24 research outputs found

    Anycast services and its applications

    Full text link
    Anycast in next generation Internet Protocol is a hot topic in the research of computer networks. It has promising potentials and also many challenges, such as architecture, routing, Quality-of-Service, anycast in ad hoc networks, application-layer anycast, etc. In this thesis, we tackle some important topics among them. The thesis at first presents an introduction about anycast, followed by the related work. Then, as our major contributions, a number of challenging issues are addressed in the following chapters. We tackled the anycast routing problem by proposing a requirement based probing algorithm at application layer for anycast routing. Compared with the existing periodical based probing routing algorithm, the proposed routing algorithm improves the performance in terms of delay. We addressed the reliable service problem by the design of a twin server model for the anycast servers, providing a transparent and reliable service for all anycast queries. We addressed the load balance problem of anycast servers by proposing new job deviation strategies, to provide a similar Quality-of-Service to all clients of anycast servers. We applied the mesh routing methodology in the anycast routing in ad hoc networking environment, which provides a reliable routing service and uses much less network resources. We combined the anycast protocol and the multicast protocol to provide a bidirectional service, and applied the service to Web-based database applications, achieving a better query efficiency and data synchronization. Finally, we proposed a new Internet based service, minicast, as the combination of the anycast and multicast protocols. Such a service has potential applications in information retrieval, parallel computing, cache queries, etc. We show that the minicast service consumes less network resources while providing the same services. The last chapter of the thesis presents the conclusions and discusses the future work

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches

    Efficient Passive Clustering and Gateways selection MANETs

    Get PDF
    Passive clustering does not employ control packets to collect topological information in ad hoc networks. In our proposal, we avoid making frequent changes in cluster architecture due to repeated election and re-election of cluster heads and gateways. Our primary objective has been to make Passive Clustering more practical by employing optimal number of gateways and reduce the number of rebroadcast packets

    Data collection of mobile sensor networks by drones

    Get PDF
    Data collection by autonomous mobile sensor arrays can be coupled with the use of drones which provide a low-cost, easily deployable backhauling solution. These means of collection can be used to organize temporary events (sporting or cultural) or to carry out operations in difficult or hostile terrain. The aim of this thesis is to propose effective solutions for communication between both mobile sensors on the ground and on the edge-to-ground link. For this purpose, we are interested in scheduling communications, routing and access control on the sensor / drone link, the mobile collector. We propose an architecture that meets the constraints of the network. The main ones are the intermittence of the links and therefore the lack of connectivity for which solutions adapted to the networks tolerant to the deadlines are adopted. Given the limited opportunities for communication with the drone and the significant variation in the physical data rate, we proposed scheduling solutions that take account of both the contact time and the physical flow rate. Opportunistic routing is also based on these two criteria both for the selection of relay nodes and for the management of queues. We wanted to limit the overhead and propose efficient and fair solutions between mobile sensors on the ground. The proposed solutions have proved superior to conventional scheduling and routing solutions. Finally, we proposed a method of access combining a random access with contention as well as an access with reservation taking into account the aforementioned criteria. This flexible solution allows a network of dense mobile sensors to get closer to the performance obtained in an oracle mode. The proposed solutions can be implemented and applied in different application contexts for which the ground nodes are mobile or easily adapted to the case where the nodes are static

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Models, Algorithms, and Architectures for Scalable Packet Classification

    Get PDF
    The growth and diversification of the Internet imposes increasing demands on the performance and functionality of network infrastructure. Routers, the devices responsible for the switch-ing and directing of traffic in the Internet, are being called upon to not only handle increased volumes of traffic at higher speeds, but also impose tighter security policies and provide support for a richer set of network services. This dissertation addresses the searching tasks performed by Internet routers in order to forward packets and apply network services to packets belonging to defined traffic flows. As these searching tasks must be performed for each packet traversing the router, the speed and scalability of the solutions to the route lookup and packet classification problems largely determine the realizable performance of the router, and hence the Internet as a whole. Despite the energetic attention of the academic and corporate research communities, there remains a need for search engines that scale to support faster communication links, larger route tables and filter sets and increasingly complex filters. The major contributions of this work include the design and analysis of a scalable hardware implementation of a Longest Prefix Matching (LPM) search engine for route lookup, a survey and taxonomy of packet classification techniques, a thorough analysis of packet classification filter sets, the design and analysis of a suite of performance evaluation tools for packet classification algorithms and devices, and a new packet classification algorithm that scales to support high-speed links and large filter sets classifying on additional packet fields

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    corecore