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Abstract

Mutation testing is a powerful and flexible test technique. Traditional mu-
tation testing makes a small change to the syntax of a description (usually a
program) in order to create a mutant. A test suite is considered to be good if
it distinguishes between the original description and all of the (functionally
non-equivalent) mutants. These mutants can be seen as representing poten-
tial small slips and thus mutation testing aims to produce a test suite that is
good at finding such slips. It has also been argued that a test suite that finds
such small changes is likely to find larger changes. This paper describes a
new approach to mutation testing, called semantic mutation testing. Rather
than mutate the description, semantic mutation testing mutates the seman-
tics of the language in which the description is written. The mutations of
the semantics of the language represent possible misunderstandings of the de-
scription language and thus capture a different class of faults. Since the likely
misunderstandings are highly context dependent, this context should be used
to determine which semantic mutants should be produced. The approach is
illustrated through examples with statecharts and C code. The paper also
describes a semantic mutation testing tool for C and the results of experi-
ments that investigated the nature of some semantic mutation operators for
C.
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1. Introduction

Testing is an important but expensive part of the software development
process, often consisting of in the order of fifty percent of the overall de-
velopment budget. Test automation has the potential to make testing more
efficient and effective and thus to lead to cheaper, higher quality software.

Mutation testing is an approach to test automation that aims to produce
test cases that are good at distinguishing between some description N and
variants of it. Each variant is produced by applying a mutation operator to
N . A test case t kills a mutant M of N if it distinguishes between M and N ,
typically by M and N producing different output when run with t. A mutant
M of N is said to be an equivalent mutant if no possible test case kills M .
In mutation testing, either a test suite is judged against the mutants created
(by determining what percentage of non-equivalent mutants are killed by
the test suite) or a test suite is produced to kill all of the non-equivalent
mutants. The motivation is that a test suite that is good at distinguishing
N from variants of N is likely to be good at finding faults that are similar
to applications of the mutation operators.

In traditional mutation testing, the mutation operators are designed to
represent syntactically small errors. For example, an operator might replace
+ by − in an arithmetic expression. In this paper, we propose a differ-
ent approach to mutation testing, namely semantic mutation testing (SMT).
When testing an entity, test generation is based on a model written in some
description language (such as a programming language, a design language
or a specification language). While many mistakes are slips, other mistakes
are the consequence of a misunderstanding of the semantics of the descrip-
tion language. Such misunderstandings may be captured by mutating the
semantics of the description language. It is possible to introduce changes
that reflect small misunderstandings regarding the language through mak-
ing small changes to the semantics of this language. Such changes result in
the same model being interpreted in a different way. This contrasts with
traditional mutation testing in which small changes are made to the syntax
of the model. SMT thus aims to find a different class of fault and should
complement traditional mutation testing. When dealing with a programming
language, semantic mutation testing can be seen as a process that mutates
the compiler rather than the program. Previous work has discussed seman-
tic size in the context of mutation testing [1] but this work did not discuss
semantic mutation testing.
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This paper makes a number of contributions. First, it introduces se-
mantic mutation, describes its potential role in testing, and explains how
it can be implemented. It describes the error model of SMT and several
scenarios in which SMT might have particular value. Examples of semantic
misunderstandings for statecharts and the C language are given. We inves-
tigate the corresponding mutation operators that reflect differences between
semantics, demonstrating that SMT can uncover faults arising from these
differences. The differences between SMT and traditional mutation testing
are summarised. We then describe a semantic mutation tool that has been
developed for C code and several semantic mutation operators that have
been implemented. This is followed by results of experiments performed to
investigate the nature of the implemented semantic mutation operators and
how they compare with related syntactic operators. The description of the
tool and the results of the experiments form the main contribution beyond
the earlier conference version [2].

The paper is structured as follows. Section 2 describes traditional muta-
tion testing and Section 3 outlines SMT. Section 4 describes the error model
of SMT and several scenarios in which SMT might have particular value.
Section 5 then gives examples of situations in which SMT can be applied to
statecharts and the C language. Section 6 describes a semantic mutation tool
for C. Section 7 describes the experiments and their outcome while Section
8 explores the results and Section 9 discusses threats to validity. Finally
Section 10 draws conclusions.

2. Traditional mutation testing

The idea behind mutation testing is simple and intuitively appealing.
Mutants are produced by making changes to the program. These changes
simulate classes of faults and test cases are produced to distinguish our orig-
inal program from the mutants. A test suite distinguishing between the
original program and the mutants provides confidence in it detecting such
classes of faults.

Mutants are produced through the application of mutation operators.
Each of these may be applied to a relevant point in a program in order to
produce a mutant. The mutation operators involve small syntactic changes.
For example, + might be replaced by −, > might be replaced by ≥, a variable
in an expression may be replaced by a constant, or part of an expression may
be deleted. The use of such mutation operators is usually justified by the

3



competent programmer hypothesis, which states that competent program-
mers make small mistakes [3]. There is an issue here — a competent pro-
grammer might make semantically small mistakes that cannot be captured
by syntactically small changes.

When considering programs, there are several notions as to what it means
for a test case t to distinguish between a program N and a mutant M . Under
strong mutation testing, which is the original form of mutation testing, M
and N are distinguished if they produce a different output on t [3, 4]. In weak
mutation testing, M and N are distinguished if they produce a different value
for some state variable immediately after the point at which N was changed
[5]. Firm mutation testing generalises these by allowing the tester to choose
the point at which the value of some state variable must differ [6].

The use of only a single mutation operator will often create large numbers
of mutants even when the original program is quite small. For this reason,
it is normal to restrict the number of mutants produced by using only first-
order mutants: those that can be produced from the original program by the
single application of one mutation operator. The use of first-order mutants is
justified by the coupling hypothesis that states that any test suite that kills
all first-order mutants will kill most higher-order mutants. Empirical studies
suggest that there is some truth in the coupling hypothesis [7] though many
questions still remain. The coupling hypothesis has also been validated by
theoretical work [8], although this work makes many assumptions.

Mutation testing was originally applied to programs (see, for example,
[9, 10, 11, 12, 13, 3, 14, 4, 15, 16, 5, 17, 18, 19, 20, 7, 21, 22, 23, 24, 25, 26, 6])
but more recently it has been applied to other forms of descriptions such as
specifications (see, for example, [27, 28, 29, 30, 31]). This approach involves
producing test cases that kill mutants of the specification, the test cases
then being applied to the code. Naturally, in order to do this we need a
particular type of specification language — one that can be executed, that
can be simulated, or that allows some formal reasoning. In this work we
want to produce mutants that are not equivalent. In contrast, some work
on applying mutation testing to Communicating Sequential Processes (CSP)
specifications considers properties of the specification, and whether these are
preserved, and not functional equivalence [32]. Thus, a mutant is killed if
it does not satisfy the property of interest. Interestingly, in this context
equivalent mutants correspond to fault tolerance and thus their existence is
desirable.

Mutation testing has a number of advantages. First, it allows the tester
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to target particular classes of faults. Should a program pass a test suite that
kills all mutants, then it is clear that the non-equivalent mutants produced
were not correct. This eliminates a set of faulty behaviours. It also gives us
confidence in the test suite distinguishing between a correct program and a
program with one of these types of faults. Second, other test criteria may
be simulated using mutation testing. Consider, for example, the mutation
operator that replaces a statement by a new statement that terminates ex-
ecution with an error message. Then, any test suite that kills all of the
non-equivalent mutants formed using this mutation operator must also pro-
vide 100% statement coverage: every reachable statement is executed during
testing.

