3,913 research outputs found

    Wireless Cellular Networks

    No full text
    When aiming for achieving high spectral efficiency in wireless cellular networks, cochannel interference (CCI) becomes the dominant performancelimiting factor. This article provides a survey of CCI mitigation techniques, where both active and passive approaches are discussed in the context of both open- and closed-loop designs.More explicitly, we considered both the family of flexible frequency-reuse (FFR)-aided and dynamic channel allocation (DCA)-aided interference avoidance techniques as well as smart antenna-aided interference mitigation techniques, which may be classified as active approach

    Online Recursive Detection and Adaptive Fuzzy Mitigation of Cyber-Physical Attacks Targeting Topology of IMG: An LFC Case Study

    Get PDF
    Due to the low inertia of inverter-based islanded microgrids (IMGs), these systems require a delicate and accurate load frequency control (LFC) scheme. The deployment of such a control scheme, which preserves the balance between the load and generation, needs a cyber layer on top of the physical system that makes IMGs an appealing target for a variety of cyber-physical attacks (CPAs). Among these CPAs, there is a family of malicious CPAs whose aim is to compromise the LFC scheme by changing the topology of IMG and its parameters. On this basis, an online system identification method is developed to estimate the parameters of IMG using the recursive least square forgetting factor (RLS-FF) approach. Then, based on the estimated parameters, an anomaly-based intrusion detection system (IDS) is developed to identify CPAs and distinguish them from the uncertainties in the normal operation of IMG. Following anomaly detection, a mitigation scheme is proposed to regulate the IMG’s frequency using an adaptive interval type-2 fuzzy logic controller (IT2FLC). The proposed IT2FLC uses different types of distributed energy resources (DERs)—i.e., tidal power plants and solar panels which are, respectively, equipped with inertia emulation and droop-based controllers—to improve the frequency excursion resulting from CPAs. The simulation results verify the performance of the developed detection and mitigation schemes, particularly when the RLS-FF parameters, i.e., forgetting factor, covariance matrix, and reset parameter, are obtained through the grey wolf optimization (GWO) algorithm. Furthermore, the designed mitigation scheme is corroborated by comparing its performance with several well-known attack-resilient control frameworks in LFC studies, e.g., linear quadratic regulator (LQR) and H∞, using real-time simulations.©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Battery Energy Storage System converter control: Virtual Generator application for fault conditions.

    Get PDF
    The growing need of integrate renewable energies, such as wind and solar has been driven by the necessity of reducing air pollutant, reducing greenhouse gases emissions, improv- ing public health and having energy supply diversication. This need of sustainability cannot exclude the necessity to guarantee reliability and stability of the electrical power system, and more specically Microgrid systems, both in normal operating scenarios and during unexpected events such as unintentional islanding or fault events. For this rea- son renewable generation as to be support by intelligent system such as Battery Energy Storage Systems in order to have an energy reserve able to follow the oscillations of the renewable energies and to guarantee a stable control of voltage and frequency. These energy sources are typically connected via power electronics in order to have rapid re- sponse and degree of freedom to implement several control techniques. But the increase in the interfacing of energy sources with inverters has contributed to the reduction of system inertia and this aspect has to be investigated. This thesis proposes a new control algorithm for Battery Energy Storage System able to provide inertial contribution in order to mimic the behaviour of a synchronous generator and then a new approach to adapt this algorithm to fault condition which can cause severe instability of the Micro- grid. After a rst introduction chapter, Chapter 2 presents the new Virtual Synchronous Gen- erator control algorithm and some simulations carried out with the dedicated simulation software DIgSILENT PowerFactory\uae show the correct dynamic behaviour in normal operating scenarios. Then Chapter 3 deals with the modication of the proposed control scheme in order to properly manage symmetrical faults in islanded and grid connected conguration with a particular focus on the resynchronisation problem. Chapter 4 pro- poses a complete set of simulations in order to show the excellent results obtained in this research eld. Overall conclusions and nal remarks are reported in Chapter 5. This Ph.D. thesis is an outcome of a scientic research that I have conduct during the three years long Ph.D. program, in collaboration with and founded by Hitachi Power Grids

