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Acronyms

The list of abbreviations is hereafter reported.

AC Alternate Current

AGC Automatic Generation Control

ASSOSM Adaptive Suboptimal Second Order Sliding Mode

DC Direct Current

DGu Distributed Generation unit

D-SSOSM Distributed Suboptimal Second Order Sliding Mode

ET Event-Triggered

GCOM Grid-Connected Operation Mode

HOSM Higher Order Sliding Mode

HVDC High Voltage Direct Current

IGBTs Insulated Gate Bipolar Transistors

IOM Islanded Operation Mode

LFC Load Frequency Control

MIMO Multi-Input Multi-Output

MPC Model Predictive Control

NCSs Networked Control Systems

OLFC Optimal Load Frequency Control

PCC Point Common Coupling

PI Proportional-Integral

PLL Phase Locked Loop

PWM Pulse Width Modulation

QSL Quasi Stationary Line

xi



RES Renewable Energy Sources

RMS Root Mean Square

RSE Ricerca sul Sistema Energetico

SISO Single-Input Single-Output

SM Sliding Mode

SMC Sliding Mode Control

SOSM Second Order Sliding Mode

SSOSM Suboptimal Second Order Sliding Mode

VSC Variable Structure Control

Vsc Voltage source converter

3SM Third Order Sliding Mode



Notation

The symbols are chosen according to the following conventions. Scalar values or signals are
denoted by italics letters such as x. Generally, vectors are indicated by boldface lower-case
letters such as x, and matrices by boldface upper-case letters such as A. Accordingly, the
elements x1, . . . , xn of a vector x or a11, a12, . . . , anm (or equivalently A11, A12, . . . , Anm)
of a matrix A ∈ Rn×m are represented by italics letters. Some signals (e.g. direct current
signals and powers) are denoted by upper-case letters such as V = [V1, . . . , Vn]T and
P = [P1, . . . , Pn]T , while diagonal matrices are indicated as R = diag(r1, . . . , rn). The
r-th time derivative of a signals x(t), with r > 2, is denoted by x(r)(t). Sets are symbolized
by calligraphic letters such as W, while Wsup := supw∈W{‖w‖}. Given the set W, ∂W
will denote the boundary ofW. The inequality A � 0 states that the matrix A is positive
definite. For any symmetric matrix A, λmax(A) and λmin(A) denote the largest and the
smallest eigenvalue of matrix A, respectively. Given x ∈ Rn, y ∈ Rn, let x · y denote
the vector dot product, let x × y denote the cross product, while let x ◦ y ∈ Rn, with
(x◦y)i = xi yi, i = 1, . . . , n, denote the Hadamard product (also known as Schur product).
The symbol 1n ∈ Rn denotes the vector consisting of all ones, while In ∈ Rn×n indicates
the identity matrix. Finally, ‖·‖ is used to denote the Euclidean norm, ‖·‖∞ to denote the
infinity norm, and |·| to denote the absolute value.

xiii





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Part I VARIABLE STRUCTURE AND SLIDING MODE CONTROL

2 Sliding Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Sliding Motion and Sliding Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Design of a Sliding Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Preliminaries on Sliding Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 The Class of Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 The Control Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 The Sliding Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Existence Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.5 Reachability Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.6 Solutions to Variable Structure Systems . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.7 Computation of the Equivalent Control . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.8 Order Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Sliding Mode Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Lyapunov Function Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Finite Time Reachability Condition Method . . . . . . . . . . . . . . . . . . . . 26

2.4 Linearization of Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Approximability Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Advances in Higher Order Sliding Mode Control . . . . . . . . . . . . . . . . . . . . 33
3.1 Higher Order Sliding Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Preliminaries on Higher Order Sliding Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Design of a Higher Order Sliding Mode Control . . . . . . . . . . . . . . . . . 34
3.2.2 Levant’s Differentiator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xv



3.3 Suboptimal Second Order Sliding Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Adaptive Suboptimal Second Order Sliding Mode . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 The Proposed Control Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.2 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.3 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Higher Order Sliding Modes with Optimal Reaching . . . . . . . . . . . . . . . . . . . 47
3.6 Second Order Sliding Mode Control with Quantized Uncertainty . . . . . . . . 48

3.6.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6.2 The Proposed Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.4 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Practical Sliding Modes in Networked Control Systems . . . . . . . . . . . . . . 59
4.1 Preliminaries on Event-Triggered Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Event-Triggered Sliding Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 The Proposed Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.4 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Event-Triggered Second Order Sliding Mode Control . . . . . . . . . . . . . . . . . . . 70
4.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.2 The Proposed Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.4 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Part II APPLICATION TO POWER SYSTEMS

5 Passivity Based Design of Sliding Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.1 Preliminaries on Passivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Preliminaries on Power Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 Control Areas with Second Order Turbine-Governor Dynamics . . . . . . . . . . 92
5.4 Incremental passivity of the power network . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5 Frequency Regulation and Economic Dispatch . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6 Distributed Sliding Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6.1 Suboptimal Second Order Sliding Mode Controller . . . . . . . . . . . . . . . 100
5.7 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.8 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.9 Third Order Sliding Mode Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.9.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.9.2 Observer for Frequency Deviation Estimation . . . . . . . . . . . . . . . . . . . 111
5.9.3 Observer for Governor Output Variation Estimation . . . . . . . . . . . . . 113
5.9.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



6 Energy Function Based Design of Sliding Modes . . . . . . . . . . . . . . . . . . . . . 117
6.1 Preliminaries on Automatic Generation Control . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 Control Areas with Second Order Turbine-Governor Dynamics . . . . . . . . . . 118
6.3 Frequency Regulation and Power Flows Scheduling . . . . . . . . . . . . . . . . . . . . 119
6.4 Decentralized Sliding Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4.1 Suboptimal Second Order Sliding Mode Controller . . . . . . . . . . . . . . . 120
6.5 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5.1 A distributed tuning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7 Sliding Mode Observers for Power Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.1.1 Steam Turbines and Governor Dynamics . . . . . . . . . . . . . . . . . . . . . . . 132
7.1.2 Hydraulic Turbine and Governor Dynamics . . . . . . . . . . . . . . . . . . . . . 133
7.1.3 Generator Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2 Suboptimal Sliding Mode Observer for Generator . . . . . . . . . . . . . . . . . . . . . . 137
7.3 Sliding Mode Observer for Steam Turbine and Governor . . . . . . . . . . . . . . . . 139
7.4 Sliding Mode Observer for Hydraulic Turbine and Governor . . . . . . . . . . . . . 143
7.5 Scalability and Resilience of Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Part III APPLICATION TO MICROGRIDS

8 AC Microgrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.1 Preliminaries on AC Microgrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.1.1 Grid Connected Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.1.2 Islanded Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.2 AC Microgrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.3 Decentralized Sliding Mode Voltage Control . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.3.1 Suboptimal Second Order Sliding Mode (SSOSM) Control
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.3.2 An Alternative Solution: Third Order Sliding Mode . . . . . . . . . . . . . . 160
8.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9 Buck-Based DC Microgrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.1 Preliminaries on Buck-Based DC Microgrids . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.2 Buck-Based DC Microgrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.3 Current Sharing and Voltage Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.3.1 Steady state voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.4 Distributed Sliding Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.5 Sliding mode controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9.5.1 Second order SM control: variable switching frequency . . . . . . . . . . . 176
9.5.2 Third Order SM control: duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177



9.6 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.6.1 Equivalent reduced order system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.6.2 Exponential convergence and objectives attainment . . . . . . . . . . . . . . 181

9.7 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.7.1 Scenario 1: proportional current sharing . . . . . . . . . . . . . . . . . . . . . . . . 186
9.7.2 Scenario 2: opening of a distribution line . . . . . . . . . . . . . . . . . . . . . . . 187
9.7.3 Scenario 3: plug-out and plug-in of a DGu . . . . . . . . . . . . . . . . . . . . . . 189
9.7.4 Scenario 4: failing of a communication link . . . . . . . . . . . . . . . . . . . . . 189

9.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

10 Boost-Based DC Microgrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
10.1 Preliminaries on Boost-Based DC Microgrids . . . . . . . . . . . . . . . . . . . . . . . . . . 193
10.2 Boost-Based DC Microgrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
10.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
10.4 Decentralized Sliding Mode Voltage Control . . . . . . . . . . . . . . . . . . . . . . . . . . 197

10.4.1 Suboptimal Second Order Sliding Mode Controller . . . . . . . . . . . . . . . 198
10.5 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
10.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
10.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

11 Conclusions and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
11.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
11.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213



1

Introduction

Nowadays, due to economical, technological and environmental reasons, the most relevant
challenge in power grids deals with the transition of the traditional power generation and
transmission systems towards the large scale introduction of smaller distributed gen-
eration units [GBZ+10]. The massive penetration of the distributed generation avoids
indeed the remanufacturing of the traditional electrical systems and reduces the net-
work losses, by generating energy close to the end-users [PDH+05]. Moreover, due to the
ever-increasing energy demand and the public concern about global warming and climate
change, much effort has been focused on the diffusion of environmentally friendly renew-
able energy sources, posing significant challenges to the planning and operation of the
existing power networks [PKK11]. Traditionally, electricity is mostly produced in large
power plants, transported over long distances via high voltage transmission networks and
then distributed to end-users through medium and low voltage distribution networks. The
latter have been conceived as networks with only unidirectional power flows to satisfy the
end-user electrical demand, by controlling the supply. However, due to the increased share
of volatile and unpredictable sources, like wind and solar energy, the uncertainty of the
generation side needs to be managed as well. For this reason, the physical nature of the
grid poses unique and difficult challenges. It is indeed well known that when several dis-
tributed generation units are interconnected to each other, issues such as voltage and
frequency deviations arise together with protections problems [WW08]. In this context,
in order to integrate different types of renewable energy sources and, in addition, electrify
remote areas, the so-called microgrids have been proposed as a new concept of electric
power networks [LSH10, Las02]. However, regulating the frequency to its nominal value
even in traditional power systems is still challenging because current implementations are
not adequate to deal with an increasing share of renewable energy sources [ADGS16].
Furthermore, the collective behaviour of the network implies coordination among the
individual agents. This requires the development of novel decentralized and distributed
control schemes that exploit the widely distributed sensors and actuators. To ensure
high reliability of the electrical system even in presence of model uncertainties, nonlin-
earity, unpredictable demand dynamics and unbalanced loads, it becomes necessary to
adopt advanced robust control techniques [ABK+93]. This work particulary contributes
to the establishment of system theoretical properties of the physical power network (both
microgrids and traditional power plants). This enables the design of decentralized and
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distributed controllers that improve the stability of the network, while increasing the
economic efficiency of its operation.

1.1 Challenges

In this thesis, the following challenges are addressed:

• the design of robust control strategies of sliding mode type for nonlinear uncertain
systems characterized by unknown uncertainty bounds or quantized uncertainty, while
guaranteeing chattering alleviation;
• the design of event-triggered sliding mode control strategies for networked control

systems capable of preventing the possible congestion of the network, taking into
account delayed transmissions and guaranteeing the avoidance of the notorious Zeno
behaviour;
• the design of robust sliding modes for the load frequency control in traditional power

systems aimed at minimizing the generation costs or scheduling the power flows, while
dealing with the increasing diffusion of renewable energy sources;
• the design of robust sliding mode control strategies for islanded AC and DC microgrids

including buck and boost power converters, in order to encourage the diffusion of
renewable energy sources.

1.2 Contributions

In this thesis we present methods and results that lead to the following main contributions.

Contribution 1.1 (Adaptive Suboptimal Second Order Sliding Mode Control). The pro-
posed algorithm allows to relax the common assumption on the knowledge of the bounds
of the uncertainty. Four adaptive strategies are designed and analysed. In the first two
strategies, the control amplitude is continuously adjusted, so as to arrive at dominating
the effect of the uncertainty on the controlled system. When a suitable control amplitude
is attained, the origin of the state space of the auxiliary system becomes attractive. In
the other two strategies, a suitable blend between two components, one mainly working
during the reaching phase, the other being the predominant one in a vicinity of the sliding
manifold, is generated, so as to reduce the control amplitude in steady state.

Contribution 1.2 (Second Order Sliding Mode Control with Quantized Uncertainty).
The proposed algorithm extends the result published in the literature for second order
systems with optimal reaching. The novelty of the proposed approach is the design of a
nonsmooth switching line, based on the quantization of the uncertainties affecting the sys-
tem. The quantized uncertainty levels allow one to define nested box sets in the auxiliary
state space and select suitable control amplitudes for each set, in order to guarantee the
convergence of the system state to the sliding manifold in a finite time. The proposed al-
gorithm is theoretically analyzed, proving the existence of an upperbound of the reaching
time to the origin.
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Contribution 1.3 (Practical Sliding Modes in Networked Control Systems). The pro-
posed approaches are based on novel sliding mode control strategies of event-triggered
type for a class of nonlinear uncertain systems. By virtue of its event-triggered nature, the
proposed control strategies are appropriate for networked control systems (feedback sys-
tems including communication networks). The objective of the proposed control schemes
is indeed to reduce the number of data transmissions over the communication network, in
order to avoid problems typically due to the network congestion such as jitter and packet
loss. In particular, an event-triggered sliding mode and an event-triggered second order
sliding mode control schemes are designed for a class of nonlinear uncertain networked
control systems, guaranteeing satisfactory performance of the controlled system even in
presence of delayed transmissions, and avoiding the notorious Zeno behaviour.

Contribution 1.4 (Sliding Mode Control for Power Systems). We study a nonlinear
power network partitioned into control areas, where each area is modelled by an equivalent
generator including voltage and second order turbine-governor dynamics. The proposal is
a passivity based design of distributed sliding modes for optimal load frequency control
in power networks, where besides frequency regulation also minimization of generation
costs is robustly achieved (economic dispatch). We propose also an energy function based
design of decentralized sliding modes for automatic generation control, where frequency
regulation is achieved, and power flows are controlled towards their desired values. A
significant contribution is given by the design of a novel sliding mode observer-based
scheme to estimate and reconstruct the unmeasured state in power networks including
hydroelectric and thermal power plants.

Contribution 1.5 (Sliding Mode Control for Microgrids). We study the model of both
AC and DC microgrids partitioned into distributed generation units and local loads.
In particular we propose robust decentralized control strategies of sliding mode type to
regulate the voltage of each node of an AC microgrid. A novel robust distributed control
algorithm for the voltage regulation in buck-based DC microgrids is proposed, exploiting
a communication network to achieve current sharing using a consensus-like algorithm.
Finally, a robust decentralized control scheme for voltage regulation in boost-based DC
microgrids is proposed and satisfactorily validated through experimental tests on a real
DC microgrid test facility.

1.3 Outline of the Thesis

This thesis consists of three main parts. Part I, focuses on the design of new sliding mode
control strategies for a class of nonlinear uncertain systems characterized by unknown
uncertainty bounds, quantized uncertainty and the presence of a communication network
in the control loop, respectively. Part II and Part III rely on the design of robust sliding
mode control schemes for traditional power systems and emerging microgrids, respectively.
This thesis is the collection of several research works. The chapters are based on lecture
notes, journal or conference articles, which are either published or currently under review.
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Part I

Chapter 2

This chapter is based on the lecture notes prepared by Antonella Ferrara for the Ph.D.
School on Sliding Mode Control held at the Politecnico di Milano in January 2014. Michele
Cucuzzella attended that school as a master student. Moreover, some paragraphs of this
chapter are part of the book Optimization Based Advanced Sliding Mode Control, authored
by Antonella Ferrara, Gian Paolo Incremona and Michele Cucuzzella, that will appear in
2018. In this chapter the basic concepts of Sliding Mode Control are outlined.

Chapter 3

This chapter addresses Contributions 1.1 and 1.2. It is mainly based on the following
publications:

[ICF16] G. P. Incremona, M. Cucuzzella, and A. Ferrara. Adaptive suboptimal
second order sliding mode control for microgrids. International Journal of
Control, 89(9):1849–1867, Jan. 2016.

[ICF17] G. P. Incremona, M. Cucuzzella, and A. Ferrara. Second order sliding mode
control for nonlinear affine systems with quantized uncertainty. Automat-
ica, 86:46–52, Dec. 2017.

In this chapter the basic concepts of higher order sliding mode control are recalled, and
new control algorithms of adaptive and switched nature are presented and theoretically
analyzed, respectively.

Chapter 4

This chapter addresses Contribution 1.3. It is mainly based on the following publications:

[CF18] M. Cucuzzella, and A. Ferrara. Practical second order sliding modes in
single-loop networked control of nonlinear systems”, Automatica, 89:235–
240, Mar. 2018.

[FC18] A. Ferrara and M. Cucuzzella. Event-triggered sliding mode control strate-
gies for a class of nonlinear uncertain systems. New perspectives and ap-
plications of modern control theory, eds: J. B. Clempner, W. Yu, Springer
International Publishing, Chapter 16:397–425, 2018.

[CF16] M. Cucuzzella, and A. Ferrara. Event-triggered second order sliding mode
control of nonlinear uncertain systems. Proc. European Control Confer-
ence, pages 295–300, Aalborg, Denmark, June 2016.

[CIF16] M. Cucuzzella, G. P. Incremona, A. Ferrara. Event-triggered sliding mode
control algorithms for uncertain systems: experimental assessment. Proc.
American Control Conference, 6549–6554, Boston, MA, USA, July 2016.

In this chapter, the concept of event-triggered control is recalled and combined with
sliding mode controllers, taking into account delayed transmissions and guaranteeing the
avoidance of the notorious Zeno behaviour.
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Part II

Chapter 5

This chapter addresses Contribution 1.4. It is mainly based on the following publications:

[TCDPvdSF] S. Trip, M. Cucuzzella, C. De Persis, A. van der Schaft, and A. Ferrara.
Passivity based design of sliding modes for optimal load frequency control.
Transactions on Control Systems Technology. SECOND REVIEW RUN.

[RCF17] G. Rinaldi, M. Cucuzzella, and A. Ferrara. Third order sliding mode
observer-based approach for distributed optimal load frequency control.
IEEE Control Systems Letters , 1(2):215–220, June 2017.

[CTDPF17] M. Cucuzzella, S. Trip, C. De Persis and A. Ferrara. Distributed second
order sliding modes for optimal load frequency control. Proc. American
Control Conference, pages 3451–3456, Seattle, WA, USA, May 2017.

In this chapter a passivity based design of distributed sliding modes is proposed for
optimal load frequency control in power networks, where besides frequency regulation
also minimization of generation costs is achieved (economic dispatch). The stability of
the power network is theoretically analyzed.

Chapter 6

This chapter addresses Contribution 1.4. It is mainly based on the paper:

[TCFDP17] S. Trip, M. Cucuzzella, A. Ferrara and C. De Persis. An energy func-
tion based design of second order sliding modes for automatic generation
control. Proc. 20th IFAC World Congress, pages 12118–12123, Toulouse,
France, July 2017

In this chapter an energy function based design of decentralized sliding modes is pro-
posed for automatic generation control in power networks, where frequency regulation is
achieved, and power flows are controlled towards their desired values. The stability of the
power network is theoretically analyzed.

Chapter 7

This chapter addresses Contribution 1.4. It is mainly based on the paper:

[RCF] G. Rinaldi, M. Cucuzzella, and A. Ferrara. Sliding mode observers for a
network of thermal and hydroelectric power plants. Automatica. SECOND
REVIEW RUN.

In this chapter the design of a novel sliding mode observer-based scheme to estimate and
reconstruct the unmeasured state variables in power networks including hydroelectric and
thermal power plants is presented and theoretically analyzed.
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Part III

Chapter 8

This chapter addresses Contribution 1.5. It is mainly based on the following publications:

[CIF15a] M. Cucuzzella, G. P. Incremona, and A. Ferrara. Design of robust higher
order sliding mode control for microgrids. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 5(3):393–401, Sept. 2015.

[CIF17a] M. Cucuzzella, G. P. Incremona, and A. Ferrara. Decentralized sliding
mode control of islanded ac microgrids with arbitrary topology. IEEE
Transactions on Industrial Electronics, 64(8):6706–6713, Apr. 2017.

[CIF15b] M. Cucuzzella, G. P. Incremona, and A. Ferrara. Master-slave second order
sliding mode control for microgrids. Proc. American Control Conference,
pages 5188–5193, Chicago, IL, USA, July 2015.

[CIF15c] M. Cucuzzella, G. P. Incremona, and A. Ferrara. Third order sliding mode
voltage control in microgrid. Proc. European Control Conference, pages
2384–2389, Linz, Austria, July 2015.

In this chapter, a robust decentralized sliding mode control scheme for voltage regulation
in islanded AC microgrids is proposed and theoretically analyzed, proving the finite time
convergence to the desired voltages, and the asymptotic stability of the whole microgrid
system.

Chapter 9

This chapter addresses Contribution 1.5. It is mainly based on the following publications:

[CTDPFvdS] M. Cucuzzella, S. Trip, C. De Persis, X. Cheng, A. Ferrara, and A. van
der Schaft. A robust consensus algorithm for current sharing and voltage
regulation in dc microgrids. Transactions on Control Systems Technology.
SECOND REVIEW RUN.

[CRCF17] M. Cucuzzella, S. Rosti, A. Cavallo and A. Ferrara. Decentralized sliding
mode voltage control in dc microgrids. Proc. American Control Conference,
pages 3445–3450, Seattle, WA, USA, May 2017.

[TCDPCF] S. Trip, M. Cucuzzella, C. De Persis, X. Cheng and A. Ferrara. Sliding
modes for voltage regulation and current sharing in dc microgrids. Proc.
American Control Conference, Milwaukee, WI, USA, June 2018. SUBMIT-
TED.

In this chapter, a novel distributed control algorithm is proposed for current sharing and
voltage regulation in buck-based DC microgrids. The proposed control scheme is formally
analyzed, proving the achievement of proportional current sharing, while guaranteeing
that the weighted average voltage of the microgrid is identical to the weighted average of
the voltage references.

Chapter 10

This chapter addresses Contribution 1.5. It is mainly based on the following publications:
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[CLTRSF] M. Cucuzzella, R. Lazzari, S. Trip, S. Rosti, C. Sandroni, and A. Fer-
rara. Sliding mode voltage control of boost-based DC microgrids. Control
Engineering Practice. PROVISIONALLY ACCEPTED.

[CLTSF] M. Cucuzzella, R. Lazzari, S. Trip, C. Sandroni, and A. Ferrara. A de-
centralized second order sliding mode voltage control for DC microgrids
application: experimental assessment. Proc. European Control Conference,
Limassol, Cyprus, June 2018. SUBMITTED.

In this chapter, a robust decentralized control scheme for voltage regulation in boost-
based DC microgrids is proposed and theoretically analyzed, proving the local asymptotic
stability of the whole microgrid system. Satisfactory experimental tests on a real DC
microgrid test facility validate the theoretical results.

Chapter 11

In this chapter, some conclusions and directions for future research are given.
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1.4 List of Publications

The publications list of Michele Cucuzzella is hereafter reported.

Journal Papers

[CIF15a] M. Cucuzzella, G. P. Incremona, and A. Ferrara. Design of robust higher
order sliding mode control for microgrids. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 5(3):393–401, Sept. 2015.

[ICF16] G. P. Incremona, M. Cucuzzella, and A. Ferrara. Adaptive suboptimal
second order sliding mode control for microgrids. International Journal of
Control, 89(9):1849–1867, Jan. 2016.

[CIF17a] M. Cucuzzella, G. P. Incremona, and A. Ferrara. Decentralized sliding
mode control of islanded ac microgrids with arbitrary topology. IEEE
Transactions on Industrial Electronics, 64(8):6706–6713, Apr. 2017.

[RCF17] G. Rinaldi, M. Cucuzzella, and A. Ferrara. Third order sliding mode
observer-based approach for distributed optimal load frequency control.
IEEE Control Systems Letters , 1(2):215–220, June 2017.

[ICF17] G. P. Incremona, M. Cucuzzella, and A. Ferrara. Second order sliding mode
control for nonlinear affine systems with quantized uncertainty. Automat-
ica, 86:46–52, Dec. 2017.

[CF18] M. Cucuzzella, and A. Ferrara. Practical second order sliding modes in
single-loop networked control of nonlinear systems”, Automatica, 89:235–
240, Mar. 2018.

[CLTRSF] M. Cucuzzella, R. Lazzari, S. Trip, S. Rosti, C. Sandroni, and A. Fer-
rara. Sliding mode voltage control of boost-based DC microgrids. Control
Engineering Practice. PROVISIONALLY ACCEPTED.

[CTDPFvdS] M. Cucuzzella, S. Trip, C. De Persis, X. Cheng, A. Ferrara, and A. van
der Schaft. A robust consensus algorithm for current sharing and voltage
regulation in dc microgrids. Transactions on Control Systems Technology.
SECOND REVIEW RUN.

[TCDPvdSF] S. Trip, M. Cucuzzella, C. De Persis, A. van der Schaft, and A. Ferrara.
Passivity based design of sliding modes for optimal load frequency control.
Transactions on Control Systems Technology. SECOND REVIEW RUN.

[RCF] G. Rinaldi, M. Cucuzzella, and A. Ferrara. Sliding mode observers for a
network of thermal and hydroelectric power plants. Automatica. SECOND
REVIEW RUN.

Books

[FIC18] A. Ferrara, G. P. Incremona and M. Cucuzzella. Optimization Based Ad-
vanced Sliding Mode Control. SIAM. EXPECTED TO APPEAR 2018.

Book Chapters

[FC18] A. Ferrara and M. Cucuzzella. Event-triggered sliding mode control strate-
gies for a class of nonlinear uncertain systems. New perspectives and ap-
plications of modern control theory, eds: J. B. Clempner, W. Yu, Springer
International Publishing, Chapter 16:397–425, 2018.
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American Control Conference, 6549–6554, Boston, MA, USA, July 2016.

[CIGF16] M. Cucuzzella, G. P. Incremona, M. Guastalli and A. Ferrara. Sliding
mode control for maximum power point tracking of photovoltaic inverters
in microgrids. 55th IEEE Conference on Decision and Control, pages 7294–
7299, Las Vegas, NV, USA, Dec. 2016.

[CTDPF17] M. Cucuzzella, S. Trip, C. De Persis and A. Ferrara. Distributed second
order sliding modes for optimal load frequency control. Proc. American
Control Conference, pages 3451–3456, Seattle, WA, USA, May 2017.

[CRCF17] M. Cucuzzella, S. Rosti, A. Cavallo and A. Ferrara. Decentralized sliding
mode voltage control in dc microgrids. Proc. American Control Conference,
pages 3445–3450, Seattle, WA, USA, May 2017.

[TCFDP17] S. Trip, M. Cucuzzella, A. Ferrara and C. De Persis. An energy func-
tion based design of second order sliding modes for automatic generation
control. Proc. 20th IFAC World Congress, pages 12118–12123, Toulouse,
France, July 2017

[ICMF17] G. P. Incremona, M. Cucuzzella, L. Magni and A. Ferrrara. MPC with
sliding mode control for the energy management system of microgrids.
Proc. 20th IFAC World Congress, pages 7658–7663, Toulouse, France, July
2017.

[ICFM17] G. P. Incremona, M. Cucuzzella, A. Ferrara and L. Magni. Model predictive
control and sliding mode control for current sharing in microgrids. 56th
IEEE Conference on Decision and Control pages –, Melbourne, Australia,
Dec. 2017.

[TCDPCF] S. Trip, M. Cucuzzella, C. De Persis, X. Cheng and A. Ferrara. Sliding
modes for voltage regulation and current sharing in dc microgrids. Proc.
American Control Conference, Milwaukee, WI, USA, June 2018. SUBMIT-
TED.

[CLTSF] M. Cucuzzella, R. Lazzari, S. Trip, C. Sandroni, and A. Ferrara. A de-
centralized second order sliding mode voltage control for DC microgrids
application: experimental assessment. Proc. European Control Conference,
Limassol, Cyprus, June 2018. SUBMITTED.



PART 1



Part I

VARIABLE STRUCTURE AND SLIDING MODE
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2

Sliding Mode Control

Abstract. In this chapter the basic concepts of Sliding Mode Control are outlined. The
major properties of this control approach are discussed and some examples are also re-
ported. The robustness properties against the uncertainties and nonlinearities affecting
the controlled system are analyzed, and the concept of approximability is discussed. This
chapter is based on the lecture notes prepared by Antonella Ferrara for the Ph.D. School
on Sliding Mode Control held at the Politecnico di Milano in January 2014. Michele Cu-
cuzzella attended that school as a master student. Moreover, some paragraphs of this
chapter are part of the book Optimization Based Advanced Sliding Mode Control, au-
thored by Antonella Ferrara, Gian Paolo Incremona and Michele Cucuzzella, that will
appear in 2018.

