6 research outputs found

    Pulse Oximeter Monitoring Bracelet for COVID-19 Patient using Seeeduino

    Get PDF
    The increase in positive cases of COVID-19 makes it grave to monitor the level of oxygen saturation in the blood (SPO2) of COVID-19 patients. The purpose is to prevent silent hypoxia, which lowers oxygen levels in the blood without symptoms. In general, a conventional pulse oximeter is a clip that is clamped on a finger to measure SPO2 levels and heart rate per minute (HR). This research aims to design a compact pulse oximeter monitoring bracelet. The main components of the pulse oximeter monitoring bracelet are the Seeeduino XIAO microcontroller, MAX30100 sensor, and OLED display. The method of collecting data on ten people using a conventional pulse oximeter and prototype device to measure SPO2 and HR levels the interval 30 seconds were a taken measurement. The results show that the Pearson correlation value for SPO2 and HR are -0.73 and 0.98, respectively. These results demonstrated that there is a strong relationship between variables and sufficient linearity. In addition, a pulse oximeter monitoring bracelet is easy to use and low-costs, which makes it an attractive option for the successful implementation of such monitoring SPO2 and HR of COVID-19 patients

    Design of Heart Rate, Oxygen Saturation, and Temperature Monitoring System for Covid-19 Patient Based on Internet of Things (IoT)

    Get PDF
    Instruments for measuring pulse rate, oxygen saturation, and body temperature for Covid-19 patients have been designed using the MAX30100 sensor and the Internet of Things (IoT)-based MLX90614 sensor. The MAX30100 sensor is used to measure pulse rate and oxygen saturation. A non-contact MLX90614 sensor is used to monitor body temperature, with an ultrasonic sensor used to set the maximum distance between the sensor and the object. The measurement results were transferred to the database via the ESP8266 MCU node's Wi-Fi communication line. The stored data can be accessed via a web browser. Compared to the oximeter, the MAX30100 sensor has an average error rate of 1.027% for pulse measurement and 0% for oxygen saturation. The MLX90614 sensor has a 0.42% average error rate when it was compared to the thermo-gun.Thus, the measuring device can function properly and is feasible to use. Furthermore, because there is no direct contact between the human body and the sensor, the instrument can prevent Covid-19 transmission

    Non-Invasive Hemoglobin Monitoring Device using K-Nearest Neighbor and Artificial Neural Network Back Propagation Algorithms

    Get PDF
    Abstract— The invasive method of medically checking hemoglobin level in human body by taking the blood sample of the patient requiring a long time and injuring the patient is seen impractical. A non-invasive method of measuring hemoglobin levels, therefore, is made by applying the K-Nearest Neighbor (KNN) algorithm and the Artificial Neural Network Back Propagation (ANN-BP) algorithm with the Internet of Things-based HTTP protocol to achieve the high accuracy and the low end-to-end delay. Based on tests conducted on a Noninvasive Hemoglobin measuring device connected to Cloud Things Speak, the prediction process using algorithm by means of Python programming based on Android application could work well. The result of this study showed that the accuracy of the K-Nearest Neighbor algorithm was 94.01%; higher than that of the Artificial Neural Network Back Propagation algorithm by 92.45%. Meanwhile, the end-to-end delay was at 6.09 seconds when using the KNN algorithm and at 6.84 seconds when using Artificial Neural Network Back Propagation Algorithm

    Sistem Deteksi Gejala Hipoksia Berdasarkan Saturasi Oksigen Dan Detak Jantung Menggunakan Metode Fuzzy Berbasis Arduino

    Get PDF
    Pada saat ini mengalami perkembangan pesat pada sistem cerdas salah satunya dalam bidang kesehatan ataupun medis. Dalam bidang medis sangat diperlukan alat yang mengetauhi kondisi pasien dengan cara noninvasive yaitu tanpa melukai pasien. Didalam kehidupan sehari – hari manusia kurang megetauhi pentingnya kadar oksigen yang ada didalam dirinya dan belum tahu akibatnya jika kadar presentase oksigen dalam tubuhnya tidak memenuhi angka yang cukup sehat . Bahkan jika diabaikan terus menurus maka akan bisa hipoksia yang dapat mengganggu fungsi otak, hati, dan organ lainnya dengan cepat. Sehingga dalam penelitian ini dibuat alat deteksi gejala awal hipoksia yang menggunakan metode noninvasive dengan menggunakan sensor Max30100 yang dijepitkan ke ujung jari dapat mengetauhi hasil dairi gejala awal hipoksia. Untuk mendeteksi gejala awal hipoksia pada alat ini digunakan metode fuzzy sugeno sehingga didapatkan output sesuai rule yang ada. Metode fuzzy sugeno akan mengolah data yang diambil dari sensor Max30100. Terdapat 3 hardware yang ada pada alat ini, mikrokontroler arduino sebagai kontrolernya ,sensor Max30100 untuk mendapatkan inputannya dan bluetooth untuk pengiriman data ke smarthphone. Software menggunakan IDE arduino untuk memprogram alat deteksi dan APP inventor untuk memprogram aplikasi android supaya dapat menampilkan data. Pada peneltian ini mendapat hasil pengujian hasil pengujian deidapatkan error pada alat 2,96% untuk sarturasi oksigen dan 2,86% untuk detak jantung didapatkan. Dari metode fuzzy pada 12 percobaan data dibapat akurasi 100% dan metode fuzzy sugeno dapat mengolah data intputan dengan baik

