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Rapid Simulation of Spatial Epidemics: A Spectral Method

Samuel P. C. Brand®®, Michael J. Tildesley®, Matthew J. Keeling®”

Abstract

Spatial structure and hence the spatial position of host populations plays a vital role in the
spread of infection. In the majority of situations, it is only possible to predict the spatial spread
of infection using simulation models, which can be computationally demanding especially for
large population sizes. Here we develop an approximation method that vastly reduces this
computational burden. We assume that the transmission rates between individuals or sub-
populations are determined by a spatial transmission kernel. This kernel is assumed to be
isotropic, such that the transmission rate is simply a function of the distance between sus-
ceptible and infectious individuals; as such this provides the ideal mechanism for modelling
localised transmission in a spatial environment. We show that the spatial force of infection
acting on all susceptibles can be represented as a spatial convolution between the transmission
kernel and a spatially extended ‘image’ of the infection state. This representation allows the
rapid calculation of stochastic rates of infection using fast-Fourier transform (FFT) routines,
which greatly improves the computational efficiency of spatial simulations. We demonstrate
the efficiency and accuracy of this fast spectral rate recalculation (FSR) method with two ex-
amples: an idealised scenario simulating an SIR-type epidemic outbreak amongst N habitats
distributed across a two-dimensional plane; the spread of infection between US cattle farms,
illustrating that the FSR method makes continental-scale outbreak forecasting feasible with
desktop processing power. The latter model demonstrates which areas of the US are at consis-
tently high risk for cattle-infections, although predictions of epidemic size are highly dependent

on assumptions about the tail of the transmission kernel.
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Highlights

e Kernel-based spatial transmission models are computationally expensive for large population

sizes.

e We present an efficient and accurate alternative simulation methodology (dubbed FSR simu-

lation) based upon a spectral representation of the infection rate.

e F'SR simulation also permits the accelerated likelihood calculation for more efficient parameter

inference.

e Using FSR simulation it was possible to perform detailed outbreak forecasting for a generic

cattle infection at the continental-scale.
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1. Introduction

Understanding the dynamics of infection invading a spatially structured population is of both
theoretical interest and practical importance. The theoretical interest is due to the impact of re-
laxing the homogenous mixing assumption common to classical models of epidemic dynamics. The
main practical concern is the effect that the introduction of heterogeneity in population mixing has
on key model predictions, such as the rate of recruitment of new infecteds [1], the spatial variation
of infection risk [2] and in particular the consequences of targeted control measures [3, 4]. In con-
trast to other forms of population heterogeneity in epidemic models (such as age-structure), spatial
structuring focuses attention on the location of the initial infectious seeds and the ensuing dynamics
of invasion often characterised by a travelling spatial wave. The emergent spatio-temporal patterns
of infection are dominated by this invasion mechanism, with epidemic risk to the underlying popu-

lation being due to environmental factors such as habitat location and aggregation of individuals.



There are several approaches to modelling the dynamics of the spread of spatial infection, includ-
ing PDE models [5], agent-based models [6], and models based on an underlying contact network
[7], but the metapopulation model is often the preferred formulation due to its relative simplicity
and flexibility. The metapopulation model consists of a set of discrete point habitats in continuous
space, each with its own internal dynamics, which can interact with each other. Its origins date back
over 40 years [8], but it is experiencing increasing use in a wide number of problems in population
dynamics [9, 10]. While the original metapopulation model assumed an equal rate of interaction
between all habitats, the inclusion of more realistic rates that depend on spatial separation has lead
to a greater understanding of the roles of spatial structure, with applications in as diverse settings
as population biology [11, 12], conservation biology [13], evolutionary biology [14] and epidemiology
(15, 16, 17].

In rejecting spatially homogeneous models it has become common to include the rate of trans-
mission between two spatial locations as a distance varying spatial transmission kernel, even for
models with considerable implications for public policy, such as predictive modelling for Foot-and-
mouth intervention strategies [18, 19]. The transmission kernel can be naturally interpreted as an
unnormalised dispersal distribution for ‘offspring’ from their originating infectious ‘parent’, combin-
ing the rate of ‘offspring’ production, transmissibility /survivability of the ‘offspring’” and the spatial
distribution of it’s dispersed location. This interpretation essentially unifies spatial invasion models
of both species [20] and epidemics [21]. The ‘offspring’ of an infectious source being interpreted as
potential infectious contacts in the epidemic model. When the entire background space is uniformly
available there are distinct phenomenological differences between kernel-based models where trans-
mission rate decays exponentially with distance (or faster) and those with slower, ‘heavy-tailed’
transmission rate decay. Essentially ‘light-tailed” kernels lead to an asymptotic invasion front ex-
panding with a certain velocity whereas ‘heavy-tailed’ kernels lead to a continuously accelerating
patchy invasion. This phenomenological dependence on kernel tail decay for models with homo-
geneously distributed hosts has been confirmed by both analysis [22] and simulation [23]. For the
metapopulation model used in this work analysis will be considerably complicated by heterogeneous

distributions of potential host populations for the infectious pathogen and heterogeneous demogra-



phy from population to population. In this more realistic situation Monte Carlo (MC) simulation
becomes the main approach for investigating the expected outcomes of epidemic outbreak, although
one might expect transmission kernel tail decay to play an important role in analogy to the stronger

results for simpler models outlined above.

Simulation is a universally applicable approach to investigating these metapopulation models,
allowing flexibility in adding further realism to the general model framework. If scientific or sta-
tistical confidence in the relevant parameters can be achieved, then MC simulation methods can
have ‘real-world’ predictive power [24]. However, for stochastic simulation the MC convergence of
the observables of interest can require a very large number of independent replicates of simulated
epidemic realisations. Moreover, this problem is compounded whenever insight requires the sweep-
ing of large regions of plausible parameter space, or when the results of simulation are required
for parameter inference, e.g. when using an approximate bayesian computation (ABC) method
(25, 26, 27]. The requirement to perform very many independent realisations puts great emphasis
on the development of highly efficient algorithms for stochastic simulation, even at the cost of mild

inexactness (an example of such an approach is [28]).

The essential non-linearity in epidemic models is due to the interaction between susceptible and
infectious individuals. In this spatial metapopulation context each susceptible habitat becomes
infected due to the summed risk of transmission from all infectious habitats. Therefore, naively a
simulation must calculate (and sum) the transmission strength between all susceptible - infectious
pairs in the population; and this value must be recalculated after any event that changes the in-
fection status of the population. Since the number of possible pairs grows quadratically with the
number of individuals, it is this calculation that becomes the main bottleneck for stochastic spatial

simulation, and it is improving the efficiency of this calculation that is the subject of this paper.

Here we present the fast spectral rate recalculation (FSR) method for simulating spatial epi-
demics this utilises a rapid estimation of the force of infection rather than calculating the sum over

infected habitats directly. Inspired by Galerkin methods common to the numerical investigation of



PDEs [29], this approach is motivated by representing the force of infection as a smooth field over
all space. After approximating the habitat locations as unit mass Gaussian distributions in space,
the spectral projection of this force of infection field onto a regular grid of size M can be calculated
efficiently using FFT (Fast Fourier Transform) at a computational cost of O(M In M). The infection
rate for each susceptible habitat can then be determined by interpolation on nearest grid points.
This compares favourably with the potentially O(N?) cost of calculating the infection rate for all
susceptibles from the direct definition in a population of size N. We will demonstrate that although
this methodology is an approximate scheme, the error due to the spectral projection can be made
negligible by decreasing grid separations (increasing M ). For large numbers of habitats, where the
transmission kernel is relatively wide (that is many infectious habitats contribute to the risk of in-
fection for each susceptible habitat) the spectral method can be implemented with low error whilst
still retaining substantial speed advantage over simulations using direct summation to calculate
force of infection. Finally we will present two examples to illustrate the potential usefulness of the
FSR method. Firstly, using a simple spatial SIR model, that FSR methodology can be adapted in a
straightforward manner to accelerate likelihood based inference for spatial epidemic processes with
negligible loss in accuracy. Secondly, a simulation-based case study of outbreak predictions for a
disease spreading amongst US cattle farms based upon agricultural census data and under varying
assumptions about range and intensity of farm to farm transmission. The much greater numerical
efficiency of the FSR method was crucial for making a continent-scale epidemiological study feasible

despite using only desktop computing power.

2. Methods

The basic methodology is introduced in stages; firstly the basic spatial model framework and
state space of the model are defined. We then describe existing methods for simulating the dynamics
of infection before showing how the force of infection on a habitat can be represented as a convolution
on the spatial locations. This leads to a novel algorithm (termed the Fast Spectral Rate or FSR) to
simulate spatial epidemics. Later in the results section we focus on the accuracy and computational

efficiency of this new algorithm.



2.1. Spatial Risk of Transmission

In this work we consider modelling the spread of a infectious disease within a population spatially
segregated between N indexed habitats each with a location co-ordinate (z;)Y, in two dimensions.
Each habitat is considered to be inhabited by a single host individual described by some discrete
disease state, and therefore the model conforms to the standard Levins-type metapopulation [8]. (In
principle the methodology outlined here readily extends to stochastic populations at each habitat,
but the single host assumption makes the formulation more transparent.) Additionally, each habitat
is treated as sufficiently small compared to the background space that it can be modelled as a point
location. We are concerned with spatial transmission of the disease; hence we replace the Levins
state alphabet of ‘not occupied’ or 'occupied’ with ‘Susceptible’ (S) and ‘Infected and Infectious’
(I). Depending on the characteristics of the disease the state alphabet may be augmented to reflect
the underlying epidemiology, such as including a ‘Removed’ (R) class denoting those habitats where
after a period spent infectious the habitat ceases to play a further role in the epidemic. In this work
we will concentrate on epidemic models where each habitat that becomes infected will eventually

be removed, conforming to the standard SIR paradigm.

The underlying epidemic is treated as a random process, where it is useful to describe the state
of each habitat ¢ using the boolean-valued disease state indicators, S;(t), I;(t), as well as additional
indicator representing additional model complexity, e.g. R;(t). Hence S;(t) takes the value one
if the individual in habitat ¢ is susceptible at time ¢, or zero otherwise. The rate at which an
infectious (I) habitat j transmits to a susceptible (S) habitat i is governed by a spatial transmission
kernel K, which we assume depends only on the (Euclidean) distance between the two habitats
e.g. K(z;,xz;) = K(|z; — ;). (Note that this assumption restricts us to considering translational
invariant kernels, such that the precise locations of the habitats are irrelevant and transmission only

depends on their relative positions). Hence, the force of infection on habitat i is,



For continuous time models the probabilistic dynamics of the infection process for each habitat i is,

P(Infection event at habitat i € [t,t + dt]) = S;(t)\i(t)dt + o(dt). (2)

The above holding for arbitrary 6t > 0.

