)
	Equation (2.4) expresses the consequences of a precedence relation for the starting times of the ...

	(2.4)
	Substituting (2.3) in (2.4) yields:

	(2.5)
	Figure 2.3 Graphical representation of equation (2.5)
	Equation (2.5) expresses the effect of a precedence relation which effectively has a delay . When...
	We have now found a way to derive so called inter-iteration dependencies [Lam88] or loop carried ...

	(2.6)
	The term is called the time potential of vi.
	We are now ready to introduce the traditional High-Level Synthesis scheduling Problem.

	2.3 The High-Level Synthesis scheduling Problem
	The general high-level synthesis (feasibility) scheduling problem is formulated as follows:
	Definition 2.5 (High-Level Synthesis Scheduling Problem) Given are a DFG, a function , an initiat...
	The high-level synthesis scheduling problem is NP-complete because it generalizes the NP-complete...
	By far the most widely used type of schedule heuristic is called list-scheduling [Hu61]. List sch...
	Researchers from both the general-purpose computing [Rau81] and the HLS community [Goos89] have u...

	Figure 2.4 Example with loop pipelining. a) precedence graph b) list-schedule c) only feasible sc...

	2.4 Modelling the constraints
	In this Section we show how some of the constraints can be represented in the DFG model introduce...
	Figure 2.5 Modelling the latency
	• Latency. In order to model latency, we introduce two (dummy) operations to our DFG model: the s...
	• Micro coded controller, randomly addressable register files and loop pipelining. We assume that...
	• Pipelined executions and multicycle operations. These are operations that violate our assumptio...

	Figure 2.6 Modelling pipelined and multicycle operations
	• Scheduling decisions. When schedule decisions are taken during the process, the schedule interv...

	Figure 2.7 Modelling a schedule decision
	• Resource conflicts and instruction set conflicts. In Section 2.1 the resource conflict model wa...

	2.5 Problem formulation
	In order to formulate the problem we need to state some assumptions:
	• All operations have been mapped to functional units. This is often the case because instruction...
	• All values communicated between operations have been mapped to register files. In ASIP-architec...
	• The controller is micro coded. One consequence is that in a pipelined loop a value cannot resid...
	• The initiation interval II for each hierarchical level is fixed prior to scheduling. It can be ...

	In this thesis two different scheduling approaches are treated: one for minimizing the required n...
	2.5.1 Minimizing the register count
	The design of an ASIC typically concerns satisfying performance constraints while minimizing some...
	• area: although a register occupies silicon area, the physical register is not the dominant cont...
	• power consumption: power consumption within a register file grows with the size of the register...
	• time to market: when this is an important criterion programmable processors are usually preferr...

	The problem of minimizing the number of registers is defined as follows.
	Definition 2.6 (Unconstrained Register Binding and Operation Scheduling Problem): Given a data fl...
	Because it is difficult to determine a register binding and a schedule simultaneously, we decompo...

	Figure 2.8 Global approach for minimizing the register count
	Figure 2.9 In Figure 2.8 the (register binding) is incremented from the centre of the overconstra...
	An advantage of this approach is that in order to complete the schedule, a rather straightforward...
	Note that a main characteristic of our approach is that we perform register binding prior to sche...
	After the basic techniques have been discussed in Chapters 3 and Section 4.1, Section 4.2 discuss...

	2.5.2 Handling fixed register file sizes
	When compiling code for an ASIP (or other programmable processors) using as few registers as poss...
	Definition 2.7 (Constrained Register Binding and Operation Scheduling Problem): Given a data flow...
	The problem is decomposed into separate phases, as illustrated in Figure 2.10. The constraint ana...

	Figure 2.10 Global approach for mapping to fixed register files
	Figure 2.11 depicts the search space and the way it is traversed in the approach in Figure 2.10. ...

	Figure 2.11 In Figure 2.10, the register binding is refined from the R-feasible region to the bor...

	2.6 Initialization of the initiation interval
	The initiation interval is initialized with a lower bound, and incremented if the bound cannot be...
	First consider the resource constraints . We associate a so called conflict graph CG with in the ...
	(2.7)
	Another lower bound is determined by the precedences [Reit68]. In Section 2.2 it is derived that ...

	, (2.8)
	where k equals the number of iterations this dependency crosses (). This is called the iteration ...

	(2.9)
	Combining inequalities (2.6) and (2.9) yields

	(2.10)
	Profiling suggests that the minimum initiation interval is in most cases equal to the lower bound...
	o
	o

	3 Scheduling with Resource Constraints
	Scheduling operations that share a limited number of resources is a task that has received attent...
	This chapter is structured as follows. In Section 3.1 an introduction to the scheduling problem i...
	3.1 Introduction
	The general High-Level Synthesis Scheduling Problem (HLSSP), introduced in Section 2.1, is a gene...
	Figure 3.1 Traditional approach for satisfying constraints
	• The heuristic is run again, but using different ‘priorities’ (Section 2.3)
	• A bottleneck is searched for, and a repair action is taken to make the schedule valid.
	• The designer or programmer is asked for ‘hints’ on how to solve certain conflicts.
	This process may iterate many times, which becomes clear from the perspective of the schedule sco...

	Figure 3.2 The scope of a heuristic scheduler
	In this figure, ‘feas’ indicates the region of solutions that satisfy all constraints. The area s...

	Figure 3.3 Constraint oriented approach for satisfying constraints
	For problems with tight constraints it is clearly desirable to have an approach that takes these ...

	Figure 3.4 Ideal search space
	The rest of this chapter is organized as follows. Section 3.2 provides a perspective of the searc...

	3.2 Schedule freedom
	In Section 2.1 we have introduced the High-Level Synthesis Scheduling Problem. In order to solve ...
	We start with a description of the solution space:
	Definition 3.1 (set of feasible schedules) The set of feasible schedules S is the set of schedule...
	An operation thus has a range of feasible start-times, each corresponding to a different schedule.