    Design and Implementation of a True Decentralized Autonomous Control Architecture for Microgrids

    Get PDF
    Microgrids can serve as an integral part of the future power distribution systems. Most microgrids are currently managed by centralized controllers. There are two major concerns associated with the centralized controllers. One is that the single controller can become performance and reliability bottleneck for the entire system and its failure can bring the entire system down. The second concern is the communication delays that can degrade the system performance. As a solution, a true decentralized control architecture for microgrids is developed and presented. Distributing the control functions to local agents decreases the possibility of network congestion, and leads to the mitigation of long distance transmission of critical commands. Decentralization will also enhance the reliability of the system since the single point of failure is eliminated. In the proposed architecture, primary and secondary microgrid controls layers are combined into one physical layer. Tertiary control is performed by the controller located at the grid point of connection. Each decentralized controller is responsible of multicasting its status and local measurements, creating a general awareness of the microgrid status among all decentralized controllers. The proof-of concept implementation provides a practical evidence of the successful mitigation of the drawback of control command transmission over the network. A Failure Management Unit comprises failure detection mechanisms and a recovery algorithm is proposed and applied to a microgrid case study. Coordination between controllers during the recovery period requires low-bandwidth communications, which has no significant overhead on the communication infrastructure. The proof-of-concept of the true decentralization of microgrid control architecture is implemented using Hardware-in-the-Loop platform. The test results show a robust detection and recovery outcome during a system failure. System test results show the robustness of the proposed architecture for microgrid energy management and control scenarios

    Development of a converter for grid-tied and isolated operation of an interior permanent magnet synchronous generator, coupled to a twin-shaft gas turbine

    Get PDF
    South Africa’s overreliance on coal fired power generation has led to the government’s commitment to diversifying the country’s energy mix. Gas turbine generators are poised to play a larger role in South Africa’s energy mix, due to the country’s abundance in natural gas reserves. Therefore, there is a need to developed gas turbine emulation systems to investigate how this transition is to be implemented and to discover new efficient ways to generate power through gas turbines. This thesis presents the development of a twin-shaft gas turbine emulator. A DC-machine that accepts both torque and speed references is used to emulate the behaviour of the gas turbine according to a modified Rowen gas turbine model. The emulator is coupled to a 1.5kW interior permanent magnet synchronous generator (IPM). The power density of a DC-machine is significantly lower than that of a gas turbine of the same rating. Thus, the DC-machine is rated at double the rating of the IPM to overcome the high inertia it has when compared to a gas turbine of the same rating. This means that the DC-machine can produce large toques to successfully emulated the dynamic behaviour of the gas turbine. A maximum error 2.5% in the emulation of the gas turbine’s speed is reported. A two-level active converter is used to compare control strategies for an IPM. Ninety-degree torque angle (NTA) control, maximum torque per ampere (MTPA) control and unity power factor (UPF) control are compared for performance. The UPF and MTPA control result in the lowest and second lowest DC-link utilisation respectively when compared to NTA control. This is due to a negative d-axis current component as opposed to a zero d-axis current component in the case of NTA control. It is also concluded that to achieve a high power factor and torque development, a negative d-axis current component is required. UPF and MTPA control perform well in both categories, with UPF control and MTPA control resulting in the highest power factor and developed torque respectively. A fourth control strategy that maximises the efficiency of the IPM is developed experimentally. The maximum efficiency (ME) control strategy minimises mechanical, core, windage and conduction losses. It also results in near unity power factor and near maximum developed torque. A nonconventional control structure that involves control of the DC-link from the generatorside converter is presented. This frees the outer-loop control of load-side converter to regulate voltage across the load when the system is supplying power to an isolated load. This control structure also allows the grid-side converter to employ reactive power compensation, without having to regulate the DC-link voltage at the same time. In doing so, large grid currents are avoided. A recursive least squares (RLS) algorithm is used to separate negative and positive sequence current components during grid voltage unbalance. A method to minimise the presence of negative sequence components in the load current is presented and implemented successfully in an experiment

