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Summary 

With raising the complexities of embedded systems, designers have been searching for 

new methodology that can handle given complexities with relatively low cost. Unified 

Modeling Language (UML) is a powerful specification language used widely in software 

development, as it improves product quality and productivity significantly. Embedded 

system designers also use UML notations to capture the system level design requirements 

and do the early stage testing. However, UML-based models are still far away from the 

implementation code. In order to address this problem, we have developed a framework 

for deriving SystemC implemented design from the class, statechart and component 

diagrams in order to capture the structure and the behavior of embedded systems. With a 

code generator, the system level implementation can be directly derived. Designer is able 

to generator different implementations from top-level to lower level. On each level, the 

executable models will help designer to test and verify their design. These form a top-

down design flow, and at the end of the flow, synthesizable SystemC models will be 

generated, which is one step from hardware chips.  

With this methodology, a bridge between the design and the system level implementation 

can be built. It can help designers with coding writing, model testing and co-designing. 

UML provides very powerful graphical notations to capture the system specifications. At 

the early stages, the system model can be easily and clearly defined. At the same time, 

designers will be able to focus on the structure and behaviors of system and avoid the 

process of manual translation of code.   

In the design progress, testing and verification can be done in multi-level of abstraction. 

As we build executable model from UML executives, the generated code can be used to 
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test and verify the models. In addition, testing code can be inserted in the models and they 

will be automatically in turn inserted into the generated model code.  

This methodology can also help in the software/hardware co-design. SystemC can be used 

to simulate both software components and hardware components. Therefore, at early 

stages, designer build the integrated system model without perform the partitioning. After 

synthesizable model being built, design can then decide the partitioning. Hardware 

portions will be further translated into gate-level model by using CoCentric tools, which is 

just one step from the hardware chip. The derived SystemC specifications can be further 

compiled into system hardware implementation by using CoCentric compiler.  One of our 

case studies, Software Radio design shows many significant advantages of this 

methodology.  

We defined a set of rules and use class and   statechart diagrams to capture the structure 

and behavior of embedded systems. Components diagrams are used to model clock setting 

for each components. Facts shows that the Software and hardware components as well as 

their communication channels can be modeled using native UML-notations. A code 

generator, called UML2Code, has been built to generate SystemC implementation from 

executable UML model. Three levels of SystemC specifications can be generated for 

testing and simulation purpose. With a promoted design flow, designer is able to get the 

synthesizable RTL code at the end. With some restriction in the coding style, the 

generated code can be further compiled to gate level models by Synopsis CoCentric 

Compiler. We did rigorous tests on our code generator. The results shows that the 

generator is reliable and generated code are compact and relatively effective. We explored 

the application of our methodology on the development of Software Radio. One of the 
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applications, Digital Down Converter, has been built to show the advantages of the 

methods in the Software Radio design.  

 

 

 

 

3 



I: Introduction 

1.1 Motivations 

Recently, the importance and significance of embedded system keeps increasing and the 

complexity of the embedded system is growing as the range of applications becomes 

larger. [1] Thus more and more complex systems require the design be built in less time 

and with relatively low cost. Due to this situation, there is increasing demand on more 

reliable and cost-efficient design and develop methodology. On the other hand, the 

development methodologies in various design organizations are quite ad hoc. System 

specification may be mis-captured during the design stage due to the lack of formal 

method, and model exchange and the spread will be difficult. Furthermore, manual 

translation from model to code is tedious and error-prone.  

On the other hand, traditional co-design approach required the software/hardware 

partitioning being done at the early stage. [5] After testing different partitioning, the 

optimized resolutions can be found. But each refinement requires reprogramming the 

components as well as the interfaces. This is very costly and time consuming.  

Several studies have been proposed to address the problems by considering using MDA 

approach for software/hardware con-design.[2][3] Most of them were trying to model the 

functional and structural requirements at high level, and they have obvious limitations 

because of lack of the behavioral information.[4]  

 

Our project is trying to apply MDA (Model Driven Architecture) approach for entire 

system development.  More precisely, full implementation of software and hardware 
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components as well as their communication interfaces can be produced directly from the 

system specifications. We use UML language as the PIM (platform independent model). 

The Unified Modeling Language (UML) has been widely used in software developments. 

UML is a language for specifying, visualizing, constructing, and documenting the artifacts 

of systems. [6] It provides convenient notations that allow the developer to capture 

structural and behavioral details using an object oriented design methodology. It has been 

proved that UML can improve product quality and productivity significantly. These are 

also major concerns in embedded system design. However, UML-based descriptions are 

still far from implementation level specification. While these specifications need to be 

refined to a more detailed level. SystemC, a C++ based modeling language, is a ideal 

choice which allows designers to work at a sufficiently high level of abstraction when 

expressing and verifying designs, yet enabling the linkage to hardware implementation 

and verification.[7] 

The aim of this project is to build a UML Profile for System Level Design that will allow 

• Leveraging of the informal expressiveness of the UML to capture the requirements 

at the early stages (E.g. Usecases, Activity, collaboration diagrams etc.) 

• Early modeling of requirements using formal executable UML Models, without 

committing to system partitioning to Hardware/Software(Using class, object and 

state diagrams and SystemC), ie., produce an executable behavioral simulation 

model.  

• Follow the core OO Method of step-wise iterative refinement to take the 

behavioral UML simulation models into implementation at the executable UML 

Models by providing code generation into appropriate languages for each 
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level/phase of refinement. (E.g. SystemC behavioral for algorithmic level, 

SystemC RTL, SystemVerilog, VHDL, Verilog RTL and C/C++ for 

Implementation model). 

 

Specs Hardware 
SystemC UML  

Mapping 

 

Figure 1 Mapping between Specifications and hardware 

With this methodology, a bridge between the design and the system level implementation 

can be built. It can help designers with coding writing, model testing and co-designing. 

UML provides very powerful graphical notations to capture the system specifications. At 

the early stages, the system model can be easily and clearly defined. At the same time, 

designers will be able to focus on the structure and behaviors of system and avoid the 

process of manual translation of code.   

In the design progress, testing and verification can be done in multi-level of abstraction. 

As we build executable model from UML executives, the generated code can be used to 

test and verify the models. In addition, testing code can be inserted in the models and they 

will be automatically in turn inserted into the generated model code.  

This methodology can also help in the software/hardware co-design. SystemC can be used 

to simulate both software components and hardware components. Therefore, at early 

stages, designer build the integrated system model without perform the partitioning. After 

synthesizable model being built, design can then decide the partitioning. Hardware 
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portions will be further translated into gate-level model by using CoCentric tools, which is 

just one step from the hardware chip. 

 

1.2 Achievements 

During Master study, we explored a methodology which uses UML-notations to do the 

system level design. The major achievements are as follows:  

• System Specifications capturing 

We defined a set of rules and use class and statechart diagrams to capture the 

structure and behavior of embedded systems. Components diagrams are used to 

model clock setting for each components. Facts shows that the Software and 

hardware components as well as their communication channels can be modeled 

using native UML-notations.  

• SystemC code auto-generation 

A code generator, called UML2Code, has been built to generate SystemC 

implemtnation from executable UML model. Three levels of SystemC 

specifications can be generated for testing and simulation purpose. With a 

promoted design flow, designer is able to get the synthesizable RTL code at the 

end. With some restriction in the coding style, the generated code can be further 

compiled to gate level models by Synopsis CoCentric Compiler.  

• Code Generator testing and evaluations 

We did rigorous tests on our code generator. Testing include the correctness, 

efficiency, code length, code quality and other important aspects. The results 
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shows that the generator is reliable and generated code are compact and relatively 

effective.  

