26,573 research outputs found

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified

    Inside all-optical networks

    Get PDF
    Imagine a world where lightning speed Internet is as common as telephones today. Imagine when light, the fastest moving thing in the universe, is the signal-carrying transport medium. Imagine when bandwidth no more remains a constraint for any application. Imagine when imagination is the only limit! This all can be made possible with only one technology and that is optical communication. Optical networks have thus far provided a realization to a greater extent to the unlimited bandwidth dreams of this era, but as the demands are increasing, the electro-optic conversions seem to become bottlenecks in blended optical networks. The only answer to this is a complete migration to `All-Optical Networks\u27 (AONs) which promise an end-to-end optical transmission. This thesis will investigate various aspects of all-optical networks and prove that AONs perform better than currently existing electro-optical networks. In today\u27s\u27 electro-optical networks, routing and switching is performed in electronic domain. Performance analysis of electro-optical and all-optical networks would include node utilization, link utilization and percentage of traffic routed. It will be shown through Opnet Transport Planner simulations that AONs work better under various traffic conditions. The coming decade will see a great boom in demands on telecommunications networks. The development in bandwidth-hungry applications like real-time video transmission, telemedicine, distance learning and video on demand require both an unlimited amount of bandwidth and dependable QoS. It is well understood that electrically switched networks and copper cables will not be able to meet the future network demands effectively. The world has already agreed to move towards optical communication techniques through the introduction of fiber in access parts of the networks replacing copper. Now the race is to bring optics in higher layers of OSI reference model. Optical communication is on the horizon, and new discoveries are still underway to add to the value of available bandwidth through this technology. My research thesis will primarily focus on the design, architecture and network properties of AONs and challenges being faced by AONs in commercial deployment. Optical components required in AONs will be explored. A comparison between AONs and electro-optical networks will also be shown through optical transport planner simulations

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft
    • 

    corecore