In this paper however we will be mainly concerned with related discrete time processes. This can
either be viewed as an approximation to the continuous time process or an independent model in
its own right where the epidemic processes occur on a natural cycle (e.g. daily). For many natural
systems there is a clear daily cycle, and host behaviour and therefore transmission rates may vary
substantially between day and night time; in such cases a discrete time model may be viewed as
more realistic than a continuous (time homogeneous) model. In this discrete time model infection
and recovery events do not have instantaneous effect on the stochastic rates of all other events but
impact on the subsequent time step. Having chosen the cycle period 6t* > 0 as a model choice,
we can derive the following discrete time dynamics from (2) using the assumption of periodically

updating states, arriving at the Keeling-type [18] model

P(Inf. event at susceptible habitat i € [t,,t,11] | Si(t) =1) = 1—exp(—Ai(t,)dt"), (3)

where t, = n(dt*),n € N. For practical purposes the cycle period §t* can be absorbed into the
parameterisation of the discrete time epidemic model by treating §t* = 1 and varying the remaining

parameters.

Rather than simulate infection events directly from (3) it is convenient and more efficient to use
an equivalent discrete time Sellke construction [30]. Each habitat ¢ is assigned a random epidemic
resistance Z; ~ exp(1) and at each time step accumulates infectious pressure A; according to its

force of infection,



The habitat ¢ becomes infected on the first time step that A;(t) > Z;. The computational advantage
of the Sellke construction is that resistances {Z;}Y, can be pre-generated before a simulation run,
since they are independent of the dynamics, as can other random periods such as the infection du-
ration of each habitat. Altogether, these pre-generated random numbers encode the full stochastic
dynamics of a spatial epidemic realisation; we follow Cook et al [31] in referring to them as the
latent variables, Z, of the epidemic. We will utilise latent variable matching in order to compare
epidemic realisations using to direct calculation of the force of infection \;(¢) to those using the

FSR approximation.

2.2. The Force of Infection as a Spatial Convolution

After an initial early growth period a successfully invasive pathogen will typically infect a sig-
nificant (O(V)) number habitats during the course of an epidemic. For simulations where a large
number of habitats are under consideration, the necessary recalculation of the force of infection,
Ai(t), for each susceptible habitat after each time-step therefore becomes computationally bur-
densome. A brute force approach to this task requires a sum over all infected habitats for each
susceptible habitat at a computational cost of @(N?) per time-step. An immediate saving is made
by including {\;(t)};cs as part of the epidemic state, updating (rather than recalculating) for each
susceptible habitat upon each event. Hence, for E events occurring in a time-step, the force of
infection recalculation is of cost O(EN). We call this approach stochastic simulation with rate
updating. For simulation of the discrete time model (3) the recalculation still scales as O(N?), due

to the fact that £ ~ O(N), although there is a significant saving compared to full recalculation.

We propose a method of accelerating stochastic simulation by reducing the computational burden
involved in recalculation of the force of infection for each susceptible habitat after £ events have
occurred in a time-step of our simulation method. The basic idea is to treat \;(f) as a single point
of a continuous field, which is derived from a convolution between the transmission kernel and a
spatial distribution of infected habitats. This field is calculated on a set of M grid points, making

use of the observation that a convolution maps to a simple product when a Fourier transform is



taken. The computational effort of convolution solving using FFT (Fast Fourier Transform) on M
collocation points grows O(M log M), which is potentially very efficient compared to brute force
calculation of the force of infection. We follow the formalism of Ovaskainen and Cornell [11, 12]
in representing the spatial spread of the infection across the habitats as a weighted sum of delta

distributions. We call this the spatially extended image of the infectious sources,

frlz,t) = Z 8(x — x) I (¢), z € R2 (5)

In a similar manner, the force of infection is extended to a field for every point in R2. This field

has the compact expression as a convolution

Az, t) = ZK(x—xj)]j(t)

-y / K(x — y)o(y = 23)L;(t)dy
= (K * f1)(x,0), (6)

here,  represents convolution over the spatial variables, (f * g)(z,t) = [ f(z —y,t)g(y,t)dy. For a
given epidemic state, X (t), the force of infection at each habitat i is recovered through the identity

The conceptual power behind our approach is to use this convolution representation to rapidly
calculate the force of infection field A on M collocation points and use local interpolation to estimate

Ai (for all susceptibles) at each time-step of the stochastic integration scheme.

2.3. Fast Spectral Rate Recalculation

Our goal is to reduce the problem of simulating stochastic epidemic dynamics in continuous
space to a closely approximated problem on a discrete grid. The grid-based dynamics can be simu-
lated much more efficiently than the full system dynamics using FFT techniques, since the force of
infection on each habitat can be rapidly recalculated after infection or recovery events. The use of

FFT requires periodic boundary conditions for I;, and in this section we maintain this assumption;



Parameter /Function Definition

{z: 3, Habitat locations
K Spatial Transmission kernel
K’ Transformed Spatial Transmission kernel
A Force of infection, Habitat ¢
f1 Image of infection
€ Width of Gaussian Approximation
Ax Separations in collocation grid
5 Blurry Image of infection
A Force of infection field
Pl Approximation grid
b FFT estimated Force of infection field

Table 1: Model Parameters and Functions

in the following section we consider how this assumption can be relaxed.

Two ideas underpin accelerating the calculation of the force of infection (Figure 1). Firstly, the
image of the infectious sources is ‘blurred’ by approximating each delta distribution as a Gaussian
shaped function of width ¢ > 0; this is so that infection potential can be approximated as origi-
nating from grid points. For real populations where individuals are not tied to a point location,
this Gaussian blurring may actually more closely reflect reality. Secondly, we solve an analogous
equation to (6) defined on a discrete collocation grid using efficient FFT convolution solving and

read off {\;(t)}, directly from a local interpolation scheme.

To this end we introduce a 2-dimensional regular grid over an [ x [ area, with a spacing Ax

between grids,

q)lAa: - {1’ - Ax(ihiQ) | (i17i2> S Z27 1€ [l} (7)

These grid-points are the collocation points used for the discrete transformation, that is the points
at which the force of infection is calculated. By varying the spacing Az we can use M collocation
points to cover our space, however we always choose Az such that [/Ax = m € N, leading to

M =m?2. A full list of parameters used is given in table 1.

10



Since our goal is to utilise the efficiency of FFT algorithms we require that both the transmission
kernel and image of infection can be well approximated by their support on the collocation grid. This
will not be true for the delta distributions in the definition of f; since they are not functions in the
traditional sense, but rather distributions in a more general sense [32]. We resolve this problem by
introducing the blurred image of infection, f;, where the delta distributions in the image definition

(5) are replaced by tight Gaussians of width € (> 0),

N 2
file) = Y bda = a0, 8w) = 2;626‘22”2 , (8)

To provide even greater computational efficiency, we treat these Gaussians as having finite range,
cutting off at a distance of 5e. The number of collocation points local to habitat i (that are involved

with the blurring of the image of ) is denoted n; = |{1 € ®, s.t. |# —z;| < 5e}|.

The natural grid-based approximation to the integral form of the force of infection field (6) on

the periodic domain [; is to use a sum over grid points, respecting the periodic boundary conditions,

Ait) = (Ax) Y K({i—Gh)fi(3.1), (9)

JEPY,
where {2 — j }; represents periodic summation of all distances between ¢ and j on a periodic domain,
although in our examples only the shortest vector between points ¢ and 7 on the periodic space I;
will contribute. The approximation (9) is in the form of a circular convolution sum which can be
efficiently solved (see supporting information) using Fourier (FFT) coefficients of the transmission
kernel (K) and the blurry image of infection (f¢) and the inverse fast Fourier transform (IFFT)

operation F~1[],
Mist) ~ Apg(i.t) = (Ax)*FK i (i, ), (10)

where /\Jl‘.ffée is equivalently the exact solution to the sum (9) and the discrete Fourier transform, or

pseudo-spectral, approximation to the force of infection field with Gaussian blurring; the computa-

11



tional burden for its solution everywhere on the grid grows as O(M In M). Once, we have estimated
the force of infection on the grid of points, ®, ., we can read off an approximation for \;(t) from

local bilinear interpolation from the 4 grid points nearest x;.

The relationship between the Fourier pseudo-spectra of the ‘true and ‘blurry’ images of infection

is approximately

fi(w,t) =~ Se 7(w, 1), w € 72, (11)

where ¢, is the zero centred Gaussian (8) and w is a discrete wavenumber for the pseudo-spectrum.

Equation (11) motivates defining a transformed kernel spectrum K,

K'(w) = —, w € 7% (12)

The approach being to as far as possible reduce the error due to using Gaussian approximations
of delta functions whilst retaining their numerical convenience. Numerical investigation suggests
that using the transformed kernel spectrum (12) improves the accuracy of the pseudo-spectral ap-
proximation to the force of infection field compared to using the discrete spectrum K directly (see
supporting information). A secondary benefit of using the transformed kernel spectrum is to largely
eliminate € dependence from parameterisation of the FSR simulation scheme. Throughout we choose
e sufficiently great so that the mass of the Gaussians (8) is fully supported on the grid (4.(0) ~ 1)
but no greater. A detailed error analysis reveals that, without kernel spectrum transformation,

the accuracy of the FSR method depends more strongly upon e with both extremes ¢ < Ax and

€ > Ax being poor parameter value ranges. We refer the reader to the supporting information.

We call simulation using recalculation of )\j‘fg and local interpolation the fast spectral rate re-

calculation (FSR) method, and can be represented by the following algorithm.

Fast Spectral Rate Recalculation (FSR) algorithm:

12



. Choose a suitable FFT algorithm and number of simulation repetitions.
. Perform one-off pre-calculations:

(a) Calculate and store local points for each habitat i, {1 € ® s.t. |§ — x| < 5e}.

(b) Calculate pseudo-spectra of transmission kernel K, zero-centred Gaussian 0. and trans-
formed kernel K’, avoiding zero division error in (12).

. Choose initial epidemic state, construct the initial blurry image of infection f§(%,0), and set

t=0.

. Solve the sum )\gg(i,t), Vi € @Y, by using an FFT algorithm to construct the product

function K f; and taking IFFT using transformed kernel, F~'[K"f;].

. Re-normalise A\pg by the factor (Az)?, if this is not performed by the FFT algorithm.

. Perform stochastic time-step update using rates of infection \;(t) read off from bi-linear in-

terpolation of Apg (4, ).

. For each of E events that occurred in step 6., update f§ on @ at the n; local points to the

habitat where the event has occurred.

. If there are remaining infected habitats set ¢ — ¢+ 1 and return to 4. If epidemic has finished,

stop simulation.

. If further simulations are required return to 3. The information calculated in 2. can be reused.

Conveniently, there are a multiplicity of high quality FFT algorithms publicly accessible, for ex-

ample the FFTw library for C programming or the high quality FFT routine in MATLAB. Hence,

there is no necessity for the reader to construct their own transformation algorithm. The conver-

gence and error analysis of random epidemics generated using FSR method onto the ‘true’ random

epidemic defined by dynamics such as (3) is discussed in supporting information.

Although we have chosen to illustrate the use of the FSR method with the motivating example

of the spatial SIR-type epidemic, it should be noted that this methodology holds for any type

of stochastic spatial process where the stochastic rate for events can be written in the form (6).

Examples therefore include a range of spatial epidemiological models (eg SEIR-type and SIS-type

dynamics) and spatial ecological models where a local interaction process governs competition or

colonisation. In particular, the necessary ingredients for using FSR are,

13



e (Euclidean) Spatially distributed individuals or densities,

e Smooth and translation invariant spatial interactions.