	Definition 3.2 (set of feasible start times) , where N denotes the set of natural numbers. o
	Definition 3.3 (actual schedule freedom) The actual schedule freedom is the average size of the s...
	o
	The minus one enforces that the actual schedule freedom equals zero when the schedule is complete...
	The set of feasible start times is formally as difficult to find as a feasible schedule. Therefor...
	For the definition of the ASAP-ALAP interval we need the notion of immediate predecessors and suc...

	Definition 3.4 (immediate predecessors, successors)
	o
	The ASAP (as soon as possible) value is defined as:

	Definition 3.5 (ASAP value)
	The latest possible start time is called the ALAP (as late as possible) value. It exists only if ...

	Definition 3.6 (ALAP value)
	The start time of each operation must lie in between the ASAP and ALAP value inclusively:

	(3.1)
	Therefore the ASAP-ALAP interval is a conservative estimate of (contains) the set of feasible sta...
	In this chapter we will extract sequencing constraints that are necessarily implied by the combin...

	Definition 3.7 (apparent schedule freedom, mobility, slack) The apparent schedule freedom is the ...
	o
	Because the precedences and the ASAP-ALAP interval form the basis for making schedule decisions, ...

	Example
	In Section 2.3 we showed an example (Figure 3.5) that illustrates the difficulty of greedy schedu...
	Figure 3.5 Example with loop folding. a) precedence graph b) list-schedule c) only feasible sched...

	3.3 Representing the search space: the distance matrix
	In the previous section the search space was represented using ASAP-ALAP intervals and the amount...
	• It is a rather simple representation. For each operation two figures define the ASAP-ALAP inter...
	• The transparency of the terminology appeals to the human mind and is therefore suitable for dis...
	• This representation is easy to derive. Essentially a depth first search [Corm90, p. 477] has to...
	• It allows for a simple infeasibility check: if, for an interval [lb;ub], , no solution exists.

	However, the interval representation is not able to accurately represent the most basic and impor...
	Figure 3.6 The interval representation does not accurately represent precedences
	In this section the distance matrix is introduced, and it will be shown that this representation ...

	Definition 3.8 Definition 10 (path): A path of length d from operation vi to operation vj is a si...
	Definition 11 (distance): The distance d(vi, vj) from operation vi to vj is the length of the lon...
	A path in the graph thus represents a minimum timing delay. For example, in Figure 3.5 the path i...
	The distance matrix representation is strictly more accurate than the interval representation. Th...

	Theorem 3.1 Any interval can be represented in terms of precedences.
	Proof
	An interval [lb;ub] for operation A means that
	(3.2)
	To represent this interval in the distance matrix the following precedences are added: A preceden...

	(3.3)
	Now inequality (3.3) reduces to inequality (3.2), which proves the theorem. q
	The proof shows how results from analyses on intervals, like [Timm95], can be represented as prec...

	3.4 Related work in constraint analysis
	[Nuijt94] reports results on the TRCSP, the Time and Resource Constrained Satisfaction Problem. G...
	In [Kuch97] schedule constraints are expressed in Constraint Logic Programming (CLP), a generally...
	In [Timm95] a bipartite matching formulation is used to analyse the matching of execution interva...
	In [Eijk99] symmetry in the algorithm specification (in the Data Flow Graph) is exploited to prun...

	3.5 Sequencing as a result of resource conflicts
	In this section two lemmas are introduced that assert the necessity of an additional sequence con...
	Lemma 3.2 :If d(vi, vj)0 (mod II) and , we can add a sequence precedence edge (vi, vj) with weigh...
	Proof: The resource conflict causes the minimum distance d(vi, vj) to be infeasible. Therefore th...
	In the schedule problem instance depicted in Figure 3.5, the key decision to obtain a feasible sc...

	Figure 3.7 Derivation of a schedule for Figure 2.4
	The second lemma we present in this chapter is more complicated, and involves symmetry in the pre...

	Figure 3.8 Too much apparent mobility due to symmetry
	Lemma 3.3 : For each pair of operations vi and vj such that , if there is an operation p such tha...
	Proof: The resource conflict causes a minimum distance to be infeasible. Therefore the minimum di...
	In Figure 3.8, operation p is A, and s is D. As a result of lemma Lemma 3.3 a sequence edge may b...

	Figure 3.9 Applying rule 2 with loop folding
	In Figure 3.9, the symmetry is of a slightly different kind. As can be seen in the ASAP schedule,...

	3.6 Sequencing for an extended resource constraint model
	The previous section discussed some rules for serializing operations when two operations have a r...
	3.6.1 Sequencing for two resource instances
	We start with the case that no loop pipelining is applied. Let vi, vj, vk denote three operations...
	Lemma 3.4 If d(vi, vj) = 0 and d(vj, vk) = 0, we can add a sequence precedence edge (vi, vk) with...
	Proof: Suppose that the distances d(vi, vj) = 0 and d(vj, vk) = 0 are the minimum distances in a ...
	Lemma 3.4 is depicted in Figure 3.10.

	Figure 3.10 Lemma 3.4
	We now generalize Lemma 3.4 to the case that loop pipelining is applied. Let vi, vj, vk denote th...

	Lemma 3.5 If d(vi, vj)0 (mod II) and d(vj, vk)0 (mod II), we can add a sequence precedence edge (...
	Figure 3.11 Lemma 3.5
	Proof: Suppose that and are the minimum distances in a feasible schedule. Then vi, vj, and vk all...
	Lemma 3.5 is depicted in Figure 3.11.

	Figure 3.12 The derivation in Figure 3.13 proves infeasibility of the constraint set
	Example
	Consider the example depicted in Figure 3.12. Operations F and G model a pipelined multiplication...
	Figure 3.13 Deriving infeasibility of the constraint set in Figure 3.12

	3.6.2 Sequencing for N resource instances
	We now generalize Lemma 3.5 to the case where N resources are available. So suppose there exist o...
	Lemma 3.6 If d(vi, vi+1)0 (mod II) for all , we can add a sequence precedence edge (v0, vN-1) wit...
	Proof: Suppose for . If these distances are minimal in a feasible schedule, then all execute in t...

