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Abstract 

This work is about understanding the dynamics of neuronal systems, in particular with 

respect to brain connectivity. It addresses complex neuronal systems by looking at 

neuronal interactions and their causal relations. These systems are characterized using 

a generic approach to dynamical system analysis of brain signals - dynamic causal 

modelling (DCM). DCM is a technique for inferring directed connectivity among 

brain regions, which distinguishes between a neuronal and an observation level. DCM 

is a natural extension of the convolution models used in the standard analysis of 

neuroimaging data. This thesis develops biologically constrained and plausible 

models, informed by anatomic and physiological principles. Within this framework, it 

uses mathematical formalisms of neural mass, mean-field and ensemble dynamic 

causal models as generative models for observed neuronal activity. These models 

allow for the evaluation of intrinsic neuronal connections and high-order statistics of 

neuronal states, using Bayesian estimation and inference. Critically it employs 

Bayesian model selection (BMS) to discover the best among several equally plausible 

models. In the first part of this thesis, a two-state DCM for functional magnetic 

resonance imaging (fMRI) is described, where each region can model selective 

changes in both extrinsic and intrinsic connectivity. The second part is concerned with 

how the sigmoid activation function of neural-mass models (NMM) can be 

understood in terms of the variance or dispersion of neuronal states. The third part 

presents a mean-field model (MFM) for neuronal dynamics as observed with 

magneto- and electroencephalographic data (M/EEG). In the final part, the MFM is 

used as a generative model in a DCM for M/EEG and compared to the NMM using 

Bayesian model selection. 
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Outline and aims of this thesis 

In the scientific study of the nervous system, one finds disciplines as diverse as 

cognitive and neuro-psychology, computer science, statistics, physics, philosophy, 

and medicine. The arrival of computers as tools for dealing with complex 

electrophysiological, molecular and image datasets in the 1970s has been followed by 

the increasing use of computer modeling and computer simulations of many brain 

functions.  

The principal area of investigation in this work concerns the interface between 

imaging neuroscience and theoretical neurobiology. Mathematical techniques are 

developed to characterise brain organisation. This involves creating models of how 

the brain is wired and how it responds in different contexts. These models are used to 

interpret measured brain responses using brain imaging and electromagnetic brain 

signals.  

Investigating the involvement of brain regions in various cognitive and perceptual 

tasks has become increasingly common in neuroimaging studies. Functional magnetic 

resonance imaging (fMRI) studies are especially popular, due to their non-invasive 

nature and high spatial resolution, likewise, electroencephalography (EEG) and 

magnetoencephalography (MEG) are popular, due to their non-invasive nature and 

high temporal resolution. Advances in data analysis and modelling make possible the 

use of these neuronal data to ask not only which brain regions are involved in these 

tasks, but also how they communicate with one another. 

There is a broad consensus in neuroscience that mathematical system models are 

extremely helpful in neuroscience, for a mechanistic understanding of neural systems. 

Models of effective connectivity, i.e. the causal influences that system elements exert 

over another, are essential for studying the functional integration of neuronal 

populations and for understanding the mechanisms that underlie neuronal dynamics 

(Friston, 2002a; Horwitz et al., 1999).  DCM is currently probably the most advanced 

and general framework for inferring processes and mechanisms at the neuronal level 

from measurements of functional neuroimaging data, including fMRI (Friston et al., 

2003), EEG/MEG (David et al., 2006a) and local field potentials (Moran et al., 2007). 
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In contrast to other models of effective connectivity, DCM does not operate on the 

measured time-series directly. Instead, it combines a model of the hidden neuronal 

dynamics with a forward model (or generative model) that translates neuronal states 

into predicted measurements of how observed data were caused. 

DCM can be used to infer whether neuronal functional coupling is modulated by 

experimental manipulations, like task demands, stimulus properties, learning, 

attention, drugs, etc… The coupling amongst neuronal populations changes as a 

function of processing demands (McIntosh, 2000; Stephan, 2004). We hope that in the 

next years, the generic framework of DCM and related developments, will contribute 

to a more mechanistic understanding of brain function; to help understand the 

mechanisms of drugs and to develop models that can serve as diagnostic tools for 

diseases linked to abnormalities of connectivity and synaptic plasticity, e.g. 

Schizophrenia and Parkinson. Another possibility is to explore its utility as a 

diagnostic tool. The obvious extension of DCM is in terms of its neurophysiological 

plausibility. Thus, the aim of this thesis is to endow DCMs with a greater biological 

realism informed by anatomical and physiological constrains. The first part of the 

work described in this thesis focuses on excitatory-inhibitory DCM models for fMRI 

time series. In the second part, specific questions are formulated and addressed 

concerning the role of variance in DCM for ERPs. Bayesian model selection (BMS) is 

the key for selecting among competing models and hypotheses.  

 

Research within this work has been mostly concerned with the dynamical system 

aspect of the neuronal interactions among brain areas, within the DCM framework. 

This is done by using previously developed procedures in Bayesian estimation and 

inference for dynamic causal models and adapting those methods to the new models 

developed here. The ‘creative’ work in this thesis is the development of novel 

generative models and mechanisms to describe key aspects of functional 

neuroimaging data. This thesis comprises seven chapters and a number of appendices. 

The first two chapters introduce the domain of neural imaging models and the 

background framework of DCM. Chapters 3-6 contain the main results, which are 

concluded by overall discussion on Chapter 7. This thesis is structured as follows: 
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Chapter 1 introduces functional neuroimaging and neuronal structure–function 

relationships. It goes through the two main principles of functional brain organisation: 

functional segregation and integration. It shows how functional integration is usually 

analysed in terms of functional or effective connectivity models. While functional 

connectivity describes statistical dependencies between data, effective connectivity 

rests on a mechanistic model of the causal effects that generated the data.  

 

Chapter 2 presents a short review on Dynamical Causal Modelling as a technique for 

determining the effective connectivity in neural systems. It considers neuronal causal 

models, then introduces the bilinear models for fMRI time series and neural mass 

model (NMM) for ERPs. As measured with EEG/MEG. Finally, it presents the basis 

of Bayesian model selection. 

 

Chapter 3 endows dynamic causal models (DCM) for fMRI time series with a greater 

biological realism. It presents the theory, methods and implementation of an extension 

of dynamic causal modelling to include, region specific excitatory and inhibitory 

neural populations in networks of coupled neural masses. Critically, the extension 

allows us to place positivity constraints on the connectivity such that the model 

conforms to a more realistic organisation of cortical hierarchies, whose extrinsic 

connections are excitatory (glutamatergic). Consequently, we can model changes in 

both extrinsic and intrinsic connectivity. 

 

Chapter 4 concerns the effect of dispersion (variance) of neuronal states on the 

cortical responses to sensory inputs. It provides a link between the sigmoid activation 

function and the variance of neuronal membrane depolarization, through a cumulative 

density function within a population. This Chapter lays the ground-work of the 

extension in the following two Chapters whereby the variance itself is a time-

dependent variable and hence dynamically coupled to the mean. This provides a 

crucial link between neural mass models and more general neural density models. 

 

Chapter 5 elucidates and generalizes the connections between moment equations 

(mean, variance, etc) and the full ensemble description for neural states. It develops a 

generic mean-field treatment of neuronal dynamics, which is based on a Laplace 
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approximation to the ensemble density and is formulated in terms of equations of 

motion for the sufficient statistics (i.e., the mean or mode and the variance or 

dispersion) of the ensemble density. This approach reduces to a neural-mass model 

when the second-order statistics (variance) of neuronal states are ignored. The 

interesting key behaviour is the coupling between the mean and variance of the 

ensemble, which is lost in the neural-mass approximations. Results of the mean-field 

method are compared numerically to the neural-mass method, in which only the mean 

is included. 

 

Chapter 6 describes and evaluates a DCM based on density-dynamics instead of 

neural-mass models. It uses the Laplace and neural mass approximations as generative 

models of electrophysiological responses to sensory input. The role of higher 

moments is assessed empirically in a Bayesian model selection framework and the 

evidence for a role of the variance in shaping population dynamics is considered. 

 

Chapter 7 provides a general discussion and the conclusions of this work and 

indicates directions for exciting future research.  

 

The references are preceded by appendices containing relevant scientific material 

(Appendices A, F) and technical details (B, C, D). 

 



 
 

 
 

CHAPTER 1 

INTRODUCTION: MODELS IN NEUROIMAGING 

The aim of this Chapter is to introduce the key models used in imaging neuroscience 

and to see how they relate to each other. The Chapter begins by introducing functional 

specialization and integration concepts, and anatomical models of functional brain 

architectures, which motivate some of the fundaments in neuroimaging. It briefly goes 

through some basic statistical models used for making classical and Bayesian 

inferences about where neuronal responses are expressed. By incorporating 

biophysical constraints, these basic models can be finessed and, in a dynamic setting, 

rendered causal. This allows us to infer how interactions among brain regions are 

mediated. Brain responses models are briefly reviewed, starting with the general 

linear model (GLM) of functional magnetic resonance imaging (fMRI). This model is 

successively refined until we arrive at effective connectivity models, like DCM, 

which will be the focus of next Chapter. Most of this material is based on work from 

my supervisor, Karl Friston. 

 

1.1 Functional Imaging 

Functional neuronal imaging studies human brain function based on analysis of data 

acquired using brain imaging modalities such as Electroencephalography (EEG), 

Magnetoencephalography (MEG), functional Magnetic Resonance Imaging (fMRI), 

Positron Emission Tomography (PET) or Optical Imaging. The aim is to understand 

the brain mechanics at multiple spatial and temporal scales, in terms of its physiology, 

functional architecture and dynamics. The framework for these studies includes 

classical techniques from neuroanatomy, neurophysiology, and the cognitive 

neurosciences, as well as perspectives from computational and theoretical 

neuroscience and physics. 

Modern functional imaging has two main advantages over the multi/single-unit 

recordings used to study the electrophysiology of neurons. The first is that it is 
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generally non-invasive, and is therefore applicable routinely in humans. This allows 

for the study of unique human attributes such as language. The second is that it can 

acquire simultaneous activity from the whole brain. Compared to single or multiple 

neuron measurements, these large-scale brain observations at a systems level provide 

a different yet complementary perspective on neural coding (see e.g., functional 

integration, below). A disadvantage, however, is that functional imaging provides 

only an indirect measure of the quantities of primary interest to neuroscientists e.g., 

firing rates and membrane potentials. There is current research which aim at bridging 

this gap using a combination of experimental and mathematical modelling approaches 

(Bertrand and Tallon-Baudry, 2000; Foster et al., 2008; Shulman et al., 2002).  

 

1.1.1 Functional Segregation, Specialization and Integration 

From a historical perspective, the distinction between functional specialisation and 

functional integration relates to the dialectic between localisationism and 

connectionism, which dominated thinking about brain function in the nineteenth 

century. Since the formulation of phrenology by Franz Gall (around 1800), who 

postulated fixed one-to-one relations between particular parts of the brain and specific 

mental attributes, the identification of a particular brain region with a specific function 

has become a central theme in neuroscience. During the following decades, lesion and 

electrical stimulation paradigms were developed to test whether functions could 

indeed be localised in animal models.  

In 1881, Friedrich Goltz, although accepting the results of electrical stimulation in 

dog and monkey cortex, held a unitary view of brain function. He considered that the 

excitation method was inconclusive, in that the movements elicited might have 

originated in related pathways, or current could have spread to distant centres (Phillips 

et al., 1984). In short, the excitation method could not be used to infer functional 

localisation because localisationism discounted interactions, or functional integration 

among different brain areas. Though, only some years later, observations on patients 

with brain lesions (Absher, 1993) led to the concept of disconnection syndromes and 

the refutation of localisationism as a complete or sufficient explanation of cortical 

organisation.  
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Functional localisation implies that a function can be localised in a cortical area, 

whereas specialisation suggests that a cortical area is specialised for some aspects of 

perceptual or motor processing, and that this specialisation is anatomically segregated 

within the cortex. The cortical infrastructure supporting a single function may then 

involve many specialised areas whose union is mediated by the functional integration 

among them. In this view, functional specialisation is only meaningful in the context 

of functional integration and vice versa.  

 

Functional specialization Functional integrationFunctional specialization Functional integration

 

Figure 1.1: Schematic of the principles of brain organization. Functional 

specialization (left) refers to the existence of specialized neurons and brain areas, 

organized into distinct neuronal populations and grouped together to form segregated 

cortical areas. Functional integration (right) refers to interactions between distant 

neuronal units or networks from different parts of the brain. The interplay of 

segregation and integration in brain networks generates patterns of high complexity, 

which enable the emergence of coherent cognitive and behavioural states. Adapted 

from (Varela et al., 2001). 

 

1.1.2 Models of functional specialization of regionally specific responses 

Functional mapping studies are usually analysed with some form of statistical 

parametric mapping to test hypotheses about regionally specific effects (Friston et al., 

1991). Statistical parametric mapping (SPM) is a voxel-based approach, employing 

classical statistics and topological inference, to make comments about regionally 
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specific responses to experimental factors. PET or fMRI data are first spatially 

processed so that they conform to a known anatomical space, in which responses are 

characterized statistically; typically using the General Linear Model (GLM) (Friston, 

1995a).  

For fMRI data the GLM embodies a convolution model of the haemodynamic 

response (Boynton et al., 1996; Friston, 1994). This accounts for the fact that BOLD 

signals are a delayed and dispersed version of the neuronal response. GLMs are fitted 

at each voxel and inferences are made about which parts of the brain are active, in a 

statistical sense. To accommodate the spatial nature of the imaging data (and account 

for the multiple statistical comparisons made) SPM techniques make use of Random 

Field Theory (RFT) (Worsley et al., 1996), and/or other statistical procedures, e.g., 

False Discovery Rate (Genovese et al., 2002).  

There is also a Bayesian alternative to classical inference with SPMs, which looks at 

conditional inferences about an effect, given the data, as opposed to classical 

inferences about the data, given the effect is zero. Bayesian inferences about effects 

that are continuous in space use Posterior Probability Maps (PPMs) (Friston et al., 

2002). Although not as widely used as SPMs, PPMs are potentially very useful, not 

least because they do not have to contend with the multiple-comparisons problem 

induced by classical inference (Berry and Hochberg, 1999).  

Alternatively, MEG or EEG data can be analyzed to furnish a crude spatial mapping 

of brain function. Functions can, however, be more accurately localized using source 

reconstruction methods (Baillet et al., 2001). This entails specifying a forward model 

describing how a current source in the brain propagates to become an MEG or EEG 

measurement, using Maxwell's equations. These models are then inverted using 

statistical inference. Data from sensory systems are often analyzed using an averaging 

procedure. The data immediately following a sensory event, e.g., hearing an auditory 

tone, are averaged over multiple events to produce an Event Related Potential (ERP). 

Components of the ERP can then be localized to different parts of the brain. Other 

cognitive components, however, are not easily isolated using this ERP approach. For 

these, a time-frequency characterization may be more appropriate (Tallon-Baudry and 
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Bertrand, 1999). See also (Makeig et al., 2002) for a critique of the averaging 

procedure.  

The SPM approach can also be used with structural data, acquired using structural 

MRI, to find brain regions containing a higher gray matter density. This is known as 

Voxel-Based Morphometry (VBM) (Ashburner and Friston, 2000) and has been used, 

for example, to show that the posterior hippocampus, engaged by spatial navigation, 

is enlarged in taxi drivers (Maguire et al., 2000).  

 

1.1.3 Anatomical connectivity 

The cortex is a complex system, characterized by its dynamics and architecture, which 

underlie many functions such as action, perception, learning, language, and cognition. 

Anatomical or structural connectivity refers to the brain network design of physical 

connections linking sets of neuronal elements, and its associated structural 

biophysical attributes such as synaptic strength or effectiveness. 

Neural connectivity patterns have long attracted the attention of neuroanatomists 

(Brodmann, 1909; Cajal, 1909; Swanson, 2003) and play crucial roles in determining 

the (functional) properties of neurons and neuronal systems. One key aspect of the 

complexity of the nervous system is its intricate morphology, especially the multi-

interconnectivity of its neuronal processing elements. The anatomical connections are 

relatively stable for short time scales, such as seconds to minutes (Linden et al., 2003; 

Todd and Marois, 2004). Structural connectivity patterns for longer time scales (hours 

to days) are possible to be subject to significant morphological change and plasticity 

(Draganski et al., 2006; Trachtenberg et al., 2002).  

Invasive tracing studies are capable of collectively demonstrating direct axonal 

connections. By contrast, diffusion weighted imaging techniques, such as DTI, are 

useful as whole brain in vivo markers of fibre tracts. For example, DTI has been used 

to identify three regions of human parietal cortex based on their connectivity patterns 

with other brain areas (Rushworth et al., 2006). Moreover, structural imaging can also 

be used clinically. The best established application is the use of MRI for pre-surgical 
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mapping to localize tissue within or near regions intended for neurosurgical resection 

(Matthews et al., 2006).  

One could ask the rather provocative question: why does one need to know any 

anatomy? Would it be acceptable to simply infer the presence of an anatomical 

connection from the functional characteristics of a system? Actually, some knowledge 

of anatomy is important to define the “connectivity space”, thereby providing a 

plausible biological framework for theories and inferences about neural interactions 

when analysing functional neuroimaging data and developing computer simulations. 

Brain connectivity can be described at different levels or scales. At a microscale, 

which includes individual synaptic connections that link individual neurons, at a 

mesoscale where networks connect neuronal populations, at a macroscale where brain 

regions are linked by fibre pathways. Each level of description relates to specific 

neuroscience data, from single-unit recordings, through local field potentials to 

functional magnetic resonance imaging (fMRI), electroencephalogram (EEG), and 

magnetoencephalogram (MEG). It is likely that anatomical variability is one of the 

main sources for functional variability, expressed in neural dynamics and behavioural 

performance.  

Another question which could be raised is: what measurements of anatomical 

connectivity are most useful to the study of how the brain works? Knowing if there 

are direct connections between two neurons or cortical areas is clearly important, but 

a complete description of the connections includes information such as the receptor 

subtypes at synapses (e.g. AMPA vs. NMDA), the ratio of inhibitory to excitatory 

interneurons, the number of connections and their physiological impact (modulatory 

top-down versus driving bottom-up inputs). At this point the boundary between 

anatomy and function becomes blurred. For example, it is almost impossible to 

distinguish among macaque V2-5 cortical areas using anatomical criteria alone, so 

these regions might be better classified if they were divided according to their 

responses to physiological stimuli rather than their morphology (Kisvárday, 1996). 
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1.2 Models of Functional Integration 

Imaging neuroscience has firmly established functional specialisation as a principle of 

brain organisation in man. However, the integration of specialised areas has proven 

more difficult to assess. In ‘functional integration’ models are used to describe how 

different brain areas interact. A classic example is the use of models to find increased 

connectivity between dorsal and ventral visual streams after subjects learn object-

place associations (Lerner et al., 2002; Ungerleider and Haxby, 1994). In fact, a wide 

range of statistical techniques are used to measure inter-regional connectivity. Both 

unsupervised (e.g., Independent Component Analysis, ICA; Brown et al., 2001) and 

supervised techniques (e.g., support vector machine, SVM; (Mourao-Miranda et al., 

2005)) are used. Other models seek to directly measure "causal" connectivity based on 

static, statistical constraints (e.g., Structural Equation Modelling, SEM; (McIntosh 

and Gonzalez-Lima, 1994)) or dynamic, through more bio-physically motivated 

assumptions (e.g., Dynamic Causal Modelling, DCM; (Friston et al., 2003)). A 

challenge for functional integration models is to bridge the gap between the large-

scale, statistical models of the whole brain, and the small number of highly 

constrained spatial regions needed to be able to apply SEM and/or DCM.  

Experimentally, one could also look at the combination of transcranial magnetic 

stimulation (TMS) with Neuroimaging, which allows the use of localized 

perturbations of brain networks while they are engaged in the performance of specific 

tasks (Massimini et al., 2005). The theory of directed graphs can also be applied to 

analysis of structural (fibre pathways), functional (correlations) and effective 

(information flow) brain connectivity at all levels (e.g., (Brandes, 2005; Wen and 

Chklovskii, 2005)).  

 

1.2.1 Functional Connectivity 

Characterising brain activity in terms of functional specialisation does not reveal 

anything about how different brain regions communicate with each other. Functional 

connectivity, in contrast, is defined as statistical dependencies or correlations among 
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remote neurophysiological events. Statistical dependence may be estimated by 

measuring correlation or covariance, spectral coherence or phase-locking.  

(Friston et al., 1993) introduced a voxel-based principal component analysis (PCA) of 

neuroimaging time-series to characterise distributed brain systems implicated in 

sensorimotor, perceptual or cognitive processes. These distributed systems are 

identified with principal components or eigenimages that correspond to spatial modes 

of coherent brain activity. This approach represents one of the simplest multivariate 

characterisations of functional neuroimaging time-series and falls into the class of 

exploratory analyses. Principal component or eigenimage analysis generally uses 

singular value decomposition (SVD) to identify a set of orthogonal spatial modes that 

capture the greatest amount of variance expressed over time. As such the ensuing 

modes embody the most prominent aspects of the variance-covariance structure of a 

given time-series. Noting that covariance among brain regions is equivalent to 

functional connectivity renders eigenimage analysis particularly interesting because it 

was among the first ways of addressing functional integration (i.e. connectivity) with 

neuroimaging data. Subsequently, eigenimage analysis has been elaborated in a 

number of ways. Notable among these is canonical variate analysis (CVA) and 

multidimensional scaling (Friston et al., 1996a; Friston et al., 1996b). Canonical 

variate analysis was introduced in the context of MANCOVA (multiple analysis of 

covariance) and uses the generalised eigenvector solution to maximise the variance 

that can be explained by some explanatory variables relative to error. CVA can be 

thought of as an extension of eigenimage analysis that refers explicitly to some 

explanatory variables and allows for statistical inference. 

In fMRI, eigenimage analysis (e.g. (Sychra et al., 1994)) is generally used as an 

exploratory device to characterise coherent brain activity. These variance components 

may, or may not be, related to experimental design. For example, endogenous 

coherent dynamics have been observed in the motor system at very low frequencies 

(Biswal et al., 1995). Despite its exploratory power, eigenimage analysis is limited for 

two reasons. Firstly, it offers only a linear decomposition of any set of 

neurophysiological measurements and second, the particular set of eigenimages or 

spatial modes obtained is determined by constraints that are biologically implausible. 

These aspects of PCA confer inherent limitations on the interpretability and 
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usefulness of eigenimage analysis of biological time-series and have motivated the 

exploration of nonlinear PCA and neural network approaches. 

 

There are two other important approaches. The first is independent component 

analysis (ICA). ICA uses entropy maximisation to find, using iterative schemes, 

spatial modes or their dynamics that are approximately independent. This is a stronger 

requirement than orthogonality in PCA and involves removing high-order correlations 

among the modes (or dynamics). It was initially introduced as spatial ICA (McKeown 

et al., 1998) in which the independence constraint was applied to the modes (with no 

constraints on their temporal expression). More recent approaches use, by analogy 

with magneto- and electrophysiological time-series analysis, temporal ICA where the 

dynamics are enforced to be independent. This requires an initial dimension reduction 

(usually using conventional eigenimage analysis). Finally, there has been an interest 

in cluster analysis (Baumgartner et al., 1997). Conceptually, this can be related to 

eigenimage analysis through multidimensional scaling and principal co-ordinate 

analysis. 

 

Demonstrating statistical dependencies among regional brain responses or 

endogenous activity (i.e., demonstrating functional connectivity) does not tell one 

much about how the brain works. An alterative approach is to use multivariate 

observation models of regional responses; which are now being used more and more 

frequently. Multivariate models map from the causes of brain responses (encoding 

models; g(θ):X → Y) or from brain activity to its consequences (decoding models; 

g(θ):X → Y), (Friston et al., 2008). Although to ask specific questions about how 

brain responses are caused, one needs explicit models of integration or more 

precisely, effective connectivity. 

 

1.2.2 Effective Connectivity 

Effective connectivity may be viewed as the union of structural and functional 

connectivity, as it describes networks of directional effects of one neural element over 

another. In principle, causal effects can be inferred through systematic perturbations 
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of the system, or, since causes must precede effects in time, through time series 

analysis. Effective connectivity refers explicitly to the influence that one neural 

system exerts over another, either at a synaptic (i.e. synaptic efficacy) or population 

level. It has been proposed that "the [electrophysiological] notion of effective 

connectivity should be understood as the experiment- and time-dependent, simplest 

possible circuit diagram that would replicate the observed timing relationships 

between the recorded neurons" (Aertsen and Preissl, 1991).  

Various techniques for extracting effective connectivity have been pursued, including 

regression models (Friston, 1993, 1995b; McIntosh et al., 1994), convolution models 

(Friston, 2002b; Friston and Büchel, 2000) and state-space models (Büchel and 

Friston, 1998). Regression techniques, underlying e.g. the analysis of 

psychophysiological interactions (PPIs, see Appendix A), are useful because they are 

easy to fit and can test for the modulatory interactions of interest (Friston et al., 1997). 

However, simple regression-based techniques exclude temporal information, i.e. the 

history of an input or physiological variable. This is important as interactions within 

the brain, whether over short or long distances, take time and are not instantaneous. 

Structural equation modelling (SEM, see Appendix A), as used by the neuroimaging 

community (Büchel and Friston, 1997; McIntosh and Gonzalez-Lima, 1994) has 

similar problems. These static models discount temporal information. Consequently, 

time-permuted data produce the same path coefficients as the original data.  

Models that use the order in which data are produced are more natural candidates for 

neuronal dynamics. Models that can address the temporal aspect of causality include 

convolution models, such as the Volterra approach, which model temporal effects in 

terms of an idealized response characterized by kernels or impulse response functions 

(Friston et al., 2000). A criticism of the Volterra approach is that it treats the system 

as a black box, meaning that it has no model of the internal mechanisms that may 

generate data.  

State-space models account for correlations within the data by invoking state variables 

whose dynamics generates data. For example, dynamic SEM models which can model 

temporal information (Cudeck, 2002). Recursive algorithms, such as the Kalman 

filter, can be used to estimate states through time, given the data (Büchel and Friston, 
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1998). Multivariate autoregressive models (MAR), which focus on the causal 

dependence of the present on the past time series was first implemented for fMRI by 

(Harrison et al., 2003). A complementary MAR approach, based on the idea of 

‘Granger causality’ (Granger, 1969), was proposed by (Goebel et al., 2003). In this 

framework, given two time-series y1 and y2, y1 is considered to be caused by y2 if its 

dynamics can be predicted better using past values from y1 and y2 as opposed to using 

past values of y1 alone. Finally, there is dynamic causal modelling (DCM) which was 

first introduced as a technique for determining effective connectivity in neural 

systems of interest on the basis of measured fMRI data (Friston et al., 2003). DCM is 

the topic of this thesis and will be introduced in detail in the next chapter. 

 

1.3 Conclusion 

In this Chapter we have reviewed some key models that underpin image analysis and 

have touched briefly on ways of assessing specialization and integration in the brain. 

Functional specialization assumes that local computations are used in certain aspects 

of information processing. Functional integration can be characterized in two ways, 

namely in terms of functional connectivity and effective connectivity. While 

functional connectivity describes statistical dependencies between data, effective 

connectivity rests on a mechanistic model of the causal effects that generated the data.  



 
 

 
 

CHAPTER 2 

THEORETICAL BACKGROUND: DYNAMIC CAUSAL 

MODELLING 

The previous Chapter introduced models in neuroimaging, focusing on two 

interrelated concepts; functional specialization and functional integration, which have 

been guiding neuroimaging applications over the last few decades. This Chapter 

focuses exclusively on a recently established technique for determining the effective 

connectivity in neural systems of interest: Dynamic causal modelling (DCM). DCM is 

a general framework for inferring processes and mechanisms at the neuronal level 

from measurements of brain activity with different techniques, including fMRI 

(Friston et al., 2003), EEG/MEG (David et al., 2006a) and frequency spectra based on 

local field potentials (Moran et al., 2007). Here we review the conceptual and 

mathematical basis of DCM and Bayesian model selection (BMS; (Penny et al., 

2004a; Stephan et al., 2009)). Since the original description of DCM (Friston et al., 

2003), a number of methodological developments have improved and extended DCM 

for fMRI, e.g. precise sampling from predicted responses (Kiebel et al., 2007b), 

additional states at the neuronal level (Marreiros et al., 2008b), a refined 

hemodynamic model (Stephan et al., 2007c) and a nonlinear neuronal model (Stephan 

et al., 2008). DCM for EEG/MEG has also seen some extensions since its origins 

(David et al., 2006a), DCM for induced responses (Chen et al., 2008), DCM for 

neural-mass and mean-field models (Marreiros et al., 2009), DCM for spectral 

responses (Moran et al., 2009) and a nonlinear stochastic DCM (Daunizeau, 2009). 