While mutation testing is powerful and flexible, it does have disadvan-
tages. The number of mutants produced, even when considering a small
program and first-order mutants, is often massive. For example Offutt and
Pan, using a standard set of 22 mutation operators and the Mothra tool,
produced 951 mutants from a program that contained only 28 executable
statements [25]. For this reason, researchers have introduced selective muta-
tion in which a subset of the mutation operators is applied [12, 33, 34, 35].
The presence of equivalent mutants often leads to a significant amount of
manual effort and increases the cost of mutation testing. There has thus
been work on preventing the introduction of some equivalent mutants and
automatically detecting some of the equivalent mutants that are introduced
[10, 16, 21, 23, 25].

Mutation operators work at the syntactic level and thus are best at rep-
resenting errors that are in the form of small slips or typos. Such mutants do
not aim to represent misunderstandings that relate to a small semantic mis-
take but that can only be implemented through large syntactic changes. This
paper introduces SMT and argues that it overcomes some of these problems.
In particular, it describes situations in which semantic mutation testing has
the potential to lead to the use of test cases that find particular classes of
faults that are quite different from those represented by syntactic mutants.
In addition, in the experiments reported in Section 7, it was found that there
were far fewer semantic mutants than syntactic mutants and that the sets of
semantic and syntactic mutants did not subsume one another1.

1A set M1 of mutants subsumes a set M2 of mutants if the test suite produced to kill
the mutants in M1 also kills the mutants in M2.
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3. An overview of SMT

SMT is a powerful and general concept. It requires the use of a description
language with a semantics that allows manipulation along with some notion
of likely misunderstandings. Alternatively, the mutations of the semantics
might explore possible variance in the semantics. For example, many pro-
gramming languages have elements that are implementation specific — the
compiler writer is allowed to choose between certain options. By mutating
the semantics to represent these different options it is possible to explore the
portability of a program. Mutation operators to be applied to the semantics
of a programming language could reflect alternatives regarding, for example,
the precision used for floating point numbers.

An entity in which we are interested is represented by a (syntactic) de-
scription (such as the source code of a program). Given a description N
written in a language with semantics L, the behaviour is defined by the pair
(N,L). Traditional (syntactic) mutation testing mutates one part of this: the
description. Thus, the application of a syntactic mutation operator is of the
form (N,L)→ (N ′, L) for some N ′. By contrast, SMT mutates the semantics
of the language and does not change the description. Thus, the application of
a semantic mutation operator is of the form (N,L)→ (N,L′). A first-order
mutant (N,L′) of (N,L) is one produced by applying one mutation operator
once to the semantics of the language.

Suppose that (N,L) is mutated to get (N,L′). Thus N has two inter-
pretations, its meaning under L and its meaning under L′. These will be
called NL and NL′ respectively. Given a test case t, NL(t) will denote the
behaviour produced when applying t to N under semantics L and NL′(t) will
denote the behaviour produced when applying t to N under semantics L′.
Then a test case t kills the mutant (N,L′) if and only if NL(t) 6= NL′(t).
Further, this mutant (N,L′) is an equivalent mutant if for all t we have that
NL(t) = NL′(t). Naturally, the notions of behaviour, equality of behaviour,
and thus of killing a mutant will depend upon the language being considered.
In addition, the property of a test case killing a semantic mutant depends
both on the semantic mutation made and the description under test.

There are several ways of implementing semantic mutation, including the
following.

1. Have a parameterisable system for interpreting a model, the parameters
allowing the semantics to be mutated.
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2. Express the semantics in some form that can be manipulated. One
such form is a set of rewrite rules.

3. Simulate a mutation of the semantics by making changes to the syntax
of the description. Note that these will often be done throughout the
description, not just at one point.

In the mutation testing of a description N in a language with semantics
L a set of mutation operators are applied individually to L to get alternative
semantics L1, . . . , Lm. The semantic mutants (N,L1), . . . , (N,Lm) are then
used in order to evaluate a test suite or to drive test generation: a test suite
should kill every non-equivalent mutant in the set {(N,L1), . . . (N,Lm)}.

One of the benefits of semantic mutation testing is that it may lead to
far fewer mutants and, as a consequence, fewer equivalent mutants. This is
because a change in the semantics of the description language need only be
made once2 (assuming only first-order mutants are used). By contrast, in
traditional mutation testing, given a mutation operator there is a mutant
for every point in the description to which the operator may be applied.
Thus, a large number of mutants may have to be compiled and executed;
in semantic mutation only one compilation is necessary for each semantic
mutation operator.

4. Scenarios for SMT

In a development software process, multiple descriptions of the underly-
ing software may be generated in different activities. The form of description
changes in this process, generally from abstract to concrete. A number of
languages may be used: scenario-based models (Sequence Diagrams and Mes-
sage Sequence Charts (MSCs)) may be used in the requirements phase, more
formal languages such as finite state machines, Z and VDM can be applied
in the specification or design phases and finally the software may be coded
in C. Semantic misunderstandings can be introduced into the target descrip-
tion in every transformation because of the informality of either languages
or the semantic differences between the source and target languages in these
transformations. In this section, we first describe a semantic error model to
describe how different semantic misunderstandings can be introduced into
software.

2Later we discuss conditions under which this might be relaxed.
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Figure 1: Transformation Model

4.1. Semantic Error Model

Figure 1 shows a general network model of misunderstandings introduced
into the final software. To simplify the illustration, we give a partial net-
work including nodes A, B, C and D that represent four possible different
descriptions of a piece of software.

In Figure 1 the level of abstraction descends from top to bottom. Lan-
guages used in A and B or C and D are at the same abstraction level and the
languages used in A and B at level l are more abstract than the languages
used in C and D in level l + 1. Generally, descriptions written in higher
level languages (for example, models in the design phase) will be refined into
descriptions in lower level languages (source in the code phase). Therefore,
downwards transformation is common in software development. These types
of transformations are called refinements and are represented by downward
arrows in Figure 1.

In addition, the description in each level may be expressed in more than
one language. Description A may be translated into B (and vice versa) and
Description C may be translated into D (and vice versa) in a software devel-
opment process. For example, MSCs can be used to synthesise automata for
model checking [36]. These types of transformations are called translations
and are represented by left right arrows in Figure 1.

The number of levels of abstraction may depend on the software devel-
opment process used. For a simple piece of software with several hundred
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Figure 2: Refinements and translations

lines of C code, there may be only two levels: C code and compiled machine
code since no formal requirements and design are needed. This scenario is
shown on the left-hand side of Figure 2. However, for a large project, there
may be descriptions at many levels (requirements, specification, design, code
and machine code). Similarly, the number of nodes at the same level may
vary. Consider software developed in Java derived from legacy software that
contains components coded in different languages. There should be multiple
nodes at the code level. Therefore, in Figure 1, we do not restrict the size of
the model.

Semantic mutation is concerned with misunderstandings that arise both
in refinements and translations in the network model. A specific software de-
velopment process may introduce misunderstandings along a top-down path
in the model and ideally we investigate all possible misunderstandings raised
by transformations. However, some of the transformations may be more
interesting since misunderstandings are more likely in these scenarios. In
addition, not all of the misunderstanding can be imitated. For example, if
software is developed directly from informal descriptions the possible mis-
understandings are hard to capture. In the rest of this section we describe
several situations in which SMT may have particular value.

4.2. Common misunderstandings

Given a taxonomy of common misunderstandings for a particular lan-
guage, a set of semantic mutation operators could represent these possible
misunderstandings. Such a set of operators could be informed by studies
that identify common misunderstandings (see, for example, [37]). Given a
mutation operator that represents a possible misunderstanding, a test suite
that kills the mutant produced by this operator should be good at finding
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faults that are due to this misunderstanding. Thus, testing is targeted at
these common misunderstandings.

Ideally, the set of operators used should reflect the environment in which
the artefact under test has been produced and the misunderstandings that
are most likely or most important within that environment. For example,
it is to be expected that novice programmers make very different mistakes
from expert programmers and that an expert programmer using a language
for the first time will have a different set of likely misunderstandings than an
expert programmer who has used that language for many years.