	3.7 Schedule approach
	In the previous section we have shown some pruning rules for coping with the combination of prece...
	Figure 3.14 Global approach for scheduling
	The schedule approach is illustrated in Figure 3.15. This is almost the same example as in Figure...

	Figure 3.15 Illustrating the schedule approach from Figure 3.14
	The initial execution intervals (before any analysis or constraint modelling) are A=[0;], B=[1;],...

	a) to b)
	There is a path of length -30 mod II, and a resource conflict C-D. As a result, a sequence edge o...

	b) to c)
	The scheduler schedules operation A at clock cycle 0, and B at clock cycle 1. The execution inter...

	c) to d)
	There is a path of length -1+0+4=30 mod II, and a resource conflict B-D. As a result, a sequence ...

	d) to e)
	There is a path of length -2+(-3)+(-1)+0=-6 0(mod II), and a resource conflict A-D. As a result, ...
	The remaining search space is now completely feasible and the scheduler (probably) fixes operatio...

	3.8 Complexity
	The complexity of the analysis is determined by two factors:
	1. Updating the distance matrix
	2. The analysis required for determining which sequence edge should be added
	We first consider the updates on the distance matrix. In the distance matrix the delay of the lon...
	An upper bound on the number of path updates (as a result of adding sequence edges) can be derive...
	Now we consider the complexity of applying Lemma 3.2 and Lemma 3.3. Lemma 3.2 is applied in the f...
	Lemma 3.3 is applied in the following way. For each resource conflict vi - vj it is checked wheth...

	3.9 Experimental results
	Two experiments are reported in this section. The first experiment considers how supplementary ou...
	Figure 3.16 Radix-2 butterfly used in first experiment
	The first experiment considers two examples, the first of which is the radix-2 butterfly shown in...
	Notice in this figure how reduction techniques such as BSG and our techniques prevent a greedy sc...

	Figure 3.17 Rad2 mobility per operation
	The second example concerns an IIR filter containing 23 operations, including fetching the coeffi...

	Table 3.1 Average mobility for radix-2 butterfly and IIR

	rad2 non folded
	1.20
	.70
	.70
	.70
	rad2 folded
	1.20
	.50
	.10
	.10
	IIR non folded
	2.70
	1.61
	1.83
	1.52
	IIR folded
	2.70
	1.61
	1.74
	1.43
	The second experiment considers only our analysis and concerns the same IIR filter used in the fi...
	Table 3.2 Mobility reduction for some folded loops.

	4 Register Binding for Randomly Addressable Register Files
	Register binding is one of the three major code generation steps, as introduced in Section 1.2, t...
	In this thesis we have taken the perspective of considering scheduling and register binding as a ...
	4.1 Lifetime serialization for a given binding
	The previous chapter introduced a methodology for finding a schedule that satisfies certain resou...
	4.1.1 Non-folded schedules
	In this section two lemmas consider the combination of register, precedence and timing constraint...
	Figure 4.1 Precedence as a result of binding u and v to the same register
	Figure 4.2 Timing perspective of the alternatives in Figure 4.1
	The full consequence of binding two values to the same register is thus stated in terms of preced...

	Lemma 4.1 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 4.3 Lemma 4.1 for serializing value lifetimes
	Lemma 4.1 is illustrated in Figure 4.3. A similar lemma is valid when there is a path between the...

	Lemma 4.2 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 4.4 Lemma 4.2 for serializing value lifetimes
	Lemma 4.2 is illustrated in Figure 4.4. The last situation occurs when there is a path between th...

	Lemma 4.3 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 4.5 Lemma 4.3 for serializing value lifetimes
	Lemma 4.3 is illustrated in Figure 4.5. The overall method of analysis is demonstrated in Figure ...

	Figure 4.6 Example demonstrating the use of Lemma 4.2
	A larger example is given in Figure 4.7. It is a IIR filter application generated by the Mistral2...

	Figure 4.7 : A complete data flow graph for an IIR filter
	Figure 4.8 ASAP-ALAP intervals for the operations in Figure 4.7
	Figure 4.9 The DFG from Figure 4.7 after analysis
	Figure 4.10 ASAP-ALAP intervals for the operations in Figure 4.9
	The DFG and the ASAP-ALAP intervals after analysis are depicted in Figure 4.9 and Figure 4.10 res...

	4.1.2 Folded schedules
	In this section we extend the lemmas from Section 4.1.1 for serializing value lifetimes, to handl...
	Figure 4.11 4 possible placements of Pv-Cv if the maximum folding factor equals 1
	When schedules are not folded it is relatively simple to avoid overlapping lifetimes of values re...

	Figure 4.12 First step of generalizing Lemma 4.1.
	Figure 4.13 Second step of generalizing Lemma 4.1.
	Lemma 4.4 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Lemma 4.4 is illustrated in Figure 4.15. Lemma 4.2 is generalized to Lemma 4.5:

	Figure 4.14 Third step of generalizing Lemma 4.1.
	Lemma 4.5 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 4.15 Lemma 4.4 for serializing value lifetimes
	Figure 4.16 Lemma 4.5 for serializing value lifetimes
	Lemma 4.5 is illustrated in Figure 4.16. Lemma 4.3 is generalized to Lemma 4.6:

	Lemma 4.6 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 4.17 Lemma 4.6 for serializing value lifetimes
	Lemma 4.6 is presented graphically in Figure 4.17. We illustrate the use of the lemmas in this se...
	from b to c: Value v is produced by A and consumed by B. Value w is produced by C and consumed by...

	In Figure 4.19 a folded ASAP schedule is given that satisfies the newly added precedence constrai...

