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with Reduced Register Pressure
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Abstract—Software pipelining is a scheduling technique that is used by some product compilers in order to expose more instruction
level parallelism out of innermost loops. Modulo scheduling refers to a class of algorithms for software pipelining. Most previous
research on modulo scheduling has focused on reducing the number of cycles between the initiation of consecutive iterations (which
is termed II) but has not considered the effect of the register pressure of the produced schedules. The register pressure increases as
the instruction level parallelism increases. When the register requirements of a schedule are higher than the available number of
registers, the loop must be rescheduled perhaps with a higher II. Therefore, the register pressure has an important impact on the
performance of a schedule. This paper presents a novel heuristic modulo scheduling strategy that tries to generate schedules with
the lowest II, and, from all the possible schedules with such II, it tries to select that with the lowest register requirements. The
proposed method has been implemented in an experimental compiler and has been tested for the Perfect Club benchmarks. The
results show that the proposed method achieves an optimal II for at least 97.5 percent of the loops and its compilation time is
comparable to a conventional top-down approach, whereas the register requirements are lower. In addition, the proposed method is
compared with some other existing methods. The results indicate that the proposed method performs better than other heuristic
methods and almost as well as linear programming methods, which obtain optimal solutions but are impractical for product compilers
because their computing cost grows exponentially with the number of operations in the loop body.

Index Terms—Instruction scheduling, loop scheduling, software pipelining, register allocation, register spilling.
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1 INTRODUCTION

NCREASING the instruction level parallelism is an ob-
served trend in the design of current microprocessors.

This requires a combined effort from the hardware and
software in order to be effective. Since most of the execution
time of common programs is spent in loops, many efforts to
improve performance have targeted loop nests.

Software pipelining [5] is an instruction scheduling
technique that exploits the instruction level parallelism of
loops by overlapping the execution of successive iterations
of a loop. There are different approaches to generate a soft-
ware pipelined schedule for a loop [1]. Modulo scheduling
is a class of software pipelining algorithms that was pro-
posed at the begining of last decade [24] and has been in-
corporated into some product compilers (e.g., [22], [7]). Be-
sides, many research papers have recently appeared on this
topic [11], [14], [26], [13], [29], [12], [27], [23], [30], [18].

Modulo scheduling framework relies on generating a
schedule for an iteration of the loop such that when this
same schedule is repeated at regular intervals, no depend-
ence is violated and no resource usage conflict arises. The
interval between the successive iterations is termed Initia-
tion Interval (II). Having a constant initiation interval im-
plies that no resource may be used more than once at the
same time modulo II.

Most modulo scheduling approaches consists of two
steps. First, they compute a schedule trying to minimize the
II but without caring about register allocation and then,
allocate variables to registers. The execution time of a soft-
ware pipelined loop depends on the II, the length of the
schedule for one iteration and the number of registers re-
quired by this schedule. The II directly impacts perform-
ance since it determines the issue rate of loop iterations.
The schedule length also has a direct impact on perform-
ance since it determines the overhead each time a loop is
entered, however its impact on performance is negligible
for loops with large trip counts. Finally, the register re-
quirements of the schedule may also impact performance if
they exceed the number of available registers. In this case,
the schedule is unfeasible and some actions must be taken
in order to reduce the register pressure. Some possible so-
lutions outlined in [25] and evaluated in [17] are:

•� Reschedule the loop with an increased II. In general,
increasing the II reduces the register requirements but
decreases the issue rate, which has a direct negative
effect on the execution time.

•� Add spill code. This again has a negative effect since
it increases the required memory bandwidth and it
will result in additional memory penalties (e.g., cache
misses). Besides, memory may become the most satu-
rated resource and, therefore, adding spill code may
result in increased II.

Most previous works have focused on reducing the II
and, sometimes, also the length of the schedule for one itera-
tion, but they have not considered the register requirements
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of the proposed schedule, which may have a severe impact
on the performance as outlined above. A current trend in
the design of new processors is the increase in the amount
of instruction level parallelism that they can exploit. Ex-
ploiting more instruction level parallelism results in a sig-
nificant increase in the register pressure [20], [19], which
exacerbates the problem of ignoring its effect on the per-
formance of a given schedule.

In order to obtain more effective schedules, a few re-
cently proposed modulo scheduling approaches try to
minimize both the II and the register requirements of the
produced schedules.

Some of these approaches [10], [9] are based on formu-
lating the problem in terms of an optimization problem and
solving it using an integer linear programming approach.
This may produce optimal schedules but, unfortunately,
this approach has a computing cost that grows exponen-
tially with the number of basic operations in the loop body.
Therefore, they are impractical for big loops, which in most
cases are the most time consuming parts of a program and,
thus, they may be the ones that most benefit from software
pipelining.

Practical modulo scheduling approaches used by prod-
uct compilers use some heuristics to guide the scheduling
process. The two most relevant heuristic approaches pro-
posed in the literature that try to minimize both the II and
the register pressure are: Slack Scheduling [12] and Stage
Scheduling [8].

Slack Scheduling is an iterative algorithm with limited
backtracking. At each iteration, the scheduler chooses an
operation based on a previouly computed dynamic priority.
This priority is a function of the slack of each operation (i.e.,
a measure of the scheduling freedom for that operation)
and it also depends on how much critical the resources
used by that operation are. The selected operation is placed
in the partial schedule either as early as possible or as late
as possible. The choice between these two alternatives is
made basically by determining how many of the opera-
tion’s inputs and outputs are stretchable and choosing the
one that minimizes the involved values’ lifetimes. If the
scheduler cannot place the selected operation due to a lack
of conflict-free issue slots, then it is forced to a particular
slot and all the conflicting operations are ejected from the
partial schedule. In order to limit this type of backtracking,
if operations are ejected too many times, the II is incre-
mented and the scheduling is started all over again.