In the error model, if the used language is X then this scenario can be
described by a translation between imaginary X node to X node shown in
Figure 2. The imaginary X node represents the programmer’s understanding
of language X. It may be noted that this scenario can happen at any level
of the error model.

4.3. Refinement

Misunderstandings might occur through a change between the level of
abstraction in requirements, specification, design and code. For example, Z
[38] and Ada [39] have different truncation rules. The precedence rules may
also differ between languages. Where there are similarities between elements
of the syntax of a specification or design language and the programming lan-
guage used there is a danger that statements written using this syntax will
be copied. This may lead to faults if these constructs are given a different se-
mantics in the specification/design language and the programming language.
Semantic mutation operators could change the semantics of the program-
ming language to simulate the semantics given to these syntactic constructs
in the specification or design language. Given a set of mutants generated in
this manner, a test suite that kills the resultant mutants is targeted at such
mistakes.

Another example is the use of unbounded types (such as the integers) in
specification languages; they are retrenched3 to bounded types. Additional
issues occur with types such as the reals since these will be retrenched to
types of finite precision. The retrenchment may lead to behaviours other

3In retrenchment we implement a type from the specification using one that does not
formally conform to the original type. One major motivation is that many types in speci-
fication languages are infinite and cannot be implemented in standard programming lan-
guages.
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than those specified and the behaviour may also depend upon the actual
bounds and the precision. Semantic mutation operators might be used in
order to explore the impact of such retrenchment and the choices regarding
bounds and precision. There has been work on finding test cases to explore
the effect of precision [40] and such approaches might have value in producing
test cases to kill certain types of semantic mutation.

In the model of Figure 1, these forms of semantic mutations correspond
to a set of refinement transformations. For example, the truncation example
can be represented by the refinement from node Z to node Ada shown in
Figure 2.

4.4. Migration

Let us suppose, for example, that a company uses a description notation
and is migrating to a different one. The original language and the new one
may encapsulate different semantics. If this is the case, there is a danger of
mistakes caused by this difference in semantics. The process of migrating to
the new language would be assisted by a tool that generates test cases that
are good at finding mistakes caused by the change in semantics.

Let L0 denote the original semantics and L denote the new semantics.
Let L1, . . . , Lm denote a set of alternative semantics each of which cap-
tures a difference between L and L0. Given a description N that has been
produced for the new semantics, it would be natural to use the mutants
(N,L1), . . . , (N,Lm).

A semantic mutation tool could produce the mutants. It might then either
determine which are killed by a proposed test suite or assist in a search for
test cases to kill the mutants. If the tool finds a test case t that distinguishes
between (N,L) and (N,Li) for some 0 ≤ i ≤ m then t, and the response of
(N,L) and (N,Li) to t, can be reported back to the developer.

An example of this scenario is migrating to a different but similar pro-
gramming language. There are languages from a particular paradigm that
use the same, or similar, syntactic constructs but give them different seman-
tics. For example, C uses short-circuit evaluation while in Ada there are
two version of each logical connective, one that has short-circuit evaluation
and one that does not4. Different languages deal with exceptions in different

4This is an example of a semantic mutation that can be easily simulated using a set of
syntactic mutations.
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ways. Languages also differ in their binary representation of characters and
strings and thus give a different semantics to code that directly manipulates
these representations. For example, Java makes use of the 16 bit UNICODE
representations while in C characters are Bytes. In Java the length of an
individual string is fixed while in C there is an end of string character. Thus,
code that terminates string manipulation in C, by checking for the end of
string symbol, will not operate correctly in Java.

The mutation operators used will depend upon the previous and new
languages/semantics. There could be suites of semantic mutation operators
for common combinations: semantic mutation operator suites targeted at
particular changes in semantics. Semantic mutation testing then leads to the
use of test suites that are targeted towards mistakes that may result from a
migration in semantics.

Within Figure 1, migrations can happen in any level of the error model
and correspond to translations in the model. For example, the migration
from C to Java is shown in Figure 2.

4.5. Porting of code

Many programming languages have elements of their semantics that are
implementation specific. SMT can be used to explore the impact of such
freedom and thus to assist in determining the portability of the code. Here,
equivalent mutants represent robustness to a change in, for example, a com-
piler. If it is not feasible to determine whether the mutants are equivalent
mutants, random testing (possibly based on a user-profile) might be used to
provide confidence in there being only very limited portability issues. Specif-
ically, randomly generated test cases can be applied to the program and
semantic mutants used to represent potential portability problems and the
proportion of the test cases that kill the mutants gives an estimate of the
effect of potential portability problems.

Consider, for example, the order of evaluation of terms within an expres-
sion. This is not specified in C but a compiler will normally make a consistent
choice. The choice made can affect the behaviour of the system. To see this,
consider an expression f(x) + g(x). If one or more of f and g contains a
side-effect that can affect the value of x (or some shared data) then the order
of evaluation is important. A simple semantic mutation operator would re-
verse this order of evaluation. If this mutation operator creates an equivalent
mutant then the (functional) behaviour of the program being tested is not
affected by this portability issue. Given a programming language and a list
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of such issues it is possible to produce a standard set of semantic mutation
operators in order to explore portability.

This semantic mutation scenario largely happens in the code level. It
mainly addresses the discrepancies between two different implementations of
a language, for example, MicrosoftTM Visual C++ and gcc. In our error
model, this scenario corresponds to translations. For example, the semantic
mutation introduced by the effort to make a piece of source code that works
with MicrosoftTM Visual C++ also work with gcc can be modelled as the
diagram on the right-hand side of Figure 2.

5. Examples and characteristics of SMT

This section describes two applications of SMT: one is statecharts and the
other is the C language. We thus summarise some of the characteristics of
SMT. Statecharts have been chosen because there are several rival semantics
encapsulated in toolsets (see, for example, [41] for more information on some
of the differences).

5.1. Statechart: mutation for multiple semantics

Statecharts are a popular graphical notation for specifying state-based
systems. Statecharts were originally introduced in order to specify reactive
systems (see, for example, [42]) and are widely used in the specification
of embedded control systems. They now form part of the Unified Modeling
Language (UML) and are thus used to form part of the specification of object-
oriented systems. The core components of a statechart specification are states
and transitions between states. A transition has a label which may include
any of: an event that triggers the transition, a guard, and the action of the
transition. Let us suppose that t is a transition from state s, with event e
and guard g. In order for t to be triggered the system must be in state s,
the event (or input) e must be available and the guard (or precondition) g
must evaluate to true. In order to limit complexity, statecharts allow a state
hierarchy. A state is one of: a basic state; an AND state; or an OR state. A
basic state, unlike AND states and OR states, contains no other states. An
AND state contains a number of substates that act in parallel: if the system
is in an AND state then it is also in each of these substates. An OR state
contains a number of alternative states: if the system is in an OR state then
it is in exactly one of its substates.

13



no_vehicle_in_front

vehicle_in_front

[distance < critical]/

reduce speed

lever = reduce/

reduce speed

lever = increase/

increase speed

vehicle

detected

no vehicle

lever = increase/

increase speed

lever = reduce/

reduce speed
ON

OFF

brake

switch on

switch off

Figure 3: A statechart for a cruise-control system

For example, Figure 3 shows a statechart that describes part of a simpli-
fied cruise-control system for a car. Many elements of a real cruise-control
system, such as it having a maximum speed, have been left out or abstracted
away in order to aid simplicity. There are two main states: in one of these
the cruise-control system is active (the state ON), in the other it is inactive
(the state OFF). The state OFF is a basic state as it has no substates while ON

is an OR state. The car has a sensor that scans the road ahead. The state
ON has two substates: one in which one or more vehicles have been detected
(state vehicle in front) and one in which no vehicle has been detected in
front (state no vehicle in front). There is a lever for controlling the speed
when the cruise control system is in state ON. This lever has three settings:
increase, null, and reduce. This lever being at setting X is denoted by lever

= X and is seen as an event.
The intended semantics is as follows. If the system is in state ON then it

remains in this state unless the brake is applied or it is switched off. While
in state ON, if the system is in substate no vehicle in front and a vehicle
is detected in front then the system moves to substate vehicle in front.
While in state ON, if the system is in substate vehicle in front and there
is no longer a vehicle detected in front then the system moves to sub-
state no vehicle in front. Within substates no vehicle in front and
vehicle in front it is possible to increase the required speed and to re-
duce the required speed. When in state vehicle in front, the speed is
reduced if the distance to the vehicle in front becomes critical.