    Development of a converter for grid-tied and isolated operation of an interior permanent magnet synchronous generator, coupled to a twin-shaft gas turbine

    Get PDF
    South Africa’s overreliance on coal fired power generation has led to the government’s commitment to diversifying the country’s energy mix. Gas turbine generators are poised to play a larger role in South Africa’s energy mix, due to the country’s abundance in natural gas reserves. Therefore, there is a need to developed gas turbine emulation systems to investigate how this transition is to be implemented and to discover new efficient ways to generate power through gas turbines. This thesis presents the development of a twin-shaft gas turbine emulator. A DC-machine that accepts both torque and speed references is used to emulate the behaviour of the gas turbine according to a modified Rowen gas turbine model. The emulator is coupled to a 1.5kW interior permanent magnet synchronous generator (IPM). The power density of a DC-machine is significantly lower than that of a gas turbine of the same rating. Thus, the DC-machine is rated at double the rating of the IPM to overcome the high inertia it has when compared to a gas turbine of the same rating. This means that the DC-machine can produce large toques to successfully emulated the dynamic behaviour of the gas turbine. A maximum error 2.5% in the emulation of the gas turbine’s speed is reported. A two-level active converter is used to compare control strategies for an IPM. Ninety-degree torque angle (NTA) control, maximum torque per ampere (MTPA) control and unity power factor (UPF) control are compared for performance. The UPF and MTPA control result in the lowest and second lowest DC-link utilisation respectively when compared to NTA control. This is due to a negative d-axis current component as opposed to a zero d-axis current component in the case of NTA control. It is also concluded that to achieve a high power factor and torque development, a negative d-axis current component is required. UPF and MTPA control perform well in both categories, with UPF control and MTPA control resulting in the highest power factor and developed torque respectively. A fourth control strategy that maximises the efficiency of the IPM is developed experimentally. The maximum efficiency (ME) control strategy minimises mechanical, core, windage and conduction losses. It also results in near unity power factor and near maximum developed torque. A nonconventional control structure that involves control of the DC-link from the generatorside converter is presented. This frees the outer-loop control of load-side converter to regulate voltage across the load when the system is supplying power to an isolated load. This control structure also allows the grid-side converter to employ reactive power compensation, without having to regulate the DC-link voltage at the same time. In doing so, large grid currents are avoided. A recursive least squares (RLS) algorithm is used to separate negative and positive sequence current components during grid voltage unbalance. A method to minimise the presence of negative sequence components in the load current is presented and implemented successfully in an experiment

    Dynamic security assessment processing system

    Get PDF
    The architecture of dynamic security assessment processing system (DSAPS) is proposed to address online dynamic security assessment (DSA) with focus of the dissertation on low-probability, high-consequence events. DSAPS upgrades current online DSA functions and adds new functions to fit into the modern power grid. Trajectory sensitivity analysis is introduced and its applications in power system are reviewed. An index is presented to assess transient voltage dips quantitatively using trajectory sensitivities. Then the framework of anticipatory computing system (ACS) for cascading defense is presented as an important function of DSAPS. ACS addresses various security problems and the uncertainties in cascading outages. Corrective control design is automated to mitigate the system stress in cascading progressions. The corrective controls introduced in the dissertation include corrective security constrained optimal power flow, a two-stage load control for severe under-frequency conditions, and transient stability constrained optimal power flow for cascading outages. With state-of-the-art computing facilities to perform high-speed extended-term time-domain simulation and optimization for large-scale systems, DSAPS/ACS efficiently addresses online DSA for low-probability, high-consequence events, which are not addressed by today\u27s industrial practice. Human interference is reduced in the computationally burdensome analysis
    • …
    corecore