2.1 Sliding Motion and Sliding Mode

Sliding Mode Control (SMC) is a nonlinear control method, belonging to the framework
of Variable Structure Control (VSC), that adjusts the dynamics of systems by the appli-
cation of a switching control [SL91, Utk92, Kha96, ES98]. SMC methodology allows the
models to be imprecise, where imprecisions come from structured (or parametric) and/or
unstructured (e.g. unmodeled dynamics) uncertainties. The basic concept is the design of
a controller ensuring finite-time arrival of the state space trajectory to a suitable surface
in both its sides. This implies the generation of the so-called “sliding motion” on that
surface. The latter is named switching surface and the sliding motion can occur on one
or more than one surfaces defined in the state space of the controlled system. When the
sliding motion is contemporarily enforced on all the defined surfaces, the controlled sys-
tem is said to be in “sliding mode”.

Given some initial conditions x0 = x(t0), the goal of SMC is to steer the state trajec-
tories of the controlled system to the so-called sliding subspace or sliding manifold, i.e.,
the intersection of the switching surfaces, in order to enforce a sliding mode (see Fig. 2.1
for an illustrative example). If this is the case, the states belong to the sliding subspace,
and the controlled equivalent system features an order reduction. Moreover, the dynamic
performance can be arbitrarily specified by suitably selecting the sliding manifold, and it
is invariant with respect to a significant class of parameter uncertainties and disturbances.
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σ1 = 0

σ2 = 0

x0

σ = 0

Fig. 2.1. Schematic view of “sliding motion” and “sliding mode” concepts: given the initial con-
ditions x0, the state trajectory is steered to the sliding manifold σ = 0 given by the intersection
of the switching surfaces σ1 = 0, σ2 = 0.

2.1.1 Design of a Sliding Mode Control

The design of SMC consists of two phases:

• the design of the sliding manifold;
• the design of the control law.

The sliding manifold is usually designed so as to obtain the desired dynamics of the
controlled system while this is in sliding mode. Specifically, the equivalent system has to
be asymptotically stable so that the state trajectories of the controlled system converge to
the origin of the state space. The corresponding control law is chosen in order to enforce
a sliding mode.

For the readers’ convenience, a simple example is hereafter reported. Consider the double
integrator [

ẋ1
ẋ2

]
=

[
0 1
0 0

] [
x1
x2

]
+

[
0
1

]
u, (2.1)

where x ∈ R2 is the state vector, u ∈ R is the input variable such that |u| ≤ 1. For the
sake of simplicity, the dependence of all the variables on time t is omitted, when obvious.
The sliding manifold is selected as a linear combination of the state as

σ = c1x1 + x2 = 0, (2.2)

with c1 positive constant, while the control law on σ = 0 is discontinuous and chosen as

u =

{
−1 if σ > 0

1 if σ < 0 .
(2.3)

The goal is to steer the state trajectories to the sliding manifold σ = 0. If the sliding
mode is enforced, i.e., ẋ1 + c1x1 = 0, the system dynamics becomes

x1(t) = x1(tr)e
−c1(t−tr), (2.4)
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x2

x1

σ = 0

(a) c1 small

x2

x1

σ = 0

(b) c1 large

Fig. 2.2. Schematic view of the state trajectory in case of a double integrator. (a) c1 is selected
small. (b) c1 is selected large.

x2

x1

(a) κ(x1) = −3

x2

x1

(b) κ(x1) = 2

Fig. 2.3. Schematic view of the state trajectory in case of unstable system. (a) The control law
is u = 2x1. (b) The control law is u = −3x1.

where tr is the so-called reaching time instant, that is the time after which the sliding
manifold σ = 0 is attained. System (2.4) is a reduced order system with desired dynamics.
The state trajectory depends indeed on the amplitude of the constant value c1. Particu-
larly, one has that if c1 is small the trajectory follows a parabola arc, and then, it slides
on the line σ = 0 towards the origin (see Fig. 2.2 a). If c1 is large, the state trajectory
follows a sequence of decreasing parabola arcs, and then converges to the origin of the
state space (see Fig. 2.2 b).
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x2

x1

c1 < 1

c1 > 1

σ = c1x1 + x2

σx1 > 0

σx1 < 0

Fig. 2.4. State trajectory of the closed-loop system, and sliding manifold when c1 < 1 (solid
blue line) and c1 > 1 (dashed blue line).

The previous example shows that the state trajectory depends on the parameter c1. Now,
it is worth investigating what happens if the system is unstable. Consider system[

ẋ1
ẋ2

]
=

[
0 1
1 2

] [
x1
x2

]
+

[
0
1

]
u, (2.5)

where, in this case, the control input u depends on the state feedback x1 as follows

u = κ(x1)x1, κ(x1) =

{
−3 if σx1 > 0

2 if σx1 < 0,
(2.6)

where σ is selected as in (2.2). It can be proved that the controlled system has an unstable
focus if κ(x1) = −3, and a saddle point if κ(x1) = 2, as illustrated in Fig. 2.3. Moreover,
the combination of these two control actions ensures the convergence towards the origin,
which becomes an asymptotically stable equilibrium point of the state space. Particularly,
as shown in Fig. 2.4, a sliding mode is enforced only if c1 < 1.

2.2 Preliminaries on Sliding Mode

In case of SMC, the considered class of systems is that of nonlinear systems with respect
to the state, and linear with respect to the control variable, i.e.,

ẋ(t) = f(x, t) +B(x, t)u(t), (2.7)

where x ∈ Rn, u ∈ Rm, while f : Rn × R → Rn and B : Rn × R → Rn×m are smooth
bounded vector fields.
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2.2.1 The Class of Systems

The design and the analysis of a SMC are simpler if the nonlinear considered system
is expressed according to one of the canonical forms, hereafter recalled for the readers’
convenience.

2.2.1.1 Reduced Form

In the canonical reduced form, the state vector x is split into x1 ∈ Rn−m and x2 ∈ Rm.
Then, if the matrix B(x, t) is such that

B(x, t) =

[
0(n−m)×m
B∗(x, t)

]
, (2.8)

where 0(n−m)×m ∈ R(n−m)×m is a matrix with null entries and B∗ : Rn×R→ Rm×m is
an invertible matrix, system (2.7) can be expressed as

ẋ1(t) = A1(x, t)

ẋ2(t) = A2(x, t) +B∗(x, t)u(t),
(2.9)

where A1 : Rn × R→ Rn−m and A2 : Rn × R→ Rm.

2.2.1.2 Controllability Form

System (2.7) is split into m subsystems each of which is expressed in the canonical con-
trollability form. Consider the state vector expressed as

x =

x1

...
xm

 , (2.10)

where xi ∈ Rni , i = 1, . . . , m and
∑m
i=1 ni = n. Assume that each subsystem is as follows:

ẋi = Aixi + fi(x) + bi(x)u, (2.11)

where Ai ∈ Rni×ni is

Ai =

[
0ni−1 Ini−1

0 0Tni−1

]
, (2.12)

with Ini−1 ∈ R(ni−1)×(ni−1) being the identity matrix, while fi(x) = [0, . . . , 0, fi0(x)]
T ∈

Rni , with fi0(x) ∈ R, and bi(x) ∈ Rni×m is

bi(x) =

[
0(ni−1)×m
bi0(x)

]
, (2.13)

where bi0(x) ∈ R1×m. The whole system results in being equal to

ẋ = Ax+ f(x) + b(x)u, (2.14)

whereA = diag{A1, . . . ,Am}, f(x) =
[
fT1 (x), · · · , fTm(x)

]T
and b(x) =

[
bT1 (x), · · · , bTm(x)

]T
.
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2.2.1.3 Decoupled Input-Output Form

Consider a Single-Input Single-Output (SISO) system with output y = c(x). Let r denote
the relative degree of the system, i.e., the minimum order r of the time derivative y(r) of
the output in which the control u explicitly appears. In case of Multi-Input Multi-Output
(MIMO) system, by considering the generic output yi, i = 1, . . . , m, the relative degree

ri is the minimum order ri of the time derivative y
(ri)
i in which one of the components of

the control u explicitly appears. The system total relative degree is r = r1 + · · ·+ rm.

At this point, two different cases can be considered: r = n and r < n, n being the system
order. In the first case, the system

ẋ = A(x) +B(x)u

y = c(x)
(2.15)

can be represented by m differential decoupled equations of the following type

y
(ri)
i = fi(y1, . . . , y

(r1−1)
1 , . . . , ym, . . . , y

(rm−1)
m )

+ gi(y1, . . . , y
(r1−1)
1 , . . . , ym, . . . , y

(rm−1)
m )ui .

(2.16)

If instead the relative degree is such that r < n the so-called normal form is considered.

2.2.1.4 Normal Form

Consider r < n and let zi,j , i = 1, . . . , m and j = 1, . . . , ri − 1, denote the m outputs
yi = ci(x,u) and their time derivatives up to order j = ri − 1. The latter are r external
variables. Let ηk, k = 1, . . . , n − r be the internal variables, the dynamics of which
describe the internal behaviour of the system when input and initial conditions have
been chosen in such a way as to keep the output identically zero. These dynamics, which
are rather important in many of our developments, are called the zero dynamics of the
system. The resulting system can be written in the following form

żi,j = zi,j+1

...

żi,ri = αi(z,η) +

m∑
k=1

βi,k(z,η)uk

η̇ = γ(z,η),

(2.17)

where αi, βi,k : Rm×(ri−1) × Rn−r → R, and γ : Rm×(ri−1) × Rn−r → Rn−r.

2.2.2 The Control Signal

Also for the control signal it is possible to select different forms, hereafter reported.
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2.2.2.1 Relè Form

In this case the control law is of the following type

ui(t) =

{
u+i (x, t) if σi(x) > 0

u−i (x, t) if σi(x) < 0,
(2.18)

with i = 1, . . . , m and σi(x) = 0 being the i-th switching surface associated with the

sliding subspace belonging to Rn−m, and σ(x) = [σ1(x), . . . , σm(x)]
T

being the sliding
variable vector. During the design phase the values u+i , u−i and the vector σ have to be
selected.

2.2.2.2 Augmented Control

By considering the so-called equivalent control ueq,i (see Subsection 2.2.6.2), obtained by
posing the first time derivatives of the sliding variables σ̇i equal to zero, one has the
following control law

ui(t) = ueq,i(t) + uN,i(t), (2.19)

with uN,i of relè type.

2.2.2.3 State Feedback Control with Switching Gain

The state feedback control has the form

u(t) = Ψi(x)x(t), (2.20)

with Ψ ∈ Rm×n and entries

ψi,j =

{
αi,j if σi(x)xj > 0

βi,j if σi(x)xj < 0,
(2.21)

with i = 1, . . . , m and j = 1, . . . , n.

2.2.2.4 Unit Vector Control

In case of unit vector control, the control law is expressed as

ui = αi
σi(x)

‖σ(x)‖
, (2.22)

where αi ∈ R and σ have to be selected.

2.2.2.5 Simplex Control

A way to extend the variable structure control strategy to the multi-input case is that
based on a set of m+1 control vectors forming a simplex in Rm, and on the corresponding
switching of the controlled system among the control vectors (see Fig. 2.5). Specifically,
the system state space is partitioned into m + 1 non-overlapping (in the sense that the
interiors are pairwise disjoint) regions, and within each region a particular control vector
(among those of the simplex) is associated in such a way that the system trajectory is
forced to slide on a pre-specified manifold [BFUZ97].



20 2 Sliding Mode Control

u1

u2

u3

u′3

u′1

u′2

Fig. 2.5. Simplex in R2.

2.2.3 The Sliding Manifold

Although the sliding manifold σ(x) = 0 could be chosen as a nonlinear function of the
state x, it is common way to define the sliding manifold as linear combination of the
states. In case of MIMO systems, it can be defined as

σ(x(t)) = Cx(t) = 0, (2.23)

where σ ∈ Rm and the matrix C ∈ Rm×n. In the following, the choice of the sliding
manifold in case of systems in canonical form will be considered.

2.2.3.1 Reduced Form

In case of reduced form, as previously discussed, the state vector is split into two parts
x1 and x2. Then, one has that

σ(x) = σ(x1,x2) =
[
C1 C2

] [x1

x2

]
= 0, (2.24)

where C2 is non singular. When the control system is in sliding mode, it exhibits the
following dynamics

x2 = −C−12 C1x1

ẋ1 = A1(t,x) = A1(t,x1,−C−12 C1x1).
(2.25)

Moreover, note that if A1 is linear, i.e.,

ẋ1 = A1(t,x) = A1,1x1 +A1,2x2, (2.26)

the equivalent (reduced order) dynamics results in being

ẋ1 = [A1,1 −A1,2C
−1
2 C1]x1 = [A1,1 +A1,2F ]x1, (2.27)

where F = −C−12 C1. Assuming that the couple (A1,1,A2,2) is controllable, the desired
dynamics of the system can be imposed by suitably choosing F (for instance, by poles
assignment, optimal control, etc.).
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2.2.3.2 Controllability Form

In case of controllability form, the system is partitioned into m subsystems, and the sliding
variables can be chosen as

σi = cTi xi, (2.28)

where σi, i = 1, . . . , m, is the i-th component of σ ∈ Rm. The problem to solve is that
of finding ci for each subsystem in order to make the controlled system asymptotically
stable. The equivalent dynamics of the ni-th component of vector xi can be determined
by posing σi = 0. Each equivalent subsystem is of order ni − 1, while the associated
polynomial has the elements of ci as coefficients.

2.2.3.3 Decoupled Input-Output Form

Analogously to the previous case, the sliding manifold is chosen as

σi(xi) = (p+ λ)ni−1xi, p :=
d

dt
(·), (2.29)

where λ > 0, [SL91].

2.2.3.4 Normal Form

In the case of normal form, the so-called zero-dynamics, obtained by posing equal to zero
the output and its derivatives, has to be asymptotically stable. Specifically, by choosing
y = cx, the zero-dynamics is written as

z = 0

η̇ = γ(0,η) .
(2.30)

Then, the sliding variable is chosen as

σi = cTi zi, (2.31)

with i = 1, . . . ,m, and ci selected as for the case in the controllability form, that is, in
order to assign the desired dynamics to the equivalent system of reduced order.

2.2.4 Existence Conditions

After having defined the sliding manifold it is necessary to ensure the existence of a
siding mode. A sliding mode exists in a vicinity of the sliding manifold σ = 0, if the
tangent vector to the controlled system trajectory is always towards the sliding manifold.
Specifically, the sliding mode is ideal if the trajectory of the controlled system is such that
σ(t) = 0, for any t ≥ tr. Note that, in practice, because of delays, hysteresis, sampling
time, the system trajectory does not exactly reach the sliding manifold but switches
around it (chattering, see Fig. 2.6).

The existence problem can be viewed as a stability problem. In particular, it is required
that, given the initial conditions, the system trajectories reach and remain on the sliding
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x2

x1

σ = 0

(a) ideal sliding mode

x2

x1

σ = 0

(b) sliding mode with chattering

Fig. 2.6. Schematic view of the state trajectory in case of sliding mode. (a) Ideal sliding mode.
(b) Sliding mode with chattering.

manifold. The attractive domain can coincide with the whole state space, thus enforcing
a globally reachable sliding mode.

According to the Lyapunov’s second method, it is possible to prove the existence of a
sliding mode by considering a positive definite Lyapunov function, V (t,x), with negative
first time derivative within the attractive region. In case of SISO system the Lyapunov
function can be written as

V (t,x) =
1

2
σ2(x) . (2.32)

The first time derivative of (2.32) is computed as

V̇ (t,x) = σσ̇ < 0 . (2.33)

Equation (2.33) represents the so-called reachability condition, which will be better dis-
cussed in the following.

2.2.5 Reachability Condition

An alternative way to express the reachability condition can be the following

σσ̇ ≤ −γ2|σ| (2.34)

that is
V̇ (t,x) ≤ −γ2

√
2V (t,x) . (2.35)

In this case it is possible to find an upperbound of the reaching time tr by integrat-
ing (2.34) from t0 to tr, i.e.,

tr ≤
|σ(t0)|
γ2

+ t0 . (2.36)
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The reachability condition, in case of MIMO systems, can be also expressed as

σ̇ = −Q sign(σ)−Kφ(σ), (2.37)

with Q and K being positive definite diagonal matrices, the discontinuous function
sign(σ) = [sign(σ1), . . . , sign(σm)]T , and φ(σ) = [φ1(σ1), . . . , φm(σm)]T . Moreover, the
scalar functions φi, i = 1, . . . , m, satisfy the following condition

σiφi(σi) > 0, σi 6= 0, (2.38)

with i = 1, . . . , m. The matrix Q and function φ can be chosen in three different ways
on the basis of the rate that one would like to obtain during the reaching phase. More
specifically, one has that in case of constant rate, σ is such that

σ̇ = −Q sign(σ) (2.39)

or in case of constant rate and proportional component,

σ̇ = −Q sign(σ)−Kσ (2.40)

while, in case of decreasing rate, one has

σ̇i = −ki|σi|α sign(σi), (2.41)

with 0 < α < 1, i = 1, . . . , m.

Finally, other two ways to express the reachability condition are{
σ̇i > 0 if σi < 0

σ̇i < 0 if σi > 0
(2.42)

or, equivalently
σiσ̇i < 0, (2.43)

with i = 1, . . . , m. Otherwise, one can write

lim
σi→0+

σ̇i < 0, lim
σi→0−

σ̇i > 0 . (2.44)

2.2.6 Solutions to Variable Structure Systems

SMC generates a controlled system which is described by a differential equation with non-
linear discontinuous second hand side. The classical results on the solution of differential
equations do not hold in case of SMC. However, the evolution of the system on σ = 0 is
unique. In the following two different approaches will be analyzed: the Filippov’s method
and the equivalent control approach [Fil88, Utk92, ES98].
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σ = 0

Gσ

f0 = αf+ + (1− α)f−

f−

f+

Fig. 2.7. Schematic view of Filippov’s solution.

2.2.6.1 Filippov’s Method

Given the following SISO system of order n, i.e.,

ẋ(t) = f(x, u, t), (2.45)

with u chosen as in (2.18), it is possible to show that the controlled system on the sliding
manifold σ(x) = 0 coincides with the solution of the following equation

ẋ(t) = αf+ + (1− α)f− = f0, (2.46)

with 0 ≤ α ≤ 1, f+ = f(x, u+, t), f− = f(x, u−, t), and f0 being the resulting vector
field in sliding mode (see Fig. 2.7). In sliding mode, σ(x) = σ̇(x) = 0, and by solving with
respect to α the following equation

Gσ · f0 = 0, (2.47)

where Gσ is the gradient of σ, one has that

α =
Gσ · f−

Gσ · (f− − f+)
. (2.48)

The latter holds only if Gσ · (f− − f+) > 0, and Gσ · f+ ≤ 0 and Gσ · f− ≥ 0. The
idea of the Filippov’s method is that the solution of a differential equation with nonlinear
discontinuous second hand side exists and is uniquely defined on σ(x) = 0 [Fil88]. It is
equivalent to the solution of a differential equation with continuous function ẋ = f0,
with f0 depending on α which is obtained by posing σ̇(x) = 0. This method represents
a possible way to determine the evolution of the controlled system in sliding mode. An
alternative approach is the so-called equivalent control approach.

2.2.6.2 Equivalent Control Method

Given system (2.7) with u chosen as in (2.18), suppose that a sliding mode is enforced
from the time instant tr ≥ t0 on the sliding manifold σ(x) = 0. Then, consider the
following equality
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σ̇(x) =

[
∂σ

∂x

]
ẋ =

[
∂σ

∂x

]
[f(x, t) +B(x, t)u] = 0, (2.49)

where the rows of matrix [∂σ/∂x] ∈ Rm×n are the gradients of the functions σi(x). As-
sume now that a solution to (2.49) with respect to u exists. This solution is the equivalent
control ueq [Utk92]. Substituting ueq into the original system, one has

ẋ = f(x, t) +B(x, t)ueq, (2.50)

which is a differential equation with continuous second hand side describing the evolution
of the system starting from x(tr) and σ(tr) = 0.

2.2.7 Computation of the Equivalent Control

Consider as hypothesis that the matrix [∂σ/∂x]B(x, t) is not singular for any t and x,
such that

ueq = −
([

∂σ

∂x

]
B(x, t)

)−1 [
∂σ

∂x

]
f(x, t) . (2.51)

Assuming to start at t0 with σ(t0) = 0, the dynamics of the controlled system can be
expressed as

ẋ =

(
In −B(x, t)

([
∂σ

∂x

]
B(x, t)

)−1 [
∂σ

∂x

])
f(x, t). (2.52)

Consider now the particular case with σ(x) = Cx, such that [∂σ/∂x] = C. Then one
has

ẋ =
(
In −B(x, t) (CB(x, t))

−1
C
)
f(x, t). (2.53)

2.2.8 Order Reduction

Consider, for the sake of simplicity, the particular case with σ(x) = Cx. In sliding mode
the dynamics of the controlled system is described by n differential equations in (2.53)
and m algebraic equations σ(x) = Cx = 0. If rank(C) = m, that is [∂σ/∂x]B(x, t) is
not singular for any t and x, it is possible to obtain m state variables depending on the
other n−m ones. The resulting system of order n−m represents the continuous system
of reduced order which is equivalent to the system controlled with a discontinuous law,
given the initial condition σ(x) = 0.

2.3 Sliding Mode Control Design

In this section the robustness properties and the design of a sliding mode control will be
discussed. Specifically, the following uncertain system will be considered

ẋ(t) = f (x(t), t) +∆f (x(t), t, r(t)) + (B (x(t), t) +∆B (x(t), t, r(t)))u(t), (2.54)

where r is the vector function of all the unknown parameters belonging to a compact set,
∆f and ∆B belong to the image space of B(x(t), t) for any x and t, that is the so-called
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matching condition holds. If the matching condition holds, it is possible to rewrite (2.54)
as

ẋ(t) = f (x(t), t) +B(x(t), t)u(t) +B(x(t), t)wm(x(t), t, r(t),u(t)), (2.55)

where wm is the matched uncertainty. Note that the nominal system does not need to be
stable, but the equivalent system (i.e., when σ(x) = 0) must be asymptotically stable. In
this case, an alternative form to that in (2.18) is the augmented control (2.19). Generally,
the control approaches can be of two types: free control structure according to which ui(t)
is chosen to satisfy the reachability condition, and preassigned control structure, where
the control parameter u+i , u−i , αi,j and βi,j are set to fulfill the reachability condition.
The control law will depend on the type of reachability condition which is used, as will
be clarified in the following.

2.3.1 Lyapunov Function Method

Assume that there exists a scalar nonnegative function such that

‖wm(x(t), t, r(t),u(t))‖ ≤ ρ(x(t), t) . (2.56)

Now, making reference to (2.19), it is possible to compute the equivalent control with
wm = 0 as

ueq = −
([

∂σ

∂x

]
B(x, t)

)−1([
∂σ

∂x

]
f(x, t) +

∂σ

∂t

)
, (2.57)

while the discontinuous control uN is computed starting from the Lyapunov func-
tion [DZM88]

V (x, t) =
1

2
σT (x, t)σ(x, t) . (2.58)

In order to enforce a sliding mode it is necessary to have

V̇ = σT σ̇ = σT
∂σ

∂t
+ σT

[
∂σ

∂x

]
(f +Bu+Bwm) < 0 . (2.59)

Substituting (2.57) in (2.59) one obtains

V̇ = σT
[
∂σ

∂x

]
B (uN +wm) . (2.60)

From (2.56) and (2.60), the discontinuous control can be expressed as

uN = − BT∇xV (x, t)

‖BT∇xV (x, t)‖
ρ̂(x, t), (2.61)

where ∇xV is the gradient of V and ρ̂ = α+ ρ, with α > 0.

2.3.2 Finite Time Reachability Condition Method

Consider now the example reported in [SL91]. Given the system

ẍ(t) + a(t)ẋ2 cos(3x) = u, (2.62)
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with 1 ≤ a ≤ 2 and f = −a(t)ẋ2 cos(3x). Moreover, consider the model f̂ = −1.5ẋ2 cos(3x)

and F = 0.5ẋ2|cos(3x)| such that |f̂ − f | ≤ F . The sliding manifold is chosen as

σ(x) = ˙̃x+ c1x̃ = 0, (2.63)

where x̃ = x − xd is the error signal. The nominal equivalent control is computed by
posing σ̇ relying on the nominal model as

ûeq = −f̂ + ẍd − c1 ˙̃x. (2.64)

In order to satisfy the reachability condition (2.34) the discontinuous control is chosen as

ûN = −K sign(σ), (2.65)

with K ≥ F + γ2. One has

σσ̇ = σ
(
f + u− ẍd + c1 ˙̃x

)
= σ

(
f + ûeq + uN − ẍd + c1 ˙̃x

)
= σ

(
f − f̂ + ẍd − c1 ˙̃x+ uN − ẍd + c1 ˙̃x

)
= σ

(
f − f̂

)
−Kσ sign(σ)

= σ
(
f − f̂

)
−K|σ| ≤ −γ2|σ|.

(2.66)

If the system is of the type
ẍ(t) = f(t) + bu, (2.67)

with 0 < bmin ≤ b ≤ bmax, b being time-varying or depending on the state, one can choose
the estimate b̂, for instance as

b̂ =
√
bminbmax . (2.68)

Considering (2.63) as sliding manifold, the equivalent control (2.64) becomes

ûeq = −b̂−1(f̂ + ẍd − c1 ˙̃x), (2.69)

such that, in order to satisfy the reachability condition (2.34), the discontinuous compo-
nent of the control law is

ûN = −b̂−1K sign(σ), (2.70)

with K ≥ β(F + γ2) + (β − 1)|ûeq|, β being equal to
√
bmax/bmin.

2.4 Linearization of Nonlinear Systems

Consider a SISO system of the following type

ẋi(t) = xi+1(t) i = 1, . . . , n− 1

ẋn(t) = f(x, t) +B(x, t)(u(t) + d(x, t))
(2.71)
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where the unknown functions f , B and d are such that

|f(x, t)| < F

0 < Bmin < B(x, t) < Bmax

|d(t)| < δ,

(2.72)

with F , Bmin, Bmax and δ being positive constants. Consider the following reference model

ẏi(t) = yi+1(t) i = 1, . . . , n− 1

ẏn(t) = −
n−1∑
i=1

aiyi(t) + bû(t),
(2.73)

and the tracking error ej = xj − yj , with j = 1, . . . , n. Hence, the error dynamics results
in being

ėi(t) = ei+1(t) i = 1, . . . , n− 1

ėn(t) = f(x, t) +B(x, t)(u(t) + d(t)) +

n−1∑
i=1

aiyi(t)− bû(t) .
(2.74)

By choosing the sliding variable as a linear combination of the error components, i.e.,

σ(e) = en +

n−1∑
i=1

ciei, (2.75)

one has that its first time derivative is

σ̇(e) = ėn +

n−1∑
i=1

ciėi

= f +B(u+ d) +

n−1∑
i=1

aiyi − bû+

n−1∑
i=1

ciėi .

(2.76)

Consider now the control law u = −K sign(σ) in order to satisfy

σσ̇ = σ

(
f +B(u+ d) +

n−1∑
i=1

aiyi − bû+

n−1∑
i=1

ciėi

)
(2.77)

= σ

(
f +B(−K sign(σ) + d) +

n−1∑
i=1

aiyi − bû+

n−1∑
i=1

ciėi

)
(2.78)

≤ −γ2|σ|, (2.79)

with K >
∣∣∣B−1 (f +B(−K sign(σ) + d) +

∑n−1
i=1 aiyi − bû+

∑n−1
i=1 ciėi + γ2

)∣∣∣. If the

reachability condition (2.34) is satisfied, in a finite time, the controlled system is equiva-
lent to the following linear system of order n− 1 with assignable poles ci, i.e.,

ėi(t) = ei+1(t) i = 1, . . . , n− 2

ėn−1(t) = en = −
n−1∑
j=1

cj ėj .
(2.80)
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2.5 Approximability Property

In this section the concept of approximability, reported in [Utk92, BPZ07], will be recalled.
Consider the nonlinear MIMO system

ẋ(t) = f(x, t) +B(x, t)u(t), (2.81)

where u ∈ Rm. Suppose that a sliding mode is enforced on the manifold σ(x) = 0. Then,
the equivalent dynamics of the controlled system is expressed by (2.52).