• Case studies on Application: Software Radio 

Software radio is new technology in embedded system. It is highly 

software/hardware co-related. With traditional design methodology, the time-to-

marcket is quite long and the cost is high. We explored the application of our 

methodology on the development of Software Radio. One of the applications, 

Digital Down Converter(DDC), has been built to show the advantages of the 

methods in the Software Radio design.  

 

In past few months, some experiments have been done to study the translation from UML-

notation, in more details, Class diagrams and State diagrams, to SystemC models. An 

auto-generator code generator, called UML2Code, has been built to perform the 

translation. From executable UML-model, the generator can produce executable SystemC 

model, which can be used for test and simulation purpose. With some restriction in the 

coding style, the generated code can be further compiled to gate level models by Synopsis 

CoCentric Compiler. The detailed implementation of the generator will be discussed in 

section 3. We have done some interesting examples using our promoted design 

methodology. Software Radio, as a new technology, is highly software/hardware co-

related and costly in the design and testing progress. We found that the designer can 

benefit a lot by using our design methodology on development of Software Radio. We 

have developed a small example, a Digital Down Converter for GSM.  
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Through the experiments, a direct mapping between system description and target system 

level model was established. It raised several very interesting points and encourages us to 

do more future work on it. 

 

1.3 Thesis Outline 

The rest of paper is organized as follows. In section 2, we describe the background 

information such as UML and SystemC. In section 3, several related works will be 

discussed. In section 4, we show how we implement the translation and what we have 

achieved in the experiments. In section 4, we show PingPong example and its testing 

result, and show a software radio example: A Digital Down Converter. In section 5, we 

summarize the results and draw some reasonable conclusions, and then some interesting 

future work will be discussed. 
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II: Background  

2.1 MDA (Model Driven Architecture) 

The MDA is a new way of writing specifications and developing applications, based on a 

platform-independent model (PIM). A complete MDA specification consists of a 

definitive platform-independent base UML® model, plus one or more platform-specific 

models (PSM) and interface definition sets, each describing how the base model is 

implemented on a different middleware platform. A complete MDA application consists 

of a definitive PIM, plus one or more PSMs and complete implementations, one on each 

platform that the application developer decides to support. 

The MDA defines an approach whereby you can separate the system functionality 

specification from its implementation on any specific technology platform. That way you 

can have an architecture that will be language, vendor and middleware neutral. For 

creating MDA-based applications, the first step will be to create a Platform Independent 

Model (PIM), which you should express in UML. Such a PIM can then be mapped to a 

Platform Specific Model (PSM) to target platforms like the CORBA Component Model 

(CCM), Enterprise JavaBeans (EJB) or Microsoft Transaction Server (MTS). Standard 

mappings should allow tools to automate some of the conversion. Such a PSM, again 

expressed in UML, can then be actually implemented on that particular platform. 

The architecture encompasses the full range of pervasive services already specified by 

OMG, including Directory Services, Event Handling, Persistence, Transactions, and 

Security. Most importantly, MDA enables the creation of standardized Domain Models 

for specific vertical industries. The benefit of such an architecture is obvious! You will be 
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able to build new MDA-based applications using platforms/middleware of your choice. 

Also, such an approach makes it easier to integrate applications and facilities across 

middleware boundaries. Since you have defined the architecture once, not only can you 

integrate legacy and present applications but you can also integrate those of the future! 

As usual OMG will be releasing only the specifications, and vendors are expected to 

develop tools based on these specifications. Some of the specifications have already been 

released while many others are yet to be developed. For more details please visit 

http://www.omg.org/mda

 

2.2 UML 
Unified Modeling Language (UML) relies on OO paradigm and well-known software 

engineering principles as information hiding by data abstraction and reuse of software 

components by inheritance and generality are supported. UML is a visual modeling 

language for specifying, visualizing, constructing and documenting software systems and 

business processes. It was created in 1994 as fusion of the object-oriented method Booch, 

OMT and OOSE.[6] The UML specification defines a formal Object-oriented Analysis& 

Design metamodel, which includes diagram types for static, behavioral, usage, and 

architectural aspects of software systems. Differing to its predecessors, the UML 

specification only specifies syntax and semantics of its notation, but does not determine 

how to apply its elements within a development process. [17] Therefore, several different 

modeling methods use the UML notation and additionally consider domain specific details.  
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While UML is well-suited for modeling software systems in general, it lacks support for 

some aspects important to embedded real-time systems, e.g. modeling of timing 

constraints, signals, and independent components.[8] Therefore, different proposals to 

extend the UML for modeling real-time systems have been made. The Object 

Management Group (OMG) proposes to extend the UML by building UML “profiles” that 

contain the needed extensions. [16] However, this extension mechanism is currently not 

part of the standard and it is still discussed how to realize it. In parallel the leading CASE 

tool vendors implement proprietary extensions to the UML. Rational and Telelogic adapt 

UML for modeling embedded real-time systems by combining it with the modeling 

languages from the real-time (ROOM) and telecommunication domains (SDL), while I-

Logix stays with Standard-UML, but provides a very powerful implementation of 

statecharts. [9] 

 

2.3 SystemC 
SystemC[7], a system level modeling language based on C++. It provide library 

supporting system level design. It has been attracting more and more attention. SystemC 

has desirable properties for system level design. Besides, SystemC use most of C++ 

grammar, and this allows user to learn it in a very short time. Even those who have no 

experience with programming in SystemC can read and understand the code. 
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Figure 2 Different Levels of SystemC model 

Using the SystemC library, user can model as system at various levels of abstraction. At 

the highest level, only the functionality of system may be modeled. For hardware 

implementation, model can be written either in a functional (behavioral) style or RTL 

(register-transfer level) style. [9] The software part of a system can be naturally described 

in C++. Interfaces between software and hardware and between hardware blocks can be 

described either at the transaction-accurate level or at the cycle-accurate level. More over, 

different parts of the system can be modeled at different levels of abstraction and these 

models can co-exist during system simulation. C++ and SystemC classes can be used not 

only for the development of the system, but also for the test-bench. SystemC consists of a 

set of header files describing the classes and a link library that contains the simulation 
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kernel. Any ANSI C++ compliant compiler can compile SystemC, together with the 

program. During linking, the simulation kernel of the SystemC library is used. The 

resulting executable serves as a simulator for the system designed.  

SystemC provides an ideal platform for developing embedded systems. Software and 

hardware parts can both be specified using the same language and verified using a 

common test-bench. The hardware parts may be refined up to RT level and implemented 

by using synthesis tools. The hierarchical modeling features of SystemC are supported by 

the hierarchical specification model. This facilitates not just a structured design, it also 

enable IP reuse. The FSMs can also be organized in a hierarchical manner, implementing 

a Hierarchical control flow.  
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III: Related works 

This section briefly discusses other projects that have investigated integrating formal and 

informal approaches to systems development, where multiple modules are used to 

describe a system.  

 

3.1 YAML 
Most of the effort we have seen in the UML-SystemC translation was to generated 

skeleton SystemC code from, in particular, class diagrams and object diagrams. An 

example of this kind of projects is YAML.[10] YAML uses UML notations to model 

hardware and allows user to input information about objects and relationships into a UML 

class diagram (for behavioral hierarchy) and object diagram(for structural modeling). 

YAML generates the C++ code for the design, using information input by the user to the 

UML class and object diagrams.  

YAML provides a user friendly graphical interface to model systems under the guidelines 

of UML, using the SystemC and ICSP C++ class libraries. User can specify the details of 

SystemC and ICSP classes into the UML front end. The code generated by YAML 

conforms to the syntax of ICSP and SystemC classes and can be directly compiled and 

simulated. 