	Figure 4.18 Derivation of a partial schedule
	The last basic lemma we introduce in this chapter generalizes a modelling issue discussed in Sect...

	Lemma 4.7 : Let W be the set of values that reside in a register r, and let minlt(v) denote the m...
	This upper bound on lt(u) can be modelled in the DFG as a sequence edge with weight .

	Figure 4.19 Folded ASAP-Schedule for Figure 4.18
	We have now covered the basic techniques used in the constraint analyser of Figure 2.8 and Figure...

	4.2 Infeasibility Analysis
	In this section we tackle the problem of minimizing the register count, as introduced in Section ...
	The schedule analysis is often capable of detecting that the register binding together with the c...
	Figure 4.20 Global approach for minimizing the register count
	The source of the bottleneck is directly related to the way the positive length cycle came into e...
	Another example is the graph depicted in Figure 4.21. The constraint set is infeasible with the g...

	Figure 4.21 Example of a precedence graph
	Figure 4.22 Infeasibility analysis for Figure 4.21
	The infeasibility analysis is done in bottom-up fashion, to identify exactly those sequence edges...

	Figure 4.23 The only 2 feasible schedules for Figure 4.21 with changes in the register binding
	In this approach a simple heuristic chooses the register conflict to be solved based on the avail...
	As the reader may have noticed from the examples, the infeasibility analysis requires a lot of ad...

	4.3 Experimental results
	Our implementation on a HP 9000/735 has been tested on the inner loops from 4 different real life...
	The first experiment concerns an IIR filter of 23 operations, including fetching the coefficients...
	The mobility is decreased by a factor ranging from 3.6 (Rad4) to 13.2 (FFTb) as a result of the s...
	Table 4.1 Results of constraint analysis on DSP loop kernels

	IIR
	23
	6
	10
	3
	0.2 s
	2.70
	0.13
	FFTa
	40
	4
	13
	11
	17 s
	4.46
	0.46
	FFTb
	60
	8
	18
	20
	25 s
	6.85
	0.52
	Rad4
	81
	4
	11
	1
	0.8 s
	4.93
	1.38
	We have included one more experiment to test the performance of our method on a problem instance ...
	4.4 Incremental register binding for fixed register files
	This section considers the problem of finding a register binding for programmable processors. Con...
	• Using as few registers as possible is not the ultimate goal: instead of obtaining a minimal reg...
	• The number of registers required in a certain register file is not allowed to exceed the capaci...

	The accepted way to deal with fixed register files in a compiler is to do register spilling [Chai...
	A formal problem formulation is given in Section 2.5.2. The global decomposition for solving the ...
	The incremental register binder has to act very careful as to which values to serialize. Only tho...
	Figure 4.24 Global approach for mapping to fixed register files
	4.4.1 Constructing a conflict graph
	A conflict graph is an undirected graph CG(RF) = (Vc, Ec), where the nodes in Vc represent the va...
	• There is no overlap. This is the case e.g. for values a and c.
	• There is overlap. This is the case e.g. for values a and b in the clock cycle assigned to the e...
	• Unknown. This is the case e.g. for values b and e: if operation E precedes operation C by at le...

	For our purposes the following is the essential difference between strong and weak overlap: Stron...
	Non conflicting values
	Values u and v have no conflict if their lifetimes can never overlap. There is no overlap between...
	Figure 4.25 Values u and v have no conflict
	Definition 4.1 Values u and v have no conflict if and only if for each iteration i there exists a...
	Definition 4.1 is equivalent to the following criterion.

	Theorem 4.8 : Values u and v have no conflict if and only if
	(4.1)

	Proof
	Let k be the largest value such that and let l be the largest value such that . Because we assume...
	(4.2)
	and

	(4.3)
	so inequality (4.1) follows. o

	Strongly conflicting values
	Values u and v have a strong conflict if their lifetimes overlap for sure. There is overlap betwe...
	Theorem 4.9 : Values u and v have a strong conflict if and only if for each iteration i there exi...
	Figure 4.26 Values u and v have a strong conflict
	Proof. Suppose the execution order of operations , , , and is fixed. The following conditions cov...

	(4.4)
	Theorem 4.9 follows. o
	For the non-folded case we have . This corresponds to the case that Pu precedes Cv by one clock c...
	Theorem 4.9 is equivalent to the following criterion.

	Theorem 4.10 : Values u and v have a strong conflict if and only if
	(4.5)

	Proof
	Let k be the largest value such that and let l be the largest value such that . By the definition...
	(4.6)
	and

	(4.7)
	so inequality (4.5) follows. o

	Weakly conflicting values
	There is weak overlap if both inequalities (4.1) and (4.5) are invalid. In Figure 4.21 for exampl...

	4.4.2 Colouring and bottleneck identification
	In the previous section we showed how to construct a conflict graph with three possible relations...
	Figure 4.27 DFG used to illustrate the serializing process
	Figure 4.28 Weak conflict (a) and strong (b) coloured conflict graph for Figure 4.21 without pipe...
	From a minimum colouring, for each node v in the conflict graph we extract the so called saturati...
	Now we can explain the process of selecting two values, referred to as u and v, for serialization...

	Figure 4.29 Distance matrix and conflict graph for Figure 4.27. A solid edge means strong overlap...
	We will use the example in Figure 4.27 to illustrate the binding process. The distance matrix aft...

	Figure 4.30 The distance matrix and conflict graph corresponding to the example in Figure 4.21 af...
	Figure 4.31 The distance matrix and conflict graph corresponding to the example in Figure 4.27 af...
	Figure 4.32 The only 2 feasible schedules for Figure 4.28, and corresponding register bindings.