Consider now a more accurate model of system (2.81):

ẋ(t) = f(x, t) +B(x, t)ũ(t), (2.82)

where the new control input ũ gathers some imperfections such as hysteresis and delays.
However, the “cost” of such regularization is that the evolution of the state x does not
occur on the manifold σ(x) = 0, but in some neighbourhood of this manifold, i.e.,

{x ∈ Rn : ‖σ(x)‖ ≤ ∆} , (2.83)

with ∆ > 0. For the sake of clarity, let x? denote the solution to (2.52), and x denote the
solution to (2.82). The following theorem in [Utk92] is hereafter recalled.

Theorem 2.1 (Approximability). If

1. there exists a solution x(t) to system (2.82) in the interval [0, T ], and x(t) belongs to
the neighbourhood of the sliding manifold σ = 0;

2. there exists a Lipschitz constant L for the equivalent dynamics

ẋ?(t) = f(x?, t)−B(x?, t) (G(x?)B(x?, t))
−1
G(x?)f(x?, t), (2.84)

where G = ∂σ/∂x;

3. there exist bounded partial derivatives of B(x, t) (G(x)B(x, t))
−1

;
4. there exist two positive constants M and N such that

‖f(x, t) +B(x, t)ũ(x, t)‖ ≤M +N‖x‖; (2.85)

then, for any pair of solutions x and x? with initial condition ‖x(0)−x?(0)‖ ≤ P∆, with
P > 0, there exists a positive constant H such that ‖x(t)− x?(t)‖ ≤ H∆, ∀ t ∈ [0, T ].

Proof. In order to prove the theorem it is necessary to compute the norm of the dif-
ference between the solutions to the differential equations describing the actual and the
ideal evolution of the state. The actual evolution within the neighbourhood of the sliding
manifold (2.83) implies that the first time derivative of the sliding variable is σ̇ 6= 0, i.e.,

σ̇ = G(x) (f(x, t) +B(x, t)ũ) , (2.86)

with
ũ = − (G(x)B(x, t))

−1
G(x)f(x, t) + (G(x)B(x, t))

−1
σ̇ . (2.87)

The actual evolution of the system is
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ẋ = f(x, t)−B(x, t) (G(x)B(x, t))
−1
G(x)f(x, t) +B(x, t) (G(x)B(x, t))

−1
σ̇, (2.88)

while the ideal state evolution is

ẋ? = f(x?, t)−B(x?, t) (G(x?)B(x?, t))
−1
G(x?)f(x?, t) . (2.89)

The corresponding integral equations are

x(t) = x(0) +

∫ t

0

(
f(x, ζ)−B(x, ζ) (G(x)B(x, ζ))

−1
G(x)f(x, ζ)

)
dζ

+

∫ t

0

B(x, ζ) (G(x)B(x, ζ))
−1
σ̇dζ

(2.90)

and

x?(t) = x?(0) +

∫ t

0

(
f(x?, ζ)−B(x?, ζ) (G(x?)B(x?, ζ))

−1
G(x?)f(x?, ζ)

)
dζ . (2.91)

Integrating by parts the last term in (2.91), one has

||x(t)− x?(t)|| ≤ P∆+

∫ t

0

L ||x(ζ)− x?(ζ)|| dζ +
∣∣∣∣∣∣B(x, ζ) (G(x)B(x?, ζ))

−1
σ
∣∣∣∣∣∣ ∣∣∣∣∣

t

0

+

∫ t

0

∣∣∣∣∣∣∣∣ ddζB(x, ζ) (G(x)B(x, ζ))
−1
∣∣∣∣∣∣∣∣ ‖σ‖dζ .

(2.92)

The solution that describes the actual evolution is bounded in the interval [0, T ]. More-
over, (2.85) in hypothesis 4 holds, and one has

‖x(t)‖ ≤ ‖x(0)‖+MT +

∫ t

0

N‖x(ζ)‖dζ . (2.93)

By applying the so-called Bellman–Gronwall’s Lemma1, one has

‖x(t)‖ ≤ (‖x(0)‖+MT )eNT (2.94)

in [0, T ]. Taking into account that σ is bounded and hypothesis 1, 2 and 3 hold, it yields

‖x(t)− x?(t)‖ ≤ S∆+ L

∫ t

0

‖x(ζ)− x?(ζ)‖dζ (2.95)

where S is a positive constant which depends on (2.88), T , the initial conditions x(0) and
P . By applying again the Bellman–Gronwall Lemma to inequality (2.95), one has

‖x(t)− x?(t)‖ ≤ SeLT∆ = H∆ (2.96)

which proves the theorem. ut
1

Lemma 2.1 (Bellman–Gronwall). Given y(t) such that y(t) ≤
∫ t
0
a(ζ)y(ζ)dζ+ b(t), with a(t)

and b(t) being real known functions, then y(t) ≤
∫ t
0
a(ζ)b(ζ)e

∫ t
0 a(γ)dγdζ+b(t). If b(t) is a constant,

y(t) ≤ b(0)e
∫ t
0 a(ζ)dζ .
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The theorem implies that if the initial conditions x(0) and x?(0) are sufficiently close
to each other, the corresponding solutions are close. Since x?(0) is such that σ(x?) = 0
one has that ‖x(0) − x?(0)‖ is the distance from x(0) to some point on the sliding
manifold σ(x) = 0. Finally, if the equivalent dynamics of the system in sliding mode is
asymptotically stable, the results hold for T →∞.

2.6 Conclusions

In this chapter we have seen the design of different types of SMC laws and their properties
to compensate the uncertainties and nonlinearities of the controlled systems. Furthermore,
we have seen the so-called approximability property which guarantees the ultimately
boundedness of the system state when a real sliding mode is enforced.
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Advances in Higher Order Sliding Mode Control

Abstract. In this chapter the basic concepts of Higher Order Sliding Mode Control are
recalled. After some preliminaries on the design of the control law, the second order
case and the third order case are discussed. Novel algorithms are finally presented: the
Adaptive Suboptimal Second Order Sliding Mode, and a Second Order Sliding Mode for
systems with quantized uncertainty.

3.1 Higher Order Sliding Mode

Sliding Mode Control (SMC) is an appreciated control methodology for its robustness
against a wide class of uncertainties. Yet, because of the discontinuous nature of the
control law, it can produce the so-called chattering effect [Fri02, BFPU07, Lev10, Boi11],
i.e., high frequency oscillations of the controlled variable, which can be disruptive for the
controlled plant, or significantly limit the life cycle of the actuators.

A number of methods have been proposed in the literature to overcome this drawback.
More precisely, high-gain control with saturation approximates the signum function and
alleviates the chattering phenomenon, while on-line estimation of the so-called equivalent
control [Utk92] is used to reduce the discontinuous control component [SL91]. A well-
established method to perform chattering alleviation is that consisting of shifting the
discontinuity (which is necessary to ensure the finite time reaching to the sliding manifold)
into some time derivative of the control variable, so that the control signal actually fed
into the plant is indeed continuous. This approach, called Higher Order Sliding Mode
(HOSM) control [BFUZ97, BFU97, BFUU00, Lev03, FBP03, Lev05, DF09], enforces in
a finite time a sliding mode involving not only the sliding function, but also its time
derivatives up to the order r−1 (the mode is accordingly called r-sliding mode). Because
of the continuous nature of the control action, the HOSM control approach is appropriate
to be applied even to electromechanical or mechanical systems [UGS99, BPPU03], as
testified, for instance, by [CFM09, CFF10, CF12].

3.2 Preliminaries on Higher Order Sliding Mode

Consider the smooth dynamic system

33



34 3 Advances in Higher Order Sliding Mode Control

ẋ = a(x) + b(x)u, (3.1)

where x ∈ Rn, u ∈ Rm,a : Rn → Rn, b : Rn → Rn×m.

Definition 3.1 (Sliding function2). The sliding function σ(x) : Rn → Rm is a suffi-
ciently smooth output function of system (3.1).

Definition 3.2 (r–sliding manifold). The r–sliding manifold3 is given by

{x ∈ Rn,u ∈ Rm : σ(x) = Laσ(x) + Lbσ(x)u

= . . .

= L(r−1)
a σ(x) + LbL

(r−2)
a σ(x)u = 0},

(3.2)

where L
(r−1)
a σ(x) is the (r−1)-th order Lie derivative of σ(x) along the vector field a(x).

With a slight abuse of notation we also write Laσ(x) + Lbσ(x)u = σ̇.

Definition 3.3 (r–sliding mode). A r–order sliding mode is enforced from t = Tr ≥ 0,
when, starting from an initial condition x(t0) = x0, the state of (3.1) reaches the r–sliding
manifold (3.2), and remains there for all t ≥ Tr.

Furthermore, the order of a sliding mode controller is identical to the order of the sliding
mode that it is aimed at enforcing.

Definition 3.4. (Equivalent control) Consider system (3.1) and the sliding function
σ(x). Assume that a r–order sliding mode exists on the sliding manifold (3.2). Assume

also that a solution to system σ(r) = L
(r)
ζ σ = 0, with respect to the control input u,

exists. This solution is called equivalent control and is denoted by ueq [Utk92].

3.2.1 Design of a Higher Order Sliding Mode Control

Consider, for the sake of simplicity, a SISO dynamic system of the form

ẋ = a(x, t) + b(x, t)u

σ = σ(x, t),
(3.3)

where x ∈ Rn, u ∈ R and σ : Rn × R → R ia a sufficiently smooth output function. We
assume that (3.3) is an uncertain system, i.e., we assume that the system order n and
the functions a : Rn × R → Rn, b : Rn × R → Rn are unknown. However, we assume
that the relative degree of the system is globally well defined, uniform, time-invariant,
and equal to r. With reference to system (3.3), relative degree equal to r implies that u

2The sliding function is also called sliding variable
3For the sake of simplicity, the order r of the sliding manifold is omitted in the following.
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first appears explicitly in the r-th time derivative of σ, i.e., (∂/∂u)σ(r) 6= 0. Then, for
suitable functions h(x, t) : Rn × R→ R and g(x, t) : Rn × R→ R, one has

σ(r) = h(x, t) + g(x, t)u. (3.4)

Functions h and g are assumed to be bounded. More precisely, we assume the existence
of positive constants H, gmin, gmax, such that

|h(x, t)| ≤ H (3.5)

0 < gmin ≤ g(x, t) ≤ gmax . (3.6)

Note that instead of (3.6), one could analogously have the opposite inequality

− gmax ≤ g(x, t) ≤ −gmin < 0, (3.7)

i.e., it is required that function g has constant known sign. Since the information about
the bounds of h and g are assumed to be available, the original dynamical system (3.12)
implies the differential inclusion [AC84]

σ(r) = f1 + f2u, (3.8)

with f1 ∈ [−H,H] and f2 ∈ [gmin, gmax]. In the literature, it has been shown that the
problem of making the r-sliding manifold associated with (3.8) finite-time attractive,
generating a sliding mode of order r (r-sliding mode), can be solved by any r-sliding
mode controller of the type

u(t) = KΨ
(
σ, σ̇, . . . , σ(r−1)

)
, (3.9)

(see for instance [BFUZ97, BFUU00, Lev03, FBP03, Lev05, DF09]), where Ψ is a dis-
continuous function, and K > 0 is chosen so as to ensure the finite time convergence of
the state trajectories. For the reader’s convenience, few examples of HOSM controllers
proposed in [Lev03] are reported for r = 1, 2, respectively:

u = −K sign (σ) ,

u = −K sign
(
σ̇ + |σ|

1
2 sign (σ)

)
.

(3.10)

Note that, in order to alleviate the chattering phenomenon, a r-sliding controller can be
applied to a system with relative degree k < r. Introducing successive time derivatives
u, u̇, . . . , u(r−k−1) as a new auxiliary variables and u(r−k) = w as a new control variable,
the relative degree of the resulting auxiliary system with respect to w is r. Then, the con-
trol actually fed into the plant u is a (r− k− 1)-smooth function of time with k < r− 1,
a Lipschitz function with k = r − 1, and a bounded ‘infinite-frequency switching’ (dis-
continuos) function with k = r [Lev03]. In this thesis, in order to alleviate the chattering
effect, the case with k = r − 1 will be adopted when requested.

Note also that controllers (3.10), and generally (3.9), require the availability of σ,
σ̇, . . . , σ(r−1). That requirement can be relaxed by implementing the well known Lev-
ant’s differentiator.
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3.2.2 Levant’s Differentiator

Let ψ(t) be a function defined on [0,∞). Assume that it is a bounded Lebesgue-measurable
noise with unknown features and with the n-th derivative having a known Lipschitz
constant L > 0. The n-order Levant’s differentiator has the following form [Lev03]:

ż0 = −λ0 |z0 − ψ|
n
n+1 sign (z0 − ψ) + z1

ż1 = −λ1 |z1 − ż0|
n−1
n sign (z1 − ż0) + z2

...

żn−1 = −λn−1 |zn−1 − żn−2|
1
2 sign (zn−1 − żn−2) + zn

żn = −λn sign (zn − żn−1) ,

(3.11)

where zi, i = 0, 1, . . . , n, are the estimations of ψ, ψ̇, . . . , ψ(n), respectively, while λi, i =
0, 1, . . . , n are positive constant depending on the Lipschitz constant L (see [Lev03] for
more details about the choice of λi, i = 0, 1, . . . , n).

In the next section we discuss a particular second order sliding mode control that, in
contrast to (3.9), does not require to measure σ̇, avoiding the implementation of a Levant’s
differentiator: the well known Suboptimal second order sliding mode control [BFU98a].
More precisely, it is explained the procedure to perform the so-called chattering alleviation
in case with k = r − 1 (see Subsection 3.2.1), i.e., k = 1 and r = 2.

3.3 Suboptimal Second Order Sliding Mode

Consider the SISO system given by

ẋi(t) = xi+1(t)

ẋn(t) = f(x(t), t) + g(x(t), t)u(t)

y(t) = σ(x(t)),

(3.12)

where i = 1, . . . , n − 1, x ∈ Rn is the state vector, u ∈ R is the control variable,
σ : Rn → R is a smooth output function. System (3.12) is an uncertain system since
f : Rn ×R→ R and g : Rn ×R→ R are assumed to be unknown smooth functions. The
relative degree k of the system is considered well defined, uniform and time invariant. In
the following, the dependence of σ on x and of all the variables on t is omitted in some
cases, when it is obvious, for the sake of simplicity.

Second Order Sliding Mode (SOSM) control is a particular case of HOSM control. Assume
that the sliding variable is chosen as

σ = xn +

n−1∑
i=1

cixi, (3.13)

where ci, i = 1, . . . , n−1 are real positive constants such that the characteristic equation∑n−1
i=1 ci z

i−1 + z n−1 = 0 has distinct roots with negative real part. From (3.13) it clearly
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follows that the relative degree of system (3.12) is k = 1. Yet, the use of a control law (3.9)
discontinuous on σ = 0 is not appropriate for an electromechanical application, due to the
chattering effect (see [UGS99]). Then, it is convenient to artificially increase the relative
degree of the auxiliary system as suggested in [BFU97]. To this end, one has to consider
the first-time derivative of the sliding variable, i.e.,

σ̇ = f + gu+

n−1∑
i=1

cixi+1, (3.14)

and the second-time derivative,

σ̈ =
df

dt
+
dg

dt
u+ cn−1 (f + gu) +

n−2∑
i=1

cixi+2︸ ︷︷ ︸
h

+gu̇ . (3.15)

By defining ξ1 = σ and ξ2 = σ̇, it yields

ξ̇1(t) = ξ2(t)

ξ̇2(t) = h(x(t), u(t), t) + g(x(t), t)w(t)

u̇(t) = w(t),

(3.16)

where ξ2 is assumed to be unmeasurable, functions h and g have the bounds indicated
in (3.5) and (3.6), w is the auxiliary control law which has to be designed so that ξ1 and
ξ2 are steered to zero in a finite time in spite of the uncertainties, thus enforcing a second
order sliding mode (i.e., r = k + 1 = 2). Note that, h in (3.15) depends on the state
x3, . . . , xn, so that it is only locally bounded, which is true in most practical cases, since
the operational region is always bounded. Moreover, according to (3.9), the control w = u̇
is discontinuous. Yet, by virtue of the artificial increment of the relative degree, the control
actually fed into the plant is the output of an integrator having as input w(t), making
u(t) continuous, which is highly appreciable in case of mechanical or electromechanical
plants. Note that in the literature, several algorithms have been proposed to solve second
order sliding mode control problems, such as the Twisting and Super Twisting algorithms
[Lev03], and the Suboptimal algorithm [BFU97, BFU98a]. For the reader’s convenience,
the Suboptimal SOSM (SSOSM) algorithm is reported.

The extremal values ξmax in Algorithm 1 corresponds to the local minima/maxima of the
sliding variable (see Fig. 3.1) and they can be detected by implementing for instance a
peak detector as in [BFU98b]. It can be proved (see [BFU97, BFU98a] for the details of
the proof) that, with the constraints (3.17) and (3.18), the control law (3.19) enforces
the generation of a sequence of states with coordinates featuring the contraction property
expressed by |ξmaxi+1

| < |ξmaxi |, i ∈ N+. Finally, note that, h linearly depends on u,
which, in principle, does not ensure its boundedness. Since, in the present approach, a
second order sliding mode σ = σ̇ = 0 is enforced, the control u is close to the so-called
equivalent control ueq(x, t), obtained by posing σ̇(x, ueq, t) = 0 [Utk92, BFU98b], and
one can conclude that the control law (3.19), (3.17), (3.18) is locally applicable.
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ξ2

ξ1

(ξ1(t0), ξ2(t0))

ξmax1

1
2 ξmax1

ξmax2
1
2 ξmax2

Fig. 3.1. Schematic view of the auxiliary state trajectory with the extremal values (red circles).

Algorithm 1 SSOSM algorithm

1: procedure SSOSM(gmin, gmax, H, K)
2: set ξ1(t) = σ(t)
3: while t ≥ t0 do
4: set

α∗ ∈ (0, 1] ∩
(

0,
3gmin

gmax

)
(3.17)

5: set ξmax = ξ1(t0)
6: if

[
ξ1(t)− 1

2ξmax

]
[ξmax − ξ1(t)] > 0 then

7: set α = α∗

8: else
9: set α = 1

10: end if
11: if ξ1(t) is extremal then
12: set ξmax(t) = ξ1(t)
13: end if
14: set

K > max

(
H

α∗gmin
;

4H

3gmin − α∗gmax

)
(3.18)

15: apply the control law

w(t) = −αK sign

(
ξ1(t)− 1

2
ξmax(t)

)
(3.19)

16: end while
17: end procedure
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3.4 Adaptive Suboptimal Second Order Sliding Mode

In this section, in order to relax the assumption on the a priori knowledge of the constants
H, gmin and gmax in (3.5), (3.6), the design of Adaptive Suboptimal Second Order Sliding
Mode (ASSOSM) control laws is addressed.

3.4.1 The Proposed Control Strategies

In particular, four control strategies are designed and analyzed. The first two techniques
are adaptive versions of the Suboptimal SOSM (SSOSM) control [BFU98a] discussed in
Section 3.3, in which during the reaching phase, the control amplitude is continuously
adjusted, so as to arrive at dominating the effect of the uncertainties, in spite of the
ignorance of their bounds. When a suitable control amplitude is attained, the origin of
the state-space of the auxiliary system (3.16) (i.e., the second order system with states
coinciding with the sliding variable and its first time derivative) becomes finite time
attractive. The other two control strategies are oriented to reduce the control amplitude
in steady-state by applying an additional component to the discontinuous adaptive law,
based on the average control, obtained at the output of a first order low pass filter, in
analogy with [BFPU98].

3.4.1.1 Strategy 1

Making reference to the auxiliary system (3.16), the first ASSOSM control strategy, pro-
posed to steer ξ1 and ξ2 to zero in a finite time in spite of the uncertainties and the
ignorance of their bounds, is very simple but effective. It allows the amplitude of the
discontinuous Suboptimal control law to grow until the sliding manifold becomes an at-
tractive subspace of the controlled system state-space. In analogy with [BFU98a], the
control law can be first expressed as follows

w(t) = wad(t) = −Wad(t) sign

(
ξ1(t)− 1

2
ξmax

)
. (3.20)

This law does not require to measure ξ2 (this variable is unmeasurable by assumption).
In fact, the extremal values ξmax can be detected by implementing for instance a peak
detector as in [BFU98b]. Furthermore, let

Ξmax = max {|ξmaxi |} (3.21)

denote the maximum of the sequence of the values of ξ1 stored as ξmax. Then, the design
parameter Wad can be chosen according to the following adaptation mechanism

Ẇad(t) =

{
γ1|ξ1(t)| if |ξ1(t)| > Ξmax

0 otherwise,
(3.22)

where γ1 is a positive constant arbitrarily set, and Wad(t0) = Wad0 . Note that in (3.22),
the increment of the control amplitude is activated only when the sliding variable tends
to increase with respect to the value Ξmax, otherwise the previous value of Wad is kept.
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Levant’s differentiator
σ = ξ1

Cross zero test
˙̂σ = ξ̂2

Store ξmax
if true ξmax

Fig. 3.2. Peak detection scheme to evaluate the extremal value ξmax.

An alternative implementation of Strategy 1 can be based on the use of the Levant’s
differentiator [Lev03] discussed in Subsection 3.2.2. A first advantage of this version is
that the peak detector in [BFU98b] is no more necessary, which improves the stability
properties of the controlled system as will be clarified in Subsection 3.4.2. A second
advantage is that the estimate of ξ2 (denoted by |ξ̂2|), obtained with high (theoretically
ideal) accuracy after a finite time, can be used to improve the response promptness of

the adaptive mechanism, by introducing a term depending on |ξ̂2|. The new formulation
of (3.22) can be expressed as

Ẇad(t) =

{
γ1|ξ1(t)|+ γ2|ξ̂2(t)| if |ξ1(t)| > Ξmax

0 otherwise,
(3.23)

where γ2 is a positive constant arbitrarily set.

Remark 3.1. Since the Levant’s differentiator is used to determine ξ2, the extremal val-
ues ξmaxi can be evaluated by using, as an alternative with respect to the peak detector

in [BFU98b], the scheme in Fig. 3.2. That is, ξmax is stored at the time instants when ξ̂2
changes its sign.

Remark 3.2. The adaptation mechanism in (3.23) has the advantages previously men-
tioned. Its disadvantage with respect to the strategy proposed in (3.22) is the introduction
of additional parameters to set (those of the Levant’s differentiator and γ2). Moreover, it
is necessary to provide sufficient time for the differentiator to converge (the differentiator
proves to converge in a finite time), to get a usable estimate of ξ2.

3.4.1.2 Strategy 2

The adaptation mechanism (3.22) or (3.23) proposed in Strategy 1 transforms the AS-
SOSM control law into a plain SSOSM law after a transient, which is necessary for the
adaptive gain to reach the appropriate size. For this reason, Strategy 1 has the same
conservativeness features of the original SSOSM control algorithm. In order to decrease
the control amplitude whenever the sliding variable tends towards the sliding manifold,
a second adaptive SOSM control strategy can be proposed. As for Strategy 1, one could
write a first version based on the peak detector in [BFU98b], and a second version based
on the Levant’s differentiator. To keep the treatment concise, we will report hereafter
only the version based on the Levant’s differentiator. Specifically, the following adaptive
mechanism is designed

Ẇad(t) =

{
γ1|ξ1(t)| sign(ξ1(t)) sign(ξ̂2(t)) if Wad(t) ≥ 0

−γ1|ξ1(t)| sign(ξ1(t)) sign(ξ̂2(t)) otherwise,
(3.24)
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where γ1 is a positive constant arbitrarily set.

Remark 3.3. Also in this case the promptness of the adaptation mechanism (3.24) can

be increased adding a term depending on |ξ̂2|, i.e.,

Ẇad(t) =

{
(γ1|ξ1(t)|+ γ2|ξ̂2(t)|) sign(ξ1(t)) sign(ξ̂2(t)) if Wad(t) ≥ 0

−(γ1|ξ1(t)|+ γ2|ξ̂2(t)|) sign(ξ1(t)) sign(ξ̂2(t)) otherwise,
(3.25)

where γ2 is a positive constant arbitrarily set.

3.4.1.3 Strategy 3

As shown in [BFPU98], the estimate of the equivalent control associated with the second
order sliding mode control law can be used to compensate the uncertain terms. Yet, only
an approximate cancellation of the uncertainties can be performed, which allows for a
reduction of the control effort. This approach is now used to design alternative strategies
oriented to improve the performance of Strategies 1 and 2.

Let the discontinuous control input be expressed as

w(t) = γ3wad(t) + γ4wav(t), (3.26)

where γ3, γ4 are positive definite functions, wad is chosen as (3.22) or (3.23) in Strategy 1,
and wav is the average control obtained at the output of a first order filter having the
discontinuous signal wad as input, i.e.,

τ1ẇav(t) + wav(t) = wad (3.27)

τ1 being a suitably chosen time constant. Note that, according to the theory introduced in
[Utk92], and the definition of equivalent control for systems controlled via SOSM control
strategies [BFU98b], wav asymptotically tends to the equivalent control when a second
order sliding mode is enforced. In this strategy, γ3 and γ4 are selected through a weight
tuning mechanism analogous to that in [BFPU98], i.e.,

γ3(t) =


1 if |z(t)| ≥ 1

|z(t)| if γ3min
< |z(t)| < 1

γ3min
if |z(t)| ≤ γ3min

,

(3.28)

γ4 = 1− γ3, (3.29)

where z is the output of a first order filter designed as

τ2ż(t) + z(t) = γ3(t) (w(t)− wav(t)) , (3.30)

with τ2 being a suitably chosen time constant. Note that, the value γ3 = 1 corresponds
to the case in which only the adaptive discontinuous control law of Strategy 1 is applied.
Further, note that γ3min

is set on the basis of the various error sources in filtering which can
be a priori evaluated. In practice, Strategy 3 tends to coincide with Strategy 1 when the
controlled system is far from being in sliding mode. On the other hand, when the sliding
mode is almost reached or even enforced, the major component of the control law (3.26)
is the estimate of the equivalent control. The suitable blend between the adaptive SOSM
control law of Strategy 1 and its filtered version according to (3.27) is realized by the
peculiar switching logic in (3.28), (3.29).
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3.4.1.4 Strategy 4

A further adaptive SOSM control strategy can be attained by composing Strategy 2 with
the mechanism to estimate the equivalent control described in Strategy 3. Let the discon-
tinuous control input be expressed as in (3.26), where wad is chosen as (3.24) or (3.25)
in Strategy 2, and wav is the average control obtained as in (3.27). Moreover, also in this
case, γ3 and γ4 are selected as in (3.28)-(3.30).

3.4.2 Stability Analysis

In this section, the ASSOSM control strategies previously introduced are theoretically
analyzed. Theorems are provided for Strategies 1 and 3. Moreover, comments on the
stability features of Strategy 2 and 4 are also reported.

Making reference to the auxiliary system (3.16), let {Hi}, {gmini} and {gmaxi}, i ∈ N
denote the sequences of relative unknown extremal values of functions h and g, such that

|Hi| ≤ H, gmini ≥ gmin, gmaxi ≤ gmax, (3.31)

with H being the unknown upper bound of function h, and gmin, gmax being the unknown
lower bound and upper bound of function g, respectively. Let tdi be the time instants
when

Wad > max

(
|Hi|
gmini

;
4|Hi|

3gmini − gmaxi

)
i ∈ N, (3.32)

and td be the time instant when (3.32) holds, with |Hi| = H, gmini = gmin and gmaxi =
gmax. Moreover, let trδ be the time instant when the sliding variable reaches a δ-vicinity
of the origin of the auxiliary state-space, and tr be the time instant when the sliding
manifold is finally reached, i.e., σ(t) = σ̇(t) = 0, ∀ t ≥ tr.

With reference to the ASSOSM control strategies proposed in the previous section, the
following results can be proved.

Theorem 3.1. Given the auxiliary system (3.16), applying Strategy 1 with the control
law (3.20), the peak dector in [BFU98b] and the adaptive mechanism in (3.22), then, in a
finite time trδ ≥ td, the auxiliary system state variables ξ1 and ξ2 are ultimately bounded
in a δ-vicinity of the origin of the auxiliary system state-space.

Proof. Two different cases can occur.
Case 1 (|Hi| = H, gmini = gmin and gmaxi = gmax, i ∈ N): In this case, one can distinguish
between two subcases:

Subcase 1.1: Wad(t0) = Wad0 is such that

Wad0 > max

(
H

gmin
;

4H

3gmin − gmax

)
, (3.33)

which implies that td = t0. Then, since the standard convergence condition for the SSOSM
algorithm [BFU98a] is satisfied, the control law (3.20) enforces the generation of a se-
quence of states with coordinates featuring the contraction property expressed by



3.4 Adaptive Suboptimal Second Order Sliding Mode 43

|ξmaxi+1
| < |ξmaxi |, (3.34)

where ξmaxi is the i-th extremal value of variable ξ1. According to [BFU98b], the actual
evolutions of ξ1 and ξ2 differ of O(δ2) and O(δ), respectively, with respect to the ideal
evolutions. This implies that in a finite time trδ ≥ td the distance of the sliding variable
and its first time derivative from the origin of the auxiliary state-space is of O(δ).