The major advantage of using YAML is the ability to avoid the complex syntactic details 

involved in using the C++ libraries. User can generate the SystemC + ICSP code from 

YAML, after specifying the various details in the class and object diagram. YAML has 

been used to model various designs including a DLX compatible processor pipleline. The 

DLX pipeline code consists of around 2000 lines of C++ code. Most of which was 
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generated automatically by YAML. It raises good results in generating and simulating the 

models. 

YAML gives some ideas of modeling the system functional and structural information. 

However, it lacks of the behavioral requirement support, and hence cannot capture the 

requirement of control information.  

 

3.2 Auto-generation of SystemC model from Extended Task 
Graphs 
To model the behavior of hardware, Klaus proposed to use extended task graph.[11] Task 

graph gives a accurate definition of time and different model of computation are 

emphasized. Task graphs are a widely-spread means for the specification of embedded 

systems behavior. Task graphs have a well-defined execution semantic and a temporal 

order and other abstract modeling characteristics. A task graph represents operations and 

data dependencies between them. Its main features are both the modeling of control flow 

and a hierarchical structuring of functionality. (Figure 3) 
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Figure 3 An example of SystemC generation using eTG 

The methodology was successfully applied to complex specification consisting of more 

than 200 tasks. Besides scheduling, the complexity is linear in the number of tasks and 

allows to handle such complex systems very easily. The produced code is quite readable 

using well-defined signal names derived from the specification and, as mentioned earlier, 

the code is synthesizable. 

 

3.3 RoseRT to SystemC translation 
Another team in our department is exploring a similar method to translate from UML to 

SystemC.[5] A RoseRT wrapper of SystemC has been built to produce SystemC code 

from restricted RoseRT design. Despite its intention as a tool for general purpose software 

development, RoseRT has close similarities to SystemC. Capsules in Rose RT 
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communicate via ports and protocols just as modules communicate via ports and channels 

in SystemC. A capsule undergoes a state transition when a specified trigger signal arrives 

whereas in SystemC this corresponds to an incoming signal on one of the ports specified 

in the sensitivity list of an SC_METHOD. RT2SystemC translator exploits these 

similarities to identify and extract important sections of the C++ code generated by the 

RoseRT tool. 

 

 

Figure 4 Translation flow of RT2Code 

RT2Code translation starts from UML model in RoseRT, and then the rose generated C++ 

code are further compiled into XML documents. RT2SystemC generator uses the XML 

documents as input, and generated synthesizable SystemC code. There are interesting 

similarities as well as differences between their translation and our approach.  (Figure 4) 

 

There are still some limitations in the translation. Firstly, the generation is based on the 

generated code of RoseRT, and it is very software dependent. Furthermore, RoseRT lacks 
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of complex statechart support, therefore, the behavioral functionalities of larger system 

may not be well captured. However, there are many interesting similarities between their 

project and ours. By studying their project, we can add in more value to our approach. 
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IV: Implementation of UML2Code Translator 

4.1 Introduction 

In this section, the experiments on the UML to SystemC will be discussed. Currently, we 

have finished the work from UML model to the lower level SystemC model translation. 

The class diagrams and statechart diagrams are used to capture the system design 

information. In later part of this section, detailed implementations are discussed. 

 

4.2 General Translation flow 

 

Figure 5 Translation flow of UML2Code generator 

Figure 5 shows the translation flow of UML2Code. We model the system in UML with 

Rhapsody. The corresponding XMI documents will be generated based on the completed 

design model using Rhapsody XMITookit, which are the inputs of our translator. 

 sensitive << reset  
   <<input;  
   sensitive_pos(clock); 
   } 
}; 

#ifndef FIRFILTER_H 
#define FIRFILTER_H 
SC_MODULE(firFilter) { 
   void entry(void); 
 SC_CTOR(firFilter){ 
   SC_THREAD(entry); 
 

Behavioral code 

TLM code

RTL code

 sensitive << reset  
   <<input;  
   sensitive_pos(clock); 
   } 
}; 

#ifndef FIRFILTER_H 
#define FIRFILTER_H 
SC_MODULE(firFilter) { 
   void entry(void); 
 SC_CTOR(firFilter){ 
   SC_THREAD(entry); 
 

Template

 

  sensitive << reset  
   <<input;  
   sensitive_pos(clock); 
   } 
}; 

#ifndef FIRFILTER_H 
#define FIRFILTER_H 
SC_MODULE(firFilter) { 
   void entry(void); 
 SC_CTOR(firFilter){ 
   SC_THREAD(entry); 
 

XMI 
doc 

Parser

Absract 
Syntax 
tree 

Rhapsody 
XMIToolit 

Synthesizable 

UML models in Rhapsody 
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XMITookit preserved all the model information, and it is a textual representation of the 

UML model. The generator will parse the XMI documents and build the internal 

representation of the model. The syntax tree will be further processed and some relations 

will be computed and stored. The syntax tree will hold all the data required to build 

different levels of code. By using different templates, the same model can be used to 

generate code in different levels: TLM level, Behavioral level and RTL code. Among the 

generated code, Behavioral code and RTL code can be further synthesized into hardware 

net-list.  

 

4.2.1 Capturing the system Specifications 

We use Rhapsody to do the system design. Rhapsody is a powerful design tool develpled 

by I-logic. I-Logix' Rhapsody® is a Unified Modeling Language (UML) application 

development platform for pervasive computing. Rhapsody allows the software engineer to 

model software designs graphically (utilizing UML) and simulate interaction and 

communication between software components. Subsequently, production-quality C, C++, 

and Java code is automatically generated as the design evolves. Furthermore, Rhapsody 

provides very powerful Statechart diagram support. It supports hierarchical states and the 

statechart are used to generate executable codes. Graphical animation allows design-level 

debugging on the host before testing the software on the target.   

We capture the system specification by using Class diagram and StateChart Diagram. In 

the UML models, the class diagrams specify the structural information. An embedded 

System consists of software and hardware components as well as their communication 
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interfaces. The software and hardware components are modeled as classes. Each classes 

will hind functionalities and implementation from other. The coefficients of the 

components are modeled as attributes of the classes. Furthermore, the operations in class 

are used to model the functions of the UML 

 

4.2.2 Convert the UML model to XMI documents 

It is quite difficult to process the graphical notation directly. Rhapsody provides XMI 

document generator called XMITookit. It can generate the text representation of the UML 

models. The internal representations of the UML in different platforms are quite ad hoc. 

But, XMI is accepted as a universal text standard representation of the UML. Therefore, 

we use XMI as generator input instead of graphical notation to achieve a tool-independent 

developing methodology. There are a few advantage of doing this. Firstly, XMI is a text 

document, and it has a standard format, therefore, it can be easily parsed and processed. 

Secondly, XMI is XML-based meta-language, and it is quite extensible.   

 

4.2.3 UML2Code 

UML2Code consists of 3 parts: Parser, Transformer and velocity engine, and each of them 

will process the data generated from it frontier. The translation can be divided into 3 

stages: Parsing, Post-processing and code generation. Figure 6 shows a flow diagram of 

the UML2Code generator.  
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Figure 6 Translation flow of UML2Code 

Parsing  

Parser is used to process the XMI document and extract the information of models holding 

in the models. JDOM is used to parse the XMI into tree structure. By used XPATH, a 

XML searching engine, we are able to find the traverse the tree and find the properties of 

the XMI tag. Figure 7, shows the tree structure of XMI document, the parser will parse the 

tree and build another syntax tree base the extracted information. 
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Model

Stereotype Package ComponentDatatypes 

Relationship Class 

Classifier features State 

State Transition SignalEvent Attr Operation Method Event  

Figure 7 The internal structure of XMI documents 

After parsing stage, abstract syntax tree will be built. In the generated tree, model will 

contains many classes and packages. Each class will hold the reference to the root state of 

its Statechart. And the clock information will be store in the model class.  