  

2.1  General causal models of neuronal interactions 

Effective connectivity requires a causal model of the interactions between the 

elements of a neural system of interest. DCM is a technique for determining effective 

connectivity in neural systems of interest on the basis of measured fMRI and 

EEG/MEG, which will be introduced here and in the next sections. The mathematical 
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framework of DCM comprises deterministic differential equations with time-invariant 

parameters. The underlying concept is quite general: a system is defined by a set of 

elements with n time-variant properties that interact with each other. Each time-

variant property xi (1 ≤ i ≤ n) is called a state variable, and the n vector x(t) of all state 

variables in the system is called the state vector (or simply state) of the system at time 

t:  
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Taking an ensemble of interacting neurons as an example, the system elements would 

correspond to the individual neurons, each of which is represented by one or several 

state variables. These state variables could refer to various neurophysiological 

properties, e.g. postsynaptic potentials, status of ion channels, etc. Critically, the state 

variables interact with each other, i.e. the evolution of each state variable depends on 

at least one other state variable. For example, the postsynaptic membrane potential 

depends on which and how many ion channels are open; vice versa, the probability of 

voltage-dependent ion channels opening depends on the membrane potential. Such 

mutual functional dependencies between the state variables of the system can be 

expressed quite naturally by a set of ordinary differential equations (ODEs) that 

operate on the state vector:  
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However, this description is not yet sufficient. First of all, the specific form of the 

dependencies fi needs to be specified, i.e. the nature of the causal relations between 

state variables. This requires a set of parameters θ which determine the form and 

strength of influences between state variables. In neural systems, these parameters 

usually correspond to time constants or synaptic strengths of the connections between 

the system elements. The Boolean nature of θ, i.e. the pattern of absent and present 
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connections, and the mathematical form of the dependencies fi represent the structure 

of the system. Second, for non-autonomous systems (i.e. systems that exchange 

matter, energy or information with their environment) we need to consider the inputs 

into the system, e.g. sensory information entering the brain. We represent the set of all 

m known inputs by the m-vector function u(t). Extending Eq. 2.2 accordingly leads to 

a general state equation for non-autonomous deterministic systems:  

 

( ), ,x F x u
t

θ∂
=

∂
.                                (2.3) 

 

A model whose form follows this general state equation provides a causal description 

of how system dynamics result from system structure, because it describes (i) when 

and where external inputs enter the system; and (ii) how the state changes induced by 

these inputs evolve in time depending on the system’s structure. Given a particular 

temporal sequence of inputs u(t) and an initial state x(0), one obtains a complete 

description of how the dynamics of the system (i.e. the trajectory of its state vector in 

time) results from its structure by integration of Eq. 2.4:  
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0

0 , ,x x F x u dt
τ

τ θ= + ∫ .                 (2.4) 

 

Equation 2.3 therefore provides a general form for models of effective connectivity in 

neural systems. As described elsewhere (Friston et al., 2003; Stephan, 2004), all 

established models of effective connectivity, including regression-like models 

(Harrison et al., 2003; McIntosh and Gonzalez-Lima, 1994), can be related to this 

general equation. The next section shows how DCM models neural population 

dynamics using a bilinear implementation of this general form. This is combined with 

a forward model that translates neural activity into a measured signal. 

Before we proceed, it is worth pointing out that we have made two main assumptions 

in this section to simplify the exposition of the general state equation. First, it is 

assumed that all processes in the system are deterministic and occur instantaneously. 

Whether or not this assumption is valid depends on the particular system of interest. If 

necessary, random components (noise) and delays could be accounted for by using 
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stochastic differential equations (SDEs) and delay differential equations, respectively. 

An example of the latter is found in DCM for evoked responses (see below). Second, 

we assume that we know the inputs that enter the system. This is a tenable assumption 

in neuroimaging because the inputs are experimentally controlled variables, e.g. 

changes in stimuli or instructions. It may also be helpful to point out that using time-

invariant dependencies fi and parameters θ does not exclude modelling time-

dependent changes of the network behaviour. Although the mathematical form of fi 

per se is static, the use of time-varying inputs u allows for dynamic changes in what 

components of fi are ‘activated’. For example, input functions that can only take 

values of one or zero and that are multiplied with the different terms of a polynomial 

function can be used to induce time-dependent changes from nonlinear to linear 

behaviour (e.g. by “switching off” all higher order terms in the polynomial) or vice 

versa. Also, there is no principled distinction between states and time-invariant 

parameters. Therefore, estimating time-varying parameters can be treated as a state 

estimation problem. 

 

2.2  Dynamic causal modelling with bilinear models 

This section is about modelling interactions among neuronal populations, at a cortical 

level, using neuroimaging time-series and dynamic causal models that are informed 

by the biophysics of the system studied. The aim of DCM is to estimate, and make 

inferences about, the coupling among brain areas and how that coupling is influenced 

by experimental changes (e.g. time or cognitive set). The basic idea is to construct a 

reasonably realistic neuronal model of interacting cortical regions or nodes. This 

model is then supplemented with a forward model of how neuronal or synaptic 

activity translates into a measured response. This enables the parameters of the 

neuronal model (i.e. effective connectivity) to be estimated from observed data. 

 

Intuitively, this approach regards an experiment as a designed perturbation of 

neuronal dynamics that are promulgated and distributed throughout a system of 

coupled anatomical nodes to change region-specific neuronal activity. These changes 

engender, through a measurement-specific forward model, responses that are used to 

identify the architecture and time constants of the system at a neuronal level. This 
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represents a departure from conventional approaches (e.g., structural equation 

modelling and auto-regression models; (Büchel and Friston, 1997; Harrison et al., 

2003; McIntosh and Gonzalez-Lima, 1994)), in which one assumes the observed 

responses are driven by endogenous or intrinsic noise (i.e. innovations). In contrast, 

dynamic causal models assume the responses are driven by designed changes in 

inputs. An important conceptual aspect of dynamic causal models pertains to how the 

experimental inputs enter the model and cause neuronal responses. Experimental 

variables can elicit responses in one of two ways. First, they can elicit responses 

through direct influences on specific anatomical nodes. This would be appropriate, for 

example, in modelling sensory evoked responses in early visual cortices. The second 

class of input exerts its effect vicariously, through a modulation of the coupling 

among nodes. These sorts of experimental variables would normally be more 

enduring; for example attention to a particular attribute or the maintenance of some 

perceptual set. These distinctions are seen most clearly in relation to particular forms 

of causal models used for estimation, for example the bilinear approximation 
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θ ε
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                (2.5) 

 

where txx ∂∂=& . This is an approximation to any model of how changes in neuronal 

activity in one region ix  are caused by activity in the other regions. Here the output 

function ( )h x  embodies a haemodynamic model, linking neuronal activity to BOLD, 

for each region (see Figure 2.2). θ are the quantities that parameterize the state and 

observer equations (A, B, C). The matrix A represents the coupling among the regions 

in the absence of input )(tu . This can be thought of as the latent coupling in the 

absence of experimental perturbations. The matrix B  is effectively the change in 

latent coupling induced by the input. It encodes the input-sensitive changes in A or, 

equivalently, the modulation of coupling by experimental manipulations. Because B  

is a second-order derivative it is referred to as bilinear. Finally, the matrix C 



Chapter 2: Theoretical Background: Dynamic Causal Modelling 
 

 

 

36

embodies the extrinsic influences of inputs on neuronal activity. The parameters 

CBA ,,=θ  are the connectivity or coupling matrices that we wish to identify and 

define the functional architecture and interactions among brain regions at a neuronal 

level. Figure 2.1 summarises this bilinear state equation and shows the model in 

graphical form. 
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Figure 2.1: (A) The bilinear state equation of DCM for fMRI. (B) An example of a 

DCM describing the dynamics in a hierarchical system of visual areas. This system 

consists of two areas represented by a single state variable (x1, x2). Black arrows 

represent connections, grey arrows represent external inputs into the system and thin 

dotted arrows indicate the transformation from neural states (blue colour) into 

haemodynamic observations (red colour) (see figure 2.2 for the haemodynamic 

forward model). The state equation system for this particular model is shown on the 

right. Adapted from (Stephan et al., 2007a). 

 

DCM for fMRI combines this model of neural dynamics with an experimentally 

validated haemodynamic model that describes the transformation of neuronal activity 
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into a BOLD response. This so-called “Balloon model” was initially formulated by 

(Buxton et al., 1998) and later extended by (Friston et al., 2000). Briefly, it consists of 

a set of differential equations that describe the relations between four haemodynamic 

state variables, using five parameters θ(h). More specifically, changes in neural activity 

elicit a vasodilatory signal that leads to increases in blood flow and subsequently to 

changes in blood volume and deoxyheamoglobin content. The predicted BOLD signal 

is a non-linear function of blood volume and deoxyhaemoglobin content. This 

haemodynamic model is summarised in Figure 2.2 (Friston et al., 2000). 
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Figure 2.2: Summary of the haemodynamic model used by DCM for fMRI. Neuronal 

activity induces a vasodilatory and activity-dependent signal s that increases blood 

flow f. Blood flow causes changes in volume and deoxyhaemoglobin (v and q). These 

two haemodynamic states enter the output nonlinearity which results in a predicted 

BOLD response y. The model has 5 haemodynamic parameters: the rate constant of 

the vasodilatory signal decay (κ), the rate constant for auto-regulatory feedback by 

blood flow (γ), transit time (τ), Grubb’s vessel stiffness exponent (α), and capillary 

resting net oxygen extraction (ρ). E is the oxygen extraction function. This figure 
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encodes graphically the transformation from neuronal states xi to haemodynamic 

response yi, adapted from (Friston et al., 2003). 

 

Together, the neuronal and hemodynamic state equations yield a deterministic 

forward model with hidden states. For any given combination of parameters θ and 

inputs u, the measured BOLD response y is modelled as the predicted BOLD signal 

h(u,θ) plus a linear mixture of confounds Xβ (e.g. signal drift) and Gaussian 

observation error e:  

( , , )y h x u θ β ε= + Χ +                             (2.6) 

The combined neural and haemodynamic parameter set { }( ) ( ),n hθ θ θ=  is estimated 

from the measured BOLD data, using a fully Bayesian approach with empirical priors 

for the haemodynamic parameters and conservative shrinkage priors for the coupling 

parameters. Details of the parameter estimation scheme, which rests on an expectation 

maximization (EM; see Appendix B and Dempster et al 1977) algorithm and uses a 

Laplace (i.e. Gaussian) approximation to the true posterior, can be found in (Friston, 

2002b). Once the parameters of a DCM have been estimated from measured BOLD 

data, the posterior distributions of the parameter estimates can be used to test 

hypotheses about connection strengths. Due to the Laplace approximation, the 

posterior distributions are defined by their posterior mode or maximum a posteriori 

(MAP) estimate and their posterior covariance.  

 

2.3  Dynamic causal modelling using neural mass models 

Event-related potentials (ERPs) have been used for decades as electrophysiological 

correlates of perceptual and cognitive operations. However, the exact neurobiological 

mechanisms underlying their generation are still unclear (Baillet et al., 2001). DCM 

for ERPs was developed as a biologically plausible model to understand how event-

related responses result from the dynamics in coupled neural ensembles. It rests on a 

neural mass model (NMM) which uses established connectivity rules in hierarchical 
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sensory systems to assemble a network of coupled cortical sources (David and 

Friston, 2003; David et al., 2005; Jansen and Rit, 1995). 
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Figure 2.3: Schematic of the DCM used to model electrophysiological responses. 

This schematic shows the state equations describing the dynamics of sources or 

regions. Each source is modelled with three subpopulations (pyramidal, spiny stellate 

and inhibitory interneurons) as described in (Jansen and Rit, 1995) and in (David and 

Friston, 2003). These have been assigned to granular and agranular cortical layers 

which receive forward and backward connections respectively, (David et al., 2006a). 

 

The DCM developed (David et al., 2006a), uses the connectivity rules described in 

(Felleman and Van Essen, 1991) to assemble a network of coupled sources. These 

rules are based on a partitioning of the cortical sheet into supra-, infra-granular layers 

and granular layer (layer 4). Bottom-up or forward connections originate in agranular 

layers and terminate in layer 4. Top-down or backward connections target agranular 

layers. Lateral connections originate in agranular layers and target all layers. These 
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long-range or extrinsic cortico-cortical connections are excitatory and arise from 

pyramidal cells. 

 

Each region or source is modelled using a neural mass model described in (David and 

Friston, 2003), based on the model of (Jansen and Rit, 1995). This model emulates the 

activity of a cortical area using three neuronal subpopulations, assigned to granular 

and agranular layers. A population of excitatory pyramidal (output) cells receives 

inputs from inhibitory and excitatory populations of interneurons, via intrinsic 

connections (intrinsic connections are confined to the cortical sheet). Within this 

model, excitatory interneurons can be regarded as spiny stellate cells found 

predominantly in layer 4 and in receipt of forward connections. Excitatory pyramidal 

cells and inhibitory interneurons are considered to occupy agranular layers and 

receive backward and lateral inputs (see Figure 2.3). 

 

To model event-related responses, the network receives inputs via input connections. 

These connections are exactly the same as forward connections and deliver inputs to 

the spiny stellate cells in layer 4. The vector C controls the influence of the input on 

each source. The lower, upper and leading diagonal matrices LBF AAA ,,  encode 

forward, backward and lateral connections respectively. The DCM here is specified in 

terms of the state equations shown in Figure 2.3 and a linear output equation 

 

0

( , , )x f x u
y Lx

θ
ε

=
= +

&
                   (2.7) 

 

where 0x  represents the trans-membrane potential of pyramidal cells and L is a lead 

field matrix coupling electrical sources to the EEG channels (Kiebel et al., 2006). This 

should be compared to the DCM above for haemodynamics; here the equations 

governing the evolution of neuronal states are much more complicated and realistic, 

as opposed to the bilinear approximation in Eq. 2.5. Conversely, the output equation is 

a simple linearity, as opposed to the nonlinear observer used for fMRI. As an example, 

the state equation for the inhibitory subpopulation is1 

 
                                                 
1 Propagation delays on the extrinsic connections have been omitted for clarity here and in Figure 2.3. 
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Within each subpopulation, the evolution of neuronal states rests on two operators. 

The first transforms the average density of pre-synaptic inputs into the average 

postsynaptic membrane potential. This is modelled by a linear transformation with 

excitatory and inhibitory kernels parameterised by ieH ,  and ie,τ . ieH ,  control the 

maximum post-synaptic potential and ie,τ  represent a lumped rate-constant. The 

second operator S transforms the average potential of each subpopulation into an 

average firing rate. This is assumed to be instantaneous and is a sigmoid function. 

Interactions, among the subpopulations, depend on constants 4,3,2,1γ , which control the 

strength of intrinsic connections and reflect the total number of synapses expressed by 

each subpopulation. In Eq. 2.8 the first line expresses the rate of change of voltage as 

a function of current. The second line specifies how current changes as a function of 

voltage, current and pre-synaptic input from extrinsic and intrinsic sources. Having 

specified the DCM in terms of these equations one can estimate the coupling 

parameters from empirical data using EM (see Appendix B). Just as with DCM for 

fMRI, the DCM for ERPs is usually used to investigate whether coupling strengths 

change as a function of experimental context. 

 

2.4  Bayesian model selection 

A generic problem encountered by any kind of modelling approach is the question of 

model selection: given some observed data, which of several alternative models is the 

optimal one? This problem is not trivial because the decision cannot be made solely 

by comparing the relative fit of the competing models. One also needs to take into 

account the relative complexity of the models as expressed, for example, by the 

number of free parameters in each model. Model complexity is important to consider 

because there is a trade-off between model fit and generalisability (i.e. how well the 

model explains different data sets that were all generated from the same underlying 
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process). As the number of free parameters is increased, model fit increases 

monotonically whereas beyond a certain point model generalisability decreases. The 

reason for this is ‘overfitting’: an increasingly complex model will, at some point, 

start to fit noise that is specific to one data set and thus become less generalisable 

across multiple realizations of the same underlying generative process. [Generally, in 

addition to the number of free parameters, the complexity of a model also depends on 

its functional form; see (Pitt and Myung, 2002). This is not an issue for DCM, 

however, because Bayesian model selection (BMS) accommodates different 

functional forms; see below.].  

Therefore, the question “Which is the optimal model among several alternatives?” can 

be reformulated more precisely as “Given several alternatives, which model 

represents the best balance between fit and complexity?” In a Bayesian context, the 

latter question can be addressed by comparing the evidence, p(y|m), of different 

models. According to Bayes theorem  

 

( ) ( ) ( )
( )

, ,
,

p y m p m
p y m

p y m
θ θ

θ =                   (2.9) 

 

the model evidence can be considered as a normalization constant for the product of 

the likelihood of the data and the prior probability of the parameters, therefore  

 

( | ) ( | , ) ( | )p y m p y m p m dθ θ θ= ∫ .               (2.10) 

 

Here, the number of free parameters (as well as the functional form) are considered by 

the integration. Unfortunately, this integral cannot usually be solved analytically, 

therefore an approximation to the model evidence is needed, see Appendix C. 

In the context of DCM, one potential solution could be to make use of the Laplace 

approximation, i.e. to approximate the model evidence by a Gaussian that is centred 

on its mode. As shown by (Penny et al., 2004a), this yields the following expression 

for the natural logarithm (ln) of the model evidence (ηθ|y denotes the MAP estimate, 

yC |θ  is the posterior covariance of the parameters, εC  is the error covariance, Pθ  is 

the prior mean of the parameters, and PC  is the prior covariance): 
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This expression properly reflects the requirement, as discussed above, that the optimal 

model should represent the best compromise between model fit (accuracy) and model 

complexity. Model selection is then based on that approximation; where the best 

model gives the greater Bayes factor (BF; (Kass and Raftery, 1995)): 

 

)|(
)|(

j

i
ij myp

mypBF = .                 (2.12) 

 

Just as conventions have developed for using p-values in frequentist statistics, there 

are conventions for the use of BFs. For example, (Raftery, 1995) suggests 

interpretation of BFs as providing weak (BF < 3), positive (3 ≤ BF < 20), strong (20 ≤ 

BF < 150) or very strong (BF ≥ 150) evidence for preferring one model over another. 

BMS plays a central role in the application of DCM. It can be seen that the Bayes 

factor is the same as the difference in log-evidences. This means that the best model 

among competing models is the model with the greatest log-evidence. We will use 

log-evidence (or its free energy approximation) for BMS in the remainder of this 

thesis. The search for the best model, amongst several competing ones, precedes (and 

is often equally important to) the question which parameters of the model represent 

significant effects. Several studies have used BMS (Penny et al., 2004a; Stephan et 

al., 2007b; Stephan et al., 2009) successfully to address complex questions about the 

architecture of neural systems.  

 

Comparison at the between-subject level has been used extensively in previous group 

studies in neuroimaging through group Bayes factor (GBF). For example, the GBF 

has been used frequently to decide between competing DCMs fitted to fMRI (Acs and 
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Greenlee, 2008; Allen et al., 2008; Grol et al., 2007; Heim et al., 2009; Kumar et al., 

2007; Leff et al., 2008; Smith et al., 2006; Stephan et al., 2007c; Summerfield and 

Koechlin, 2008) and EEG data (Garrido et al., 2008; Garrido et al., 2007b). GBF is 

simply the product of Bayes factors over N subjects: 

 

( )
, ,

1

N
n

i j i j
n

GBF BF
=

=∏                 (2.13) 

 

Here, the subscripts i,j refer to the models being compared, and the bracketed 

superscript refers to the nth subject. This is equivalent to a fixed effects analysis that 

rests on multiplying the likelihoods over subjects to furnish the probability of the 

multi-subject data, conditioned on each model. This is fundamentally different from a 

generative model which treats subjects as random effects: here we would select a 

model for each subject by sampling from a multinomial distribution, and then 

generate data under that subject-specific model. Whenever subjects can exhibit 

different models or functional architectures, the random effects BMS technique 

presented in (Stephan et al., 2009) is a more appropriate method. In the context of 

basic mechanisms that are unlikely to differ across subjects, the conventional GBF is 

both sufficient and appropriate. 

 

2.5  Conclusion 

In this Chapter we have reviewed DCM and BMS. By creating observation models 

based on explicit forward models of neuronal interactions, one can model and assess 

interactions among distributed cortical areas and make inferences about coupling at 

the neuronal level. BMS has a key role in the search for the best model and in the 

application of DCM. The next years will probably see an increasing realism in the 

dynamic causal models introduced above. These endeavours are likely to encompass 

fMRI signals enabling the conjoint modelling, or fusion, of different modalities and 

the marriage of computational neuroscience with the modelling of brain responses. 

 



 
 

 
 

CHAPTER 3 

DYNAMICAL CAUSAL MODELLING FOR FMRI: A 

TWO-STATE MODEL 

The previous Chapter presented DCM as a novel tool for modelling and analysis of 

connectivity in the brain. As we saw, DCM for fMRI is a technique for inferring 

directed connectivity among brain regions. This model distinguishes between a 

neuronal level, which models neuronal interactions among regions and an observation 

level, which models the haemodynamic responses in each region. The original DCM 

formulation considered only one neuronal state per region. In this Chapter, we adopt a 

more plausible and less constrained neuronal model, using two neuronal states 

(populations) per region. Critically, this gives us an explicit model of intrinsic 

(between-population) connectivity within a region. In addition, by using positivity 

constraints, the model conforms to the organisation of real cortical hierarchies, whose 

extrinsic connections are excitatory (glutamatergic). By incorporating two populations 

within each region we can model selective changes in both extrinsic and intrinsic 

connectivity. 

 

Using synthetic data, we show that the two-state model is internally consistent and 

identifiable. We then apply the model to real data, explicitly modelling intrinsic 

connections. Using model comparison, we found that the two-state model is better 

than the single-state model. Furthermore, using the two-state model we find that it is 

possible to disambiguate between subtle changes in coupling; we were able to show 

that attentional gain, in the context of visual motion processing, is accounted for 

sufficiently by an increased sensitivity of excitatory populations of neurons in V5, to 

forward afferents from earlier visual areas. 
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3.1 Introduction 

Dynamic Causal Modelling (DCM) for fMRI is a natural extension of the convolution 

models used in the standard analysis of fMRI (Friston et al., 2003). This extension 

involves the explicit modelling of activity within and among regions of a 

hypothesized network, at the neuronal level. The general idea behind DCM is to 

construct a reasonably realistic neuronal model of interacting cortical regions with 

neurophysiologically inspired parameters. These parameters are estimated such that 

the predicted blood oxygenation level dependent (BOLD) series, which results from 

converting the neural dynamics into haemodynamics, correspond as closely as 

possible to the observed BOLD series. 

 

Standard DCMs for fMRI are based upon a bilinear approximation to neuronal 

dynamics with one state per region. The neuronal dynamics are described by the 

differential equations describing the dynamics of a single state that summarises the 

neuronal or synaptic activity of each area; this activity then induces a haemodynamic 

response as described by an extended Balloon model (Buxton et al., 1998). Examples 

of DCM for fMRI can be found in (Bitan et al., 2005; den Ouden et al., 2008; 

Eickhoff et al., 2008; Ethofer et al., 2006; Fairhall and Ishai, 2007; Griffiths et al., 

2007; Kumar et al., 2007; Leff et al., 2008; Mechelli et al., 2005; Mechelli et al., 

2004; Mechelli et al., 2003; Noppeney et al., 2006; Posner et al., 2006; Stephan et al., 

2006; Stephan et al., 2007b; Stephan et al., 2005; Summerfield et al., 2006). For a 

review on the conceptual basis of DCM and its implementation for functional 

magnetic resonance imaging data and event-related potentials see (Stephan et al., 

2007a). 

 

Dynamical Causal Modelling differs from established methods for estimating 

effective connectivity from neurophysiological time series, which include structural 

equation modelling and models based on multivariate autoregressive processes 

(Harrison et al., 2003; McIntosh and Gonzalez-Lima, 1994; Penny et al., 2004b; 

Roebroeck et al., 2005). In these models, there is no designed perturbation and the 

inputs are treated as unknown and stochastic. DCM assumes the input to be known, 

which seems appropriate for designed experiments. Further, DCM is based on a 
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parameterised set of differential equations which can be extended to better describe 

the system. 

 

Here, we extend the original model to cover two states per region. These states model 

the activity of inhibitory and excitatory populations. This has a number of key 

advantages. First, we can relax any shrinkage priors used to enforce stability in 

single-state DCMs, because the interaction of excitatory-inhibitory pairs confers 

dynamical stability2 on the system. Second, we can model both extrinsic and intrinsic 

connections. Third, we can enforce positivity constraints on the extrinsic connections 

(i.e., inter-regional influences of excitatory populations). Finally, this re-

parameterisation enables one to model context-dependent changes in coupling as a 

proportional increase or decrease in connection strength (c.f., the additive effects used 

previously, (Friston et al., 2003)). 

  

Shrinkage priors are simply priors or constraints on the parameters that shrink their 

conditional estimates towards zero (i.e., their prior expectation is zero and the prior 

variance determines the degree of shrinkage, in relation to observation noise). They 

were employed in early formulations of DCM to ensure coupling strengths did not 

attain very high weights, which generate exponentially diverging neuronal activity. 

However, this motivation for shrinkage priors is rather ad hoc and, as we will discuss 

later, confounds model specification and comparison. 

 

This Chapter is structured as follows. In the first section, we present the two-state 

DCM, with two states per region. In the subsequent section, we provide a stability 

analysis of the two-state DCM. In the third section, we describe model inversion; i.e., 

prior distributions, Bayesian estimation, conditional inference and model comparison. 

In section four, we compare the single and two-state DCM using synthetic and real 

data to establish its face validity. Finally, an empirical section then demonstrates the 

use of the two-state DCM by looking at attentional modulation of connections during 

visual motion processing. From these analyses, we conclude that the two-state DCM 

is a better model for fMRI data than the single-state DCM. 

                                                 
2 Excitatory-Inhibitory models are not generically stable in a dynamical sense. However, note that this 
is probably not an issue during inversion, because we never found that the inversion step identifies 
parameters that lead to instable behaviour. 
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3.2 Theory 

3.2.1 Dynamic Causal Modelling for fMRI – Single-state models 

In this section we review briefly dynamic causal models of fMRI data (Chapter 2; 

(Friston et al., 2003)). In the next section, we extend this model to accommodate two 

neuronal sources per region. In dynamic causal models, interactions among regions 

are modelled at the neuronal level. In single-state models each region has one state 

variable. This state is a simple summary of neuronal (i.e., synaptic) activity )(tx , in a 

region. (Friston et al., 2003) used a bilinear form to describe their dynamics: 
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This model is used to generate neuronal activity; later we will add haemodynamics 

and noise to furnish a probabilistic model of fMRI measurements. In this model, the 

state vector )(tx  contains one scalar per region. The changes in neuronal (i.e., 

synaptic) activity are described by the sum of three effects. First, the matrix A  

encodes directed connectivity between pairs of regions. The elements of this 

connectivity matrix are not a function of the input, and can be considered as an 

endogenous or condition-invariant. Second, the elements of )( jB  represent the 

changes of connectivity induced by the inputs, ju . These condition-specific 

modulations or bilinear terms )( jB  are usually the interesting parameters. The 

endogenous and condition-specific matrices are mixed to form the total connectivity 
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or Jacobian matrix ℑ . Third, there is a direct exogenous influence of each input  ju  

on each area, encoded by the matrix C . The parameters of this system, at the neuronal 

level, are given by CBBA uNn ,,,, 1 K⊇θ . At this level, one can specify which 

connections one wants to include in the model. Connections (i.e., elements of the 

matrices) are removed by setting their prior mean and variance to zero. We will 

illustrate this later. 

 

The bilinear form in Eq. 3.1 can be regarded as an approximation to any function, 

( , , )F x u θ , because it is simply a Taylor expansion around 0x =  and 0=u ; retaining 

only terms that are first-order in the states or input. In this sense, the bilinear model 

can be regarded as a generic approximation, to any [unknown] function describing 

neuronal dynamics, in the vicinity of its fixed-point; i.e., when the neuronal states are 

at equilibrium or zero. 

 

At the observation level; for each region, the neuronal state forms an input to a 

haemodynamic model that generates the BOLD signal, see Chapter 2 for details.  

 

3.2.2 Dynamic Causal Modelling for fMRI – Two-state models 

We now extend the standard DCM above to incorporate two state variables per 

region. These model the activity of an inhibitory and excitatory population 

respectively. Schematics of the single and two-state models are shown in Figure 3.1. 
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Figure 3.1: Schematic of the Single-state DCM (left) and the present Two-state 

DCM (right). The Two-state model has an inhibitory and an excitatory 

subpopulation. The positivity constraints are explicitly represented in the two-state 

connectivity matrix by exponentiation of underlying scale parameters (bottom right). 

 

The Jacobian matrix, ℑ  represents the effective connectivity within and between 

regions. Intrinsic or within-region coupling is encoded by the leading diagonal blocks 

(see Figure 3.1), and extrinsic or between-region coupling is encoded by the off-

diagonal blocks. Each within-region block has four entries, },,{ IE
ii

EI
ii

II
ii

EE
iiii ℑℑℑℑ=ℑ •• . 