Subcase 1.2: Wad(t0) = Wad0 does not satisfy (3.33). Then, the adaptive mecha-
nism (3.22) makes the adaptive gain Wad(t) grow, while the sliding variable increases.
This process lasts until the time instant tdi = td, when the adaptive gain is such that
(3.33) holds. At this point, Subcase 1.1 occurs.
Case 2 (|Hi| < H, gmini > gmin and gmaxi < gmax, i ∈ N): Also in this case two subcases
can be distinguished.

Subcase 2.1: Wad(t0) = Wad0 is such that (3.32) holds. In this subcase, until |h(·)| ≤
|Hi| and gmini ≤ g(·) ≤ gmaxi , the control amplitude is sufficient to dominate the uncertain
terms, so that a contraction, analogous to that described in (3.34) for Subcase 1.1, occurs.
Yet, when |h(·)| > |Hi| and/or g(·) < gmini or g(·) > gmaxi , the auxiliary variable ξ1(t)
tends to increase. If |ξ1(t)| > Ξmax(t), Ξmax(t) as in (3.21), the adaptive mechanism (3.22)
makes the adaptive gain Wad(t) grow until the time instant tdi+1 when

Wad > max

(
|Hi+1|
gmini+1

;
4|Hi+1|

3gmini+1 − gmaxi+1

)
i ∈ N. (3.35)

So, a contraction as in (3.34) occurs again. This mechanism iterates until Hj = H,
gminj = gmin and gmaxj = gmax, j ≥ i+ 1, when Subcase 1.1 occurs.

Subcase 2.2: Wad(t0) = Wad0 does not satisfy (3.32). Then, ξ1(t) tends to increase
until the time instant tdi when the adaptive gain Wad is such that (3.32) holds. At this
point, Subcase 2.1 occurs. ut

Theorem 3.2. Given the auxiliary system (3.16), applying Strategy 1 with the control
law (3.20), the adaptive mechanism in (3.23), and the Levant’s differentiator, assume
that t0 ≥ tLd, tLd being the finite time necessary for the differentiator convergence, then,
in a finite time tr ≥ td ≥ t0, the auxiliary system state variables ξ1 and ξ2 are steered to
the origin of the auxiliary system state-space.

Proof. The proof is analogous to that of Theorem 3.1. The only difference is that the
Levant’s differentiator is used instead of the peak detector in [BFU98b] to detect ξmaxi

with ideal accuracy. This implies that the auxiliary system reaches in a finite time the
origin of the auxiliary state-space, enforcing a second order sliding mode. ut

Remark 3.4. Note that, also in case of Strategy 2, Theorem 3.1 and Theorem 3.2 hold.
The proofs are analogous to the previous ones, with the difference in the mechanism to
tune the amplitude Wad.

Now, by virtue of Theorem 3.1 and Theorem 3.2 also the following result can be proved.
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Fig. 3.3. The two instances of the matched disturbances d used in the example: (a) Scenario 1.
(b) Scenario 2.

Theorem 3.3. Given the auxiliary system (3.16), applying Strategy 3 with the control
law (3.26)-(3.30) and (3.20), the peak detector in [BFU98b] and the adaptive mecha-
nism (3.22), then, in a finite time trδ ≥ td, the auxiliary system state variables ξ1 and ξ2
are ultimately bounded in a δ-vicinity of the origin of the auxiliary system state-space.

Proof. The proof is analogous to that of Theorem 3.1, observing that the saturation level
γ3 = γ3min

in the weight tuning mechanism (3.28)-(3.29) corresponds to the fact that the
discontinuous control (3.20) is never switched off, so that it again guarantees, in a finite
time trδ ≥ td, the reaching of a δ-vicinity of the sliding manifold. ut

Theorem 3.4. Given the auxiliary system (3.16), applying Strategy 3 with the control
law (3.26)-(3.30) and (3.20), the adaptive mechanism in (3.23), and the Levant’s differ-
entiator, assume that t0 ≥ tLd, tLd being the finite time necessary for the differentiator
convergence, then, in a finite time tr ≥ td ≥ t0, the auxiliary system state variables ξ1
and ξ2 are steered to the origin of the auxiliary system state-space, i.e., a second order
sliding mode is enforced.

Proof. The proof is analogous to that of Theorem 3.2, observing again that the saturation
level γ3 = γ3min

in the weight tuning mechanism (3.28)-(3.29) corresponds to the fact that
the discontinuous control (3.20) is never switched off, so that it guarantees that, in a finite
time tr ≥ td (td ≥ t0 ≥ tLd), the reaching of the sliding manifold is attained. This is true
even if the predominant control component, to reduce the control amplitude in steady-
state, is the average control obtained at the output of the first order filter (3.27). ut

Remark 3.5. Theorems 3.3 and 3.4 are valid also for Strategy 4 which differs only for
the adaptive mechanism to tune Wad.
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Fig. 3.4. Strategy 1. (a), (b) Time evolution of the discontinuous auxiliary control w (top) and
of the continuous input u (bottom) in Scenario 1 and 2, respectively. (c), (d) Time evolution of
σ (top) and σ̇ (bottom) in Scenario 1 and 2, respectively.

3.4.3 Illustrative Example

Consider the following uncertain auxiliary system

ξ̇1(t) = ξ2(t)

ξ̇2(t) = cos(ξ1(t))− sin(ξ1(t))ξ2(t) + d(t) + u(t) + w(t)
(3.36)

where d(t) represents an exogenous bounded disturbance. Two instances of d(t) are con-
sidered, namely Scenario 1 and Scenario 2, as illustrated in Fig. 3.3. Note that (3.36) is
a system analogous to (3.16), since it can be written as
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Fig. 3.5. Strategy 3. (a), (b) Time evolution of the discontinuous auxiliary control w (top) and
of the continuous input u (bottom) in Scenario 1 and 2, respectively. (c), (d) Time evolution of
σ (top) and σ̇ (bottom) in Scenario 1 and 2, respectively.

ξ̇1(t) = ξ2(t)

ξ̇2(t) = h(x(t), u(t), d(t)) + gw(t)

u̇(t) = w(t)

(3.37)

with h(x(t), u(t), d(t)) = cos(ξ1(t)) − sin(ξ1(t))ξ2(t) + d(t) + u(t), x(t) = [ξ1, ξ2]T , and
g = 1. For the sake of exposition we illustrate the results obtained by applying only
Strategy 1 (in the version expressed by (3.23) with γ1 = 30 and γ2 = 15), and Strategy 3
(with γ3min

= 0.05, τ1 = 0.5, τ2 = 10, and the same parameters used for Strategy 1).
Figs. 3.4 and 3.5 show the time evolution of the discontinuous control w(t), the continuous
input u(t), the sliding variable σ and its first time derivative σ̇, for both the scenarios
when Strategy 1 and Strategy 3 are applied, respectively.
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3.5 Higher Order Sliding Modes with Optimal Reaching

Taking into account the results presented in [DF09] and referring to the auxiliary system

ξ̇1(t) = ξ2(t)

ξ̇2(t) = ξ3(t)

ξ̇3(t) = h(x(t), t) + g(x(t), t)u(t),

(3.38)

where ξ3 = σ̈, then the so-called robust Fuller’s problem can be formulated as follows

min
u

{
max
h,g

∫ +∞

t0

|σ(t)|νdt
}
, (3.39)

subject to (3.38), (3.5)-(3.6). Assume bounded control |u|∞ ≤ α, and ν being a positive
constant. The underlying idea is that the control law guarantees the best control action
for the worst-case realization of the uncertain terms.

Let

αr := αgmin −H > 0 (3.40)

denote the so-called reduced control amplitude, i.e., the minimum possible amplitude of
|ξ̇3|, for any possible realization of the uncertain terms, with α > 0. The solution to the
robust Fuller’s problem with ν → 0+, in case of Third Order Sliding Mode (3SM) control,
is given by

u = −α


u0 := 0 (σ, σ̇, σ̈) ∈M0

u1 := sign(σ̈) (σ, σ̇, σ̈) ∈M1 \M0

u2 := sign
(
σ̇ + σ̈2u1

2αr

)
(σ, σ̇, σ̈) ∈M2 \M1

u3 := sign(s(σ, σ̇, σ̈)) else,

(3.41)

where

s(σ, σ̇, σ̈) := σ +
σ̈3

3α2
r

+ u2

[
1
√
αr

(
u2σ̇ +

σ̈2

2αr

) 3
2

+
σ̇σ̈

αr

]
, (3.42)

while M0, M1, M2 are defined as

M0 :=
{

(σ, σ̇, σ̈) ∈ R3 : σ = σ̇ = σ̈ = 0
}

M1 :=
{

(σ, σ̇, σ̈) ∈ R3 : σ − σ̈3

6α2
r

= 0, σ̇ + σ̈|σ̈|
2αr

= 0
}

M2 :=
{

(σ, σ̇, σ̈) ∈ R3 : s(σ, σ̇, σ̈) = 0
}
.

(3.43)

The setM1 is the switching line, while the surfaceM2 is referred to as switching manifold
(see Fig. 3.6).

Remark 3.6 (Second order sliding mode controller with optimal reaching). In
[DF09] it is also provided an optimal family of second order switching curves that allow
to make the state of the auxiliary system (e.g. (3.16)) reach, in a finite time, the origin
of the auxiliary state-space, i.e.,

u = −α sign

(
σ +

β(ν)

αr
σ̇|σ̇|

)
, β(ν) ∈

[
1

4
,

1

2

]
. (3.44)
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Fig. 3.6. Sets in case of 3SM algorithm with αr = 1. a switching lineM1. b switching manifold
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3.6 Second Order Sliding Mode Control with Quantized Uncertainty

This section deals with the design of a Second-Order Sliding Mode (SOSM) control al-
gorithm. The novelty of the proposed approach is the design of a nonsmooth switching
line, based on the quantization of the uncertainties affecting the system. The quantized
uncertainty levels allow one to define nested box sets in the auxiliary state space, i.e.,
the space of the sliding variable and its first time derivative, and select suitable control
amplitudes for each set, in order to guarantee the convergence of the sliding variable to
the sliding manifold in a finite time. The proposed algorithm is theoretically analyzed,
proving the existence of an upperbound of the reaching time to the origin through the
considered quantization levels.

3.6.1 Problem Formulation

Consider the single-input system (3.3) affine in the control variable, i.e.,

ẋ = a(x, t) + b(x, t)u

σ = σ(x, t),
(3.45)

where x ∈ Ω (Ω ⊂ Rn bounded) is the state vector, the value of which at the initial time
instant t0 is x(t0) = x0, and u ∈ R is a scalar input subject to the saturation [−α, α],
while a(x(t)) : Ω → Rn, b(x(t)) : Ω → Rn are uncertain functions of class C1(Ω), and
σ(x(t)) : Ω → R of class C2(Ω) is a suitable output function. This function will play
the role of sliding function in the following, that is σ(x(t)) is the variable to steer to
zero in a finite time in order to solve the control problem, according to classical sliding
mode control theory [Utk92]. The sliding function σ(x(t)) has to be selected such that
the following assumption holds.
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Assumption 3.1 (Sliding function). If u(t) in (3.45) is designed so that, in a finite
time tr (ideal reaching time), σ(x(tr)) = 0 ∀x0 ∈ Ω and σ(x(t)) = 0 ∀ t > tr, then
∀ t ≥ tr the origin is an asymptotically stable equilibrium point of (3.45) constrained to
σ(x(t)) = 0.

Assume that (3.45) is complete in Ω and has a uniform relative degree equal to 2. More-
over, assume that system (3.45) admits a global normal form in Ω, i.e., there exists a
global diffeomorphism of the form Φ(x) : Ω → ΦΩ ⊂ Rn,

Φ(x) =

 Ψ(x)
σ(x)

a(x) · ∇σ(x)

 =

(
xr
ξ

)
Ψ : Ω → Rn−2, xr ∈ Rn−2, ξ =

(
σ(x)
σ̇(x)

)
∈ R2 ,

such that,

ẋr = ar(xr , ξ)

ξ̇1 = ξ2

ξ̇2 = h(xr , ξ) + g(xr , ξ)u

y = ξ1

ξ(t0) = ξ0,

(3.46)

with

ar =
∂Ψ

∂x
(Φ−1(xr, ξ))a(Φ−1(xr, ξ))

h = a(Φ−1(xr, ξ)) · ∇
(
a(Φ−1(xr, ξ)) · ∇σ(Φ−1(xr, ξ))

)
g = b(Φ−1(xr, ξ)) · ∇

(
a(Φ−1(xr, ξ)) · ∇σ(Φ−1(xr, ξ))

)
,

where the obvious dependence on time is omitted. Note that, as a consequence of the
uniform relative degree assumption, it yields

g(xr, ξ) 6= 0, ∀ (xr, ξ) ∈ ΦΩ . (3.47)

Since ar, h, g (the latter is assumed to be positive definite, for the sake of simplicity) are
continuous functions and ΦΩ is a bounded set, one has that (3.5), (3.6) hold. Moreover,
the following assumption on the internal dynamics xr is introduced.

Remark 3.7 (Zero dynamics). From Assumption 3.1 it follows that the zero dynamics
ẋr = ar(xr ,0) of system (3.46) is globally asymptotically stable.

Let Assumption 3.1 hold. Relying on (3.46), the control problem to solve is the design of
a feedback control law

u(t) = κ (σ(x(t)), σ̇(x(t))) , (3.48)

such that ∀x0 ∈ Ω, ∃ tr ≥ 0 : σ(x(t)) = σ̇(x(t)) = 0, ∀ t ≥ tr in spite of the uncertainties.
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3.6.2 The Proposed Control Strategy

Making reference to the SOSM control law (3.44) with αr as in (3.40), and β(ν) = 1
2 , we

define a new nonsmooth switching line. The idea is based on the fact that the uncertain
terms h and g, depending on ξ, are quantized relaying on a partition of the auxiliary
system state space into m stripes Bi, i = 1, . . . , m, with

Bi :=
{

(σ, σ̇) ∈ R2 : σi ≤ σ ≤ σi
}
, (3.49)

where σi < 0 and σi > 0 are constants, with σi < σi+1 < 0 and σi > σi+1 > 0,
i = 1, 2, . . . ,m−1. Then, instead of considering unique functions h and g, we can consider
the instances of h and g in the stripes, hereafter denoted as

hBi(xr, ξ) = {h(xr, ξ) : ξ ∈ Bi}
gBi(xr, ξ) = {g(xr, ξ) : ξ ∈ Bi} ,

(3.50)

with i = 1, . . . ,m. Let ∂Bi be the boundaries of the sets Bi, and consider the switching
line included in the ith level as

Si = S+i ∪ S
−
i :=

{
(σ, σ̇) ∈ R2 : σ = − σ̇|σ̇|

2αr,i

}
, (3.51)

where S+i and S−i are the sets of points belonging to Si with σ̇ > 0 and σ̇ < 0, respectively.
For each level i, in order to define the corresponding switching line, one has

αr,i = Gmin,iαi −Hi > 0 (3.52)

where Hi and Gmin,i are positive constants such that

|hBi(xr, ξ)| ≤ Hi
gBi(xr, ξ) ≥ Gmin,i > 0,

(3.53)

with i = 1, . . . ,m.

Assumption 3.2 (Quantized uncertainty). The bounds Hi, Gmin,i are known, with
Hi ≥ Hi+1, and Gmin,i ≤ Gmin,i+1, i = 1, . . . , m− 1.

Then, we select αr,i > αr,i+1, and

αi >
Hi
Gmin,i

, (3.54)

such that αi > αi+1, i = 1, . . . , m− 1.

Remark 3.8 (Control effort). The inequalities αi > αi+1, i = 1, . . . , m − 1, imply
that the effort of the control input fed into the plant is reduced when the auxiliary state
trajectory moves towards the inner levels.
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Fig. 3.7. Switching line S in case of the proposed SOSM algorithm, and the quantization levels.

Define now the box sets as

Zi := Bi ∩
{

(σ, σ̇) ∈ R2 : σ̇i ≤ σ̇ ≤ σ̇i
}
, (3.55)

where σ̇i and σ̇i are obtained as the ordinates of the points given by the intersec-
tion between the boundaries of the set Bi and the switching line of the ith level, i.e.,
{(σi, σ̇i) (σi, σ̇i)} = Si

⋂
∂Bi. Finally, the proposed nonsmooth switching line, as illus-

trated in Fig. 3.7, is defined as

S :=

(
m−1⋃
i=1

Si ∩ (Zi \ Zi+1)

)
∪ (Sm ∩ Zm) , (3.56)

while the quantization levels are

Li = L+
i ∪ L

−
i := Zi \ Zi+1, (3.57)

with i = 1, . . . ,m − 1, Lm = Zm, and L+
i and L−i being the regions on the left and on

the right of the switching line (3.56), respectively (see Fig. 3.7), i.e.,

L+
i :=

{
(σ, σ̇) ∈ Li : σ < − σ̇|σ̇|

2αr,i

}
∪ S+i

L−i :=

{
(σ, σ̇) ∈ Li : σ > − σ̇|σ̇|

2αr,i

}
∪ S−i .

(3.58)

Consider now system (3.46), with the auxiliary state space partitioned as in (3.57). Assume
also that, for (σ, σ̇) ∈ Li, h, g satisfy constraints (3.53). The control parameters αi are
chosen so as to satisfy the constraint (3.54). Then, the control law is defined as
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u(t) = αi signL±i
(3.59)

where

signL±i
=

{
+1 if (σ, σ̇) ∈ L+

i

−1 if (σ, σ̇) ∈ L−i
(3.60)

with i = 1, . . . ,m.

3.6.3 Stability Analysis

In the next Lemma the existence of m invariant regions LI,i is demonstrated.

Lemma 3.1 (Invariant sets). Consider the state-space partitioned into the m regions
defined in (3.57). Assume that the bounds (3.53) hold. Then, all the quantization regions
Li of the auxiliary state-space contain invariant sets LI,i ⊂ Li of the form

LI,i := Li \ {L0,i ∪ L1,i} (3.61)

where

L0,i :=

{
(σ, σ̇) : σ > − σ̇|σ̇|

2αr,i
+ σi, σ̇ > 0

}
L1,i :=

{
(σ, σ̇) : σ < − σ̇|σ̇|

2αr,i
+ σi, σ̇ < 0

}
.

(3.62)

Moreover, the sets LI,i are the maximum obtainable domains of attraction for the given
switching sets.

Proof. The proof of the Lemma follows from [IRF16], where it is proved that, assuming
σ(t0) = σ0 ∈ L0,i, in presence of the maximum realization of the uncertainties, the system
will move on a parabolic arc, the equation of which is the following

σ =
σ̇|σ̇|
2αr,i

+ σi + ε (3.63)

with ε > 0 (the case with σ0 ∈ L1,i is specular). Then, it is easy to see that starting inside
L0,i or L1,i, this arc intersects the σ-axis outside Li, and one can conclude that LI,i are
the maximum regions of attraction. ut

In the next Theorem, the finite-time stability property of the controlled auxiliary system
is proved by exploiting the bang-bang principle [AF66]. Specifically, an explicit expression
for the convergence time of the auxiliary trajectory to the origin of the auxiliary state
space is found.

Theorem 3.5 (Finite time convergence). Given system (3.45) controlled via (3.59),
such that for the worst possible realization of the disturbance terms Lemma 3.1 holds and
the trajectory (σ, σ̇) ∈ LI,i, ∀ i = 1, . . . , m and ∀ t ≥ t0, then, the sliding function σ and
its first time derivative σ̇, i.e., ξ1 and ξ2 in the auxiliary system (3.46), are steered to
zero in a finite time tr.
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Proof. The proof of the convergence of the system trajectory to the origin of the auxiliary
state space does not depend on the number of box sets, but directly follows from the
results presented in [DF09, Theorem 2]. More specifically, when the system trajectory
reaches the inner level Lm, the control law (3.59) coincides with the second order sliding
mode control law with optimal reaching introduced in [DF09], so that the finite time
convergence to the origin of the controlled system is guaranteed as shown in [DF09].
Consider the auxiliary system (3.46) with the worst-case realization of the uncertain
terms and controlled by applying the control input (3.59), then the system dynamics can
be written as the following double integrator plant, i.e.,

ξ̇1(t) = ξ2(t)

ξ̇2(t) = ur(t)
(3.64)

in which ur = (αr,i/αi)u implicitly takes into account the effect of the disturbance terms
in the generic region Li. Let (0, 0) = (ξ1(tr), ξ2(tr)), where tr is the reaching time
to the origin, given a certain initial condition, by using the control law (3.59). From
system (3.64), integrating backward from τi to t, τi being the initial time instant within
the ith region, since the control law assumes constant value inside each region Li, one has

ξ2(t) = ξ2(τi) + ur(t− τi) (3.65)

ξ1(t) = ξ1(τi) + ξ2(τi)(t− τi) +
1

2
ur(t

2 + τ2i )− urτit. (3.66)

Consider to start from the external region L1 and to reach S−1 . For the sake of brevity
only the cases starting on the right of the nonsmooth switching line will be considered,
that is the case in which the initial sign of the control law is negative (the opposite case
is specular). Three different steps can be distinguished.

Step 1, Case 1 ((σ, σ̇) ∈ L−1 \ S
−
1 ). The initial control ur = −αr,1 is applied to drive

the state starting from (ξ1(t0), ξ2(t0)) to the switching line S−1 . Let τs,1 denote the time
instant when S−1 is attained and the control switches to ur = αr,1. Note that for ξ2 < 0 the
switching line has the form ξ1 = ξ22/(2αr,1). From equation (3.65), squaring and dividing
for 2αr,1, one has

ξ22(t)

2αr,1
=
ξ22(τ1)

2αr,1
+
αr,1

2
(t2 + τ2i − 2τ1t)− ξ2(τ1)(t− τ1). (3.67)

Instead from equation (3.66) one has

ξ1(t) = ξ1(τ1) + ξ2(τ1)(t− τ1)− αr,1
2

(t2 + τ2i ) + αr,1τ1t. (3.68)

Subtracting (3.67) to (3.68), one has

ξ22(τ1)

2αr,1
= ξ1(τ1) + 2ξ2(τ1)(t− τ1)− αr,1(t2 + τ2i ) + 2αr,1τ1t. (3.69)

From equation (3.69), one obtains

αr,1t
2 − 2(ξ2(τ1) + αr,1τ1)t+

(
2ξ2(τ1)τ1 + αr,1τ

2
i − ξ1(τ1) +

ξ22(τ1)

2αr,1

)
= 0 . (3.70)
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Fig. 3.8. Performance of a perturbed double integrator controlled via the proposed nonsmooth
switching line based SOSM algorithm. The bounds of the uncertainties are H1 = 8, H2 = 3.5,
H3 = 3.3, Gmin,1 = Gmin,2 = Gmin,3 = 1, while the initial conditions are ξ0 = [ξ1(0), ξ2(0)] =
[6, 1.7]T .

Solving (3.70) and considering the positive root to make τs,1 positive for all ξ2(τ1), the
switching time τs,1 is

τs,1 =
ξ2(τ1)

αr,1
+ τ1 +

√
ξ1(τ1)

αr,1
+
ξ22(τ1)

2α2
r,1

. (3.71)

From equation (3.65), one has that

ξ2(τs,1) = ξ2(τ1)− αr,1(τs,1 − τ1) . (3.72)

Assume now to reach the border of the region L2, that is σ̇2, with ur = αr,1 so as to have

ξ2(T1) = ξ2(τs,1) + αr,1(T1 − τs,1) = σ̇2 . (3.73)

Finally, with τ1 = t0, the reaching time is

T1 =
σ̇2

αr,1
+
σ̇(t0)

αr,1
+ t0 + 2

√
σ(t0)

αr,1
+
σ̇2(t0)

2α2
r,1

. (3.74)

Step 1, Case 2 ((σ, σ̇) ∈ S−1 ). From equation (3.65), one has that, by applying ur =
αr,1,

ξ2(T1) = ξ2(τ1) + αr,1(T1 − τ1) . (3.75)

Assume now to reach the border of the region L2, that is σ̇2, so as to have

ξ2(T1) = ξ2(τ1) + αr,1(T1 − τ1) = σ̇2 . (3.76)
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Then, with τ1 = t0, the reaching time is

T1 =
σ̇2

αr,1
− σ̇(t0)

αr,1
+ t0 . (3.77)

Step 2 ((σ, σ̇) ∈ L+
2 ). From equation (3.65), one has that, by applying ur = αr,2,

ξ2(T2) = ξ2(τ2) + αr,2(T2 − τ2) . (3.78)

Assume now to reach the border of the region L3, that is σ̇3, so as to have

ξ2(T2) = ξ2(τ2) + αr,2(T2 − τ2) = σ̇3 . (3.79)

Consider that τ2 = T1 so that ξ2(T1) = σ̇2, then the reaching time is

T2 =
σ̇3

αr,2
− σ̇2

αr,2
+ T1 . (3.80)

Then, for all the regions Li i = 2, . . . ,m− 1, it is possible to write

Ti =
σ̇i+1

αr,i
− σ̇i
αr,i

+

i−1∑
j=1

Tj . (3.81)

Step 3 ((σ, σ̇) ∈ L+
m \ S+m). Since the target is the origin, the net time is

Tm = − σ̇(Tm−1)

αr,1
+ Tm−1 + 2

√
−σ(Tm−1)

αr,m
+
σ̇2(Tm−1)

2α2
r,m

. (3.82)

Note that σ̇(Tm−1) = σ̇m, so that one has

Tm = − σ̇m
αr,m

+ Tm−1 + 2

√√√√−σ(Tm−1)

αr,m
+

σ̇
2
m

2α2
r,m

. (3.83)

Finally, one can conclude that the convergence to the origin, in the worst case of un-
certainty, occurs in a finite time Tm. In general, this implies a finite convergence time
tr ≤ Tm, which concludes the proof. ut

Note that, the finite time tr is given by summing the time intervals needed to pass from
the external region to the inner one. Given Ti, i = 1, . . . ,m − 1 as the minimum time
inside each quantization region, the whole convergence time is not the minimum one but
an upperbound in case of the maximum realization of the uncertainty. Fig. 3.8 shows the
performance of a perturbed chain of integrators in the case of the worst realization of
the uncertainties. The state trajectory belongs to each region at most in one switch, and
the convergence time can be explicitly estimated according to Theorem 3.5, resulting in
4.403 s compared to the actual one equal to 4.404 s. Since Theorem 3.5 has been proved
in the continuous time, implying infinite frequency in the switched signals, the difference
between the theoretical convergence time and the practical one is due to the use of the
fixed step solver in simulation, which instead allows only for finite switching frequency.
This slows down the sliding motion on the switching line of the innermost set.
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Fig. 3.9. Illustrative example. (a) Auxiliary state space trajectory and (b) time evolution of
the control law u when the proposed nonsmooth algorithm (3.59) is applied (gray) and when the
control algorithm (3.44) is used (black).

3.6.4 Illustrative Example

In this section, in order to assess the properties of the proposed nonsmooth SOSM control
strategy, an illustrative example is briefly discussed. Consider the nonlinear uncertain
system,

ẋ1(t) = x2(t) + x3(t)

ẋ2(t) = x3(t)

ẋ3(t) = 0.5 cos(x2(t)) + u(t)

y(t) = x1(t),

(3.84)

where the initial condition is x(0) = [6 0.1 − 1.8 ]T . Then, the system is stabilized by
choosing the sliding variable σ(x(t)) as the controlled variable y(t). Note that, (3.84) has
a uniform relative degree equal to 2, and it admits a global normal form, i.e., there exists
the global diffeomorphism

Φ(x(t)) =

 x2(t)
x1(t)

x2(t) + x3(t)

 =

xr(t)ξ1(t)
ξ2(t)

 ,

such that

ẋr(t) = ξ2(t)− xr(t)
ξ̇1(t) = ξ2(t)

ξ̇2(t) = ξ2(t)− xr(t) + 0.5 cos(xr(t)) + u(t)

y(t) = ξ1(t)

ξ(0) = ξ0,

(3.85)
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ξ0 = [6 − 1.7 ]T being the initial condition. Relying on systems (3.84)-(3.85) it is possible
to set the bounds in (3.5)-(3.6) equal to H = 8, gmin = gmax = 1. We assume to known
that the uncertainty is quantized in 4 levels, so that m = 4 with H1 = 8, H2 = 4, H3 =
3, H4 = 2, Gmin,1 = Gmin,2 = Gmin,3 = Gmin,4 =1, and the corresponding nonsmooth
switching line (see Fig. 3.9) is derived as in (3.56), with α1 = 20, α2 = 11, α3 = 6 and
α4 = 3.5, respectively.