This example will now be used to illustrate points on which two pairs of

14



semantics (STATEMATE/UML and STATEMATE/Stateflow) differ and to
show how semantic mutation testing may be used to assist in the generation
of test cases to explore the impact of these differences.

5.1.1. A difference between STATEMATE and UML semantics

Let us suppose that the system is in state no vehicle in front and
thus is also in state ON. Suppose also that the events brake and lever =

increase are received. Under the STATEMATE semantic the system will
move to the state OFF since a transition from a state takes precedence over
the transitions from its substates (see, for example, [43]). This is the required
behaviour — the cruise control system should not be attempting to maintain
the current speed while the brakes are being applied. However, under the
UML statechart semantics the transition with event lever = increase will
initially be activated since transitions of substates take precedence over those
of states containing them (see, for example, [43]). This is clearly erroneous
behaviour for this model.

Now let us suppose that the UML semantics are being used but it is re-
alised that the developer might mistakenly apply the STATEMATE priority
rules. Given the specification in Figure 3, two behaviours would be analysed:

1. The specified behaviour B that corresponding to the specification under
the UML semantics; and

2. The behaviour B′ resulting from mutating the UML semantics. The
mutation is that the priority of transitions in different levels of the state
hierarchy is changed to that used in STATEMATE.

We could then produce a test case to kill B′ and this would involve taking
the system to the state no vehicle in front, applying the events brake and
lever = increase and observing whether acceleration occurs.

Again, let us suppose that the specification in Figure 3 has been pro-
duced under the UML semantics. The specification is incorrect and thus
testing against this specification may find that the code implements it per-
fectly and thus does not find a failure. Further, the fault is associated with
two transitions being enabled at the same time rather than being associated
with a particular transition. Thus techniques that aim to test individual
transitions are unlikely to find such a fault. An example of such a technique
is the transition tour method in which a test is required to traverse every
transition (see, for example, [44]). By contrast, any test sequence that kills
the semantic mutation produced using the operator described is guaranteed
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to find this fault and will suggest that a particular type of misunderstanding
has occurred.

5.1.2. A difference between STATEMATE and Stateflow semantics

A famous difference between the Stateflow and STATEMATE semantics
for statecharts is as follows. If there is non-determinism,

1. under the STATEMATE semantics, an autocoder5 will make a decision
and thus produce a deterministic implementation [45].

2. under the Stateflow semantics, the system progresses clockwise from the
upper left corner of the state and chooses the first enabled transition
met [46].

Let us suppose that the system is in the state no vehicle in front. If
a vehicle is detected and the lever is at the setting increase then there are
two enabled transitions: moving to state vehicle in front or increasing the
speed and staying in state no vehicle in front.

According to the STATEMATE semantics, the behaviour of the system
depends on the autocoder. It may use some consistent way of determining
the transition chosen and define the intended behaviour through giving pri-
ority to the transition from no vehicle in front to vehicle in front over
the transition from no vehicle in front with event lever = increase as
required. However, in this case, under the Stateflow semantics the system
will fail to move to the state vehicle in front and thus will continue to
behave as if there is no vehicle in front.

A mutation operator might represent this possible misunderstanding, pro-
ducing a mutant that implements the possible STATEMATE semantics de-
scribed above. We could then produce a test case to kill the mutant by
taking the system to the state no vehicle in front, applying the events
vehicle in front and lever = increase and observing whether accelera-
tion occurs.

Again, the mutant describes the potential misunderstanding: a test case
kills the mutant if and only if it detects this misunderstanding. Test tech-
niques that test individual transitions may not find such problems and so
the process of investigating this problem from the perspective of SMT also
reveals a weakness of such techniques.

5Autocoders automatically generate code to implement a model.
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...

c = a / b;

...

…

if ( (a<0) || (b<0) ){

    c = div_z (a, b); 

}

else

    c = a / b;

...

Code1 Mutant1

Figure 4: Division with a negative number and its mutant

5.2. C: mutation for safer C

In this section we briefly explore SMT with more concrete notations, and
in particular, C code.

The functionality of even the ‘simplest’ constructs may differ between
high-level notations and the C language. In the development of semantic
mutation operators for C, typical or possible differences between high-level
notations and C can be derived and used as the basis for generating a set
of semantic mutants for refinement to distinguish such cases. In addition,
the C language does not have a standard formal semantics. For example,
Hatton [47] quotes 97 types of explicitly undefined functionality in the ISO
C Standard [48]. The ambiguities in C semantics can be dangerous especially
in porting of code. Semantic mutations can thus be designed to capture these
differences.

We now give three examples to illustrate possible semantic mutations for
achieving safer C programs. The first example is a possible misunderstanding
in refinement from Z to C. The remaining two concern cross translations
between different versions of C. The semantic mutation operators given in
this section use the approach, ‘simulate a mutation by making changes to
the syntax of the description’.

5.2.1. Division of negative numbers

Consider division of integers. In the C language (-12/5) has the value -2,
whereas the corresponding function div in the formal specification language
Z takes the value -3. C truncates towards 0 and Z towards minus infinity.

A semantic mutation operator can be developed to modify the division
expressions in C to if...else statements. A helper function, div z(), which
acts as division in Z will be used when one of the two operands of a division
expression is negative. For example, Code1 will be transformed to Mutant1
shown in Figure 4.

17



...

if ( a == b ){

    ...

}

else if ( a == c){

    ...

}

...

...

if ( a == b ){

    ...

}

else{

    ...

}

...

...

if ( a == b ){

    ...

}

else if ( a == c){

    ...

}

else{

    /*Why am I here?*/

    abort();

}

...

Code2 Mutant2 Mutant2'

Figure 5: Incomplete if...else statement and its mutants

The generated mutant differs whenever truncation is applied to a negative
value so if a piece of code is used in a context within which all values are
positive such a semantic mutant is guaranteed to be an equivalent mutant.

5.2.2. Incomplete branching structures

In C code, if...else statements are used to introduce branching logic.
Such a statement may not consider all cases and this can be appropriate but
may also denote a mistake. For example, an incomplete if...else statement
is given in Figure 5. For Code2, if a is neither b or c, the program will
continue without executing either of the guarded statements. This might be
a semantic misunderstanding.

An incomplete logic structure may result from two types of mistakes.
First, programmers may assume that the program will always execute the
last branch of the structure; second, programmers may simply fail to provide
a branch for the default condition. A semantic mutation operator can be
developed for incomplete branching structures. It modifies the last branch
to make it a default branch or inserts a default branch at the end of the branch
structure. For example, Code2 and the mutants, Mutant2 and Mutant2’, are
shown in Figure 5.

5.2.3. Floating-point comparison

In C code, logical comparisons between floating-point numbers are al-
lowed. These can exist in different contexts, such as in if and for loop
conditions. In addition, the logical comparisons can be equal or non-equal
(bigger than or less than). For example, a floating-point comparison code
snippet, Code3, is given in Figure 6 to show the equal (if) logical comparison.
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...

float a, b;

...

if ( a == b ){

    ...

}

...

...

float a, b;

...

if ( flpcmp( a, ''=='', b ) ){

...

}

...