These correspond to all possible intrinsic connections between the excitatory and 

inhibitory states, },{ I
i

E
i xx  of the i-th region. These comprise self-connections, 

EE → , II →  and inter-state connections IE → , EI → . We enforce the 

connections, EE → , EI → , II →  to be negative (i.e., 0,, ≤ℑℑℑ II
ii

IE
ii

EE
ii ), which 

means they mediate a dampening effect on population responses. This negativity is 

imposed by using log-normal priors; we use the negative exponential of an underlying 

coupling parameter with a normal prior (see below). Although the excitatory self-
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connections are negative, we do not mean to suggest that there are direct inhibitory 

connections among excitatory units; rather the multitude of mechanisms that self-

organise neuronal activity (e.g., adaptation, gain-control, refractoriness, polysynaptic 

input from recurrent axonal collaterals, etc.) will conspire to make the effective self-

connection negative3. The extrinsic connections among areas are assumed to be 

positive (i.e., 0≥ℑEE
ij ) and are mediated exclusively by coupling among excitatory 

populations (c.f., glutamatergic projections in the real brain). In accord with known 

anatomy, we disallow long-range coupling among inhibitory populations.  

 

The two-state DCM has some significant advantages over the standard DCM. First, 

intrinsic coupling consists of excitatory and inhibitory influences, which is 

biologically more plausible. Also, the interactions between inhibitory and excitatory 

subpopulations confer more stability on the overall system. This means we can relax 

the shrinkage priors used to enforce stability in single-state DCMs. Furthermore, we 

can now enforce positivity constraints on the extrinsic connections (i.e., inter-regional 

influences among excitatory populations) using log-normal priors and scale 

parameters as above for the intrinsic connections. This means changes in connectivity 

are now expressed as a proportional increase or decrease in connection strength. In 

what follows, we address each of these issues, starting with the structural stability of 

two-state systems and the implications for priors on their parameters. 

 

3.3 Stability and priors 

In this section, we will describe a stability analysis of the two-state system, which 

informs the specification of the prior distributions of the parameters. Network models 

like ours can display a variety of different behaviours (e.g., (Wilson and Cowan, 

1972, 1973). This is what makes them so useful, but there are parameterizations 

which make the system unstable. By this, we mean that the system response increases 

exponentially. In real brains, such behaviour is not possible and this domain of 

parameter space is highly unlikely to be populated by neuronal systems. The prior 

                                                 
3 In the present described DCM extension, we used the original adopted self-dampening E E 
connection (Friston et al. (2003). Though, self-regularization mechanism could possibly also be 
obtained by exclusively inhibitory I E connection parameterizations. 
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distributions should reflect this by assigning a prior probability of zero to unstable 

domains. However, this is not possible, because we have to use normal priors to keep 

the model inversion analytically tractable. Instead, we specify priors that are centred 

on stable regions of parameter space.  

 

In the original single-state DCM, we had a single state per region and a self-decay for 

each state (see Figure 3.2). This kind of system allows for only an exponential decay 

of activity in each region, following a perturbation of the state by exogenous input or 

incoming connections. For this model, (Friston et al., 2003) chose shrinkage priors, 

which were used to initialise the inversion scheme in a stable regime of parameter 

space, in which neuronal activity decayed rapidly. The conditional parameter 

estimates were then guaranteed to remain in a stable regime through suitable checks 

during iterative optimisation of the parameters. 

 

 

Figure 3.2: Schematic of Single-state DCM (one region). 

 

 

Figure 3.3: Schematic of Two-state DCM (one region). 
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Two-state models (Figure 3.3) can exhibit much richer dynamics compared to single-

state models. One can determine analytically the different kinds of periodic and 

harmonic oscillatory network modes these systems exhibit (see Appendix D). This is 

important because it enables us to establish stability for any prior mean of the 

parameters. This entails performing a linear stability analysis by examining the 

eigenvalues of the Jacobian, ℑ  under the prior expectation of the parameters. The 

system is asymptotically stable if these eigenvalues (c.f., Lyapunov spectrum) have 

only negative real parts (Dayan, 2001). This is the procedure we adopt below. 

 

It should be noted that, in generic coupled nonlinear systems, instability of a linearly 

stable fixed point does not always lead to exponential growth, but may lead to the 

appearance of a stable nonlinear regime. In the case of a Hopf bifurcation (as in 

(Wilson and Cowan, 1973), a limit cycle appears near the unstable fixed point, which 

can model alpha rhythms and other oscillatory phenomena. Indeed, a system close to a 

linear instability exhibits longer and more complex nonlinear transients on 

perturbation (e.g., (Friston, 1997)). This is a further reason to avoid using shrinkage 

priors (that preclude systems close to instability). However, because the bilinear 

model is linear in its states, its unstable fixed points are necessarily associated with 

exponential growth. 

 

3.3.1 Priors 

We now describe how we specify the priors and enforce positivity or negativity 

constraints on the connections. We seek priors that are specified easily and are not a 

function of connectivity structure; because this can confound model comparison 

(Penny et al., 2004a). The strategy we use is to determine a stable parameterization for 

a single area, use this for all areas and allow only moderate extrinsic connections. In 

this way, the system remains stable for all plausible network structures.  

 

Priors have a dramatic impact on the landscape of the objective function that is 

optimised: good choices of prior distributions will help to reach the appropriate 

posterior distributions by means of identifying the global minimum of the objective 
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function. Under Gaussian assumptions, the prior distribution )(θp  is defined by its 

mean and covariance Σ . Since Gaussian priors have infinite support, we will always 

have finite density in unstable areas. However, we evaluate the eigenvalues of the 

Jacobian to start the estimation in a stable domain and we observe experimentally that 

with priors that have the most of their mass in stable areas, the data will support 

posterior means in stable areas. In our expectation-maximization (EM) inversion 

scheme, the prior expectation is also the starting estimate. If we chose a stable prior, 

we are guaranteed to start in a stable domain of parameter space. After this 

initialization, the algorithm could of course update to an unstable parameterization, 

because we are dealing with a dynamic generative model. However, these updates 

will be rejected because they cannot increase the objective function: in the rare cases 

when an update to an unstable regime actually occurs (and the objective function 

decreases), the algorithm returns to the previous estimate and halves its step-size, 

using a Levenberg-Marquardt scheme (Press, 1999). This is repeated iteratively, until 

the objective function increases; at which point the update is accepted and the 

optimization proceeds. Therefore, it is sufficient to select priors whose mean lies in a 

stable domain of parameter space. 

 

Stability is conferred by enforcing connectivity parameters to be strictly positive or 

negative. In particular, the intrinsic, EE → , II → , EI →  connections are negative 

while the IE →  and all extrinsic EE →  connections are positive. We use  

 

⎥
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⎡
−
−−

15.0
5.01

 

 

as the prior mode (most likely a priori) for a single region’s Jacobian, where its states, 
TI

i
E
i xxx ][=  summarise the activity of its constituent excitatory and inhibitory 

populations. This Jacobian has eigenvalues of i5.01±−  and is guaranteed to be 

stable. We then replicate these priors over regions, assuming weak positive excitatory 

extrinsic EE →  connections, with a prior of 0.5 Hz. For example, a three region 

model, with hierarchical reciprocal extrinsic connections and states, 
TIEIEIE xxxxxxx ],,,,,[ 332211=  would have Jacobian with a prior mode of 
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The eigenvalue spectrum of this Jacobian is show in Figure 3.4 (left panel), along 

with the associated impulse response functions for an input to the first subpopulation 

(right panels); evaluated with )0()exp()( xttx µ= . It can be seen for this architecture 

we expect neuronal dynamics to play out over a time-scale of about one second. Note 

that these dynamics are not enforced; they are simply the most likely a priori. 
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Figure 3.4: Stability analyses for a two-state DCM for three interconnected regions 

(see Jacobian above). Left panel: Real negative (stable) eigenmodes. Right panel: 

Associated impulse response functions evaluated with )0()exp()( xttx µ= . 

 

3.3.2 Positivity constrains and scale-parameters 

To ensure positivity or negativity, we scale these prior modes, µ  with scale-

parameters, which have log-normal priors. This is implemented using underlying 

coupling parameters with Gaussian or normal priors; for example, the extrinsic 

connections are parameterized as )exp( •••••••• +=ℑ ijijijij uBAµ , where 
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},,{ IE
ii

EI
ii

II
ii

EE
iiii ℑℑℑℑ=ℑ •• , ),0()( vNAp ij =••  and we have assumed one input. A mildly 

informative log-normal prior obtains when the prior variance 16/1≈ν . This allows 

for a scaling around the prior mode, ••
ijµ  of up to a factor of two, where the sign of the 

mode determines whether the connection is positive or negative. In what follows, we 

use a prior variance for the endogenous and condition-specific coupling parameters, 
jk

ijA  and jk
ijB  of 16/1=ν .  

 

Re-parameterising the system in terms of scale-parameters entails a new state 

equation (see Figure 3.1), which replaces the Bilinear model in Eq. 3.1 
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In this form, it can be seen that condition-specific effects ku  act to scale the 

connections by kuk
ij

k
ijk BBu )exp()exp( )()( •••• = . When 0)( =•• k

ijB , this scaling is 

1)exp( )( =•• k
ijk Bu  and there is no effect of input on the connection strength. The 

haemodynamic priors are those used in (Friston, 2002b). 

 

Having specified the form of the DCM in terms of its likelihood and priors, we can 

now estimate its unknown parameters, which represent a summary of the coupling 

among brain regions and how they change under different experimental conditions. 
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3.4 Bayesian estimation, inference and model comparison 

For a given DCM, say model m , parameter estimation corresponds to approximating 

the moments of the posterior distribution given by Bayes rule 

 

)|(
)|(),|(),|(

myp
mpmypmyp θθθ = .                (3.3) 

 

The estimation procedure employed in DCM is described in (Friston et al., 2003; 

Kiebel et al., 2006). The posterior moments (conditional mean η  and covariance Ω ) 

are updated iteratively using an expectation maximization (EM; see Appendix B and 

Dempster et al 1977), which uses a fixed-form Laplace (i.e., Gaussian) approximation 

to the conditional density ),()( Ω= ηθ Nq .  

 

Often, one wants to compare different models for a given data set. We use Bayesian 

model comparison, using the model evidence (Penny et al., 2004a), which is 

 

θθθ dmpmypmyp ∫= )|(),|()|( .                (3.4) 

 

Note that the model evidence is the normalization constant in Eq. 3.3. The evidence 

can be decomposed into two components: an accuracy term, which quantifies the data 

fit, and a complexity term, which penalizes models with redundant parameters. In the 

following, we approximate the model evidence for model m, under the Laplace 

approximation, with 

 

),|(ln)|(ln mypmyp λ≈ ,                 (3.5) 

 

where λ are the unknown covariance component parameters, i.e., the hyperparameters 

(Friston et al., 2007). This is the maximum value of the objective function attained by 

EM. The most likely model is the one with the largest log-evidence. This enables 
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BMS. Model comparison rests on the likelihood ratio of the evidence for two models. 

This ratio is the Bayes factor ijB . For models i and j 

 

)(ln)(lnln jmypimypBij =−== .               (3.6) 

 

Conventionally, strong evidence in favour of one model requires the difference in log-

evidence to be about three or more (Penny et al., 2004a). Under the assumption that 

all models are equally likely a priori, the marginal densities )|( myp  can be 

converted into the probability of the model given the data )|( ymp  (by normalising so 

that they sum to one over models). We will use this probability to quantify model 

comparisons below (see Tables). 

 

3.5 Simulations –models comparisons 

Here, we establish the face validity of the DCM described in the previous section. 

This was addressed by integrating DCMs with known parameters, adding observation 

noise to simulate responses and inverting the models. Crucially, we used different 

models during both generation and inversion and evaluated all combinations to ensure 

that model selection identified the correct model. 

 

The DCMs used the posterior or conditional means from three different models 

estimated using real data (see next section). We added random noise such that the 

final data had a signal-to-noise ratio of three, which corresponds to typical DCM 

data4. We created three different synthetic data sets corresponding to a forward, 

backward and intrinsic model of attentional modulation of connections in the visual 

processing stream. We used a hierarchal three-region model where stimulus-bound 

visual input entered at the first or lowest region. In the forward model, attention 

increased coupling in the extrinsic forward connection to the middle region; in the 

backward model it changed backward influences on the middle region and in the 

intrinsic model attention changed the intrinsic EI →  connection. In all models, 
                                                 
4 Note that a DCM time-series of a single region is the first eigenvariate of a cluster of voxels and is 
relatively de-noised. 
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attention increased the sensitivity of the same excitatory population to different sorts 

of afferents. 

 

We then used the three models to fit each of these three synthetic data sets, giving 

nine model inversions. Table 3.1 presents the log-evidences for each inversion. The 

highest evidence, was obtained for models that were used to generate the synthetic 

data: these correspond to the diagonal entries. These results show that model 

comparison can identify reliably the correct model, among competing and subtly 

different two-state models. 

 

Models 
 

Synthetic Data 
 

 
 

Backward  
       

Forward Intrinsic 

Backward  

 

524 

99.9% 
 

494 

0.0% 
478 

0.7% 

Forward 

 

382 

0.0% 
 

538 

99.9% 

-439 

0.0% 

Intrinsic 

 

497 

0.0% 
 

504 

0.0% 

482 

99.3% 

Table 3.1:  Log-evidences for three different models using synthetic data generated 

by the Backward, Forward and Intrinsic models (see text). The diagonal values show 

higher log evidences, which indicate that the two-state DCM has internal consistency. 

The percentages correspond to the conditional probability of each model, assuming 

uniform priors over the three models examined under each data set. 
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3.6 Empirical analysis - models comparisons 

In this section, we ask whether the two-state extension described in this Chapter is 

warranted, in terms of providing a better explanation of real data. This was addressed 

by inverting the single- and two-state models using the same empirical data. These 

data have been used previously to validate DCM and are available from 

http://www.fil.ion.ucl.ac.uk/spm. We analysed data from a study of attentional 

modulation during visual motion processing (Büchel and Friston, 1997). The 

experimental manipulations were encoded as three exogenous inputs: A ‘photic 

stimulation’ input indicated when dots were presented on a screen, a ‘motion’ 

variable indicated that the dots were moving and the ‘attention’ variable indicated 

that the subject was attending to possible velocity changes. The activity was modelled 

in three regions V1, V5 and superior parietal cortex (SPC).  

 

We compared the single- and two-state DCM over the following three model variants. 

Model 1 assumed that attention modulates the backward extrinsic connection from 

SPC to V5. Model 2 assumed that attention modulates the intrinsic connection in V5 

and Model 3 assumed attention modulates the forward connection from V1 to V5. All 

models assumed that the effect of motion was to modulate the connection from V1 to 

V5. In Figure 3.5 we show each of these three variants for the single- and two-state 

DCM.  
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Figure 3.5: In all models photic stimulation enters V1 and the motion variable 

modulates the connection from V1 to V5. Models 1, 2 and 3 all assume reciprocally 

and hierarchically organised connections. They differ in how attention modulates the 

influences on V5; model 1 assumes modulation of the backward extrinsic connection, 

model 2 assumes modulation of intrinsic connections in V5 and model 3 assumes 

modulation of the forward connection. A: single-state DCMs. B: two-state DCMs. 
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time (s)time (s)  

Figure 3.6: Plot of the DCM fit to visual attention fMRI data, using the two-state 

model 3. Solid: Prediction, Dotted: Data. Blue: V1 response, Green: V5 response, 

Red: SPC response.  

 

We inverted all models using the variational EM scheme (see Appendix B) and 

compared all six DCMs using Bayesian model comparison. As a representative 

example of the accuracy of the DCM predictions, we show the predicted and observed 

BOLD series for model 3 (two-state) in Figure 3.6. The results of the Bayesian model 

comparison are shown in Figure 3.7, in terms of the log-evidences (in relation to a 

baseline model with no attentional modulation). These results show two things. First, 

both models find strong evidence in favour of model 3, i.e., attention modulates the 

forward connection from V1 to V5. Second, there is strong evidence that the two-state 

models 2 and 3 are better than any single-state model. The respective log-evidences 

for this Bayesian model comparison are shown in Table 3.2. Again, the table shows 

that the forward model is the best model, among either the single- or two-state DCMs. 

Moreover, there is very strong evidence in favour of the two-state model over the 

single-state model, because the differences in log-evidences are all greater than five; 

recall that a difference in log-evidence of three or more corresponds to a Bayes factor 

of about 20 or more, and represents strong evidence. For reference; the log-evidence 

for the baseline model with no attentional modulation was -1649.9. 
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Figure 3.7: Results of the Bayesian model comparisons among DCMs for single-state 

(left) and two-state (right) formulations. The graphs show the log-evidences for each 

model (relative to a no attentional modulation model): Model 3 (modulation of the 

forward connections by attention) is superior to the other two models. The two-state 

model log-evidences are better than any single-state model (note the difference in 

scale). 

 
    

 
 

Backward  
       

Forward Intrinsic 

Single-State 

DCM  

 

-1649.38 

0.00% 
 

 

-1647.36 

0.00% 
 

 

-1648.60 

0.00% 
 

Two-State 

DCM 

 

-1629.20 

1.08% 
 

 

-1624.80 

88.12% 
 

 

-1626.90 

10.79% 
 

Difference in 

Log-Evidence 

 

20.18 
 

 

22.56 

 

 

21.70 

 

Table 3.2: This table shows the log-evidences for the two models, single and two-

state DCMs, plotted in the figure 3.7. Forward modulation is the best for both models. 

We can also see that that there is very strong evidence in favour of the two-state 

model over the single-state model. The percentages in bold correspond to the 
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conditional probability of each model, given the data and assuming uniform priors 

over the six models examined. 
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Figure 3.8: Posterior probability density functions for the Gaussian parameter, 
(3)

21
EEB  associated with attentional modulation of the forward connection in the best 

model. There is an 88% confidence that this gain is greater than one (area under the 

Gaussian to the right of the dashed line). The dashed line indicates 

( )(3) (3)
21 210 exp 1EE EEB B= ⇒ = . 

 

These results represent an inference on model space. To illustrate inference on 

parameter space, Figure 3.8 shows the conditional density of the parameters 

representing attentional gain of the forward connection in the best model. We show 

this conditional density on the Gaussian parameter, (3)
21
EEB  (with an implicit gain or 

scale-parameter (3)
21exp( )EEB ) associated with attention (i.e., when 13 =u ). It can be 

seen that we can be 88% confident that this gain is greater than one. 
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3.7 Discussion 

In this Chapter, we have described a new DCM for fMRI, which has two states per 

region instead of one. With the two-state DCM, it is possible to relax shrinkage priors 

used to guarantee stability in single-state DCMs. Moreover, we can model both 

extrinsic and intrinsic connections, as well as enforce positivity constraints on the 

extrinsic connections. 

 

Using synthetic data, we have shown that the two-state model has internal 

consistency. We have also applied the model to real data, explicitly modelling 

intrinsic connections. Using model comparison, we found that the two-state model is 

better than the single-state model and that it is possible to disambiguate between 

subtle changes in coupling; in the example presented here, we were able to show that 

attentional gain, in the context of visual motion processing, is accounted for 

sufficiently by an increased sensitivity of excitatory populations of neurons in V5 to 

forward afferents from earlier visual areas. 

 

These results suggest that the parameterization of the standard single-state DCM is 

probably too constrained. With a two-state model, the data can be explained by richer 

dynamics at the neuronal level. This might be seen as surprising, because it generally 

is thought that the haemodynamic response function removes a lot of information and 

a reconstruction of neuronal processes is not possible. However, our results challenge 

this assumption, i.e., DCMs with richer dynamics (and more parameters) are clearly 

supported by the data. 

 

In the following, we discuss some potential extensions to current DCMs that may 

allow useful questions to be addressed to fMRI data: currently, we model excitatory 

(glutamatergic) and inhibitory (GABA-ergic) connections. As a natural extension we 

can include further states per region, accounting for other neurotransmitter effects. 

Important examples here would be adaptation phenomena and activity-dependent 

effects of the sort mediated by NMDA receptors. This is interesting because NMDA 

receptors are thought to be targeted preferentially by backward connections. This 
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could be tested empirically using a suitable multi-state DCM based on an explicit 

neural-mass model. 

 

Another important point is that the haemodynamics in the current DCM are a function 

of the excitatory states only. The contributions to the BOLD signal from the inhibitory 

states are expressed indirectly, through dynamic interactions between the two states, 

at the neuronal level. One possible extension would be to model directly separate 

contributions of these two states, at the haemodynamic level. Hypotheses about the 

influence of excitatory and inhibitory populations on the BOLD signal could then be 

tested using model comparison. 

 

Another extension is to generalize the interactions between the two subpopulations, 

i.e., to use nonlinear functions of the states in the DCM. Currently, this is purely 

linear in the states, but one could use sigmoidal functions. This would take our model 

into the class described by (Wilson and Cowan, 1973). In this fashion, one can 

construct more biologically constrained response functions and bring DCMs for fMRI 

closer to those being developed for EEG and MEG. Again, the question of whether 

fMRI data can inform such neural-mass models can be answered simply by model 

comparison. As noted above the bilinear approximation used in the original 

formulation of DCM for fMRI represents a global linearization over the whole of 

state-space; the current extension uses the same bilinear approximation in the states 

(although it is nonlinear in the parameters). A sigmoid nonlinearity would give a state 

equation that is nonlinear in the states. In this instance, we can adopt a local 

linearization, when integrating the system to generate predictions. In fact, our 

inversion scheme already uses a local linearization, because the haemodynamic part 

of DCM for fMRI is nonlinear in the haemodynamic states (Friston, 2002b). 

However, this approach does not account for noise on the states (i.e., random 

fluctuations in neuronal activity). There has already been much progress in the 

solution of stochastic differential equations entailed by stochastic DCMs, particularly 

in the context of neural mass models (see (Sotero et al., 2007; Valdes et al., 1999)). 
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Finally, in the next development of DCM for fMRI we could evaluate DCMs based 

on density-dynamics (see next chapter). Current DCMs consider only the mean 

neuronal state for each population.  

 

3.8 Conclusion 

Our results indicate that one can estimate intrinsic connection strengths within 

network models, using fMRI. Using real data, we find that a two-state DCM is better 

than the conventional single-state DCM. This demonstrates the potential of adopting 

generative models for fMRI time-series that are informed by anatomical and 

physiological principles. 

 



 
 

 
 

CHAPTER 4 

POPULATION DYNAMICS: VARIANCE AND THE 

SIGMOID ACTIVATION FUNCTION 

The previous Chapter presented a novel DCM for fMRI, which considered two states 

per region, an excitatory and an inhibitory state, motivated by anatomical and 

physiological principles. This Chapter addresses the role of dispersion (variance) of 

neuronal states on the cortical responses to sensory inputs. It provides a link between 

the sigmoid activation function and the variance of neuronal membrane 

depolarization, through a cumulative density function within a population. This 

Chapter lays the ground-work for the following Chapters, whereby the variance itself 

becomes a time-dependent variable and hence dynamically coupled to the mean. This 

provides a crucial link between neural mass models and more general neural density 

models. 
  

4.1 Introduction 

The aim of this Chapter is to show how the sigmoid activation function in neural-mass 

models can be understood in terms of the dispersion of underlying neuronal states. 

Furthermore, we show how this relationship can be used to estimate the probability 

density of neuronal states using non-invasive electrophysiological measures such as 

the electroencephalogram (EEG).  

 

There is growing interest in the use of mean-field and neural-mass models as 

observation models for empirical neurophysiological time-series (Breakspear et al., 

2006; David and Friston, 2003; Frank et al., 2001; Freeman, 1975, 1978; Jansen and 

Rit, 1995; Jirsa and Haken, 1996; Lopes da Silva et al., 1974; Lopes da Silva et al., 

1976; Nunez, 1974; Robinson, 2005; Robinson et al., 1997; Robinson et al., 2001; 

Rodrigues, 2006; Steyn-Ross et al., 1999; Valdes et al., 1999; Wilson and Cowan, 

1972; Wright and Liley, 1996). Models of neuronal dynamics allow one to ask 

mechanistic questions about how observed data are generated. These questions or 
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hypotheses can be addressed through model selection by comparing the evidence for 

different models, given the same data. This endeavour is referred to as DCM (David 

et al., 2006a; David et al., 2006b; Friston, 2002b; Friston, 2003; Kiebel et al., 2006; 

Penny et al., 2004a). There has been considerable success in modelling fMRI, EEG, 

MEG and LFP data using DCM (David et al., 2006a; David et al., 2006b; Garrido et 

al., 2007b; Kiebel et al., 2006; Moran et al., 2007). All these models embed key 

nonlinearities that characterise real neuronal interactions. The most prevalent models 

are called neural-mass models and are generally formulated as a convolution of inputs 

to a neuronal ensemble or population to produce an output. Critically, the outputs of 

one ensemble serve as input to another, after some static transformation. Usually, the 

convolution operator is linear, whereas the transformation of outputs (e.g., mean 

depolarisation of pyramidal cells) to inputs (firing rates in pre-synaptic inputs) is a 

nonlinear sigmoidal function. This function generates the nonlinear behaviours that 

are critical for modelling and understanding neuronal activity. We will refer to these 

functions as activation or input-firing curves. 

 

The mechanisms that cause a neuron to fire are complex (Destexhe and Pare, 1999; 

Mainen and Sejnowski, 1995); they depend on the state (open, closed; active, 

inactive) of several kinds of ion channels in the postsynaptic membrane. The 

configuration of these channels depends on many factors, such as the history of 

presynaptic inputs and the presence of certain neuromodulators. As a result, neuronal 

firing is often treated as a stochastic process. Random fluctuations in neuronal firing 

function are an important aspect of neuronal dynamics and have been the subject of 

much study. For example, (Miller and Wang, 2006) looked at the temporal 

fluctuations in firing patterns in working memory models with persistent states. One 

perspective on this variability is that it is caused by fluctuations in the threshold of the 

input-firing curve of individual neurons. This is one motivation for a sigmoid 

activation function at the level of population dynamics; which rests on the well-

known result that the average of many different threshold functions is a nonlinear 

sigmoid. An alternative point of view is that the variability could be caused by 

thermal noise due to the passive membrane resistance which also has a Gaussian 

distribution for large ensembles (Manwani and Koch, 1999). We will show the same 

sigmoid function can be motivated by assuming fluctuations in the neuronal states 
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(Hodgkin and Huxley, 1952). This is a more plausible assumption because variations 

in postsynaptic depolarisation over a population are greater than variations in firing 

threshold (Fricker et al., 1999): in active cells, membrane potential values fluctuate by 

up to about 20mV, due largely to hyperpolarisations that follow activation. In 

contrast, firing thresholds vary up to only 8mV. Furthermore, empirical studies show 

that voltage thresholds, determined from current injection or by elevating extracellular 

K+, vary little with the rate of membrane polarization and that the “speed of transition 

into the inactivated states also appears to contribute to the invariance of threshold for 

all but the fastest depolarisations” (Fricker et al., 1999). In short, the same mean-field 

model can be interpreted in terms of random fluctuations on the firing thresholds of 

different neurons or fluctuations in their states. The latter interpretation is probably 

more plausible from a neurobiological point of view and endows the sigmoid function 

parameters with an interesting interpretation, which we exploit in this Chapter. It 

should be noted that (Wilson and Cowan, 1972) anticipated that the sigmoid could 

arise from a fixed threshold and population variance in neural states; after Equation 1 

of their seminal paper they state: "Alternatively, assume that all cells within a 

subpopulation have the same threshold, … but let there be a distribution of the 

number of afferent synapses per cell.”. This distribution induces variability in the 

afferent activity seen by any cell. 

 

This is the first in a series of Chapters that addresses the importance of high-order 

statistics (i.e., variance) in neuronal dynamics, when trying to model and understand 

observed neurophysiological time-series. In this Chapter, we focus on the origin of the 

sigmoid activation function, which is a ubiquitous component of many neural-mass 

and neural-field models. In brief, this treatment provides an interpretation of the 

sigmoid function as the cumulative density on post-synaptic depolarisation over an 

ensemble or population of neurons. Using real EEG data we will show that population 

variance, in the depolarisation of neurons in somatosensory sources generating 

sensory evoked potentials (SEP) (Litvak et al., 2007) can be quite substantial, 

especially in relation to evoked changes in the mean. In a subsequent Chapter, we will 

present a mean-field model of population dynamics that covers both the mean and 

variance of neuronal states. A special case of this model is the neural-mass model, 

which assumes the variance is fixed (David et al., 2006a; David et al., 2006b; Kiebel 
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et al., 2006). In a final Chapter, we will use these models as probabilistic generative 

models (i.e., dynamic causal models) to show that population variance can be an 

important quantity, when explaining observed EEG and MEG responses. 