	4.4.3 Lifetime sequencing
	After the selection of values for serialization it needs to be determined how these values are se...
	Figure 4.33 Several options are available for sequencing u and v

	4.5 Experimental results
	In this section, we present the experimental results [Mesm99b] obtained with the proposed method ...
	Because the proposed techniques are especially intended to handle inner loops of DSP algorithms u...
	Table 4.2 Examples and reference results

	fft256
	fdct
	loef
	30,43
	42,43
	56,57
	4/13
	18/18
	26/28
	0.1
	0.1
	0.4
	3,3,1,2
	9,4
	8,4,10
	To evaluate the proposed method, we have applied it to the examples of Table 4.2 with various reg...
	For each problem instance, Table 4.3 lists the register file capacity constraints, the run time (...
	The experimental results for the example fft256 clearly show that the proposed method is steered ...
	Table 4.3 Results of proposed method

	fft256
	1, 4, 1, 2
	2, 2, 1, 2
	2, 3, 1, 1
	3, 2, 1, 1
	4, 1, 1, 2
	0.1
	0.4
	0.8
	0.9
	0.1
	0.70.3
	2.30.0
	2.10.0
	2.10.0
	0.70.4
	fdct
	9, 4
	6, 4
	8, 2
	2.3
	2.7
	0.9
	9.54.0
	9.52.0
	9.51.4
	loef
	8, 4, 10
	4, 3, 8
	3.5
	4.9
	14.43.1
	14.41.0

	5 Storage Models for Reduced Instruction Width
	In the introduction of this thesis it was described how important code size and, closely related,...
	The rest of this section is organized as follows. In Section 5.1 we take a FIFO as a storage mode...
	5.1 FIFOs
	The FIFO (first in first out) model is illustrated in Figure 5.1. Values are written into the FIF...
	Figure 5.1 FIFO model
	5.1.1 Analysis of FIFO access ordering
	Our analysis is similar to the one in chapter 4. Only conflicts between two values are considered...
	Figure 5.2 Potentially overlapping values u and v
	Lemma 5.1 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 5.3 Lemma 5.1 for serializing value lifetimes
	Lemma 5.1 is illustrated in Figure 5.3. This lemma restricts the possibilities to situation (a) a...

	Lemma 5.2 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 5.4 Lemma 5.2 for serializing value lifetimes
	Lemma 5.2 is illustrated in Figure 5.4. This lemma also restricts the possibilities to situation ...

	5.2 STACKs
	The STACK model is illustrated in Figure 5.5. Values are both written to and read from the top of...
	Figure 5.5 STACK model
	Because two values can only be read using the same read pointer we restrict the analysis to situa...

	Figure 5.6 Potentially overlapping values u and v
	With respect to feasible overlapping lifetimes, the STACK case is the reverse of the FIFO case. S...

	Lemma 5.3 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 5.7 Lemma 5.3 for serializing value lifetimes
	Lemma 5.3 is illustrated in Figure 5.7. This lemma limits the possibilities to situation (b) in F...

	Lemma 5.4 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 5.8 Lemma 5.4 for serializing value lifetimes
	Lemma 5.4 is illustrated in Figure 5.8. This lemma also limits the possibilities to situation (b)...

	Lemma 5.5 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 5.9 Lemma 5.5 for serializing value lifetimes
	Lemma 5.5 is illustrated in Figure 5.9. This lemma limits the possibilities to the situation wher...

	5.3 FILIFO, a hybrid between FIFO and STACK
	The FILIFO (first in last in first out) model is designed as a storage unit that provides more fl...
	The FILIFO is illustrated in Figure 5.10. Values are written into the FILIFO at the top and can b...
	Figure 5.10 FILIFO model
	5.3.1 Analysis of FILIFO access ordering
	First we observe that the way two value lifetimes are allowed to relate to each other depends on ...
	• The serializing (and assignment) rules should describe sufficient conditions to exclude all inf...
	• As we have seen in the example above, some access orderings imply a certain read pointer assign...

	We use the scheme depicted in Figure 5.11 to cope with the interaction between pointer assignment...
	Figure 5.11 Constraint analysis runs along with the scheduler
	Algorithm 5.1 (constraint analysis for FILIFO).
	 for all v in Y assigned to storage unit SU of type FILIFO
	 for all u<>v in Y assigned to SU
	 for all lem in Lemmas on FILIFO
	 check Lemma lem on v and u and add corresponding sequence�edge
	First we try to find situations where infeasibility is implied by a single value v. Only one situ...
	Lemma 5.6 : Let value v, produced by operation Pv and consumed by Cv reside in a FILIFO. If we ca...
	Lemma 5.7 : Let value v, produced by operation Pv and consumed by Cv reside in a FILIFO. If Cv is...
	The analysis for two values will be more complicated. A number of situations should be distinguis...
	u/v = f/f: Both values are accessed by the f-read pointer. The corresponding producers and consum...
	u/v = s/s: Both values are accessed by the s-read pointer. The corresponding producers and consum...

	Figure 5.12 Potentially overlapping values u and v
	u/v = s/f: Value u is s-read and v is f-read. Two situations, (a) and (b) in Figure 5.12, are inf...

	Lemma 5.8 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 5.13 Lemma 5.8 for serializing value lifetimes
	Lemma 5.8 is illustrated in Figure 5.13. This lemma restricts the possibilities to the situation ...

	Lemma 5.9 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by op...
	Figure 5.14 Lemma 5.9 for serializing value lifetimes
	Lemma 5.9 is illustrated in Figure 5.14. This lemma restricts the possibilities to situations (c)...
	u/v = x/x: Neither value has been assigned a read port. Remember that two value lifetimes relate ...

	Lemma 5.10 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	Lemma 5.11 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	u/v = x/f: Value v is f-read, and the read access on value u is not yet assigned. The only infeas...
	u/v = s/x: Value u is s-read, and the read access on value v is not yet assigned to a read pointe...