2.3.1. Non-periodic Boundary Conditions

In many real-world applications the idealised periodic boundary conditions are unrealistic: phys-
ical boundaries to transmission may play an important role in containing epidemic spread, or the
habitats may exist in a finite domain isolated from external infection. However, FSR implicitly
requires periodic boundary conditions in solving the convolution sum (10); essentially modelling
the dynamics on a torus rather than a finite plane. To circumvent this problem and yet retain the
efficiency of using FFT we embed our original space, I;, within a larger extended space, I/, setting
" > [ sufficiently large such that I’—periodic extensions of A do not interact. This is done by placing
the habitats in the smaller space [;, and then subsequently creating an empty padded space for fj}
on I. On this larger space an infection event has a zero probability of ‘wrapping’ round the space
1. We achieve this either by restricting to transmission kernels of compact support, or by imposing
compact support by finite range truncation. We therefore set the epidemic on [ and use the FSR

method for fast calculation of A(4,t) on i € ®4  as above.

3. Results

We present results and analyse the accelerated performance due to using the FSR method for
a spatially distributed population of varying size undergoing an SIR-type epidemic. The deviation
between epidemic simulation using direct rate recalculation and simulation using the FSR method
was firstly investigated by comparing their resultant epidemic curves and spatio-temporal distri-
bution of infected habitats at epidemic peak. More systematically error between direct and FSR
simulation was measured using latent variable matching in the sense of Cook et al [31]; essentially
the latent random variables encode the intrinsic stochastic fluctuations of the spatial epidemic pro-
cess and therefore deviation between epidemics with identical latent variables is due solely to error
in the rate calculation. By choosing sufficiently fine grid spacing (small Az) it was found that
FSR simulation could be highly accurate even whilst delivering significant time saving per repli-

cate. The time saving due to using the FSR method became relatively more favourable compared

14



to direct simulation as the population size N became larger. We also demonstrate the possibility
of using FSR rate calculation to accelerate likelihood-based parameter inference for this class of
spatial epidemic model. Finally, we present a FSR-simulation case study of continental-scale epi-
demic outbreak amongst commercial US cattle farms, using spatial data that accurately reflect US
agricultural census data at the county scale. Effects of farm size on the epidemic dynamics are

introduced without compromising the numerical efficiency of the FSR method.

3.1. Epidemic Spread amongst a Spatial Metapopulation

For the examples in this section the habitat locations are given within a [ x [ square in two
dimensional space ({z;}¥, € [-1/2,1/2]* = I, C R?). For simplicity we consider a discrete time
spatial epidemic model conforming to the classic SIR paradigm, such that infected individuals
recover and are then immune. Discrete time steps are chosen to reflect a daily change in disease
status with all rates given in units of (days)™!, and therefore the time scale §t* = 1 day. In
addition to the stochastic infection dynamics (3) there are the additional recovery dynamics; for

each infectious habitat (individual) i the daily probability of removal/recovery is,

P(Rec. event at hab. i | I;(t) =1) = 1—exp(—y). (13)

Where the recovery rate v = 0.1 (days) ™! is used in this section; this gives an average infectious
duration of 10.5 days given the discrete nature of the time-steps. The habitat location coordinates
were chosen as independent spatial Poisson points on [;. The length scales are fixed by choosing
units such that the habitat density N/I> = 1. The length scale of transmission, L, is given in
these units. For each N considered, the random distribution of habitat locations was realised once,
with further simulations performed on identical landscapes. Non-periodic boundary conditions as

described above were imposed to replicate the fixed spatial scale of the population.

The transmission kernel K (z,y) encodes the rate of potentially infectious contact from an infec-
tious source at some point x to point y. However, in this work we only consider radially symmetric

/

kernels; that is K (x,y) = K(2',y') whenever |z —y| = |2’ — ¢/|. This is most naturally expressed in

polar co-ordinates and we also use K (r) to denote the rate of transmission between two points at
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range 7; in two spatial dimensions the total potentially infectious contact rate in the infinitesimal
range interval [r,r+dr) is 27nr K (r)dr. Treating the radially symmetric transmission kernel as an
(unnormalised) spatial density gives three natural summary statistics, independent of the distribu-
tion of susceptibles: the magnitude of the kernel, the mean range of dispersal and the variance in

the range of dispersal.

Magnitude(K) = 2« /00 rK(r)dr, (14)
Jo K
Mean(K) = m (15)
Jo r*K(r)dr 2
Var(K) = fO K dr —Mean(K) . (16)

In the idealised scenario of a uniformly distributed population of susceptibles the summary statistics

define the actual rate of infection and range statistics of successful infections.

The transmission kernel for this section was chosen from the family of Gaussian shaped functions

with width L, {K(-; L)}1~0 such that

B
K (Jal: L) = 5 e Jol*/2L7 (17)

For [ > L, (8 sets the magnitude of the transmission kernel over [; independently of length scale
L. The mean and variance of dispersal for the Gaussian kernel in two dimensions are mean(K) =
\/7/2L and Var(K) = (2—/2)L?. This directly links the length scale parameter L to the expected
range of dispersal of infected habitats. As a reference, in the limit L. — oo spatial position becomes
irrelevant and the epidemics collapses into the well understood non-spatial or mean-field stochastic
SIR model with population size N [1, 33] albeit in discrete time. We choose 8 = 0.2 (days)™?,

where the pathogen can successfully invade except at small values of L.

3.1.1. Performance of FSR method compared to direct simulation
We took as default parameters a metapopulation of N = 12,100 habitats in a 110 x 110 box,

with § = 0.2, L = 3 defining the Gaussian shaped transmission kernel. We stress that this relatively
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localised transmission kernel (relative to the scale of the system and the density of habitats) places
a severe test on the FSR methodology. The FSR method was implemented using a collocation grid
of size M = 2562, which gave a grid separation Az = 0.5 on an augmented box of side length
110 + 6L used in order to implement non-periodic boundary conditions. Habitat point locations
were approximated as Gaussians of width e = 0.4. To initiate the epidemic, a single infected source

farm was positioned in the centre of the box and the 9 closest habitats where also infected.

Simulation, using direct rate calculation with 1000 replicates, indicated that epidemic realisa-
tions typically recruit locally to the origin before an invasion front formed, infection then spreading
in a wave-like manner throughout the space causing a declining epidemic tail due to exhaustion
of available susceptible habitats. FSR simulation captured this phenomenology and closely repli-
cated the expected dynamics observed with direct simulation, including the expected peak day
(tpear = 134 days). The maximum absolute deviation in expected number of infecteds between the
methods, sup;>{[(E[(/rsr — lair)(t)])|} = 16.85 habitats, was small compared to the size of the
metapopulation (0.14% of total metapopulation). Since, in principle, rather different local spatial
epidemic processes can give rise to similar population level dynamics we also directly compared the
spatial distribution of disease prevalence on the expected epidemic peak day t,.., between direct
simulation and kernel corrected FSR simulation. The probability of each habitat ¢ being infectious
on day tpeqr, pi, Was estimated using 1000 simulation replicates, and the values compared using di-
rect and FSR simulation; the mean deviation, averaged over all habitats, between the two methods

is small at just 8.5 x 1072 (Figure 1).

In order to more efficiently assess the accuracy of the FSR simulation method under variation in
parametrisation we also introduce an alternative error measure based upon the maximum difference
between states in simulations using the direct and FSR methods, but using identical latent variables

7 to account for stochastic fluctuations.

Error = Ez[Error(Z)] = Ey [sup {% iv: d(X(t2), Xf“SR(ﬂZ))}] : (18)

>0
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where X% (t|Z) returns the disease state of the ith habitat on day ¢ using direct simulation condi-
tional on latent variables Z, X} (t|Z) is the same but where FSR simulation is used, and d(x,y) is
the discrete metric returning 0 iff = y and 1 otherwise. This error therefore measures the maximal
difference between the spatial epidemic patterns predicted by the two methods over the entire epi-
demic process. This error measure has the useful property that if FSR returns identical estimates for
{N(t), t=0,1,..., T}, to direct calculation then Error(Z) = 0, VZ. Such a relationship would

not hold without matching latent variables Z, due to inherent variability between epidemic samples.

We conducted a systematic investigation of the error due to using FSR, measured using (18) and
the default parameters above as a baseline comparison; averages were taken over 100 realisations
of the latent variables Z. To initiate the epidemic, a single source farm was placed at the centre
of the space and then surrounding farms where infected such that the initial density of infecteds
I/N = 0.02; this allows us to match initial densities across a range of population sizes N. For the
default parameters (N = 12,100, L = 3, Az = 0.5), Error = 6.7 x 1073 ([6.2x 1073, 7.3 x 1073] 95%
confidence region). The error decayed from baseline at finer grid separation, Az (Figure 2A). Sim-
ilarly, error sharply decreased with increasing length scale of infection, L (Figure 2B). Fixing both
transmission length scale (L) and grid width (Az), and taking a sequence of epidemic models with
increasing N (but keeping a constant density of habitats) we found that average error depended
only weakly with N over two orders of magnitude (Figure 2C). These results are in line with both
the intuition that more disperse transmission resolved on at a finer grid scale should lead to better

performance, and the detailed error analysis presented in supporting information.

In addition to supremum (maximum) error over the entire epidemic, it is also of interest to
assess the final error of number and spatial distribution of recovered habitats at the end of the
epidemic. Again matching Z we found the final state error matched the trends observed in the
supremum error, but was generally significantly lower in every part of parameter space (Figure 2).
For our default scenario, the final error density was 3.84x107* ([3.00 x 107*,5.84 x 107*]). The
lower value for final error density suggests that (i) small errors in force of infection calculation due

to FSR don’t have a significant compound effect on the dynamic evolution of the epidemic since
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the supremum error and (ii) that the large majority of errors are timing errors; that is errors in
when an event occurs rather than whether an event occurs. Dynamically, the latent variables Z
act as a set of thresholds defining when a given habitat has observed sufficient force of infection to
become infected. Therefore, even small errors in the force of infection calculated using FSR have
the potential to change the time-step upon which a habitat becomes infected compared to directly
calculated simulation but are less likely to change whether a habitat becomes infected on any time-
step. No significant systematic bias in the timing of infection was observed in the comparison of
average epidemic prevalence curves generated using FSR and direct calculation, their shapes are

closely similar and agree on expected peak tpeq (Figure 1).