 

This Chapter comprises three sections. In the first, we present the background and 

motivation for using sigmoid activation functions. These functions map mean 

depolarisation, within a neuronal population, to expected firing rate. We will illustrate 

the origins of their sigmoid form using a simple conductance-based model of a single 

population. We rehearse the well-known fact that threshold or Heaviside operators in 

the equations of motion for a single neuron lead to sigmoid activation functions, when 

the model is formulated in terms of mean neuronal states. We will show that the 

sigmoid function can be interpreted as the cumulative density function on 

depolarisation, within a population.  

 

In the second section we emphasise the importance of variance or dispersion by 

noting that a change in variance leads to a change in the form of the sigmoid function. 

This changes the transfer function of the system and its input-output properties. We 

will illustrate this by looking at the Volterra kernels of the model and computing the 

modulation transfer function to show how the frequency response of a neuronal 

ensemble depends on population variance. 

 

In the final section, we estimate the form of the sigmoid function using the established 

dynamic causal modelling technique and SEPs, following medium nerve stimulation. 

In this analysis, we focus on a simple DCM of brainstem (BS) and somatosensory 

sources, each comprising three neuronal populations. Using standard variational 

techniques, we invert the model to estimate the density on various parameters, 

including the parameters controlling the shape of the sigmoid function. This enables 

us to estimate the implicit probability density function on depolarisation of neurons 

within each population. We conclude by discussing the implications of our results for 

neural-mass models, which ignore the effects of population variance on the evolution 

of mean activity. We use these conclusions to motivate a more general model of 

population dynamics that will be presented in the subsequent Chapter 5. 
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4.2 Theory 

In this section, we will show that the sigmoid activation function used in neural-mass 

models can be derived from straightforward considerations about single-neuron 

dynamics. To do this, we look at the relationship between variance introduced at the 

level of individual neurons and their population behaviour.  

 

Saturating nonlinear activation functions can be motivated by considering neurons as 

binary units; i.e., as being in an active or inactive state. (Wilson and Cowan, 1972) 

showed that (assuming neuronal responses rest on a threshold or Heaviside function 

of activity) any unimodal distribution of thresholds results in a sigmoid activation 

function at the population level. This can be seen easily by assuming a distribution of 

thresholds within a population characterized by the density, )(wp . For unimodal 

)(wp , the response function, which is the integral of the threshold density, will have a 

sigmoid form. For symmetric and unimodal distributions, the sigmoid is symmetric 

and monotonically increasing; for asymmetric distributions, the sigmoid loses point 

symmetry around the inflection point; in the case of multimodal distributions, the 

sigmoid becomes wiggly (monotonically increasing but with more than one inflexion 

point). Another motivation for saturating activation functions considers the firing rate 

of a neuron and assumes that its time average equals the population average (i.e., 

activity is ergodic). The firing rate of neurons always shows saturation and hence 

sigmoid-like behaviour.  

Neurons exhibit an outstanding variety of morphological and physiological properties. 

The dynamical traits of neuron types have been extensively characterized. Close to 

threshold, there are two distinct types of input-firing curves: type I and type II: the 

former curves are continuous and represent an increasing analytic function of input. 

The latter has a discontinuity, where firing starts after some critical input level is 

reached. These transitions correspond to a bifurcation from equilibrium to a limit-

cycle attractor5. The type of bifurcation determines the fundamental computational 

properties of neurons. Type I and II neuronal behaviour can be generated by the same 

                                                 
5 In all cases, type I cells experience a saddle-node bifurcation on the invariant circle, at threshold. 
Type II neurons, may have three different bifurcations; i.e., a subcritical Hopf bifurcation (most 
frequent), a supercritical Hopf bifurcation, or a saddle node bifurcation outside the invariant circle. 
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neuronal model (Izhikevich, 2007). From these considerations, it is possible to deduce 

population models (Dayan, 2001). 

 

We will start with the following ordinary differential equation (ODE) modelling the 

dynamics of a single neuron from the neural-mass model for EEG/MEG (David and 

Friston, 2003; David et al., 2006a; David et al., 2006b; Garrido et al., 2007a; Kiebel et 

al., 2006; Moran et al., 2007); for example, the i-th neuron in a population of 

excitatory spiny stellate cells in the granular layer:  
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This is a fairly ubiquitous form for neuronal dynamics in many neural-mass and 

cortical-field models and describes neuronal dynamics in terms of two states;  )(
1

ix&  

which can be regarded as depolarisation and )(
2
ix& , which corresponds to a scaled 

current. These ordinary differential equations correspond to a convolution of input 

with a ‘synaptic’ differential alpha-function (e.g., (Gerstner, 2001)). This synaptic 

kernel is parameterised by G , controlling the maximum postsynaptic potential and 

κ , which represents a lumped rate-constant. Here input has exogenous and 

endogenous components: exogenous input is injected current u scaled by the 

parameter, C . Endogenous input arise from connections with other neurons in the 

same population (more generally, any population). It is assumed that each neuron 

senses all others, so that the endogenous input is the expected firing over neurons in 

the population. Therefore, neural mass models are necessarily associated with a 

spatial scale over which the population is deployed; i.e. the so-called mesoscale6, from 

a few hundred to a few thousand neurons.  

 

                                                 
6 Different descriptions pertain to at least three levels of organization. At the lowest level we have 
single neurons and synapses (microscale) and at the highest, anatomically distinct brain regions and 
inter-regional pathways (macroscale). Between these lies the level of neuronal groups or populations 
(mesoscale) (Sporns, O., Tononi, G., Kotter, R., 2005. The human connectome: A structural description 
of the human brain. PLoS Comput Biol 1, e42.. 
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The firing of one neuron is assumed to be a Heaviside function7 of its depolarisation 

that is parameterised by some neuron-specific threshold, )(iw . We can write this in 

terms of the cumulative density over the states and thresholds of the population  
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This expression can be simplified, if we assume the states have a large variability in 

relation to the thresholds (see (Fricker et al., 1999)) and replace the density on the 

thresholds,  )(wp   with a point mass at its mode, w . Under this assumption, the input 

from other neurons can be expressed as a function of the sufficient statistics8 of the 

population’s states; for example, if we assume a Gaussian density  

),:()( 2
1111 σµxNxp =  we can write 

 

)()(

)()()(

111

111
)(

1

µ

µ

−′=⇒

−==− ∫
∞

xSxp

wSdxxpwxH
w

j

j

.               (4.3) 

 

Where )(⋅S  is the sigmoid cumulative density of a zero-mean normal distribution with 

variance 2
1σ  (c.f., (Freeman, 1975)). Equation 4.3 is quite critical because it links the 

motion of a single-neuron to the population density and therefore couples microscopic 

and mesoscopic dynamics. Finally, we can summarise the population dynamics in 

terms of the sufficient statistics of the states to give a mean-field model ),( uf µµ =&  

by taking the expectation of Eq. 4.1 

 

 

                                                 
7 The linearization using a Heaviside function is naturally not appealing if the states populate the 

nonlinear tails of the sigmoid function. 
8 The quantities that specify a probability density; e.g., the mean and variance. 
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We can do this easily because the equations of motion are linear in the states (note the 

sigmoid is not a function of the states). The ensuing mean-field model has exactly the 

same form as the neural-mass model we use in dynamic causal modelling of 

electromagnetic observations (David et al., 2006a). It basically describes the evolution 

of mean states that are observed directly or indirectly. In these neural-mass models the 

sigmoid has a fixed form9  

 

1( )
1 exp( ( ))i

i

S w
w

µ
ρ µ

− =
+ − −

.                             (4.5) 

 

where ρ  is a parameter that determines its slope (c.f., voltage-sensitivity). It is this 

function that endows the model with nonlinear behaviour and biological plausibility. 

However, this form assumes that the variance of the states is fixed, because the 

sigmoid encodes the density on neuronal states (see Eq. 4.3). In the particular 

parameterisation of Eq. 4.5, the slope-parameter corresponds roughly to the inverse 

variance or precision of )( ixp ; more precisely 

 
2 2

2

( ) ( ) ( ) ,

exp( ( ))( ) ( ) .
(1 exp( ( )))

i i i i i

i i
i i i

i i

x p x dx

xp x S x
x

σ ρ µ

ρ ρ µµ
ρ µ

= −

− −′= − =
+ − −

∫
                        (4.6) 

 

Figure 4.1 shows the implicit standard deviation over neural states as a function of the 

slope-parameter, ρ . Heuristically, a high voltage-sensitivity or gain corresponds to a 

tighter distribution of voltages around the mean, so that near-threshold increases in 

                                                 
9 By fixed we mean constant over time. Note that we ignore a constant term here that can be absorbed 
into exogenous input. 
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the mean cause a greater proportion of neurons to fire and an increased sensitivity to 

changes in the mean.  

 

This analysis is based on the assumption that variations in threshold are small, in 

relation to variability in neuronal states themselves. Clearly, in the real brain, 

threshold variance is not zero; in the Appendix E we show that if we allow for 

variance on the thresholds, the standard deviation in Figure 4.1 becomes an upper 

bound on the population variability of the states. In the next section, we look at how 

the dynamics of a population can change profoundly when the inverse variance (i.e., 

gain) changes. 

 

 

Figure 4.1: Relationship between the sigmoid slope ρ and the population variance, 

expressed as the standard deviation. 
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4.3 Kernels, transfer functions and the sigmoid 

In this section, we illustrate the effect of changing the slope-parameter (i.e., variance 

of the underlying neuronal states) on the input-output behaviour of neuronal 

populations. We will start with a time-domain characterisation, in terms of 

convolution kernels and conclude with a frequency-domain characterisation, in terms 

of transfer functions. We will see that the effects of changing the implicit variance are 

mediated largely by first-order effects and can be quite profound. 

 

4.3.1 Nonlinear analysis and Volterra kernels 

The input-output behaviour of population responses can be characterised in terms of a 

Volterra series. These series are a functional expansion of a population’s input that 

produces its outputs (where the outputs from one population constitute the inputs to 

another). The existence of this expansion suggests that the history of inputs and the 

Volterra kernels represent a complete and sufficient specification of population 

dynamics (Friston et al., 2003). The theory states that, under fairly general conditions, 

the output y of a nonlinear dynamic system can be expressed in terms of an infinite 

sum of integral operators 

 

ii
i

ii ddtutukty σσσσσσ KKK 111 )()(),()( −−=∑ ∫∫            (4.7a) 

 

where the i-th order kernel is 
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=
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K               (4.7b) 

 

Volterra kernels represent the causal input-output characteristics of a system and can 

be regarded as generalised impulse response functions (i.e., the response to an impulse 

or spike). The first-order kernel )()()( 111 σσκ −∂∂= tuty  encodes the response 

evoked by a change in input at 1σ−t . In other words, it is a time-dependent measure 

of driving efficacy. Similarly the second-order kernel 
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)()()(),( 21
2

212 σσσσκ −∂−∂∂= tututy  reflects the modulatory influence of the input 

at 1σ−t  on the response evoked by input at 2σ−t ; and so on for higher orders.  

 

Volterra series have been described as a 'power series with memory' and are generally 

thought of as a high-order or nonlinear convolution of inputs to provide an output. 

Essentially, the kernels are a re-parameterisation of the system that encodes the input-

output properties directly, in terms of impulse response functions. In what follows, we 

computed the first and second-order kernels (i.e., impulse response functions) of the 

neural-mass models, using different slope-parameters. This enabled us to see whether 

the changes in population variance are expressed primarily in first or second-order 

effects. 
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Figure 4.2: Schematic of the neural-mass model used to model a single source 

(Moran et al., 2007). 

 

The specific neural-mass model we used has been presented in detail by (Moran et al., 

2007). This model uses intrinsic coupling parameters, ig , between three 



Chapter 4: Population Dynamics: Variance and the Sigmoid Activation Function 
 

 

 

81

subpopulations within any source of observed electromagnetic activity. Each source 

comprises an inhibitory subpopulation in the supragranular layer and excitatory 

pyramidal (output) population in an infra-granular layer. Both these populations are 

connected to an excitatory spiny (input) population in the granular layer. This model 

differs from the model used by ((David and Friston, 2003); see Figure 2.3) in two 

ways: (i) the inhibitory subpopulation has recurrent self-connections and (ii) spike-

rate adaptation is included to mediate slow neuronal dynamics. The equations of 

motions for a three-population source are shown in Figure 4.2; these all have the form 

of Eq. 4.4. 

 

Parameter Physiological Interpretation Value 

ieH ,
 Maximum Postsynaptic Potentials 8mV, 32mV 

ieie ,, 1 κτ =  Postsynaptic rate constants 4ms, 16ms 

aa κτ 1=  Adaptation rate constant 512 ms 

5,4,3,2,1γ  Intrinsic connectivity 128, 128,  64,  64, 4 

w  Threshold 1.8 

Table 4.1: Model parameters 

 

The first-order kernels or response functions for the depolarisation of the two 

excitatory populations are shown in Figure 4.3 (upper panels) and the second-order 

kernels for the excitatory pyramidal cell population are shown in the lower panels, for 

two values of the slope-parameter; 8.0=ρ  and 6.1=ρ . The other parameters were 

chosen such that the system was dynamically stable; see (Moran et al., 2007) and 

Table 4.1. The kernels were computed as described in the appendix of (Friston et al., 

2000). 

 

The first-order responses exhibit a more complicated response for the smaller value of 

ρ ; with pronounced peaks at about 10ms and 20ms for the stellate and pyramidal 

populations respectively. Both responses resemble damped fast oscillations in the 

gamma range (about 40Hz). In addition, there appears to be a slower dynamic, with 

late peaks at about 100ms. This is lost with larger values of ρ  (right panels); 

furthermore, the pyramidal response is attenuated and more heavily damped. The 
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second-order kernels have two pronounced off-diagonal wing-shaped positivities that 

do not differ markedly for the two values of ρ . These high-order kernels tell us about 

nonlinear or modulatory interactions among inputs and speak to asynchronous 

coupling. For example, the peaks in the second-order kernel at 10ms and 20ms (upper 

arrow) mean that the response to an input 10ms in the past is positively modulated by 

an input 20ms ago (and vice versa). The long-term memory of the population 

dynamics is expressed in positive asynchronous interactions (lower arrow) around 

100ms. These second-order effects correspond to interactions between inputs at 

different times, in terms of producing changes in the output. They can be construed as 

input effects that interact nonlinearly with intrinsic states, which ‘remember’ the 

inputs. In the present context, these effects are due to, and only to, the nonlinear form 

of the sigmoid function, which is mandated by the fact it is a cumulative probability 

density function. This is an important observation, which means, under the models 

considered here, population dynamics must necessarily exhibit nonlinear responses.  

 

The effect of changing the gain or slope-parameter is much more evident in the first-

order, relative to the second-order kernels. This suggests population variance does 

not, in itself, change the nonlinear properties of the population dynamics, compared to 

linear effects. The reason that the slope parameter has quantitatively more marked 

effects on the first-order kernel is that our neural mass model is only weakly 

nonlinear; it does not involve any interactions among the states, apart from those 

mediated by the sigmoid activation function. We can use this to motivate a focus on 

linear effects using linear systems theory in the frequency domain. 
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Volterra kernels and the slope parameter
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Figure 4.3: Upper Panels: The first-order Volterra kernels for the depolarisation of 

pyramidal (blue) and spiny stellate (green) populations, for two different values of ρ  

(left: 0.8, right: 1.6). There is a difference between the waveform, which is marked for 

the pyramidal cells. Lower panels: The corresponding second-order Volterra kernels 

in image format. 

 

4.3.2 Linear analysis and transfer functions 

An alternative characterisation of generalised kernels is in terms of their Fourier 

transforms, which furnish generalised transfer functions. A transfer function allows 

one to compute the frequency or spectral response of a population given the spectral 
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characteristics of its inputs. (Moran et al., 2007) have presented a linear transfer 

function analysis of this neural-mass model previously. Our model is linearised by 

replacing the sigmoid function with a first-order expansion around 0=iµ  to give 

 

ii wSS µµ )()( −′= .                            (4.8) 

 

This assumes small perturbations of neuronal states around steady-state. Linearising 

the model in this way allows us to evaluate the transfer function 

BAsICs 1)()( −−=Η
                  (4.9)

  

where the state matrices, xfA ∂∂=  and ufB ∂∂=  are simply the derivatives of the 

equations of motion (i.e., Eq. 4.4) with respect to the states and inputs respectively. 

The frequency response for steady-state input oscillations at ω  radians per second, 

obtains by evaluating the transfer function at ωjs =  (where ωj  represents the axis of 

the complex s-plane corresponding to steady-state frequency responses). When the 

system is driven by exogenous input with spectrum, )( ωjU , the output is the 

frequency profile of the stimulus modulated by the transfer function 

 

)()()( ωωω jUjjY Η=                (4.10) 

 

In brief, the transfer function, )(sH , filters or shapes the frequency spectra of the 

input, )(sU  to produce the observed spectral response, )(sY . The transfer function 

H(s) represents a normalized model of the systems input-output properties and 

embodies the steady-state behaviour of the system. Eq. 4.9 results from one of the 

most useful properties of the Laplace transform, which enables differentiation to be 

cast as a multiplication. One benefit of this is that convolution in the time domain can 

be replaced by multiplication in the s-domain. This reduces the computational 

complexity of the calculations required to analyze the system. 
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Frequency responses and the slope parameter
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Figure 4.4: Upper Panel: Image of the transfer function magnitude ( )sH  where ρ  

is varied from a sixteenth to two. Lower Panel: Plot of the same data over 

frequencies. 

 

We examined the effects of the slope-parameter on the transfer function by computing 

)( ωjΗ  for different values of 2,,, 16
2

16
1 K=ρ . )( ωjΗ  corresponds to the spectral 

response under white noise input (see Eq. 4.10). Figure 4.4 shows the spectral 
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response is greatest at about, 8.0=ρ  when it exhibits a bimodal frequency 

distribution; with a pronounced alpha peak (~12Hz) and a broader gamma peak 

(~40Hz). As ρ  increases or decreases from this value the alpha component is lost, 

leading to broad-band responses expressed maximally in the gamma-range. This is an 

interesting result, which suggests that the population’s spectral responses are quite 

sensitive to changes in the dispersion of states, particularly with respect the relative 

amount of alpha and gamma power. Having said this, these results should not be 

generalised because they only hold for the values of the other model parameters we 

used. These values were chosen to highlight the dependency on the slope-parameter. 

 

To illustrate the change in the response properties caused by a change in ρ , we 

computed the response of the excitatory populations to an input spike embedded in 

white noise process (where the amplitude of the noise was one sixteenth of the spike). 

Using exactly the same input, the responses were integrated for two the values of ρ  

above: 8.0=ρ  which maximises the frequency response and a larger value, 6.1=ρ . 

Figure 4.5 shows the ensuing depolarization of pyramidal and spiny cells and 

corresponding time-frequency plots. For the smaller ρ  (large population variance), 

the output is relatively enduring with a predominance of alpha power. For the larger 

value (small population variance), the output is more transient and embraces higher 

frequencies. We will return to this distinction in an empirical setting in the next 

section, where we try to estimate the slope-parameters and implicit population 

variance using real data. 
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Time-frequency responses and the slope parameter
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Figure 4.5: Upper Panels: Integrated response to a noisy spike input, for two 

different values of ρ  (left: 0.8, right: 1.6). The response of the excitatory pyramidal 

(output) population is shown in blue, and the response of the spiny stellate in green. 

Lower panels: the respective time-frequency responses for the two ρ  cases. 

 

4.4 Estimating population variance with DCM 

In this final section, we exploit the interpretation of the sigmoid as a cumulative 

density on the states, specifically the depolarisation. This interpretation renders the 

derivative of the sigmoid a probability density on the voltage: recall from the first 

section 
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            (4.11) 

 

This means we can use estimates of the slope-parameter, which specifies S ′ , to infer 

the underlying variance of depolarisation in neuronal populations (or an upper bound; 

see Appendix E). In what follows, we estimate the slope-parameter using EEG data 

and Dynamic Causal Modelling. We present two analyses. The first addressed the 

question: “are changes in the mean depolarisation small or large relative to the 

dispersion of voltages?”  We answered this by evaluating the evoked changes in mean 

depolarisation in somatosensory sources generating SEPs and then comparing the 

amplitude of these perturbations with the implicit variance. The second analysis tried 

to establish whether population variance is stable over time. This issue has profound 

implications for neural-mass models that assume variance does not change with time. 

 

4.4.1 Analysis of somatosensory responses 

We analyzed data from a study of long-term potentiation (LTP) reported in (Litvak et 

al., 2007). LTP is a long-lasting modification of synaptic efficacy and is believed to 

represent a physiological substrate of learning and memory (Bliss and Lomo, 1973; 

Cooke and Bliss, 2006; Malenka and Bear, 2004; Martin et al., 2000). (Litvak et al., 

2007) used paired associative stimulation (PAS), which involved repetitive magnetic 

cortical stimulation timed to interact with median nerve (MN) stimulation-induced 

peripheral signals from the hand. The PAS paradigm has been shown to induce long-

lasting changes in MN somatosensory evoked potentials MN-SSEP; (Wolters et al., 

2005) as measured by single-channel recordings from the scalp region overlying 

somatosensory cortex. The generators of MN-SSEPs evoked by compound nerve 

stimulation have been studied extensively with both invasive and non-invasive 

methods in humans and in animal models (for a review see (Allison et al., 1991)). 

(Litvak et al., 2007) characterised the topographical distribution of PAS-induced 

excitability changes as a function of the timing and composition of afferent (MN) 

somatosensory stimulation, with respect to transcranial magnetic stimulation (TMS). 
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In this work, we analysed the SEP data from one subject, following MN stimulation 

(i.e., in the absence of magnetic stimulation), with DCM. The network architecture 

was based on reports in published literature ((Buchner et al., 1995; Litvak et al., 2007; 

Ravazzani et al., 1995)). We modelled the somatosensory system with four equivalent 

current dipoles or sources, each comprising three neuronal subpopulations as 

described in the previous section. Exogenous input was modelled with a gamma 

function (with free parameters), peaking shortly after MN stimulation. In this model, 

exogenous input was delivered to the brainstem source (BS), which accounts for early 

responses in the medulla. In Brodmann area (BA) 3b of S1, we deployed three 

sources, given previous work showing distinct tangential and radial dipoles. We 

employed a third source to account for any other activity. These sources received 

endogenous input from the BS source, via extrinsic connections to the stellate cells. 

 

We inverted the resulting DCM using a variational scheme (Friston et al., 2007) and 

scalp data from 12ms to 100ms, following MN stimulation. This inversion used 

standard variational techniques, which rest on a Bayesian expectation maximization 

(EM) algorithm under a Laplace approximation to the true posterior (Appendix B). 

This provided the posterior densities of the models parameters, which included the 

synaptic parameters of each population, the extrinsic connection strengths, the 

parameters of the gamma input function and the spatial parameters of the dipoles (for 

details see (David et al., 2006a; David et al., 2006b; Kiebel et al., 2006)). The 

resulting posterior means of dipole locations and moments are shown in Figure 4.6 

(upper panel).  

 

In terms of the temporal pattern of responses, the MN-SSEP has been studied 

extensively (Allison et al., 1991). A P14 component is generated subcortically, then a 

N20–P30 complex at the sensorimotor cortex (BA 3b) exhibits a typical ‘tangential 

source pattern’. This is followed by a P25–N35 complex with a ‘radial source 

pattern’. The remainder of the SEP can be explained by an ‘orthogonal source pattern’ 

originating from the hand representation in S1 (Litvak et al., 2007). These successive 

response components were reproduced precisely by the DCM. The accuracy of the 

DCM can be appreciated by comparing the observed data with predicted responses in 

Figure 4.6 (lower panels). 
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Figure 4.6: Upper Panels: Source locations estimated with DCM: Orthogonal slices 

showing the brainstem dipole (BS) and the left primary somatosensory cortex (S1) 

source (consisting of three dipoles: tangential, radial and orthogonal). Lower panels: 

The left graph shows the observed MN-SSEP in channel space. The right graph 

demonstrates the goodness of fit of the DCM using the same format. 

 

Using Eq. 4.6 and the maximum a posteriori estimate of the slope-parameter, we 

evaluated the implicit variance of depolarization )(2 ρσ i  within each neuronal 

population (see Equation 4.6 and Figure 4.1). This variance can be combined with the 

time-dependent mean depolarisation )(tiµ  of any population, estimated by the DCM, 

to reconstruct the implicit density on population depolarisation over peristimulus 

time. Figure 4.7 shows this density in terms of its mean and 90% confidence intervals 

for the first S1 pyramidal population. This quantitative analysis is quite revealing; it 
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shows that evoked changes in the mean depolarisation are small in relation to the 

dispersion. This means that only a small proportion of neurons are driven above 

threshold, even during peak responses. For example, using the estimated threshold, w, 

during peak responses only about 12% of neurons would be above threshold and 

contribute to the output of the population. In short, this sort of result suggests that 

communication among different populations is mediated by a relatively small faction 

of available neurons and that small changes in mean depolarisation are sufficient to 

cause large changes in firing rates, because depolarisation is dispersed over large 

ranges. 
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Figure 4.7: S1 source (pyramidal population) mean depolarization (solid line) as 

estimated by DCM. The variance is depicted with 90% confidence intervals (dashed 

lines); i.e., )(641.1 2 ρσ i×± . 
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4.5 Epilogue 

The preceding analysis assumes that the variance is fixed over peristimulus time. 

Indeed neural-mass models in general assume a fixed variance because they assume a 

fixed-form for the sigmoid activation function. Neural-mass models are obliged to 

make this assumption because their state variables allow only changes in mean states, 

not changes in variance or higher-order statistics of neuronal activity. The question is: 

Is this assumption sensible? 

 

To answer this question, in the next chapter, mean-field models are compared that 

cover both the mean and variance as time-varying quantities. Under the neural-mass 

model considered here, one cannot test formally for changes in variance. However, 

one can provide anecdotal evidence for changes in variance by estimating the slope-

parameters over different time-windows of the data. If the variance does not change 

with time, then the estimate of population variance should not change with the time-

window used to estimate it. Figure 4.8 show estimates of ρ  (with 90% confidence 

intervals)10 that obtain using different time-windows of the MN-SSEP data. For 

example, the estimate, 80ρ  was obtained using the time period from 10 to 80ms. It can 

be seen immediately that the slope-parameter and implicit variance changes markedly 

with the time-window analysed. 

 

However, the results in Figure 4.8 should not be over-interpreted because there are 

many factors that can lead to differences in the conditional density when the data 

change; not least a differential shrinkage to the prior expectation. However, this 

instability in the conditional estimates speaks to the potential importance of modelling 

population variance as a dynamic quantity. 

 

                                                 
10 Note that these confidence intervals are not symmetric about the mean. This is because we 
actually estimate ρln , under Gaussian shrinkage priors. Under the Laplace assumption 
(Friston, et al 2007) this means the condition density )(ρq  has a log-normal form. 
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Figure 4.8: Change in the conditional estimates of ρ  (mean and 90% confidence 

intervals) as a function of the peri-stimulus time-window used for model inversion. 

 

We have seen that the dynamics of neuronal populations can be captured qualitatively 

via a system of coupled differential equations, which describe the evolution of the 

average firing rate of each population. To accommodate stochastic models of neural 

activity, one could solve the associated Fokker-Planck equation for the probability 

distribution of activities in the different neuronal populations. This can be a difficult 

computational task, in the context of a large number of states and populations (e.g., 

(Harrison et al., 2005)). (Rodriguez and Tuckwell, 1998; Rodriguez, 1998) presented 

an alternative approach for noisy systems using the method of moments (MM). This 

entails the derivation of deterministic ordinary differential equations (ODE) for the 

first and second-order moments of the population density. The resulting reduced 

system lends itself to both analytical and numerical solution, as compared with the 

original Langevin formulation.  

 

(Hasegawa, 2003b) proposed a semi-analytical mean-field approximation, in which 

equations of motions for moments were derived for a FitzHugh-Nagumo (FN) 
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ensemble. In (Hasegawa, 2003b), the original stochastic differential equations were 

replaced by deterministic ODEs by applying the method of moments (Rodriguez and 

Tuckwell, 1998). This approach was applied to an ensemble of Hodgkin-Huxley  

(HH) neurons, for which effects of noise, coupling strength, and ensemble size have 

been investigated. In (Deco and Marti, 2007), the MM was extended to cover bimodal 

densities on the state variables; such that a reduced system of deterministic ODEs 

could be derived to characterise regimes of multistability. We will use MM in our 

next Chapter, where we derive the ODEs of the sufficient statistics of integrate-and-

fire ensembles of distributed neuronal sources. These ODEs will form the basis of 

dynamical causal models of empirical data in the last Chapter. 

 

4.6 Conclusion 

In this Chapter, our focus was on how the sigmoid activation function, linking mean 

population depolarization to expected firing rate, can be understood in terms of the 

variance or dispersion of neuronal states. We showed that the slope-parameter ρ  

models formally the effects of variance (to a first approximation) on neuronal 

interactions. Specifically, we saw that the sigmoid function can be interpreted as a 

cumulative density function on depolarisation, within a population. Then, we looked 

at how the dynamics of a population can change profoundly when the variance (slope-

parameter) changes. In particular, we examined how the input-output properties of 

populations depend on ρ , in terms of first (driving) and second (modulatory) order 

convolution kernels and corresponding transfer functions. 