Code3 Mutant3

Figure 6: Floating-point comparison and its mutant

The behaviour Code3 show in Figure 6 is unpredictable and may differ
from machine to machine since the comparison of floating-point numbers in C
is not rigorously defined. A semantic mutation operator can be developed to
mutate the floating-point comparison operators. To conduct the mutation, a
helper function flpcmp is introduced, which conducts the given comparison
for the two float type operands at a particular level of arithmetic granularity.
In order to achieve this we use the constant FLT EPSILON, which is typically
a very small number whose value is defined in the float header file, and used
this in checking whether two float numbers are ‘close enough’ to be considered
to be equivalent. The value of FLT EPSILON may vary with compilers and
operating systems and this leads to changes in the arithmetic granularity.

For Code3, its mutant Mutant3 is shown on the left-hand side of Figure
6.

5.3. Summary

As shown in the above examples, several differences between traditional
and semantic mutations can be observed.

A semantic mutation aims to simulate a misunderstanding (this is the
fault or error model). The type of misunderstandings considered can depend
on the context in which development is taking place. For example, if a
developer has usually used one language X and is now using a different
language Y , we can use semantic mutation operators that target the types
of misunderstandings that can occur when moving from X to Y .

The process of implementing semantic mutation operators is more com-
plex than that of implementing traditional syntactic mutation operators.
This is because context is important and additional analysis may be re-
quired. For example, it is necessary to infer the types of the expressions
at both sides of a relational or equality expression to implement semantic
mutation operator for floating-point comparison.
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Given description N in language L, it is possible to simulate a change in
the semantics of L through syntactic changes to N . This may affect more
than one construct of N . For example, operator for incomplete branching
structures affects whole if...else statements.

A semantic mutation operator may generate fewer mutants than syntac-
tic mutation and so there may be fewer equivalent mutants. One reason is
that a semantic mutation is more specific. For example, the operator dealing
with floating-point comparison only changes the relational/equality expres-
sion when one of the operands is float. Another reason is that a change in
the semantics of the description language need only be made once, assum-
ing only first-order mutants are used. By contrast, in traditional mutation
testing, given a mutation operator there is a mutant for every point in the
model to which the operator may be applied.

In the statechart example given, the mistakes could have been found
by adding a new test objective relating to testing when combinations of
transitions are enabled. There may be merit in using test criteria that achieve
this. However, the purpose of this section was not to produce a test criterion
for testing from statecharts; rather, it was to show how the general approach
of SMT might be applied when there is the potential of misunderstandings
caused by a variety of semantics.

6. A semantic mutation tool for C

We have developed a new mutation testing tool for C, called SMT-C, be-
cause we found that no tool satisfies the requirements of SMT. In this tool,
we used the approach in which semantic mutations are simulated through
making changes to the syntax of the description. Our goal was to deliver a
flexible and easy to use semantic mutation testing tool which can be seam-
lessly embedded into the daily working routines of a software engineer. In
addition, we wanted a tool that could easily be extended with additional
mutation operators. In this section we describe the tool’s architecture, the
way in which it was implemented, and the semantic mutation operators that
have been developed.

6.1. Overall architecture

We developed SMT-C in Java and based it on the Eclipse platform. It can
be run either as an independent application or a plug-in of Eclipse integrated
C development environment. SMT-C has a three-layer architecture as shown
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Figure 7: SMT-C Architecture

in Figure 7. The basis is third-party software, including Eclipse, TXL [49],
Check [50] and others. The upper layer contains GUI components, mainly
four viewers. In the middle layer, there are functional components, where
the core features of the tool are implemented.

We now describe some main components of the tool in more detail.

6.2. The Viewers

As shown in Figure 7, the main GUI of SMT-C has four viewers: the
mutant viewer, the test viewer, the results viewer and the console viewer.
The upper part of Figure 8 is the main window of SMT-C when running
independently as a Rich Client Application. The mutant viewer is on the
right-hand side of the main window and here the generated mutants can
be managed. The results viewer is at the bottom of the main window and
displays the results of testing. The test viewer and the console viewer are
displayed separately below the main window. The test viewer provides a
front end to the test runner and allows the tester to start the application
of the test cases and view the results of each test case that has been run.
The console viewer allows the tester to monitor the current status of the
components that are running.

A lot of high-level features of Eclipse and CDT (C/C++ Development
Tooling) have been reused in SMT-C. For example, the middle of the main
window of SMT-C in Figure 8 shows two mutants being compared and this
feature is implemented reusing the compare module of Eclipse.
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Figure 8: GUI of SMT-C
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6.3. Core function components

In the middle layer, the function components of SMT-C implements func-
tions for generating, building, testing and executing mutants. Most of these
functions are developed based on third-party software in the base layer.

6.3.1. The mutation generator

SMT-C implemented 13 semantic mutation operators based on the ideas
in [47] which are briefly described as follows:

1. AOR: replace ‘=’ with ‘==’ in conditional statements;
The misuse of the assignment expression in control structures is a

well-known mistake in C programs.

2. ASD: remove additional semicolons after the condition expressions of
if statements;

It is possible that some programmers punctuate if statement as
follows: if ( a == b );{...}. In this case, the statements in the bracket
after the semicolon will always be executed.

3. LBC I: add an else branch to the if statement without an else branch.
This else branch contains a trap;

4. LBM I: modify the last else if branch of an if statement without an
else branch to be an else branch;

5. LBC C: add a default branch to the switch statement without a default
branch;

6. LBM C: modify the last case of a switch statement without a default
branch to be a default branch;

LBC I, LBM I, and LBC C and LBM C are four operators that
deal with incomplete branching structures in C programs. Incomplete
branching structures can be potential errors since programmers may
assume that the program will always execute the last branch of the
structure and programmers may simply fail to provide a branch for
default condition.

7. MFC E: mutate the floating-point comparison operators in an equality
expression. For example, if a == b is an expression in a conditional
statement in which at least one of the two variables a and b is a floating-
point number, the MFC E operator will change a==b to a function call
flpcmp(a, b) as shown in Figure 6.
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8. MFC R: mutate the floating-point comparison operators in a rela-
tional expression;

MFC E and MFC R are used to handle logical comparison be-
tween floating-point numbers in conditional expressions in C programs.
The behaviours of comparison operators for floating-point numbers are
unpredictable and may differ from machine to machine since there are
no standard definitions of these operators. Programmers may underes-
timate the complication of comparison of floating-point numbers and
generate some very subtle errors.

9. DIA F: mutate the results of division/modulus of integers using the
floor method;

10. DIA T: mutate the results of division/modulus of integers using the
tail method;

Division of integers is interpreted differently in different program-
ming languages. For example, in Ada the expression (−12/5) evaluates
to −2, whereas the corresponding expression in the formal specification
language Z takes the value −3 [51].
According to the C standard [52, 3.3.5], if either operand is negative,
whether the result of the / operator is the largest integer less than the
algebraic quotient or the smallest integer greater than the algebraic
quotient is implementation-defined. Again, programmers may under-
estimate the situation and generate errors.

11. FTA F: floating type truncation adjustment using the floor method;

12. FTA T: floating type truncation adjustment using the tail method;
When a floating-point number is assigned to an integer variable

the number is truncated. However, according to [47], the direction of
truncation is undefined in C++ [53] or Java [54]. In C, it is defined
using the floor method. This may lead to semantic misunderstanding
since that C programmers may have different backgrounds, they may
interpret C statements based on their experience with C++ or Java.

13. IMB: inserting missing break statements into switch statements.
The case statement in C is not as safe as those in Ada or BASIC.