The algorithmic efficiency of the FSR was measured by the time taken to simulate (serially) a
number of replicate complete epidemic realisations; results are presented as an average simulation
time per replicate epidemic (Figure 2D). The initial number of infected habitats was fixed to be the
2% of the total metapopulation size with the default parameterisation outlined above. For most
data points 100 replicate simulations were performed for speed estimates, however, for some of the
large simulations this number was reduced, but never decreased below 20. For large N there was
not great variation in simulation time between individual epidemics. For FSR simulation the main
determinant of speed per time step is the size of the collocation grid M, in order to compare the
speed of FSR simulation to direct simulation we fixed Az = 0.5 and N/I? = 1. As a comparison we
also produced speed estimates for both discrete time simulation using direct rate calculation and
for continuous time simulation based on equation (2) using the popular Gillespie algorithm [34].
For each form of simulation we found a time scaling O(N®) which reflects both the computational
cost of force of infection recalculation and the number of time steps. Simulation time scaling was
found to be approximately O(N?) for both discrete time simulation using direct rate calculation
(v = 1.997) and for continuous time simulation (« = 2.121). Simulation using FSR delivered sub-
stantial speed benefit (o = 1.503), which can be further optimised by restricting M = 2" for n € N
(v = 1.390) (Figure 2D). All simulations used for speed comparison were performed on the same

3.2 GHz desktop computer.
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The maximum population size we considered for both FSR and direct simulation was N =
105,625 habitats, which is incidentally the same order of magnitude as the number of farms in
Great Britain [35]. At this large population size the FSR method considerably outperformed the
direct rate recalculation in terms of computational efficiency, running simulations in approximately
6.6% of the time. Unsurprisingly, the continuous time simulation algorithm was considerably slower
than either of the other two methods. It is therefore clear that for large scale simulation of spatial
epidemic outbreak together with wide sweeps of parameters space and large numbers of replicates
necessary, the standard GD based simulation is only feasible when dedicated high performance
computing resources are available. However, the use of discrete-time FSR simulation brings this

type of calculation within the realm of powerful desktop computers.

3.1.2. FSR acceleration compared to accelerating direct simulation using pair pre-calculation

We found that for more disperse transmission kernels (larger L) the collocation grid can be
coarsened (Ax can be increased) without substantially impairing accuracy and time saving is then
even more dramatic. On the other hand very localised transmission demands very fine grid mesh
for good accuracy, which reduces the time saving due to using FSR. So far we have compared FSR
to the baseline performance of directly simulating the spatial epidemic. We now compare FSR

performance against an alternative acceleration strategy based on exploiting localised transmission.

A simple acceleration technique for simulating the local spread of disease from habitat to nearby
habitat is to pre-calculate effective pairs of habitats; that is those pairs of habitats where an event
at one has a non-negligible effect upon the force of infection of the other. During simulation epi-
demic events at a habitat only cause rate updating at that habitat’s effective pairs which gives an
efficiency saving compared to rate updating at all remaining susceptible habitats, particularly if
each habitat has only a comparatively small number of effective pairs due to localised transmission.
For the Gaussian shaped kernel (17) transmission is unlikely to occur at a range greater than 5L
and we used this range to pre-calculate effective pairs of habitats in a series of simulation speed

comparisons between direct simulation and FSR simulation over a varying range of transmission
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scale L (2 < L < 17.5) for an entire epidemic. As before habitats were uniformly randomly dis-
tributed across the box I; at unit density (I = 325, N = 105,625) with the 2% of habitats closest
to the centre of I; chosen as the initial infectious set and other parameters as before. The size of
the full set of pre-calculated habitat pairs was therefore O(NL?). FSR simulation used a grid size
M = 2™ with m chosen as small as possible such that L/Az > 6, a ratio of transmission range
to mesh size above which FSR was found to be accurate. For larger values of L a coarser grid of
fewer points could be used for FSR simulation despite a larger zero-padding domain being required

to avoid periodic boundary transmission.

For the most local transmission scale considered (L = 2) direct simulation with pre-calculated
pairs did outperform FSR (direct simulation averaged 28.50 secs per full epidemic simulation, FSR
56.45 secs per full epidemic). The computation time for pre-calculating pairs was not included in
these averages. However, on the desktop used epidemic simulation time increased rapidly with L for
the pair pre-calculation method despite epidemics with small L typically requiring more time steps
to simulate until the end. By contrast FSR simulation became faster for increasing L reflecting
a typically shorter epidemic and sharply faster whenever a coarser grid could be used (Figure 3).
The cross-over point was at L ~ 3, by L =5 FSR was significantly more efficient at simulating full
epidemics compared to direct simulation with pre-calculated pairs (direct simulation averaged 48

secs per full epidemic simulation, FSR 8.5 secs per full epidemic).

Certainly there exists the potential to further optimise direct simulation through more efficient
pair searching and using systems with greater available RAM. There also exist other methods of
accelerating direct simulation such as the subdivision of I; into cells and exploiting the property
that transmission to distant cells is highly unlikely, an example of such a method is given by
Keeling and Rohani [33]. However, pair pre-calculation is representative of acceleration techniques
for spatial epidemics extant in the literature in that performance improves as transmission becomes
more local. In general these acceleration methods are less successful whenever each habitat has
a large number of effective pairs, whether this is due to long range transmission, heavy-tailed

transmission or spatial clustering of the metapopulation. FSR is effective in accelerating simulation
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for longer range transmission irrespective of metapopulation density, and therefore is a successful
strategy in a different problem domain from typical acceleration techniques. Heuristically, for very
localised transmission, the force of infection for a susceptible habitat can be compactly represented
as a truncated sum over only a comparatively small number of nearby infectious habitats but
would require many discrete modes for description in the spatial frequency domain used for FSR
convolution solving. The converse is that for disperse transmission a significant fraction of the total
population of infectious habitats contribute to the infection hazard for each susceptible habitat,
whereas in the frequency domain only a comparatively small number of modes are required for a

good description of the force of infection field.

3.2. Accelerated Likelihood Calculation

Likelihood based inference plays an important role in parameter estimation, and hence is key to
matching models with observations. From a classical statistics point of view the maximum likelihood
estimator (MLE), that is the parameter values which maximise the likelihood of the observations,
is viewed as the set of parameters that best captures the dynamics (see Casella and Berger [36] for
an introduction to classical likelihood methods). Additionally, for parameter inference by Markov
Chain Monte Carlo (MCMC) [37, 38, 39] the calculation of likelihood ratios is a necessary, and
often computationally intensive step. Hence the improvement in speed offered by the FSR method

has clear advantages in parameter inference if the results are sufficiently accurate.

As an example of the computational efficiency gains for data imputation derived from using
the FSR algorithm we present a simulated outbreak amongst 19,600 habitats generated using the
simplified model given above. The random habitat locations are given within I; with [ = 140 as
the points of a Poisson cluster process [40] chosen so as to give positive spatial correlation between

locations. The transmission kernel was chosen as heavy-tailed,

B
(2 (1 + |2[?))>2

K(|z[) = K~ 2|7, (19)

Magnitude(K) = [ represents the infectiousness of the disease. The target for imputation is the

infectious intensity [, using the retrospective infection events up until ¢ = 30 days. We treat the
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removal rate (chosen so that average period of infectiousness was 4 days) and the shape of the
transmission kernel as known data. In keeping with our final example on livestock epidemics, the

parameters chosen here roughly correspond to those for the 2001 UK Foot-and-Mouth outbreak [18].

For a given epidemic realisation we denote the set of populations that are first infected on day
t, Z(t), and the set of populations that are susceptible at the beginning of day ¢ and avoid infection
on that day, S(t). The likelihood L of the observed sequence of infections for a given transmission

rate [ is given in terms of the per day transmission probabilities [41],

T

LBHTW), SO = PUZ®, SOYol8) =T TT (=) T e>®]. o)

t=0 4€L(t) J€S(t)
The likelihood of a full data set D, including removals and any other stochastic events, can then
be derived similarly by augmenting with their per day probabilities. We note that calculating the
likelihood (20) involves the sequential recalculation of the daily rates of infection A;(t) for each
susceptible population . This is exactly the task the FSR algorithm has been designed to achieve

with great numerical efficiency.

For a randomly chosen initially infected habitat (individual) with infectious intensity Sy = 0.75
a sample of an invasive epidemic was generated (Figure 4). This outbreak was characterised by long
range invasion of clusters of higher local density of habitats followed by intense spreading within
the cluster. The available data was assumed to be the set of infection and recovery events for the
first 30 time-steps (days) of the outbreak. The log-likelihood profile log £,,,fi(3) for the interval
g € [0.1,2.1] at a resolution of Ag = 0.01 was calculated from (20) using both direct recalculation
and kernel corrected FSR for the daily infection rates (the approximating grid width used for FSR
was Az = 0.5). The constructed log likelihood values were numerically close especially around the
peak, such that not only were the two implied maximum likelihood estimators indistinguishable
Buir = BFSR = Buue = 0.75, but also the 99.9% confidence intervals 5 € [0.71,0.79] were also in

exact numerical agreement (Figure 4).
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Constructing the full log likelihood profile using the FSR rate calculation took 16.5% of the time
required to construct the log likelihood profile using direct rate calculation. Such a time saving was
consistent with the accelerated simulation performance found in the previous section (Figure 2D).
The imputation method used in this section was accelerated by using FSR rate recalculation only
because each likelihood calculation (20) was accelerated. This suggests that any statistical method
for the class of spatial epidemic models considered in this work which require repeated likelihood,

or likelihood ratio, calculations could be accelerated by using FSR.

3.3. Case Study: Forecasting Epidemic Outbreak Amongst US Cattle Farms

In this final section we apply the FSR methodology to determine the impact of an epidemic
spreading amongst US cattle farms and to investigate how this depends upon transmission assump-
tions, such as the decay tail of the transmission kernel and the infectious intensity of the disease.
We performed repeated simulations to determine the distribution of epidemic severity using a mod-
ified version of the spatial force of infection (1) that takes into account the numbers of cattle at
both infectious and at-risk susceptible farms. Data for US farm locations and their cattle holding
sizes is only available aggregated at the county-scale. We circumvented this missing information by
generating a synthetic data set of randomised farm locations (with each county) and their cattle
numbers which is consistent with aggregate US agricultural census data at the county level. It is this
synthetic data set of 93, 777, 559 cattle distributed across 1,018,877 farms that we used to generate
epidemic realisations. The continent-wide nature of the epidemic and the necessity of performing
multiple simulations per parameter choice represented a major computational challenge. The FSR
simulation method presented in this work accelerated simulation sufficiently as to make predictive
Monte Carlo modelling for a range of parameter choices feasible using a standard desktop com-
puter; without an accelerated simulation method this investigation would be impracticable without

far greater computational resource.

3.3.1. Farm Infection Model and FSR Simulation with Demography
The livestock disease being modelled was considered to be sufficiently infectious that once in-
troduced into a naive farm it spread rapidly amongst all the livestock present. This motivates the

decision to represent the epidemic state of the farm by a single infection state. The within farm
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disease progression was represented by two stages, as in Keeling et al. [18] for Foot-and-Mouth
Disease (FMD); an initial exposed (E) period of 4 days during which the infected farm does not
actively recruit to the epidemic and a subsequent actively infectious (I) period of 5 days before
detection and removal. We do not include additional veterinarian tracing efforts such as identify-
ing dangerous contacts (DC) of detected infectious farms, or any form of additional control based
on geographic proximity to the detected infectious farm (such as contiguous premise (CP) or ring
culling). Therefore, this model reflects a control effort directed only at removing detected infected

premises (IP) which is the simplest and least disruptive of possible control policies.