 

We used real EEG data to show that population variance, in the depolarisation of 

neurons from somatosensory sources generating SEPs, can be quite substantial. Using 

DCM, we estimated the SEP parameter density controlling the shape of the sigmoid 

function. This allowed us to quantify the population variance in relation to the 

evolution of mean activity of neural-masses. The quantitative results of this analysis 

suggested that only a small proportion of neurons are actually firing at any time, even 

during the peak of evoked responses. 
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The insights from these studies motivate a more general model of population 

dynamics that will be presented in the next Chapters; where we will compare DCMs 

based on density-dynamics with those based on neural-mass models. Modelling the 

interactions between mean neuronal states (e.g., depolarisation) and their dispersion or 

variance over each population may provide a better and more principled model of real 

data. In brief, these models allow us to ask if the variance of neuronal states in a 

population affects the mean (or vice versa) using the evidence or marginal likelihood 

of the data under different models. Moreover, we can see if observed responses are 

best explained by mean firing rates, or some mixture of the mean and higher-order 

moments. This will allow one to adjudicate between models that include high-order 

statistics of neuronal states in EEG time-series models. In a final Chapter, we will use 

these models as probabilistic generative models (i.e., dynamic causal models) to show 

that population variance is an important quantity, when explaining observed EEG and 

MEG responses. 

 

 



 
 

 
 

CHAPTER 5 

POPULATION DYNAMICS UNDER THE LAPLACE 

ASSUMPTION 

In the previous Chapter, we saw how the sigmoid activation function, linking mean 

population depolarization to expected firing rate can be understood in terms of the 

variance or dispersion of neuronal states. We saw that the sigmoid function can be 

interpreted as a cumulative density function on depolarisation, within a population. 

This motivates a more general model of population dynamics that will be presented 

here. In this Chapter, we describe a generic approach to modelling dynamics in 

neuronal populations. This approach models a full density on the states of neuronal 

populations but finesses this high-dimensional problem by re-formulating density 

dynamics in terms of ordinary differential equations on the sufficient statistics of the 

densities considered (c.f., the method of moments). The particular form for the 

population density we adopt is a Gaussian density (c.f., the Laplace assumption). This 

means population dynamics are described by equations governing the evolution of the 

population’s mean and covariance. We derive these equations from the Fokker-Planck 

formalism and illustrate their application to a conductance-based model of neuronal 

exchanges. One interesting aspect of this formulation is that we can uncouple the 

mean and covariance to furnish a neural-mass model, which rests only on the 

populations mean. This enables us to compare equivalent mean-field and neural-mass 

models of the same populations and evaluate, quantitatively, the contribution of 

population variance to the expected dynamics.  

 

5.1 Introduction 

Mean-field models of neuronal dynamics have a long history, spanning a half-century 

(e.g., (Beurle, 1956)). Models are essential for neuroscience, in the sense that most 

interesting questions about the brain pertain to neuronal mechanisms and processes 

that are not directly observable (Breakspear et al., 2006; Tass, 2003). This means that 
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questions about neuronal function are generally addressed by inference on models or 

their parameters; where the model links hidden neuronal processes to our observations 

and questions (Valdes et al., 1999). Broadly speaking, models are used to generate 

data to study emergent behaviours. Alternatively, they can be used as forward or 

observation models (e.g., dynamic causal models), which are inverted given empirical 

data (David et al., 2006a; Kiebel et al., 2006). This inversion allows one to select the 

best model (i.e., hypothesis), given some data and make probabilistic statements about 

the parameters of that model (e.g., (Penny et al., 2004a)).  

 

In particular, mean-field models are appropriate for data that reflect the behaviour of 

neuronal populations, such as the electroencephalogram (EEG), 

magnetoencephalogram (MEG) and functional magnetic resonance imaging (fMRI) 

data. The most prevalent models of neuronal populations or ensembles are based upon 

the so-called mean-field approximation. This approximation replaces the time-

averaged discharge rate of individual neurons with a common time-dependent 

population activity (ensemble average; (Haskell et al., 2001; Knight, 2000)). This 

assumes ergodicity for all neurons in the population. The mean-field approximation is 

used extensively in statistical physics for otherwise computationally or analytically 

intractable problems. An exemplary approach, owing to Boltzmann and Maxwell, is 

the approximation of the motion of molecules in a gas by mean-field terms such as 

temperature and pressure. Similarly, evoked response potentials (ERPs) represent the 

average response over millions of neurons, where the mean-field approximation 

describes the time-dependent distribution of the average population response. This is 

possible because the dynamics of the mean of the density are much less stochastic 

than the response of a single neuron. This makes it feasible to develop algorithms that 

use Bayesian inference to infer neuronal parameters given measured responses, using 

mean-field models (e.g., (Harrison et al., 2005)).  

 

Usually, neural-mass models are used to model the evolution of the mean response or 

the response at steady state. Generally, mean-field approximations can be used to 

model the full distribution of the population response. However, mean-field models 

can be computationally expensive, because one has to consider the density at all 

points in neuronal state-space as opposed to a single quantity (e.g., the mean). In this 
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Chapter, we present an approach that simplifies the mean-field model by using the 

Laplace approximation: Under the Laplace approximation, the population or ensemble 

density assumes a Gaussian form, whose sufficient statistics comprise the conditional 

mean and covariance. In contrast to neural-mass models, this allows one to model 

interactions between the first two moments (i.e., mean and variance) of neuronal 

states. In the next Chapter, we will use the Laplace and neural mass approximations 

presented here as generative models of electrophysiological responses to sensory 

input. We will use Bayesian model comparison to compare both models and establish 

whether empirical responses contain evidence for a role of variance in shaping 

population dynamics. Here, we focus on the models themselves. 

 

The Laplace approximation is a ubiquitous device in statistical physics and machine 

learning and finesses difficult integration problems when integrating over probability 

densities (see (Chumbley et al., 2007; Friston et al., 2007)). Exactly the same device 

is used here to furnish a simple scheme for modelling density dynamics. Because the 

sufficient statistics of a Gaussian density can be specified in terms of the first two 

moments, the ensuing scheme is formally identical to the second-moment method 

described by (Rodriguez, 1996). The method of moments (Rodriguez and Tuckwell, 

1998; Rodriguez, 1996), replaces a system of stochastic differential equations 

(describing the states of an ensemble) with deterministic equations describing the 

evolution of the sufficient statistics or moments of an ensemble density. This 

approach was first applied to a FitzHugh-Nagumo (FN) neuron (Rodriguez, 1996; 

Tuckwell and Rodriguez, 1998) and later to Hodgkin-Huxley (HH) neurons 

(Rodriguez and Tuckwell, 1998, 2000). This approach assumes that the distributions 

of the variables are approximately Gaussian so that they can be characterized by their 

first and second order moments; i.e., the means and covariances. In related work, 

Hasegawa described a dynamical mean-field approximation (DMA) to simulate the 

activities of a neuronal network. This method allows for qualitative or semi-

quantitative inference on the properties of ensembles or clusters of FN and HH 

neurons; see (Hasegawa, 2003a; Hasegawa, 2003b). 

 

This Chapter comprises three sections. In the first, we provide the background to 

modelling neuronal dynamics with mean-field and neural-mass models. In the second 
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section, we derive a generic mean-field treatment of neuronal dynamics starting with 

any equations of motion. This treatment is based on a Laplace approximation to the 

ensemble density, and is formulated compactly, in terms of the equations of motion 

for the sufficient statistics of the ensemble density. This approach reduces to a neural-

mass model when the second-order statistics (i.e., variance) of neuronal states are 

ignored. We will illustrate how neuronal state equations are reformulated as a mean-

field approximation, using a simple conductance-based model (c.f., (Morris and 

Lecar, 1981)). In the third section, we establish the validity of the Laplace 

approximation by comparing the response of simulated ensembles of neurons to 

responses under the Laplace and neural-mass assumptions. The key behaviour we are 

interested in is the coupling between the mean and variance of the ensemble, which is 

lost in the neural-mass approximations. 

 

5.2 Mean field and neural-masses 

What follows is a brief summary of the material in (Deco et al., 2008)11, which 

provides a full account of mean-field models in neuroscience. The most prevalent 

models of neuronal populations or ensembles are based on the mean-field 

approximation. The basic idea behind these models is to approximate a very high 

dimensional probability distribution with the product of a number of simpler 

(marginal) densities. Its utility is best seen in the context of ensemble or population 

density models. 

 

5.2.1 Mean-field models 

Ensemble models attempt to model the dynamics of large populations of neurons. Any 

single neuron can have a number of attributes; for example, post-synaptic membrane 

depolarisation, V , capacitive current I  or the time since the last action potential, T . 

Each attribute induces a dimension in the state or phase-space of a neuron. In this 

example, the phase-space would be three-dimensional and the state of each neuron 

                                                 
11 There seems to be some inconsistent terminology across different scientific authors from different 

backgrounds and decades. The terminology used in this piece of work follows this review. 
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would correspond to a point 3},,{ ℜ∈= TIVx  or particle in phase-space. Imagine a 

very large number of such neurons that populate phase-space with a density, ),( txq . 

As the state of each neuron evolves, the points will flow through phase-space and the 

ensemble density; ),( txq  will evolve until it reaches some steady-state or equilibrium. 

It is the evolution of the density per se that is characterised in ensemble density 

methods. These models are particularly attractive because the density dynamics 

conform to a simple equation; the Fokker-Planck equation (Dayan, 2001; Frank et al., 

2001; Gerstner, 2002; Risken, 1996) 
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For n states; nx∈ℜ . The equation comprises flow and dispersion terms, which embed 

the assumptions about the dynamics and random fluctuations. The flow, ),( txf  and 

dispersion, ),( txD  constitute our model at the neuronal level. This level of 

description is usually framed as a stochastic differential equation (SDE) that describes 

how the states evolve as functions of each other and some random fluctuations 

 

dwdtxfdx σ+= )( .                  (5.2) 

 

Where, 2
2
1σ=D  and )(tw  is a standard Wiener process (where, in one dimension 

( ) ( ) ~ (0, )w t t w t N t+ ∆ − ∆ ). Under the Fokker-Planck formalism, even if the 

dynamics of each neuron are very complicated, or indeed chaotic, the density 

dynamics remain simple, linear and deterministic. In short, for any model of neuronal 

dynamics, specified as a stochastic differential equation, there is a deterministic linear 

equation that can be integrated to generate ensemble dynamics. However, there is a 

problem; the dimensionality of phase-space can become unmanageably large, if we 

consider too many neuronal states or different types of neuron. Generally speaking, 

full ensemble models of realistic systems are computationally intractable. However, 

we can use a mean-field approximation to finesse this problem. 
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5.2.2 The mean-field approximation 

Consider the states of m sorts of neuron, each with n states; then the states 
mnmxxx ×ℜ∈= )()1( ,,K  could have a large mn×  dimensionality. However, if we 

assume the density factorises over the m populations 

 

∏
=

≈
m

i

ixqxq
1

)( )()(                   (5.3) 

 

we have only to deal with n-dimensional states nix ℜ∈)( . However, by factorising the 

density into marginal densities we have effectively assumed that they are independent. 

This implausible assumption can be circumvented by coupling the ensembles so that 

the flow in the phase-space of one ensemble, ),( )( µixf  depends upon the others; 

through mean-field quantities ))(( )()( jj xqµµ = . These are phase-functions of the 

ensemble densities. These mean-field effects could come from the same ensemble and 

model interactions among neurons in the same population. The ensuing dynamics 

conform to a series of coupled nonlinear Fokker-Planck equations (Frank, 2004). 

Typically, these phase-functions return the average state (e.g., mean depolarisation or 

firing). It is important to realise that coupling ensembles through mean-field 

quantities, nµ∈ℜ  entails strong assumptions about the nature of the interactions: 

specifically, the dynamics or fluctuations in one member of an ensemble cannot affect 

a member of another ensemble. Instead, all the neurons in one ensemble are affected 

identically by the average behaviour of another ensemble. In many instances, this is a 

reasonable approximation but, clearly, it makes the exact form of the mean-field 

approximation an important consideration. In the next Chapter, we will incorporate 

the mean-field model of this Chapter into dynamic causal models of distributed 

neuronal sources. In this context, the coupling above determines how one neuronal 

source influences another; i.e., it corresponds to effective connectivity (David et al., 

2006a; Friston et al., 2003). 
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Even for a single ensemble the dimensionality of nx ℜ∈  may preclude numerical or 

analytic analysis. One can simplify the model by summarising the dynamics with a 

small number of states. In the limit, one can reduce the dynamics to a single neuronal 

state ℜ∈x . An important example is when the state is voltage, i.e., { }x V= . For 

example, (Gerstner, 2002) formulate the dynamics of an ensemble of leaky integrate 

and fire neurons with equations of motion 

 

µ+−−= )()( L
L VV

C
g

Vf                  (5.4) 

 

using the Fokker-Planck equation (Eq. 5.1), with boundary conditions on ),( tVq  that 

model spiking and a re-setting of the membrane potential. Here, C  represents 

membrane capacitance and Lg  a leakage conductance   An alternative method is to 

use the auxiliary variable T  (time elapsed since last spike) to parameterize the 

refractory density, ),( tTq ; see (Eggert and van Hemmen, 2001). (Chizhov et al., 

2006) have refined this approach to account for fast and slow ionic currents, with 

some compelling results. 

 

In summary, one can approximate an ensemble density on a high-dimensional phase-

space with a series of low-dimension ensembles that are coupled through mean-field 

effects. The product of these marginal densities is then used to approximate the full 

density. Critically, the mean-field coupling induces nonlinear dependencies among the 

density dynamics of each ensemble. This typically requires a nonlinear Fokker-Planck 

equation for each ensemble. The Fokker-Planck equation prescribes the evolution of 

the ensemble dynamics, given any initial conditions and equations of motion that 

constitute our neuronal model. However, it does not specify how to encode or 

parameterize the density. There are several approaches to density parameterization 

(Casti et al., 2002; Haskell et al., 2001; Knight, 2000; Nykamp and Tranchina, 2000; 

Omurtag et al., 2000; Sirovich, 2003). These include binning the phase-space and 

using a discrete approximation to a free-form density. However, this can lead to a vast 

number of differential equations, especially if there are multiple states for each 

population. One solution to this is to reduce the dimension of the phase-space to 

render the integration of the Fokker-Planck more tractable (e.g., (Chizhov and 
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Graham, 2007)). Alternatively, one can assume the density has a fixed parametric 

form and deal only with its sufficient statistics (Hasegawa, 2003a; Hasegawa, 2003b; 

Rodriguez and Tuckwell, 1998; Rodriguez, 1996). The simplest form is a delta-

function or point mass; under this assumption we get neural-mass models. 

 

5.2.3 Neural-mass models 

Neural-mass models can be regarded as a special case of ensemble density models, 

where we summarize the ensemble density with a single number. Early examples can 

be found in the work of (Beurle, 1956) and (Griffith, 1963, 1965). The term mass 

action model was coined by (Freeman, 1975) as an alternative to density dynamics. 

Assuming that the equilibrium density has a point mass (i.e., a delta function), we can 

motivate the description above in terms of the expected value of the state, µ ; under 

the assumption that the equilibrium density has a point mass (i.e., a delta function). 

This is one perspective on why these simple mean-field models are called neural-

mass models. In short, we replace the full ensemble density with a mass at a particular 

point and then summarize the density dynamics by the location of that mass. What we 

are left with is a set of non-linear differential equations describing the dynamic 

evolution of this mode. But what have we thrown away?  In the full nonlinear Fokker-

Planck formulation, different phase-functions or probability density moments could 

couple to each other; both within and between ensembles. For example, the average 

depolarisation in one ensemble could be affected by the dispersion or variance of 

depolarisation in another, see (Deco et al., 2008). In neural-mass models, one ignores 

this potential dependency because only the expectations or first moments are coupled. 

There are several devices that are used to compensate for this simplification. Perhaps 

the most ubiquitous is the use of a sigmoid function )(Vς  relating expected 

depolarisation to expected firing-rate (Freeman, 1975; Marreiros et al., 2008a). This 

implicitly encodes variability in the post-synaptic depolarisation, relative to the 

potential at which the neuron would fire. A common form for neural-mass equations 

of motion posits a second-order differential equation for expected voltage Vµ  or, 

equivalently, two coupled first-order equations, where 
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where Iµ  can be regarded as capacitive current. The input )( Vµγς  is commonly 

construed as firing-rate (or pulse-density) and is a sigmoid function of mean voltage 

of the same of another ensemble. The coupling constant γ  scales the amplitude of this 

mean-field effect. The constant κ  controls the rise and decay of the implicit 

(synaptic) impulse response )(tG  to input; convolving input with this impulse 

response kernel gives the expected voltage 

 

)exp()(

))(()()(
2 tttG

tdtttGt VV

κγκ
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−=
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This form of neural-mass model has been used extensively to model 

electrophysiological recordings (e.g., (David and Friston, 2003; Elbert et al., 1994; 

Jansen and Rit, 1995; Kincses et al., 1999; Lopes da Silva et al., 1974; Moran et al., 

2007; Wendling et al., 2000; Zetterberg et al., 1978) and has been used recently as the 

basis of a generative model for event-related potentials that can be inverted using real 

data (David et al., 2006a; Friston et al., 2003; Jansen et al., 2001; Kiebel et al., 2006; 

Moran et al., 2007; Moran et al., 2008; Valdes et al., 1999). 

 

In short, neural-mass models are special cases of ensemble density models that are 

furnished by ignoring all but the expectation or mode of the ensemble density. This 

affords the considerable simplification of the dynamics and allows one to focus on the 

behaviour of a large number of ensembles, without having to worry about an 

explosion in the number of dimensions or differential equations one has to integrate. 

An important generalisation of neural-mass models, which allow for states that are 

functionals of position on the cortical sheet, are referred to as neural-field models (see 

Appendix F; (Breakspear et al., 2006; Jirsa and Haken, 1996; Robinson et al., 2003; 
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Wright et al., 2003). (Deco et al., 2008) provide a comprehensive overview of neural-

mass and neural field models, to which the interested reader is referred.  

 

5.2.4 Summary 

In conclusion, statistical descriptions of neuronal ensembles can be formulated in 

terms of a Fokker-Planck equation; an equation prescribing the evolution of a 

probability density on some phase-space. The high dimensionality and complexity of 

these Fokker-Planck formalisms can be finessed with a mean-field approximation to 

give nonlinear Fokker-Planck equations, describing the evolution of separable 

ensembles that are coupled by mean-field effects. By parameterising the densities in 

terms of their sufficient statistics, these partial differential equations can be reduced to 

ordinary differential equations describing the evolution of the statistics. In the 

simplest case, we can use a single statistic corresponding to the expectation or mode 

of the probability for each ensemble. This can be regarded as encoding the location of 

a probability mass. In what follows, we consider what would happen if the sufficient 

statistics included both the mean and dispersion. 

 

5.3 Ensemble dynamics under the Laplace assumption 

In this section, we derive a general mean-field reduction for neural dynamics 

formulated with any set of ordinary differential equations. This is formally equivalent 

to the method of moments (MM) proposed by (Rodriguez and Tuckwell, 1998; 

Rodriguez, 1996) for summarising density dynamics. In the next section, we apply the 

treatment to the equations used in dynamic causal modelling (DCM) of 

electrophysiological responses. The treatment here rests on summarising the ensemble 

density with a fixed form; namely, a Gaussian density. This corresponds to the 

Laplace assumption made in mean-field treatments in variational or ensemble learning 

in statistics.  Here we use this approach to reduce a very high-dimensional integration 

problem into the manageable integration of the sufficient statistics (e.g., moments) of 

the ensemble density. The sufficient statistics are those quantities needed to define a 
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particular density, in this case the mean ( )iµ  and covariance ( )iΣ  of the states of the i-

th population, with a multivariate normal distribution; ),()( )()()( iii Nxq Σ= µ . 

 

5.3.1 A single population 

For simplicity, we will start with one population and generalise later. Consider some 

equations of motions for the dynamics of a single neuron and the corresponding 

density dynamics 

 

qDfqq
xuxfx
∇⋅∇+⋅−∇=

Γ+=
&

& )(),(
.                 (5.7) 

 

Here, we have introduced an exogenous input u  that exerts its effect through the flow 

(e.g., pre-synaptic input from another population causing a depolarisation and change 

in voltage). From these equations we can derive the equations of motion for the 

sufficient statistics (mean and covariance) of the ensemble density, ),()( Σ= µNxq . 
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Where )( iii xx µ−=  represent perturbations from the mean of the i-th state. These 

equalities can be verified using integration by parts; for example, with a single state 

we have 
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Here, we have used the fact that ±∞→=∂= xxqxq x :0)()(  is a proper density. The 

dynamics of the sufficient statistics in Eq. 5.8 are intuitively sensible; the rate of 

change of the mean of any state is the expected flow, in the direction of that state. 

Similarly, the variance only stops changing when dispersion due to random 

fluctuations is balanced by contraction due to flow. This contraction is proportional to 

the negative correlation between flow and the distance from the mean. This 

perspective can be made explicit by writing Eq. 5.8 as 
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.              (5.10) 

 

We can now exploit the fixed-form (Laplace) assumption about the ensemble density 

by rewriting Eq. 5.10 in terms of its sufficient statistics, using an expansion of the 

flow around the expected state  
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Under Gaussian assumptions 0=
qix  and ijqji xx Σ= and we get 
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This can be expressed more compactly in matrix form 

 
1
2( , ) ( )i i xx i

T T
x x

f u tr f

f f D D

µ µ= + Σ∂
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This is a key expression because it allows us to formulate population dynamics, under 

the Laplace assumption, knowing only the flow, its gradient and curvature 

( ixxixi fff ∂∂ ,, ) at the expected state. Furthermore, we have circumnavigated the 

problem of integrating the density at every point in state-space to integrating a small 

number of sufficient statistics for each population. Equation 5.12 is instructive 

because it shows explicitly how the first and second moments of the density depend 

on each other; the variance affects the mean when and only when the curvature 

(second derivative) of the flow is non zero. This will always be the case if the 

equations of motion are nonlinear in the states. Similarly, the effect of the mean on the 

variance depends on nonlinear dynamics because the gradients in the second equality 

above will only change with the mean, when the curvature is non zero.  

 

Interestingly, the form of neuronal dynamics implicit in Eq. 5.5 is linear in the states; 

in other words,  0xx if∂ = . Equation 5.12 shows that the dynamics of the mean do not 

depend on the covariance and a neural-mass model is sufficient to model density 

dynamics. Below, we will consider a nonlinear conductance-based model where 

0xx if∂ ≠ , which means there is a potential role for dispersion. Finally, Equation 5.12 

shows that if we approximate the ensemble density with a point mass we recover the 

original equations of motion for a single neuron; i.e., if  0=Σ  then the dynamics are 

completely specified in Eq. 5.12b by ),( ufii µµ =& . This is a neural-mass model and 

precludes interactions among moments of the population density.  

 

5.3.2 Coupling different populations 

Above, we treated each member of the neuronal population as evolving independently 

of the others, as if we were modelling a ‘gas’ of neurons. However, real neurons are 

connected and influence each other. We now consider mean-field equations for a set 

of m  coupled populations that accommodate these influences. Under mean-field 

coupling each neuron ‘senses’ the states of all neurons in one or more populations. 

The ensuing effects can be formulated by making the motion of each neuron a 

function of population densities and, implicitly, their sufficient statistics,  
(1) ( ), , mµ µ µ= K  and (1) ( ), , mΣ = Σ ΣK  
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)(),,,( )()( xuxfx ii Γ+Σ= µ& .               (5.13) 

 

This couples the microscopic evolution of each neuron to macroscopic density 

dynamics within and between populations. These mean-field effects basically change 

the pattern of flow within a population’s state-space. The corresponding density 

dynamics of the j-th population are now 
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.             (5.14) 

 

Notice that the terms involving gradients and curvatures pertain only to the population 

in question. This is because  jixf ij ≠∀=∂∂ :0)()(  ; in other words the motion in one 

population ),,( )()( Σ= µii xff   depends only on the density on the states of others, not 

the states per se. Before turning to a specific example we consider the outputs or 

responses of these systems. 

 

5.3.3 Observed responses 

In the next Chapter, we will use the density dynamics above as the basis of a dynamic 

causal model (DCM) of observed data. This requires one to specify how the density 

maps to observed responses, such as the electroencephalogram (EEG) or blood 

oxygen level dependent (BOLD) signals in functional magnetic ressonance imaging 

(fMRI). Generally, these observations are generated by an average 

q

ixg )(),( )(=Σµη  of some nonlinear function of the states, )( )(ixg . The average is 

usually over millions of neurons in an assumed electromagnetic source or voxel in 

neuroimaging and is a function of and only of the sufficient statistics. For EEG this 

function may simply scale the depolarization of pyramidal cells (e.g., )()( )( i
j

i gxxg = ); 

we will use this below. For fMRI )()( )()( τ−= i
j

i xHxg  may be a Heaviside or 

threshold function of depolarisation to reflect synaptic firing. Under the Laplace 
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assumption the expected firing rate ),( Σµη  becomes a sigmoid [error] function of the 

mean depolarisation.  

 

5.3.4 Application to a conductance-based model 

In this section, we apply the Laplace approximation to a model we have used in 

previous papers (Friston et al., 2003), which has a complexity intermediate between 

simple integrate-and-fire models and Hodgkin-Huxley models. Conductance-based 

models are the most common formulation used in neuronal models and can 

incorporate as many different ion channel types as are known for the particular cell 

being modelled. Some examples of conductance-based models are Hodgkin-Huxley 

model (1952), Connor-Stevens model (1971), Morris-Lecar model (1981). This 

involves specifying the equation of motion and implicitly their gradients and 

curvatures. These quantities specify the density dynamics in terms of sufficient 

statistics under the Laplace assumption. Finally, we will look at some special cases 

that will be compared in the final section of this Chapter. 

 

5.3.4.1 The equations of motion 

The neuronal dynamics of any given population considered here conform to a 

simplified (Morris and Lecar, 1981) model, where the states { }( ) ( ) ( ) ( )
1 2, , ,i i i ix V g g= K  

comprise transmembrane potential and a series of conductances corresponding to 

different types of ion channel. The dynamics are given by the stochastic differential 

equations 
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.              (5.15) 

 

These equations of motion constitute a model for a single neuron and, when solved 

simultaneously for an ensemble of neurons, furnish an ensemble model. They are 

effectively the governing equations for a parallel resistance-capacitance circuit; the 
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first says that the rate of change of transmembrane potential (times capacitance, C ) is 

equal to the sum of all currents across the membrane (plus exogenous current, uI = ). 

These currents are, by Ohm’s law, the product of potential difference between the 

voltage and reversal potential, kV  for each type of conductance. These currents will 

either hyperpolarise or depolarise the cell, depending on whether they are mediated by 

inhibitory or excitatory receptors respectively (i.e., whether kV  is negative or 

positive). Conductances change dynamically with a characteristic rate constant kκ  and 

can be regarded as the number of open channels. Channels open in proportion to pre-

synaptic input kς  and close in proportion to the number open. The pre-synaptic input 

corresponds to the expected firing rate in another population, times a coupling 

parameter k
ijγ  for the k-th conductance  
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where ( )H ⋅  is a Heaviside function and the sigmoid function ( )σ ⋅  is a cumulative 

density on the depolarisation; see Chapter 3 and Equation 5.17 below. The form of 

Equation 5.16 is motivated in detail in Chapter 4. 

 

The coupling parameters specify connectivity among populations. Furthermore, they 

can be used to ensure that each population couples to one and only one conductance 

type (i.e., each population can only release one sort of neurotransmitter). Generally, 

one would model a neuronal network of areas, where each area comprises two or 

more populations. This engenders the distinction between intrinsic and extrinsic 

connections, which couple populations within and between brain areas. In this 

Chapter, we restrict ourselves to a single area and intrinsic connections; however, 

there is no mathematical distinction between intrinsic and extrinsic connections. The 

firing in source populations is a Heaviside or threshold function of depolarization 

where the threshold, RV  determines the proportion of afferent cells firing. Under the 

mean-field assumption, this input is a function of the population density of the source 
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and, under the Laplace assumption, this function is simply the Gaussian cumulative 

density  

 

( ) ( )1
2 11

2( , ) 2 det( ) exp .Tx x dx
µ

σ µ π − −

−∞

Σ = Σ − Σ∫               (5.17) 

 

and is a function of the source’s sufficient statistics. These equations constitute 

),,,( )()( Σ= µuxff ii  of the previous section and are sufficient to elaborate a mean-

field approximation under the Laplace assumption using Eq. 5.14; where (dropping 

the population superscript for clarity) 
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Note that the curvature has a simple form because the equations of motion are second 

order only in voltage and conductance. An example of the expressions for the ensuing 

motion of the sufficient statistics ( ) ( ) ( ){ , }i i iλ µ= Σ  from Equation 5.14 and the 

corresponding Jacobian, λλ∂ &  are provided in Figure 5.1, for two populations. This 

figure provides an iconic summary of how different quantities affect each other. For 
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example, the variances affect only the mean depolarisation, in inverse proportion to 

the capacitance. These equations are not necessary to integrate the sufficient statistics; 

we only derived the subset of equations shown in the figure for didactic purposes. In 

practice, these derivatives are evaluated numerically, given the user specified 

equations of motion. 
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Figure 5.1: Expressions for the motion of the sufficient statistics 
( ) ( ) ( ),i i iλ µ= Σ  

(mean and variance) and the corresponding Jacobian for two populations that conform 

to simplified Morris-Lecar-like dynamics. The grey area in the Jacobian covers terms 

that link mean states to each other and are considered in neural-mass reductions of full 

mean-field models. The equations are only used iconically. 