It is useful to compare the proposed algorithm with the already published control law with
optimal reaching (3.44). The trajectory of the auxiliary system and the time evolution
of the control signal are reported in Fig. 3.9. More specifically, in Fig. 3.9 (b) the main
advantage of the proposed approach with respect to (3.44) clearly appears, in terms of
control effort which is progressively reduced, according to the quantized levels. Of course,
this implies that the convergence finite time is longer. Hence, although the reaching time
is increased, the sliding mode is ensured even progressively reducing the gain through the
levels, which is beneficial in many practical mechanical and electromechanical cases.

3.7 Conclusions

In this chapter we have seen the design of HOSM control laws and, in particular, the
explicit forms of second order and third order sliding mode already published in the
literature. After some preliminaries, the ASSOSM has been presented. This algorithm
represents one of the contribution of the present work, fulfilling the requirement of relaxing
the typical assumption on the knowledge of the bounds of the uncertainties. Moreover, a
novel SOSM characterized by a nonsmooth switching line, based on the quantization of
the uncertainties has been presented.
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Practical Sliding Modes in Networked Control Systems

Abstract. This chapter presents novel SMC strategies of Event-Triggered (ET) type for a
class of nonlinear systems affected by uncertainties and external disturbances. By virtue of
its ET nature, the proposed control strategies are particularly appropriate for Networked
Control Systems (NCSs), i.e., feedback systems including communication networks. The
objective of the proposed control schemes is indeed to reduce the number of data trans-
missions over the communication network, in order to avoid problems typically due to
the network congestion such as jitter and packet loss. In particular, an ET-SM control
scheme and an ET-SOSM control scheme are designed for a class of nonlinear uncertain
NCSs, guaranteeing satisfactory performance of the controlled system even in presence of
delayed transmissions, and avoiding the notorious Zeno behaviour.

4.1 Preliminaries on Event-Triggered Control

As discussed in the previous chapters, SMC is considered a powerful strategy able to
guarantee satisfactory performance in terms of robustness of the controlled system even
in presence of unavoidable modelling uncertainties and external disturbances [Utk92,
Utk93, ES98, UGS99]. The same robustness property holds for SOSM control method-
ology [BFU97, BFPU98, SEFL14a, BFLU99, BFU98b, DF09, BFU98a, RF10], in which
not only the sliding function but also its first time derivative are steered to zero in a finite
time. Moreover, by virtue of its low complexity, SMC methodology represents a very easy
to implement solution adequate also for Networked Control Systems (NCSs), i.e., feedback
systems including communication networks [HNX07, WL08, LXC+07, GC10, ZBP01].

In Networked Control Systems (NCSs), critical problems such as jitter, packet loss and
delayed transmissions can occur specially when the network is congested [LR90, NB96],
so determining the worsening of the performance of the controlled system. For these rea-
sons, the need of designing robust control schemes able to reduce data transmissions over
the network, while guaranteeing satisfactory performance of the controlled system even
in presence of uncertainties and delayed transmissions becomes mandatory.

In the literature, a methodology which is very valued in designing control schemes ca-
pable of reducing data transmission effort over communication networks is the so-called

59
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Event-Triggered (ET) control [Tab07, MT08, Ast08, HSVDB08, YA11, YX13, HJT12,
PSW13, DTPH17]. Differently from traditional time-triggered control implementation,
where periodic data transmissions occur, ET control schemes enable the communication
between the plant and the controller (feedback path), and between the controller and
the actuator (direct path) only when some triggering condition is satisfied (or violated
depending on the adopted logic). For this reason, ET control approach can significantly
reduce the number of data transmissions, avoiding the congestion of the network and its
possible unavailability. Obviously, there exists a trade-off between the performance of the
controlled system and the communication rate [DGJ13]. However, in spite of aperiodic
data transmissions, satisfactory stability properties of the controlled system have been
studied in the literature. Specifically, in [Tab07], it was proved that in case of nonlinear
systems, relying on threshold-based ET algorithm, the Input-to-State Stability of the con-
trolled system can be guaranteed by ensuring a certain decrease in a suitable Lyapunov
function.

Recently, in the literature, the basic ET approach has been developed so as to take into ac-
count the knowledge of the nominal model of the plant. This has given raise to the so-called
Model-Based ET (MB-ET) control [GA13, MA04]. This methodology has been also ex-
ploited together with SMC, and Model Predictive Control (MPC), [IF16, FIM14, FSS15],
even in case of Mixed Logical Dynamical (MLD) systems [FSS14]. In particular, the use
of SMC in conjunction with ET implementation is justified by the necessity of robustness
in front of modelling uncertainties and external disturbances which can naturally affect
the system [BB16].

4.2 Event-Triggered Sliding Mode Control

First, an ET-SMC scheme is presented for nonlinear uncertain systems with relative degree
equal to one, including communication networks that can be unavailable. The proposed
ET-SMC strategy is based on a triggering condition that depends on the sliding function
associated with the controlled system and on the size of a pre-specified boundary layer of
the sliding manifold. The proposed control scheme is theoretically analyzed in the chapter,
proving that the sliding function is ultimately bounded in the desired boundary layer,
even in presence of delayed transmissions. Moreover, in order to avoid the notorious Zeno
behaviour [JLSE99, ATS06], the existence of a lower bound for the time elapsed between
consecutive triggering events is proved.

4.2.1 Problem Formulation

Consider a plant4 (process and actuator) which can be modelled as

ẋ = a(x) + b(x)u+ dm(x), (4.1)

where x ∈ Ω (Ω ⊂ Rn bounded) is the state vector, the value of which at the initial
time instant t0 is x(t0) = x0, and u ∈ R is the control variable, while a : Ω → Rn and

4For the sake of simplicity the dependence of all the variables on time t is omitted when
obvious.
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b : Ω → Rn are uncertain functions of class C0. Moreover, system (4.1) is subject to
the external disturbance dm : Ω × R → Rn. To permit the controller design in the next
sections, the following assumption is made on dm.

Assumption 4.1 (Matched uncertainty). The external disturbance dm is matched,
i.e.,

dm(x) = b(x)d,

where d is unknown but bounded as

d ∈ D ⊂ R,

Dsup being a known positive constant.

Define now a suitable output function: the so-called sliding function.

Definition 4.1 (Sliding function). σ : Ω → R of class C1 is a sliding function for
system (4.1) provided that the pair (σ, u) has the following property: if u in (4.1) is
designed so that, in a finite time t?r ≥ t0, ∀x0 ∈ Ω, σ = 0 ∀ t ≥ t?r , then ∀ t ≥ t?r the
origin is an asymptotically stable equilibrium point of (4.1) constrained to the sliding
manifold σ = 0.

Now, regarding the sliding function σ as the controlled variable associated with sys-
tem (4.1), assume that system (4.1) is complete in Ω and has a uniform relative degree
equal to 1. The following definitions are introduced.

Definition 4.2 (Ideal sliding mode). Given t?r ≥ t0 (ideal reaching time), if ∀x0 ∈
Ω, σ = 0 ∀ t ≥ t?r , then an ideal sliding mode of system (4.1) is enforced on the sliding
manifold σ = 0.

Definition 4.3 (Practical sliding mode). Given tr ≥ t0 (practical reaching time), if
∀x0 ∈ Ω, |σ| ≤ δ ∀ t ≥ tr, then a practical sliding mode of system (4.1) is enforced in a
vicinity of the sliding manifold σ = 0.

Moreover, assume that system (4.1) admits a global normal form in Ω, i.e., there exists a
global diffeomorphism (see [Kha96]) of the form Φ = [Ψ , σ]T = [xr, ξ]

T , with Φ : Ω → ΦΩ
(ΦΩ ⊂ Rn bounded), and Ψ : Ω → Rn−1, xr ∈ Rn−1, ξ ∈ R, such that

ẋr = ar(xr, ξ) (4.2)

ξ̇ = h(xr, ξ) + g(xr, ξ)(u+ d), (4.3)

with
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ar (xr, ξ) =
∂Ψ

∂x

(
Φ−1 (xr, ξ)

)
a
(
Φ−1 (xr, ξ)

)
h (xr, ξ) = a

(
Φ−1 (xr, ξ)

)
· ∇σ

(
Φ−1 (xr, ξ)

)
g (xr, ξ) = b

(
Φ−1 (xr, ξ)

)
· ∇σ

(
Φ−1 (xr, ξ)

)
.

Note that, as a consequence of the uniform relative degree assumption, one has that g 6= 0.
Since ar, h, g are continuous functions and ΦΩ is a bounded set, one has also that

|h(xr, ξ))| ≤ H
g(xr, ξ)) ≤ gmax,

(4.4)

H and gmax being known positive constants. Moreover, the following assumption is made
on the uncertain function g.

Assumption 4.2 (Bounded uncertainty). The uncertain function g can be lower
bounded as

g(xr, ξ)) ≥ gmin, (4.5)

gmin being a known positive constant.

Now, a preliminary control problem can be formulated.

Problem 4.1. Let Assumptions 4.1 and 4.2 hold. Relying on (4.1)-(4.5), design a feedback
control law

u? = κ(σ), (4.6)

with the following property: ∀x0 ∈ Ω, ∃ t?r ≥ t0 such that σ = 0 ∀ t ≥ t?r , in spite of the
uncertainties.

Note that the solution to Problem 4.1 is a control law capable of robustly enforcing an
ideal sliding mode of system (4.1) in a finite time, according to Definition 4.2.

In practical implementation the state is sampled at certain time instants t = {t0, t1, . . . , tk,
. . . }, k ∈ N, and the control law, computed as u(tk) = κ(σ(tk)), is held constant between
two successive samplings. This kind of implementation, called sample-and-hold, can be
expressed as

u = u(tk) ∀ t ∈ [tk, tk+1[ , k ∈ N, (4.7)

where tk, tk+1 ∈ T , T being the set of the triggering time instants. In conventional im-
plementation, the sequence {tk}k∈N is typically periodic and the time interval tk+1 − tk,
is a priori fixed. The control approach, in that case, is classified as time-triggered.

In this chapter, instead of relying on time-triggered executions, we introduce a trigger-
ing condition which depends on the sliding function, so that the state of the auxiliary
system is transmitted over the communication network only when such a condition is
verified. This implies that also the control law is updated and sent to the actuator of
the plant only at the triggering time instants. In the literature, this control approach
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is known as Event-Triggered (ET) control approach. Note that, in this work, we do not
adopt a mathematical model of the network, but we design the control strategy aiming
at reducing data transmission. This in order to avoid the network congestion and limit
its negative consequences, such as packets drop. However, in order to take into account
possible malfunctions, we suppose that the presence of the communication network can
cause delayed transmissions due to the network unavailability. More precisely, we suppose
that data transmissions could occur with time-varying delay ∆d and ∆f in the direct and
feedback path, respectively. Let the overall time delay be ∆ = ∆d + ∆f . The following
assumption is made on ∆.

Assumption 4.3 (Time delay). The overall time-varying delay ∆ can be bounded as

∆ ≤ ∆max, (4.8)

∆max being a known positive constant.

Moreover, we suppose that the plant is equipped with a particular zero-order-hold (in-
dicated in Fig. 4.1 with ZOH∗), such that the control variable computed at the last
triggering time instant tk is held constant ∀ t ∈ [tk, tk+1[. Then, this approach tends to
reduce the transmissions over the network both in the direct path (from the controller to
the plant) and in the feedback path (from the sensor to the controller).

Taking into account the previous considerations, we can now move from Probelm 4.1 and
formulate the problem which will be actually solved in this chapter.

Problem 4.2. Let Assumptions 4.1-4.3 hold. Relying on (4.1)-(4.5), design a feedback
control law

u = u(tk) = κ(σ(tk)) ∀ t ∈ [tk, tk+1[, k ∈ N, (4.9)

with the following property: ∀x0 ∈ Ω, ∃ tr ≥ t0 such that |σ| ≤ δ ∀ t ≥ tr , in spite of
the uncertainties, δ being a positive constant arbitrarily set.

Note that the solution to Problem 4.2 is an ET control law capable of enforcing a practical
sliding mode of system (4.1) in a finite time, according to Definition 4.3.

Before illustrating the features of the proposed control scheme, relying on Problem 4.2
let us introduce the following definition.

Definition 4.4 (Boundary layer). The boundary layer for the sliding function is

Bδ :=
{
σ ∈ R : |σ| ≤ δ

}
, (4.10)

δ being a positive constant arbitrarily set.
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Fig. 4.1. The proposed event-triggered sliding mode control scheme.

4.2.2 The Proposed Control Scheme

The control scheme proposed to solve Problem 4.2 is reported in Fig. 4.1, where the
dashed path means that the corresponding signals are transmitted over the network only
at the triggering time instants tk. The control scheme contains two key blocks: the Smart
Sensor and the Controller.

The Smart Sensor

The considered sensor is smart in the sense that it has some computation capability, i.e.,
it is able to compute the sliding function and verify the following triggering condition:

|σ| = δ, (4.11)

δ being a positive constant arbitrarily set (see Definition 4.4).

The dashed path in Fig. 4.1 is enabled only when (4.11) holds, i.e., when the Smart Sensor
generates a triggering signal. More precisely, when (4.11) is verified, the actual value of
the sliding function σ is transmitted by the sensor over the network, so that the control
law u is updated and sent to the plant.

The Controller

Relying on (4.9)-(4.11), the control law that we propose to solve Problem 4.2 can be
expressed as

u = u(tk) = −Umax sign(σ(tk)) ∀ t ∈ [tk, tk+1[, k ∈ N, (4.12)

where
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Umax >
F

Gmin
+Dsup (4.13)

is a positive value suitably selected in order to enforce a sliding mode. Note that the
control signal is transmitted by the Controller to the plant (through the communication
network) only when (4.11) holds.

4.2.3 Stability Analysis

In this section, the stability properties of system (4.1) controlled via the proposed ET-
SM control strategy are analyzed. To this end, it is convenient to introduce the following
definitions.

Definition 4.5 (Attractiveness). The set Bδ is said to be attractive if the solution
to the auxiliary system (4.3) , ∀σ ∈ R \ Bδ, satisfies the so-called η-reachability condi-
tion [Utk92, ES98] (see Subsection 2.2.5)

σσ̇ ≤ −η|σ| . (4.14)

Definition 4.6 (Ultimately boundedness). The solution σ to the auxiliary sys-
tem (4.3) is said to be ultimately bounded with respect to the set Bδ if

∀x0 ∈ Ω, ∃ tr ≥ t0 : σ ∈ Bδ ∀ t ≥ tr . (4.15)

Definition 4.7 (Positively invariant set). Let σ be the solution to the auxiliary sys-
tem (4.3) starting from the initial condition σ(t0). The set Bδ is said to be positively
invariant if

σ(t0) ∈ Bδ ⇒ σ ∈ Bδ ∀ t ≥ t0 . (4.16)

Definition 4.8 (Practical stability). In analogy with [LSL12], given the bounded sets
Ω, Ωδ ⊂ Ω, then, the origin of system (4.1) is said to be practically stable with respect
to (t?r , tr,x, Ω,Ωδ,D) if

∀ t?r ≥ t0, ∀ d ∈ D, ∀x0 ∈ Ω, ∃ tr,x ≥ t?r : x ∈ Ωδ ∀ t ≥ tr,x . (4.17)

Before showing the theoretical results, the following assumption is made on the initial
condition of the auxiliary system (4.3).

Assumption 4.4 (Initial conditions). Given the auxiliary system (4.3), let the sign of
the initial condition σ(t0) be known.

Now, making reference to the auxiliary system (4.3) the following results can be proved.
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Lemma 4.1 (Finite time convergence to Bδ). Let Assumptions 4.1, 4.2 and 4.4
hold with |σ(t0)| > δ, δ being a positive constant arbitrarily set. Given the auxiliary
system (4.3) controlled by (4.12), (4.13) with the triggering condition (4.11), then, the
boundary layer Bδ is attractive for the solution σ to (4.3).

Proof. Consider the η-reachability condition (4.14). Since Assumption 4.4 holds, one has
that sign(σ) = sign(σ(t0)),∀ t ∈ [t0, t1], t1 being the first triggering time instant. Making
reference to system (4.3), since σ sign(σ) = |σ|, it yields

σσ̇ = σ (h− gUmax sign(σ) + gd)

≤ (H − gmin(Umax −Dsup)) |σ|,
(4.18)

By virtue of inequality (4.13), one can easily verify that (4.14) holds with η = −(H −
gmin(Umax − Dsup)) > 0. Then, integrating the inequality σσ̇ ≤ −η|σ| from t0 = 0 to tr,
one has

tr ≤
|σ(0)| − δ

η
, (4.19)

implying the finite time convergence of the sliding function to Bδ. Moreover, one can also
conclude that the first transmission over the network is executed at the triggering time
instant t1 = tr. ut

Remark 4.1. Note that, by virtue of Lemma 4.1, the proposed control solution avoids
to transmit the value of σ and u over the network during the entire reaching phase, i.e.,
till the sliding function enters the boundary layer Bδ at the time instant t1 = tr.

Lemma 4.2 (Invariance of Bδ). Let Assumptions 4.1, 4.2 and 4.4 hold with |σ(t0)| ≤ δ,
δ being a positive constant arbitrarily set. Given the auxiliary system (4.3) controlled
by (4.12), (4.13) with the triggering condition (4.11), then, the boundary layer Bδ is a
positively invariant set for the solution σ to (4.3).

Proof. Consider two different cases in order to prove the result.
Case 1 (|σ| < δ). In this case, according to the proposed ET-SMC strategy, ∀ t ∈

[tk, tk+1[ the control law is not updated, i.e., its sign does not change. This implies that
the sliding function evolves in the boundary layer Bδ until it reaches its border, so that
Case 2 occurs.

Case 2 (|σ| = δ). In this second case, the triggering condition is verified. Then, the
value of σ is sent to the controller and the control law is updated. In particular, the sign
of the control law changes, and the sliding function is steered towards the interior of Bδ,
so that Case 1 occurs again. This implies that ∀σ(t0) ∈ Bδ, then, ∀ t ≥ t0, σ ∈ Bδ, i.e.,
Bδ is a positively invariant set, according to Definition 4.7. ut

Now, relying on Lemmas 4.1 and 4.2, one can prove the major result concerning the
evolution of the auxiliary system (4.3) controlled via the proposed strategy.
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Theorem 4.1 (Evolution of the auxiliary system). Let Assumptions 4.1, 4.2 and
4.4 hold, and let δ be a positive constant arbitrarily set. Given the auxiliary system (4.3)
controlled by (4.12), (4.13) with the triggering condition (4.11), then, the solution σ to
(4.3) is ultimately bounded with respect to Bδ.

Proof. The proof is a straightforward consequence of Lemma 4.1 and Lemma 4.2. In fact,
by virtue of Lemma 4.1, applying the control law (4.12), (4.13) there exists a time instant
tr when σ enters Bδ, i.e., the triggering condition (4.11) is verified. Then, by virtue of
Lemma 4.2, ∀ t ≥ tr, σ remains in Bδ, which implies that it is ultimately bounded with
respect to Bδ. ut

Remark 4.2 (Approximability property). Note that the proposed control scheme,
because of its ET nature, cannot generate an ideal sliding mode (see Definition 4.2), but
only a practical sliding mode (see Definition 4.3). However, by virtue of the Approximabil-
ity Theorem 2.1, it can be proved that also the state of system (4.1) is ultimately bounded.
This implies that Problem 4.2 is equivalent to the problem of designing a bounded control
such that, according to Definition 4.8, the origin of system (4.1) is practically stable.

Now, since the triggering time instants are implicitly defined and only known at the
execution times, we prove the existence of a lower bound for the so-called inter-execution
or inter-event times [Tab07]. More specifically, let τmin be the minimum inter-event time,
such that tk+1 − tk ≥ τmin for any k ∈ N+.

Theorem 4.2 (Minimum inter-event time). Let Assumptions 4.1, 4.2 and 4.4 hold,
and let δ be a positive constant arbitrarily set. Given the auxiliary system (4.3) controlled
by (4.12), (4.13) with the triggering condition (4.11), then, ∀ t > tr the inter-event times
are lower bounded by

τmin =
2δ

H + gmax(Umax +Dsup)
. (4.20)

Proof. Since the value of σ and u are transmitted over the network only when the trig-
gering condition (4.11) is verified, the theorem will be proved by computing the time
interval tk+1 − tk that σ takes to evolve from −δ to δ with the maximum velocity, i.e.,
σ̇max = H + gmax(Umax +Dsup). Then, one has

σ(tk+1)− σ(tk) =

∫ tk+1

tk

σ̇max dτ

δ − (−δ) = σ̇max(tk+1 − tk)

2δ = (H + gmax(Umax +Dsup))τmin, (4.21)

where the equality tk+1 − tk = τmin follows from the assumption that σ evolves with
constant maximum velocity σ̇max. Finally, from (4.21) one obtains (4.20), which proves
the theorem. ut
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Remark 4.3 (Zeno behaviour). Note that Theorem 4.2 guarantees that the time
elapsed between consecutive triggering events does not become arbitrarily small, avoid-
ing the notorious Zeno behaviour [JLSE99, ATS06]. In practical cases, this result is very
useful to assess the feasibility of the proposed scheduling policy.

Taking now into account the possible occurrence of delayed data transmissions, due to the
presence of communication networks, the following result can be proved. More precisely,
relying on Problem 4.2 we will prove that by modifying the triggering condition (4.11),
the auxiliary state-space trajectory is ultimately bounded with respect to the desired
boundary layer Bδ.

Theorem 4.3 (Delayed communications). Let Assumptions 4.1-4.4 hold. Given the
auxiliary system (4.3) controlled by (4.12), (4.13) with the triggering condition (4.11),
then, for any desired

δ > (H + gmax(Umax +Dsup))∆max,

the triggering condition
|σ| = δ′,

with
δ′ = δ − (H + gmax(Umax +Dsup))∆max,

enforces the following inequality

|σ| ≤ δ ∀ t ≥ t′r, (4.22)

t′r being the reaching time instant of the boundary layer

Bδ′ :=
{
σ ∈ R : |σ| ≤ δ′

}
.

Proof. In analogy with Lemma 4.1, one can easily prove that there exists a time instant
t′r when σ enters the inner boundary layer Bδ′ . Suppose now that the transmission of
σ(tk) = δ′ occurs with the maximum possible time delay ∆max. Moreover, assume that the
sliding function evolves with constant maximum velocity σ̇max = H+ gmax(Umax +Dsup).
In order to enforce inequality (4.22), we impose that σ(tk +∆max) = δ. Then, one has

σ(tk +∆max)− σ(tk) =

∫ tk+∆max

tk

σ̇max dτ

δ − δ′ = σ̇max∆max

δ′ = δ − (H + gmax(Umax +Dsup))∆max, (4.23)

which concludes the proof. ut

Note that in case of delayed transmissions, the lower bound τmin can be obtained by using
δ′ instead of δ in Theorem 4.2.
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Fig. 4.2. Event-triggered sliding mode control. (a) Time evolution of the sliding function, with
visualization of the boundary layer Bδ of size δ. (b) Time evolution of the system states x1 and
x2. (c) Inter-event times τk = tk+1− tk, with visualization of the minimum inter-event time τmin.
(d) Time evolution of the sliding function in presence of delayed transmissions, with visualization
of both the desired boundary layer Bδ of size δ, and the boundary layer Bδ′ of size δ′ adopted
for the triggering condition.

4.2.4 Illustrative Example

In this section, an illustrative example is briefly discussed. Consider the perturbed double
integrator

ẋ1 = x2

ẋ2 = u+ d .
(4.24)

with d = Dsup sin(t), Dsup = 3. Let the initial condition be x(0) =
[
1 1
]T

, and the sliding
function be σ = x1 + x2. In the triggering condition (4.11) the threshold is δ = 0.2.
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Then, the control amplitude Umax is selected equal to 5. In Fig. 4.2 the time evolution
of the sliding function σ is shown. Note that, according to Theorem 4.1, σ is ultimately
bounded with respect to the boundary layer Bδ, the size of which is δ. In Fig. 4.2 the
time evolution of the system states x1, x2, and the inter-event times τk = tk+1 − tk,
are also shown. In particular, one can appreciate that the minimum inter-event time
τmin = 0.0404 s, according to Theorem 4.2, is a lower bound for the inter-event times.
Moreover, considering a sampling time Ts = 1× 10−4 s, and a simulation time T =
10 s, the number of transmissions is 101, i.e., 99.9% less than the number required by
the conventional (i.e., time-driven) SMC implementation. Obviously, reducing the size of
the boundary layer implies the improvement of the convergence accuracy. Yet, a larger
number of transmissions could be required. The correct balance between convergence
accuracy and transmission load has to be searched depending on the specific application.
Finally, in Fig. 4.2 the time evolution of the sliding function σ in presence of transmissions
with maximum time delay ∆max = 0.005 s acting from t = 1 s to t = 4 s is shown. Note
that, by selecting δ′ = 0.151 (see Theorem 4.3), even in presence of maximum time delay,
σ is ultimately bounded with respect to the desired boundary layer Bδ. In this case, the
number of transmissions is 127.

4.3 Event-Triggered Second Order Sliding Mode Control

The ET-SOSM control scheme that we propose now is based on two triggering conditions
and two control laws that depend not only on the sliding function, but also on its first
time derivative. The stability properties of this control strategy are theoretically analyzed
proving that the sliding function and its first time derivative are ultimately bounded in
a desired vicinity of the origin, even in presence of delayed transmissions. These results
imply the ultimately boundedness of the state of the original uncertain nonlinear system
as well. Moreover, in order to avoid the notorious Zeno behaviour [JLSE99, ATS06], the
existence of a lower bound for the time elapsed between consecutive triggering events is
proved.

4.3.1 Problem Formulation

Consider the uncertain nonlinear system (4.1), where x ∈ Ω (Ω ⊂ Rn bounded) is the
state vector, the value of which at the initial time instant t0 is x(t0) = x0, and u ∈ R is
the control variable, while a : Ω → Rn and b : Ω → Rn are uncertain functions of class
C 1. Let Assumption 4.1 hold. Definition 4.1 is modified as follows.

Definition 4.9 (Sliding function). σ : Ω → R of class C 2 is a sliding function for
system (4.1) provided that the pair (σ, u) has the following property: if u in (4.1) is
designed so that, in a finite time t?r ≥ t0, ∀x0 ∈ Ω, σ = σ̇ = 0 ∀ t ≥ t?r , then ∀ t ≥ t?r
the origin is an asymptotically stable equilibrium point of (4.1) constrained to the sliding
manifold σ = σ̇ = 0.

Now, regarding the sliding variabile σ as the controlled variable associated with sys-
tem (4.1), assume that system (4.1) is complete in Ω and has a uniform relative degree
equal to 2. The following definitions are introduced.
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Definition 4.10 (Ideal second order sliding mode). Given t?r ≥ t0 (ideal reaching
time), if ∀x0 ∈ Ω, σ = σ̇ = 0 ∀ t ≥ t?r , then an ideal second order sliding mode of
system (4.1) is enforced on the sliding manifold σ = σ̇ = 0.

Definition 4.11 (Practical second order sliding mode). Given tr ≥ t0 (practical
reaching time), if ∀x0 ∈ Ω, |σ| ≤ δ1, |σ̇| ≤ δ2 ∀ t ≥ tr , then a practical second order
sliding mode of system (4.1) is enforced in a vicinity of the sliding manifold σ = σ̇ = 0.

Moreover, assume that system (4.1) admits a global normal form in Ω, i.e., there exists
a global diffeomorphism of the form Φ = [Ψ , σ, a · ∇σ]T = [xr, ξ]T , with Φ : Ω → ΦΩ
(ΦΩ ⊂ Rn bounded), and Ψ : Ω → Rn−2, xr ∈ Rn−2, ξ = [σ, σ̇]T ∈ R2, such that

ẋr = ar(xr, ξ) (4.25)

ξ̇1 = ξ2

ξ̇2 = h(xr, ξ) + g(xr, ξ)(u+ d),
(4.26)

with

ar (xr, ξ) =
∂Ψ

∂x

(
Φ−1 (xr, ξ)

)
a
(
Φ−1 (xr, ξ)

)
h (xr, ξ) = a

(
Φ−1 (xr, ξ)

)
· ∇
(
a
(
Φ−1 (xr, ξ)

)
· ∇σ

(
Φ−1 (xr, ξ)

))
g (xr, ξ) = b

(
Φ−1 (xr, ξ)

)
· ∇
(
a
(
Φ−1 (xr, ξ)

)
· ∇σ

(
Φ−1 (xr, ξ)

))
.