We follow Tildesley et al. [24, 42] in extending the basic spatial force of infection (1) to include

a non-linear dependency on the number of cattle (IV;) in both susceptible and infectious farms,

N

Ai(t) = NP~ K(x; — ;) NU(t). (21)

=1

The power parameters p, g scale, respectively, the dependence of farm susceptibility and transmis-
sibility upon cattle numbers. For the 2001 FMD outbreak the power parameters for cattle numbers
have been found to vary regionally between 0.2 and 0.44 [24]. We chose p = ¢ = 0.2 for all US
regions which corresponds to the minimal amount of demographic dependence within the inferred
range (p = ¢ = 0 recovers the demography-free model (1)). The FSR collocation grid approximated
a projection of the USA onto a plane with additional zero-padding extending 500 km from the
southern most and eastern most tips of contiguous USA. We chose the FSR collocation grid size
so that M was product of powers of 2 and 3 for numerical efficiency. The grid width was 3.6 km
north/south and 4.6 km west/east, which were a finer scale than the length scales of transmissions
considered below. Gaussian approximations were used with € = 4 km. Simulating epidemic real-
isations with the daily risk model (21) required a small modification to the FSR method. When
updating blurry image of infection f; at local points to farm j a factor NV ;1 is used to increase the

mass of the Gaussian approximation of farm j. The approximate force of infection used for FSR
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simulation with demography is,
Ai(t) = NPAYS (24, 1). (22)

The pseudo-spectral approximation for point x; being given by bi-linear interpolation from its 4
nearest collocation grid points. All statistics in this section were estimated from 1000 independent

FSR simulations of a complete epidemic.

We are interested in the impact on epidemic severity of the decay tail of the transmission
kernel, and moreover how this tail affects the upper quantiles for outbreaks severity, quantities of
considerable public policy importance. To achieve this we simulate outbreaks using a family of

kernels K, (|z|) ~ ||~

Ko(lz[; L) = BNL(L)(L? + |«) 2, a=3,4,5, (23)

where 3 is the transmissibility of the disease, N normalises the transmission kernel so that Magnitude(K) =
£ and L is a length scale parameter. Each transmission kernel is heavy-tailed in the sense of Kot
et al due to each kernel having infinite moments of dispersal distance [20]. Nevertheless, K3 and
K5 represent rather different transmission tail behaviour within the general family of heavy-tailed
kernels; a consequence of the heavy-tailed decay of K3 is that both mean and variance of the dis-
persal distance (as given by (14) and (16)) are infinite for all L > 0 whereas both these dispersal
range measures are finite for K5. Transmission kernel K, gave an intermediate class of transmission
tail behaviour; Mean(K,) = (7/2)L is finite whereas Var(Ky) = oo for L > 0. In the subsequent
simulation study we choose L so that Mean(K;) = Mean(Ky) = 20 km. The heavy tailed kernel

K3 cannot be matched in this manner: L = 10 km was chosen as its length scale.

3.3.2. Transmission Tail Decay and Variable Severity
Each epidemic realisation was initiated by a single infectious farm located in Franklin County,
Texas. This choice of initial location can be considered pessimistic from the point of view of disease

control due to its proximity to cattle farm high density regions in Texas and the central plains.
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Despite the favourable initial location for the disease the range of epidemic sizes were found to be
multi-modal. For all transmission kernels, and even for the greatest infectious intensity considered
(8 = 0.115), there was a significant probability of only a small epidemic occurring (Pyqy), defined
as at most 50 farms becoming infected. For the finite mean dispersal kernels, with g = 0.115, the
probability of a small epidemic probability was similar ( Pyq(K4) = 0.428 and P, (K5) = 0.434);
whereas for the heavy tailed kernel K3 the probability of a small epidemic occurring was greater

(Psmall(K?)) — 0537)

The most severe epidemic predicted led to almost 140,000 infected cattle farms (13.7% of US
total). For the finite kernels (K, and K3) those epidemics which do take hold and produce a nation-
wide epidemic were found to be multi-modal in their distribution of final number of disease affected
farms (Figure 5) with both large and intermediate scale epidemics common. The number of farms
affected during a given epidemic realisation reflected that epidemic’s success in invading different
high-risk regions; in order of most to least likely of having a large-scale outbreak these high-risk
regions are: Texas, the central plains, the Ohio river basin and South-Eastern Pennsylvania (Figure
6). Given this multi-modal behaviour for epidemic sizes it is more natural to focus on quantiles
of outbreak size as a representative statistics for severity. However, epidemics with a heavy tailed
transmission kernel, K3, displayed rather different behaviour. Epidemic severity with heavy tailed
transmission became strongly bi-modal as the infectious intensity [ was increased; the epidemics

forecast were either small or tightly clustered around a large epidemic size (Figure 5).

As well as simply examining the number of farms infected, the spatial distribution of these
farms is of important applied interest as it relates to the necessary distribution of control resources.
In all our simulations, the western half of USA largely escaped infection for finite mean kernels.
The infinite dispersal variance kernel K4 had consistently more severe 75% and 97.5% quantiles
of outbreak size compared to K5, and we think of these upper quantiles as reasonable worst-case
scenarios. This reflects that a long-range dispersal event from one farm cluster to a distant one
was more likely for this kernel despite matched mean dispersal range and equal total transmission

rates; the slower spatial decay of the K, kernel was a significant factor in determining the range of

27



plausible worst-case scenarios for US cattle epidemic forecasting (Figure 6). Risk of infection for
epidemics with heavy tailed transmission kernel K3 was more evenly distributed in space than for
the finite mean kernels K4 and Kj5. Nonetheless, there are regions in Texas, the central plains, the
Ohio river basin and South-Eastern Pennsylvania where greater risk of infection was observed for
all three kernels, although naturally K3 and K, shows the greatest spread from the initial source

in Texas.

If we are considering an outbreak of Foot-and-Mouth in the USA, then there is uncertainty in
the transmission constant [ as well as the shape of the transmission kernel. For a less infectious dis-
ease (5 < 0.095) the 75% quantiles of outbreak size was significantly smaller for the K3 model than
for the K4 or K5 models. This is because the outbreak is initialised in a region of high cattle and
farm density; therefore more dispersed kernels simply waste infection by placing more transmission
away from this high-density region. Therefore this most dispersed kernel leads to the greatest risk
of early extinction. By contrast for more infectious diseases (0.095 < 8 < 0.115) the 75% quan-
tiles for epidemics with transmission kernel K3 was significantly greater than for the more localised
transmission kernels. The upper extreme 97.5% quantiles for epidemic outcomes with either K3 or
K, transmission kernel were similar; the ‘worst case’ scenarios for either transmission models were
similar in that either model could predict invasion into a number of important areas for US cattle
farming and further afield. For the most infectious disease intensities considered (5 > 0.11) the

local transmission kernel K also predicted similar 97.5% quantiles (Figure 6).

The predicted spatial patterns of disease incidence and multi-modal severity have important
implications for emergency disease control in response to an epidemic outbreak amongst US cattle
farms. The proportion of outbreaks predicted to cause national-scale epidemics suggests that control
efforts based only on removal of IPs, as simulated here, may be insufficient to control disease spread
amongst US cattle farms. This result is in line with findings for the 2001 UK foot-and-mouth
outbreak [18, 43]. The areas at most risk and the overall severity of a predicted outbreak were
found to depend crucially on the tail of the transmission kernel. For transmission kernels K, and

K5 incidence was found to vary strongly across the country reflecting both the density of farms
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and livestock and the ease with which infection can reach an area. This suggests that a regional
(state or county) level control method, such as local movement bans, might be effective at reducing
epidemic burden. In contrast, epidemics predicted using a very heavy tailed transmission (K3),
showed far more limited spatial heterogeneity which combined with the heavier tail suggests that
regionally based control would be unlikely to be successful. This echoes findings for the heavy-
tailed dispersal of sudden oak death in California [44] albeit at a greater spatial scale. Moreover,
the qualitative distinction between predicted epidemic outcomes with K3 kernel and K/ K5 kernels
cannot be explained in analogy to analytic results for simpler models [21, 20, 22] since each kernel
falls into the general ‘heavy-tailed” phenomenological category. This detailed sensitivity of outcome
upon the tail of the transmission kernel emphasises the need for numerically efficient methods for
forecasting simulations in order to best inform response to epidemic outbreak. The FSR simulation
method is designed to both accelerate the generation of epidemic forecasts and inference techniques

that require repeated calculation of likelihoods.

4. Discussion

We have considered the stochastic simulation of a very common class of models for the spatial
dispersion of an invasive infection. In particular, we have demonstrated a novel method for recal-
culating the stochastic transition rate using a convolution solution that can deliver significant time
saving to large scale Monte Carlo investigations. The convolution solution uses only ‘out-of-the-box’
software for implementation that is readily and freely accessible, moreover the analytic properties

of the error in spectral convolution solving are well understood.

Since the FSR method is an addendum to commonly used stochastic simulation algorithms it is
flexible and is not restricted to solely SIR type spatial epidemic modelling. Rather, the FSR method
is a possible tool for accelerating simulation of models concerned with spatial dispersal where the
dispersion kernel is translation invariant and smooth. It should be noted that the treatment of
habitats as point locations is a simplifying modelling assumption in order to allow the force of
infection to be written as a weighted sum over infected habitats. The FSR method allows the very

natural relaxation of this assumption to modelling scenarios where habitats have spatial extent. In
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addition, the assumption used throughout that each habitat equates to a single host is also trivially

relaxed.

The need for rapid spatial transmission rate calculations is not just restricted to investigating
simulated outcomes of stochastic models; it also plays a vital role in parameter estimation and in-
ference. We have shown that FSR can substantially accelerate the calculation of a full log-likelihood
profile for a parameter when the likelihood function can calculated from available data. Likelihood
calculation is also a necessary but computationally intensive step in a number of variants of MCMC
inference; these typically involve sequential calculations of transition rates between events in order
to define an acceptance probability for a proposed set of parameters. MCMC inference is often
preferred when the data required to calculate the likelihood function is only partially observed, a
standard strategy being to augment missing data as additional parameters to be imputed. Data
augmented MCMC has been applied to epidemic inference with both non-spatial transmission [45]
and spatial transmission models [39]. FSR can accelerate the calculation of acceptance probabilities
for data augmented MCMC inference for the spatial models considered in this work. An intrigu-
ing alternative approach to bayesian parameter estimation of partially observed spatial epidemics
could be to use FSR simulation in combination with an approximate bayesian computation (ABC)
imputation method. ABC methods rely intensively upon recursive simulation using parameter sets
drawn from their prior joint distribution and have become very popular in parameterising theoreti-
cal biological models [26, 27] including epidemic models [25]. The computational overhead of ABC
methods is nearly entirely due to the necessary generation of a very large number of simulated epi-
demic outcomes for comparison to data. FSR could substantially improve the performance of ABC

methods for spatial models simply by decreasing the average time taken per epidemic simulation.

When dispersion is highly localised a different method for accelerating rate recalculation should
be considered. There are a number of efficient simulation strategies for localised transmission epi-
demics extant in the literature and we consider pair pre-calculation as an example of these. The
strength of the FSR method is that it is effective at accelerating spatial simulations in the alterna-

tive scenario of heavy-tailed dispersion where there are fewer well known methods for accelerating
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performance of explicitly spatial simulations. Ultimately the best simulation method will be prob-
lem specific, FSR is intended as a tool for accelerating spatially explicit epidemic simulations with

heavy-tailed transmission.