)2(

)2(

)2(

)2(

)2(

)2(

)1(

)1(

)1(

)1(

)1(

)1(

)2(

)2(

)2(

)1(

)1(

)1(

II

IE

EE

IV

EV

VV

II

IE

EE

IV

EV

VV

I

E

V

I

E

V

Σ
Σ
Σ
Σ
Σ
Σ
Σ
Σ
Σ
Σ
Σ
Σ
µ
µ
µ
µ
µ
µ

)(2
)(

)(2

))((

))((

2))((
)(2

)(
)(2

))((

))((

2))((
)(
)(

)()(
)(
)(

)()(

)2()2(

)2()2()2(

)2()2(

)2()2()2()2()2()2(1

)2()2()2()2()2()2(1

)2()2()2()2(2

)1()1(

)1()1()1(

)1()1(

)1()1()1()1()1()1(1

)1()1()1()1()1()1(1

)1()1()1()1(2

)2()2()1(

)2()2()1(

)2(
2
1)2(1)2()2(1

)1()1()1(

)1()1()1(

)1(
2
1)1(1)1()1(1

IIII

IEEI

EEEE

IVI
k

IVkIkVkC

EVE
k

EVkkEVkC

VVV
k

kkVVkC

IIII

IEEI

EEEE

IVI
k

IVkIkVkC

EVE
k

EVkkEVkC

VVV
k

kkVVkC

III

EEE

C
k

VkkC

III

EEE

C
k

VkkC

D

D

V

V

DV
D

D

V

V

DV

trIVg

trIV

+Σ−
Σ+−

+Σ−

Σ−Σ−Σ−

Σ−Σ−Σ−

+Σ−Σ−
+Σ−
Σ+−

+Σ−

Σ−Σ−Σ−

Σ−Σ−Σ−

+Σ−Σ−
−
−

∆Σ++−
−
−

∆Σ++−

∑
∑
∑

∑
∑
∑

∑

∑

κ
κκ

κ

κµµ

κµµ

µµ
κ

κκ
κ

κµµ

κµµ

µµ
µςκ
µςκ

µ
µςκ
µςκ

µµ

=λ =λ&

(1)

(1)

(1)
E

I

V
g

g

(2)

(2)

(2)
E

I

V
g

g
)2(

)2(

)2(

)2(

)2(

)2(

)1(

)1(

)1(

)1(

)1(

)1(

)2(

)2(

)2(

)1(

)1(

)1(

II

IE

EE

IV

EV

VV

II

IE

EE

IV

EV

VV

I

E

V

I

E

V

Σ
Σ
Σ
Σ
Σ
Σ
Σ
Σ
Σ
Σ
Σ
Σ
µ
µ
µ
µ
µ
µ

)(2
)(

)(2

))((

))((

2))((
)(2

)(
)(2

))((

))((

2))((
)(
)(

)()(
)(
)(

)()(

)2()2(

)2()2()2(

)2()2(

)2()2()2()2()2()2(1

)2()2()2()2()2()2(1

)2()2()2()2(2

)1()1(

)1()1()1(

)1()1(

)1()1()1()1()1()1(1

)1()1()1()1()1()1(1

)1()1()1()1(2

)2()2()1(

)2()2()1(

)2(
2
1)2(1)2()2(1

)1()1()1(

)1()1()1(

)1(
2
1)1(1)1()1(1

IIII

IEEI

EEEE

IVI
k

IVkIkVkC

EVE
k

EVkkEVkC

VVV
k

kkVVkC

IIII

IEEI

EEEE

IVI
k

IVkIkVkC

EVE
k

EVkkEVkC

VVV
k

kkVVkC

III

EEE

C
k

VkkC

III

EEE

C
k

VkkC

D

D

V

V

DV
D

D

V

V

DV

trIVg

trIV

+Σ−
Σ+−

+Σ−

Σ−Σ−Σ−

Σ−Σ−Σ−

+Σ−Σ−
+Σ−
Σ+−

+Σ−

Σ−Σ−Σ−

Σ−Σ−Σ−

+Σ−Σ−
−
−

∆Σ++−
−
−

∆Σ++−

∑
∑
∑

∑
∑
∑

∑

∑

κ
κκ

κ

κµµ

κµµ

µµ
κ

κκ
κ

κµµ

κµµ

µµ
µςκ
µςκ

µ
µςκ
µςκ

µµ

=λ =λ&

(1)

(1)

(1)
E

I

V
g

g

(2)

(2)

(2)
E

I

V
g

g



Chapter 5: Population Dynamics under the Laplace assumption 
 

 

 

114

5.3.4.2 Some special cases 

Before assessing the accuracy of the Laplace scheme we will consider some special 

cases of Equation 5.14. The first is obtained if we assume )(iΣ  is fixed for all 

populations. Because the covariance is fixed, we only have to integrate the ensemble 

mean; furthermore because the curvature is constant (voltage) or zero (conductance), 

this entails an extra decay term for voltage, giving density dynamics of the form   

 

),,(

)(),,(
)()(

)()(
2
1)()(

uf

ftruf
i

g
i

g

i
Vxx

ii
V

i
V

Σ=

∂Σ+Σ=

µµ

µµ
&

&
.              (5.19) 

 

This corresponds to a neural-mass model with decay and will be used for comparative 

analysis in the next section. Finally if we further assume that )(iΣ  is spherical (i.e., all 

off-diagonal terms are zero) then this decay terms disappears because the leading 

diagonal of )(i
Vxx f∂  is zero. In this instance, the dynamics reduce to the original 

equations of motion because we can ignore the second-order statistics completely 

 

),,()()( uf i
k

i
k Σ= µµ& .                (5.20) 

 

This is a conventional neural-mass model with the usual sigmoid activation function. 

This function depends on the variance (see Eq. 5.15), which we assume is fixed. Note 

that this provides another perspective on the parameterisation of the sigmoid 

activation function in classical neural-mass models (c.f. Eq. 5.5 and the derivations in 

Chapter 4). In the next section we will compare the Laplace (Eq. 5.14) and neural-

mass approximations (Eq. 5.19) in terms of modelling evoked neuronal transients. 

 

5.4 Summary 

We are now in a position to compare and contrast ensemble models of neuronal 

populations with mean-field (MFM) and neural-mass (NMM) approximations. 

Ensemble models (Eq. 5.15) provide the trajectories of many neurons to form a 

sample density of population dynamics. The MFM is obtained by a mean-field and a 
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Laplace approximation to these densities (Eq. 5.14). The NMM is a special case of the 

mean-field model in which we ignore all but the first moment of the density (i.e., the 

mean or mode). In other words, the NMM discounts dynamics of second-order 

statistics (i.e., variance) of the neuronal states. The mean-field models allow us to 

model interactions between the mean of neuronal states (e.g., firing rates) and their 

dispersion or variance over each neuronal population modelled (c.f., (Harrison et al., 

2005)). The key behaviour we are interested in is the coupling between the mean and 

variance of the ensemble, which is lost in the NMM. The different models and their 

mathematical representations are summarised in Table 5.1.  

 
 

Model 
 

Description Equation 

 

Ensemble 

Stochastic differential equation 

that describes how the states 

evolve as functions of each 

other and some random 

fluctuations 

 

( , )dx f x u dt dwσ= +  

 

(Eq.5.2) 

 

MFM 

Differential equation that 

describes how the density 

evolves as functions of mean 

and covariance. Resulting from 

a mean-field and Laplace 

approximations of the 

ensemble model 

 

TjjTj
x

j
x

j

j
ixx

jj
i

j
i

DDff

ftruf
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)()(
2
1)()( )(),,(

++∂Σ+Σ∂=Σ

∂Σ+Σ=
&

& µµ

  

(Eq.5.14) 

 

NMM 

Differential equation that 

describes how the density 

evolves as a function of the 

mean. Obtained by fixing the 

covariance of the MFM 

 
( ) ( ) ( ) ( )1

2
( )

( , , ) ( )

0

j j j j
i i xx i

j

f u tr fµ µ= Σ + Σ ∂

Σ =

&

&
 

(Eq.5.19) 

 

Table 5.1: Overview of the three models: Ensemble, Mean-Field model (MFM) and 

Neural-Mass model (NMM). For a detailed description of the equations see main text. 
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5.5 Neural-mass vs. mean-field models 

In this section, we examine the accuracy of the Laplace approximation to density 

dynamics, in relation to the true density dynamics that obtain by integrating the 

trajectories of a real but finite-sized population. We will also take the opportunity to 

highlight the difference between the Laplace approximation and neural-mass 

simplifications. In what follows, we examine the response of three populations 

connected to emulate the source model for electromagnetic responses we use in DCM 

for ERPs (David et al., 2006a; Kiebel et al., 2006). Each electromagnetic source 

comprises two excitatory populations and an inhibitory population. These are taken to 

represent input cells (spiny stellate cells in the granular layer of cortex), inhibitory 

interneurons (allocated somewhat arbitrarily to the superficial layers) and output cells 

(pyramidal cells in the deep layers). The deployment and intrinsic connections among 

these populations are shown in Figure 5.2 and the parameters are provided in Table 

5.2. 

 

Parameter Physiological Interpretation Value 

Lg  Leaky conductance 1 mV 

, ,1E I E Iτ κ=  Postsynaptic rate constants 4ms, 16ms 

31 13 23 12 32, , , ,E E E I Iγ γ γ γ γ  Intrinsic connectivity 1, 0.5, 1, 0.5, 2 

, ,L E IV V V  Reversal potential -70 mV, 60 mV, -90 mV 

RV  Threshold potential -40 mV 

Table 5.2: Parameter values for all models used in this Chapter. 

 

In this model, we use three conductance types: leaky, excitatory and inhibitory 

conductance. This gives, for each population  
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& .          (5.21) 

 

Notice that the leaky conductance does not change, which means the states reduce to 

{ }( ) ( ) ( ) ( ), ,i i i i
E Ix V g g= .  Furthermore, for simplicity, we have assumed that the rate-

constants, like the reversal potentials are the same for each population. The excitatory 

and inhibitory nature of each population is defined entirely by the specification of the 

non-zero intrinsic connections k
ijγ  (see Figure 5.2). The resulting sparse connectivity 

means that not all populations have all conductances. 
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Figure 5.2: Neuronal state-equations for a source model with a layered architecture 

comprising three interconnected populations (Spiny-stellate, Interneurons, and 

Pyramidal cells), each of which has three different states (Voltage, Excitatory and 

Inhibitory conductances). 

 

5.5.1 Simulations 

In what follows, we examine the response of this three-population source to an 

exogenous input using the Laplace and neural-mass approximations. We first compare 

the analytic approximations based on the mean-field (Eq. 5.14), with the sample 

density of responses from simulated neuronal ensemble (Eq. 5.15). We present more 

comprehensive characterisations, comparing predicted responses under mean-field 

and neural-mass models to transient and sustained input. Our aim was to (i) evaluate 

the Laplace approximation in relation to the response obtained by integrating the 

original stochastic equation of motions and (ii) to compare the Laplace approximation 

(Eq.5.14) with the neural-mass model (Eq. 5.19) to assess the need for population 

covariance as part of the model. 

 

5.5.2 Ensemble dynamics 

In the first simulations, we examined population responses to an impulse or burst of 

afferent input. This can be regarded as a simple evoked response. We integrated the 

equations of motion (Eq. 5.15) for the three population model of Figure 5.2, with 64 

neurons per population. To integrate the stochastic differential equations, we added a 

random normal variate to the states of each neuron, at each time step t∆  sampled 

from a Gaussian density with variance, tD∆2 . The ensuing impulse responses are 

shown in Figure 5.3, in terms of the depolarisation of pyramidal cells. Because we 

used a relatively small ensemble of neurons there are some (but not marked) finite-

size effects: Finite-size effects are seen when approximating the response of a large 

ensemble with the response of a small number of neurons (see (Doiron et al., 2006; 

Galan et al., 2007; Mattia and Del Giudice, 2004) for a discussion of finite element 

methods in characterising the behaviour of neuronal ensembles). Critically, the 

random fluctuations due to the Wiener processes lead to different trajectories (Figure 
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5.3; middle panel), which provide a sample density for the population dynamics. This 

can be summarised in terms of its mean and a 90% confidence interval, over 

peristimulus time (Figure 5.3; lower panel). The key thing to observe here is that the 

dispersion is not stationary; it changes with time. Specifically, when the states are 

changing quickly around the peak response, the dispersion of states is much smaller 

than when the ensemble is at baseline. It is this change in dispersion that is discounted 

by conventional NMMs. 

 

Figure 5.4 shows the integrated responses of this ensemble of neurons, for all states 

and populations. The red arrows show the main causal influences that couple different 

populations. These are the mean-field effects of depolarisation in one population 

increasing the excitatory or inhibitory conductance of another (through intrinsic 

connections). This, in turn leads to depolarisation or hyperpolarisation of the target 

population. The configuration of intrinsic connections means that input, which enters 

at the spiny stellate population, may only be expressed ten or more milliseconds later 

in other populations. It is these slow population effects we want to approximate. 
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Figure 5.3 Top: Exogenous input. Middle: Integrated response (64 neurons) of the 

pyramidal population, where the spike is driving the neuronal source through intrinsic 

connections (Figure 5.2). Bottom: Summary of the density over trajectories in terms 

of their mean (solid line) and a 90% confidence interval (grey region). 
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Figure 5.4 Ensemble model responses for the three neuronal populations (stellate, 

interneurons, pyramidal) over their three different states (voltage, excitatory and 

inhibitory conductance). The red lines correspond to the causal influences mediated 

by intrinsic connections that convey mean-field effects (from voltage to 

conductances). The vertical broken line is aligned to the exogenous input that arrives 

at 64 ms. 
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We solved the population dynamics to give the MFM and the NMM approximations 

to the impulse responses in Figure 5.4. For the MFM, the mean and dispersion of the 

state dynamics were computed by solving Eq. 5.14 for the same model and input used 

above. The NMM dynamics were obtained by fixing the dispersion of the MFM to its 

steady-state value (in the absence of input); this is the stationary solution to Eq. 5.14. 

There have been no previous attempts to quantify the difference between the derived 

NMM and MFMs beyond one appearing to resemble the original ensemble dynamics 

more closely than the other. In Fig. 5.5 we compare the output of the three described 

models for two different neuronal source inputs. One can see that the mean of the 

trajectories are similar for all models. Although one can see that after the peak, the 

mean response of the MFM response is more like the ensemble model than the NMM 

response. Furthermore, like the ensemble model, the MFM dispersion changes over 

time, while the dispersion of the NMM is constant. For more complex source models 

these small differences may have significant repercussions, if the dynamics of the 

mean depend on dispersion. We will see an example of this later. The MFM appears 

to overestimate the dispersion in comparison to the ensemble model; however, this is 

probably due to finite size effects. 
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Figure 5.5: Population response of the pyramidal cells for the three models: ensemble 

model, mean-field model and neural-mass model. One can see differences for the 

mean (solid lines) and the dispersion (grey regions) of the trajectories. See Figure 5.2 

for the neuronal state-equation source model. 
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5.5.3 Comparing MFM and NMM predictions 

Using the above model, we compared the MFM and the NMM responses using 

exogenous inputs that varied in amplitude and were transient or sustained. The results 

of these simulations are shown in Figure 5.6, in terms of pyramidal cell population 

depolarisation. With transient inputs we found that both the MFM and the NMM 

predicted a similar response. The two models respond with a short-lived burst of 

activity that increased with input amplitude and showed a plateau around 60 µA. 

When the input exceeds 90 µA, the response under both models become biphasic, 

with a second peak that lasted for about 30 ms. With sustained input, both models 

show complex nonlinear behaviour for input amplitudes greater than 24 µA. However, 

for input amplitude values greater than 50 µA the response patterns of the two models 

are very different. The MFM shows a sustained oscillatory or limit-cycle behaviour 

that is largely unaffected by further increases in input. In contrast, the NMM returns 

to a fixed level of depolarization (a fixed-point attractor) after about 200 ms; this 

illustrates that the MFM retains key nonlinearities and can exhibit bifurcations that are 

structurally distinct from the NMM. In short, one observes subtle but potentially 

important differences between the two models, which may have important 

implications for generative models of observed neuronal responses. 
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Figure 5.6: (Left): Pyramidal population response (depolarization) under the mean-

field model to varying levels of input. (Right): Equivalent pyramidal population 

response under the neural-mass model. (Top row) transient input at 64 ms; (Lower 

row) sustained input. The key thing to note is the difference between the predictions 

of the two models in the lower panels, which show the mean-field model prediction to 

oscillate at high levels of input. White indicates -10 mV and black -80 mV. 
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5.5.4 A quantitative characterisation 

To quantify neuronal responses to sustained input under the MFM, we used frequency 

analyses and mean spiking responses. We focussed on the pyramidal population, 

which represents the principal (output) cells in cortex and are the predominant source 

of electromagnetic signals that are observed empirically. The results of these analyses 

are shown in Figure 5.7 using the same model and range of sustained input as above. 

It can be seen that the spectral responses are greatest between about 8 and 16 Hz, for 

input amplitudes between 25 and 45 µA (Figure 5.7A). In this range, the peak 

frequency increases almost linearly with amplitude. In Figure 5.7B we look in more 

detail at the MFM spectral response profile at input amplitudes of 32 and 64 µA. 

These two input levels fall into two different regimes of the spectral response (broken 

lines in Figure 5.7A). For the 32 µA input there is a pronounced alpha peak at ~10Hz, 

for the 64 µA input, the spectrum has a small beta peak around 24 Hz.  

 

We next looked at how the population firing response probability scales with input 

amplitude. Figure 5.7C shows that a response emerges, after about 100 ms, at about 

25 µA input amplitude and shows nonlinear behaviour over time; for higher input 

amplitudes, the activity oscillates at a constant frequency. This response pattern is 

very similar to the depolarization (Figure 5.6), because firing rate is a nonlinear 

function of the density on pyramidal depolarization. The ensuing input-firing rate 

curve (averaged over peristimulus time) shows a highly nonlinear behaviour, with no 

firing below a threshold of 20 µA and progressive increases until the firing saturates 

at input amplitudes of about 50 µA (Figure 5.7D). 

 

This sort of simulation demonstrates that the limit-cycle attractor of the MFM can be 

exploited to study the relationship between oscillatory dynamics and mean levels of 

firing. In this instance, the model suggests that high firing rates, induced by sustained 

inputs, will be expressed in the context of higher frequencies in a desynchronised or 

‘activated’ EEG. This is entirely consistent with empirical observations (e.g., (Kilner 

et al., 2005) and references therein). More generally, this simple simulation shows 

that the nature of responses predicted by mean-field and neural-mass models of 

exactly the same neuronal system can differ profoundly in terms of the dynamics they 

support. Here, the addition of extra variables encoding population covariance leads to 
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oscillations, under sustained input that are not predicted by a reduced neural-mass 

model. In principle, this means that mean-field DCMs of evoked and induced 

responses may provide better models of empirical data. We pursue the theme of 

nonlinearity and limit-cycles in the final simulations, which look at nested 

oscillations. 
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Figure 5.7: Mean-field model frequency response for the pyramidal population. (A) 

Spectral density of response as a function of input amplitude; (B) Spectral density of 
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response for input amplitude of 32 and 64 µA (broken lines in A); (C) Pyramidal 

firing rates as a function of time and input amplitude; (D) Mean population firing over 

time as a function of input amplitude. 

 

5.5.5 Modelling nested oscillations and phase-synchronisation 

Nonlinear coupling between distinct brain regions are observed, predominantly as 

interactions between low and high frequencies. These nonlinear influences are thought 

to mediate top-down modulation, ‘attentional’ and other context-defining functions 

(Canolty et al., 2006; Kopell et al., 2000; Varela et al., 2001; von Stein et al., 2000). 

Two principal forms of cross-frequency phase interactions have been recognized: 

‘n:m phase synchrony’, which indicates amplitude-independent phase-locking of n 

cycles of one oscillation to m cycles of another oscillation (Palva et al., 2005; Tass et 

al., 1998); and ‘nested oscillations’, which reflect the locking of the amplitude 

fluctuations of faster oscillations to the phase of a slower oscillation (Canolty et al., 

2006; Penny et al., 2008; Vanhatalo et al., 2004). Nested oscillations have been 

observed in both the human brain and rat hippocampus (Chrobak and Buzsaki, 1998; 

Mormann et al., 2005); they have been proposed to underlie the discrete nature of 

perception and the capacity of working memory (Penny et al., 2008), as well as 

playing a role in sleep (Steriade, 2006) and olfaction (Kepecs et al., 2006). There 

many studies which rest on cross-frequency coupling, for example (Fukai, 1999; 

Haenschel et al., 2007; Hocking, 2007; Lisman and Idiart, 1995). 

 

Motivated by these findings, we reproduced nested oscillations using our three-

population source (Figure 5.2). We drove the neuronal source with a slow sinusoidal 

input to elicit periods of bursting in the inhibitory population. This produced phase-

amplitude coupling, most notably between the inhibitory population and the spiny 

population that was driven by the low-frequency input. The bursting and concomitant 

nested oscillations are caused by nonlinear interactions between voltage and 

conductance, which are augmented by coupling between their respective means and 

dispersions. Figure 5.8 shows the predicted responses from the MFM and NMM 

models. The population responses of the MFM and NMM show clear differences in 

the number and amplitude of the oscillations per cycle of the low frequency input. 
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Again this illustrates the potential importance of using a MFM (as opposed to a 

NMM) when modelling nonlinear or quasi-periodic dynamics, like nested oscillations. 

This simulation is another illustration of how small differences between models can 

have large effects on the nature of predicted neuronal responses.  
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Figure 5.8 Nested oscillations in the three-population source driven by slow 

sinusoidal input for both MFM and NMM. Input is shown in light blue, spiny 

interneuron depolarization in dark blue, inhibitory interneurons in green and 

pyramidal depolarization in red. The nonlinear interactions between voltage and 

conductance produces phase-amplitude coupling in the ensuing dynamics. The MFM 

shows deeper oscillatory responses during the nested oscillations. 
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5.6 Discussion 

The purpose of this work was to describe a generic approach to modelling dynamics 

in neuronal populations. Our work is motivated by the observation that neural-mass 

approaches, currently used as generative models for observed data (David et al., 

2006a), are a limiting case of mean-field models. In other words, they consider only 

the first moment of the density for each population, which is a special case of the 

more general ensemble density formulation. In this Chapter, we augmented the 

neural-mass model with quantities that encode population dispersion to furnish mean-

field models that capture full density dynamics. 

 

The high dimensionality and complexity of Fokker-Planck formalisms can be reduced 

with a mean-field approximation, which describes the evolution of separate ensembles 

coupled by mean-field effects. By parameterising the densities in terms of their 

sufficient statistics, the partial differential equations can be reduced to ordinary 

differential equations describing the evolution of its sufficient statistics or moments 

(Table 5.2). In this way, we obtained a key equation (Eq. 5.14), which formulates 

population dynamics, using only the flow, its gradient and curvature, at the mean 

state. This expression shows explicitly how the first and second moments of the 

density depend on each other; the variance affects the mean if and only if the 

curvature (second derivative) of the flow is non zero. This will be the case if the 

equations of motion are nonlinear in the neuronal states. Similarly, the effect of the 

mean on the variance depends on nonlinear dynamics because the gradients will only 

change with the mean, when the curvature is non zero.  

 

We have looked at the neuronal response of a particular but ubiquitous model (Figure 

5.2) in terms of the mean and the dispersion of its underlying neuronal states (Figures 

5.3 and 5.4). We established the validity of the Laplace approximation by comparing 

the response of a simulated ensemble of neurons to the response under the Laplace 

and neural-mass assumptions. The key behaviour we were interested in was the 

coupling between the mean and variance of the ensemble, which is lost in the neural-

mass approximations. This enabled us to compare equivalent mean-field and neural-

mass models of the same populations and evaluate, quantitatively, the contribution of 
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population variance to shaping population dynamics. The simulations for the Laplace 

mean-field model, which considers second-order statistics, support a more realistic 

and plausible model than the neural-mass model. The MFM shows, for an impulse 

response function, a dynamical behaviour that is more similar than the NMM to the 

response obtained by integrating the stochastic ensemble dynamics (Figure 5.5). 

Although the NMM is used widely because of its simplicity, it only considers the 

mean neuronal state and does not consider higher statistics like the variance. We 

speculate that this simplifying assumption may have implications when trying to 

invert generative models of real data. 

 

The particular form of neuronal model used here (see Eq. 5.21 and Figure 5.2) is 

among the simplest that are nonlinear in the states (note that the rate of change of 

voltage depends on conductance times voltage). This nonlinearity is critical in the 

present context because, as discussed above, in its absence there is no coupling 

between the mean and dispersion (i.e., the neural mass and mean field formulations 

would behave identically). We are not suggesting, in the choice of this model, that it 

is a sufficient or complete model of neuronal dynamics; this would be a wider 

question for model comparison. We are using this minimal model to ask whether 

mean field formulations provide, in principle, a better account of observed neuronal 

responses than their neural mass counterparts. Moreover, note that the complexity of 

the NMM and MFM are the same; the MFM has more states but does not have more 

unknown parameters (see Table 5.1). This may seem counterintuitive because the 

dispersion in the MFM may appear to make it more complicated. However, the 

dispersion is a sufficient statistic of a density on hidden states and is not itself subject 

to random effects. This means, given the model parameters, it is a deterministic 

quantity and does not add to model complexity (i.e., it is specified by the same 

parameters as the neural mass model). 

 

We compared the Laplace approximation (Eq. 5.14) with the neural-mass model (Eq. 

5.19) to assess the role of the population covariance. NMMs, despite their relative 

simplicity, exhibited complex dynamical behaviour reminiscent of real neuronal 

responses. However, qualitative differences between MFM and NMM predictions 

were easy to demonstrate. In particular, we saw that the MFM showed a bifurcation 
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from fixed-point to a limit-cycle attractor, as sustained input levels were increased 

(Figure 5.6). We also looked at the spectral response of the pyramidal population of 

the mean-field model (Figure 5.7). This analysis disclosed the presence of 

physiologically plausible oscillatory signals in the alpha and beta band and how their 

relative power changed with activation. Additionally, we presented an interesting 

example of the quantitative difference between MFM and NMM by reproducing 

nested oscillation behaviour (Figure 5.8). In short, the MFM appeared to represent 

richer and more complex dynamics. This approach may have potential applications in 

dynamic causal modelling of imaging studies (M/EEG, fMRI) where one tries to 

explain the coordinated activity of a large number of neurons. 

 

The Laplace assumption is a common device in statistical physics and finesses the 

problem of integrating a complicated density by assuming a Gaussian form. In 

machine learning, it allows one to focus on its sufficient statistics, namely the mean 

and covariance. In the present context, it allows one to summarise density dynamics 

using the method of moments (MM; (Rodriguez and Tuckwell, 1998; Rodriguez, 

1996)). This entails replacing the system of stochastic differential equations with a 

system of deterministic equations (ODE) representing the dynamics of the means, 

variances, and covariance of the state variables, i.e., the first and second-order 

moments of the population density. This is precisely what we have done; namely, 

derive the ODE for the sufficient statistics of a Gaussian population density, given 

any set of Fokker-Planck equations that are coupled by phase-functions specifying 

mean-field effects or effective connectivity. 

 

In related work, Hasegawa has proposed a semi-analytical mean-field approximation, 

in which the equations of motion for moments were derived for FitzHugh-Nagumo 

(FN) and Hodgkin-Huxley (HH) ensembles (Hasegawa, 2003a; Hasegawa, 2003b). 

Later he proposed an augmented moment method (AMM; (Hasegawa, 2004)), which 

relaxes the Gaussian or Laplace approximation (Hasegawa, 2006, 2007). In (Deco and 

Marti, 2007), the MM was extended to cover bimodal densities on the state variables; 

such that a reduced system of deterministic ODEs could be derived to characterise 

regimes of multistability. The ODEs in Figure 5.1 pertain to Morris-Lecar-like 
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neurons and will form the basis of dynamical causal models of empirical EEG data in 

the next Chapter. 