 

Postprocessing 

After the information of the model been extracted from the XMI documents, the data will 

be further process to compute some information which can not be directly got from model, 

such as output events. 

 

Code Generation 

To make our translator flexible, we make use of template technology. The templates are 

separated development from the data set. By using the same dataset, velocity engine can 

generated different output code while using different template set. As we was planning to 
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generate codes in 3 levels of abstraction, this design save a lot of effort while translation 

from one level of code to another. On the other hand, any changes applied to the template 

will not affect the processing the model data. We can do iterated refinements on the 

templates only.  

 

4.2.4 A proposed Design Flow  

Specification 

UML model 

 

Figure 8 Code generation flow 

Figure 8 shows a proposed code generation flow is illustrated. At the very beginning, the 

UML models are built based on the system specification. Verification and refinement can 

be done in several levels to test whether the requirements are captured. The system is first 

translated into TLM level model, which can be used for fast translation. And then the 

TLM Level model 

XMI docs

Behavioral Level Model 

Refinement 

Gate Level Model 

RTL Level Model 

Synthesis 
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behavioral level model can be generated, which can be further compiled into gate level 

models.  

In this Flow, the model testing and verification can be down at all the stages. Designer can 

enjoy a Top-down development progress.  

 

4.3 Capturing System specification 

4.3.1 System Structure and Class Diagrams 
UML class diagrams are used to describe the various object classes and their relationships 

and associations, including inheritance and aggregation.   

 

Classes 

Classes are used to model the system components and communication interfaces.  A class 

will have attributes and operations. For each attributes, it will have type, publicity and 

static status. For functions, it will have return type, arguments with types and names, as 

well as the publicity and static status. 

To module different elements, we make use of stereotype of class. There is a mapping 

from SystemC elements to the UML stereotypes. To model the details of the SystemC 

design elements, we introduced three extensions using UML stereotypes mechanism. 

Table 1 shows the mapping between SystemC elements and UML stereotypes.  
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SystemC elements UML stereotypess 

Modules Normal class 

Interfaces <interface> 

Primitive channel <pri_channel> 

Hierarchical channel <channel> 

Table 1 Mapping from SystemC elements to UML stereotypes 

 

Relations 

The aggregation is used to model the containing information of components. If A has 

aggregation relation with B, then B will be modeled as component of A. Furthermore, we 

use association to model the relations between components. A component A has 

association with component B is A will call B’ functions, ie., send message to B. In the 

example, (Figure 9) Ping is associated with Pong with undirected association, thus, Ping 

and Pong will communicated with each other through message sending.  

 

Figure 9 An example of class diagram 
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Figure 9 is an example of class diagram. In the example, Ping and Pong are two classes, 

and they are all inheriting Player class. In the translation, class diagram are used model the 

components’ functionality and the communication relations among them. 

 

The relations among the classes are used to model the communication relationships 

between the components. These relations include association and aggregations.  If two 

components have message/signal exchange, an association will be placed in between. The 

direction of the association indicates the direction of the communication.  

 

Top Class 

 

Figure 10 Class diagram of PingPong 

To produce executable code, a driver class, named Top, has to be created to create all the 

module instances and initialize the simulation. Following is a example of main class.  
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TOP_CREATE_OBJECT(itsPing, Ping, "ping"); 

TOP_CREATE_OBJECT(itsPong, Pong, "pong"); 

SET_OBJECT(itsPong, itsPing, itsPing); 

SET_OBJECT(itsPing, itsPong, itsPong);             

#ifdef _SystemC 

sc_initialize(); 

#endif 

TOP_START_BEHAVIOR(Ping, itsPing); 

TOP_START_BEHAVIOR(Pong, itsPong); 

#ifdef _SystemC 

sc_start(); 

#endif  

 

4.3.2 Clock and Component Diagram  
Clock setting is an essential point in the embedded system design. In general case, 

different hardware components will be deployed on different clocks. Therefore, handle the 

clock setting will be a “must” for the designer. The clock rate will affect the speed of the 

hardware, how the component communicate, Cost, power assumption and other important 

issues. On the other hand, in synthesis code, the processes will be sensitive to a certain 

clock. The clock rate will directly determine the behaviors.  
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In our project, we tried to model the clock in a simplified way. In SystemC, the default 

clock period is 1ns. We use 1ns as unit period, and the all the clock period must be 

multiple of 1ns.  

 

Figure 11 Example of Component Diagram of PingPong 

It is quite naturally that the clock setting can be described as component property, 

therefore, we use component diagram to model clock settings. Here, we again make use of 

stereotypes. In the diagram, the components are the module instances and the stereotypes 

of the components are set as CLOCK X , where ,...]2,1[∈X . In Figure 11, it shows a 

simple clock setting for PingPong. There are 1 instance of Ping and 1 instance of Pong. 

The clock period of pinger is set to be 1ns, while ponger’s is 2ns. For those component 

without clock setting, a default clock with period 1ns will be assigned.  The following is 

SystemC code for creating clocks.  

Sc_clock base_CLK; //default clock 

sc_clock CLOCK2(“CLOCk2”, 2, 0.5, 0, false); //clock with period 2 

sc_clock CLOCK10(“CLOCk10”, 10, 0.5, 0, false);  
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4.4 Translation from UML to SystemC 

In this section, we will introduce detailed implementation of the translator in TLM, 

Behavioral and RTL level. 

4.4.1 TLM translation 

Transaction Level model is a level where all the communication between components in 

the system is done through method calls, without synchronization, even between software 

and hardware components. Therefore, TLM level codes do not contain any information 

about clock-accuracy and timing issues.  Here, transaction means the exchange of data. 

This level emphasizes what data are transferred from which component, and the 

communication among components is separated from details of implementation. 

 

The basic elements of SystemC are modules and processes for computation, interface and 

channels for communication. Modules are the basic building blocks for partitioning the 

design.[5] Each module hides its data and operations from other modules. Modules hold 

the reference to other modules and interfaces. Furthermore, the modules communicate 

with each other through functions calls. The data will be passed as parameters. The 

synchronization details will be hidden. A module consists of one or more processes. 

Processes are the means to model the concurrent behavior. 
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4.4.1.1 Translation of Class Diagrams 

A normal class will be translated into a sc_module. At the same time, the attributes and 

operations will be translated into attributes and methods in the module. The signature of 

the attributes and functions, such as the visibility (public/private), static status, will be 

kept without changing.  

Relations 

 

A 

B1 

B2 

B_chan

B_chan

B_chan

C 

A-chan 

C-chan 

B3 

 

Figure 12 Port connection 

Generated modules communicate with each other using sc_port. Each input events will be 

mapped to a sc-port. As Figure 12 shows, for each module, a sc_channel will be generated 

which will attached to the module. And sc_channel will provide interface of all the ports. 

All the communication to the module has to be performed through the channel. The 

generated modules can access the reference the channels through the ports, which belong 

to the associated modules. As showed in the Figure 12, A can access channel ttached to 

instance B1 and B2, while C can access channel of B1 and B3. 

Inheritance 
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Inheritance plays a very important role in the software design. Our algorithm also provides 

the support of inheritance as well as multiple inheritances. In the UML model, if one class 

is inheriting from another class, the inherited attributes and operations will be copied 

down as if they are local attributes and operations. However, the polymorphism will be 

discarded in case that they wont have any inheritance appear in the generated class. 

