279 research outputs found

    Rapid simulation of spatial epidemics : a spectral method

    Get PDF
    Spatial structure and hence the spatial position of host populations plays a vital role in the spread of infection. In the majority of situations, it is only possible to predict the spatial spread of infection using simulation models, which can be computationally demanding especially for large population sizes. Here we develop an approximation method that vastly reduces this computational burden. We assume that the transmission rates between individuals or sub-populations are determined by a spatial transmission kernel. This kernel is assumed to be isotropic, such that the transmission rate is simply a function of the distance between susceptible and infectious individuals; as such this provides the ideal mechanism for modelling localised transmission in a spatial environment. We show that the spatial force of infection acting on all susceptibles can be represented as a spatial convolution between the transmission kernel and a spatially extended ‘image’ of the infection state. This representation allows the rapid calculation of stochastic rates of infection using fast-Fourier transform (FFT) routines, which greatly improves the computational efficiency of spatial simulations. We demonstrate the efficiency and accuracy of this fast spectral rate recalculation (FSR) method with two examples: an idealised scenario simulating an SIR-type epidemic outbreak amongst N habitats distributed across a two-dimensional plane; the spread of infection between US cattle farms, illustrating that the FSR method makes continental-scale outbreak forecasting feasible with desktop processing power. The latter model demonstrates which areas of the US are at consistently high risk for cattle-infections, although predictions of epidemic size are highly dependent on assumptions about the tail of the transmission kernel

    Rapid simulation of spatial epidemics : a spectral method

    Get PDF
    Spatial structure and hence the spatial position of host populations plays a vital role in the spread of infection. In the majority of situations, it is only possible to predict the spatial spread of infection using simulation models, which can be computationally demanding especially for large population sizes. Here we develop an approximation method that vastly reduces this computational burden. We assume that the transmission rates between individuals or sub-populations are determined by a spatial transmission kernel. This kernel is assumed to be isotropic, such that the transmission rate is simply a function of the distance between susceptible and infectious individuals; as such this provides the ideal mechanism for modelling localised transmission in a spatial environment. We show that the spatial force of infection acting on all susceptibles can be represented as a spatial convolution between the transmission kernel and a spatially extended ‘image’ of the infection state. This representation allows the rapid calculation of stochastic rates of infection using fast-Fourier transform (FFT) routines, which greatly improves the computational efficiency of spatial simulations. We demonstrate the efficiency and accuracy of this fast spectral rate recalculation (FSR) method with two examples: an idealised scenario simulating an SIR-type epidemic outbreak amongst N habitats distributed across a two-dimensional plane; the spread of infection between US cattle farms, illustrating that the FSR method makes continental-scale outbreak forecasting feasible with desktop processing power. The latter model demonstrates which areas of the US are at consistently high risk for cattle-infections, although predictions of epidemic size are highly dependent on assumptions about the tail of the transmission kernel

    Cerebral F18 -FDG PET CT in Children: Patterns during Normal Childhood and Clinical Application of Statistical Parametric Mapping

    Get PDF
    The first aim was to recruit and analyse a high quality dataset of cerebral FDG PET CT scans in neurologically normal children. Using qualitative, semi-quantitative and statistical parametric mapping (SPM) techniques, the results showed that a pattern of FDG uptake similar to adults does not occur by one year of age as was previously believed, but the regional FDG uptake changes throughout childhood driven by differing age related regional rates of increasing FDG uptake. The second aim was to use this normal dataset in the clinical analysis of cerebral FDG PET CT scans in children with epilepsy and Neurofibromatosis type 1 (NF1). The normal dataset was validated for single-subject-versus-group SPM analysis and was highly specific for identifying the epileptogenic focus likely to result in a good post-operative outcome in children with epilepsy. Qualitative, semi-quantitative and group-versus-group SPM analyses were applied to FDG PET CT scans in children with NF1. The results showed reduced metabolism in the thalami and medial temporal lobes compared to neurologically normal children. This thesis has produced novel findings that advance the understanding of childhood brain development and has developed SPM techniques that can be applied to cerebral FDG PET CT scans in children with neurological disorders

