68 research outputs found

    Modulo scheduling with reduced register pressure

    Get PDF
    Software pipelining is a scheduling technique that is used by some product compilers in order to expose more instruction level parallelism out of innermost loops. Module scheduling refers to a class of algorithms for software pipelining. Most previous research on module scheduling has focused on reducing the number of cycles between the initiation of consecutive iterations (which is termed II) but has not considered the effect of the register pressure of the produced schedules. The register pressure increases as the instruction level parallelism increases. When the register requirements of a schedule are higher than the available number of registers, the loop must be rescheduled perhaps with a higher II. Therefore, the register pressure has an important impact on the performance of a schedule. This paper presents a novel heuristic module scheduling strategy that tries to generate schedules with the lowest II, and, from all the possible schedules with such II, it tries to select that with the lowest register requirements. The proposed method has been implemented in an experimental compiler and has been tested for the Perfect Club benchmarks. The results show that the proposed method achieves an optimal II for at least 97.5 percent of the loops and its compilation time is comparable to a conventional top-down approach, whereas the register requirements are lower. In addition, the proposed method is compared with some other existing methods. The results indicate that the proposed method performs better than other heuristic methods and almost as well as linear programming methods, which obtain optimal solutions but are impractical for product compilers because their computing cost grows exponentially with the number of operations in the loop body.Peer ReviewedPostprint (published version

    Hypernode reduction modulo scheduling

    Get PDF
    Software pipelining is a loop scheduling technique that extracts parallelism from loops by overlapping the execution of several consecutive iterations. Most prior scheduling research has focused on achieving minimum execution time, without regarding register requirements. Most strategies tend to stretch operand lifetimes because they schedule some operations too early or too late. The paper presents a novel strategy that simultaneously schedules some operations late and other operations early, minimizing all the stretchable dependencies and therefore reducing the registers required by the loop. The key of this strategy is a pre-ordering that selects the order in which the operations will be scheduled. The results show that the method described in this paper performs better than other heuristic methods and almost as well as a linear programming method but requiring much less time to produce the schedules.Peer ReviewedPostprint (published version

    Survey on Combinatorial Register Allocation and Instruction Scheduling

    Full text link
    Register allocation (mapping variables to processor registers or memory) and instruction scheduling (reordering instructions to increase instruction-level parallelism) are essential tasks for generating efficient assembly code in a compiler. In the last three decades, combinatorial optimization has emerged as an alternative to traditional, heuristic algorithms for these two tasks. Combinatorial optimization approaches can deliver optimal solutions according to a model, can precisely capture trade-offs between conflicting decisions, and are more flexible at the expense of increased compilation time. This paper provides an exhaustive literature review and a classification of combinatorial optimization approaches to register allocation and instruction scheduling, with a focus on the techniques that are most applied in this context: integer programming, constraint programming, partitioned Boolean quadratic programming, and enumeration. Researchers in compilers and combinatorial optimization can benefit from identifying developments, trends, and challenges in the area; compiler practitioners may discern opportunities and grasp the potential benefit of applying combinatorial optimization

    Combined instruction scheduling and register allocation

    Get PDF
    Master'sMASTER OF SCIENC

    Clustered VLIW architecture based on queue register files

    Get PDF
    Institute for Computing Systems ArchitectureInstruction-level parallelism (ILP) is a set of hardware and software techniques that allow parallel execution of machine operations. Superscalar architectures rely most heavily upon hardware schemes to identify parallelism among operations. Although successful in terms of performance, the hardware complexity involved might limit the scalability of this model. VLIW architectures use a different approach to exploit ILP. In this case all data dependence analyses and scheduling of operations are performed at compile time, resulting in a simpler hardware organization. This allows the inclusion of a larger number of functional units (FUs) into a single chip. IN spite of this relative simplification, the scalability of VLIW architectures can be constrained by the size and number of ports of the register file. VLIW machines often use software pipelining techniques to improve the execution of loop structures, which can increase the register pressure. Furthermore, the access time of a register file can be compromised by the number of ports, causing a negative impact on the machine cycle time. For these reasons we understand that the benefits of having parallel FUs, which have motivated the investigation of alternative machine designs. This thesis presents a scalar VLIW architecture comprising clusters of FUs and private register files. Register files organised as queue structures are used as a mechanism for inter-cluster communication, allowing the enforcement of fixed latency in the process. This scheme presents better possibilities in terms of scalability as the size of the individual register files is not determined by the total number of FUs, suggesting that the silicon area may grow only linearly with respect to the total number of FUs. However, the effectiveness of such an organization depends on the efficiency of the code partitioning strategy. We have developed an algorithm for a clustered VLIW architecture integrating both software pipelining and code partitioning in a a single procedure. Experimental results show it may allow performance levels close to an unclustered machine without communication restraints. Finally, we have developed silicon area and cycle time models to quantify the scalability of performance and cost for this class of architecture