Class module_name :  public sc_module { 

  sc_port<module_name> this_port; 

  classname_chan *this_channel; 

 //associated object; 

 //associated objects channels 

 //associated objects ports; 

 int state; 

 //attributes 

 //inherited attributes 

SC_HAS_PROCESS(module_name); //define the process 

Ping(sc_module_name name,moduel_chan *chan) : sc_module(name) 

{ 

   this_channel = chan; 

   //initialization code 

   state = initial_state; 

   SC_THREAD(entry); 

} 

private: 

   void entry(); 

//declaration of the local opertions 

}; 

Template 1 TLM Template for header file 

 

33 



4.4.1.2 States Diagram Translation 

General Translation 

The statechart formalism has been introduced by Harel[12]. A statechart design essentially 

consists of states and transitions like a finite automation. In order to model depth, a state 

can be refined to contain sub-states and internal transitions.  Two such refinements are 

available: AND-states and OR-states that give a state hierarchy. At the bottom of the 

hierarchy, basic-states are not further refined. If the system specified by a statechart 

resides in an OR-state, then it also resides in exactly one of its direct sub-states. Staying in 

an AND-state implies staying in all of the direct sub-states and models concurrency. When 

a state is left, each sub-state is also left, and this can be used to model preemption. Sub-

states of an AND-state may contain transitions, which can be executed simultaneously. 

The different parts of an AND-state may communicate by internal events, which are 

broadcast all over the scope of events. [6]  Statechart diagrams in UML allow for guards 

on transitions, propagated transitions, actions on transitions, actions on state entry, 

activities that last as long as a states, actions on exit.  [13] 

 

States 

Dynamic behavior of a UML class expressed in terms of state transition diagrams of 

simple states is represented in TLM level as a process. In particular, TLM level process 

will use non-clocked process called sc_thread. A local variable called state is used to hold 

the current state id, and it is assigned to the value of initial state id during the initialization 

stage. The processes keep moving among the states until final state is reached. When the 

process entering a new state, it first perform the actions_on_entry. And then the reaction 
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will be performed. In most of time, the processes stay in one state and waiting for some 

events. Upon receiving an event, the process will perform the guard action and change the 

value of state accordingly. When it exits the state, action_on_exit will be performed. 

 

Transitions 

State transitions are translated into variable assignment to state in main loop. Each 

transition corresponds to assigning a new state id to the state variable.  The assignment 

will be done after the action_on_exit actions are taken.  

 

Events 

Sending/Receiving events within states diagram are translated as function calls. As we 

stated above, each module has a channel attached. For each input event, there will be 

function call for it. The parameters of the function call will be the parameters of the event. 

A status flag is used to indicate the event is activated. When processes are waiting for 

guard events, the values of the status flags are monitored. The changes to the status 

variables activate the transitions. When the process receives events, all the guard will be 

check and certain actions will be performed if the guard is true. When the guard is not true, 

then the process stays in the same state and waits for new events coming.  

 

Pseudo state 

Default initial states are mapped to a value that the variable state are initially assigned to. 

When the process starts, the process always starts running from the initial state. Final state 

simply cause the thread to end, when it is reached, the process will stop execution. 
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OR- state  

In OR-state, the process always stays in exactly one sub-state. OR-states are mapped into 

a process running infinite loop, where a state variable will keep the state information. The 

value of the state is one of the sub-state id of OR-state. The loop will terminate when the 

state change to final-state.  

The following is the pseudo-code for this type of basic states: 

State state1 State state2 
event1[guard]/actions   

actions on Entry A actions on Entry C 
actions on Exit B actions on Exit D 

 

Figure 13 A example of OR-State diagram 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

initial state

simple state 

final state 
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While(state!=final_state) 

{ 

 switch(state) 

 { 

  Case state1: 

1. Action on entry A 

2. wait for trigger events 

3. if guard is true 

do action of transition 

do action_on_exit B 

state=state2(new_state_id) 

4. break 

case state2: 

… 

 } 

} 

Template 2 Template of the example AND-state 

 
AND-state 

AND-state is used to model the components with concurrently executing processes. To 

simplify the design, we only allow one level of sub-state. A modeled component cannot 

have nested states and the process is static. Each sub-state of the AND-state is treated as a 

normal OR-state. Each sub-state of AND-state is mapped to a process running a thread.  
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composite state 
State S

 

Figure 14 An example of AND-state 

4.3.1.3 Top Level Class Translation 

In the module, there is a class name Top, which will initialize the execution of the whole 

module. Top will initialize necessary modules and channels. Modules are connected to the 

modules it communicated with by holding the references of their channel. After all the 

connections are built, the simulation will be initialized with statement sc_start().  

 

4.4.2 Behavioral Level translation 

4.4.2.1 Introduction of Behavioral level 

Behavioral synthesis as supported by synopsys tools consists of automation that enables 

design at a higher level of abstraction by synthesizing an RTL implementation from a 

behavioral description. Behavioral synthesis transforms untimed or partially timed 

functional code into fully timed RTL implementations. Because the micro-architecture is 

automatically generated, the designer can focus on designing and verifying the module 
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functionality. This behavioral design flow increases designer productivity, reduces errors, 

and speeds verification. [19] 

 

The behavioral synthesis process incorporates a number of complex stages including 

lexical processing, algorithm optimization, control/dataflow analysis, library processing, 

resource allocation, scheduling binding of functional units and registers, and output 

processing.  

 

This process starts with a high-level language description of the desired behavior of a 

module including I/O behavior and computational functionality. A number of algorithmic 

optimizations such as constant folding and common sub-expression elimination are 

performed to reduce the complexity of the result. The description is then analyzed to 

determine the fundamental operations required and the dataflow dependencies between 

them.  

 

Behavioral Level coding style 

Behavioral level code is more restricted than TLM level. It has to take clock information 

into consideration. Besides, the synthesizable requirement makes the code even harder. 

Generally, the behavioral code has following differences compared to TLM level code.[20] 

• Clock thread rather than thread 

• Only signals are allowed for communication 

• Cycle balance in the conditions and loops 
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The only process type allowed for behavioral synthesis is the sc_cthread one. This is 

basically a process that is sensitive to clock only and to no other signal. In addition, a reset 

signal must be declared by means of the SystemC watching statement. 

The simulation semantics of the wait statements inside a sc_cthread is to suspend the 

execution until the next active clock front. From the point of view of the synthesis, these 

statements define the operations that have to be performed in a single clock cycle or, 

equivalently, they are used to define the temporal behavior of the system with per cycle 

accuracy.   

There are two types of scheduling modes in behavioral level: cycle-fixed and superstate-

fixed scheduling modes. Cycle-fixed scheduling requires that I/O behavior matches 

behavioral description, cycle by cycle. That is all the bocks of instruction between two 

wait statements are scheduled to be executed in exact one cycle. For example, if a read 

and a write is separated by two wait(), then exactly two cycles are needed. Superstate-

fixed scheduling mode requires that relative order of I/O operation is preserved based on 

behavioral description, but not the exact cycle in which they happen. The scheduler can 

split sequences of instructions to be executed in a single clock cycle over many cycles. For 

example, if a read and a write is separated by two wait(), then at least two cycles are 

needed, and there could be more than two cycles been taken to finish the statements. In 

our translation, the superstate-fixed scheduling mode will be used. 

An important set of constrains imposed to the behavioral descriptions to be synthesized 

are related to the position of the wait statements with respect to control structures such as 

loops and conditional statements. Generally, if one branch has a conditional (if…else, 

switch…case, or ?: operation) has at least one wait statement, then place at least one wait 

statement in each branch. [19] 
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The following rule has to apply for the balance of clock 

• Place at least one wait statement in every loop except unrolled for loops. 

• Place at least one wait statement between successive writes to the same output. 

• Place at least one wait statement after the reset action and before the main infinite 

loop. Do not include either a conditional branch or a rolled loop in the reset 

behavior description. 