A flaw of particular notoriety arises through the omission of the break
statement at the end of each switch branch. Execution will simply ‘fall
through’ each switch branch. Therefore, programmers with different
backgrounds may ignore the need of break statements and introduce
faults.
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In addition, SMT-C also implements some related traditional mutation
operators defined in [55], in part because this allows us to run experiments
that compare semantic and syntactic mutation operators. The mutant gener-
ator is implemented based on TXL [49] which is a generalised source-to-source
translation system. It takes as input a piece of source code, the grammar
used by the source code and a set of transformation rules written in the TXL
programming language and then produces the transformed source code. It is
straightforward to implement most of the proposed semantic mutation oper-
ators and traditional mutation operators. For example, the logic of operator
SCRB (break to continue) can be implemented using several lines of code
as follows:

replace $ [jump_statement]

’continue _ [semi]

by

’break;

This piece of code essentially means: find each jump statement which is
formed by the string ‘continue’ and a semicolon and then replace it with a
new jump statement ‘break;’. TXL has a powerful set of built-in functions
which makes it very flexible and as a result it can be used to implement
relatively complex transformations.

It transpired, however, that it was difficult to implement six of the pro-
posed semantic mutation operators using TXL because they require us to
have information regarding variable types. For example, the mutation oper-
ator, MFC R, needs type information of variables in relational expressions.
In order to solve this problem, we implemented a type annotation module
for the C language. This led to a library with 2.5k lines of code in TXL.
SMT-C uses this to parse the C source code to form a grammar tree that
contains type information. This not only helped us to implement the six
semantic mutation operators using TXL, but we expect it to be useful for
implementing complex mutation operators in the future.

6.3.2. The test runner

The test runner of SMT-C is built as a front end for a C unit testing tool:
Check [50]. Check is based on Autotools [56]. We used the Autotools plug-in
for CDT to connect SMT-C with Check.
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In SMT-C, tests are implemented according to the requirements of Check
and these are relatively easy to follow. For example, a test case is written
between a pair of predefined C macros as follows:

START_TEST (test_name)

{

/* unit test code */

}

END_TEST

Our test runner inherits advanced features from Check such as run in fork
mode, test fixture, multiple suites in one runner, looping tests, test time-outs,
determining test coverage, and XML logging.

7. An experimental study

To investigate the basic features of semantic mutation testing, we ap-
plied the 13 semantic mutation operators to a set of 8 subject programs. To
learn the differences between semantic mutation testing and traditional mu-
tation testing, we also applied 7 selected traditional mutation operators to
the subject programs. In the experiment, we compared the number of mu-
tants generated by semantic/tradition mutation operators, mutation scores
of operators, and average semantic sizes of operators. We also investigated
subsumes relations between semantic/traditional mutation operators.

7.1. Experiment settings

The subject programs were chosen from Software-artifact Infrastructure
Repository (SIR) as shown in Table 1 [57]. We chose these programs since
they are well developed test objects for which there are test suites. For each
program p we created a universal test suite, which is the set of test cases that
SIR has for p.

Table 1: Subject Programs

Program Printtokens Printtokens2 Replace Schedule Schedule2 Space Tcas Totinfo

NLOC 343 355 513 296 263 5905 137 281
NUTS 4130 4115 5542 2650 2710 13585 1608 1052

NLOC and NUTS are the abbreviations of number of lines of
executable codes and number of test cases in universal test suite.

The selected traditional operators were as follows:
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1. OAAN: arithmetic operator to another arithmetic operator;

2. SCRB: continue to break ;

3. SBRC: break to continue;

4. STRP: trap on statements;

5. STRI: trap on if conditions;

6. SSWM: trap on switch cases;

7. SSDL: statement deletion.

We chose these operators because they were syntactically related to the
semantic operators proposed in this paper. For example, LBM I modifies
if statements that contain no else part and these may also be changed by
STRI operators.

All experiments were conducted with SMT-C. To use these subject pro-
grams in SMT-C, an Eclipse C project using Autotools plug-in was created
for each subject program. For running the test suites, test drivers were
implemented according to the requirements of Check. When applying a se-
mantic mutation operator op we can make all changes to the semantics of
affected constructs to produce one mutant. However, this would have given
us only a small number of semantic mutants and so instead we produced one
mutant for each construct in a program whose semantics is affected by op.
We now describe the results of the experiments under two categories: ex-
periments that explored the nature of the semantic mutation operators and
experiments that compared operators.

7.2. Properties of semantic mutation operators

In calculating the mutation scores of the proposed operators, the number
of killed mutants was the sum of the number of mutants that could not be
compiled and the number of mutants that were killed by running the universal
testing suite. The mutation score given in this paper is the number of killed
mutants divided by the total number of mutants. This is actually a lower
bound on the real mutation score since the number of equivalent mutants
should be subtracted from the total number of mutants. Section 8 provides
a brief discussion regarding equivalent mutants generated by semantic mu-
tation operators. For traditional mutation operators, the approximation is
necessary because of the large number of live mutants; it simply was not
feasible to manually investigate these (2293) mutants and automatically de-
tecting equivalent mutants is an undecidable problem [3, 58]. The results for
mutants generated by semantic/traditional mutation operators are given in
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Tables 2 and 3. We note that there are only 8 semantic operators in Table 2.
This is because 5 operators (ASD, DIA F, DIA T, FTA F and FTA T)
did not generate any mutants when applied to the 8 subject programs.

The data presented in Tables 2 and 3, shows that the 13 semantic muta-
tion operators generated 68 mutants for the eight subject programs. That is
far fewer than the 12598 mutants generated by 7 traditional mutation oper-
ators. In addition, five semantic mutation operators generated no mutants.
This is because semantic mutation mutates certain features associated with
specific types of faults and these may not be present.

We also note that average mutation score of semantic mutation operators
(0.6176) is lower than that of the traditional mutation operators (0.8180).
This is because some of the semantic operators generated mutants that were
really hard to kill. For example, LBM C, MFC E and MFC R have mu-
tation score less than or equal to 0.25. When compared with syntactic muta-
tion testing, the tester has to deal with far fewer mutants but some of these
mutants may be more difficult to kill than typical syntactic mutants.

Table 2: Mutants generated by semantic mutation operators

Program AOR IMB LBC C LBC I LBM C LBM I MFC E MFC R Total Killed Live Score

print tokens 12 2 2 16 16 1.0000
print tokens2 1 1 2 2 1.0000
replace 3 3 3 1.0000
schedule 1 1 2 2 1.0000
schedule2 2 1 1 4 3 1 0.7500
space 3 1 6 5 6 5 4 30 14 16 0.4667
tcas 0 0 0.0000
tot info 1 10 11 2 9 0.1818
Total 5 16 8 8 8 8 1 14 68 42 26 0.6176

Killed 5 15 5 6 2 6 3 42
Live 1 3 2 6 2 1 11 26
Score 1.0000 0.9375 0.6250 0.7500 0.2500 0.7500 0.0000 0.2143 0.6176

To calculate the average semantic size of a mutation operator, we recorded
the number of test cases that killed the mutants generated by an operator.
Let us suppose that operator op generated the set {mi : i ∈ [1, n]} of mutants.
Further, for mutant mi, let us suppose that ki test cases out of the total ti
test cases in the universal test suite kill mi. The average semantic size of op,
ssop, is calculated as follows:

ssop =
Σn

i=1ki
Σn

i=1ti
(1)
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Table 3: Mutants generated by traditional mutation operators

Program OAAN SCRB SBRC STRP STRI SSWM SSDL Total Killed Live Score

print tokens 32 9 224 23 54 224 566 528 38 0.9329
print tokens2 36 231 63 231 561 466 95 0.8307
replace 152 10 258 44 6 258 728 728 0 1.0000
schedule 52 7 145 18 7 145 374 345 29 0.9225
schedule2 36 11 139 22 10 139 357 301 56 0.8431
space 1088 1 40 3890 466 16 3890 9391 7359 2032 0.7836
tcas 4 61 7 61 133 122 11 0.9173
tot info 228 2 119 20 119 488 456 32 0.9344
Total 1628 3 77 5067 663 93 5067 12598 10305 2293 0.8180

Killed 1439 3 70 4500 560 93 3640 10305
Live 189 0 7 567 103 0 1427 2293
Score 0.8839 1.0000 0.9091 0.8881 0.8446 1.0000 0.7184 0.8180

An alternative approach is to calculate the mutation scores for each pro-
gram and take the average of these scores. This avoids biasing the results
in favour of a small number of larger programs. We computed both values,
calling the former SS and the latter SS*, which is defined as follows:

ss∗op =
1

n
Σn

i=1

ki
ti

(2)

We also calculated the average semantic size of the two sets of operators:
semantic mutation operators and selected traditional mutation operators.
This was computed in a similar manner to that of the individual operators,
simply computing over all mutants formed by a set of operators rather than
all mutants produced by a particular operator. These figures are in the last
row of Table 4.