    goSLP: Globally Optimized Superword Level Parallelism Framework

    Full text link
    Modern microprocessors are equipped with single instruction multiple data (SIMD) or vector instruction sets which allow compilers to exploit superword level parallelism (SLP), a type of fine-grained parallelism. Current SLP auto-vectorization techniques use heuristics to discover vectorization opportunities in high-level language code. These heuristics are fragile, local and typically only present one vectorization strategy that is either accepted or rejected by a cost model. We present goSLP, a novel SLP auto-vectorization framework which solves the statement packing problem in a pairwise optimal manner. Using an integer linear programming (ILP) solver, goSLP searches the entire space of statement packing opportunities for a whole function at a time, while limiting total compilation time to a few minutes. Furthermore, goSLP optimally solves the vector permutation selection problem using dynamic programming. We implemented goSLP in the LLVM compiler infrastructure, achieving a geometric mean speedup of 7.58% on SPEC2017fp, 2.42% on SPEC2006fp and 4.07% on NAS benchmarks compared to LLVM's existing SLP auto-vectorizer.Comment: Published at OOPSLA 201

    Processor Models For Instruction Scheduling using Constraint Programming

    Get PDF
    Instruction scheduling is one of the most important optimisations performed when producing code in a compiler. The problem consists of finding a minimum length schedule subject to latency and different resource constraints. This is a hard problem, classically approached by heuristic algorithms. In the last decade, research interest has shifted from heuristic to potentially optimal methods. When using optimal methods, a lot of compilation time is spent searching for an optimal solution. This makes it important that the problem definition reflects the reality of the processor. In this work, a constraint programming approach was used to study the impact that the model detail has on performance. Several models of a superscalar processor were embedded in LLVM and evaluated using SPEC CPU2000. The result shows that there is substantial performance to be gained, over 5% for some programs. The stability of the improvement is heavily dependent on the accuracy of the model

    Optimal Global Instruction Scheduling for the Itanium® Processor Architecture

    Get PDF
    On the Itanium 2 processor, effective global instruction scheduling is crucial to high performance. At the same time, it poses a challenge to the compiler: This code generation subtask involves strongly interdependent decisions and complex trade-offs that are difficult to cope with for heuristics. We tackle this NP-complete problem with integer linear programming (ILP), a search-based method that yields provably optimal results. This promises faster code as well as insights into the potential of the architecture. Our ILP model comprises global code motion with compensation copies, predication, and Itanium-specific features like control/data speculation. In integer linear programming, well-structured models are the key to acceptable solution times. The feasible solutions of an ILP are represented by integer points inside a polytope. If all vertices of this polytope are integral, then the ILP can be solved in polynomial time. We define two subproblems of global scheduling in which some constraint classes are omitted and show that the corresponding two subpolytopes of our ILP model are integral and polynomial sized. This substantiates that the found model is of high efficiency, which is also confirmed by the reasonable solution times. The ILP formulation is extended by further transformations like cyclic code motion, which moves instructions upwards out of a loop, circularly in the opposite direction of the loop backedges. Since the architecture requires instructions to be encoded in fixed-sized bundles of three, a bundler is developed that computes bundle sequences of minimal size by means of precomputed results and dynamic programming. Experiments have been conducted with a postpass tool that implements the ILP scheduler. It parses assembly procedures generated by Intel�s Itanium compiler and reschedules them as a whole. Using this tool, we optimize a selection of hot functions from the SPECint 2000 benchmark. The results show a significant speedup over the original code.Globale Instruktionsanordnung hat beim Itanium-2-Prozessor großen Einfluß auf die Leistung und stellt dabei gleichzeitig eine Herausforderung für den Compiler dar: Sie ist mit zahlreichen komplexen, wechselseitig voneinander abhängigen Entscheidungen verbunden, die für Heuristiken nur schwer zu beherrschen sind.Wir lösen diesesNP-vollständige Problem mit ganzzahliger linearer Programmierung (ILP), einer suchbasierten Methode mit beweisbar optimalen Ergebnissen. Das ermöglicht neben schnellerem Code auch Einblicke in das Potential der Itanium- Prozessorarchitektur. Unser ILP-Modell umfaßt globale Codeverschiebungen mit Kompensationscode, Prädikation und Itanium-spezifische Techniken wie Kontroll- und Datenspekulation. Bei ganzzahliger linearer Programmierung sind wohlstrukturierte Modelle der Schlüssel zu akzeptablen Lösungszeiten. Die zulässigen Lösungen eines ILPs werden durch ganzzahlige Punkte innerhalb eines Polytops repräsentiert. Sind die Eckpunkte dieses Polytops ganzzahlig, kann das ILP in Polynomialzeit gelöst werden. Wir definieren zwei Teilprobleme globaler Instruktionsanordnung durch Auslassung bestimmter Klassen von Nebenbedingungen und beweisen, daß die korrespondierenden Teilpolytope unseres ILP-Modells ganzzahlig und von polynomieller Größe sind. Dies untermauert die hohe Effizienz des gefundenen Modells, die auch durch moderate Lösungszeiten bestätigt wird. Das ILP-Modell wird um weitere Transformationen wie zyklische Codeverschiebung erweitert; letztere bezeichnet das Verschieben von Befehlen aufwärts aus einer Schleife heraus, in Gegenrichtung ihrer Rückwärtskanten. Da die Architektur eine Kodierung der Befehle in Dreierbündeln fester Größe vorschreibt, wird ein Bundler entwickelt, der Bündelsequenzen minimaler Länge mit Hilfe vorberechneter Teilergebnisse und dynamischer Programmierung erzeugt. Für die Experimente wurde ein Postpassoptimierer erstellt. Er liest von Intels Itanium-Compiler erzeugte Assemblerroutinen ein und ordnet die enthaltenen Instruktionen mit Hilfe der ILP-Methode neu an. Angewandt auf eine Auswahl von Funktionen aus dem Benchmark SPECint 2000 erreicht der Optimierer eine signifikante Beschleunigung gegenüber dem Originalcode