FSR is also successful for large metapopulation simulations, whether that refers to the existence
of many habitat locations or large local populations at each habitat, with long-range dispersion.
Using the FSR simulation method we were able to make continent-wide epidemic predictions for
disease spread amongst US cattle farms; modelled at the scale of the individual farm unit. The
highly stochastic nature of epidemic outcomes required many MC replicate simulations for the good
statistical confidence of each transmission scenario considered. Our simulation study suggested that
areas of USA are at considerable risk of large numbers of cattle infections in the event of epidemic
outbreak. In particular the sensitivity of US farm epidemic outcomes to the tail-decay of the
transmission kernel further emphasises the need to robust and large scale predictive modelling for
both scenario forecasting and statistical inference. The considerable efficiency of the FSR method

promises to facilitate such a large-scale, and detailed, epidemic modelling.
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Susceptible Habitats

Figure 1: A comparison between the epidemic spatio-temporal distributions resultant from direct simulation and fast
spectral (FSR) simulation. N = 12100 habitats were distributed uniformly at random over a 110 x 110 box. Initial
seed was chosen at random and shifted to origin, with 9 closest farms also infected at ¢ = 0. Spatial transmission
parameters were L = 3, § = 0.2. The FSR parameters were Az = 0.5 and ¢ = 0.4. Top Row: Expected dynamics of
number of susceptible (left) and infected (right) habitats estimated from 1000 simulation replicates, 60 deviation was
found to be tight on curves and is not shown. Coloured lines give the dynamics calculated using direct summation
of rates, black lines give the FSR results. The worst inaccuracy on any day in expected number of infecteds for
FSR simulation was 16.85 habitats (0.14% of metapopulation). Bottom Row: Spatial probability of being infectious
at epidemic peak (tpeqr = 134 days), estimated from 1000 simulation iterates, for direct simulation (left) and FSR
simulation (right). The FSR method captures the spatial distribution of epidemic risk; the mean absolute deviation
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Figure 2: A Comparison between direct simulation and FSR simulation for epidemic spread amongst an explicitly
spatial Levins-type metapopulation. Latent variables were matched in order to directly compare simulation methods,
and comparisons taken over 100 matched MC replicates. All confidence intervals are due to bias corrected 95%
confidence boot-strapping. The base set of parameter was N = 12100, Ax = 0.5, L = 3, 8 = 0.2, v = 0.1 with
a Gaussian-shaped transmission kernel. A-C: Varying the base parameter set in, respectively, Az, L, and N. As
expected from theoretical considerations, the density of errors between direct simulation and FSR simulation is
increasing with Az, decreasing with L and only weakly dependent on N. D: Time taken per replicate simulation
for the base set of parameters as N varies fitted to the power-law scaling N¢. The size of the FSR collocation grid
M 1is chosen so that Az = 0.5 is fixed with a unity density of habitats. For small value of N there is very little
gain in using FSR, but as IV increases the time saving becomes increasingly favourable. Daily time step simulation
with direct rate recalculation (squares; DR) appeared to scale as approximately O(N?) (log-log slope of 1.997). As
a comparison continuous time simulation using the Gillespie Direct algorithm was also considered (triangles; GD)
and also found to scale as approximately O(N?) (log-log slope of a = 2.121). The computational cost for the FSR
method (circles; FSR) was fitted by a log-log slope of a = 1.503 (black dashed line) which indicated substantially
reduced time per simulation due to using FSR as N becomes large. The speed performance of FSR was optimised
by choosing M as an integer power of 2 (filled circles), which fits to a slope oo = 1.390 (slope not shown).
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Figure 3: Mean time taken per replicate simulation for a large simulation (N = 105, 625) with base set of parameters
6 = 0.2, v = 0.1 with a Gaussian-shaped transmission kernel. The efficiency of direct simulation with pair pre-
calculation (circles) is compared to FSR simulation (squares, triangles and diamonds) for a varying range of typical
transmission scale L. The FSR grid size M = 2™ was chosen as small as possible whilst respecting a transmission
scale to grid width ratio for which FSR is accurate (L/Axz > 6). For local transmission (L = 2) pre-calculating pairs
is a more efficient strategy than FSR. However, FSR becomes sharply more efficient as L increases due to using a
smaller solution grid and the epidemic being typically shorter in duration. Pair pre-calculation becomes rapidly less
efficient as L increases due to the set of effective pairs being held in memory becoming excessively large.
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Figure 4: Maximum likelihood inference for a spatial metapopulation epidemic model. A single epidemic realisation
was generated using heavy tailed transmission kernel (19) with infectious intensity 5 = 0.75. Left: A snapshot of
the epidemic progression after 30 days. Each point represents the location of a susceptible (grey), infected (red) or
removed (blue) habitat. The large red point denotes the location of the initial infected habitat. The available data
for imputation were the daily infection and recovery events up to this day. Right: Log likelihood profiles for the
data under variation of 8 calculated directly and using the FSR rate approximation. Both profiles imply an identical
maximum likelihood estimator 3 = 0.75 and identical 99.9% confidence intervals 8 € [0.71,0.79]. The FSR method
took 16.5% of the time to construct the full likelihood profile; this was consistent with the acceleration found when
comparing simulation methods.
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Figure 5: Severity of outbreak size for different transmission tail decays. Each point corresponds to the number
of farms affected (IPs) by a complete epidemic realisation simulated using the FSR method. The distribution of
outbreak sizes was multi-modal for finite mean transmission kernels as defined by (14) (middle, bottom). Each band
of outbreak severity represented those epidemics which either failed to establish (clustered around zero farms) or
were successful in invading at one or more high-risk US cattle farming regions, clustered according to which regions
were invaded. The distribution of outbreak sizes for the heavy-tailed kernel K3 was strongly bi-modal as infectious
intensity S increased (left). For better visualisation a histogram of epidemic severities for infectious intensity 8 = 0.1
is given for each kernel (insets).
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Figure 6: Quantiles and spatial distributions of disease affected farms for varying transmission tail decays. Each 75%
and 97.5% quantile (left) was calculated from the random distribution of outbreak sizes for each infectious intensity
B, 95% confidence intervals were constructed using bias corrected bootstrapping. The spatial distributions (right)
represent farm locations as points colour coded according to their frequency of becoming infected over a number of
simulations. In each case the epidemic was initiated by a single farm in Franklin county, Texas (red cross, right), the
spatial distributions (right) were generated using infectious intensity 5 = 0.1. All statistics were calculated using
1000 FSR simulation replicates. Epidemics with the finite mean dispersal range kernels, as defined by (14), K, and
K5 recruited IPs most strongly in Texas. Other regions at significant risk, in decreasing order, were the central
plains, the Ohio river basin and south-eastern Pennsylvania. Epidemics with heavy-tailed transmission kernel K3
had comparatively more evenly dispersed IPs. The risk of infection for farms in areas of high cattle farm density in
eastern USA didn’t decrease strongly with distance from the initial source IP.
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Supporting information: A Fast Spectral Method for Spatial and
Stochastic Epidemic Simulation

Samuel P. C. Brand, Michael J. Tildesley, Matthew J. Keeling

1 Theoretical Basis for Fast Spectral Simulation

Let e = (e(t),t = 0,1,2,...;e(t) € {S, I, R}V)) be a full trajectory of a discrete time epidemic spreading amongst the
spatial metapopulation defined in the main text. We can consider both the probability measure P%" () for epidemic
trajectories consistent with forces of infection calculated at each time step using direct summation (A;(¢)) and the
probability measure PF*%(e) consistent with calculating forces of infection at each time step using FSR ()\j\fs’e (x4,1)).
By comparing the likelihood of observing e (see equation (20) of main text) for both P*" and P we can show
that if /\gfé’f(x,-,t) — A\i(t) for all possible disease configurations {S, I, R}V then we have PFST — P47 in the total
variation metric for probability measures. For related spatial epidemic models in continuous time we can consider
relative likelihoods between probability densities. Unfortunately the considerations above fail to give a sensible rate
of convergence for PF'SE — P4 We postulate that if the error in force of infection [Abe (z;,t) — Xi(t)] is small,
then the probability of various events of interest according to P¥SF should be close to their ‘true’ probabilities.

Spectral versus Pseudo-spectral projection

In this subsection we review elements of the standard theory of spectral approximations to periodic functions, for
example see [1] for background on spectral theory as applied to deterministic processes (PDEs) and [2] for a general
introduction to discrete transforms using orthogonal basis functions. We make explicit the difference between ‘true’
spectral methods based on functional representation in terms of a weighted sum over a finite set of basis wave func-
tions and the pseudo-spectral method that makes use of efficient summation over a defined collocation grid.

We consider all functions f € C! on I = [-1/2,1/2]? to be l-periodically extended to RY, ie. f(z +In) =
flx), Va € I ld, Vn € Z%. In the context of the epidemic this is equivalent to imposing periodic boundary conditions
on the dynamics. The requirement for periodic boundary conditions can be effectively relaxed using zero padding at
the boundaries hence we do not consider this a significant restriction.

It is well known that I-periodically extended functions f € C! have a Fourier series representation, in particular

1 - o
A, t) ~ > Aw, t)e?mee/t, (1)

weZd

Where for each w € Z%, the Fourier coefficients: 5\(w, t) are defined as,

Mw, t) = /Id A, t)e 2w/l (2)
1

The relationship ~ indicates uniform convergence on R¢ as the number of wave-numbers grows to infinity, sub-
sequently we shall use = without confusion since we only consider force of infection fields with continuous first
derivatives. Equation (1) indicates that the set of plane waves {e2™*®/!} _,4 form a basis for the vector space of I-
periodic C! functions. Note that the definition above differs from the one used in the main work. Definition (2) is the
‘true’ Fourier coefficient used in constructing spectral approximations to periodic functions, the Fourier coefficient
calculated via FFT is a quadrature approximation to the integral in (2). We have adopted the notation w for the
spatial frequency of the time-invariant basis set of plane waves, rather than the more common % in order to avoid
confusion with the notation for the transmission kernel K. For each plane wave, w is the d-dimensional vector of
spatial frequency, or wave-vector, for the wave in each standard Euclidean dimension.



Since this basis set is infinite in size we truncate and only use M < oo plane waves, with associated Fourier
coefficients, to estimate the force of infection field, A,

e, t) ~ AM (2,1) zd > Maw, t)e?mie/t, (3)
WEQM
The sum is over the set
Ol = {w=(wi,...,ws) €Z—m/2<w; <m/2—1i=1,...,d}, (4)

with m? = M. Tt is convenient to restrict to cases where m is even. We call this estimate, /\y , the spectral projection
of the force of infection field. The projection is onto the subspace of the square integrable functions on I¢, L2(If),
spanned by {62”““/1}%9}1\4.

As seen in the main text the force of infection field can be represented as a convolution between the transmission
kernel (K) and the image of infecteds (f7),

Naot) = K filet) = [ Ko=) t)ds )

The representation as a convolution is very convenient for our analysis, since the Fourier coefficients \ are simply
the the product of the Fourier coefficients of the transmission kernel K and the image of infecteds f;. This can be
seen by applying definition (2) and the Fourier decomposition of K and f7,

AMw,t) = K x fr(z, t)e 2miwe/ldy

d
Il

/ Kz —y)fi(y, t)e_%m“"/l dydx
1 Jg

_ 2miy-(w' —w lQTrzw w' —w)/l
_ lm/ﬂ/ﬂz S K@) fr(w", t)em e =) @' =)/

U wezZdw’erd
= K(w)fr(w,t). (6)

The final line is due to using the orthogonality of the plane waves,

/ il all gy = 145, . (7)
Id

Equation (6) is the basis of the fast spectral rate recalculation method; it splits the time invariant and time varying
parts of the force of infection field in the spatial frequency domain.