Stage Scheduling is not a whole modulo scheduler by it-
self but a set of heuristic techniques that reduce the register
requirements of any given modulo schedule. This objective
is achieved by shifting operations by multiples of II cycles.
The resulting schedule has the same II but lower register
requirements.

This paper presents Hypernode Reduction Modulo Sched-
uling (HRMS),1 a heuristic modulo scheduling approach
that tries to generate schedules with the lowest II and, from
all the possible schedules with such II, it tries to select that
with the lowest register requirements. The main part of
HRMS is the ordering strategy. The ordering phase orders

1. A preliminary version of this work appeared in [18].

the nodes before scheduling them, so that only predeces-
sors or successors of a node can be scheduled before it is
scheduled (except for recurrences), reducing the register
requirements. In addition, the ordering step gives priority
to recurrence circuits (i.e., nodes belonging to recurrences
are scheduled first), so that the II is minimized. During the
scheduling step, the nodes are scheduled as early/late as
possible if their predecessors/successors have been previ-
ously scheduled.

HRMS tries to reduce the register requirements during
the scheduling like Slack Scheduling, while Stage Schedul-
ing tries to reduce them during a postscheduling step. In
general, a postpass step has less freedom to move the nodes
leading to suboptimal schedules. However, since either
HRMS and Slack are based on heuristics, we do not discard
the use of a postpass like Stage as a complementary step for
further reducing the register requirements. In addition,
since HRMS gives priority to recurrence circuits, it can ob-
tain good schedules without requiring backtracking, as in
Slack, leading to a faster algorithm. However, backtracking
can produce better schedules if the reservation tables of the
operations are very complex. Notwithstanding, most of the
current microprocessors have simple reservation tables like
in the configurations used for the evaluation of HRMS.

The performance of HRMS is evaluated and compared
with that of a conventional approach (a top-down sched-
uler) that does not care about register pressure. For this
evaluation, we have used over a thousand loops from the
Perfect Club Benchmark Suite [4] that account for 78 per-
cent of its execution time. The results show that HRMS
achieves an optimal II for at least 97.5 percent of the loops
and its compilation time is comparable to the top-down
approach, whereas the register requirements are lower.

In addition, HRMS has been tested for a set of loops
taken from [10] and compared against two other heuristic
strategies. These two strategies are the previously men-
tioned Slack Scheduling, and FRLC [28], which is a heuris-
tic strategy that does not take into account the register re-
quirements. In addition, HRMS is compared with SPILP
[10], which is a linear programming formulation of the
problem. Because of the computing requirements of this
latter approach, only small loops are used for this compari-
son. The results indicate that HRMS obtains better sched-
ules than the other two heuristic approaches and its results
are very close to the ones produced by the optimal sched-
uler. The compilation time of HRMS is similar to the other
heuristic methods and much lower than the linear pro-
gramming approach.

The rest of this paper is organized as follows: In Section 2,
an example is used to illustrate the motivation for this
work, that is, reducing the register pressure in modulo
scheduled loops while achieving near optimal II. Section 3
describes the proposed modulo scheduling algorithm that
is called HRMS. Section 4 evaluates the performance of the
proposed approach and, finally, Section 5 states the main
conclusions of this work.
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2 OVERVIEW OF MODULO SCHEDULING AND
MOTIVATING EXAMPLE

This section includes an overview of modulo scheduling
and the motivation for the work presented in this paper.
For a more detailed discussion on modulo scheduling, refer
to [1].

2.1 Overview of Modulo Scheduling
In a software pipelined loop, the schedule for an iteration is
divided into stages so that the execution of consecutive it-
erations that are in distinct stages is overlapped. The num-
ber of stages in one iteration is termed stage count(SC). The
number of cycles per stage is II.

Fig. 1 shows the dependence graph for the running exam-
ple used along this section. In this graph, nodes represent
basic operations of the loop and edges represent values gen-
erated and consumed by these operations. For this graph,
Fig. 2a shows the execution of the six iterations of the soft-
ware pipelined loop with an II of 2 and an SC of 5. The op-
erations have been scheduled assuming a four-wide issue
machine, with general-purpose functional units (fully pipe-
lined with a latency of two cycles). The scheduling of each
iteration has been obtained using a top-down strategy that
gives priority to operations in the critical path with the addi-
tional constraint that no resource can be used more than once
at the same cycle modulo II. The figure also shows the corre-
sponding lifetimes of the values generated in each iteration.

The execution of a loop can be divided into three phases:
a ramp up phase that fills the software pipeline, a steady
state phase where the software pipeline achieves maximum
overlap of iterations, and a ramp down phase that drains
the software pipeline. The code that implements the ramp
up phase is termed the prologue. During the steady state
phase of the execution, the same pattern of operations is
executed in each stage. This is achieved by iterating on a
piece of code, termed the kernel, that corresponds to one
stage of the steady state phase. A third piece of code, called
the epilogue, is required to drain the software pipeline after
the execution of the steady state phase.

The initiation interval II between two successive itera-
tions is bounded either by loop-carried dependences in the
graph (RecMII) or by resource constraints of the architecture
(ResMII). This lower bound on the II is termed the Mini-
mum Initiation Interval (MII = max (RecMII, ResMII)). The
reader is referred to [7], [23] for an extensive dissertation on
how to calculate ResMII and RecMII.

Since the graph in Fig. 1 has no recurrence circuits, its
initiation interval is constrained only by the available re-
sources: MII = =7

4 2  (i.e., number of operations divided

by number of resources). Notice that, in the scheduling of
Fig. 2a, no dependence is violated and every functional unit
is used, at most, once at all even cycles (cycle modulo 2 = 0)
and, at most, once at all odd cycles (cycle modulo 2 = 1).

The code corresponding to the kernel of the software
pipelined loop is obtained by overlapping the different
stages that constitute the schedule of one iteration. This is
shown in Fig. 2b. The subscripts in the code indicate rela-
tive iteration distance in the original loop between opera-
tions. For instance, in this example, each iteration of the

kernel executes an instance of operation A and an instance
of operation B of the previous iteration in the initial loop.