    Optimal Global Instruction Scheduling for the Itanium® Processor Architecture

    Get PDF
    On the Itanium 2 processor, effective global instruction scheduling is crucial to high performance. At the same time, it poses a challenge to the compiler: This code generation subtask involves strongly interdependent decisions and complex trade-offs that are difficult to cope with for heuristics. We tackle this NP-complete problem with integer linear programming (ILP), a search-based method that yields provably optimal results. This promises faster code as well as insights into the potential of the architecture. Our ILP model comprises global code motion with compensation copies, predication, and Itanium-specific features like control/data speculation. In integer linear programming, well-structured models are the key to acceptable solution times. The feasible solutions of an ILP are represented by integer points inside a polytope. If all vertices of this polytope are integral, then the ILP can be solved in polynomial time. We define two subproblems of global scheduling in which some constraint classes are omitted and show that the corresponding two subpolytopes of our ILP model are integral and polynomial sized. This substantiates that the found model is of high efficiency, which is also confirmed by the reasonable solution times. The ILP formulation is extended by further transformations like cyclic code motion, which moves instructions upwards out of a loop, circularly in the opposite direction of the loop backedges. Since the architecture requires instructions to be encoded in fixed-sized bundles of three, a bundler is developed that computes bundle sequences of minimal size by means of precomputed results and dynamic programming. Experiments have been conducted with a postpass tool that implements the ILP scheduler. It parses assembly procedures generated by Intel�s Itanium compiler and reschedules them as a whole. Using this tool, we optimize a selection of hot functions from the SPECint 2000 benchmark. The results show a significant speedup over the original code.Globale Instruktionsanordnung hat beim Itanium-2-Prozessor großen Einfluß auf die Leistung und stellt dabei gleichzeitig eine Herausforderung für den Compiler dar: Sie ist mit zahlreichen komplexen, wechselseitig voneinander abhängigen Entscheidungen verbunden, die für Heuristiken nur schwer zu beherrschen sind.Wir lösen diesesNP-vollständige Problem mit ganzzahliger linearer Programmierung (ILP), einer suchbasierten Methode mit beweisbar optimalen Ergebnissen. Das ermöglicht neben schnellerem Code auch Einblicke in das Potential der Itanium- Prozessorarchitektur. Unser ILP-Modell umfaßt globale Codeverschiebungen mit Kompensationscode, Prädikation und Itanium-spezifische Techniken wie Kontroll- und Datenspekulation. Bei ganzzahliger linearer Programmierung sind wohlstrukturierte Modelle der Schlüssel zu akzeptablen Lösungszeiten. Die zulässigen Lösungen eines ILPs werden durch ganzzahlige Punkte innerhalb eines Polytops repräsentiert. Sind die Eckpunkte dieses Polytops ganzzahlig, kann das ILP in Polynomialzeit gelöst werden. Wir definieren zwei Teilprobleme globaler Instruktionsanordnung durch Auslassung bestimmter Klassen von Nebenbedingungen und beweisen, daß die korrespondierenden Teilpolytope unseres ILP-Modells ganzzahlig und von polynomieller Größe sind. Dies untermauert die hohe Effizienz des gefundenen Modells, die auch durch moderate Lösungszeiten bestätigt wird. Das ILP-Modell wird um weitere Transformationen wie zyklische Codeverschiebung erweitert; letztere bezeichnet das Verschieben von Befehlen aufwärts aus einer Schleife heraus, in Gegenrichtung ihrer Rückwärtskanten. Da die Architektur eine Kodierung der Befehle in Dreierbündeln fester Größe vorschreibt, wird ein Bundler entwickelt, der Bündelsequenzen minimaler Länge mit Hilfe vorberechneter Teilergebnisse und dynamischer Programmierung erzeugt. Für die Experimente wurde ein Postpassoptimierer erstellt. Er liest von Intels Itanium-Compiler erzeugte Assemblerroutinen ein und ordnet die enthaltenen Instruktionen mit Hilfe der ILP-Methode neu an. Angewandt auf eine Auswahl von Funktionen aus dem Benchmark SPECint 2000 erreicht der Optimierer eine signifikante Beschleunigung gegenüber dem Originalcode
    corecore