The fastest method for calculating the Fourier coefficients required for the projection approximation is by using
the fast (discrete) Fourier transform (FFT) algorithm, which scales in computational complexity as O(M log M) for
M Fourier coefficients. The discrete transform approximates the integral (2) using sum of samples of A at regular
intervals in [, ld. To this end we introduce a regular grid on I ld of separation Az, @lA’i. By varying Az we can restrict
the grid to size M, but we always choose Az such that

l=mAz.
Due to this we fix M = m? and hence,
oL = {i = (i1,...,i0)Ax | (i1,...,i0) €Z%, 0<ij <mj=1,....d}. (8)

The grid-points are the collocation points for the discrete transformation. We recall that the quadrature rules for
FFT and inverse fast Fourier transform (IFFT) are respectively,

FIN(k,t) = Aw, 1) N A e A w/m -y e qf, (9)
zG‘IZ'LA‘i
- 1
FHN(4,¢) = ey D Mk, t)e?mi@/anre/m e ol (10)
weQd



The definition above is not completely standard, it is more common in the literature not to include the factor (Ax)?.
However, when subsequently we consider products of FFT coefficients the factor (Ax)? becomes important.

Using Fourier coefficients estimated from a discrete quadrature rule we define the pseudo-spectral (discrete)
projection of the force of infection field,

. 1 Y Tiw-1
A%IS (7'7 t) lTj Z A(wv t)€2 /1

d
weNg,

= 5 Y K@i nered (1)

d
weNg,

This projection onto the grid @lA"i is the approximation to the force of infection field (A) used in this work.

Gaussian approximation and the Pseudo-Spectral Projection as a Convolution sum

One potential difficulty is that although in theory a well-defined Fourier series exists for f7, the numerical performance
of the discrete transform FF'T is very poor in this situation. Essentially, the delta distributions in the infection image
can be expressed as,

1 S
5(2 _ LL') _ lTi Z 62ﬂ1w~(1,—a:)/l. (12)
weZd

However any finite truncation of this sum does not provide a good approximation to the delta distribution. We
resolve with this problem by introducing blurred images, where the delta distributions in the image definition are
replaced by tight Gaussians of width e (> 0),

1 _ =l
5€(x) = W@ 2¢2 (13)

This approximation is justified by the convergence,
€= 04 = oc(x—25) = O(x — ;).

Where — is weak convergence in distribution.

The image of infecteds with delta distributions approximated by Gaussians is denoted

N
fi(z,t) = 255@*11)11(15)

N
1 )
— lTj § : § Ij (t)€—27r2w262/l2e2ﬂ1w-(m—mj)/l (14)

weZd j=1

Note that the effect of the Gaussian apg)roximation on the image of infecteds Fourier representation is to decrease
each Fourier coefficient by a factor e 2" w*¢*/I This causes the sum over wave vectors to converge, by filtering out
the effect of the high frequency waves. The source of the Gaussian factor is due to Gaussians in the spatial domain
being represented as Gaussians in the frequency domain with inverted width. For € < [,

Se(w) - Ié 65(33)@_27riwmd.13 = 6_2W2w252/12. (15)
1
This identity is easily calculated by using standard completing of the square in the exponent of the exponential
function and using that d. is normalised.

Since ff is a well defined bounded function on I l‘i we can consider a sum approximation to the convolution integral
form for the force of infection field,

i t) = K x fr(i,t) = K x fi(i,t) = (Aa) Y K({i = 5h) f7(5)- (16)
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Where,

K{i—jh) = Z K((z—3)" +mnl). (17)

nezd

(i—7)* denotes the shortest euclidean distance between grid points ¢ and j on the periodic domain T ld , which possibly
may not coincide with |¢ — j|. The extra contribution is also due to periodicity - that the distribution of infected
habitats creates an infectious potential on a point due to the shortest range interaction, and then that range plus
an extra revolution around the space and so on. This is obviously not an effect of interest in spatial modelling
with application; it is in fact is negligible due to restricting to transmission kernels that are sufficiently short range
compared to the space that only the shortest range interactions contribute.

The natural approximation of the force of infection is, in fact, identical to the pseudo-spectral projection of
the force of infection field using Gaussian approximations for the delta distributions of habitat locations. Applying
definition (9) to the pseudo-spectral projection (11) with the Fourier coefficients of the image of infected replaced by
their ’blurry’ Gaussian approximation gives that,

Ait) ~ (Az)t Y K({i—jh)f5()
j@gg

B mzd Ag: D D D K@i t)emiietd W mal/man

jedk? weQd, wend,

1 o i
= o 3 R@)fiw, e

d
weNg,

= M\VEG,t),  iedll, teR,. (18)

Where I have used that for i € % sz i/Ax € Z%, by construction. Now, by considering mth roots of unity we get
the analogous discrete orthogonality relationship to (7),

Z eZﬂi(j/Az)-(wliw)/m = mdéw’,w-l-mpv pE Zd- (19)
jeok?

Note that this orthogonality relation is periodic, it does not distinguish between the equivalence classes of the form
(W = {w +mn|n € Z9}. Tt is the discrete projection Ay that we can solve for each point 4 € @Az with compu-
tation cost O(M In M) using the FFT convolution solutlon as described in the main work.

A final consideration is choice of M, which in turn determines Ax. FFT algorithms operate via the factorisation
of M, with greater operational speed if M has a factorisation into small primes. Hence, having tuned parameters
for acceptable error it is better to pick M such that it has a factorisation into a product of powers of 2,3,5. This
typically constitutes a small modification of Ax. Where possible we have chosen M as a power of 2 for maximum
efficiency of calculation.

Convergence of Pseudo-Spectral Approximation

In this section we discuss the interplay between choosing grid separation Az and Gaussian width, €, in terms of an
upper bound on the error in the force of infection due to using FSR. In following sections we will justify the upper
bound (20). For smooth transmission kernels, K, we have that for any epidemic state X (¢) a upper bound on the
uniform error (the worst error anywhere in [;) between the true (\) and estimated ()\M 7 force of infection field,

M,
IApg = Alloo

IN
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€ —
PAS lloo + S IAAS floo + Ce™M + O(e)

Q

2
€
T Moo + 5 1A loo + O(e) (20)

Where || flloc = sup,eza{|f(x)|} is a uniform norm on the spatial variables, and can therefore vary with time. The
exponentially decaying term, with C > 0 and £ > 0 constants, gives the uniform error due to the ‘true’ spectral
approximation of the force of infection field (A2!) using a projection of M plane waves. In practise this is the least



significant error term, and the approximation in (20) is valid for large grid sizes. A is the Laplacian operator for the
spatial variables, and W is an error factor due to using the discrete grid <I>lAw to approximate the Fourier coefficients.
U(r) is an increasing function in the ratio of Gaussian width to grid width,

r=Ax/e, (21)
with
U(r)—0, as r — 0. (22)
Equations (20) and (22) provide several key insights into the FSR method:

e Smooth transmission kernels, K, lead to the small uniform norms in (20), and hence greater expected accuracy
for the FSR method. In particular the transmission kernels considered in the main work were each parametrised
by a length scale L. As L — oo then the force of infection everywhere converges to its mean-field limit
IA#)]|oo — BI(t)/1 where I(t) is the number of infected habitats at time ¢ and 3 is the magnitude of the
transmission kernel; similarly ||AM||oc — 0. Therefore for large L kernels the grid to Gaussian width ratio r
can be made small on a coarse grid by using wide gaussians (e > Ax) without loss of accuracy.

e For any ¢ > 0,

2
. M,e € 4
€ < .
A [Aps = Alloe < S [|AN|oo + O(€7) (23)

Therefore, the uniform error (20) can be set arbitrarily small by reducing both Az and e.

e As we increase the width of the space we consider (I) the uniform norms in (20) depend on how the habitats
are distributed since they represent the maximum rate of infection anywhere in I; for the disease state X (¢).
For randomly distributed habitats this maximum rate will grow very slowly with [.

e For a given collocation grid with Az > 0, there exists an error trade-off between the two extremes of choosing
a tight Gaussian (e < Ax), which can lead to large values of ¥ and choosing a disperse Gaussian (e > Ax)
when the €2 term dominates.

e The upper bound (20) is itself upper bounded by the case where all habitats share an identical spatial location.
For I(t) infectious habitats this gives,

2
€ € —a
IXPE = Aloo < 1) [P K oo + 5 [AK]|oc] + Ce M + O(e). (24)
Which suggests that € could be chosen so as to minimise,
2
Koo + S IAK] . (25)

Which is an expression independent of the distribution of habitats. On the other hand choosing € as to
minimise (25) is not necessarily the optimal or even simplest solution. In the main work we used a corrected
kernel spectrum with the goal of compensating for the effect of Gaussian blurring on the spectrum of the force
of infection field. Therefore error due to using corrected spectrum FSR has a weaker dependence on choosing e
as too great. This consideration motivates choosing € as sufficiently great that a unit Gaussian has unit mass

on the approximation grid (d.(0) ~ 1) but no larger.

Derivation of Error Upper Bound

We turn to the derivation of the upper bound (20). The upper bound is for FSR without Kernel correction, in
subsequent sections we then demonstrate a further improvement in accuracy due to using corrected spectrum FSR.
There are three sources of error in the approximation scheme \ ~ /\Jl\fbf.

o Aliasing error due to FFT being a discrete transformation with a quadrature on discrete spatial points replacing
an integral on continuous space.

e Projection error due to projecting K and f§ onto the subspace L2, (I{) constructed using M < oo plane waves.



e The approximation of delta distributions by Gaussians.

The smoothness of the force of infection field, A, is guaranteed by the smoothness of the transmission kernel. This in
turn guarantees the existence of the spectral projection of the force of infection field ()\f\g ) and its counterpart with
delta distributions replaced by approximating Gaussians,

€ 1 2 re Tiw-T
Af’@J):ﬁZE: K (w) f§(w, t)e?miw e/l (26)
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We can decompose the uniform error between the true force of infection field and its pseudo-spectral projection using
Gaussian approximation into the useful upper bound,

AN — Aloo < IABE = A8 Moo + IAE" =AM [loo + MY — Al oo (27)

Each term on the right hand side of above is respectively, the aliasing error, the Gaussian approximation error
and the spectral error. We consider each case separately. The projection error is given by a standard result, however
the error analysis for the error due to aliasing and Gaussian approximation is more involved. We make the general
point that the smaller € the better for the Gaussian approximation, but the less support )\yg has on @lA’i and hence,
for fixed Ax, the worse the aliasing error.