    Desenvolvimento de hardware modulado para condicionamento, digitalização e transmissão wireless de biossinais: eletrocardiograma, eletromiograma, saturação da oxigenação sanguínea e temperatura corporal

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáO mercado de sistemas vestíveis de monitoramento de sinais vitais (Wearable Health-Monitoring Systems – WHMS) teve um grande salto junto com os avanços em tecnologias de comunicação sem fio e miniaturização de componentes elétricos, possibilitando a integração desses aparelhos no acompanhamento de pacientes enfermos ou, ainda, como facilitador da aquisição de dados para um possível diagnóstico. Neste sentido, esse trabalho visa o desenvolvimento de um WHMS estruturado em blocos para aquisição, condicionamento e envio wireless de biossinais, nomeadamente, eletrocardiograma (ECG), eletromiograma (EMG), temperatura corporal e saturação de oxigénio no sangue (SpO2), de forma não-invasiva e com alta confiabilidade. As etapas de aquisição e condicionamento dos analógicos (ECG e sEMG) foram desenvolvidas utilizando componentes analógicos, parametrizados sob a área de interesse única de cada sinal, a qual foi determinada através de um estudo bibliográfico de cada comportamento. Ademais, para aferir a temperatura e SpO2, são utilizados sensores digitais, respetivamente, DS18B20 e MAX30102. Quanto ao envio dos dados, primeiramente os sinais analógicos são convertidos para sinais digitais utilizando o conversor analógico-digital de 12 bits embebido na placa de desenvolvimento ESP32 V4, além de ser tratada a utilização do conversor ADS1296 de 24 bits. Posteriormente, com as informações armazenada na memória do microcontrolador, os dados são agrupados em pacotes priorizando o processamento mais rápido entre envios, objetivando o mínimo de perdas de dados. Após o desenvolvimento, os resultados foram comparados com dispositivos validados, buscando uma confirmação do funcionamento, obtendo melhores resultados nas medições de relação sinal-ruído e correspondência com o sinal ideal esperado para os sinais de ECG e EMG utilizando os circuitos desenvolvidos. De mesmo modo, para o sinal de temperatura, obteve-se resultados altamente precisos e um comportamento em concordância com o equipamento validado, porém, para as medições de SpO2, os resultados obtidos com o MAX30102 não foram adequados, sendo, então, propostas medidas a serem estudadas almejando a melhoria deste resultado.The wearable vital signs monitoring systems (WHMS) market had a great growth along with the advances in wireless communication technologies and miniaturization of electrical components, allowing the integration of these devices in the monitoring of sick patients or even as a facilitator of data acquisition for a possible diagnosis. In this regard, this work seeks to develop a WHMS designed in blocks for acquisition, conditioning, and wireless transmission of biosignals, such as, electrocardiogram (ECG), electromyogram (EMG), body temperature and blood oxygen saturation (SpO2), in a non-invasive way and with high reliability. The steps of acquisition and conditioning of the analog signals (ECG and sEMG) were developed using analog components, parameterized under the unique area of interest of each signal, which was determined through a bibliographic study of each behaviour. Moreover, to measure temperature and SpO2, digital sensors were used, respectively, DS18B20 and MAX30102. As for the data transmission, firstly the analog signals were converted to digital signals using the analog-to-digital converter with 12 bits embedded on the development board ESP32 V4, as well as considered the use of the ADS1296 converter with 24 bits, then, with the information stored in the microcontroller memory, the data are packetized prioritizing the fastest processing between transmissions, aiming at the minimum loss of data. After the development, the results were compared with validated devices, searching for a confirmation of the performance, obtaining better results in the measurements of signal-to-noise ratio and correspondence with the expected ideal signal for the ECG and EMG signals using the developed circuit. In the same way, for the temperature signal, it was achieved highly precise results and a behaviour in accordance with the validated equipment, however, for the SpO2 measurements, the results obtained with MAX30102 were not adequate, therefore, measures are then proposed to be investigated with a keen interest in improving this result