Values used in a loop correspond either to loop-invariant
variables or to loop-variant variables. Loop-invariants are
repeatedly used but never defined during loop execution.
Loop-invariants have a single value for all the iterations of
the loop and, therefore, they require one register each, re-
gardless of the scheduling and the machine configuration.

For loop-variants, a value is generated in each iteration
of the loop and, therefore, there is a different value corre-
sponding to each iteration. Because of the nature of soft-
ware pipelining, lifetimes of values defined in an iteration
can overlap with lifetimes of values defined in subsequent
iterations. Fig. 2a shows the lifetimes for the loop-variants
corresponding to every iteration of the loop. By overlapping
the lifetimes of the different iterations, a pattern of length II
cycles that is indefinitely repeated is obtained. This pattern is
shown in Fig. 2c. This pattern indicates the number of values
that are live at any given cycle. As shown in [25], the maxi-
mum number of simultaneously live values MaxLive is an
accurate approximation of the number of register required by
the schedule.2 In this section, the register requirements of a
given schedule will be approximated by MaxLive. However,
in the experiments section, we will measure the actual regis-
ter requirements after register allocation.

Values with a lifetime greater than II pose an additional
difficulty, since new values are generated before previous
ones are used. One approach to fix this problem is to pro-
vide some form of register renaming so that successive
definitions of a value use distinct registers. Renaming can
be performed at compile time by using modulo variable
expansion [15], i.e., unrolling the kernel and renaming at
compile time the multiple definitions of each variable that
exist in the unrolled kernel. A rotating register file can be
used to solve this problem without replicating code by re-
naming different instantiations of a loop-variant at execution
time [6].

2. For an extensive discussion on the problem of allocating registers for
software-pipelined loops, refer to [25]. The strategies presented in that
paper almost always achieve the MaxLive lower bound. In particular, the
wands-only strategy using end-fit with adjacency ordering never required
more than MaxLive + 1 registers.

Fig. 1. A sample dependence graph.
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2.2 Motivating Example
In many modulo scheduling approaches, the lifetimes of
some values can be unnecessarily large. As an example,
Fig. 2a shows a top-down scheduling, and Fig. 3a a bottom-
up scheduling for the example graph of Fig. 1 and a ma-
chine with four general-purpose functional units with a
two-cycle latency.

In a top-down strategy, operations can only be scheduled
if all their predecessors have already been scheduled. Each
node is placed as early as possible in order not to delay any
possible successors. Similarly, in a bottom-up strategy, an

operation is ready for scheduling if all its successors have
already been scheduled. In this case, each node is placed as
late as possible in order not to delay possible predecessors.
In both strategies, when there are several candidates to be
scheduled, the algorithm chooses the one that is more criti-
cal in the scheduling.

In the top-down scheduling, node E is scheduled before
node F. Since E has no predecessors, it can be placed at any
cycle, but, in order not to delay any possible successor, it is
placed as early as possible. Fig. 2a shows the lifetimes of
loop variants for the top-down scheduling assuming that a
value is alive from the beginning of the producer operation

(a)

      (b) (c)

Fig. 2. (a) Software pipelined loop execution, (b) kernel, and (c) register requirements.

          (a) (b)

(c) (d)

Fig. 3. Bottom-up scheduling: (a) schedule of one iteration, (b) lifetimes of variables, (c) kernel, and (d) register requirements.
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to the beginning of the last consumer. Notice that loop vari-
ant VE has an unnecessarily large lifetime due to the early
placement of E during the scheduling.

In the bottom-up approach, E is scheduled after F, there-
fore, it is placed as late as possible reducing the lifetime of
VE (Fig. 3b). Unfortunately, C is scheduled before B and, in
order to not delay any possible predecessor, it is scheduled
as late as possible. Notice that the VB has an unnecessarily
large lifetime due to the late placement of C.

In HRMS, an operation will be ready for scheduling even
if some of its predecessors and successors have not been
scheduled. The only condition (to be guaranteed by the pre-
ordering step) is that when an operation is scheduled, the
partial schedule contains only predecessors or successors or
none of them, but not both of them (in the absence of recur-
rences). The ordering is done with the aim that all opera-
tions have a previously scheduled reference operation (ex-
cept for the first operation to be scheduled). For instance,
consider that nodes of the graph in Fig. 1 are scheduled in
the order {A, B, C, D, F, E, G}. Notice that node F will be
scheduled before nodes {E, G}, a predecessor and a succes-
sor, respectively, and that the partial scheduling will con-
tain only a predecessor (D) of F. With this scheduling order,
both C and E (the two conflicting operations in the top-
down and bottom-up strategies) have a reference operation
already scheduled when they are placed in the partial
schedule.

Fig. 4a shows the HRMS scheduling for one iteration.
Operation A will be scheduled in cycle 0. Operation B,
which depends on A, will be scheduled in cycle 2. Then, C
and, later, D are scheduled in cycle 4. At this point, opera-
tion F is scheduled as early as possible, i.e., at cycle 6 (be-
cause it depends on D), but there are no available resources
at this cycle, so it is delayed to cycle 7. Now, the scheduler
places operation E as late as possible in the scheduling be-

cause there is a successor of E previously placed in the par-
tial scheduling, thus, operation E is placed at cycle 5. And,
finally, since operation G has a predecessor previously
scheduled, it is placed as early as possible in the schedul-
ing, i.e., at cycle 9.

Fig. 4b shows the lifetimes of loop variants. Notice that
neither C nor E have been placed too late or too early be-
cause the scheduler always takes previously scheduled op-
erations as a reference point. Since F has been scheduled
before E, the scheduler has a reference operation to decide a
late start for E. Fig. 4d shows the number of live values in
the kernel (Fig. 4c) during the steady state phase of the exe-
cution of the loop. There are six live values in the first row
and five in the second. In contrast, the top-down schedule
has 10 simultaneously live values and the bottom-up
schedule has nine.