Note that, as a consequence of the uniform relative degree assumption, one has that g 6= 0.
Since ar, h, g are continuous functions and ΦΩ is a bounded set, one has also that

|h(xr, ξ)| ≤ H
g(xr, ξ) ≤ gmax,

(4.27)

H and gmax being known positive constants. Moreover, the following assumption is made
on the uncertain function g.

Assumption 4.5 (Bounded uncertainty). The uncertain function g can be lower
bounded as

g(xr, ξ) ≥ gmin, (4.28)

gmin being a known positive constant.

Now, a preliminary control problem can be formulated.

Problem 4.3. Let Assumptions 4.1 and 4.5 hold. Relying on (4.1) and (4.26)-(4.28),
design a feedback control law

u? = κ(σ, σ̇), (4.29)

with the following property: ∀x0 ∈ Ω, ∃ t?r ≥ t0 such that σ = σ̇ = 0, ∀ t ≥ t?r , in spite
of the uncertainties.
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Fig. 4.3. Representation of the convergence set B.

Note that the solution to Problem 4.3 is a control law capable of robustly enforcing an ideal
second order sliding mode of system (4.1) in a finite time, according to Definition 4.10.

Taking into account the considerations made in Subsection 4.2.1, in the present chapter,
instead of relying on time-triggered executions, we will introduce two different triggering
conditions, transmitting data over the network only when such conditions are verified
(event-triggered implementation).

Now, we can move from Problem 4.3 and formulate the problem which will be actually
solved in this chapter.

Problem 4.4. Let Assumptions 4.1, 4.3 and 4.5 hold. Relying on (4.1) and (4.26)-(4.28),
design a feedback control law

u = u(tk) = κ(σ(tk), σ̇(tk)) ∀t ∈ [tk, tk+1[, k ∈ N, (4.30)

with the following property: ∀x0 ∈ Ω, ∃ tr ≥ t0 such that |σ| ≤ δ1, and |σ̇| ≤ δ2,∀ t ≥ tr ,
in spite of the uncertainties, δ1 and δ2 being positive constants arbitrarily set.

Note that the solution to Problem 4.4 is an ET control law capable of enforcing a practical
second order sliding mode of system (4.1) in a finite time, according to Definition 4.11.

Before illustrating the features of the proposed control scheme, relying on Problem 4.4
let us introduce the following definition.

Definition 4.12 (Convergence set). The convergence set for the solution (σ, σ̇) to (4.26)
is

B := R2 \ {S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5}, (4.31)

where
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Fig. 4.4. The proposed event-triggered second order sliding mode control scheme.

S1 :=
{

(σ, σ̇) : |σ̇| ≥ δ2
}

S2 :=
{

(σ, σ̇) : σ ≥ δ1 , −δ2 < σ̇ ≤ 0
}

S3 :=
{

(σ, σ̇) : σ ≤ −δ1 , 0 ≤ σ̇ < δ2
}

S4 :=
{

(σ, σ̇) : σ ≥ − σ̇|σ̇|
2αr

+ δ1 , 0 < σ̇ < δ2
}

S5 :=
{

(σ, σ̇) : σ ≤ − σ̇|σ̇|
2αr

− δ1 , −δ2 < σ̇ < 0
}
,

δ1, δ2 being positive constants arbitrarily set, and αr being a positive constant defined as

αr := gmin(Umax −Dsup)−H > 0, (4.32)

where Umax is the control amplitude (see Fig. 4.3).

4.3.2 The Proposed Control Scheme

The control scheme proposed to solve Problem 4.4 is reported in Fig. 4.4, where the
dashed path means that the corresponding signals are transmitted over the network only
at the triggering time instants tk. The control scheme contains two key blocks: the Smart
Sensor and the Controller.

The Smart Sensor

The considered sensor is smart in the sense that it has some computation capability, i.e.,
it is able to compute σ, σ̇, and verify two different triggering conditions. The first one
being used only during the reaching of the convergence set (4.31), the second one being
used for the rest of the control interval.
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Triggering Condition 1 : For any (σ, σ̇) /∈ {B ∪ ∂B} the adopted triggering condition is

σ = − σ̇|σ̇|
2αr

± δ1, (4.33)

δ1 being a positive constant arbitrarily set (see Definition 4.12).

Note that the Smart Sensor checks the Triggering Condition 1 only during the reaching
phase, i.e., before (σ, σ̇) reaches ∂B. For the rest of the control interval a second triggering
condition is adopted.

Triggering Condition 2 : For any (σ, σ̇) ∈ {B ∪ ∂B} the adopted triggering condition is

(σ, σ̇) ∈ ∂B, (4.34)

B being the desired convergence set for the solution (σ, σ̇) (see Definition 4.12).

The dashed path in Fig. 4.4 is enabled only when (4.33) or (4.33) holds, i.e., when the
Smart Sensor generates a triggering signal. More precisely, when (4.33) or (4.33) is verified,
the actual values of the sliding function σ and its first time derivative σ̇ are transmitted
by the sensor over the network, so that the control law u is updated and sent to the plant.

The Controller

The proposed control strategy is based on two different control laws. The first one is used
together with (4.33) only during the reaching phase, while the second one is used together
with (4.34) for the rest of the control interval.

Control Law 1: In analogy with (3.44), and relaying on (4.30)-(4.33), for any (σ(x(tk)),
σ̇(x(tk))) /∈ {B∪∂B}, the control law we propose to solve Problem 4.4 can be expressed as

u(t) = u(tk) = −Umax sign

(
σ(x(tk)) +

σ̇(x(tk))|σ̇(x(tk))|
2αr

)
, ∀t ∈ [tk, tk+1[, k ∈ N,

(4.35)
where, according to (4.32), the control amplitude satisfies

Umax >
H

gmin
+Dsup. (4.36)

Note that the control signal is transmitted by the Controller to the plant (through the
communication network) only when (4.33) holds. When (σ, σ̇) reaches ∂B, a second con-
trol law is applied for the rest of the control interval.

Control Law 2 : Relaying on (4.30)-(4.32) and (4.34), for any (σ(x(tk)), σ̇(x(tk))) ∈
{B ∪ ∂B}, the control law we propose to solve Problem 4.4 can be expressed as

u(t) = u(tk) = −Umax sign(σ̇(x(tk))) ∀ t ∈ [tk, tk+1[, k ∈ N , (4.37)

with Umax as in (4.36). Note that the control signal is transmitted by the Controller to
the plant (through the communication network) only when (4.34) holds.

Remark 4.4 (Chattering alleviation). Note that, when system (4.1) has unitary rel-
ative degree, in order to perform chattering alleviation, the foregoing control solution can
be analogously applied by artificially increasing the relative degree of the system.
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4.3.3 Stability Analysis

In this section, the stability properties of system (4.1) controlled via the proposed ET-
SOSM control strategy are analyzed. To this end, it is convenient to introduce the follow-
ing definitions.

Definition 4.13 (Ultimately boundedness). The solution (σ, σ̇) to the auxiliary sys-
tem (4.26) is said to be ultimately bounded with respect to the convergence set {B ∪ ∂B}
if

∀x0 ∈ Ω, ∃ tr ≥ t0 : (σ, σ̇) ∈ {B ∪ ∂B} ∀ t ≥ tr . (4.38)

Definition 4.14 (Positively invariant set). Let (σ, σ̇) be the solution to the auxiliary
system (4.26) starting from the initial condition (σ(t0), σ̇(t0)). The set {B ∪ ∂B} is said
to be positively invariant if

(σ(t0), σ̇(t0)) ∈ {B ∪ ∂B} ⇒ (σ, σ̇) ∈ {B ∪ ∂B} ∀ t ≥ t0 . (4.39)

Before showing the theoretical results, the following assumption is made on the initial
conditions of the auxiliary system (4.26).

Assumption 4.6 (Initial conditions). Given the auxiliary system (4.26), let the sign
of the initial conditions (σ(t0), σ̇(t0)) be known.

Now, making reference to the auxiliary system (4.26) the following results can be proved.

Lemma 4.3 (Finite time convergence to {B ∪ ∂B}). Let Assumptions 4.1, 4.5 and 4.6
hold with (σ(t0), σ̇(t0)) /∈ {B ∪ ∂B}, δ1 and δ2 in (4.31) being positive constants arbitrarily
set. Given the auxiliary system (4.26) controlled by (4.35), (4.36) with the triggering
condition (4.33), then, the solution (σ, σ̇) to (4.26) is steered to the convergence set
{B ∪ ∂B} in a finite time.

Proof. For the proof of this Lemma we refer to [DF09][Theorem 2]. ut

Lemma 4.4 (Invariance of {B ∪ ∂B}). Let Assumptions 4.1, 4.5 and 4.6 hold with
(σ(t0), σ̇(t0)) ∈ {B ∪ ∂B}, δ1 and δ2 in (4.31) being positive constants arbitrarily set.
Given the auxiliary system (4.26) controlled by (4.37), with the triggering condition (4.34),
then, the convergence set {B ∪ ∂B} is a positively invariant set.
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Proof. Since the value of σ̇ and u are updated only when (4.34) holds, i.e., when (σ, σ̇) ∈
∂B, the Lemma will be proved showing that for any (σ(t0), σ̇(t0)) ∈ ∂B, the vector
field (σ̇, σ̈) never points outside B. Let ∂B+ denote (σ, σ̇) ∈ ∂B : σ̇ > 0, and ∂B−
denote (σ, σ̇) ∈ ∂B : σ̇ < 0 (in Fig. 4.3, ∂B+ is blue and ∂B− is red). Assume that
(σ(t0), σ̇(t0)) ∈ ∂B−. The vector field is (σ̇, h + g(u + d)) with σ̇ < 0 and, according
to (4.37), u = Umax. Then, σ̈ ≥ αr > 0, so that the vector field points up-left, that is inside

B. Note that, if (σ(t0), σ̇(t0)) ∈ CD (all the points on this curve verify σ = − σ̇|σ̇|2αr
− δ1),

then the vector field can be, at most, tangent to CD, never pointing outside B. Analogous
considerations can be done if (σ(t0), σ̇(t0)) ∈ ∂B+. ut

Relying now on Lemmas 4.3 and 4.4, one can prove the major result concerning the
evolution of the auxiliary system (4.26) controlled via the proposed strategy.

Theorem 4.4 (Evolution of the auxiliary system). Let Assumptions 4.1, 4.5 and 4.6
hold. Given the auxiliary system (4.26) controlled by (4.35), (4.36) with the triggering
condition (4.33) when (σ, σ̇) /∈ {B ∪ ∂B}, and by (4.37) with the triggering condition (4.34)
when (σ, σ̇) ∈ {B ∪ ∂B}, then, the solution (σ, σ̇) to (4.26) is ultimately bounded with
respect to the desired convergence set {B ∪ ∂B}, δ1 and δ2 in (4.31) being positive constants
arbitrarily set.

Proof. The proof is a straightforward consequence of Lemmas 4.3 and 4.4. By virtue of
Lemma 4.3, there exists a time instant tr when the trajectory (σ, σ̇) enters {B ∪ ∂B}.
Then, by virtue of Lemma 4.4, ∀ t ≥ tr, (σ, σ̇) is ultimately bounded with respect to the
convergence set {B ∪ ∂B}. ut

Now, in order to prove the ultimately boundedness of the state of system (4.1), we show
that in the convergence set an approximability property analogous to that of classical
sliding mode control holds (see Theorem 2.1).

Theorem 4.5 (Approximability property). Given the auxiliary system (4.26) con-
trolled by (4.33), (4.35) and (4.36) when (σ, σ̇) /∈ {B ∪ ∂B}, and by (4.34), (4.37) when
(σ, σ̇) ∈ {B ∪ ∂B}, then, the origin of system (4.1) is practically stable if

1. exists a Lipschitz constant L for the right-hand side of (4.1) obtained with respect to
x? by using the equivalent control ueq := −h(x?)/g(x?)− d (see Definition 3.4), i.e.,

ẋ ? = a(x?)− b(x?)h(x?)

g(x?)
; (4.40)

2. the partial derivatives of the function g(x)−1 b(x), exist and they are bounded in any
bounded domain;

3. exist positive constants M and N such that

‖a(x) + b(x)(u+ d)‖ ≤M +N‖x‖. (4.41)
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Proof. In analogy with Theorem 2.1, we prove that for any pair of solutions x?, x under
the initial conditions ‖x(t?r) − x?(t?r)‖ ≤ Pδ2, P > 0, there exists a positive number H
such that ‖x − x?‖ ≤ Hδ2 on a finite time interval [t?r , T ], T being the control interval.
More precisely, when a practical SOSM is generated, the control u in (4.26) differs from
the equivalent control and can be expressed as follows

u = −h(x)

g(x)
− d+

σ̈(x)

g(x)
. (4.42)

Then, by substituting (4.42) in (4.1), the dynamics of the system becomes

ẋ = a(x)− b(x)
h(x)

g(x)
+ b(x)

σ̈(x)

g(x)
. (4.43)

Now, relying on (4.40) and (4.43), one can compute the integral equations of x? and x,
respectively, i.e.,

x? = x?(t?r) +

∫ t

t?r

(
a(x?(ζ))− b(x?(ζ))

h(x?(ζ))

g(x?(ζ))

)
dζ, (4.44)

x = x(t?r) +

∫ t

t?r

(
a(x(ζ))− b(x(ζ))

h(x(ζ))

g(x(ζ))

)
dζ +

∫ t

t?r

(
b(x(ζ))

σ̈(x(ζ))

g(x(ζ))

)
dζ. (4.45)

Integrating the last term in (4.45) by parts and subtracting (4.44) to (4.45), it yields

‖x− x?‖ ≤ ‖x(t?r)− x?(t?r)‖+

∣∣∣∣∣
∣∣∣∣∣
∫ t

t?r

(
a(x(ζ))− b(x(ζ))

h(x(ζ))

g(x(ζ))

)
dζ

−
∫ t

t?r

(
a(x?(ζ))− b(x?(ζ))

h(x?(ζ))

g(x?(ζ))

)
dζ

∣∣∣∣∣
∣∣∣∣∣

+

[
‖b(x(ζ))‖

∣∣∣∣ σ̇(x(ζ))

g(x(ζ))

∣∣∣∣
]t
t?r

+

∫ t

t?r

∣∣∣∣∣∣∣∣ ddζ b(x(ζ))

g(x(ζ))

∣∣∣∣∣∣∣∣ |σ̇(x(ζ))|dζ.

(4.46)

Taking into account assumption (3) in the theorem statement, and according to the
Bellman-Gronwall lemma, the solution x is bounded on the finite time interval [t?r , T ],
i.e.,

‖x‖ ≤
(
‖x(t?r)‖+M(T − t?r)

)
eN(T−t?r), ∀ t ∈ [t?r , T ]. (4.47)

Then, by virtue of Theorem 4.4 (which implies that |σ̇| ≤ δ2) and (4.47), taking into
account assumptions (1), (2) in the theorem statement, the inequality (4.46) can be
expressed as

‖x− x?‖ ≤ Sδ2 + L

∫ t

t?r

‖x(ζ)− x?(ζ)‖dζ (4.48)

S being a positive constant that depends on the right-hand side of (4.43), x(t?r), x
?(t?r),

t?r , T and P . Now, applying again the Bellman-Gronwall lemma to (4.48), one has that
‖x − x?‖ ≤ Hδ2, with H = SeL(T−t

?
r). Finally, since by Definition 4.9, ∀ t ≥ t?r , the

origin is an asymptotically stable equilibrium point of (4.1) constrained to σ(x?) = 0,
then there exists τr ≥ t?r such that x ∈ Ωδ, ∀ t ≥ τr, which proves the theorem. ut
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Now, since the triggering time instants are known only at the execution times, we prove the
existence of lower bounds for the inter-event times. Let τmin,1 and τmin,2 be the minimum
inter-event time when (σ, σ̇) /∈ {B ∪ ∂B} and when (σ, σ̇) ∈ {B ∪ ∂B}, respectively.

Theorem 4.6 (Minimum inter-event time τmin,1). Let Assumptions 4.1, 4.5 and 4.6
hold, and let δ1 and δ2 in (4.31) be positive constants arbitrarily set. Given the auxiliary
system (4.26) with (σ(t0), σ̇(t0)) /∈ {B∪∂B}, controlled by (4.33), (4.35) and (4.36), then,
for any (σ, σ̇) /∈ {B ∪ ∂B}, the inter-event times are lower bounded.

Proof. Assume σ(t0) > 0 and σ̇(t0) > 0. Let t1 be the first triggering time instant when
σ = −σ̇|σ̇|/(2αr)+δ1 in (4.33) is verified. In order to compute the lower bound, we assume
that the trajectory evolves with acceleration −αr from (σ(t0), σ̇(t0)) to (σ(t′0), σ̇(t′0)),
which lies on the σ̇ = 0 axis, i.e.,

σ(t′0) = σ(t0) +
σ̇2(t0)

2αr
, σ̇(t′0) = 0 . (4.49)

Assume now that the trajectory evolves with acceleration −αR := −(gmax(Umax+Dsup)+
H) from (4.49) to (σ(t1), σ̇(t1)), i.e.,

σ(t1) =
σ̇2(t1)

2αr
+ δ1

σ̇(t1) = −

√
2αRαr
αR + αr

(
σ(t′0) +

σ̇2(t′0)

2αR
− δ1

)
.

(4.50)

Finally, one can compute the time interval τmin,1 = t2 − t1 that the trajectory takes to
evolve with acceleration −αR from (4.50) to (σ(t2), σ̇(t2)) on the curve σ = −σ̇|σ̇|/(2αr)−
δ1, i.e.,

τmin,1 =

γ σ̇(t1) +

√
γ2 σ̇2(t1)− 2γ αR

(
σ̇2(t1)
2αr

− σ(t1)− δ1
)

γ αR
, (4.51)

with γ = αR
αr

+ 1. Analogous considerations can be done starting from different initial
condition (σ(t0), σ̇(t0)). ut

Theorem 4.7 (Minimum inter-event time τmin,2). Let Assumptions 4.1, 4.5 and 4.6
hold, and let δ1 and δ2 in (4.31) be positive constants arbitrarily set. Given the auxil-
iary system (4.26) with (σ(t0), σ̇(t0)) ∈ {B ∪ ∂B}, controlled by (4.34) and (4.37), then,
∀ (σ, σ̇) ∈ {B ∪ ∂B}, the inter-event times are lower bounded by

τmin,2 =
δ2

H + gmax(Umax +Dsup)
.

Proof. Since (σ, σ̇) and u are transmitted over the network only when the triggering
condition (4.34) is verified, the theorem will be proved by computing the time interval
tk+1−tk that σ̇ takes to evolve from 0 to δ2 with acceleration αR = H+gmax(Umax+Dsup).
Then, it yields
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σ̇(tk+1)− σ̇(tk) =

∫ tk+1

tk

σ̈max dτ

δ2 − 0 = αR (tk+1 − tk)

δ2 = (H + gmax(Umax +Dsup))τmin,2 . (4.52)

Analogous considerations can be done if we consider the evolution of σ̇ from 0 to −δ2. ut

Remark 4.5 (Zeno behaviour). Note that Theorems 4.6 and 4.7 guarantee that the
time elapsed between two consecutive triggering events does not become arbitrarily small,
avoiding the notorious Zeno behaviour [JLSE99, ATS06]. The minimum inter-vent times
reasonably depend on the sizes of the desired convergence set B, and on the bounds of
the uncertanities. In practical cases, this result is very useful to assess the feasibility of
the proposed control approach.

Taking now into account the possible occurrence of delayed data transmissions, due to the
presence of the communication network, the following result can be proved. More precisely,
relying on Problem 4.4 we will prove that by modifying the triggering condition (4.34),
the auxiliary state-space trajectory is ultimately bounded with respect to the desired
convergence set {B ∪ ∂B}.

Theorem 4.8 (Delayed communications). Let Assumptions 4.1, 4.3, 4.5 and 4.6
hold. Given the auxiliary system (4.26) controlled by (4.37) when (σ, σ̇) ∈ {B ∪ ∂B},
then, for any desired

δ2 > (H + gmax(Umax +Dsup))∆max

δ1 >

(
δ22
2
− (δ2 − (H + gmax(Umax +Dsup))∆max)2

2

)(
1

αR
+

1

αr

)
,

the triggering condition
(σ, σ̇) ∈ ∂B ′ ,

with
B ′ := R2 \ {S ′1 ∪ S ′2 ∪ S ′3 ∪ S ′4 ∪ S ′5}

and

S ′1 :=
{

(σ, σ̇) : |σ̇| ≥ δ′2
}

S ′2 :=
{

(σ, σ̇) : σ ≥ δ1 , −δ′2 < σ̇ ≤ 0
}

S ′3 :=
{

(σ, σ̇) : σ ≤ −δ1 , 0 ≤ σ̇ < δ′2
}

S ′4 :=
{

(σ, σ̇) : σ ≥ − σ̇|σ̇|
2αr

+ δ′1 , 0 < σ̇ < δ′2
}

S ′5 :=
{

(σ, σ̇) : σ ≤ − σ̇|σ̇|
2αr

− δ′1 , −δ′2 < σ̇ < 0
}

δ′2 := δ2 − (H + gmax(Umax +Dsup))∆max > 0

δ′1 := δ1 −
(
δ22
2
− (δ′2)2

2

)(
1

αR
+

1

αr

)
> 0
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enforces the following relation

(σ, σ̇) ∈ {B ∪ ∂B} ∀ t ≥ t′r, (4.53)

t′r being the reaching time instant of {B ′ ∪ ∂B ′}.

Proof. In analogy with Lemma 4.3, it follows that there exists a time instant t′r when
(σ, σ̇) enters the inner convergence set {B ′ ∪ ∂B ′}. Suppose now that the transmission of
σ̇(tk) = δ′2 occurs with the maximum time delay ∆max. Moreover, assume that the sliding
function evolves with constant maximum acceleration αR := gmax(Umax +Dsup) +H. In
order to enforce relation (4.53), we impose that σ̇(tk +∆max) = δ2. Then, one has that

σ̇(tk +∆max)− σ̇(tk) =

∫ tk+∆max

tk

σ̈max dτ

δ2 − δ′2 = αR∆max

δ′2 = δ2 − αR∆max. (4.54)

Now, one can easily verify that the parabolic auxiliary state-space trajectory passing
through point A in Fig. 4.3 with acceleration αR is

σ =
σ̇|σ̇|
2αR

+ δ1 −
δ22
2

(
1

αR
+

1

αr

)
.

Then, the intersection point of this curve with σ̇ = δ′2 is(
σ = δ1 +

(δ′2)2

2αR
− δ22

2

(
1

αR
+

1

αr

)
, σ̇ = δ′2

)
. (4.55)

Finally, by imposing that the curve σ = −σ̇|σ̇|/(2αr)+δ′1 passes through the point (4.55),
one can compute the value of δ′1. ut

Note that in case of delayed transmissions, the lower bound τmin,2 can be obtained by
using δ′2 instead of δ2 in Theorem 4.7.

4.3.4 Illustrative Example

Consider the perturbed double integrator (4.24) with d = Dsup cos(t), Dsup = 4.5. Let

the initial condition be x(0) =
[
0.1 0

]T
, and the sliding variable be σ = x1. Relying

on system (4.24) it is possible to set the bounds in (4.27) and (4.28) equal to H = 0,
gmin = gmax = 1. Then, according to (4.36), the control amplitude Umax is selected equal
to 5, with αr = 0.5. Moreover, the convergence set B (see Definition 4.12) is chosen by
selecting δ1 = 0.01, δ2 = 0.1.

In Fig. 4.5 the auxiliary state space trajectory is shown. Note that, according to Theo-
rem 4.4, (σ, σ̇) is ultimately bounded with respect to the convergence set B. The inter-
event times τk = tk+1 − tk are also shown. In particular, one can appreciate that the
minimum inter-event times τmin,1 = 0.0032 s and τmin,2 = 0.0105 s according to Theo-
rems 4.6, 4.7, are lower bounds for the inter-event times. Note that, considering a sampling
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Fig. 4.5. Event-triggered second order sliding mode control. (a) Auxiliary state space trajectory,
with visualization of the sector around the switching line σ = −σ̇|σ̇|/(2αr), and the convergence
set B. (b) Inter-event times τk = tk+1 − tk, with visualization of the minimum inter-event times
τmin,1 and τmin,2. (c) Auxiliary state space trajectory, with visualization of the sector around
the switching line σ = −σ̇|σ̇|/(2αr), and the convergence sets B,B′, in presence of delayed
transmissions. (d) Inter-event times τk = tk+1 − tk, with visualization of the minimum inter-
event times τmin,1 and τmin,2, in presence of delayed transmissions.

time Ts = 1× 10−4 s, and a simulation time T = 10 s, the number of transmissions is 156,
i.e., 99.84% less than the number required by the conventional (i.e., time-driven) imple-
mentation. Obviously, reducing the size of the convergence set implies the improvement
of the convergence accuracy. Yet, a larger number of transmissions could be required. The
correct balance between convergence accuracy and transmission load has to be searched
depending on the specific application. In Fig. 4.5 the auxiliary state space trajectory in
presence of transmissions with maximum time delay ∆max = 0.0025 s acting from t =
2 s to t = 8 s is also shown. Note that, by selecting δ′1 = 0.0056 and δ′2 = 0.0763 (see
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Theorem 4.8), even in presence of maximum time delay, (σ, σ̇) is ultimately bounded with
respect to the desired convergence set B. The inter-event times, with τmin,1 = 0.0032 s
and τmin,2 = 0.008 s are reported also in this case, where the number of transmissions
is 190.

4.4 Conclusions

In this chapter, the Event-Triggered control approach and the Sliding Mode control
methodology have been coupled to design robust control schemes for nonlinear uncer-
tain systems including communication networks. The stability properties of the proposed
control schemes have been theoretically analyzed, proving the ultimately boundedness of
the auxiliary system state, which implies the ultimately boundedness of the solution of the
controlled system even in presence of modelling uncertainties and delayed transmissions
due to the network unavailability. Moreover, lower bounds for the time elapsed between
consecutive triggering events have been provided, in order to guarantee the avoidance of
the notorious Zeno behaviour.
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5

Passivity Based Design of Sliding Modes

Abstract. In this chapter a distributed sliding mode control strategy is proposed for
optimal Load Frequency Control (OLFC) in power networks, where besides frequency
regulation also minimization of generation costs is achieved (economic dispatch). We study
a nonlinear power network partitioned into control areas, where each area is modelled by
an equivalent generator including voltage and second order turbine-governor dynamics.
The turbine-governor dynamics suggest the design of a sliding manifold, such that the
turbine-governor system enjoys a suitable passivity property, once the sliding manifold is
attained. This work offers a new perspective on OLFC by means of sliding mode control,
and in comparison with existing literature, we relax required dissipation conditions on
the generation side and assumptions on the system parameters.

5.1 Preliminaries on Passivity

In this section, a minimum amount of preliminaries on passivity are provided. They are
useful to the development of the various results appearing in this chapter.

We suppose the reader is familiar with standard notions for the analysis and control of
nonlinear system, and foremost with dissipative systems [Wil07]. For detailed discussions
on nonlinear systems, the textbooks [vdS00, HC08] and [SJK12], provide excellent starting
points. We merely recall a few essential definitions and results for state-space systems of
the form

ẋ = ζ(x,u)

y = h(x),
(5.1)

with state x ∈ Rn, input u, and output y ∈ Rm.

For physical systems of the form (5.1) the externally supplied (instantaneous) power can
be represented as the scalar product of the system input u (‘effort or ‘flow’)5 and the
system output y (‘flow’ or ‘effort’), i.e., uTy. Such a product is called the ‘supply rate’ of

5Recall that the effort and flow are voltages and currents in electrical systems or forces and
velocities in mechanical systems, respectively.

87
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the system. We start introducing the definitions of ‘dissipation inequality’ and ‘passivity’.

Definition 5.1 (Dissipation inequality). System (5.1) is said to be dissipative with
respect to the supply rate s(t) , uT (t)y(t) if there exists a function S : Rn → R+, called
storage function, such that for all x(t0) ∈ Rn, all t1 ≥ t0, and all inputs u

S(x(t1)) ≤ S(x(t0)) +

∫ t1

t0

s(t)dt. (5.2)

Let d(t) be the dissipated energy, then, the energy-balance is given by

S(x(t1))− S(x(t0)) =

∫ t1

t0

s(t)dt− d(t). (5.3)

If (5.2) holds with equality for all x(t0), and all u, then (5.1) is lossless (i.e., d(t) = 0)
with respect to s(t).