    Ultrasound Tomography for control of Batch Crystallization

    Get PDF

    Rapid simulation of spatial epidemics: A spectral method

    Get PDF
    Spatial structure and hence the spatial position of host populations plays a vital role in the spread of infection. In the majority of situations, it is only possible to predict the spatial spread of infection using simulation models, which can be computationally demanding especially for large population sizes. Here we develop an approximation method that vastly reduces this computational burden. We assume that the transmission rates between individuals or sub-populations are determined by a spatial transmission kernel. This kernel is assumed to be isotropic, such that the transmission rate is simply a function of the distance between susceptible and infectious individuals; as such this provides the ideal mechanism for modelling localised transmission in a spatial environment. We show that the spatial force of infection acting on all susceptibles can be represented as a spatial convolution between the transmission kernel and a spatially extended ‘image’ of the infection state. This representation allows the rapid calculation of stochastic rates of infection using fast-Fourier transform (FFT) routines, which greatly improves the computational efficiency of spatial simulations. We demonstrate the efficiency and accuracy of this fast spectral rate recalculation (FSR) method with two examples: an idealised scenario simulating an SIR-type epidemic outbreak amongst N habitats distributed across a two-dimensional plane; the spread of infection between US cattle farms, illustrating that the FSR method makes continental-scale outbreak forecasting feasible with desktop processing power. The latter model demonstrates which areas of the US are at consistently high risk for cattle-infections, although predictions of epidemic size are highly dependent on assumptions about the tail of the transmission kernel

    Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation

    Get PDF
    Whether functional magnetic resonance imaging (fMRI) allows the identification of neural drivers remains an open question of particular importance to refine physiological and neuropsychological models of the brain, and/or to understand neurophysiopathology. Here, in a rat model of absence epilepsy showing spontaneous spike-and-wave discharges originating from the first somatosensory cortex (S1BF), we performed simultaneous electroencephalographic (EEG) and fMRI measurements, and subsequent intracerebral EEG (iEEG) recordings in regions strongly activated in fMRI (S1BF, thalamus, and striatum). fMRI connectivity was determined from fMRI time series directly and from hidden state variables using a measure of Granger causality and Dynamic Causal Modelling that relates synaptic activity to fMRI. fMRI connectivity was compared to directed functional coupling estimated from iEEG using asymmetry in generalised synchronisation metrics. The neural driver of spike-and-wave discharges was estimated in S1BF from iEEG, and from fMRI only when hemodynamic effects were explicitly removed. Functional connectivity analysis applied directly on fMRI signals failed because hemodynamics varied between regions, rendering temporal precedence irrelevant. This paper provides the first experimental substantiation of the theoretical possibility to improve interregional coupling estimation from hidden neural states of fMRI. As such, it has important implications for future studies on brain connectivity using functional neuroimaging

    Modeling and simulation of the electric activity of the heart using graphic processing units

    Get PDF
    Mathematical modelling and simulation of the electric activity of the heart (cardiac electrophysiology) offers and ideal framework to combine clinical and experimental data in order to help understanding the underlying mechanisms behind the observed respond under physiological and pathological conditions. In this regard, solving the electric activity of the heart possess a big challenge, not only because of the structural complexities inherent to the heart tissue, but also because of the complex electric behaviour of the cardiac cells. The multi- scale nature of the electrophysiology problem makes difficult its numerical solution, requiring temporal and spatial resolutions of 0.1 ms and 0.2 mm respectively for accurate simulations, leading to models with millions degrees of freedom that need to be solved for thousand time steps. Solution of this problem requires the use of algorithms with higher level of parallelism in multi-core platforms. In this regard the newer programmable graphic processing units (GPU) has become a valid alternative due to their tremendous computational horsepower. This thesis develops around the implementation of an electrophysiology simulation software entirely developed in Compute Unified Device Architecture (CUDA) for GPU computing. The software implements fully explicit and semi-implicit solvers for the monodomain model, using operator splitting and the finite element method for space discretization. Performance is compared with classical multi-core MPI based solvers operating on dedicated high-performance computer clusters. Results obtained with the GPU based solver show enormous potential for this technology with accelerations over 50× for three-dimensional problems when using an implicit scheme for the parabolic equation, whereas accelerations reach values up to 100× for the explicit implementation. The implemented solver has been applied to study pro-arrhythmic mechanisms during acute ischemia. In particular, we investigate on how hyperkalemia affects the vulnerability window to reentry and the reentry patterns in the heterogeneous substrate caused by acute regional ischemia using an anatomically and biophysically detailed human biventricular model. A three dimensional geometrically and anatomically accurate regionally ischemic human heart model was created. The ischemic region was located in the inferolateral and posterior side of the left ventricle mimicking the occlusion of the circumflex artery, and the presence of a washed-out zone not affected by ischemia at the endocardium has been incorporated. Realistic heterogeneity and fi er anisotropy has also been considered in the model. A highly electrophysiological detailed action potential model for human has been adapted to make it suitable for modeling ischemic conditions (hyperkalemia, hipoxia, and acidic conditions) by introducing a formulation of the ATP-sensitive K+ current. The model predicts the generation of sustained re-entrant activity in the form single and double circus around a blocked area within the ischemic zone for K+ concentrations bellow 9mM, with the reentrant activity associated with ventricular tachycardia in all cases. Results suggest the washed-out zone as a potential pro-arrhythmic substrate factor helping on establishing sustained ventricular tachycardia.Colli-Franzone P, Pavarino L. A parallel solver for reaction-diffusion systems in computational electrocardiology, Math. Models Methods Appl. Sci. 14 (06):883-911, 2004.Colli-Franzone P, Deu hard P, Erdmann B, Lang J, Pavarino L F. Adaptivity in space and time for reaction-diffusion systems in electrocardiology, SIAM J. Sci. Comput. 28 (3):942-962, 2006.Ferrero J M(Jr), Saiz J, Ferrero J M, Thakor N V. Simulation of action potentials from metabolically impaired cardiac myocytes: Role of atp-sensitive K+ current. Circ Res, 79(2):208-221, 1996.Ferrero J M (Jr), Trenor B. Rodriguez B, Saiz J. Electrical acticvity and reentry during acute regional myocardial ischemia: Insights from simulations.Int J Bif Chaos, 13:3703-3715, 2003.Heidenreich E, Ferrero J M, Doblare M, Rodriguez J F. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology, Ann. Biomed. Eng. 38 (7):2331-2345, 2010.Janse M J, Kleber A G. Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circ. Res. 49:1069-1081, 1981.ten Tusscher K HWJ, Panlov A V. Alternans and spiral breakup in a human ventricular tissue model. Am. J.Physiol. Heart Circ. Physiol. 291(3):1088-1100, 2006.<br /