The following section describes the algorithm that orders
the nodes before scheduling and the scheduling step.

3 HYPERNODE REDUCTION MODULO SCHEDULING

The dependences of an innermost loop can be represented
by a Dependence Graph G = DG(V, E, d, l). V is the set of
vertices of the graph G, where each vertex v Œ V represents
an operation of the loop. E is the dependence edge set,
where each edge (u, v) Œ E represents a dependence be-
tween two operations u, v. Edges may correspond to any of
the following types of dependences: register dependences,
memory dependences, or control dependences. The de-
pendence distance d(u,v) is a nonnegative integer associated
with each edge (u, v) Œ E. There is a dependence of distance
d(u,v) between two nodes u and v if the execution of opera-
tion v depends on the execution of operation u at d(u,v) it-
erations before. The latency lu is a nonzero positive integer
associated with each node u Œ V and is defined as the number

    (a)   (b)

      (c) (d)

Fig. 4. HRMS scheduling: (a) schedule of one iteration, (b) lifetimes of variables, (c) kernel, and (d) register requirements.
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of cycles taken by the corresponding operation to produce a
result.

HRMS tries to minimize the register requirements of the
loop by scheduling any operation u as close as possible to
their relatives i.e., the predecessors of u, Pred(u), and the suc-
cessors of u, Succ(u). Scheduling operations in this way
shortens operand’s lifetime and, therefore, reduces the reg-
ister requirements of the loop.

To software pipeline a loop, the scheduler must handle
cyclic dependences caused by recurrence circuits. The
scheduling of the operations in a recurrence circuit must
not be stretched beyond W ¥ II, where W is the sum of the
distances in the edges that constitute the recurrence circuit.

HRMS solves these problems by splitting the scheduling
into two steps: A preordering step that orders nodes and
the actual scheduling step that schedules nodes (once at a
time) in the order given by the preordering step.

The preordering step orders the nodes of the depend-
ence graph with the goal of scheduling the loop with an II
as close as possible to MII and using the minimum number
of registers. It gives priority to recurrence circuits in order
not to stretch any recurrence circuit. It also ensures that,
when a node is scheduled, the current partial scheduling
contains only predecessors or successors of the node, but
never both (unless the node is the last node of a recurrence
circuit to be scheduled).

The ordering step assumes that the dependence graph,
G = (V, E, d, l), is connected component. If G is not a con-
nected component, it is decomposed into a set of connected
components {Gi}, each Gi is ordered separately and, finally,
the lists of nodes of all Gi are concatenated, giving a higher
priority to the Gi with a more restrictive recurrence circuit
(in terms of RecMII).

Next, the preordering step is presented. First we will as-
sume that the dependence graph has no recurrence circuits
(Section 3.1), and, in Section 3.2, we introduce modifications
in order to deal with recurrence circuits. Finally, Section 3.3
presents the scheduling step.

3.1 Preordering of Graphs without Recurrence
Circuits

To order the nodes of a graph, an initial node, that we call
Hypernode, is selected. In an iterative process, all the nodes
in the dependence graph are reduced to this Hypernode. The
reduction of a set of nodes to the Hypernode consists of: De-
leting the set of edges among the nodes of the set and the
Hypernode, replacing the edges between the rest of the
nodes and the reduced set of nodes by edges between the
rest of the nodes and the Hypernode, and, finally, deleting
the set of nodes being reduced.

The preordering step (Fig. 5) requires an initial Hypernode
and a partial list of ordered nodes. The current implementa-
tion selects the first node of the graph (i.e., the node corre-
sponding to the first operation in the program order), but
any node of the graph can be taken as the initial Hypernode.3

This node is inserted in the partial list of ordered nodes, then
the preordering algorithm sorts the rest of the nodes.

3. Preliminary experiments showed that selecting different initial nodes
produced different schedules that had approximately the same register
requirements (there were minor differences caused by resource constraints).

At each step, the predecessors and successors of the Hy-
pernode are alternatively determined. Then, the nodes that
appear in any path among the predecessors (successors) are
obtained (function Search_All_Paths).4 Once the predeces-
sors (successors) and all the paths connecting them have
been obtained, all these nodes are reduced (see function
Hypernode_Reduction in Fig. 6) to the Hypernode, and the
subgraph which contains them is topologically sorted. The
topological sort determines the partial order of predeces-
sors (successors), which is appended to the ordered list of
nodes. The predecessors are topologically sorted using the
PALA algorithm. The PALA algorithm is like an ALAP (As
Late As Possible) algorithm, but the list of ordered nodes is
inverted. The successors are topologically sorted using an
ASAP (As Soon As Possible) algorithm.

As an example, consider the dependence graph in
Fig. 7a. Next, we illustrate the ordering of the nodes of this
graph step by step.

1)�Initially, the list of ordered nodes is empty (List = {}).
We start by designating a node of the graph as the

4. The execution time of Search_All_Paths is O(iVi + iEi).

Fig. 5. Function that preorders the nodes in a dependence graph with-
out recurrence circuits.

Fig. 6. Function Hpernode_Reduction.
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Hypernode (+ in Fig. 7). Assume that A is the first node
of the graph. The resulting graph is shown in Fig. 7b.
Then, A is appended to the list of ordered nodes (List =
{A}).

2)�In the next step, the predecessors of + are selected.
Since it has no predecessors, the successors are se-
lected (i.e., the node C). Node C is reduced to +, re-
sulting in the graph of Fig. 7c, and C is added to the
list of ordered nodes (List = {A, C}).