Table 4: Semantic Size of Mutation Operators

Semantic Mutation Operators Selected Traditional Mutation Operators

Operator KTC TTC SS SS* Operator KTC TTC SS SS*
AOR 21190 40755 0.5199 0.5199 OAAN 1009749 12422693 0.0813 0.2809
IMB 15641 79777 0.1961 0.1274 SBRC 19195 109835 0.1748 0.4122
LBC C 3131 86870 0.0360 0.2395 SCRB 1115 15689 0.0711 0.2529
LBC I 7241 80300 0.0902 0.3032 SSDL 7234602 55431596 0.1305 0.2889
LBM C 129 86870 0.0015 0.0033 SSWM 332771 508694 0.6542 0.6518
LBM I 2981 80300 0.0371 0.1399 STRI 1112628 7063097 0.1575 0.3151
MFC R 1337 64860 0.0206 0.0369 STRP 17272962 57116847 0.3024 0.5092
Total 51650 519732 0.0994 0.1957 Total 26983022 1.33E+08 0.2034 0.3873

KTC is the number of killed test cases; TTC is the total number of test cases run;
SS is the semantic size; SS* is the mean of the averages of the semantic size.

29



The hypothesis, that semantic mutants are harder to kill than syntactic
mutants, is partially supported by the semantic size data given in Table 4.
Consider the value of SS; a similar pattern is found with SS*. The aver-
age semantic size of mutants produced by semantic mutation operators was
0.0994 which is only a half of that found with traditional syntactic mutation
operators (0.2034). We can also see that LBM C and MFC R both had
very low average semantic sizes, 0.0206 and 0.0015 respectively, while the
smallest average semantic size in the traditional mutation operator set was
0.0711 (SCRB).

7.3. Comparing operators

For all 20 operators used in the experiments, a 20× 20 subsumes matrix
was produced to investigate the subsumes relations between any two of the
operators. Let us say that killable mutants are mutants that can be built and
can be distinguished from the original program by running the corresponding
universal test suite. For a killable mutant m, the killing test suite of m is
the subset of the universal test suite that contains the test cases that kill m.

For a set of operators, OP = {opi : i ∈ [1, l]}, the subsumes table is an
l× l matrix S. To fill the subsume matrix, we did the following for each pair
of operators (opi, opj), where i, j ∈ [1, p]:

• Generate a minimised selective test suite Ti for opi;

• Run the test cases from Ti on each killable mutant generated by opj;

• count the numbers of killed mutants and total killable mutants;

• calculate S[i][j] as the ratio of these two numbers.

Let us suppose that the set of killable mutants for operator opk is denoted
by Mk. In the first step Ti is generated by repeating the following until Mi

is empty: randomly pick one test case t that kills a mutant in Mi, add t to
Ti, and then remove from Mi all mutants killed by t. To calculate S[i][j],
let us suppose that a is the number of mutants of opj killed by Ti and b
is the total number of killable mutants of opj, then S[i][j] = a/b. After
the procedure, every item in S is filled. If S[i][j] = 1, then opi subsumes
opj: the test suite Ti produced to kill the mutants generated by opi also
kills the mutants produced by opj. According to [59, 60], S[i][j] close to 1
suggests that opi ProbSubsume opj. We note that this algorithm includes
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some randomisation and therefore we can obtain different values if we repeat
the process. Therefore, we ran this process 20 times and averaged the values.

For each pair of operators opi and opj we produced a cumulative value
for S[i][j], across all 8 programs, in the following way. For a program p we
produced a test suite T p

i that kills the mutants of p produced using opi as
before. Let us suppose that ap is the number of mutants of p produced using
opj that are killed by T p

i and bp is the total number of killable mutants of
opj. Again, these are averaged over 20 randomly chosen T p

i . Let a be the
sum of the ap over the eight programs and let b be the sum of the bp over the
eight programs. Then we let S[i][j] = a/b.

The results of the overall subsume matrix is given in Table 5. We note
that this is a 14× 14 matrix since five semantic mutation operators produce
no mutants and one semantic mutation operator generated only live mutants.
The last row of the table gives the average size of the selective test suites
for the corresponding operator. For example, the first cell in the last row is
4.9 which means that the average size of a selected test suite which kills all
AOR mutants is 4.9.

Regarding the relationships between operators, we first consider subsumes
relations between two semantic mutation operators. According to the over-
all subsume matrix given in Table 5, there is one such subsumes relation:
LBM I is subsumed by LBC I. This is reasonable since LBM I changes
the last else if statement to else and LBC I adds missing else statements;
if both operators modify the same if ... else if statement, a test case that
kills the mutant generated by LBC I will execute the statements changed by
LBM I. Apart from this, no other pairs of semantic mutation operators were
related under subsumes. This is ideal since the semantic mutation operators
are designed to simulate different possible faults in C programs.

In the set of traditional mutation operators, there were more examples
where the subsumes relation held. For example, two of the traditional mu-
tation operators were subsumed by STRP. In addition, if we assume that a
mutation score higher than 0.95 suggests that two operators have the Prob-
Subsume relation we find that STRP ProbSubsumes OOAN, STRI and
SSDL. However, the subsumes relations involving STRP is not very helpful
since STRP generates so many mutants and the size of the selected test suite
of STRP is the largest (1742). Naturally, there is a relationship between
test suite size and effectiveness [61] and this relationship may explain the
results observed.

When comparing the sets of semantic mutation operators and tradi-
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tional mutation operators, we find that six operators (AOR, IMB, LBC C,
LBC I, LBM C and MFC R) subsume or ProbSubsume operator SSWM.
This is understandable since the mutants generated by SSWM had a large
mean semantic size (0.6642) as shown in Table 4. Other than this, there were
no subsumes relations from semantic mutation operators to traditional mu-
tation operators. From traditional mutation operators to semantic mutation
operators, except LBC C and LBM C, the other five semantic operators
are ProbSubsumed by OAAN, STRP, STRI and SSDL. Again, this may
be because these four traditional operators generate so many mutants and
lead to large selected test suite (more than 480 test cases).

It is also interesting to investigate the overall subsumes relation between
the set of semantic mutation operators (OPS) and the set of traditional mu-
tation operators (OPT ). The algorithm is similar to calculating the subsumes
relation between two operators except that we look at all mutants produced
by one of these sets of operators, rather than all mutants produced by a sin-
gle operator. Again, we averaged scores over 20 runs of the algorithm. The
final average mutation score which represents the subsumes relation from
OPS to OPT is 0.5978 and the size of the selected test suite is 40. Using the
same approach to calculate whether OPT subsumes OPS, the final average
mutation score is 0.9585 and the size of the selected test suite is 3021.8.

It is clear that there was no subsumes relationships between the sets of
syntactic mutation operators and the semantic mutation operators. However,
syntactic mutation operators do ProbSubsume semantic mutation operators.
This may be because of the large number of mutants generated by traditional
mutation operators and the corresponding large test suites used. In addition,
a relatively large proportion of the mutants generated by semantic mutation
operators were live and these mutants were ignored when analysing subsume
relations.

8. Discussion

We manually analysed the 26 live semantic mutants shown in Table 2.
We found that except for the mutants generated by MFC E and MFC R
all other live mutants were equivalent. For example, we compare a piece of
code from the original space program with its mutant LBM C 1 in Figure 9.