 

5.7 Conclusion 

We have derived a generic mean-field treatment of neuronal dynamics, which is based 

on a Laplace approximation to the ensemble density and is formulated in terms of 

equations of motion for the sufficient statistics of the ensemble density. We saw how 

this approach reduces to a neural-mass model when the second-order statistics (i.e., 

variance) of neuronal states is ignored. In the next Chapter, we will use the Laplace 

and neural-mass approximations presented here as generative models of 

electrophysiological responses to sensory input. This Chapter will use Bayesian 

model comparison to compare both models and establish whether empirical responses 

contain evidence for a role of the variance in shaping population dynamics. This 

framework allow one to adjudicate between models that include the high-order 

statistics of neuronal states in predicting EEG time series and may also be important 

in the context of EEG-fMRI fusion; where power (second-order statistics) in electrical 

dynamics may be an important predictor of BOLD signals.  



 
 

 
 

CHAPTER 6 

A DCM STUDY OF MEAN-FIELD AND NEURAL-MASS 

MODELS OF NEURONAL DYNAMICS 

In the previous Chapter, we presented a mean-field model of neuronal dynamics as 

observed with magneto and electroencephalography. Unlike neural-mass models, 

which consider only the mean activity of neuronal populations, mean-field models 

track both the mean and dispersion of population activity. This can be potentially 

important, if the mean affects the dispersion or vice versa. The mean-field model 

presented in the previous Chapter forms the basis of a dynamic causal model of 

observed electromagnetic signals below. In this Chapter, we compare mean-field and 

neural-mass models of electrophysiological responses using Bayesian model 

comparison. We used dynamical causal modelling to ask whether there is any 

evidence for a coupling between the mean and dispersion in observed electromagnetic 

responses. In particular, we used Bayesian model comparison to compare homologous 

mean-field and neural-mass models; and test whether empirical responses support a 

role for population variance in shaping neuronal dynamics. We addressed this 

question to mismatch negativity (MMN) and somatosensory evoked potential (SSEP) 

data; as representative examples of evoked responses with relatively slow and fast 

dynamics respectively. Our main conclusion is that neural-mass models appear quite 

sufficient for cognitive paradigms. However, there is clear evidence for an effect of 

dispersion at the high levels of depolarisation evoked in SEP paradigms. This 

suggests that (i) the dispersion of neuronal states within populations generating 

evoked brain signals can be manifest in observed brain signals and that (ii) the 

evidence for their effects can be accessed with dynamic causal model comparison. 

 

6.1 Introduction 

Neuronal responses are generated by the activity of coupled neuronal populations, as 

they respond to sensorimotor or cognitive perturbations. Models of these dynamics 
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allow one to ask questions about how observed data are generated. Neural-mass 

models (NMMs) have been used in this role for many years (David and Friston, 2003; 

Freeman, 1975; Jansen and Rit, 1995; Lopes da Silva et al., 1976; Nunez, 1974; 

Valdes et al., 1999; Wilson and Cowan, 1972). NMMs are economic models of the 

mean activity (e.g., firing rate or membrane potential) of neuronal populations and 

have been used to emulate a wide range of brain rhythms and dynamics (Amari, 1972; 

Deco et al., 2008; Frank et al., 2001; Haskell et al., 2001; Knight, 1972a, b; Nykamp 

and Tranchina, 2000; Omurtag et al., 2000; Robinson et al., 2005; Rodrigues, 2006; 

Sompolinsky and Zippelius, 1982). 

 

In Chapter 5, we formulated neural-mass models, currently used as generative models 

in dynamic causal modelling, as a limiting case of mean-field models, in which the 

variance of the activity in any one neuronal population was fixed. Unlike neural-mass 

models, mean-field models consider the full density on the states of modelled 

populations including the variance or dispersion. We derived a generic mean-field 

treatment of neuronal populations or ensembles, based on a Laplace approximation to 

the population or ensemble density. This treatment was formulated in terms of 

equations of motion for the sufficient statistics of the ensemble density. Because a 

Gaussian density can be specified in terms of its first two moments, the ensuing 

scheme is formally identical to the second-moment method described by (Rodriguez, 

1996). This reduces to a neural-mass model when the second-order statistics (i.e., 

variance) of neuronal states is assumed to be constant. The key behaviour we were 

interested in was the coupling between the mean and variance of the mean-field 

Laplace approximation, which is lost in the neural-mass approximations. Here, we use 

the mean-field density dynamics as the basis of a dynamic causal model (DCM) of 

observed data. The resulting framework allowed us to adjudicate between models 

which include (or not) the high-order statistics of neuronal states when predicting 

EEG/MEG time series. 

 

This Chapter comprises two sections. In the first, we summarize the DCM used here, 

in terms of the prior densities on the parameters of the mean-field neuronal model of 

the previous chapter and a mapping from hidden neuronal states to measurement 

space. In the second section, we use two EEG data sets and Bayesian model selection 
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(BMS) to assess the relative evidence for neural-mass and mean-field models. In 

addition, we establish the face-validity of neural-mass DCMs and their mean-field 

generalisations using synthetic data, generated using the conditional estimates of the 

network parameters, for each of the empirical examples. 

 

6.2 Theory 

Neural-mass and field models can reproduce neuronal dynamics reminiscent of 

observed evoked responses. However, to emulate more complex dynamics we may 

need to take into account the high-order statistics of ensemble dynamics. In Chapter 5 

we derived a generic mean-field treatment of neuronal dynamics, based on a Laplace 

approximation to the ensemble density. This model is formulated in terms of 

equations of motion for the moments of the ensemble density, reducing to a NMM 

when the second-order moment (variance) is ignored. The most interesting behaviour 

in these mean-field models arises from the coupling between the mean and variance of 

ensemble activity, which is ignored in neural-mass approximations. Here, we will use 

the Laplace and neural-mass approximations in DCMs of electrophysiological 

responses to sensory input. See section 5.2 for a review on modelling neuronal 

dynamics with mean-field models and see section 5.3.4 for its application to a 

conductance-based model. 

 

Dynamic Causal Modelling (DCM) provides a generative model for M/EEG 

responses (see Chapter 2; (David et al., 2006a; Kiebel et al., 2008)). The idea is that 

M/EEG data are the response of a dynamic system to experimental inputs, which are 

processed by a network of interacting neuronal sources. Here every source contains 

different neuronal populations (Figure 5.2), each described by a NMM (Equation 

5.19) or a MFM (Equation 5.14). Each population has its own (intrinsic) dynamics 

governed by the neural-mass or the mean-field equations above, but also receives 

extrinsic input, either directly as sensory input or from other sources. The dynamics of 

these sources are specified fully by a set of first-order differential equations that are 

formally related to other neural-mass and mean-field models of M/EEG (e.g., 

(Breakspear et al., 2006; Rodrigues, 2006)). 
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The neuronal part of the DCMs in this Chapter was based on the mean-field model of 

the previous chapter (Equations 5.19 and 5.14). Table 6.1 lists the priors for the free 

MFM parameters and the values we used for its fixed parameters. 
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Fixed parameters 

Potentials 
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Table 6.1: Prior densities of the MFM parameters. 

 

As described in Chapter 2, to complete the specification of the DCM we need to 

specify how the hidden neuronal states map to observed responses. We assumed that 

the depolarization of pyramidal cell populations gives rise to observed M/EEG data, 
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which are expressed in the sensors through a conventional lead-field. The full 

spatiotemporal model takes the form of a nonlinear state-space model with hidden 

states modelling (unobserved) neuronal dynamics, while the observation (lead-field) 

equation is instantaneous and linear in the states. The ensuing DCM is specified in 

terms of its state-equation (Equation 5.19 or 5.14) and an observer or output equation  

( ) ( )Lh Lθ θ µ=                   (6.1) 

where µ  are the means above, ( )h θ  is the predicted signal and 

, , , ,L k
ij I E wθ θ γ κ κ⊃ K  are unknown quantities that parameterize the state and 

observer equations. The parameters also control any unknown attributes of the 

stimulus function encoding exogenous input; we use a Gaussian density function 

parameterised by its onset and dispersion. We assume the MEG or EEG signal is a 

linear mixture of depolarisations in the pyramidal populations; where the columns of 

( )LL θ  are conventional lead-fields, which account for passive conduction of the 

electromagnetic field from the sources to the sensors. The parameters of the lead-

field, Lθ  encode the location and orientation of the underlying sources. 
 

The predicted signal ( )h θ  corresponds to a generalized convolution of exogenous 

inputs (i.e., experimental stimulus functions). Under Gaussian assumptions about 

measurement noise, this generalized convolution gives a likelihood model for 

observed EEG or MEG data y  
 

( )
( ) ( ) ( )( )

( )

, ( ) ,

X

X

y vec h X

p y N vec h X diag V

θ θ ε

θ λ θ θ λ

= + + ⇒

= + ⊗
                         (6.2) 

 

Noise, ε , is assumed to be zero-mean Gaussian and independent over channels, 

where λ  is a vector of unknown channel-specific error variances and V  represents a 

temporal autocorrelation matrix. Low-frequency noise or drift components are 

modelled by confounding variables in the columns of the matrix, X  (this was simply 

a constant term in this paper). For computational expediency, we reduce the 

dimensionality of the sensor data, while retaining the maximum amount of 

information. This is assured by projecting the data onto a subspace defined by its 
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principal modes; computed using singular value decomposition.  The likelihood in 

Equation 6.2 and the priors in Table 6.1 complete the DCM specification and allow it 

to be inverted for any given data in the usual way (see Appendix B).  

 

As we saw in previous Chapters, a DCM is fitted to data by tuning the free parameters 

to minimize the discrepancy between predicted and observed MEG/EEG time series, 

under complexity constraints. In addition to minimizing prediction error, the 

parameters are constrained by a prior specification of the range they are likely to lie in 

(Friston et al. 2003). These constraints, which take the form of a prior density - ( )p ϑ , 

are combined with the likelihood, ( | )p y ϑ , to form a posterior density 

( | ) ( | ) ( )p y p y pϑ ϑ ϑ∝  according to Bayes’ rule. The priors ( )p ϑ  are usually 

specified under log-normal assumptions to impose positivity constraints; and are 

therefore specified by the prior mean and variance of log-parameters. Table 6.1 lists 

the priors for the free parameters of the neuronal model and the values we used for its 

fixed parameters. 

The log-evidence is an important quantity because it allows one to compare different 

models, (Penny et al. 2004). The most likely model is the one with the largest log-

evidence. Model comparison rests on the likelihood ratio (i.e., Bayes-Factor) of the 

evidence or relative log-evidence for two models. Strong evidence in favour of one 

model typically requires the difference in log-evidence to be three or more (Penny 

et al. 2004). Under flat priors on models this corresponds to a conditional confidence 

that the winning model is exp(3) 20≈  times more likely than the alternative. This 

indicates that the data provide ‘strong’ (10:1 to 30:1) evidence in favour of one model 

over the other. See http://en.wikipedia.org/wiki/Bayes_factor for the range of Bayes 

factors indicating ‘very strong’ (30:1 to 100:1) and ‘decisive’ (more than 100:1) 

evidence for a model. In the next section, we will use the free-energy bound on log-

evidence to compare the different models elaborated above. 
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6.3 Simulations and empirical results 

Our key question was: can we find evidence for coupling between the mean and 

dispersion of neuronal states in empirical data?  However, we anticipated that the 

answer would be context sensitive; in the sense that some evoked responses may 

induce large fluctuations in dispersion, whereas others may not.  This context-

sensitivity can be seen from the form of Equation 5.14, where changes in the 

dispersion of neuronal states depend upon the systems Jacobian ( )i
x f∂  or rate of 

change of flow with state. The Jacobian depends on depolarisation and conductance 

(Equation 5.18), which depends on presynaptic input ( )i
kς . This implies that we would 

expect to see large fluctuations in dispersion and the ensuing effect on the mean under 

high levels of extrinsic presynaptic input.  We therefore chose to perform our model 

comparison using two sorts of evoked responses.  The first used a traditional 

‘cognitive’ paradigm (a mismatch negativity paradigm) in which auditory stimuli can 

be regarded as delivering low amplitude physiological inputs to cortical sources.  In 

contrast, the second paradigm was a somatosensory evoked potential (SEP) paradigm; 

in which neuronal sources are excited with a non-physiological electrical stimulus, 

eliciting transient but high amplitude presynaptic inputs.  We predicted that if there 

was any evidence for the mean-field model, relative to the neural-mass model, then 

we would be more likely to see it in the SEP paradigm, relative to the mismatch 

negativity paradigm.  In what follows, we describe these paradigms and the results of 

our model comparisons. 

 

6.3.1 Mismatch Negativity Paradigm 

In this section, we analyze data from a multi-subject mismatch negativity (MMN) 

(Garrido et al., 2007b). The MMN is the differential response to an unexpected (rare 

or oddball) auditory stimulus relative to an expected (standard) stimulus. The MMN 

has been studied extensively and is regarded as a marker for error detection, caused by 

a deviation from a learned regularity, or familiar auditory context. According to 

(Näätänen et al., 2001) the MMN is caused by two underlying functional processes, a 

sensory memory mechanism and an automatic attention-switching process that might 
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engage frontal generators (Giard et al., 1990). It has been shown that the temporal and 

frontal MMN sources have distinct behaviours over time (Rinne et al., 2000) and that 

these sources interact with each other (Jemel et al., 2002). Thus the MMN could be 

generated by a temporofrontal network (Doeller et al., 2003; Escera et al., 2003; Opitz 

et al., 2002), as revealed by M/EEG and fMRI studies. In a predictive coding 

framework, these findings can also be framed as adaptation and experience-dependent 

plasticity in an auditory network (Friston, 2005; Garrido et al., 2007a; Garrido et al., 

2007b; Jääskeläinen et al., 2004). 

 

Using DCM, we modelled the MMN generators with a temporofrontal network 

comprising bilateral sources over the primary and secondary auditory and frontal 

cortex. Following Garrido et al. (2007a), we used a five-source network with forward 

and backward extrinsic (between-source) connections. Exogenous or auditory input 

(modelled with ( )u t ∈ℜ , a parameterised bump function of time; see Table 6.1) 

enters via subcortical structures into two bilateral sources in posterior auditory cortex 

(lA1 and rA1). These have forward connections to two bilateral sources in anterior 

auditory cortex; i.e., superior temporal gyri (lSTG and rSTG). These sources are 

laterally and reciprocally connected via the corpus callosum. The fifth source is 

located in the right inferior frontal gyrus (rIFG) and is connected to the rSTG with 

reciprocal unilateral connections. Using these sources and prior knowledge about the 

functional anatomy cited above, we specified the DCM network in Figure 6.1. Here, 

we were interested in comparing the NMM and MFM formulations of this network, in 

terms of their negative free-energy. To simplify the analysis, we modelled only the 

responses evoked by standard stimuli (from 0 ms to 256 ms). 
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lA1 rA1

U(t)

rSTGlSTG

rIFG

Network for MMN models

lA1 rA1

U(t)

rSTGlSTG

rIFG

Network for MMN models

 

Figure 6.1: DCM network used for the mismatch negativity paradigm for both 

models; NMM and MFM. Forward connections (full lines), backward connections 

(dash lines), and lateral connections (dash-dot lines) couple sources. A1: primary 

auditory cortex, STG: superior temporal gyrus, IFG: inferior temporal gyrus. l and r – 

left and right brain hemispheres respectively. U(t) is the auditory input stimuli driving 

the network. 

 

6.3.1.1 Empirical results 

Two DCMs (NMM and MFM variants) were inverted for all twelve subjects and 

compared using their log-evidence. Figure 6.2 shows the differences in log-evidences 

for each subject. For all but one subject, there was decisive evidence for the NMM 

over the MFM. The log-evidence at the group level (>100), pooled over all subjects 
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(given the data are conditionally independent over subjects) was similarly decisive. 

Although the relative log-evidence is quantitatively meaningful in its own right, one 

can also treat it as a log-odds ratio and use its distribution over subjects to compute a 

classical p-value (Stephan et al 2009). In this instance, a one-sample T-test was 

extremely significant (T = 3.58, d.f.  = 11, p = 0.002). This means that we can reject 

the null hypothesis that the data are explained equally well by neural-mass and mean-

field formulations of the same neuronal model. 

 

These results suggest the NMM is a better model for explaining evoked auditory 

responses. Note that the complexity of the NMM and MFM are the same; the MFM 

has more states but does not have more unknown parameters. This may seem 

counterintuitive because the dispersion in the MFM may appear to make it more 

complicated. However, the dispersion is a sufficient static of a density on hidden 

states and is not itself subject to random effects. This means, given the model 

parameters, it is a deterministic quantity and does not add to model complexity (i.e., it 

is specified by the same parameters as the neural mass model). This is important 

because the results in Figure 6.2 are remarkably consistent over subjects and cannot 

be explained by differences in model complexity. In short, the NMM provides a better 

prediction of the observed responses than the MFM, in this paradigm. Furthermore, 

the differences between the NMM and MFM predictions are fairly subtle. This 

suggests that the population variance is actually quite stable over peristimulus time, 

because the model selection clearly favours the predictions from the neural-mass 

model. 
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Figure 6.2: Bayesian model comparisons for NMM in relation to MFM. Right: 

Relative log-evidence for the NMM for each subject using the network in Figure 2. 

The NMM log-evidences are consistently better than the MFM log-evidences, with a 

pooled difference >100 over subjects. Left: the same results for the SEP data; the 

group log-evidence difference was >100 in favour of the MFM. The solid lines 

indicate the mean over subjects. 
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Figure 6.3: Upper panels: Observed (left) and predicted (right) evoked responses 

over 128 channels and peristimulus time shown in image formation (grey scale 

normalised to the maximum of each image). These came from the NMM-DCM of the 

first subject. Lower panels: MFM predictions for the same subject. We show the 

observed response twice because they are adjusted for the confounding DC or 

constant term in our model (see Equation 2.6). This adjustment renders the observed 

data slightly different, depending on the model fit. 

 

 

 



Chapter 6: A DCM Study of Mean-Field and Neural-Mass Models of Neuronal 
Dynamics 

 
 

 

146

6.3.1.2 Simulations 

We next performed some comparative evaluations and validations of DCM using 

neural-mass and mean-field models, using synthetic data based on the empirical 

results above. These are presented to show that the empirical model comparison above 

is sufficiently sensitive to disambiguate between neural-mass and mean field variants 

of the same model. After generating data from a known model, we used model 

comparison to ask whether one can recover the correct model over its alternative. We 

integrated the NMM and MFM with known (true) model parameters derived from the 

real data above (the conditional means from a DCM of the grand average over 

subjects) and added random measurement noise with a standard deviation of 10% of 

the peak response in channel space. This was roughly the amplitude of noise in the 

real data. Finally, we used the synthetic data generated by both models to invert the 

neural-mass and mean-field DCMs. Table 6.2 lists the resulting log-evidences. Each 

column contains the log-evidences for each data-set. The maximum values are found 

on the diagonal; i.e., the true model had the greatest evidence and that the relative 

evidence for the correct model was ‘decisive’. These results confirm that these models 

can be disambiguated using DCM, under empirically realistic levels of noise. 

 

Models Synthetic Data  

 NMM           MFM 

NMM  -662.7 -952.9 

MFM -844.2 -665.5  

Table 6.2: Log-evidences for neural-mass (NMM) and mean-field (MFM) models 

using synthetic data generated by a five-source MMN model (see Figure 6.1) using 

NMM and MFM formulations. The diagonal values show higher log-evidences for the 

true model. 
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6.3.2 Somatosensory Evoked Potential Paradigm 

To explore the context sensitivity of these results, we analyzed data from a study of 

paired associative stimulation (PAS), Litvak et al. (2007), which involves repetitive 

magnetic cortical stimulation timed to interact with median nerve stimulation-induced 

peripheral signals from the hand. The PAS paradigm has been shown to induce long-

lasting changes in somatosensory evoked potentials (Wolters et al., 2005) as measured 

by single-channel recordings overlying somatosensory cortex. The SEP generators 

evoked by compound nerve stimulation have been studied extensively with both 

invasive and non-invasive methods in humans and in animal models (Allison et al., 

1991). Litvak, et al. (2007) characterised the topographical distribution of PAS-

induced excitability changes as a function of the timing and composition of afferent 

somatosensory stimulation, with respect to a transcranial magnetic stimulation (TMS). 

The temporal response pattern of the SEP comprises a P14 component generated 

subcortically and then a N20–P30 complex from the sensorimotor cortex, which is 

followed by a P25–N35 complex (Allison et al. 1991). The remainder of the SEP can 

be explained by a source originating from the hand representation in S1 (Litvak et al., 

2007).  

 

We chose these data as examples of fast sensory transients that might engage a more 

circumscribed network than the auditory stimuli in the MMN paradigm above. We 

anticipated that the density dynamics of neuronal populations that were stimulated 

electromagnetically, may disclose the effects of dispersion (see above). We analysed 

the SEP data from eleven subjects following median nerve stimulation (i.e., in the 

absence of transcranial magnetic stimulation) as above. The network architecture was 

based on previous reports (Buchner et al., 1995; Ravazzani et al., 1995, Litvak et al., 

2007): we modelled the somatosensory system with three sources, each comprising 

three neuronal populations. In this model (see Figure 6.4, Litvak et al., 2007 and 

Marreiros et al 2008) exogenous input was delivered to the brainstem source (BS), 

which accounts for early responses in the medulla. The input was a mixture of two 

parameterised bump functions with prior latencies based on known conduction delays 

(see Table 6.1). This region connects to two sources SI and SII in Brodmann area 3 

(Marreiros et al., 2008). We inverted the resulting DCMs using the sensor data from 4 
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ms to 64 ms, following stimulation. We report the results form the first ten subjects 

because the DCM inversion failed to converge for the last subject. 

 

U(t)

BS

SIISI

Network for SEP models

U(t)

BS

SIISI

Network for SEP models

 

Figure 6.4: DCM network used for the SEP paradigm and both NMM and MFM-

based DCMs. Forward connections (full lines), backward connections (dash lines) and 

lateral connections (dash-dot lines) connect the sources. BS: brainstem source, SI and 

SII: two somatosensory sources on Brodmann area 3b. U(t) is the median nerve input 

stimuli driving the network. 

 

6.3.2.1 Empirical results 

Figure 6.2 (right) shows the log-evidence differences. In stark contrast to the MMN 

results, there was ‘decisive’ evidence in all but one subject for the MFM over the 

NMM. Moreover, the large group difference in log-evidence of (>100) favours the 

MFM model; i.e., if we had to account for the data from all subjects with the same 

model, then the evidence for the MFM was decisive. The classical p-value was 

similarly significant (T = 2.19, d.f. = 9, p = 0.028) but less significant than in the 
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MMN analyses due to larger inter-subject variability. These results indicate that the 

MFM is, in this instance, a demonstrably better explanation for somatosensory evoked 

potentials. It is important to appreciate that exactly the same model was used for the 

MMN and SEP data, including the prior density on the free parameters (with the 

exception of the exogenous input). However, the results of model comparison are, as 

anticipated, completely the opposite and remarkably consistent over subjects for both 

paradigms. 

 

Anecdotally, the superior performance of the mean-field model seemed to be its 

ability to fit both the early N20-P30 complex and later waveform components of the 

SEP (although no model was able to fit the P14 components convincingly). This 

contrasts with the neural-mass model that was unable to reproduce the fast initial 

transients but was able to model the slower components that followed. 

Phenomenologically, this means the dispersion of neuronal states in the MFM confers 

a greater range on the time constants of population dynamics, which allows the MFM 

to reproduce fast, large-amplitude responses in, we presume, relatively circumscribed 

neuronal populations responding synchronously to extrinsic afferents. 

 

6.3.2.2 Simulations 

To ensure the model comparison retained its sensitivity, in this SEP setting, we again 

generated synthetic data using the conditional means of the parameters estimated from 

the empirical data. We used a NMM and a MFM for generation and inversion and 

evaluated both combinations to ensure that model selection identified the correct 

model. For the integration of the forward models, we used the conditional means of 

parameters from an analysis of the grand-average data across subjects. We added 

random noise to these synthetic data, with a standard deviation that was 5% of the 

peak response in sensor space. We used the three source model above (Litvak et al., 

2007; Marreiros et al., 2008a) to generate and model the data. Table 6.3 presents the 

log-evidences for each of the four inversions. The highest evidences were obtained for 

the models that were used to generate the synthetic data: these correspond to the 
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diagonal entries. Again, the results conform that model comparison can identify the 

correct model of these somatosensory responses. 

 

Models Synthetic Data  

 NMM           MFM 

NMM  -185.0 -175.8 

MFM -369.6 -102.1  

Table 6.3: Log-evidences for neural-mass (NMM) and mean-field (MFM) models 

using synthetic data generated by a three-source SEP model (see Figure 6.4) using 

NMM and MFM formulations. The diagonal values show higher log-evidences for the 

true model. 

 

6.4 A quantitative illustration of density dynamics 

Figure 6.5 (upper left panel), shows the sufficient statistics of population activity for 

source in the first SEP subject. These are the mean and covariance of neuronal states, 

in source space. These are obtained by integrating the ensemble dynamics in Equation 

5.14, using the equations of motion in Equation 5.21 (and Figure 5.2) and the 

conditional parameter estimates. Generally, when the mean depolarization increases, 

the covariance decreases, getting close to zero when the mean approaches its 

maximum. This is seen here at about 30 ms. This concentration of neuronal states 

augments the decay of mean depolarisation (see Equation 5.14). Note that at around 

20 ms the N20 is modelled by polyphasic dynamics in the mean depolarisation that 

rest on a coupling with dispersion. It is this coupling and ensuing dynamics that are 

missing in the neural mass model. In the lower panel, we see the conditional response 

estimate, in sensor space, in terms of the observed (dotted lines) and predicted (solid 

lines) time-series for all modes. These results are representative of DCM prediction 

accuracy.  
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Figure 6.5: Standard DCM output for SEP data (right) for 64 ms peri-stimulus time 

and MMN data (left) for 256 ms peri-stimulus time. Upper panels: Conditional 

estimates of the mean and covariance of neuronal states, in source space (coloured 

lines correspond to different neuronal subpopulations). Lower panels: Conditional 

estimates of responses, in sensor space (coloured lines correspond to different spatial 

modes; solid line: predicted; dotted line: observed). 

 

6.5 Discussion 

We have introduced a mean-field DCM for M/EEG data, which approximates the full 

density dynamics of population activity in neuronal sources of observed 

electromagnetic responses with a Gaussian density. This work was motivated by the 

observation that neural-mass models, which consider only the first moment of the 

density of each neuronal population, can be seen as a limiting case of mean-field 



Chapter 6: A DCM Study of Mean-Field and Neural-Mass Models of Neuronal 
Dynamics 

 
 

 

152

models (Chapter 5). The mean-field model used physiological plausible priors with 

the hope of creating a reasonably realistic conductance-based model. We have shown, 

using model inversion and simulations that one can disambiguate between MFM and 

NMM models (Tables 6.2 and 6.3) and found that the NMM was the best model for 

explaining the MMN data. In contrast, we found that the MFM was a better model of 

the SEP data (Figure 6.2), in the vast majority of subjects and at the group level. We 

deliberately chose these distinct data-sets in the hope of disclosing this dissociation 

between neural-mass and mean-field models: 

 

This difference in performance between the two models on the two data-sets lies in 

the difference between Equations 5.14 and 5.19. Our results suggest that the MFM 

captures the faster SEP population dynamics better than the NMM. This may be 

because the SEP paradigm evokes larger presynaptic inputs to small circumscribed 

neuronal populations as compared to the MMN and related cognitive paradigms. It is 

this input that induces changes in conductance which synchronise hidden states and 

cause a subsequent suppression of mean activity.  It can be seen from Equation 5.14 

that changes in covariance depend on the derivative of flow. Equation 5.18 shows that 

this depends on depolarisation and conductance. In support of this, the MFM solutions 

for the SEP data do indeed show a reciprocal coupling between mean depolarisation 

and variance (see Figure 6.5). Having said this, the appropriateness of a model for any 

particular data or paradigm data cannot necessarily be deduced analytically. The aim 

of this paper is to show that questions about density dynamics of this sort can be 

answered using Bayesian model comparison. Future studies with NMM and MFM 

may provide heuristics about the relative utility of these models. In particular, it will 

be interesting to use MFMs when more complex dynamics are induced by extreme 

perturbations from steady-state dynamics (e.g., transcranial magnetic stimulation).  

 

Most DCMs in the literature are deterministic; in that they allow for observation noise 

on the sensors but do not consider random fluctuations on hidden states. Here, the 

hidden states in mean-field DCMs are sufficient statistics of a density, which 

accommodates random fluctuations on neuronal states. This is important because it 

means we can model systems specified in terms of stochastic differential equations 

(cf. Equation 5.21) with ordinary differential equations (Equation 5.14) through the 
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Fokker-Planck formalism. A potential application of this approach, beyond finessing 

prediction of EEG signals, could be in the context of EEG-fMRI fusion; where the 

second-order statistics of neuronal activity (c.f. power) may be an important predictor 

of BOLD signals. 