3)�The process is repeated, selecting nodes G and H. In
the case of selecting multiple nodes, there may be
paths connecting these nodes. The algorithm looks for
the possible paths, and topologically sorts the nodes
involved. Since there are no paths connecting G and
H, they are added to the list (List = {A, C, G, H}), and
reduced to the Hypernode, resulting the graph of
Fig. 7d.

4)�Now, + has D as a predecessor, thus D is reduced,
producing the graph in Fig. 7e, and appended to the
list (List = {A, C, G, H, D}).

5)�Then, J, the successor of +, is ordered (List = {A, C, G,
H, D, J}) and reduced, producing the graph in Fig. 7f.

6)�At this point, + has two predecessors B and I, and
there is a path between B and I that contains the node E.
Therefore, B, E, and I are reduced to +, producing the
graph of Fig. 7g. Then, the subgraph that contains B, E,
and I is topologically sorted, and the partially ordered
list {I, E, B} is appended to the list of ordered nodes
(List = {A, C, G, H, D, J, I, E, B}).

7)�Finally, node F is reduced to +, producing the graph
of Fig. 7h with only the Hypernode, which is the stop
condition of the ordering algorithm.

After performing the ordering phase, the nodes will be
scheduled in the order {A, C, G, H, D, J, I, E, B, F}. Notice
that the nodes that have been ordered as predecessors (i.e.,
I, E, B, and F) will be scheduled as late as possible, while
the nodes ordered as successors will be scheduled as early
as possible.

3.2 Preordering of Graphs with Recurrence Circuits
In order not to degrade performance when there are recur-
rence circuits, the ordering step is performed giving more
priority to the recurrence circuits with higher RecMII. The
main idea is to reduce all the recurrence circuits to the Hyper-
node, while ordering their nodes. After this step, we have a
dependence graph without recurrence circuits, with an ini-
tial Hypernode and with a partial ordering of all the nodes
that were contained in recurrence circuits. Then, we order
this dependence graph as shown in Subsection 3.1.

Before presenting the ordering algorithm for recurrence
circuits, let us put forward some considerations about re-
currences. Recurrence circuits can be classified as:

•� Single recurrence circuits (Fig. 8a).
•� Recurrence circuits that share the same set of back-

ward edges (Fig. 8b). We call the set of recurrence cir-
cuits that share the same set of backward edges recur-
rence subgraph. In this way, Figs. 8a and 8b are recur-
rence subgraphs.

•� Several recurrence circuits can share some of their
nodes (Figs. 8c and 8d) but have distinct sets of back-
ward edges. In this case, we consider that these recur-
rence circuits are different recurrence subgraphs.

All recurrence circuits are identified during the calcula-
tion of RecMII. For instance, the recurrence circuits of the
graph of Fig. 8b are {A, D, E} and {A, B, C, E}. Recurrence
circuits are grouped into recurrence subgraphs (in the worst
case there may be a recurrence subgraph for each backward
edge). For instance, the recurrence circuits of Fig. 8b are
grouped into the recurrence subgraph {A, B, C, D, E}. Re-
currence subgraphs are ordered based on the highest Rec-
MII value of the recurrence circuits contained in each sub-
graph, in a decreasing order. The nodes that appear in more
than one subgraph are removed from all of them except for
the most restrictive subgraph in terms of RecMII. For in-
stance, the list of recurrence subgraphs associated with

     (a)   (b)  (c)

          (d)          (e)       (f)            (g)   (h)

Fig. 7. Example of reordering without recurrences.
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Fig. 8c {{A, C, D}, {B, C, E}} will be simplified to the list
{{A, C, D}, {B, E}}.

The algorithm that orders the nodes of a grah with re-
currence circuits (see Fig. 9) takes as input a list L of the
recurrence subgraphs ordered by decreasing values of their
RecMII. Each entry in this list is a list of the nodes traversed
by the associated recurrence subgraph. Trivial recurrence
circuits, i.e., dependences from an operation to itself, do not
affect the preordering step since they do not impose sched-
uling constraints, as the scheduler previously ensured that
II ≥ RecMII. The algorithm starts by generating the corre-
sponding subgraph for the first recurrence circuit, but
without one of the backward edges that causes the recur-
rence (we remove the backward edge with higher d(u,v)).
Therefore, the resulting subgraph has no recurrences and
can be ordered using the algorithm without recurrences
presented in Section 3.1. The whole subgraph is reduced to
the Hypernode. Then, all the nodes in any path between the
Hypernode and the next recurrence subgraph are identified
(in order to properly use the algorithm Search_All_Paths it is
required that all the backward edges causing recurrences
have been removed from the graph). After that, the graph
containing the Hypernode, the next recurrence circuit, and
all the nodes that are in paths that connect them are or-
dered, applying the algorithm without recurrence circuits,
and reduced to the Hypernode. If there is no path between
the Hypernode and the next recurrence circuit, any node of
the recurrence circuit is reduced to the Hypernode, so that
the recurrence circuit is now connected to the Hypernode.

This process is repeated until there are no more recur-
rence subgraphs in the list. At this point, all the nodes in
recurrence circuits or in paths connecting them have been
ordered and reduced to the Hypernode. Therefore, the graph
that contains the Hypernode and the remaining nodes is a
graph without recurrence circuits that can be ordered using
the algorithm presented in the previous subsection.

For instance, consider the dependence graph of Fig. 10a.
This graph has two recurrence subgraphs {A, C, D, F} and
{G, J, M}. Next, we will illustrate the reduction of the recur-
rence subgraphs:

1)�The subgraph {A, C, D, F} is the one with the highest
RecMII. Therefore, the algorithm starts by ordering it.
By isolating this subgraph and removing the back-
ward edge, we obtain the graph of Fig. 10b. After or-
dering this graph, the list of ordered nodes is (List =
{A, C, D, F}). When the graph of Fig. 10b is reduced to
the Hypernode, + in the original graph (Fig. 10a), we
obtain the dependence graph of Fig. 10c.