	5.4 Loop pipelining
	When a pipelined schedule is desired, we not only have to take care that u and v fit in the same ...
	Figure 5.15 Serializing within the same iteration is not sufficient for pipelining
	In Section 2.2 we showed the equivalence between the relation and the relation with time delay

	Figure 5.16 Generalization of Lemma 5.1
	Lemma 5.12 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	The generalization of Lemma 5.2 is now straightforward:

	Lemma 5.13 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	The STACK lemmas are a little harder to generalize because a sequence edge is added as a result o...

	Lemma 5.14 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	Lemma 5.4 is generalized to Lemma 5.15 following the same line of reasoning.

	Lemma 5.15 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	Deriving Lemma 5.16 from Lemma 5.5 also follows this line of reasoning but the weight of the resu...

	Lemma 5.16 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	With respect to the u/v = s/f case for FILIFOs, Lemma 5.8 and Lemma 5.9 are generalized to Lemma ...

	Figure 5.17 First generalization of Lemma 5.3
	Figure 5.18 Second generalization of Lemma 5.3
	Lemma 5.17 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	Lemma 5.18 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	Lemma 5.10 and Lemma 5.11 for deriving a read port are generalized to Lemma 5.19 and Lemma 5.20 r...

	Lemma 5.19 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	Lemma 5.20 : Let value u, produced by operation Pu and consumed by Cu, and value v, produced by o...
	We have generalized the rules from the previous section so that we are now able to analyse the co...

	5.5 Some practical issues
	The previous sections laid the foundations for coping with unconventional storage models. In this...
	• multiple consumers of the same value
	• using different RF models in the same architecture

	5.5.1 Multiple consumers
	When a value in a storage unit is allowed to be consumed more than once (if a read access can be ...
	Algorithm 5.2 (constraint analysis for FILIFO).
	 for all v in Y assigned to storage unit SU of type FILIFO
	 for all u<>v in Y assigned to SU
	 for all Cv and Cu
	 for all lem in Lemmas on FILIFO
	 check Lemma lem on Pv, Pu, Cv, and Cu, and add corresponding sequence�edge

	5.5.2 Architectures with mixed storage types
	Suppose we have an architecture containing a variety of storage models, so one file is a FIFO, an...
	Algorithm 5.3 (constraint analysis for mixed storage types)
	for all storage units SU of type register, FIFO, STACK, or filifo
	 for all v in Y assigned to SU
	 for all u<>v in Y assigned to SU
	 for all Cv and Cu
	 for all lem in Lemmas on type(SU)
	 check Lemma lem on Pv, Pu, Cv, and Cu, and add corresponding sequence�edge

	5.6 Case study
	In order to understand how the techniques treated in this chapter can be applied, let us spend a ...
	For this purpose we will use the example shown in Figure 5.19. It represents the inner loop of an...
	Figure 5.19 DFG of an FFT inner loop
	The data-path architecture is depicted in Figure 5.20. The smallest set of functional resources r...

	Figure 5.20 Default VLIW architecture and instruction format for mapping the DFG in Figure 5.19
	5.6.1 Implementation with randomly addressable registers
	This design was originally implemented with the usual randomly addressable registers. Because the...
	Figure 5.21 Transformed DFG for implementation with registers
	With this constraint set, the minimum latency of the schedule according to facts equals 13 clock ...

	5.6.2 Implementation with FIFOs and registers
	In this section we will add FIFOs to the architecture in order to decrease the number of addresse...
	Initially, the mobility equals 3.31 clock cycles per operation. The values a0R1-a3R2 can all be p...

	6 Conclusions
	In this thesis an approach for DSP code generation is presented based on constraint analysis. Thi...
	We have considered the problem of phase coupling: the problem that decisions taken in one phase o...
	Figure 6.1 The facts hierarchy
	This approach to integrate scheduling and register binding enables a compiler to sacrifice schedu...
	Current research in the context of constraint analysis and facts focuses on the following topics.
	• a search strategy for binding values to registers in a rotating register file [Rau82]. This sto...
	• a search strategy for assigning values to FIFOs [Alba00]. This could help to reduce code size a...
	• a search strategy for the assignment of operations to functional resources, and related to that...

	An interesting question arises with respect to the general applicability of the colouring approac...
	Another research question relates to the facts hierarchy given in Figure 6.1. Apparently, some co...
	The facts tool is used at the Eindhoven University of Technology as a research vehicle for resear...