• If one branch of a conditional has at least one wait statement, place at least one 

wait statement in each of the other branches, including the default branch and 

implicit else conditions.  

• Place at least one wait statement after the last write inside a loop and before a loop 

continue or an exit. 

4.4.2.2 Class Diagram Translation 

Behavioral level SystemC models the system in functional and behavioral. SystemC 

provide a subset of the semantics, and by following certain coding rules, the resulting code 

can be synthesized using ConCentric tools. The Synopsis CoCentric tool can use the 

synthesizable code to produce the gate level models, which is just one step to hardware. 

Different from the TLM level translation, the code in the operation bodies must be 

synthesizable. Generator will not modify the code much during the translation. Besides, 

there are some unsupported primitive types, such as floating point types, and the attributes 

is not allowed to use such types. Thirdly, pointers and pointer operations are not allowed 

in the synthesizable code, although it is very commonly used in the C/C++ context.  

 

Classes  
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Similar to the TLM level translation, each class is mapped into a module. All the modules 

will have incoming and outgoing ports. In SystemC language, there are three types of 

primitive type of port, namely, sc_in<type>, sc_out<type> and sc_inout<type>. Sc_in is 

a type of read only port. Sc_out is used for write only operation. Sc_inout are used for 

two-way communication.    

Stereotypes are kept in the behavioral level translation. <pri_channel> and <channel> are 

mapped to module. In difference to from the TLM level, process in behavioral level 

communicates with each other using signals. Sc_channel and sc_interface is not 

synthesizable, and pointer operations are not allowed in the behavioral code. All the 

interface function calls in the channel are mapped to signal sending/receiving. Function 

call consists of function name, parameters, and return types. A Boolean port with name 

<function name>_ready is used to indicate the function is being called. Each parameters is 

translated into a signal with type same as the parameter. Return value is also sent by signal 

with type being the return type, and a flag signal is used to notify the return value is ready. 

On the sender side, one Boolean outgoing port and a few other ports for sending the 

parameters, and an incoming port (if return is not void) is used to get the return value. On 

the receiver side, one Boolean incoming port and a few other ports for receiving the 

parameters, and an outgoing port (if return is not void) is used to send the return value. On 

the function calls, the flag signal is set to be true, and at the same time, the parameters are 

sent out through the ports. After that, sender will run an infinite loop and wait for return 

value to be ready. Receiver are running infinite loop and waiting for the call, and when the 

flag is set to be true, the values of the parameter will be retrieved. When return value is 

ready, the return_ready signal will be sent out and the sender will get the return value. 
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The module can be considered as a black box and only incoming and out going signals 

(interfaces) are visible(Figure 15). Behavioral level modules hide the details of 

implementation and functionality from each other, and they only provide interface for 

sending/receiving signals.  

Incoming ports 

Module 
Two way ports 

Outgoing ports 
 

Figure 15 Black box view of module 

In behavioral level code, clocked thread, sc_cthread, is used to define the processes. 

Synchronization issues have to be considered during the translation. Currently, there is no 

clock definition in the UML model. Therefore, we generate the clock for all the modules. 

In SystemC, sc_clock is a special signal used to model the clock. And a global clock is 

used to synchronize all the modules. In other words, all the incoming clock ports, 

sc_in_clk, are connected to the same sc_clock signal. All the processes are sensitive to the 

positive edge of the clock by default. Besides, a global reset signal is connected to all the 

reset port, and the processes will be reset if the reset signal is set to be true. The above 

designs are auto-generated, and in the further work, some improvement will be proposed 

to handle more complex situation. Template 3 shows a general structure of the header file 

of behavioral level module. 
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Public SC_MODULE(moduel_name) { 

sc_in<bool> reset; 

sc_in_clk CLK; 

//code for define incoming and outgoing ports 

SC_SCTR(module_name) 

 { 

  //Initialization code 

     SC_CTHREAD(entry, CLK.pos()); 

     watching(reset.delayed==true); 

 } 

private :  

     void entry(); 

} 

Template 3 template for Behavioral level module class 

 
Association and Inheritance 

Associations are mapped into connections. Connection means that the signals that connect 

with two module. As we mentioned, modules can be treated as black boxes, and the 

signals are used to connect the ports. Association relations are used to model the 

connections in high level. Therefore, each associations maps to a connection. During the 

initialization stage, the connections are made by referencing to the associations. 

For inheritance, behavioral translation use the same method to handle it as the TLM level. 

The ancestral operation and attributes are copied to the current class. The module works as 

if there is no super class attached.  
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4.4.2.3 State Diagram Translation 

General Translation 

The translation in behavioral level has no much difference from TLM level translation. 

The execution of generated modules uses FSM to model. Each process is running an 

infinite loop. An operation called entry contains the main loop for switch the state. By 

switching the states and waiting for certain events, process will perform the correct 

behaviors.  

 

State 

Same as TLM translation, a state variable called state is used to store the current state 

information. When the value of state changes, the state of process changes as well. The 

clocked processes are sensitive to the clock, and running an infinite loop until final state is 

reached. Furthermore, wait balance is carefully generated. 

 

Events 

Events are mapped to signals. As sc_event is not synthesizable, and it is replaced by signal 

sending. Each event contains events name and parameter. Correspondingly, a flag signal 

with Boolean type is used to indicate the event is ready. While, each parameter need same 

type of signal to send/receive.  
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4.3.2.4 Top level class Translation 

Top level class is used to initialize the while simulation. It plays three roles: create objects, 

build connection among object and start the simulation. Based on the object diagram, the 

new instances of classes are created in Top. To connect the modules, we need to connect 

the corresponding ports. Signals are created based on the communication events. 

Furthermore, senders’ and receivers’ ports are connected through these signals. After all 

connections are built, initial signals are sent to the modules to initialize the module. 

Finally, sc_start is called to start the simulation. 

4.4.3 RTL Translation 

4.4.3.1 Behavioral and RTL Synthesis 

As we go from the highest to the lowest abstraction level, diverse synchronization points 

and design models are used, as shown in Table 1. On the system level, we work with 

communicating processes that synchronize through message exchange. After partitioning 

[22], each process could be represented at the algorithmic level by a control/data flow 

graph that synchronizes through I/O events. This may also be represented using a finite 

state machine with datapath (FSMD) model. Behavioral synthesis takes the flow graph 

and produces an RTL model. This model is generally represented as a controller/datapath 

architecture. At the RT-level, data transfers are synchronized at clock cycle boundaries. 

RTL and Logic synthesis will map controller and datapaths components to a cell library to 

produce a gate netlist. Finally, layout synthesis will produce the final chip layout. On the 

physical level, wire value changes define the valid data. Abstraction level Synchronization 

points Input design model 
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System level Inter-process messages Communicating process Algorithmic level I/O events 

CFG, DFG, CDFG, FSMD RT-level Clock FSM, BDD, Boolean equations Physical level 

Wire value change Gate netlist and Layout models Table 2 - Synchronization and design 

models on different abstraction levels  

 

Table 2 Scope of Behavioral and RTL Synthesis 

Table 2 details the different synthesis tasks executed by behavioral and RTL synthesis 

tools. Design models are also detailed for each task. This table shows clearly that there 

could be a functionality overlap (on gray) between behavioral and RTL synthesis tools. 

Design input models for RTL synthesis goes from cycle true FSMDs to completely 

specified architectures. All these models have something in common: they synchronize at 

clock cycle boundaries, i.e., are clock cycle accurate. This level of precision is only 

attained after behavioral synthesis’ scheduling task. 

The clock cycle accurate FSMD design model is the key for behavioral and RTL synthesis 

integration. It can be seen in Table 2 that this model could be used for doing resource 

allocation and binding in the region of functionality overlap. 