Definition 5.2 (Passivity). System (5.1) is passive if it is dissipative with respect to
the supply rate s(t) = uT (t)y(t). The system is said to be strictly input passive if there
exists a δ > 0 such that (5.1) is dissipative with respect to s(t) = uT (t)y(t)− δ||u(t)||2.
On the other hand, the system is said to be strictly output passive if there exists a ε > 0
such that (5.1) is dissipative with respect to s(t) = uT (t)y(t)− ε||y(t)||2. Finally, (5.1) is
conservative if it is lossless (i.e., d(t) = 0) with respect to s(t) = uT (t)y(t).

We continue now recalling the definition of ‘incremental passivity’.

Definition 5.3 (Incremental passivity). System (5.1) is incrementally passive if there
exists a continuously differentiable, positive definite, radially unbounded, storage function
S(x1,x2) : R2n → R+, such that for any two inputs u1, u2, and any two solutions to
system (5.1), x1, x2 corresponding to these inputs, the respective outputs y1 = h(x1),
y2 = h(x2) satisy the inequality

Ṡ =
∂S
∂x1

ζ(x1,u1) +
∂S
∂x2

ζ(x2,u2) ≤ (y1 − y2)T (u1 − u2). (5.4)

The following extension will be useful as well.

Definition 5.4 (Output strictly incremental passivity). System (5.1) is output
strictly incrementally passive if in Definition 5.3, inequality (5.4) is replaced by

Ṡ =
∂S
∂x1

ζ(x1,u1) +
∂S
∂x2

ζ(x2,u2) ≤ −ρ(y1,y2) + (y1 − y2)T (u1 − u2), (5.5)

ρ(y1,y2) : R2n → R≥0 being a positive definite function.
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In case S is not radially unbounded, we introduce the following definition.

Definition 5.5 (Incremental cyclo-passivity). System (5.1) is incrementally cyclo-
passive if in Definition 5.3, the incremental storage function S is not required to be
radially unbounded.

Definition 5.5 is particularly useful, if we can only establish that the incremental storage
function S(x1,x2) is positive definite at a point (x1,x2). Often it is useful to establish in-
cremental passivity with respect to a particular solution (often the steady state solution),
and we introduce the following definition.

Definition 5.6 (Incremental passivity with respect to a particular solution).
System (5.1) is incrementally passive with respect to a particular solution x2, with input
u2 satisfying

ẋ2 = ζ(x2,u2)

y2 = h(x2),
(5.6)

if in Definition 5.3, the dissipation inequality holds with respect to the particular solution
x2, instead of any solution to (5.1).

In case incremental passivity is established with respect to a steady state solution, (5.6)
reads as

0 = ζ(x,u)

y = h(x),
(5.7)

We recall now three lemmas that will be essential to study the asymptotic behaviour of
the closed loop system.

Lemma 5.1 (Stability). Let x = 0 be an equilibrium of system

ẋ = ζ(x), (5.8)

and suppose that ζ is locally Lipschitz continuous. Let S : Rn → R+ be a continuous
differentiable, positive definite and radially unbounded function S(x) such that

Ṡ =
∂S(x)

∂x
ζ(x) ≤ 0, ∀x ∈ Rn. (5.9)

Then, x = 0 is globally stable and all solutions to (5.8) converge to the set E where
Ṡ = 0. If Ṡ is negative definite, then x = 0 is globally asymptotically stable.
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Lemma 5.2 (LaSalle’s invariance principle). Let Ω be a positively invariant set of
system (5.8). Suppose that every solution starting in Ω converges to a set E ⊂ Ω and let
M be the largest invariant set contained in E. Then, every bounded solution starting in
Ω converges to M as t→∞.

An application of LaSalle’s invariance principle is the following asymptotic stability con-
dition.

Corollary 5.1 (Asymptotic stability). Under the assumptions of Lemma 5.1, let E =
{x ∈ Rn : Ṡ(x) = 0}. If no solution other than x = 0 can stay for all t in E, then the
equilibrium x = 0 is globally asymptotically stable.

Lemma 5.3 (Semistability). Consider system (5.8), and letΩ be an open neighborhood
of ζ−1(0). Suppose that the trajectory of (5.8) is bounded for all x ∈ Ω, and assume that
there exists a continuously differentiable function S : Ω → R such that

Ṡ =
∂S(x)

∂x
ζ(x) ≤ 0, ∀x ∈ Rn. (5.10)

If every point in the largest invariant subset M of {x ∈ Ω : ∂S(x)∂x ζ(x) = 0} is Lyapunov
stable, then (5.8) is semistable, i.e., (5.8) converges to a constant vector.

5.2 Preliminaries on Power Systems

A power mismatch between generation and demand gives rise to a frequency in the power
network that can deviate from its nominal value. Regulating the frequency back to its
nominal value by Load Frequency Control (LFC) is challenging and it is uncertain if cur-
rent implementations are adequate to deal with an increasing share of renewable energy
sources [ADGS16]. Traditionally, the LFC is performed at each control area by a pri-
mary droop control and a secondary proportional-integral (PI) control. To cope with the
increasing uncertainties affecting a control area and to improve the controller’s perfor-
mance, advanced control techniques have been proposed to redesign the conventional LFC
schemes, such as model predictive control (MPC) [EIU16], adaptive control [ZARA05],
fuzzy control [CF97] and sliding mode (SM) control. However, due to the predefined power
flows through the tie-lines, the possibility of achieving economically optimal LFC is lost
[RKTR07]. Besides improving the stability and the dynamic performance of power sys-
tems, new control strategies are additionally required to reduce the operational costs of
LFC [Lai01]. In this work we propose a novel distributed optimal LFC (OLFC) scheme
that incorporates the economic dispatch into the LFC loop, departing from the conven-
tional tie-line requirements. An up-to-date survey on recent results on offline and online
optimal power flows and OLFC can be found in [MDS+17]. We restrict ourselves here
to a brief overview of online solutions to OLFC that are close to the presented work.
Particularly, we focus on distributed solutions, in contrast to more centralized control
schemes that have been studied in e.g. [TD17a, DG17, XDLvS17]. In order to obtain



5.2 Preliminaries on Power Systems 91

OLFC, the vast majority of distributed solutions appearing in the literature fit in one of
two categories. First, the economic dispatch problem is distributively solved by a primal-
dual algorithm converging to the solution of the associated Lagrangian dual problem
[ZP15, LZC16, SDPvdS17, YC14, KDSL16, JLvdB09, MDC12, MF16, CMW15, ASDG15,
YHL15, YHL16]. This approach generally requires measurements of the loads or the power
flows, which is not always desirable in a LFC scheme. This issue is avoided by the second
class of solutions, where a distributed consensus algorithm is employed to converge to a
state of identical marginal costs, solving the economic dispatch problem in the uncon-
strained case [BDT14, TBD16, SD16, ZMD15, XLSvS17, MDPvdSS17, ADJS13, KH12,
BDL+14, RAOZC14, YTX13, YWSL16, ZC12]. The proposed sliding mode controller de-
sign in this work is compatible with both approaches, although we put the emphasize on
a distributed consensus based solution and remark on the primal-dual based approach.

Sliding mode control has been used to improve the conventional LFC schemes [VPP10],
possibly together with disturbance observers [MFL+16]. However, the proposed use of
SM to obtain a distributed OLFC scheme is new and can offer a few advantages over
the previous results on OLFC. Foremost, it is possible to incorporate the widely used
second order model for the turbine-governor dynamics that is generally neglected in the
analytical OLFC studies. Since the generated control signals in OLFC schemes adjust
continuously and in real-time the governor set points, it is important to incorporate the
generation side in a satisfactory level of detail. In this work, we adopt a nonlinear model
of a power network, including voltage dynamics, partitioned into control areas having an
arbitrarily complex and meshed topology. The generation side is modelled by an equiva-
lent generator including voltage dynamics and second order turbine-governor dynamics,
which is standard in studies on conventional LFC schemes. We propose a distributed SM
controller that is shown to achieve frequency control, while minimizing generation costs.
This result is obtained by avoiding the measurement of the power demand and the use of
observers, which is an element concurring to the ease of practical implementation of the
proposed control strategy. The proposed control scheme continuously adjusts the gover-
nor set point. Conventional SM controllers can suffer from the notorious drawback known
as chattering effect, due to the discontinuous control input. To alleviate this issue, we
incorporate the well known Suboptimal Second Order Sliding Mode (SSOSM) control
algorithm [BFU98a] leading to a continuous control input. To design the controllers ob-
taining OLFC, we recall an incremental passivity property of the power network [TBD16]
that prescribes a suitable sliding manifold. Particularly, the non-passive turbine-governor
system, constrained to this manifold, is shown to be incrementally passive allowing for a
passive feedback interconnection, once the closed-loop system evolves on the sliding man-
ifold. The proposed approach differs substantially from two notable exceptions that also
incorporate the turbine-governor dynamics ([TD17b, KMDL17]) and shows some benefits.
In contrast to [TD17b], we do not impose constraints on the permitted system parameters,
and in contrast to [KMDL17] we do not impose dissipation assumptions on the generation
side and allow for a higher relative degree (see also Remark 5.8). Furthermore, we believe
that the chosen approach, where the design of the sliding manifold is inspired by desired
passivity properties, offers new perspectives on the control of networks that have similar
control objectives as the one presented, e.g. achieving power sharing in microgrids. As
this work is (to the best of our knowledge) the first to use sliding mode control to obtain
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Fig. 5.1. Block diagram of two interconnected control areas. The voltage dynamics are omitted.

OLFC, it additionally enables further studies to compare the performance with respect
to other approaches found in the literature.

5.3 Control Areas with Second Order Turbine-Governor Dynamics

Consider a power network consisting of n interconnected control areas. The network
topology is represented by a connected and undirected graph G = (V, E), where the nodes
V = {1, ..., n}, represent the control areas and the edges E = {1, ...,m}, represent the
transmission lines connecting the areas. The topology can be described by its correspond-
ing incidence matrix B ∈ Rn×m. Then, by arbitrarily labeling the ends of edge k with a
+ and a −, one has that

Bik =


+1 if i is the positive end of k

−1 if i is the negative end of k

0 otherwise.

A control area is represented by an equivalent generator and a load, where the governing
dynamics of the i-th area are described by the so called ‘flux-decay’ or ‘single-axis model’
given as6 [MBB08]:

6 For notational simplicity, the dependency of the variables on time t is omitted throughout
most of this chapter.
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δ̇i = fi

Tpi ḟi = −fi +Kpi

Pti − Pdi +
∑
j∈Ni

ViVjBij sin (δi − δj)


TVi V̇i = Efi −

(
1−

(
Xdi −X ′di

)
Bii
)
Vi −

(
Xdi −X ′di

) ∑
j∈Ni

VjBij cos (δi − δj),

(5.11)

where Ni is the set of control areas connected to the i-th area by transmission lines.
Note that we assume that the network is lossless, which is generally valid in high voltage
transmission networks where the line resistance is negligible. Moreover, Pti in (5.11) is
the power generated by the i-th (equivalent) plant and can be expressed as the output
of the following second order dynamical system that describes the behaviour of both the
governor and the turbine

Tti Ṗti = −Pti + Pgi

TgiṖgi = − 1

Ri
fi − Pgi + ui.

(5.12)

The symbols used in (5.11) and (5.12) are described in Table 5.1. To further illustrate the
dynamics, a block diagram for a two area network is provided in Fig. 5.1. In this work we
aim at the design of a continuous control input ui to achieve both frequency regulation
and economic efficiency (optimal Load Frequency Control). To study the power network
we write system (5.11) compactly for all areas i ∈ V as

η̇ = BTf
Tpḟ = −f +Kp(Pt − Pd −BΓ (V )sin(η))

TV V̇ = −(Xd −X′
d)E(η)V +Ef ,

(5.13)

and the turbine-governor dynamics in (5.12) as

TtṖt = −Pt + Pg

TgṖg = −R−1f − Pg + u,
(5.14)

where η = BT δ ∈ Rm is vector describing the differences in voltage angles, while sin(η) =
[sin(η1), . . . , sin(ηm)]T . Furthermore, Γ = diag{Γ1, . . . , Γm}, where Γ (V )k = ViVjBij ,
with k ∼ {i, j}, i.e., line k connects areas i and j. The components of the matrix E(η) ∈
Rn×n are defined as

Eii(η) =
1

Xdi −X
′
di

−Bii i ∈ V

Eij(η) = Bij cos(ηk) = Eji(η) k ∼ {i, j} ∈ E
Eij(η) = 0 otherwise.

(5.15)

The remaining symbols follow straightforwardly from (5.11) and (5.12), and are vectors
and matrices of suitable dimensions.
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Table 5.1. Description of the used symbols

State variables

δi Voltage angle
fi Frequency deviation
Vi Voltage
Pti Turbine output power
Pgi Governor output

Parameters

Tpi Time constant of the control area
Tti Time constant of the turbine
Tgi Time constant of the governor
TVi Direct axis transient open-circuit constant
Kpi Gain of the control area
Ri Speed regulation coefficient
Xdi Direct synchronous reactance
X ′di Direct synchronous transient reactance
Bij Transmission line susceptance

Inputs

ui Control input to the governor
Efi Constant exciter voltage
Pdi Unknown power demand

Remark 5.1 (Reactance and susceptance). For each (equivalent) generator i ∈ V,
the reactance is higher than the transient reactance, i.e. Xdi > X ′di [KBL94]. Furthermore,
the self-susceptance of area i ∈ V is given by Bii =

∑
j∈Ni Bij and the susceptance of

a line satisfies Bij = Bji < 0. Consequently, E(η) is a strictly diagonally dominant and
symmetric matrix with positive elements on its diagonal and is therefore positive definite.

To permit the controller design in the next sections, the following assumption is made on
the unknown demand (unmatched disturbance) and the available measurements.

Assumption 5.1 (Available information). The variables fi, Pti and Pgi are locally
available at control area i. The unmatched disturbance Pdi is unknown, and can be
bounded as |Pdi | ≤ Di, where Di is a positive constant available at control area i.

In case not all variables are locally available, Assumption 5.1 can be relaxed by imple-
menting observers that estimate the unmeasured states in a finite time (see Section 5.9).

5.4 Incremental passivity of the power network

In this section we recall a useful incremental passivity property of system (5.13) that has
been established before in [TBD16]. Before we can establish this incremental passivity
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property for the considered power network model, we first need the following assumption
on the existence of a steady state solution.

Assumption 5.2 (Steady state solution). The unknown power demand (unmatched
disturbance) Pd is constant and for a given P t, there exist a u and state (η,f ,V ,P t,P g)
that satisfies

0 = BTf
0 = −f +Kp(P t − Pd −BΓ (V )sin(η))

0 = −(Xd −X′
d)E(η)V +Ef ,

(5.16)

and

0 = −P t + P g

0 = −R−1f − P g + u.
(5.17)

To state an incremental passivity property of (5.13), we make use of the following storage
function [TBD16, DPM17]

S1(η,f ,V ) =
1

2
fTTpf +

1

2
V TE(η)V , (5.18)

that can also be interpreted as a Hamiltonian function of the system [SDPvdS17].

Lemma 5.4 (Incremental cyclo-passivity of (5.13)). System (5.13) with input Pt
and output f is an output strictly incrementally cyclo-passive system, with respect to the
constant (η,f ,V ) satisfying (5.16).

Proof. For notational convenience we define x = (η,f ,V ). A tedious but straightforward
evaluation of (note the use of a calligraphic S)

S1(x) = S1(x)− S1(x)−∇S1(x)T (x− x), (5.19)

shows that S1(x) satisfies [TBD16], [DPM17]

Ṡ1(x) = −fTK−1p f − V̇ TTV (Xd −X′
d)−1V̇ + (f − f)T (Pt − P t), (5.20)

along the solutions to (5.13). ut

For the stability analysis in Section 5.7 the following technical assumption is needed on
the steady state that eventually allows us to infer boundedness of solutions.7

7 In case boundedness of solutions can be inferred by other means, Assumption 5.3 can be
omitted.
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Assumption 5.3 (Steady state voltages and voltage angles). Let V ∈ Rn>0 and let
differences in steady state voltage angles satisfy

ηk ∈ (−π
2
,
π

2
) ∀k ∈ E . (5.21)

Furthermore, for all i ∈ V it holds that

1

Xdi −X ′di
−Bii +

∑
k∼{i,j}∈E

Bij(V i + V j sin2(ηk))

V i cos(ηk)
> 0. (5.22)

The assumption above holds if the generator reactances are small compared to the line
reactances and the differences in voltage (angles) are small [DPM17]. It is important
to note that this holds for typical operation points of the power network. The main
consequence of Assumption 5.3 is that the incremental storage function S1 now obtains
a strict local minimum at a steady state satisfying (5.16).

Lemma 5.5 (Local minimum of S1). Let Assumption 5.3 hold. Then, the incremental
storage function S1 has a local minimum at (η,f ,V ) satisfying (5.16).

Proof. Under Assumption 5.3, the Hessian of (5.18), evaluated at (η,f ,V ), is positive
definite [TBD16, Lemma 2], [DPM17, Proposition 1]. Consequently, S1 is strictly convex
around (η,f ,V ). The incremental storage function (5.19) is defined as a Bregman dis-
tance [Bre67] associated with (5.18) for the points (η,f ,V ) and (η,f ,V ). Due to the
strict convexity of S1 around (η,f ,V ), (5.19) has a local minimum at (η,f ,V ). ut

Remark 5.2 (Different power network models). The focus of this work is to achieve
OLFC by distributed sliding mode control for the nonlinear power network, explicitly
taking into account the turbine-governor dynamics. Equations (5.13) adequately represent
a power network for the purpose of frequency regulation and are often further simplified
by assuming constant voltages, leading to the so called ‘swing equations’. To the analysis
in this work the incremental passivity property established above is essential, which has
been derived for various other models, including microgrids. It is therefore expected that
the presented approach can be straightforwardly applied to a wider range of models than
the one we consider in this work.

5.5 Frequency Regulation and Economic Dispatch

In this section we formulate the control objectives of optimal load frequency control.
Before doing so, we first note that the steady state frequency f , is generally different
from zero without proper adjustments of u [TBD16].
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Lemma 5.6 (Steady state frequency). Let Assumption 5.2 hold, then necessarily
f = 1nf

∗ with

f∗ =
1Tn (u− Pd)

1Tn (K−1p +R−1)1n
, (5.23)

where 1n ∈ Rn is the vector consisting of all ones.

This leads us to the first objective, concerning the regulation of the frequency deviation.

Objective 5.1 (Frequency regulation).

lim
t→∞

f(t) = 0. (5.24)

From (5.23) it is clear that it is sufficient that 1Tn (u − Pd) = 0, to have zero frequency
deviation at the steady state. Therefore, there is flexibility to distribute the total required
generation optimally among the various control areas. To make the notion of optimality
explicit we assign to every control area a strictly convex linear-quadratic cost function
Ci(Pti) related to the generated power Pti

Ci(Pti) =
1

2
QiP 2

ti +RiPti + Ci ∀i ∈ V. (5.25)

Minimizing the total generation cost, subject to the constraint that allows for a zero
frequency deviation can then be formulated as the following optimization problem:

min
∑
i∈V

Ci(Pti)

s.t. 1Tn (u− Pd) = 0.

(5.26)

The lemma below makes the solution to (5.26) explicit [TBD16].

Lemma 5.7 (Optimal generation). The solution P
opt

t to (5.26) satisfies

P
opt

t = Q−1(λ
opt −R), (5.27)

where

λ
opt

= 1n
1Tn (Pd + Q−1R)

1TnQ
−11n

, (5.28)

and Q = diag(Q1, . . . ,Qn), R = (R1, . . . ,Rn)T .

Proof. To solve the optimization problem (5.26), the method of Lagrange multipliers is
used. Specifically, let C(Pt) =

∑
i∈V Ci(Pti), the Lagrangian function associated to (5.26)

can be expressed as
L(Pt, λ) = C(Pt) + λ(1TnP t − 1TnPd), (5.29)
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λ being the Lagrangian multiplier. From the convexity property of the cost function C(Pt),
one can conclude that the solution to (5.26) is a saddle point, and it can be obtained by
solving a max-min optimal problem, i.e., maxλ minPt L(Pt, λ). Then, from the first order
optimality conditions, it yields

∇C(P
opt

t ) + λ
opt

= 0

1TnP
opt

t − 1TnPd = 0,
(5.30)

where ∇C(P
opt

t ) = QP opt

t + R. To conclude the proof, equalities (5.27) and (5.28) are
obtained by manipulating (5.30). ut

From (5.27) it follows that the marginal costs QP opt

t +R are identical. Note that (5.27)
depends explicitly on the unknown power demand Pd. We aim at the design of a con-
troller solving (5.26) without measurements of the power demand, leading to the second
objective.

Objective 5.2 (Economic dispatch).

lim
t→∞

Pt(t) = P
opt

t , (5.31)

with P
opt

t as in (5.27), without measurements of Pd.

In order to achieve Objective 5.1 and Objective 5.2 we refine Assumption 5.2 that ensures
the feasibility of the objectives.

Assumption 5.4 (Existence of a optimal steady state). Assumption 5.2 holds when

f = 0 and P t = P g = P
opt

t , with P
opt

t as in (5.27).

Remark 5.3 (Varying power demand). To allow for a steady state solution, the power
demand (unmatched disturbance) is required to be constant. This is not needed to reach
the desired sliding manifold introduced in the next section, but is required only to establish
the asymptotic convergence properties in Objective 5.1 and Objective 5.2. Furthermore,
the proposed solution shows ([TBD16, Remark 8]) the existence of a finite L2-to-L∞ gain
and a finite L2-to-L2 gain from a varying demand to the frequency deviation f [KPA+04],
once the system evolves on the sliding manifold, introduced in the next section.

5.6 Distributed Sliding Mode Control

In Section 5.4 we discussed a passivity property of the power network (5.13), with input
Pt and output f . Unfortunately, the turbine-governor system (5.14) does not immediately
allow for a passive interconnection, since (5.14) is a linear system with relative degree two,
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when considering −f as the input and Pt as the output8. To alleviate this issue we propose
a distributed Suboptimal Second Order Sliding Mode (D–SSOSM) control algorithm that
simultaneously achieves Objective 5.1 and Objective 5.2, by constraining (5.14) such that
it enjoys a suitable passivity property, and by exchanging information on the marginal
costs. As a first step (see also Remark 5.4 below), we augment the turbine-governor
dynamics (5.14) with a distributed control scheme, resulting in:

TtṖt = −Pt + Pg

TgṖg = −R−1f − Pg + u

Tθθ̇ = −θ + Pt −ALcom(Qθ + R).

(5.32)

Here, Qθ + R reflects the ‘virtual’ marginal costs and Lcom is the Laplacian matrix
corresponding to the topology of an underlying communication network. The diagonal
matrix Tθ ∈ Rn×n provides additional design freedom to shape the transient response
and the matrix A is suggested later to obtain a suitable passivity property. We note that
Lcom(Qθ + R) represents the exchange information on the marginal costs among the
control areas. To guarantee an optimal coordination of generation among all the control
areas the following assumption is made:

Assumption 5.5. (Communication topology) The graph corresponding to the com-
munication topology is undirected and connected.

Remark 5.4. (First order turbine-governor dynamics) The rational behind this
seemingly ad-hoc choice of the augmented dynamics is that for the controlled first order
turbine-governor dynamics, where u = θ and Pg = −R−1f + θ, system

TtṖt = −Pt −R−1f + θ

Tθθ̇ = −θ + Pt −R−1QLcom(Qθ + R),
(5.33)

has been shown to be incrementally passive with input −f and output Pt, and is able
to solve Objective 5.1 and Objective 5.2 [TD17b]. We aim at the design of u and A
in (5.32), such that (5.32) behaves similarly as (5.33). This is made explicit in Lemma 5.8
and Lemma 5.9.

We now propose a sliding function σ(f ,Pt,Pg,θ) and a matrix A for system (5.32),
which will allow us to prove convergence to the desired state. The choices are motivated
by the stability analysis in the next section, but are stated here for the sake of exposition.
First, the sliding function σ : R4n → Rn is given by

σ(f ,Pt,Pg,θ) = M1f +M2Pt +M3Pg +M4θ, (5.34)

where M1 � 0, M2 � 0, M3 � 0 are diagonal matrices and M4 = −(M2 + M3).
Therefore, σi, i ∈ V, depends only on the locally available variables that are defined on

8 A linear system with relative degree two is not passive, as follows e.g. from the Kalman-
Yakubovich-Popov lemma.
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node i, facilitating the design of a distributed controller (see Remark 5.6). Second, the
diagonal matrix A ∈ Rn×n is defined as

A = (M2 +M3)−1M1Q. (5.35)

By regarding the sliding function (5.34) as the output function of system (5.13), (5.32),
it appears that the relative degree of the system is one. This implies that a first order
sliding mode controller can be naturally applied [Utk92] in order to attain in a finite time,
the sliding manifold defined by σ = 0. However, the input u to the governor affects the
first time derivative of the sliding function, i.e. u affects σ̇. Since sliding mode controllers
generate a discontinuous signal, we additionally require σ̇ = 0, to guarantee that the
signal u is continuous. Therefore, we define the desired sliding manifold as

{(η,f ,V ,Pt,Pg,θ) : σ = σ̇ = 0}. (5.36)

We continue by discussing a possible controller attaining the desired sliding mani-
fold (5.36) while providing a continuous control input u.

5.6.1 Suboptimal Second Order Sliding Mode Controller

To prevent chattering, it is important to provide a continuous control input u to the
governor. Since sliding mode controllers generate a discontinuous control signal, we adopt
the procedure suggested in [BFU98a] and first integrate the discontinuous signal, yielding
for system (5.32)

TtṖt = −Pt + Pg

TgṖg = −R−1f − Pg + u

Tθθ̇ = −θ + Pt −ALcom(Qθ + R)

u̇ = w,

(5.37)

where w is the new (discontinuous) input generated by a sliding mode controller discussed
below. A consequence is that the system relative degree (with respect to the new control
input w) is now two, and we need to rely on a second order sliding mode control strategy
to attain the sliding manifold (5.34) in a finite time [Lev03]. To make the controller
design explicit, we discuss a specific second order sliding mode controller, the so-called
‘Suboptimal Second Order Sliding Mode’ (SSOSM) controller proposed in [BFU98a]. We
introduce two auxiliary variables ξ1 = σ ∈ Rn and ξ2 = σ̇ ∈ Rn, and define the so-called
auxiliary system as

ξ̇1 = ξ2

ξ̇2 = φ(η,f ,V ,Pt,Pg,θ) +Gw.
(5.38)

Bearing in mind that ξ̇2 = σ̈ = φ+Gw, the expressions for the mapping φ and matrix
G can be straightforwardly obtained from (5.34) by taking the second derivative of σ
with respect to time, yielding for the latter9 G = M3T

−1
g ∈ Rn×n. We assume that the

entries of φ and G have known bounds

9The expression for φ is rather long and is omitted.
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Fig. 5.2. Block diagram of the proposed Distributed Suboptimal Second Order Sliding Mode
(D–SSOSM) control strategy.

|φi| ≤ Φi ∀i ∈ V
0 < Gmini ≤ Gii ≤ Gmaxi ∀i ∈ V

(5.39)

with Φi, Gmini and Gmaxi being positive constants. Second, w is a discontinuous control
input described by the SSOSM control algorithm [BFU98a], and consequently for each
area i ∈ V, the control law wi is given by

wi = −αiWmaxi sign

(
ξ1i −

1

2
ξ1,maxi

)
, (5.40)

with

Wmaxi > max

(
Φi

α∗iGmini

;
4Φi

3Gmini − α∗iGmaxi

)
, (5.41)

α∗i ∈ (0, 1] ∩
(

0,
3Gmini

Gmaxi

)
, (5.42)

αi switching between α∗i and 1, according to [BFU98a, Algorithm 1]. Note that indeed

the input signal to the governor, u(t) =
∫ t
0
w(τ)dτ , is continuous, since the input w is

piecewise constant. The extremal values ξ1,maxi in (5.40) can be detected by implementing
for instance a peak detection as in [BFU98b]. The block diagram of the proposed control
strategy is depicted in Fig. 5.2.

Remark 5.5. (Uncertainty of φ and G) The mapping φ and matrix G are uncertain
due to the presence of the unmeasurable power demand Pd and voltage angle θ, and
possible uncertainties in the system parameters. In practical cases the bounds in (5.39)
can be determined relying on data analysis and physical insights. However, if these bounds
cannot be a-priori estimated, the adaptive version of the SSOSM algorithm proposed
in [ICF16] can be used to dominate the effect of the uncertainties.