	Literature
	[Aiken95] A. Aiken, A. Nicolau, S. Novack, “Resource-Constrained Software Pipelining”, IEEE trans...
	[Alom93] A. Alomary, T. Nakata, Y. Honma, M. Imai, and N. Hikichi, “An ASIP instruction set optim...
	[Alba99] C. Alba-Pinto, B. Mesman, and C.A.J. van Eijk, “Register Files Constraint Satisfaction d...
	[Alba00] C. Alba-Pinto, C.A.J. van Eijk, B. Mesman, and J.A.G. Jess, “Address Satisfaction for Fi...
	[Bash99] S. Bashford and R. Leupers, “Constraint Driven Code Selection for Fixed-Point DSPs", Pro...
	[Bart92] D.H. Bartley, “Optimizing stack frame accesses for processors with restricted addressing...
	[Beko00] M.J.G. Bekooij, B. Mesman, C.A.J. van Eijk, J.L. van Meerbergen, and J.A.G. Jess, "Const...
	[Behn97] B. Behnam and G. Saucier, “IP Catalog: The Catalist of Worldwide IP business”, Int. Work...
	[Bras99] R.A.C. Braspenning, “Modeling Issue Slot Constraints with Resources”, trainee report, Ei...
	[Catt98] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtegale, and A. Vandecappele, “Cu...
	[Chai82] G. Chaitin, “Register allocation and spilling via graph coloring”, ACM Symp. on Compiler...
	[Coff76] E.F. Coffman Jr, “Computer and Job Shop Scheduling Theory”, John Wiley & Sons, New York,...
	[Corm90] T.H. Cormen, C.E. Leiserson, R.L. Rivest, “Introduction to Algorithms”, MIT Press, 1990
	[Coud97] O. Coudert, ‘‘Exact coloring for real-life graphs is easy,’’ Proc. ACM/ IEEE Design Auto...
	[Demi94] G. De Micheli, “Synthesis and Optimization of Digital Circuits”, New York, McGraw-Hill, ...
	[Depu93] F. Depuydt, “Register optimization and scheduling for real-time digital signal processin...
	[Eich95] A.E. Eichenberger, E.S. Davidson and S.G. Abraham, “Optimum modulo schedules for minimum...
	[Eijk99] C.A.J. van Eijk, E.T.A.F Jacobs, B. Mesman and A.H. Timmer “Identification and Exploitat...
	[Eijk00] C.A.J. van Eijk, B. Mesman, C.A. Alba-Pinto, Q. Zhao, M.J.G. Bekooij, J.L. van Meerberge...
	[Fara98] P. Faraboschi, G. Desoli and J.A. Fisher, “Clustered Instruction-Level Parallel Processo...
	[Fish81] J.A. Fisher, “Trace scheduling: a technique for global microcode compaction”, IEEE Trans...
	[Fish83] J.A. Fisher, “Very long instruction word architectures and the ELI-512”, Proc. 10th Ann....
	[Garey79] M.R. Garey and D.S. Johnson, “Computers and intractability: A guide to the theory of NP...
	[Girc84] E.F. Girczyc and J.P. Knight, “An ADA to Standard Cell Hardware Compiler Based on Graph ...
	[Goos89] G. Goossens, J. Vandewalle and H. De Man, “Loop optimization in register-transfer schedu...
	[Govin94] R. Govindarajan, E.R. Altman, and G.R. Gao, “Minimizing register requirements under res...
	[Hart92] R. Hartmann, “Combined scheduling and data routing for programmable ASIC systems”, Proc....
	[Henn96] J.L. Hennessy and D.A. Patterson, “Computer architecture, a quantitative approach”, Morg...
	[Heij91] M.J.M. Heijligers, “Time Constrained Scheduling for High Level Synthesis”, Masters Thesi...
	[Heij96] M.J.M. Heijligers, “The Application of Genetic Algorithms to High-Level Synthesis”, Ph.D...
	[Hoog99] J. Hoogerbrugge and L. Augusteijn, “Instruction Scheduling for TriMedia”, Journal of Ins...
	[Hu61] T.C. Hu, “Parallel sequencing and assembly line problems”, Operation Research, no.9, pp. 8...
	[Huis98] J.A. Huisken, M.J.G. Bekooij, G.C.M. Gielis, P.W.F. Gruijters and F.P.J. Welten, “A Powe...
	[Hwang91] C-T. Hwang, Y-C. Hsu, and Y-L Lin, “Scheduling for functional pipelining and loop windi...
	[IEEE88] IEEE standard 1076-1987, IEEE Standard VHDL Language Reference Manual, New York: Institu...
	[Klei97] R.P. Kleihorst, A. van der Werf, W.H.A. Bruls, W.F.J. Verhaegh and E. Waterlander, “MPEG...
	[Ku92] D.C. Ku and G. De Micheli, “High-level synthesis of ASICs under timing and synchronization...
	[Kuch97] K. Kuchcinski, “Embedded system synthesis by timing constraints solving”, Proc. Int. Sym...
	[Lam88] M. Lam, “Software Pipelining: An effective scheduling technique for VLIW machines”, ACM C...
	[Lann95] D. Lanneer, J. van Praet, A. Kifli, K. Schoofs, W. Geurts, F. Thoen, and G. Goossens, “C...
	[Laps96] P. Lapsley, J. Bier, A. Shoham and E.A. Lee, “DSP Processor Fundamentals”, Berkeley Desi...
	[Leij00] J. Leijten, M. Bekooij, A. Bink, H. van Gageldonk, J. Hoogerbrugge and B. Mesman, "COCOO...
	[Leup96] R. Leupers and P. Marwedel, “Algorithms for address assignment in DSP code generation”, ...
	[Leup97] R.Leupers, “Retargetable code generation for digital signal processors”, Kluwer Academic...
	[Liem94] C. Liem, T. May and P. Paulin, “Instruction-set matching and selection for DSP and ASIP ...
	[Liao95] S. Liao, S. Devadas, K. Keutzer, S. Tjiang and A. Wang, “Storage assignment to decrease ...
	[Marw95] P. Marwedel and G. Goossens (editor), “Code Generation for Embedded Processors”, Kluwer ...
	[McFa88] M. C.SJ. McFarland, A.C. Parker and P. Camposano, “The High-Level Synthesis of Digital S...
	[McFa90] M. C.SJ. McFarland, A.C. Parker and P. Camposano, “Tutorial on High-level synthesis”, Pr...
	[Meer95] J.L. van Meerbergen, P. Lippens, W. Verhaegh and A. van der Werf, “PHIDEO: High-level sy...
	[Meer99] J.L. van Meerbergen, “Embedded Multimedia Systems on Silicon”, Nat.Lab. Unclassified Rep...