2)�The next step is to reduce the following recurrence
subgraph {G, J, M}. For this purpose, the algorithm
searches for all the nodes that are in all possible paths
between + and the recurrence subgraphs. Then, the
graph that contains these nodes is constructed (see
Fig. 10d). Since backward edges have been removed,
this graph has no recurrence circuits, so it can be or-
dered using the algorithm presented in the previous
section. When the graph has been ordered, the list of
nodes is appended to the previous one, resulting in
the partial list (List = {A, C, D, F, I, G, J, M}). Then, this
subgraph is reduced to the Hypernode in the graph of
Fig. 10c, producing the graph of Fig. 10e.

3)�At this point, we have a partial ordering of the nodes
belonging to recurrences, and the initial graph has been
reduced to a graph without recurrence circuits (Fig. 10e).
This graph without recurrence circuits is ordered as pre-
sented in Subsection 3.1. So, finally, the list of ordered
nodes is List = {A, C, D, F, I, G, J, M, H, E, B, L, K}.

3.3 Scheduling Step
The scheduling step places the operations in the order
given by the ordering step. The scheduling tries to schedule
the operations as close as possible to the neighbors that have
already been scheduled. When an operation is to be sched-
uled, it is scheduled in different ways depending on the
neighbors of these operations that are in the partial schedule.Fig. 9. Procedure to order the nodes in the recurrence circuits.

           (a)           (b) (c)      (d)

Fig. 8. Types of recurrences.
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•� If an operation u has only predecessors in the partial
schedule, then u is scheduled as early as possible. In this
case, the scheduler computes the Early_Start of u as:

Early Start t IIu v PSP u v v v u_ max ,= + − ×
∈ 0 5 0 5λ δ ,

where tv is the cycle where v has been scheduled, lv is
the latency of v, d(v,u) is the dependence distance from
v to u, and PSP(u) is the set of predecessors of u that
have been previously scheduled. Then, the scheduler
scans in the partial schedule for a free slot for the
node u starting at cycle Early_Startu until the cycle
Early_Startu + II - 1. Notice that, due to the modulo con-
straint, it makes no sense to scan more than II cycles.

•� If an operation u has only successors in the partial
schedule, then u is scheduled as late as possible. In
this case, the scheduler computes the Late_Start of u as:

Late Start t IIu v PSS u v u u v_ min ,= − + ×
∈ 0 5 0 5λ δ ,

where PSS(u) is the set of successors of u that have been
previously scheduled. Then, the scheduler scans in the
partial schedule for a free slot for the node u starting at
cycle Late_Startu until the cycle Late_Startu - II + 1.

•� If an operation u has predecessors and successors, then the
scheduler scans the partial schedule starting at cycle
Early_Startu until the cycle min(Late_Startu, Early_Startu +
II - 1).

•� Finally, if an operation u has neither predecessors nor
successors, the scheduler computes the Early_Start of
u as: Early_Startu = ASAPu and scans the partial
schedule for a free slot for the node u from cycle
Early_Startu to cycle Early_Startu + II - 1

If no free slots are found for a node, then the II is increased
by 1. The scheduling step is repeated with the increased II,
which will result in more opportunities for finding free slots.
An advantage of HRMS is that the nodes are ordered only
once, even if the scheduling step has to do several trials.

4 EVALUATION OF HRMS
In this section, we present some results of our experimental
study. First, the complexity and performance of HRMS are
evaluated for a benchmark suite composed of a large num-
ber of innermost DO loops in the Perfect Club [4]. We have
selected those loops that include a single basic block. Loops
with conditionals in their body have been previously con-
verted to single basic block loops using IF-conversion [2].
We have not included loops with subroutine calls or with
conditional exits. The dependence graphs have been ob-
tained using the experimental ICTINEO compiler [3]. A
total of 1,258 loops, which account for 78 percent of the total
execution time5 of the Perfect Club, have been scheduled.
For these loops, the performance of HRMS is compared
with the performance of a Top-Down scheduler. Second, we
compare HRMS with other scheduling methods proposed
in the literature using a small set of dependence graphs for
which there are previously published results [10].

In order to give an idea of the complexity of the graphs,
Table 1 characterizes the extracted loops in terms of: the
presence of conditionals and recurrences. The first column
shows the number of loops that have neither a conditional
statement nor a recurrence circuit. The second and third
columns show the number of loops that have, respectively,
conditionals and recurrences. Finally, the fourth column
shows the number of loops that have both. Table 2 charac-
terizes the loops in terms of number and type of operations,
and number and type of dependences. The 50% column
refers to the median (e.g., 50 percent of the loops have
seven or less operations) and the 90% column refers to the
90th percentile (e.g., 90 percent of the loops have 40 or less
operations). Finally, we also show the maximum number
for any loop and the sum for all loops.

5. Executed on an HP 9000/735 workstation and compiled with the +O3
flag (which performs software pipelining among other optimizations).

(a)       (b) (c)          (d)            (e)

Fig. 10. Example for Ordering_Recurrences procedure.

TABLE 1
CLASSIFICATION OF THE PERFECT CLUB LOOPS

Neither Conditional Recurrences Both Total
Number of loops 735 18 438 67 1,258
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4.1 Performance Evaluation of HRMS
We have used two machine configurations to evaluate the per-
formance of HRMS. Both configurations have two load/store
units, two adders, two multipliers, and two Div/Sqrt units.
We assume a unit latency for store instructions, a latency of
two for loads, a latency of four (configuration L4) or six
(configuration L6) for additions and multiplications, a la-
tency of 17 for divisions, and a latency of 30 for square
roots. All units are fully pipelined except the Div/Sqrt
units, which are not pipelined at all.

In order to evaluate performance, the execution time (in
cycles) of a scheduled loop has been estimated as the II of
this loop times the number of iterations this loop performs
(i.e., the number of times the body of the loop is executed).
For this purpose, the programs of the Perfect Club have
been instrumented to obtain the number of iterations of the
selected loops.