Projection Error:
Due to the smoothness of the force of infection field, it is well known [1] we have convergence as M — oo for the
spectral projection )\g‘/f to A. Moreover, the rate of convergence is exponential,

IS (1) = AC, )lloo ~ Ce™M, (28)
for some C > 0 and a > 0 dependent on the smoothness of A. In practise this is the least significant term in (27).
Aliasing Error:

Recall that in each dimension we implement FFT on m = (I/Az) discrete frequencies, i.e. M = (I/Az)¢ = m?. A
classic manipulation is the decomposition using (1) and (9) [3, 2],

5\(w7t) — (A.’E)d Z )\(j)e—Zﬂ'iw'(j/Ax)/m
JEXy,
Azx)? « o o
LN S S S s a8

jeokd werd
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5 Z AW, 1) 0w’ wtmp, p e,
w’'ez?
= Mw,t)+ Z Mw 4+ mp). (29)
p#0

= md

Where f (w) is the Fourier coefficient for f at discrete frequency w € Z?. This relates the ‘true’ Fourier coefficient
to the FFT estimate. The second term in the sum is the aliasing error induced by the indistinguishability of modes
within the equivalence classes [w]y,.

We make the reasonable assumption that the transmission kernel has a known Fourier series K , or has negligible
aliasing error. We analysis the aliasing error dependence on grid width (Az) and Gaussian approximation width (e)
through the ratio,

r=—. (30)

We will find that as the grid width becomes significantly less than the width of the Gaussian approximation (r — 0)
the aliasing error becomes negligible.



Using equation (29) the aliasing error, for a given state X (¢) and = € I, can be written as,
1

|()\g[é€ _A?7E)($at)| = ﬁ’ Z K(w)(f;(w) _fle(w))e%mwm/l‘
weNg,
N -
- ’ Z K(w ZI] 2mw'($7zi)/lZefzmmp'(?;)/mef%g(W+mp)2/r2m2 (31)
wGQM j=1 p#£0

We emphasis that the Gaussian approximation to the delta distribution was necessary for good numerical perfor-
mance since the sum Zp 20 e=27r(z5) does not converge, causing significant aliasing error in the pseudo-spectral
approach to force of infection calculation with € = 0, however big M is allowed to become. However, the sum
> p0 e 2 (wimp)*/r*m® converges for all r > 0.

An obvious progression from (31) is to use the Cauchy-Schwarz inequality, however this leads to rather crude
estimates for the aliasing error for a given choice of Az, e. Instead, we exploit the special structure of the force of
infection field’s spectral representation. It is convenient to define an alias function for each habitat,

1 . 2 )
aj(x) _ lTi Z 2:6—271'zmp-(H)/1716—2712(u.z-‘rmp)2/7‘277126271'u,.)~w/l7 = Ild7 j=1,...,N. (32)
weZ4 p#0

We note that under variation of habitat location, x;, ; is everywhere maximised by choosing x; on the grid; that
is that (z;/Ax) € Z%. This gives the dominant alias function,

€ LL‘) _ lld Z Ze—27r2(w+mp)2/7"2m2€27riw~w/l' (33)
w€EZ p#0
The alias function a€ gives the z dependent difference between the pseudo-spectral and true spectral approximations
of a d-dimensional zero-centred Gaussian of width e. Numerical investigation suggests that o is a positive function.
We note from (31) that the difference between the pseudo-spectral and true spectral approximations for the force of
infection field can be written in the convolution form, where the € dependence is subsumed into the alias function,

N
(P =A@, Ol = | LK o) (@ — ;)]

IA

j=1
N
Z NEK * o) (z — ;)|

(1 4 K) 0 o)
— A+ a)¥ (2, 1)]. (34)

Combining (34) with Young’s inequality for convolutions gives the inequality,

M,
IOBE = 25" loo < IAE ool (@) & 1 (35)
Using the positivity of o gives,
d
YW= S e 2 Y e g (e 0
p#£0 pEZA nez
We recall the standard result of analysis that for non-negative monotonically decreasing functions f,

M

M
D) <FIN)+ | fx)da
n=N N

We also note that f(z) = e=27 (@=«{/m)*/r* is monotonically decreasing on [0,00). For each sum in the product
term in (36) we have, via standard sum splitting and change of variable,
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The integrals in (37) have unnormalised Gaussian probability density functions as their integrand. This permits the
following inequality,

/OO 6727T2$2/""2 d:r i /OO 6*27"212/T2dz _ T |:1 . V 2T /1 672W2I2/T2dx
0 1 % T Jo

™

- EP(Y >1V Y<0). (38)

Where the random variable Y ~ A(0,72 /47%). We can use Chebyshev’s inequality and the symmetry of the Gaussian
distribution to bound the probability above in terms of r.

P(Y>1VY<0)=1/2+PY >1)=1/2(1+P([Y]| > 1))

2
<1/2(1+ ).
<1/2(1+ s (39)
Introducing (37), (38) and (39) into (36) gives,
d 3 2
e —2n2 /2 r° 4+ 47 7”)_
S et 1gH(1+e + ) ! (40)
peZ4 i=1
For compactness of representation we now write,
3 2
+ 4rr
—1 _2772/T2 T )
P +e + PeEE
Introducing this estimate into equation (35) gives an upper bound for the error due to aliasing,
Me M e
IAps = A5 Ul < (@ = DA oo (41)
The error factor ¥(r) in upper bound (20) is,
U(r) = (P(r) —1) =, 0. (42)

Gaussian Approximation Error:
For the uniform Gaussian approximation error we can exploit the definition of the exponential function and use a
standard result for spectral representation of derivatives of smooth functions, f,

4 2 ;
Akf — ld Z m2w? (w)e27mw-m/l'

wEZ?

Where AF is the k-fold operator mapping on suitably regular functions f of the Laplacian (A = ZZ e 9 where
0!
€T = (x(l)’ s 7x(d)))7

AFf = AAF 1) = . = AA(..AAf)...).
Hence, by using the definition of the spectral projection with Gaussian approximation we can write,
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In application we use the small € estimate for (43),

2
€ €
I = Ao < S 1AM oo + O(e") (44)



Corrected Spectrum FSR

In the main work we did not use the kernel spectrum K in order to resolve the pseudo-spectral projection of the
force of infection field on the collocation grid. Instead, the corrected pseudo-spectrum,

K'(w) = . wed, (45)

was used. The motivation for (45) is the exact relation between the spectra of A and the blurry image of infection,
A=Kfr=K'f;. (46)

Hence, using corrected spectrum FSR is a computational trick to rewrite a product involving a difficult to resolve
spectrum (f7) in terms of two spectra that can be readily estimated using FFT.

A diagnostic that FFT is providing a good estimate for the spectrum of the zero centred Gaussian is the mass
supported on the collection grid, that is the zero-mode of the pseudo-spectrum 0.(0). The mass supported on the
grid should be 1 for the unit Gaussian, otherwise the Gaussian is either under-resolved, or in extreme cases as € — 0
the central spike of Gaussian dominates the pseudo-spectrum. In either case poor numerical performance should
be expected. Throughout the main work € was chosen so that b (0) = 1 but no greater. This choice of € has two
main motivations: (i) greater values of € on a given collocation grid implies a greater number of local points for each
habitat and therefore increased computational burden for FSR and (ii) d.(w) — 0 as |w| — oo faster for greater
values of e. This effectively limits the space of contributing wave-vectors to the projection )\gg, where the corrected

spectrum K’ is used. This would lead to poor projection error if € is chosen much too great.

We now re-present the numerical performance of FSR given in the main text, with the additional comparison of
uncorrected kernel FSR. The same baseline parameters were chosen (N = 12100, f =2, L = 3, Az = 0.5 with
Gaussian transmission kernel) as the main text, and a numerical investigation was performed by varying grid width
(Az), transmission range (L) and number of habitats (V). Simulations using uncorrected kernel FSR each had ¢
chosen to minimise the ‘worst possible’ upper bound (25). For each combination of parameters considered corrected
kernel FSR out performed uncorrected FSR in the sense of having a smaller error density (as defined in main text)
for both supremum error and final error. For the baseline parameters the supremum error density found using uncor-
rected kernel FSR was 2.23x1072 ([2.12 x 1072,2.36 x 10~2) compared to 6.7 x 1073 ([6.2 x 1072,7.3 x 1073]). The
dependence of error density upon parameter variation found to be similar for uncorrected kernel FSR as for corrected
kernel FSR. That is that error density was increasing with coarser grids (greater Ax), decreasing with longer range
transmission (greater L) and only weakly dependent upon metapopulation size (Figure 1A-C).

The expected dynamics of infecteds for the metapopulation epidemic (averaged over 1000 simulation replicates)
considered in the main work were still well estimated using uncorrected kernel FSR compared to the corrected kernel
version. The worst absolute error in expected numbers of infected habitats throughout the epidemic found using
uncorrected kernel FSR was 34.35 (0.32% of the metapopulation). However, this small error is still significantly
greater than that found for corrected kernel FSR (figure 1D).

References

[1] Tveito A, Winther R. Introduction to Partial Differential Equations: A Computational Approach. New York;
1998. Springer.

[2] Xiu D. Numerical Methods for Stochastic Computations. A Spectral Method Approach. Princeton: Princeton
University Press; 2010.

[3] Hesthaven J, Gottlieb S, Gottlieb D. Spectral methods for time-dependent problems. Cambridge; 2007. Cambridge
University Press.



>
o
2
o
o
o
>

[}
© Sup Error (Uncorr. kernel) 0.14] o Sup Error (Uncorr. kernel)
0.1 o S.Up Error © Sup Error
_'Zs Z EI::: E:g: (Uncorr. kemel) & _.2\0.12 o Final Error (Uncorr. kernel)
= ! - o Final Error
o) 0.08f - D o4
& &
)
D 0.06| D 0.08]
— @ —
o o o 0.06 )
= 0.04
Llj e ° o = 0.04
oo . 8 . L B
: & 0.02 3 ° o
° R B . R e e e
0 g ] s 8 e . = 0 w 8 -] g8 8 e e
0.5 1 15 1.5 2 25 3 3.5 4 45 5
AX L
C ooz D . . — " —
% s 800 [ — Direct Rate Calculation
3 ¢ ] g — FSR (uncorr. kernel)
0.02
> ® - FSR
2 L
(7’ o Sup Error (Uncorr. Kernel) ol 600
C 0015 o Sup Error o)
% o Final Error (Uncorr. Kernel ©
© T
(| o Final Error 5 400
0.0 2
o
s ™y . §
L gos ¢ ° . s E 200}
% s
o =
ol = % s = . ® = of; . . : .
0 2 4 N 6 8 n-, 0 100 200 300 400 500
x 10

Time (days)

Figure 1: An error comparison between uncorrected kernel FSR and FSR using a corrected kernel spectrum. All
confidence intervals are due to bias corrected 95% confidence boot-strapping. The base set of parameters was
N =12100, 5 =2, L =3, Az = 0.5 with Gaussian transmission kernel. A-C: Varying the base parameter set in
grid width (Ax), transmission range (L) and number of habitats (V). Mean supremum error density (circles) and
mean final error density (squares) are shown for both uncorrected kernel FSR and the corrected kernel FSR used in
the main text. For each parameter choice corrected kernel FSR had a lesser mean error density. D: The time varying
expected number of infected habitats for the baseline parameters with 10 initial infecteds is compared to that found
using uncorrected and corrected kernel FSR. The expected epidemic curve estimated using corrected kernel FSR is
more accurate. Each epidemic curve was estimated using 1000 simulation replicates.
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