The difference is that the last case statement in the original program
has been change to a default branch. According to a manual review of
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 ...

  switch (grid -> TYPE){

    case SQU_GRID :

      ...

      break;

    case REC_GRID :

      ...

      break;

    case HEX_GRID :

      ...

      break;

    case TRI_GRID :

      ...

      break;

  }

  ...

...

  switch (grid -> TYPE){

    case SQU_GRID :

      ...

      break;

    case REC_GRID :

      ...

      break;

    case HEX_GRID :

      ...

      break;

    default :

      ...

      break;

  }

  ...

Code 4 Mutant LBM_C_1

Figure 9: A piece of code from space and its mutant

the program, the whole program ensured that variable grid→TYPE can-
not be assigned to a value other than SQU GRID, REC GRID, HEX GRID
or TRI GRID, so the two pieces of code are equivalent. However, if we were
to only consider the scope of the function that contains the piece of code, we
find that the two functions are not equivalent. One of the integer parameters
of the function is directly assigned to grid→TYPE. It can be argued that this
could correspond to a fault in future if this piece of code is changed since
equivalence depends on the context in which the code lies.

All 11 live mutants generated by MFC E and MFC R for subject pro-
gram tot info are equivalent. However, it may be worth noting some inter-
esting observations. We found that manually generated test cases caused 3
mutants to generate different intermediate results from the original program,
but this difference cannot be revealed because the float numbers are trun-
cated in the output procedure. Another observation is that 3 other mutants
are killed by the universal test suite when using different optimisation op-
tions at compilation. For the 4 mutants generated by MFC R of subject
program space, we found that 3 of them are not equivalent since they can be
killed by manually generated test cases. This observation implies that the
universal test suite of space program contains potential limitations and the
MFC R operator cannot be subsumed by the other operators used in this
experiment.
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9. Threats to Validity

There are several threats to the validity of the experiments. Internal
threats relate to the possibility that other factors have influenced the results
and that any differences observed are a consequence of such factors. We
have tried to avoid this possibility by using the same programs and test
suites throughout the experiments.

Threats of construct validity refer to the potential for mistakes in the
measurement. We reduced the scope for such mistakes by building SMT-C
on top of widely used tools such as Eclipse and Check. We also tested SMT-
C and performed a few initial small experiments, that created and tested
mutants, and manually checked the results.

There are clear difficulties in generalising the results of the experiments
and these form threats to external validity. We have only used a few, rela-
tively small programs and these have all been taken from the same source.
We have tried to reduce this threat by using experimental subjects that have
been used in many previous experiments and are generally seen as valuable
subjects. However, it is clear that there is a need to extend the experiments
to additional programs and ideally programs from different sources.

10. Conclusions

This paper has introduced semantic mutation testing (SMT), which is a
fundamentally new type of mutation testing where we mutate the semantics
of the language used rather than the syntax of the description. The aim is
to represent potential misunderstandings of the semantics of a description
language. We have also described a range of scenarios in which semantic mu-
tation testing may have particular value and described a semantic mutation
testing tool that has been developed.

Traditional mutation testing mutates the syntax of a description N to
form some mutant N ′. The mutant is usually produced by the application of
a mutation operator. N ′ is killed by a test case if the test case distinguishes
between N and N ′. A test suite is sufficient if it kills every (non-equivalent)
mutant formed. The idea is that the mutants simulate possible mistakes and
thus that a test suite that kills the non-equivalent mutants will be good at
finding such mistakes. However, the behaviour associated with a description
is defined by a combination of the syntax N of the description and the seman-
tics L of the language in which it is described. Thus, traditional mutation
operators provide a mapping of the form (N,L)→ (N ′, L).
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In SMT the semantics of the description language L are mutated. Thus,
the application of a semantic mutation operator is of the form (N,L) →
(N,L′). Semantic mutation testing aims to simulate mistakes that are a
consequence of a misunderstanding of the semantics of the language used.

It is argued that SMT captures a different type of mistake to traditional
mutation testing. The error model of semantic mutation and a number of
scenarios, in which SMT is of particular value, have been outlined. In one
scenario, a company has migrated from one tool to another, and thus from
one semantics to another. Here errors might results from the use of aspects of
the previous semantics with the new tool. SMT could be used to investigate
such issues and so the process of migrating from one toolset to another could
be supported by a set of semantic mutation operators.

Examples in both a high-level specification language, statecharts, and
a low-level programming language, C, were given to show the capability of
SMT. Interestingly, in the statechart example, we found that some standard
state-based test criteria might fail to find the differences. By investigating
different ways of implementing undefined or unspecified elements of a lan-
guage (such as the comparison of floating-point numbers), SMT may be used
to explore the portability of code written in C. Semantic mutation operators
can also be designed to target misunderstandings caused by the use of the
same syntactic construct in the specification and code. Ideally, the seman-
tic mutation operators used depends upon the development process that has
been applied and the background of the developers, since these will influence
the likely mistakes.

One potential benefit of SMT is that for each mutation operator we obtain
one mutant since we are mutating the semantics of the description language,
not parts of the description. However, at times there may be value in mu-
tating the semantics of only parts of a description. For example, a piece of
software may have been developed by several people with only one of them
having a background that indicates that a particular semantic mutation op-
erator should be applied. One of the advantages of the proposed approach
to implementing semantic mutation operators, which is by simulating them
through making syntactic changes, is that it is relatively straightforward to
mutate the semantics of only some parts of a description.

We described a semantic mutation testing tool, SMT-C, for C code. This
uses TXL in order to implement the mutation operators and is designed to
ensure that it is relatively straightforward to implement addition operators.
Interestingly, it transpired that some of the operators were relatively difficult
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to implement since they required type information and as a result we devised
a type annotation module for TXL. We ran experiments to investigate the
nature of a set of semantic mutation operators and to compare these with
traditional mutation operators. We found that semantic mutation operators
produced far fewer mutants than the syntactic mutation operators; 68 in total
as opposed to 12598. This suggests that it may be easier to scale such an
approach to semantic mutation and it might be applied to larger programs.
In addition, the average semantic size of the semantic mutants was half that
of the syntactic mutants.

We compared seven semantic operators and seven syntactic operators us-
ing the subsumes relation. Within the set of semantic mutation operators we
found that one operator was subsumed by another. This suggests that our
attempt to produce operators that represent very different types of faults was
reasonably successful. We found many more instances of the subsumes rela-
tion within the set of syntactic mutation operators. However, we found that
test suites that kill all of the syntactic mutants also killed approximately 95%
of the semantic mutants. In contrast, test suites that kill all of the semantic
mutants killed approximately 59% of the syntactic mutants. However, this
may largely be due to the differences in size of these test suites: the reduced
test suites produced to kill the semantic mutants contained 40 test cases on
average while those produced to kill syntactic mutants contained 3021.8 test
cases on average. The fact that neither set subsumed the other suggests that
ideally both semantic and syntactic mutants should be used.

The experiments concentrated on the effectiveness of testing and not on
efficiency. However, most of the semantic mutation operators are no more
complex to apply than the traditional mutation operators and they are ap-
plied far fewer times. The exceptions are those operators that require us to
have information about the types of variables: for such operators the current
version of the SMT-C tool is less efficient and increases the number of nodes
in the parse tree. However, we expect to be able to make this much more ef-
ficient: currently it is not a significant issue in running the experiments since
the test execution time dominates the time taken to generate the semantic
mutants.

There are many avenues for future work. In particular, there is the need
to develop additional semantic mutation operators and perform more exper-
iments. It would be particularly interesting to investigate the effectiveness
of semantic mutation testing in situations where there is reason to believe
that particular semantic misunderstandings are likely, for example when de-
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velopers are migrating between languages or tools. The hope is that in such
situations semantic mutants will correspond exactly to likely faults and thus
that semantic mutation testing will help the tester to find such faults.
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