47 



 

Table 3 Scope of behavioral and RTL synthesis(2) 

Resource allocation and binding produce a FSMD with resources. Storage allocation and 

binding assign registers/memories to variables and arrays. Functional unit allocation 

assigns operators to operations. Interconnection allocation defines paths between storage 

and computation cells. Finally, a controller/datapath architecture is created. Information 

about resources might not be exhaustive, since we could be possibly interested in doing 

resource allocation and binding in two stages. For instance, complex operations could be 

treated by behavioral synthesis while the simple ones are transferred to RTL synthesis. In 

this case, we must be able to translate a FSMD with partial resource information in a 

format acceptable by RTL synthesis. More details on this flexible interface between 

behavioral and RTL synthesis will be given in the next section. Complex operations, i.e., 

the ones that need a data-dependent number of clock cycles to execute and multicycle 

operations are not allowed in the FSMD clock cycle accurate design model. There are two 

possible solutions to deal with this problem. The first solution is to consider complex 

operations as a procedure call and associate them to external functional units. Procedure 

calls will be used to start these external functional units and get their results [22]. Each 

48 



procedure call must take only one cycle. In this case, procedure call needs to be handled 

by the scheduler. The second solution is to describe complex operations by procedures 

that use only simple operations. Then procedure calls could be expanded inline [22] and 

scheduled with the rest of the description [22]. 

4.4.3.2 RTL level Translation 

We intend to generate RTL level of SystemC code. Behavioral level template was further 

refined and archive the RTL level template, which can be used to generated synthesizable 

RTL code.   

Different from Behaviroal code, RTL systemC uses SC_METHOD instead of 

SC_CTHREAD. SC_METHOD is another kind of process. Unlike threads, SC_METHOD 

can not be suspended, and all the statements will be executed from the beginning of 

method to the end.   

Similar to the Behavior level translation, each class is mapped into a module. All the 

modules will have incoming and outgoing ports. In SystemC language, there are three 

types of primitive type of port, namely, sc_in<type>, sc_out<type> and sc_inout<type>. 

sc_in is a type of read only port. sc_out is used for write only operation. sc_inout are used 

for two-way communication. Beside ports definitions, the SC_METHOD process will be 

sensitive to some signal, eg. clock.  
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public SC_MODULE(moduel_name) { 

sc_in<bool> reset; 

sc_in_clk CLK; 

//code for define incoming and outgoing ports 

SC_SCTR(module_name) 

 { 

  //Initialziation code 

  SC_METHOD(entry); 

     sensitive_pos<<CLK; 

 } 

 private : void entry(); 

} 

Template 4 RTL template for header file 

The main changes are applied to the Finite state machine. Different from the Behavioral 

code, the process in RTL level was activated by the signals. Therefore, we do not need the 

loops for waiting the events. Besides, the wait() statements cannot be used in 

SC_METHOD. A method called entry will sensitive to clock and perform the actions 

when the process is activated. Moreover, the initialization statement cannot be placed at 

the beginning of the method. The initialization and the reset action will be put as the 

default action for the FSM when the reset is on. The following is the template to create 

entry method for RTL models.  
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void entry (){ 

if(reset.read()){ 

      switch(state) 

 { 

  for each case: 

  case state_id: 

                                     //Action on entry 

                         //wait for trigger events 

                                    if guard is true 

                                          do action of transition 

                                  do action_on_exit 

                                   state=newstate; 

  Case … 

  Default:  

                      if(reset.read()==false){ 

               state = 61; 

         round = 5; 

          } 

             }//end of switch 

 }//end of if  

}//end of entry 

Template 5 RTL template for method entry 
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V: Examples and Case Studies 

In this section, we show 2 examples that we have implemented.  

5.1 PingPong 

PingPong are taken from Rhapsody demos. It shows a small communication system 

consists of two components, namely: Ping and Pong. Ping is trying to send the ball to 

Pong, and when Pong receives, it simply sends it back. Round is used to control the 

rounds that they send the ball. Figure 16 shows the statechart diagrams of Ping and Pong. 

In the Diagram, GEN_EVENT is used to generate events, and forward and backward are 

two events in this diagram. Both of them have a parameter, called round.  

 

Figure 16 StateChart of Ping and Pong 
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Figure 17 Synthesized Hardware 

To compare the generated code execution speed, we conduct test on the generated TLM 

level and Behavioral level code. The test was conducted under linux environments, using 

Ping Pong example by running 5000 rounds. Table 4shows the simulation result.  

 

  Execution Time Simulation Time 

TLM 66439µs 50002ns 

Beh 935100µs 500004ns 

RTL 658564µs 200001ns 

Table 4 Test results of PingPong example 

Execution time is defined as the time in the real world that it takes to finish the execution. 

While simulation time is the time reported by the SystemC simulator, and it gives the 
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information about the cycles needed for the simulation. Based on the results, we can see 

that Behavioral level code takes 10times more time than TLM code to complete the same 

number of rounds. In general, sc_cthread is much slower than sc_thread. Besides, extra 

wait makes the execution of Behavioral code runs even more slowly. RTL code is slower 

than TLM level code, but faster than Behavioral level code.  We found that TLM is 

suitable for simulation and verification, because it is the fastest among the 3. On the other 

hand, RTL can be the last level before the design being converted into hardware. RTL is 

more cycle-accurate and relatively fast in the speed. 

 

Second statistics is collected based on the generated code length.  
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Figure 18 Comparison of generated code length 
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Rhapsody 10 

TLM 7 

Beh 5 

RTL 5 

Table 5 Number of generated file 

Figure 18 and Table 5 shows the code length and the file number generated from Ping 

Pong example by Rhapsody and our tool. We can see that the length of Rhapsody 

generated code is longest as some Rhapsody dependent code is generated. RTL level code 

seems to be shortest and most compact among three. 

 

5.2 Practical application: Software Radio 

5.2.1 Introduction to Software Radio 

A software radio is a radio whose channel modulation waveforms are defined in software. 

[20] That is, waveforms are generated as sampled digital signals, converted from digital to 

analog via a wideband DAC and then possibly upconverted from IF to RF. The receiver, 

similarly, employs a wideband Analog to Digital Converter (ADC) that captures all of the 

channels of the software radio node. The receiver then extracts, downconverts and 

demodulates the channel waveform using software on a general purpose processor. 

Software radios employ a combination of techniques that include multi-band antennas and 

RF conversion; wideband ADC and Digital to Analog conversion (DAC); and the 

implementation of IF, baseband and bitstream processing functions in general purpose 

programmable processors. The resulting software-defined radio in part extends the 
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evolution of programmable hardware, increasing flexibility via increased programmability. 

And in part it represents an ideal that may never be fully implemented but that 

nevertheless simplifies and illuminates tradeoffs in radio architectures that seek to balance 

standards compatibility, technology insertion and the compelling economics of today's 

highly competitive marketplaces. 

Divers, 
Interfaces 

Fixed 
hardware Software 

Portion 
Hardware 
Portion 

Re-
configurable 
hardware 

Configuration 
modules 

 

Figure 19 A general structure of software radio 

Figure 19 shows a general structure of software radio. It is system where the hardware 

functionality and behaviors can be changed dynamically by software portion. Therefore, 

the hardware and software are tightly related to each other. Besides, the software/hardware 

partitioning as well as the optimization has to be considered during the design stage.  

In fact, the most important feature of software radio is the flexibility. The most of 

components can be either implemented in software or hardware. In the case that designer 

wants to modify a system with different software/hardware resource configuration, it is 

not worth to build a completely new design model. However, our approach is perfectly 

suitable for software defined radio design. At early stage, the resource allocation will not 

be considered for model simulation and verification. With different settings, a single 
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model can produced different implements. This will save a lot of effort in hard coding 

while developing software radio system with the same structure and different resource 

allocations. 