	[Mesm97a] B. Mesman, M.T.J. Strik, A.H. Timmer, J.L. van Meerbergen, and J.A.G. Jess, “Constraint...
	[Mesm97b] B. Mesman, M.T.J. Strik, A.H. Timmer, J.L. van Meerbergen, and J.A.G. Jess, “Constraint...
	[Mesm97c] B. Mesman, M.T.J. Strik, A.H. Timmer, J.L. van Meerbergen, and J.A.G. Jess, “An Integra...
	[Mesm98] B. Mesman, M.T.J. Strik, A.H. Timmer, J.L. van Meerbergen, and J.A.G. Jess, “A constrain...
	[Mesm99a] B. Mesman, A.H. Timmer, J.L. van Meerbergen, and J.A.G. Jess, “Constraint analysis for ...
	[Mesm99b] B. Mesman, C.A. Alba-Pinto, and C.A.J. van Eijk, “Efficient Scheduling of DSP Code on P...
	[Mesm99c] B. Mesman, C.A.J.van Eijk, C.A. Alba-Pinto, M.G.J. Bekooy, J.L. van Meerbergen, and J.A...
	[Mesm01] B. Mesman, C.A.J.van Eijk, and M.G.J. Bekooy, “Constraint Analysis for Scheduling DSP Co...
	[Nuijt94] W.P.M. Nuijten, “Time and Resource Constrained Scheduling”, Ph.D. Thesis, Eindhoven Uni...
	[Papa82] C.H. Papadimitriou and K. Steiglitz, “Combinatorial optimization: algorithms and complex...
	[Park88] N. Park and A.C. Parker, “Sehwa: A Software Package for Synthesis of Pipelines from Beha...
	[Paul89] P.G. Paulin and J.P. Knight, “Force-directed scheduling for the behavioural sythesis of ...
	[Paul95a] P.G. Paulin, C. Liem, T.C. May, and S. Sutarwala, “DSP design tool requirements for emb...
	[Paul95b] P.G. Paulin, C. Liem, T.C. May, and S. Sutarwala, “FlexWare: a flexible firmware develo...
	[Paul96] P.G. Paulin and C. Liem, “Embedded Systems: Trends and Tools”, tutorial notes, European ...
	[Pot92] M. Potkonjak and J. Rabaey, “Scheduling algorithms for hierarchical data control flow gra...
	[Praet94] J.V. Praet, G. Goossens, D. Lanneer and H. de Man, “Instruction set definition and inst...
	[Rao99] A. Rao and S. Pande, “Storage Assignment using Expression Tree Transformations to Generat...
	[Rau81] B.R. Rau and C.D. Glaeser , “Some scheduling techniques and an easiliy schedulable horizo...
	[Rau82] B.R. Rau, C.D. Glaeser and E.M. Greenawalt, “Architectural support for the efficient gene...
	[Rau92] B.R. Rau, M. Lee, P.P. Tirumalai and M.S. Schlansker, “Register allocation for software p...
	[Rau96] B.R. Rau, “Iterative Modulo Scheduling”, Int. Journal of Parallel Programming, vol. 24, n...
	[Rau98] B.R. Rau, V. Kathail and S. Aditya, “Machine-description driven compilers for epic proces...
	[Rau99] B.R. Rau, V. Kathail and S.A. Gupta, “Machine-description driven compilers for EPIC and V...
	[Reit68] R. Reiter, “Scheduling parallel computation”, Journal of the ACM, vol.15, pp. 590-599, 1968
	[Rimey89] K.E. Rimey, “A compiler for application-specific signal processors”, Ph.D. thesis, Univ...
	[Romp92] K. van Rompaey, I. Bolsens, and H. De Man”, “Just in time scheduling” , Proc. IEEE Int. ...
	[Schlan94] M.S. Schlansker, B.R. Rau, S. Mahlke, V. Kathail, R. Johnson, S. Anik and S.G. Abraham...
	[Strik95] M.T.J. Strik, J.L. van Meerbergen, A.H. Timmer and J.A.G. Jess, “Efficient code generat...
	[Strik94] M.T.J. Strik, “Efficient code generation for application domain specific processors”, E...
	[Sudar97] A. Sudarsanam, S. Liao and S. Devadas, “Analysis and evaluation of address arithmetic c...
	[Sugi96] N. Sugino, M. Myiazaki, S. Iimuro and A. Nishihara, “Improved code optimization method u...
	[Thom90] D.E. Thomas, E.D. Lagnese, R.A. Walker, J.A. Nestor, J.V. Rajan and R.L. Blackburn, Algo...
	[Timm95a] A.H. Timmer, M.T.J. Strik, J.L. van Meerbergen and J.A.G. Jess, “Conflict modelling and...
	[Timm95b] A.H. Timmer, "From Design Space Exploration to Code Generation", Ph.D. thesis, Eindhove...
	[TMS97] “TMS320C60xx CPU and Instruction Set Reference Guide”, Texas Instruments 1997
	[Trim97] “Trimedia TM-1 Media Processor Data Book”, Philips Semiconductors, Trimedia Product Grou...
	[Verh97] W.F.J Verhaegh, P.E.R. Lippens, E.H.L. Aarts and J.L. van Meerbergen,“Multidimensional p...
	[Woud94] R. Woudsma, “EPICS, a flexible approach to embedded DSP cores”, CDROM Proc. Int. Conf. o...
	[Zhao00] Q. Zhao, C.A.J. van Eijk, C.A. Alba Pinto and J.A.G. Jess, “Register binding for predica...
	[Zivo94] V.Zivojnovic, J.M. Velarde, C. Schlaeger and H. Meyr, “DSPStone - A DSP oriented Benchma...

	Samenvatting
	Methoden voor code generatie voor digitale signaal processoren (DSP) worden in toenemende mate be...
	resources een probleem voor ’greedy’ scheduling heuristieken. De beperkte beschikbaarheid van reg...
	oplossingen gegenereerd worden, omdat het probleem van fase koppeling genegeerd wordt; doordat de...
	De benadering voorgesteld in dit proefschrift is gebaseerd op analyse van de randvoorwaarden om d...
	bijgehouden tussen elk paar operaties in een Basic Block. Algoritmen met een lage complexiteit wo...
	afstandsmatrix aan te passen.
	Teneinde de register benodigdheden te minimaliseren of de beperkingen op de register capaciteit t...
	soortgelijke wijze is het mogelijk de lees- en schrijfacties op een register file te ordenen zoda...
	een veel grotere opslagcapaciteit. Dit is interessant doordat register adressering bij VLIW proce...

	Curriculum Vitae
	Bart Mesman received the Electrical Engineering Degree (with honors) from the Eindhoven Universit...