HRMS achieved II = MII for 1,227 loops, which means that
it is optimal in terms of II for at least 97.5 percent of the
loops. On average, the scheduler achieved an II = 1.01 ¥ MII.
Considering dynamic execution time, the scheduled loops
would execute at 98.4 percent of the maximum performance.

Register allocation has been performed using the wands-
only strategy and the end-fit with adjacency ordering. For
an extensive discussion of the problem of allocating regis-
ters for software-pipelined loops, refer to [25].

Fig. 11 compares the register requirements of loop-
variants for the two scheduling techniques (top-down that
does not care about register requirements and HRMS) for
the two configurations mentioned above. This figure plots
the percentage of loops that can be scheduled with a given
number of registers without spill code. On average, HRMS
requires 87 percent of the registers required by the top-
down scheduler. Notice that “top-down” produces sched-
ules with higher II and that, in general, a bigger II requires
fewer registers. Therefore, HRMS is less register demand-
ing, despite producing more aggressive schedules.

Since machines have a limited number of registers, it is
also of interest to evaluate the effect of the register require-
ments on performance and memory traffic. When a loop
requires more than the available number of registers, spill
code has to be added and the loop has to be rescheduled. In
[16], different alternatives and heuristics are proposed to
speed up the generation of spill code. Among them, we
have used the heuristic that spills the variable that maxi-
mizes the quotient between lifetime and the number of ad-
ditional loads and stores required to spill the variable; this
heuristic is the one that produces the best results.

Figs. 12 and 13 show the memory traffic and the execu-
tion time, respectively, of the loops scheduled with both
schedulers when there are infinite, 64 and 32 registers
available. Notice that, in general, HRMS requires less mem-
ory traffic than top-down when the number of registers is
limited. The difference in memory traffic requirements be-
tween both schedulers increases as the number of available
registers decreases. For instance, for configuration L6,
HRMS requires 88 percent of the traffic required by the top-
down scheduler if 64 registers are available. If only 32 reg-
isters are available, it requires 82.5 percent of the traffic re-
quired by the top-down scheduler.

In addition, assuming an ideal memory system, the
loops scheduled by HRMS execute faster than the ones
scheduled by top-down. This is because HRMS gives prior-
ity to recurrence circuits, so loops with recurrences usually
produces better results than top-down. An additional factor
that increases the performance of HRMS over top-down is
that it reduces the register requirements. For instance, for
configuration L6, scheduling the loops with HRMS pro-
duces a speed-up over top-down of 1.18 under the ideal
assumption that an infinite register file is available. The
speed-up is 1.20 if the register file has 64 registers and 1.25
if it has only 32 registers.

Notice that, for both schedulers, the most aggressive
configuration (L6) requires more registers than the L4 con-
figuration. This is because the degree of pipelining of the
functional units has an important effect on the register
pressure [20], [16]. The high register requirements of ag-
gressive configurations produces a significant degradation
of performance and memory traffic when a limited number
of registers is available [16]. For instance, the loops sched-
uled with HRMS require 6 percent more cycles to execute
for configuration L6 than for L4 if an infinite number of
registers is assumed. If only 32 registers are available, L6
requires 16 percent more cycles than L4.

4.2 Complexity of HRMS
Scheduling our testbench consumed 55 seconds in a Sparc-
10/40 workstation. This time compares to the 69 seconds
consumed by the top-Down scheduler. The breakdown of
the scheduler execution time in the different steps is shown
in Fig. 14. Notice that, in HRMS, computing the recurrence
circuits consumed only 7 percent, the preordering step con-
sumed 66 percent, and the scheduling step consumed 27
percent. Even though most of the time is spent in the pre-
ordering step, the overall time is extremely short. The extra
time lost in preordering the nodes allows for a very simple
(and fast) scheduling step. In the top-Down scheduler, the
preordering step consumed a small percentage of the time
but the scheduling step required a lot of time; when the
scheduler fails to find an schedule with a given II, the loop
has to be rescheduled again with an increased initiation
interval, and top-Down has to reschedule the loops much
more often than HRMS.

4.3 Comparison with Other Scheduling Methods
In this section, we compare HRMS with three schedulers:
an heuristic method that does not take into account register
requirements (FRLC [28]), a lifetime sensitive heuristic

TABLE 2
COMPLEXITY OF THE PERFECT CLUB LOOPS

Metric 50% 90% Max Total

Operations 7 40 376 20,318
Memory references 4 14 44 7,368
Compute operations 3 27 356 12,950

nonpipelined 0 1 15 262
Dependences 6 54 530 25,613

Intraloop 6 49 518 23,468
Loop carried 0 5 24 2,145
Conditional 0 0 95 901
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method (Slack [12]) and a linear programming approach
(SPILP [10]).

We have scheduled 24 dependence graphs for a machine
with one FP Adder, one FP Multiplier, one FP Divider, and

one Load/Store unit. We have assumed a unit latency for
add, subtract, and store instructions, a latency of two for
multiply and load, and a latency of 17 for divide.

Fig. 11. Static cumulative distribution of register requirements of loop variants.

Fig. 12. memory traffic with infinite registers, 64 registers, and 32 registers.

Fig. 13. Cycles required to execute the loops with infinite registers, 64 registers, and 32 registers.
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Table 3 compares the initiation interval II, the number of
buffers (Buf), and the total execution time of the scheduler
on a Sparc-10/40 workstation for the four scheduling
methods. The results for the other three methods have been
obtained from [10] and the dependence graphs to perform
the comparison supplied by its authors. The number of
buffers required by a schedule is defined in [10] as the sum
of the buffers required by each value in the loop. A value
requires as many buffers as the number of times the pro-
ducer instruction is issued before the issue of the last con-
sumer. In addition, stores require one buffer. In [21], it was
shown that the buffer requirements provide a very tight
upper bound on the total register requirements.