Besides, software radio system requires software/hardware co-design. As we mentioned 

above, the software defined radio system use software to control dynamically change the 

hardware behaviors. The relation between software and hardware are very tight. As a main 

feature, our approach can ease user with graphical notations to handle the complex system. 

User will not be troubled on coding and debugging on the software/hardware connections 

and interface design, which will be automatically generated by our tool. 

software/hardware partition can be performed in later stage. This enables optimization to 

be done. User can try with different partition and test them with the generated code to 

achieve optimization. Moreover, test can be done directly. As we mentioned, the test code 

can be generated automatically. This is make system verification and validation much 

easier. Beside, the cost will also be reduced. Finally, IP reuse can be applied during the 

development. It is very costly to build a big system from nothing. There are only a few 

basic components in the system. By using UML notation, we can model the basic building 

blocks first, and by changing, extending, connecting and combining the basic blocks, the 

complex system can be built with much less effort.  

 

5.2.2 DDC example 

We implemented a digital down converter (DDC) for the global system for mobile 

communications (GSM) - a wireless communication protocol. Digital radio receivers often 

have fast analog to digital converters delivering vast amounts of data. However, in many 
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cases, the signal of interest represents a small proportion of that bandwidth. A DDC is a 

filter that extract the signal of interest from the incoming data stream. Our implementation 

closely follows the MATLAB example in Xilinx’s system generator (see Figure 20). 

 

Figure 20 Block Diagram of DDC for GSM 

The desired channel is translated to baseband using the digital mixer comprised of 

multipliers and a direct digital synthesizer (DDS). The sample rate of the signal is then 

adjusted by a multi-stage, multi-rate filter consisting of a cascade integrator-comb (CIC) 

filter and two polyphase finite impulse response (FIR) filters with a decimation factor of 2. 

The functions performed in the system are complex multiplication, and multi-rate filtering. 

The overall down sampling rate of the converter is 192:1. 

 

 

Figure 21 Class Diagram of DDC 
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Each of the components is mapped into a module, and the data is sent through the chain by 

events (see Figure 21). The model has been translated into both TLM and behavioral 

levels. We could not find the source code for a similar DDC in UML or SystemC for 

comparison. Hence we have compared just the FIR module of our design with an FIR 

example provided by Synopsys. The only modification we did to the Synopsys code was 

to ensure that the coefficients and the bit-widths of the ports are the same as those of our 

FIR model. The codes were compiled into gate-level net-list using Synopsys tc6a_cbacore 

library, which targets cell-based array architectures [21]. The same timing constraints 

were used on the synthesis runs of both. Table 2 shows the comparisons of the final 

synthesized hardware. From the result we can see that our generated code uses about 

33.25% more resources than the hand-coded version. We believe that this is an acceptable 

overhead given the fact we input the model using the Rhapsody tool with UML notations. 

Table 7 shows the Area statistics of RTL generated code.  
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 FIR (Synopsis) (S) FIR (DDC)(D)  Ratio((D-S)/S) 

Number of ports  260 261 0.39% 

Number of nets  18393 27942 51.92% 

Number of cells  18010 27547 55.15% 

Number of references  93 99 6.45% 

Combinational area  30181.2 50583.7 67.60% 

Non-combinational area  34560 36844.2 6.61% 

Net interconnect area  244806.2 325033.1 32.77% 

Total cell area  64741.1 87430.3 35.05% 

Total area  309547.6 412461.1 33.25% 

Table 6 Area statistics for FIR component implemented on cell-based array architecture 

 

 FIR(DDC) in RTL  

Number of ports: 261 

Number of nets: 10013 

Number of cells: 4213 

Number of references: 114 

Combinational area: 389431.6563 

Noncombinational area: 26958.01563 

Net Interconnect area: 1469243.625 

Total cell area: 416176.5938 

Total area: 1885633.25 

Table 7 Area statistics of RTL generated code implemented on cell-based array architecture  
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VI: Conclusions and Further works 

6.1 Summary  

In this project, we explored a new methodology to develop real-time system with use of 

UML-notations. We use Class diagram and statechart to model system structure and 

behaviors. Rhapsody provides powerful support of states diagrams and generates XMI 

document from the model. Using XMI as input, our auto-generate generate executable 

SystemC code. The generated code can be used for testing and simulation. With certain 

restriction in the coding style, the generator can even produce synthesizable code, which 

can be further complied into gate level model.  

Through the experiment from the UML models to simulated and synthesized SystemC the 

following points are quite interesting for us: 

• UML are very good at capturing and formalizing the initial design requirements  

• Target architecture model can be directly associate to the design specification 

model 

• Class and state diagrams are all dedicated to simulation or synthesis without 

having to re-formalize the semantics.  

In fact, the early system modeling and simulation is heavily software oriented, and all the 

functional behaviors can be well described using UML. A directly mapping from 

description to system level implementation has already been established. However, this is 

far away from our exception, and more effort is need to achieve a UML wrapper of entire 

system design. We are aiming to build a UML profile of system models which allows  

• Leveraging of the informal expressiveness of the UML to capture the requirements 

at the early stages  
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• Early modeling of requirements using formal executable UML Models, without 

committing to system partitioning to Hardware/Software.  

• Follow the core OO Method of step-wise iterative refinement to take the 

behavioral UML simulation models into executable RTL UML Models code 

generation into appropriate languages for each levels for Implementation model. 

• Rapid prototyping based on the models and automatically generating the testing 

and validation models and codes 

• IP reusing and portioning optimization 

To achieve the goals, some future work has to be done, and we will discuss them in the 

rest of this chapter.  

 

6.2 Future works 

Current generator is only concerning with class diagrams and state diagrams. As we 

known, besides class diagram and statechart diagram, other UML diagrams also plays a 

important role in system design. Therefore, exploring the use of other UML notations will 

be our next step towards the UML profile.  

Besides, component diagrams, sequence (collaboration) diagrams can be used to perform 

test case design. In software design, these diagrams are often used to generate executables. 

By specifying calling sequence and parameters, the test case are easily constructed. The 

same idea can be applied to construct testing on the design.  
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Moreover, deployment diagrams are found to be suitable to perform software/hardware 

partitioning. In conclusion, we believe that the more UML notation we can handle, the 

better that system requirement can be captured.  

Up to now, we have only concerned with hardware design. However, further extension 

can be made such that UML2code generator can generates the co-design codes. In another 

word, the tool can generate software and hardware components as well as the 

communication interfaces. UML is originally used for software design. There will be no 

difficulty to model software part. Furthermore, SystemC can model both software and 

hardware components. Software/Hardware co-design will be affordable with UML itself.  

Traditional co-design approach requires user to partition the model in advance, and expert 

does the partitioning. Therefore, the partition may not be optimized. In our approach, we 

can partition the model by adding partition information. By changing the partition 

information, we can easily change the generated hardware and software. This will reduce 

the refinement stage of partitioning. Designer can compare simulation and synthesis 

results the generated from different partitioning to find the optimized solution. 

Furthermore, as a trend, software and hardware boundary are getting blur now. [21] 

Software/hardware co-design has increasing importance, especially ease the user to handle 

the complex system. We believe that with this extension can make our project more 

valuable and practical. 

Testing is very costly. Traditional test requires carefully design on the tests manner, and it 

may cause difficult to handle the software-hardware boundary. However, in our approach, 

test code can be directly generated with user defined Top level class. The executable code 

will be auto-generated regarding hardware/software issues.  Furthermore, our target 
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language, SystemC, have its own simulation kernel. Testing can be easily performed in 

different levels. We believe that our approach can reduce the testing cost dramatically.  
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