 

It is important to appreciate that the scheme described in this paper is not tied to any 

particular model of neuronal dynamics. The same comparisons presented above could 

be repeated easily, using any model of neuronal dynamics that are entailed by their 

equations of motion. Indeed, we anticipate that people will want to compare neural-

mass and mean-field implementations of different models (see software note). The 

only constraint on these comparisons is that the equations of motion should be 

nonlinear in the neuronal states. This is because linear models preclude a coupling of 

first and second-order moments and render the behaviour of the neural mass and mean 

field formulation identical. 

 

6.6 Conclusion 

We have shown that it is possible to implement a mean-field DCM, which considers 

the mean and variance of neuronal population activity. The modulation of second-

order statistics may be a useful extension of DCM for evoked responses, as measured 

with magneto- and electroencephalography. Critically, the role of higher moments can 

be assessed empirically in a Bayesian model comparison framework. In this initial 

work, we conclude that, although conventional neural-mass models are probably 

sufficient for most applications, it is easy to find strong evidence for coupling among 

the moments of neuronal ensemble densities in observed EEG data. 



 
 

 
 

CHAPTER 7 

GENERAL DISCUSSION AND CONCLUSION 

7.1  Synopsis 

We started off by building a two-state DCM for fMRI which allows inferences that 

can be meaningfully linked to specific neurotransmitter systems and permits the 

modelling of both extrinsic and intrinsic connections. Our results indicate that it is 

possible to estimate area-intrinsic connection strengths using fMRI within network 

models. With real data, using Bayesian model selection, we found that the two-state 

DCM is a better model than the standard single state DCM. This demonstrated the 

potential of adopting generative models that are informed by anatomical and 

physiological principles. 

 

In the second chapter, we saw that the sigmoid activation function currently used in 

neural mass models can be interpreted as a cumulative density function on 

depolarisation. We then looked at how the dynamics of a population can change 

profoundly when the variance (slope-parameter) changes. In particular, we examined 

how the input-output properties of populations depend on the sigmoid, in terms of 

first (driving) and second (modulatory) order convolution kernels and corresponding 

transfer functions. Using real data we showed that the population variance can be 

quite substantial: Using DCM, we quantified the population variance in relation to the 

evolution of mean activity of neural-masses. The quantitative results of this analysis 

suggested that only a small proportion of neurons are actually firing at any time, even 

during the peak of evoked responses. 

 

The insights from the previous studies motivated a more general model of population 

dynamics. Thus, we derived a generic mean-field treatment of neuronal dynamics, 

based on a Laplace approximation to the ensemble density and formulated in terms of 

equations of motion for the sufficient statistics of the ensemble density. We saw how 

this approach reduces to a neural-mass model when the second-order statistics (i.e., 

variance) of neuronal states is ignored.  
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Subsequently, we implemented a mean-field DCM for ERPs based on a conductance-

voltage microcircuit, which considers both the mean and variance of neuronal 

population activity. We saw that the modulation of second-order statistics may be a 

useful extension of DCM for evoked responses, as measured with MEG and EEG. 

Critically, the role of higher moments can now be assessed empirically in a BMS 

framework. In this initial work, we found strong evidence for coupling among the first 

moments (i.e., mean and variance) of neuronal ensemble densities in observed EEG 

data. 

 

7.2  General summary 

The aim of the work described in the first result section, Chapter 3, was to endow 

dynamic causal models (DCM) for fMRI time series with a greater biological realism. 

We have described a new DCM for fMRI, which has two states per region instead of 

one. With the two-state DCM, it is possible to relax shrinkage priors used to guarantee 

stability in single-state DCMs. Moreover, we can model both extrinsic and intrinsic 

connections, as well as enforce positivity constraints on the extrinsic connections. 

Using synthetic data, we have shown that the two-state model has internal 

consistency. We have also applied the model to real data, explicitly modelling 

intrinsic connections. Using model comparison, we found that the two-state model is 

better than the single-state model and that it is possible to disambiguate between 

subtle changes in coupling. These results suggest that the parameterization of the 

standard single-state DCM is possibly too constrained. With a two-state model, the 

data can be better explained by richer dynamics (and more parameters) at the neuronal 

level. This study demonstrated the potential of adopting generative models for fMRI 

time-series that are informed by anatomical and physiological principles. 

Having compared DCMs with one or two neuronal states per brain region for fMRI 

data, we turned to DCM for EEG and MEG data. Specifically, we evaluated DCMs 

based on density-dynamics. To ensure sufficient temporal precision in the data, we 

moved from haemodynamic responses to electrophysiological responses such as the 
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ERP measured with EEG or MEG. In this context, neural-mass DCMs generally have 

a fixed variance because they assume a fixed-form for the sigmoid activation function. 

NMMs are obliged to make this assumption because their state variables allow only 

changes in mean states, not changes in variance or higher-order statistics of neuronal 

activity. Is this assumption sensible?  

 

In Chapter 4 our focus was on how the sigmoid activation function, linking mean 

population depolarization to expected firing rate, can be understood in terms of the 

variance or dispersion of neuronal states. We showed that the slope-parameter ρ  

models formally the effects of variance (to a first approximation) on neuronal 

interactions. Specifically, we saw that the sigmoid function can be interpreted as a 

cumulative density function on depolarisation, within a population. We looked at how 

the dynamics of a population can change profoundly when the variance (slope-

parameter) changes. In particular, we examined how the input-output properties of 

populations depend on ρ , in terms of first (driving) and second (modulatory) order 

convolution kernels and corresponding transfer functions. We used real EEG data to 

show that population variance, in the depolarisation of neurons from somatosensory 

sources generating SEPs, can be quite substantial. Using DCM, we estimated the SEP 

parameter density controlling the shape of the sigmoid function. This allowed us to 

quantify the population variance in relation to the evolution of mean activity of 

neural-masses and provided anecdotal evidence for changes in variance over different 

time-windows of the data. The quantitative results of this analysis suggested that only 

a small proportion of neurons are actually firing at any time, even during the peak of 

evoked responses. 

This Chapter motivated a more general model of population dynamics which 

compared DCMs based on density-dynamics with those based on neural-mass models. 

These models allowed us to ask if the variance of neuronal states in a population 

affects the mean (or vice versa) using the evidence or marginal likelihood of the data 

under different models. Moreover, we could see if observed responses are best 

explained by mean firing rates, or some mixture of the mean and higher-order 

moments. This would allow one to adjudicate between models that include high-order 

statistics of neuronal states in EEG time-series models. 
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In Chapter 5, we derived a generic mean-field treatment of neuronal dynamics, 

which is based on a Laplace approximation to the ensemble density and is formulated 

in terms of equations of motion for the sufficient statistics of the ensemble density. 

The high dimensionality and complexity of Fokker-Planck formalisms can be reduced 

with a mean-field approximation, which describes the evolution of separate ensembles 

coupled by mean-field effects. By parameterising the densities in terms of their 

sufficient statistics, the partial differential equations can be reduced to ordinary 

differential equations describing the evolution of its sufficient statistics or moments 

(Hasegawa, 2003a; Hasegawa, 2003b). In this way, we obtained a key equation, 

which formulates population dynamics, using only the flow, its gradient and 

curvature, at the mean state. The key behaviour we were interested in was the 

coupling between the mean and variance of the ensemble, which is lost in the neural-

mass approximations. This enabled us to compare equivalent mean-field and neural-

mass models of the same populations and evaluate, quantitatively, the contribution of 

population variance to shaping population dynamics. We compared the Laplace 

approximation with the neural-mass model to assess the role of the population 

covariance. Qualitative differences between MFM and NMM predictions were easy to 

demonstrate. The MFM showed a dynamical behaviour more similar than the NMM 

to the response obtained by integrating the stochastic ensemble dynamics. In 

particular, we saw that the MFM showed a bifurcation from fixed-point to a limit-

cycle attractor, as sustained input levels were increased. The spectral response of the 

pyramidal population of the mean-field model analysis disclosed the presence of 

physiologically plausible oscillatory signals in the alpha and beta band and how their 

relative power changed with activation. Additionally, we presented an interesting 

example of the quantitative difference between MFM and NMM by reproducing 

nested oscillation behaviour. In short, the MFM appeared to represent richer and more 

complex dynamics. This may have important valuable applications in DCM of 

imaging studies (M/EEG, fMRI), where one tries to explain the coordinated activity 

of a large number of neurons. 
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In Chapter 6, we used the Laplace and neural-mass approximations of the previous 

Chapter as generative models of electrophysiological responses to sensory input. We 

introduced a mean-field DCM for M/EEG data, which considers the mean and 

variance of neuronal population activity. This work was motivated by the observation 

that neural-mass models, which consider only the first moment of the density of each 

neuronal population, can be seen as a limiting case of mean-field models, (Chapter 4). 

We have shown, using model inversion and simulations that one can disambiguate 

between MFM and NMM models and found that the NMM was the best model for 

explaining MMN data. In contrast, we found that the MFM was the best model for 

explaining SEP data. Our results suggest that the MFM captures the faster SEP 

population dynamics better than the NMM. Future studies with NMM and MFM may 

provide heuristics about the relative utility of these models. In particular, it will be 

interesting to use MFMs when more complex dynamics are induced by extreme 

perturbations from steady-state dynamics (e.g., transcranial magnetic stimulation). 

The modulation of second-order statistics may be a useful extension of DCM for 

evoked responses, as measured with magneto- and electroencephalography. Critically, 

the role of higher moments can be assessed empirically in a Bayesian model 

comparison framework. In this initial work, we conclude that, although conventional 

neural-mass models are probably sufficient for various applications, it is easy to find 

strong evidence for coupling among the moments of neuronal ensemble densities in 

observed EEG data.  

 

7.3  Future Directions 

This section discusses potential extensions to DCM that may allow useful questions to 

be addressed. 

 

7.3.1 DCM for fMRI 

Currently, with the two-state DCM, we model excitatory (glutamatergic) and 

inhibitory (GABA-ergic) connections. As a natural extension, we can include further 

states per region, accounting for other neurotransmitter effects. Important examples 
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here would be adaptation phenomena and activity-dependent effects of the sort 

mediated by NMDA receptors. This is interesting because NMDA receptors are 

thought to be targeted preferentially by backward connections. This could be tested 

empirically using a suitable multi-state DCM based on an explicit neural-mass model. 

Another important point is that the haemodynamics in the current DCM are a function 

of the excitatory states only. The contributions to the BOLD signal from the inhibitory 

states are expressed indirectly, through dynamic interactions between the two states, 

at the neuronal level. One possible extension would be to model directly separate 

contributions of these two states, at the haemodynamic level. Hypotheses about the 

influence of excitatory and inhibitory populations on the BOLD signal could then be 

tested using model comparison. 

 

Another extension is to generalize the interactions between the two subpopulations, 

i.e., to use nonlinear functions of the states in the DCM. Currently, this is purely 

linear in the states, but one could use sigmoidal functions. This would take our model 

into the class described by (Wilson and Cowan, 1973). In this way, one can construct 

more biologically constrained response functions and bring DCMs for fMRI closer to 

those being developed for EEG and MEG. Again, the question of whether fMRI data 

can inform such neural-mass models can be answered simply by model comparison.  

 

Current DCMs do not account for noise on the states (i.e., random fluctuations in 

neuronal activity). There has already been much progress in the solution of stochastic 

differential equations entailed by stochastic DCMs, particularly in the context of 

neural mass models (see (Sotero et al., 2007; Valdes et al., 1999)). A number of 

methodological developments have improved and extended DCM for fMRI, e.g. 

Bayesian model selection amongst alternative DCMs (Penny et al., 2004a), precise 

sampling from predicted responses (Kiebel et al., 2007b), refined haemodynamic 

model (Stephan et al., 2007c) and a nonlinear DCM for fMRI (Stephan et al., 2008). 

These could all be combined with multistate DCMs for fMRI. 
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7.3.2 DCM for ERP 

The hidden states in mean-field DCMs used here are sufficient statistics of a density, 

which accommodates random fluctuations on neuronal states. This is important 

because it means we can model systems specified in terms of stochastic differential 

equations with ordinary differential equations through the use of the Fokker-Planck 

formalism. A potential application of this approach, beyond finessing prediction of 

EEG signals, could be in the context of EEG-fMRI fusion; where the second-order 

statistics of neuronal activity (c.f. power) may be an important predictor of BOLD 

signals. Further development of M/EEG models and their fusion with other imaging 

modalities requires more complex models embodying useful constraints. The 

appropriateness of such models for any given data cannot necessarily be intuited, but 

can be assessed formally using Bayesian model comparison. Bayesian model 

comparison will probably become a ubiquitous tool in M/EEG (and fMRI). 

 

A number of methodological developments have improved and extended DCM for 

ERP, a DCM for intrinsic connections (Kiebel et al., 2007a), a DCM for induced 

responses (Chen et al., 2008), a DCM of steady state responses (Moran et al., 2009). It 

can be expected that this trend will be considerably reinforced and accelerated during 

the next few years, fuelled by the need for mechanistic explanations of how cognition 

is mediated by neural systems and by the availability of more powerful modelling 

techniques. 

 

7.3.3 DCM and clinical applications 

The generic framework of DCM and the ongoing developments, will contribute to a 

more mechanistic understanding of brain function. Of particular interest will be the 

use of neural system models like DCM to (i) understand the mechanisms of drugs and 

(ii) to develop models that can serve as diagnostic tools for diseases linked to 

abnormalities of connectivity and synaptic plasticity. Concerning pharmacology, 

many drugs used in psychiatry and neurology change synaptic transmission and thus 

functional coupling between neurons. Therefore, their therapeutic effects cannot be 
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fully understood without models of drug-induced connectivity changes in particular 

neural systems.  

 

The success of this approach will partially depend on developing models that include 

additional levels of biological detail while being parsimonious enough to ensure 

mathematical identifiability and physiological interpretability; see (Breakspear et al., 

2003b; Harrison et al., 2005; Jirsa, 2004; Robinson et al., 2001) for examples that 

move in this direction. Another important goal is to explore the utility of models of 

effective connectivity as diagnostic tools (Stephan, 2004). This seems particularly 

attractive for neurological and psychiatric diseases whose phenotypes are often very 

heterogeneous and where a lack of focal brain pathologies points to abnormal 

connectivity (dysconnectivity) as the cause of the illness.  

 

A major challenge will be to establish neural systems models which are sensitive 

enough that their connectivity parameters can be used reliably for diagnostic 

classification and treatment response prediction of individual patients. Ideally, such 

models should be used in conjunction with paradigms that are minimally dependent 

on patient compliance and are not confounded by factors like attention or 

performance. Given established validity and sufficient sensitivity and specificity of 

such a model, one could use it in analogy to biochemical tests in internal medicine, 

i.e. to compare a particular model parameter (or combinations thereof) against a 

reference distribution derived from a healthy population (Stephan, 2004).  

 



 
 

 
 

APPENDICES 

Appendix A 

Psychophysiological interactions 

(Büchel et al., 1996) discuss a series of increasingly high-order interaction terms in 

general linear models. These are introduced as new explanatory variables enabling 

SPM to estimate the magnitude and significance of nonlinear effects directly. A 

special example of this is a psychophysiological interaction (Friston et al., 1997), 

where the bilinear term represents an interaction between an input or psychological 

variable and a response or physiological variable iy  measured at the i-th brain region. 

Any linear model can be augmented to include a PPI 

 

εβ +×= ][ iyuXY .                (A.1) 

 

The design matrix partition ],,[ KiyuX =  normally contains the main effect of 

experimental input and regional response. The PPI is the Hadamard product iyu ×  

and is obtained by multiplying the input and response vectors element by element. 

Both the main-effects and interaction terms are included because the main effects 

have to be modelled to assess properly the additional explanatory power afforded by 

the bilinear or PPI term. PPI models provide important evidence for the interactions 

among distributed brain systems and enabled inferences about task-dependent 

plasticity using a relatively simple procedure.  

 
Structural equation modelling 

This model was developed explicitly with effective connectivity or path analysis in 

mind and rests on specifying constraints on the connectivity. There is no designed 

perturbation and the inputs are treated as unknown and stochastic. Furthermore, the 

inputs are often assumed to express themselves instantaneously such that, at the point 

of observation the change in states is zero. In the absence of bilinear effects we have 
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CuAx
CuAx

x

1

0

−−=

+=
=&

.                             (A.2) 

 

This is the regression equation used in SEM where IDA −=  and D  contains the off-

diagonal connections among regions. The key point here is that A is estimated by 

assuming )(tu  is some random innovation with known covariance. This is not really 

tenable for designed experiments when )(tu  represent carefully structured 

experimental inputs. Although SEM and related autoregressive techniques are useful 

for establishing dependence among regional responses, they are not surrogates for 

informed causal models based on the underlying dynamics of these responses. 
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Appendix B 

Expectation Maximisation 

This appendix describes EM for linear models using statistical mechanics (Neal and 

Hinton, 1998). We connect this formulation with classical methods and show the 

variational free energy is the same as the objective function maximised in restricted 

maximum likelihood (ReML). 

 

The EM algorithm is ubiquitous in the sense that many estimation procedures can be 

formulated as such, from mixture models through to factor analysis. Its objective is to 

maximise the likelihood of observed data )|( λyp , conditional on some 

hyperparameters, in the presence of unobserved variables or parameters θ . This is 

equivalent to maximising the log-likelihood 

 

θθθθλθθλ

θλθλ

dqqdypqqF

dpyp

∫∫
∫

−=

≥=

)(ln)()|,(ln)(),(

)|,(ln)|(ln
              (B.1) 

 

where )(θq  is any density on the model parameters (Neal and Hinton, 1998). 

Equation B.1 rests on Jensen's inequality that follows from the concavity of the log 

function, which renders the log of an integral greater than the integral of the log. F 

corresponds to the [negative] free energy in statistical thermodynamics and comprises 

two terms; the energy and entropy. The EM algorithm alternates between maximising 

F, and implicitly the likelihood of the data, with respect to the distribution )(θq  and 

the hyperparameters λ , holding the other fixed 

 

E-step: )),((max)( λθθ qFq
q

←  
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M-step: )),((max λθλ
λ

qF←      

This iterative alternation performs a co-ordinate ascent on F. It is easy to show that 

the maximum in the E-step obtains when ),|()( λθθ ypq = , at which point Eq. B.1 

becomes an equality. The M-step finds the maximum likelihood (ML) estimate of the 

hyperparameters, i.e. the values of λ  that maximise )|( λyp  by integrating 

)|(ln),|(ln)|,(ln λθλθλθ pypyp +=  over the parameters, using the current 

estimate of their conditional distribution. In short, the E-step computes sufficient 

statistics (in our case the conditional mean and covariance) of the unobserved 

parameters to enable the M-step to optimise the hyperparameters, in a maximum 

likelihood sense. These new hyperparameters re-enter into the estimation of the 

conditional density and so on until convergence. 

 

The E-Step 

For linear models, under Gaussian (i.e. parametric) assumptions, the E-step 

corresponds to evaluating the conditional mean and covariance 
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Where the prior and conditional densities are ),()( θθηθ CNp =  and 

),()( || yy CNq θθηθ = . This compact form is a result of absorbing the priors into the 

errors by augmenting the linear system. The same augmentation is used to reduce 

hierarchal models, with empirical priors to their non-hierarchical form. Under local 
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linearity assumptions, non-linear models can be reduced to a linear form. The 

resulting conditional density is used to estimate the hyperparameters of the covariance 

components in the M-step: 

 

The M-Step 

Given that we can reduce the problem to estimating the error covariances of the 

augmented system in B.2; we need to estimate the hyperparameters of the error 

covariances (which contain the prior covariances). Specifically, we require the 

hyperparameters that maximise the first term of the free energy (i.e., the energy) 

because the entropy does not depend on the hyperparameters. For linear systems the 

free energy is given by (ignoring constants) 
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where the residuals yXyr θη−= . By taking derivatives with respect to the error 

covariance we get 
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When the hyperparameters maximise the free energy this gradient is zero and 

 
T

y
T XCXrrC θελ +=)(                  (B.5) 

 

(c.f. (Dempster, 1981) p350). This means that the ReML error covariance estimate has 

two components: that due to differences between the data and its conditional 
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prediction and another due to the variation of the parameters about their conditional 

mean; i.e., their conditional uncertainty. This is not a closed form expression for the 

unknown covariance because the conditional covariance is a function of the 

hyperparameters. To find the ReML hyperparameters one usually adopts a Fisher 

scoring scheme, using the first and expected second partial derivatives of the free 

energy. 
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Fisher scoring corresponds to augmenting a Gauss-Newton scheme by replacing the 

second derivative or curvature with its expectation. The curvature or Hessian is 

referred to as Fisher’s Information matrix12 and encodes the conditional prediction of 

the hyperparameters. In this sense, the Information matrix has a close connection to 

the degrees of freedom in classical statistics. The gradient can be computed efficiently 

by capitalising on any sparsity structure in the constraints and by bracketing the 

multiplications appropriately. This scheme is general in that it accommodates almost 

any form for the covariance through a Taylor expansion of ελ}{C .  

 

                                                 
12 The derivation of the expression for the Information matrix uses standard results from linear algebra 
and is most easily seen by differentiating the gradient, noting  

PPQP
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and taking the expectation, using  
}{}{))(( jijij

T
i PQPQtrPQPCPQtrPQyyPPQtrE == ε  
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Once the hyperparameters have been updated they enter the E-step as a new error 

covariance estimate to give new conditional moments, which, in turn enter the M-step 

and so on until convergence. 

 

It should be noted that the search for the maximum of F does not have to employ 

Fisher scoring or indeed the parameterisation of εC  used above. Other search 

procedures such as quasi-Newton searches are commonly employed (Fahrmeir, 1994). 

(Harville, 1977) originally considered Newton-Raphson and scoring algorithms, and 

(Laird and Ware, 1982) recommend several versions of EM. One limitation of the 

linear hyper-parameterisation described above is that does not guarantee that εC  is 

positive definite. This is because the hyperparameters can take negative values with 

extreme degrees of non-sphericity. The EM algorithm employed by multistat 

(Worsley et al., 2002), for variance component estimation in multi-subject fMRI 

studies, uses a slower but more stable algorithm that ensures positive definite 

covariance estimates. 
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Appendix C 

Approximations to the log model evidence 

With the exception of some special cases (e.g., linear models), the integral expression 

for the model evidence (Eq. C.1) is analytically intractable and numerically difficult 

to compute. Under these circumstances, people generally adopt a bound approach 

where, instead of evaluating the integral above, one optimises a bound on the integral 

using iterative sampling or analytic techniques. The most common approach of the 

latter kind is variational Bayes. In this framework, one posits an approximating 

conditional or posterior density on the unknown parameters, q(θ), and optimises this 

density with respect to a free-energy bound, F, on the log-evidence: 

( ) ( )log ( ), ,F p y m KL q p y mθ θ⎡ ⎤= − ⎣ ⎦                (C.1) 

Because of its relation to variational calculus and Gibb's free-energy in statistical 

physics, this free-energy bound F is often referred to as the “negative free-energy” or 

“variational free-energy” (Friston et al., 2007; MacKay, 2003; Neal and Hinton, 

1998). Its second term is the Kullback–Leibler (KL) divergence (Kullback and 

Leibler, 1951) between the approximating posterior density q(θ) and the true posterior 

p(θ | y ,m), which is always positive (or zero when q(θ) becomes identical to p(θ | y 

,m). By iterative optimisation, the negative free-energy F is made an increasingly 

tighter lower bound on the desired log-evidence, ln p(y|m); as a consequence, the KL 

divergence between the approximating and true posterior is minimised. There are a 

number of approximations that are used when specifying the form of q(θ). These 

include the ubiquitous mean-field approximation, where various sets of unknown 

parameters are assumed to be independent, so that the conditional density can be 

factorised. A common example here would be a bipartition into the regression 

coefficients of a general linear model and the parameters controlling random effects 

or error variance. Another common approximation within the mean-field framework 

is to assume that the conditional density is multivariate Gaussian. This is also known 

as the Laplace approximation, a full treatment of which can be found in (Friston et al., 

2007). 
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Negative free energy is a lower bound on the log model evidence 

The relation of the negative free energy F to the log model evidence, log p(y|m), can 

be derived by using an (arbitrary) approximating posterior density q(θ) to decompose 

p(y|m) into two components, i.e., F and the Kullback-Leibler divergence (KL) 

between the true posterior p(y| m) and the approximating posterior q(θ): 
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The KL divergence is an asymmetric measure of the differences between two 

probability densities (Kullback and Leibler, 1951). If the approximating posterior 

matches the true posterior density precisely, then KL[q(θ), p(θ|y,m)] = 0. This 

demonstrates that the negative free energy F is a lower bound on the log-evidence and 

can therefore be used as a criterion for model comparison. This makes the assumption 

that the KL divergence term is not drastically different across models (i.e., the 

tightness of the bound is similar under different models). For models like ours, with 

informed priors that lead to well-behaved posterior densities, this assumption is 

unlikely to be a strong one.  
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Appendix D 

Stability analysis of neuronal networks for simple equations 

The solution to a first order differential equation dX AX B
dt

= +
r

t t r
 is obtained by solving 

for the equilibrium state 1
eqX A B−= −

tr r
. One can then determine the two eigenvalues, 

λ1 and λ2, of the characteristic equation 0A Iλ− =
t t

, where I is the identity matrix. 

Assuming, λ1 ≠ λ2 the solution is 
1 2

2 2

1 2

1 2

t t

eqt t

a e a e
X X

b e b e

λ λ

λ λ

⎛ ⎞ ⎛ ⎞
= + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

r r
, where a1, a2, b1, b2 are 

constants.  

If all eigenvalues of the linear system have negative real parts, the system is 

asymptotically stable. If the linear system has at least one eigenvalue with a positive 

real part, the system is unstable. In addition, the type of equilibrium point for the 

system, can be spiral point, node or a saddle point. The same holds [locally] for 

nonlinear systems. 

If we consider a two node network, written in matrix form as 
a c

A
b a
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. We have 

the associated stability analysis represented in the figure below: 

a

c b

a

a

c b

a

a

c b

a

 

Figure D.1: 2D stability diagram for different equilibrium points for a two node 

network. 
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Appendix E 

Contribution of variance over states and thresholds 

The predicted firing rate of a population is the expectation of the step or Heaviside 

function of depolarisation, over both the states and the threshold probability density 

functions (Equation 4.2 in the main text): 
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Assuming x1  and w  are independent and normally distributed; wxz −= 1  has a 

Gaussian distribution; ),(),()( wxwxzz NNzp Σ+Σ−=Σ= µµµ  and Equation A.1 can 

be written as: 
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This means the expected firing rate remains a function of the sufficient statistics of the 

population and retains the same form as Equation 4.3. Furthermore, it shows that for 

any given value of the slope parameter, )( zΣρ  the implicit variance 

 

xwxzz Σ≥Σ+Σ=Σ=Σ − )()( 1 ρρ .                (E.3) 

 

is always greater than the population variance on neuronal states. This means we 

always overestimate the proportion of supra-threshold neurons that contribute to the 

firing because )(ρzΣ  is an overestimate of the population variance. In other words, 

the 12% estimate from Figure 4.7 is an upper bound on the actual proportion of firing 

neurons. 
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Appendix F 

Neural-field models 

Neural-mass models can be generalised to neural-field models by making the modes a 

function of space, thereby furnishing wave-equations that describe the spatiotemporal 

evolution of neuronal states over the cortical surface. An important extension of 

neural-mass models speaks to the fact that neuronal dynamics play out on a spatially 

extended cortical sheet. In other words, states like the depolarisation of an excitatory 

ensemble in the granular layer of cortex can be regarded as a continuum or field, 

which is a function of space r  and time ),()( trt µµ → . This allows one to formulate 

the dynamics of the expected field in terms of partial differential equations in space 

and time. These are essentially wave equations that accommodate, gracefully, lateral 

interactions, which are generally assumed to be stationary across the cortical sheet. 

Neural-field models were among the first mean-field models of neuronal dynamics 

(Wilson and Cowan, 1972). Key forms for neural-field equations were proposed and 

analysed by (Nunez, 1974) and (Amari, 1975, 1977). These models were generalised 

by (Jirsa and Haken, 1997) who, critically, considered delays in the propagation of 

spikes over space. The introduction of propagation delays, leads to dynamics that are 

very reminiscent of those observed empirically. Typically, neural-field models can be 

construed as a spatiotemporal convolution (c.f., Eq. 5.6) that can be written in terms 

of a Green function 
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Where || rr ′−  is the distance between r  and r ′ ,  c  is the speed of spike propagation 

and γ  controls the spatial decay of lateral interactions. The corresponding second-

order equations of motion are a neural wave equation (see Daunizeau et al., 2009) 
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Where γκ c= . The formal similarity with the neural-mass model in Eq. 5.15 is self-

evident. These sorts of models have been extremely useful in modelling 

spatiotemporally extended dynamics (e.g., (Breakspear et al., 2003a; Liley and Bojak, 

2005)).    
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