Table 4 summarizes the main conclusions of the com-
parison. The entries of the table represent the number of
loops for which the schedules obtained by HRMS are better
(II <), equal (II =), or worse (II >) than the schedules ob-
tained by the other methods in terms of the initiation inter-
val. When the initiation interval is the same, it also shows
the number of loops for which HRMS requires fewer buff-
ers (Buf <), equal number of buffers (Buf =), or more buffers
(Buf >). Notice that HRMS achieves the same performance

as the SPILP method both in terms of II and buffer require-
ments. When compared to the other methods, HRMS ob-
tains a lower II in about 33 percent of the loops. For the re-
maining 66 percent of the loops, the II is the same, but, in
many cases, HRMS requires less buffers, especially when
compared with FRLC.

Finally, Table 5 compares the total compilation time in
seconds for the four methods. Notice that HRMS is slightly
faster than the other two heuristic methods; in addition,
these methods perform noticeably worse in finding good
schedulings. On the other hand, the linear programming
method (SPILP) requires a much higher time to construct a
scheduling that turns out to have the same performance as
the scheduling produced by HRMS. In fact, most of the
time spent by SPILP is due to Livermore Loop 23, but even
without taking into account this loop, HRMS is over 40
times faster.

5 CONCLUSIONS

In this paper, we have presented Hypernode Reduction
Modulo Scheduling (HRMS), a novel and effective heuristic
technique for resource-constrained software pipelining.

Fig. 14. Time to schedule all 1,258 loops for the HRMS and top-down schedulers.

TABLE 3
COMPARISON OF HRMS SCHEDULES WITH OTHER SCHEDULING METHODS

Application HRMS SPILP Slack FRLC

Program II Buf Secs II Buf Secs II Buf Secs II Buf Secs

Loop1 1 3 0.01 1 3 0.82 1 3 0.01 2 2 0.02
Loop2 6 9 0.03 6 9 12.47 7 9 0.03 6 16 0.03
Loop3 6 4 0.01 6 4 0.72 6 4 0.02 6 4 0.02
Loop4 11 12 0.20 11 12 3.60 12 12 0.10 12 12 0.03

Spice Loop5 2 2 0.01 2 2 0.70 2 2 0.02 2 2 0.02
Loop6 2 16 0.08 2 16 7.67 3 11 0.03 17 9 0.03
Loop7 3 17 0.08 3 17 0.70 3 17 0.03 17 11 0.01
Loop8 3 6 0.02 3 6 3.15 5 5 0.03 3 8 0.02

Loop10 3 4 0.02 3 4 1.88 3 4 0.02 3 5 0.02

loop1 20 12 0.17 20 12 4.35 20 13 0.03 20 15 0.03
Doduc Loop3 20 11 0.15 20 11 1.03 20 11 0.03 20 22 0.03

Loop7 2 20 0.10 2 20 0.70 2 20 0.01 18 5 0.03

Fpppp Loop1 20 5 0.13 20 5 0.93 20 5 0.03 20 6 0.02

Loop1 3 10 0.02 3 10 1.97 5 10 0.05 4 15 0.02
Liver Loop5 3 5 0.02 3 5 0.73 3 5 0.05 3 6 0.02

Loop23 9 23 0.10 9 23 233.41 9 23 0.13 9 40 0.12

Linpack Loop1 2 5 0.02 2 5 2.62 2 5 0.02 3 4 0.02

Loop1 17 16 0.10 17 16 4.25 18 16 0.17 18 16 0.08
Loop2 6 9 0.08 6 9 2.05 7 9 0.03 17 7 0.03
Loop3 5 5 0.02 5 5 0.73 5 5 0.02 5 5 0.02

Whets. Cycle1 4 4 0.02 4 4 0.75 4 4 0.02 4 4 0.02
Cycle2 4 5 0.02 4 5 1.87 4 5 0.02 4 5 0.02
Cycle4 4 7 0.02 4 7 1.85 4 7 0.01 4 7 0.03
Cycle8 4 11 0.02 4 11 1.77 4 11 0.02 4 11 0.02
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HRMS attempts to optimize the initiation interval while
reducing the register requirements of the schedule.

HRMS works in three main steps: computation of MII,
preordering of the nodes of the dependence graph using a
priority function, and scheduling of the nodes following
this order. The ordering function ensures that, when a node
is scheduled, the partial scheduling contains at least a refer-
ence node (a predecessor or a successor), except for the
particular case of recurrences. This tends to reduce the life-
time of loop variants and, thus, reduce register require-
ments. In addition, the ordering function gives priority to
recurrence circuits in order not to penalize the initiation
interval. This ordering step, assuming resources without
very complex reservation tables, allows HRMS to generate
efficient schedules, even for recurrence intensive loops,
without requiring the use of backtracking during the
scheduling phase, which could be more time-consuming.

We provided a comprehensive evaluation of HRMS using
1,258 loops from the Perfect Club Benchmark Suite. We have
seen that HRMS generates schedules that are optimal in
terms of II for at least 97.5 percent of the loops. Although the
preordering step consumes a high percentage of the total
compilation time, the total scheduling time is smaller than
the time required by a conventional top-down scheduler. In
addition, HRMS provides a significant performance advan-
tage over a top-down scheduler when there is a limited
number of registers. This better performance comes from a
reduction of the execution time and the memory traffic (due
to spill code) of the software pipelined execution.

We have also compared our proposal with three other
methods: the SPILP integer programming formulation,
Slack Scheduling, and FRLC Scheduling. Our schedules
exhibit significant improvement in performance in terms of
initiation interval and buffer requirements compared to
FRLC, and a significant improvement in the initiation in-
terval when compared to Slack lifetime sensitive heuristic.
We obtained similar results to SPILP, which is an integer
linear programming approach that obtains optimal solu-
tions, but has a prohibitive compilation time for real loops.
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