    Réalisation d'un système connecté pour le suivi en temps-réel du rythme cardiaque et de la saturation d'oxygène chez les patients atteints d'arythmie cardiaque

    Get PDF
    RÉSUMÉ : D'après l'agence de la santé publique du Canada, les maladies chroniques sont responsables de 65% de l'ensemble des décès et demeurent la cause principale de tous les décès prématurés. Parmi celles-ci, les maladies du cœur occupent la deuxième place. Les personnes atteintes de maladies chroniques ont besoin d'un suivi régulier de leurs états de santé. Cette nécessité est souvent contrainte par certains facteurs comme les difficultés d'accès aux soins de santé dans les zones reculées, les longs temps d'attentes dans les urgences ou le manque de personnel médical. Ces contraintes d'accès aux soins sont accentuées avec la pandémie de la COVID-19. La mise en place d'un système de santé électronique basé sur l'internet des objets (IoT) constitue une révolution remarquable, qui permet l'acquisition et le suivi des données des patients à distance, en temps-réel, et d'améliorer les services des soins, les traitements et les interventions. Notre projet se concentre sur le développement d'un dispositif portable pour faciliter la surveillance en temps-réel du rythme cardiaque et de la saturation d'oxygène dans le sang (SpO2) avec une application mobile. Il permettra également d'envoyer des alertes par message texte en cas d'arythmie ou de niveau anormal de SpO2 (saturation d'oxygène dans le sang). Deux approches basées sur des systèmes sur puce (SoC) différents ont été adoptées pour la réalisation. La première concerne le calcul rythme cardiaque en se basant sur l'analyse du signal électrocardiogramme (ECG) ou du signal photopléthysmogramme (PPG) en utilisant l'algorithme de Pan et Tompkins. Un prototype est réalisé à la base de la carte Nexys-4 conçue autour du circuit FPGA Artix-7, des capteurs de signaux et d'un module de transmission Bluetooth qui permet d'envoyer le rythme cardiaque mesuré vers une application mobile. La seconde concerne la mesure de la fréquence cardiaque et de la saturation d'oxygène (SpO2) en utilisant un capteur MAX3010x et une carte Heltec WiFi kit 32 comme microcontrôleur. Ce dernier dispose d'un afficheur OLED intégré et des technologies WiFi et Bluetooth pour des communications sans fil. -- Mot(s) clé(s) en français : Télésurveillance, E-santé, Internet des Objets, ECG, PPG, Capteurs connectés, Rythme cardiaque, Saturation d'oxygène, Implantation FPGA. -- ABSTRACT : According to the Public Health Agency of Canada, chronic diseases account for 65% of all deaths and remain the leading cause of all premature deaths. Of these, heart disease is the second leading cause. People with chronic diseases need regular monitoring of their health. This need is often constrained by factors such as difficulties in accessing health care in remote areas, long waiting times in emergency rooms or lack of medical staff. These constraints to accessing care are accentuated with the COVID-19 pandemic. The implementation of an electronic health system based on the Internet of Things (IoT) is a remarkable revolution, allowing the acquisition and monitoring of patient data remotely, in real time, and improving care services, treatments and interventions. Our project focuses on the development of a wearable device to facilitate real-time monitoring of heart rate and blood oxygen saturation (SpO2) with a mobile application. It will also allow text message alerts to be sent in the event of arrhythmia or abnormal SpO2 (blood oxygen saturation) levels. Two different system-on-chip (SoC) approaches have been adopted for the implementation. The first one concerns the heart rate calculation based on the analysis of the electrocardiogram (ECG) signal or the photoplethysmogram (PPG) signal using the Pan and Tompkins algorithm. A prototype is being built based on the Nexys-4 board designed around the Artix-7 FPGA circuit, signal sensors and Bluetooth transmission module that allows the measured heart rate to be sent to a mobile application. The second is for measuring heart rate and oxygen saturation (SpO2) using a MAX3010x sensor and a Heltec WiFi kit 32 board as the microcontroller. The latter has a built-in OLED display and WiFi and Bluetooth technologies for wireless communications. -- Mot(s) clé(s) en anglais : Remote monitoring, E-health, Internet of things, ECG, PPG, Wearable sensors, Heart rate, Oxygen saturation. FPGA implementation
    corecore