672 research outputs found

    Semantic mutation testing

    Get PDF
    This is the Pre-print version of the Article. The official published version can be obtained from the link below - Copyright @ 2011 ElsevierMutation testing is a powerful and flexible test technique. Traditional mutation testing makes a small change to the syntax of a description (usually a program) in order to create a mutant. A test suite is considered to be good if it distinguishes between the original description and all of the (functionally non-equivalent) mutants. These mutants can be seen as representing potential small slips and thus mutation testing aims to produce a test suite that is good at finding such slips. It has also been argued that a test suite that finds such small changes is likely to find larger changes. This paper describes a new approach to mutation testing, called semantic mutation testing. Rather than mutate the description, semantic mutation testing mutates the semantics of the language in which the description is written. The mutations of the semantics of the language represent possible misunderstandings of the description language and thus capture a different class of faults. Since the likely misunderstandings are highly context dependent, this context should be used to determine which semantic mutants should be produced. The approach is illustrated through examples with statecharts and C code. The paper also describes a semantic mutation testing tool for C and the results of experiments that investigated the nature of some semantic mutation operators for C

    Testing a system specified using Statecharts and Z

    Get PDF
    A hybrid specification language SZ, in which the dynamic behaviour of a system is described using Statecharts and the data and the data transformations are described using Z, has been developed for the specification of embedded systems. This paper describes an approach to testing from a deterministic sequential specification written in SZ. By considering the Z specifications of the operations, the extended finite state machine (EFSM) defined by the Statechart can be rewritten to produce an EFSM that has a number of properties that simplify test generation. Test generation algorithms are introduced and applied to an example. While this paper considers SZ specifications, the approaches described might be applied whenever the specification is an EFSM whose states and transitions are specified using a language similar to Z

    PROGRAM CODE GENERATION BASED ON UML STATECHART MODELS

    Get PDF
    Since visual modelling languages are getting more and more popular, the automatic generation of the program code on the basis of high-level models is an important issue. This article discusses implementation possibilities of statecharts, the graphical notation for describing state-based event-driven behaviour in the Unified Modelling Language (UML). The first part of the article outlines common approaches published in the literature and identifies their weaknesses. In the second part an implementation pattern is proposed that is capable of efficiently instantiating most of the statechart features. The pattern developed by us poses low hardware requirements therefore applicable even in embedded systems

    Exploiting Hierarchy in the Abstraction-Based Verification of Statecharts Using SMT Solvers

    Get PDF
    Statecharts are frequently used as a modeling formalism in the design of state-based systems. Formal verification techniques are also often applied to prove certain properties about the behavior of the system. One of the most efficient techniques for formal verification is Counterexample-Guided Abstraction Refinement (CEGAR), which reduces the complexity of systems by automatically building and refining abstractions. In our paper we present a novel adaptation of the CEGAR approach to hierarchical statechart models. First we introduce an encoding of the statechart to logical formulas that preserves information about the state hierarchy. Based on this encoding we propose abstraction and refinement techniques that utilize the hierarchical structure of statecharts and also handle variables in the model. The encoding allows us to use SMT solvers for the systematic exploration and verification of the abstract model, including also bounded model checking. We demonstrate the applicability and efficiency of our abstraction techniques with measurements on an industry-motivated example.Comment: In Proceedings FESCA 2017, arXiv:1703.0659

    Adapting modeling environments to domain specific interactions

    Full text link
    Software tools are being used by experts in a variety of domains. There are numerous software modeling environments tailored to a specific domain expertise. However, there is no consistent approach to generically synthesize a product line of such modeling environments that also take into account the user interaction and experience adapted to the domain. The focus of my thesis is the proposal of a solution to explicitly model user interfaces and interaction of modeling environments so that they can be tailored to the habits and preferences of domain experts. We extend current model-driven engineering techniques that synthesize graphical modeling environments to also take interaction models into account. The formal semantics of our language framework is based on statecharts. We define a development process for generating such modeling environments to maximize reuse through a novel statechart refinement technique.Les outils logiciels sont utilisés par des experts dans une variété de domaines. Il existe de nombreux environnements de modélisation logicielle adaptés á une expertise spécifique. Cependant, il n’existe pas d’approche cohérente pour synthétiser génériquement une ligne de produits de tels environnements de modélisation qui prennent également en compte l’interaction et l’expérience utilisateur adaptées au domaine. L’objectif de ma thése est la proposition d’une solution pour modéliser explicitement les interfaces utilisateur et l’interaction des environnements de modélisation afin qu’ils puissent étre adaptés aux habitudes et aux préférences des experts du domaine. Nous étendons les techniques d’ingénierie actuelles pilotées par un modéle qui synthétisent des environnements de modélisation graphique pour prendre également en compte les modèles d’interaction. La sémantique formelle de notre cadre linguistique est basée sur des statecharts. Nous définissons un processus de développement pour générer de tels environnements de modélisation afin de maximiser la réutilisation à travers une nouveau technique de raffinement de statecharts

    UML as a system level design methodology with application to software radio

    Get PDF
    Master'sMASTER OF SCIENC

    A Scenario-Based Approach to Validating and Testing Software Systems Using Statecharts

    Full text link
    Scenarios (Use cases) are used to describe the functionality and behavior of a (software) system in a user-centered perspective. As scenarios form a kind of abstract level test cases for the system under development, the idea to use them to derive test cases for system test is quite intriguing. Yet in practice scenarios from the analysis phase are seldom used to create concrete system test cases. In this paper we present a procedure to create scenarios in the analysis phase and use those scenarios in system test to systematically determine test cases. This is done by formalization of scenarios into statecharts, annotation of statecharts with helpful information for test case creation/generation and by path traversal in the statecharts to determine concrete test cases

    An Operator-based Approach to Incremental Development of Conform Protocol State Machines

    Get PDF
    An incremental development framework which supports a conform construction of Protocol State Machines (PSMs) is presented. We capture design concepts and strategies of PSM construction by sequentially applying some development operators: each operator makes evolve the current PSM to another one. To ensure a conform construction, we introduce three conformance relations, inspired by the specification refinement and specification matchings supported by formal methods. Conformance relations preserve some global behavioral properties. Our purpose is illustrated by some development steps of the card service interface of an electronic purse: for each step, we introduce the idea of the development, we propose an operator and we give the new specification state obtained by the application of this operator and the property of this state relatively to the previous one in terms of conformance relation
    corecore