    Dynamic models of brain imaging data and their Bayesian inversion

    Get PDF
    This work is about understanding the dynamics of neuronal systems, in particular with respect to brain connectivity. It addresses complex neuronal systems by looking at neuronal interactions and their causal relations. These systems are characterized using a generic approach to dynamical system analysis of brain signals - dynamic causal modelling (DCM). DCM is a technique for inferring directed connectivity among brain regions, which distinguishes between a neuronal and an observation level. DCM is a natural extension of the convolution models used in the standard analysis of neuroimaging data. This thesis develops biologically constrained and plausible models, informed by anatomic and physiological principles. Within this framework, it uses mathematical formalisms of neural mass, mean-field and ensemble dynamic causal models as generative models for observed neuronal activity. These models allow for the evaluation of intrinsic neuronal connections and high-order statistics of neuronal states, using Bayesian estimation and inference. Critically it employs Bayesian model selection (BMS) to discover the best among several equally plausible models. In the first part of this thesis, a two-state DCM for functional magnetic resonance imaging (fMRI) is described, where each region can model selective changes in both extrinsic and intrinsic connectivity. The second part is concerned with how the sigmoid activation function of neural-mass models (NMM) can be understood in terms of the variance or dispersion of neuronal states. The third part presents a mean-field model (MFM) for neuronal dynamics as observed with magneto- and electroencephalographic data (M/EEG). In the final part, the MFM is used as a generative model in a DCM for M/EEG and compared to the NMM using Bayesian model selection

    Pattern recognition and machine learning for magnetic resonance images with kernel methods

    Get PDF
    The aim of this thesis is to apply a particular category of machine learning and pattern recognition algorithms, namely the kernel methods, to both functional and anatomical magnetic resonance images (MRI). This work specifically focused on supervised learning methods. Both methodological and practical aspects are described in this thesis. Kernel methods have the computational advantage for high dimensional data, therefore they are idea for imaging data. The procedures can be broadly divided into two components: the construction of the kernels and the actual kernel algorithms themselves. Pre-processed functional or anatomical images can be computed into a linear kernel or a non-linear kernel. We introduce both kernel regression and kernel classification algorithms in two main categories: probabilistic methods and non-probabilistic methods. For practical applications, kernel classification methods were applied to decode the cognitive or sensory states of the subject from the fMRI signal and were also applied to discriminate patients with neurological diseases from normal people using anatomical MRI. Kernel regression methods were used to predict the regressors in the design of fMRI experiments, and clinical ratings from the anatomical scans
    • …
    corecore