Remark 5.6. (Distributed control) Given A in (5.35), the dynamics of θi in (5.32)
read for node i ∈ V as
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Tθiθ̇i = −θi + Pti −
QiM1ii

M2ii +M3ii

∑
j∈N comj

(Qiθi +Ri −Qjθj −Rj),

where N com
j is the set of controllers connected to controller i. Furthermore, (5.40) depends

only on σi, i.e. on states defined at node i. Consequently, the overall controller is indeed
distributed and only information on marginal costs needs to be shared among connected
controllers.

Remark 5.7. (Alternative SOSM controllers) In this work we rely on the SOSM
control law proposed in [BFU98a]. However, to constrain system (5.13) augmented with
dynamics (5.37) on the sliding manifold (5.36), where σ = σ̇ = 0, any other SOSM
control law that does not need the measurement of σ̇ can be used (e.g. the super-twisting
control [Lev93]). An interesting continuation of the presented results is to study the
performance of various SOSM controllers within the setting of (optimal) LFC.

Remark 5.8. (Comparison with [TD17b] and [KMDL17]) The controller proposed
in [TD17b] requires, besides a gain restriction in the controller, that

4TgiT
−1
ti > 1

K−1pi TgiT
−1
ti > 1.

(5.43)

In this work, we do not impose such restriction on the parameters. The result in [KMDL17]
requires, besides some assumptions on the dissipation inequality related to the genera-
tion side, the existence of frequency dependent generation and load, where the genera-
tion/demand (output) depends directly (e.g. proportionally) on the frequency (input),
avoiding complications arising from generation dynamics that have relative degree two
when considering the input-output pair just indicated (see also Remark 5.10).

Remark 5.9. (Primal-dual based approaches) Although the focus in this work is
to augment the power network with consensus-type dynamics in (5.32), it is equally
possible to augment the power network with a continuous primal-dual algorithm that has
been studied extensively to obtain optimal LFC. This work provides therefore also means
to extend existing results on primal-dual based approaches to incorporate the turbine-
governor dynamics, generating the control input by a higher order sliding mode controller.
The required adjustments follow similar steps as discussed in [TD17b, Remark 9], and, for
the sake of brevity, we directly state the resulting primal-dual based augmented system,
replacing (5.32),

TtṖt = −Pt + Pg

TgṖg = −R−1f − Pg + u

Tθθ̇ = −θ + Pt −M1(M2 +M3)−1 (∇C(θ)−ψ)

v̇ = −BTψ
ψ̇ = Bv − θ + Pd.

(5.44)
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In this case only strict convexity of C(θ) is required and the load Pd explicitly appears
in (5.44). The stability analysis of the power network, including the augmented turbine-
governor dynamics (5.44), follows mutatis mutandis, the same argumentation as in the
next section where the focus is on the augmented system (5.32). Some required nontrivial
modifications in the analysis are briefly discussed in Remark 5.13.

5.7 Stability Analysis

In this section we study the stability of the proposed control scheme, based on an enforced
passivity property of (5.32) on the sliding manifold defined by (5.34). First, we establish
that the second order sliding mode controller (5.38)–(5.42) constrains the system in finite
time to the desired sliding manifold.

Lemma 5.8. (Convergence to the sliding manifold) Let Assumption 5.1 hold. The
solutions to system (5.13), augmented with (5.37), in closed loop with controller (5.38)–
(5.42) converge in a finite time Tr to the sliding manifold (5.36) such that

Pg =−M−1
3 (M1f +M2Pt +M4θ) ∀t ≥ Tr. (5.45)

Proof. Following [BFU98a], the application of (5.38)–(5.42) to each control area guaran-
tees that σ = σ̇ = 0, ∀ t ≥ Tr. The details are omitted, and are an immediate conse-
quence of the used SSOSM control algorithm [BFU98a]. Then, from (5.34) one can easily
obtain (5.45), where M3 is indeed invertible. ut

Exploiting relation (5.45), on the sliding manifold where σ = σ̇ = 0, the so-called equiv-
alent system is as follows

M3TtṖt = −(M2 +M3)Pt −M4θ −M1f

Tθθ̇ = −θ + Pt −ALcom(Qθ + R).
(5.46)

As a consequence of the feasibility assumption (Assumption 5.4), the system above admits
the following steady state

0 = −(M2 +M3)P
opt

t −M4θ −M10

0 = −θ + P
opt

t −ALcom(Qθ + R).
(5.47)

Now, we show that system (5.46), with A as in (5.35), indeed possesses a passivity prop-
erty with respect to the steady state (5.47). Note that, due to the discontinuous control
law (5.40), the solutions to the closed loop system are understood in the sense of Filippov.
Following the equivalent control method [Utk92], the solutions to the equivalent system
are however continuously differentiable.
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Lemma 5.9. (Incremental passivity of (5.46)) System (5.46) with input −f and

output Pt is an incrementally passive system, with respect to the constant (P
opt

t ,θ)
satisfying (5.47).

Proof. Consider the following incremental storage function

S2 =
1

2
(Pt − P

opt

t )TM−1
1 M3Tt(Pt − P

opt

t )

+
1

2
(θ − θ)TM−1

1 (M2 +M3)Tθ(θ − θ),

(5.48)

which is positive definite, since M1 � 0,M2 � 0 and M3 � 0. Then, we have that S2
satisfies along the solutions to (5.46)

Ṡ2 =
1

2
(Pt − P

opt

t )TM−1
1 M3TtṖt +

1

2
(θ − θ)TM−1

1 (M2 +M3)Tθθ̇

=
1

2
(Pt − P

opt

t )T (−M−1
1 (M2 +M3)Pt − f −M−1

1 M4θ)

+
1

2
(θ − θ)TM−1

1 (M2 +M3)(Pt − θ −ALcom(Qθ + R)).

In view of M4 = −(M2 +M3), A = (M2 +M3)−1M1Q and equality (5.47), it follows
that

Ṡ2 =− (Pt − θ)TM−1
1 (M2 +M3)(Pt − θ)

− (Qθ + R−Qθ −R)Lcom(Qθ + R−Qθ −R)

− (Pt − P
opt

t )T (f − 0).

ut

Remark 5.10. (Relative degree order reduction) An important consequence of the
proposed sliding mode controller (5.38)–(5.42) is that the relative degree of system (5.46)
is one with input −f and output Pt. This is in contrast to the ‘original’ system (5.14)
that has relative degree two with the same input–output pair.

Now, relying on the interconnection of incrementally passive systems, we can prove the
main result of this work concerning the evolution of the augmented system controlled via
the proposed distributed SSOSM control strategy.

Theorem 5.1 (Main result). Let assumptions 5.1–5.5 hold. Consider system (5.13)
and (5.32), controlled via (5.38)–(5.42). Then, the solutions to the closed-loop system

starting in a neighbourhood of the equilibrium (η,f = 0,V ,P
opt

t ,P g,θ) approach the set

where f = 0 and P t = P
opt

t , with P
opt

t given by (5.27).
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Proof. Following Lemma 5.8, we have that the SSOSM control enforces system (5.32)
to evolve ∀ t ≥ Tr on the sliding manifold (5.36), resulting in the reduced order sys-
tem (5.46). To study the obtained closed loop system, consider the overall incremental
storage function S = S1 + S2, with S1 given by (5.19) and S2 given by (5.48). In view of

Lemma 5.5, we have that S has a local minimum at (η,f = 0,V ,P
opt

t ,θ) and satisfies
along the solutions to (5.13), (5.46)

Ṡ =− fTK−1p f − V̇ TTV (Xd −X′
d)−1V̇ − (Pt − θ)TM−1

1 (M2 +M3)(Pt − θ)

− (Qθ + R−Qθ −R)Lcom(Qθ + R−Qθ −R) ≤ 0,

where V̇ = T−1V
(
−(Xd−X′

d)E(η)V +Ef
)
. Consequently, there exists a forward invariant

set Υ around (η,f = 0,V ,P
opt

t ,θ) and by LaSalle’s invariance principle the solutions
that start in Υ approach the largest invariant set contained in

Υ ∩ {(η,f ,V ,Pt,θ) : f = 0,V =
(
(Xd −X′

d)E(η)
)−1

Ef ,Pt = θ,θ = θ + Q−11nα},

where α ∈ R is some scalar. On this invariant set the controlled power network satisfies

η̇ = BT0

0 = Kp(θ + Q−11nα− Pd −BΓ (V )sin(η))

0 = −(Xd −X′
d)E(η)V +Ef

M3TtṖt = 0

Tθθ̇ = 0.

(5.49)

Pre-multiplying both sides of the second line of (5.49) with 1TnK
−1
p yields 0 = 1Tn (θ +

Q−11nα−Pd). Since θ = P
opt

t , 1Tn (P
opt

t −Pd) = 0 and Q is a diagonal matrix with only
positive elements, it follows that necessarily α = 0. We can conclude that the solutions to
the system (5.13) and (5.32), controlled via (5.38)–(5.42), indeed approach the set where

f = 0 and P t = P
opt

t , with P
opt

t given by (5.27). ut

Remark 5.11. (Robustness to failed communication) The proposed control scheme
is distributed and as such requires a communication network to share information on
the marginal costs. However, note that the term −ALcom(Qθ + R) in (5.32) is not
needed to enforce the passivity property established in Lemma 5.9, but is required to

prove convergence to the economic efficient generation P
opt

t . In fact, setting A = 0 still
permits to infer frequency regulation following the argumentation of Theorem 5.1.

Remark 5.12. (Region of attraction) LaSalle’s invariance principle can be applied to
all bounded solutions. As follows from Lemma 5.5, we have that the considered incremen-
tal storage function has a local minimum at the desired steady state, whereas the time to
converge to the sliding manifold can be made arbitrarily small by properly choosing the
gains of the SSOSM control. This guarantees that solutions starting in the vicinity of the
steady state of interest remain bounded. A preliminary (numerical) assessment indicates
that the region of attraction is large, but a thorough analysis is left as future endeavour.
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Area 1

Area 2

Area 4

Area 3

P12

P14

P23

P34

Fig. 5.3. Scheme of the considered power network partitioned into 4 control areas, where Pij =
Vi Vj
Xij

sin (δi − δj). The solid arrows indicate the positive direction of the power flows through the

power network, while the dashed lines represent the communication network.

Remark 5.13. (Stability of primal-dual based approaches) To accommodate the
additional dynamics of states v and ψ appearing in primal-dual based augmented sys-
tem (5.44), an additional storage term is required in Lemma 5.9, namely:

S3 =
1

2
(v − v)T (v − v) +

1

2
(ψ −ψ)T (ψ −ψ), (5.50)

where v and ψ satisfy the steady state equations

0 = −θ + P
opt

t −M1(M2 +M3)−1
(
∇C(θ)−ψ

)
0 = −BTψ
0 = Bv − θ + Pd.

(5.51)

Consequently, S2 + S3 satisfies along the solutions to the system, constrained to the
manifold σ = σ̇ = 0,

Ṡ2 + Ṡ3 =− (Pt − θ)TM−1
1 (M2 +M3)(Pt − θ)

− (θ − θ)T (∇C(θ)−∇C(θ))− (Pt − P
opt

t )T (f − 0).

Note that, as a result of the mean value theorem, −(θ − θ)T (∇C(θ)−∇C(θ)) = −(θ −
θ)T∇2C(θ̃)(θ − θ) ≤ 0, for some θ̃i ∈ [θi, θi], for all i ∈ V. The matrix ∇2C(θ̃) ∈ Rn×n
is positive definite due to the strict convexity of C(·). The proof of Theorem 5.1 can now
be repeated using the incremental storage function S = S1 + S2 + S3.

5.8 Case Study

In this section, the proposed control solution is assessed in simulation, by implementing
a power network partitioned into four control areas (e.g. the IEEE New England 39-bus
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Table 5.2. Network Parameters and Power Demand

A
re

a
1

A
re

a
2

A
re

a
3

A
re

a
4

Tpi (s) 21.0 25.0 23.0 22.0
Tti (s) 0.30 0.33 0.35 0.28
Tgi (s) 0.080 0.072 0.070 0.081
TVi (s) 5.54 7.41 6.11 6.22
Kpi (Hz p.u.−1) 120.0 112.5 115.0 118.5
Ri (Hz p.u.−1) 2.5 2.7 2.6 2.8
Xdi (p.u.) 1.85 1.84 1.86 1.83
X ′di (p.u.) 0.25 0.24 0.26 0.23

Efi (p.u.) 1.0 1.0 1.0 1.0
Bii (p.u.) −13.6 −12.9 −12.3 −12.3
Tθi (s) 0.33 0.33 0.33 0.33
Qi (104 $ h−1) 2.42 3.78 3.31 2.75
∆Pdi (p.u.) 0.010 0.015 0.012 0.014

system [NC13]). The topology of the power network is represented in Fig. 5.3, together
with the communication network (dashed lines). The line parameters are B12 = −5.4 p.u.,
B23 = −5.0 p.u., B34 = −4.5 p.u. and B14 = −5.2 p.u., while the network parameters and
the power demand variation ∆Pdi of each area are provided in Table 5.2, where a base
power of 1000 MW is assumed. The matrices in (5.34) are chosen as M1 = 3I4,M2 =
I4,M3 = 0.1I4 and M4 = −(M2 +M3), I4 ∈ R4×4 being the identity matrix, while the
control amplitude Wmaxi and the parameter α∗i , in (5.40) are 10 and 1, respectively, for
all i ∈ V. For the sake of simplicity, in the cost function (5.25), we select Ri = Ci = 0 for
all i ∈ V. The system is initially at the steady state. Then, at the time instant t = 1 s,
the power demand in each area is increased according to the values reported in Table 5.2.
From Fig. 5.4, one can observe that the frequency deviations converge asymptotically to
zero after a transient where the frequency drops because of the increasing load. Indeed,
one can note that the proposed controllers increase the power generation in order to reach
again a zero steady state frequency deviation. Moreover, the total power demand is shared
among the areas, minimizing the total generation costs. More precisely, by applying the
proposed D-SSOSM, the total generation costs are 10 % less than the generation costs
when each area would produce only for its own demand.

5.9 Third Order Sliding Mode Observers

The control scheme proposed in Section 5.6 requires to acquire the measurements of all
the state variables to compute the sliding function (5.34), and generate the control law
(5.40). Yet, the necessity of a large number of sensors can significantly limit the applicabil-
ity of this control approach. The use of an observer can be seen as a way to overcome this
limitation, thus enhancing monitoring and control of power network. Few relevant works
have proposed observers with application to power systems. For example, in [HIU+12], an
observer has been designed to estimate the electrical active power demand. In [JWW+01],
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Fig. 5.4. Evolution of the controlled power system considering a power demand variation at
the time instant t = 1 s. (a) Frequency deviation in each control area. (b) Generated power at
the output of each steam turbine. (c) Voltage dynamics in each node. (d) Control inputs to the
governors.

a sliding mode observer has been used to estimate the states of each synchronous gener-
ator in multi-machines power systems. In [MMEF15], a sliding mode observer has been
proposed to detect and reconstruct load alteration failures in power networks.

In this section, we adopt the model of a power network partitioned into control areas
having an arbitrarily complex and meshed topology. The generation side is modeled by
an equivalent generator including second-order turbine-governor dynamics. We assume
to measure only the voltage angle variation and the turbine output power variation for
each control area. The main contribution of this section is the design of two third order
sliding mode observers capable of estimating, respectively, the frequency deviation and
the governor output variation of each control area. The finite-time convergence to zero of
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the error system dynamics is proved.

The third order sliding mode observers have been designed having in mind the control
strategy proposed in Section 5.6, which relies on the Suboptimal Second Order Slid-
ing Mode (SSOSM) control algorithm [BFU98a], and on the design of the sliding mani-
fold (5.34), where the controlled system exhibits an incremental passivity property that
allows us to infer convergence to a zero steady state frequency deviation and minimize
the generation costs. Differently from the control strategy proposed in Section 5.6, where
the availability of all the state variables is assumed, in this section we assume that the
sliding function, defined to solve the control problem, depends on unmeasurable states of
the power network.

5.9.1 Problem Formulation

The following (standard) notation is used throughout this section. For a given state vari-
able x, x̃ denotes its value after the change of coordinates x̃ = Ex, while x̂ denotes the
estimate of x̃.

In addition to the Assumptions 5.2–5.5, in this section we adopt an assumption that is
commonly used in the literature for the purposes of the design of monitoring and control
algorithms (see e.g. [vdSS16]).

Assumption 5.6 (Constant Voltages). The voltage profile is flat, which means that
the magnitude of voltage at each node of the power network is equal to 1 p.u. (i.e.,
V = V = 1 p.u., where 1 p.u. is the expression of the actual value with respect to the
base values).

For the reader’s convenience, we rewrite the equivalent generator dynamics (5.13) for all
nodes i ∈ V as

δ̇ = 2πf

Tpḟ = −f +Kp

(
Pt − Pd −BΓ (V )sin(BT δ)

)
y1 = δ,

(5.52)

and the turbine-governor dynamics (5.14) as

TtṖt = −Pt + Pg

TgṖg = −R−1f − Pg + u

y2 = Pt,

(5.53)

where δ ∈ Rn, f ∈ Rn, Pt ∈ Rn, Pg ∈ Rn, Γ = diag{Γ1, . . . , Γm}, with Γ (V )k =
V i V j/Xij , Pd ∈ Rn, u ∈ Rn, y1 ∈ Rn, and y2 ∈ Rn. Matrices Tp,Tt,Tg,Kp,R are
suitable n× n diagonal matrices.

Moreover, Assumption 5.1 is modified as follows.
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Assumption 5.7 (Available information). Variables Pti and δi are locally available
at the i-th control area. The disturbance Pdi is unknown, and both the disturbance itself
and its first time derivative are bounded as follows

|Pdi | ≤ ∆Mdi
, |Ṗdi | ≤ ∆Ṁdi

, (5.54)

where ∆Mdi
and ∆Ṁdi

are positive constants that can be determined relying on data

analysis and engineering understanding. Furthermore, Tpi , Tti , Tgi and Kpi are assumed
to be known at the i-th control area.

Assumption 5.7 implies that the variables Pgi and fi have to be estimated at the i-th
control area.

5.9.1.1 Useful Changes of Coordinates

In this section we suggest changes of coordinates for the equivalent generator dynam-
ics (5.52) and for the turbine-governor dynamics (5.53). These are useful for the purpose
of the observers design. For the i-th control area, the generator dynamics can be written

as

δ̇i = 2πfi

ḟi = aifi −KpiaiPti + φi

yi1 = δi,

(5.55)

where ai , −1/Tpi , and

φi , −
Kpi

Tpi
Pdi −

Kpi

Tpi

∑
j∈Ni

V iV j
Xij

sin(δi − δj). (5.56)

It is possible to introduce a linear change of coordinates x̃i = E1ixi for the system (5.55)
in the form of [

δ̃i
f̃i

]
=

E1i︷ ︸︸ ︷[
1 0
0 2π

] [
δi
fi

]
. (5.57)

The new coordinate system results in being

˙̃
δi = f̃i

˙̃
fi = aif̃i − 2πKpiaiPti + 2πφi

ỹi1 = δ̃i.

(5.58)

The coordinate system (5.58) is used as a basis to design a third order sliding mode
observer with the aim of estimating fi.

Analogously, equation (5.12) can be rewritten as
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Ṗti = −biPti + biPgi

Ṗgi = difi + ciPgi − ciui
yi2 = Pti ,

(5.59)

where bi , 1/Tti , ci , −1/Tgi , and di , −1/(RiTgi). It is useful to introduce again a
change of coordinates x̃i = E2ixi, i.e.,

[
P̃ti
P̃gi

]
=

E2i︷ ︸︸ ︷[
1 0
0 bi

] [
Pti
Pgi

]
. (5.60)

The new coordinate system results in being

˙̃Pti = −biP̃ti + P̃gi

˙̃Pgi = ciP̃gi +
bidi
2π

f̃i − biciui

ỹi2 = P̃ti .

(5.61)

The coordinate system (5.61) is used as a basis to design a third order sliding mode ob-
server with the aim of estimating Pgi .

In the next sections we present in detail the procedure for the design of the observers
to estimate the unmeasured state variables of each control area, considering the few lo-
cal available measurements indicated in Assumption 5.7. In particular, we design two
third order sliding mode observers for each control area, which are capable of estimat-
ing respectively the frequency deviation and the governor output power variation. The
introduced architectures for the observers rely on a decentralized computation, since no
communication is introduced among observers belonging to different control areas.

5.9.2 Observer for Frequency Deviation Estimation

To locally estimate the frequency of each control area, it is possible to introduce a third
order sliding mode observer according to the following proposition.

Proposition 5.1. The following third order sliding mode observer

˙̂
δi = k1i |eδi |2/3 sign(eδi) + aieδi + f̂i

˙̂
fi = k2i |eδi |1/3 sign(eδi)− 2πKpiaiPti + aif̂i + a2i eδi + k1iai|eδi |2/3 sign(eδi) + ẑi

˙̂zi = k3i sign(eδi),

(5.62)

where δ̂i is the estimate of δ̃i, eδi , δ̃i − δ̂i, f̂i is the estimate of f̃i, ẑi is an auxiliary

variable required in order to ensure that
˙̂
fi is continuous, and k1i , k2i , k3i are positive

scalar design, leads to a correct estimation of the frequency deviation in each i-th control
area in a finite time. Note that this observer differs from that in [CKF+16] because of the
presence of additional terms. These terms have been underlined.
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Fig. 5.5. The block diagram of the i-th control area dynamics of a power network with the
designed observers.

Proof. By subtracting (5.62) from (5.58), it yields the error dynamics

ėδi = −k1i |eδi |2/3 sign(eδi)− aieδi + efi

ėfi = −k2i |eδi |1/3 sign(eδi) + aiefi − a2i eδi − k1iai|eδi |2/3 sign(eδi) + 2πφi − ẑi
˙̂zi = k3i sign(eδi),

(5.63)

where efi , f̃i − f̂i. By defining efi , efi − aieδi , the error system dynamics (5.63) can
be rewritten as follows

ėδi =− k1i |eδi |2/3 sign(eδi) + efi

ėfi =− k2i |eδi |1/3 sign(eδi) + aiefi − a2i eδi − k1iai|eδi |2/3 sign(eδi) + 2πφi − ẑi
+ k1iai|eδi |2/3 sign(eδi) + a2i eδi − aiefi︸ ︷︷ ︸

−aiėδi
˙̂zi = k3i sign(eδi).

(5.64)

Algebraic terms can be simplified in (5.64). This is possible thanks to the addition of the
terms highlighted in Proposition 5.1. One gets

ėδi = −k1i |eδi |2/3 sign(eδi) + efi

ėfi = −k2i |eδi |1/3 sign(eδi) + 2πφi − ẑi
˙̂zi = k3i sign(eδi).

(5.65)

Let ezi , 2πφi − ẑi, then equation (5.65) can be rewritten as follows
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ėδi = −k1i |eδi |2/3 sign(eδi) + efi

ėfi = −k2i |eδi |1/3 sign(eδi) + ezi

ėzi = −k3i sign(eδi) + Φi,

(5.66)

where Φi , 2πφ̇i. Equation (5.66) is in the form of the standard third order sliding
mode observer error dynamics [Lev03], or, equivalently, of the second order sliding mode
differentiator error dynamics [ORM+15].

According to Assumption 5.7 and recalling the definition of φi in (5.56), one has that the
modulus of Φi in (5.66) is bounded as

|Φi| ≤ ∆M1i
, (5.67)

∆M1i
being a positive constant. In order to steer the error dynamics (5.66) to the origin

in a finite time, the gains k1i , k2i , and k3i can be tuned relying on the rules proposed in
[ORM+15], where a differentiable Lyapunov function for the second order sliding mode
differentiator error dynamics is provided together with a new family of gains. In particular,
the gains of the observer are designed during the Lyapunov function construction process
by solving linear inequalities.

Furthermore, the convergence time T (e0i) to the origin for the system (5.66) can be
expressed according to [ORM+15] as

T (e0i) ≤
V 1/5(e0i)

1
5γ

, (5.68)

where e0i represents the initial conditions for the system (5.66), V is the candidate Lya-
punov function in [ORM+15], and 0 < γ ≤ 2.8 × 10−4. The following condition holds in
a finite time

eδi = efi = efi = ezi = 0. (5.69)

It follows that f̂i = f̃i in a finite time, i.e., it is possible to locally estimate the frequency
of each control area. ut

5.9.3 Observer for Governor Output Variation Estimation

To locally estimate the governor output variation Pgi of each control area, it is possible
to introduce again a third order sliding mode observer.

Even though the design procedure is similar to Section 5.9.2, it is worth underlining the
major aspects.

Proposition 5.2. The following third order sliding mode observer

˙̂
Pti = k4i |ePti |

2/3 sign(ePti ) + (ci − bi)ePti + P̂gi − biP̂ti
˙̂
Pgi = k5i |ePti |

1/3 sign(ePti ) + ciP̂gi + c2i ePti − biciui + k4ici|ePti |
2/3 sign(ePti )

+
bidi
2π

f̂i + ŵi

˙̂wi = k6i sign(ePti ),

(5.70)
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where P̂ti is the estimate of P̃ti , ePti , P̃ti − P̂ti , P̂gi is the estimate of P̃gi , ŵi is an

auxiliary variable required in order to ensure that
˙̂
Pgi is continuous, and k4i , k5i , and

k6i are positive design constants, leads to a correct estimation of the governor output
variation in each i-th control area in a finite time. Note that also this observer differs
from that in [CKF+16] because of the presence of additional terms. These terms have
been underlined.

Proof. By subtracting (5.70) from (5.61), it yields the error dynamics

ėPti = −k4i |ePti |
2/3 sign(ePti )− (ci − bi)ePti + ePgi − biePti ,

ėPgi = −k5i |ePti |
1/3 sign(ePti ) + ciePgi − c

2
i ePti − k4ici|ePti |

2/3 sign(ePti ) + νi − ŵi
˙̂wi = k6i sign(ePti ),

(5.71)

where ePgi , P̃gi − P̂gi , and νi ,
bidi
2π efi . The additional terms highlighted in Proposi-

tion 5.2 give rise to algebraic simplifications. System (5.71) becomes

ėPti = −k4i |ePti |
2/3 sign(ePti )− ciePti + ePgi

ėPgi = −k5i |ePti |
1/3 sign(ePti ) + ciePgi − c

2
i ePti − k4ici|ePti |

2/3 sign(ePti ) + νi − ŵi
˙̂wi = k6i sign(ePti ).

(5.72)

It is worth noting that equation (5.72) and (5.63) have the same structure. By defining
ePgi , −ciePti + ePgi ,, it is possible to apply the same procedure explained in Subsec-
tion 5.9.2 to obtain again the error dynamics in the form of the standard third order
sliding mode observer error dynamics[Lev03]

ėPti = −k4i |ePti |
2/3 sign(ePti ) + ePgi

ėPgi , = −k5i |ePti |
1/3 sign(ePti ) + ewi

ėwi = −k6i sign(ePti ) + Ψi,

(5.73)

where Ψi , ν̇i = bidi
2π ėfi .

According to the developments in Subsection 5.9.2, the modulus of Ψi in (5.73) is bounded
as

|Ψi| ≤ ∆M2i
, (5.74)

∆M2i
being a positive constant. As explained in Subsection 5.9.2, the systems (5.73)

converges to the origin in a finite time, allowing a correct state estimation of Pgi . ut

In order to illustrate the observer design presented in this section, in Fig. 5.5 we report
the block diagram of the i-th control area together with the associated observers.



5.9 Third Order Sliding Mode Observers 115

0 1 2 3 4 5
time (s)

0

0.5

1

σ̂

σ̂1

σ̂2

σ̂3

σ̂4

(a) sliding variable

0 1 2 3 4 5
time (s)

-0.1

0

0.1

0.2

0.3

0.4

f
(H

z)

f1
f2
f3
f4
f̂1
f̂2
f̂3
f̂4

1 2 3

-4

-2

0

×10−3

(b) frequency deviation

0 1 2 3 4 5
time (s)

-5

0

5

10

15

20

P
t
(p
.u
.)

×10−3

Pt1

Pt2

Pt3

Pt4

(c) turbine output power

0 1 2 3 4 5
time (s)

-0.1

0

0.1

P
g
(p
.u
.)

Pg1

Pg2

Pg3

Pg4

P̂g1

P̂g2

P̂g3

P̂g4

1 1.5 2
0

0.05

(d) governor output power

Fig. 5.6. Evolution of the controlled power system considering a power demand variation at
the time instant t = 1 s. (a) Frequency deviation in each control area. (b) Generated power at
the output of each steam turbine. (c) Voltage dynamics in each node. (d) Control inputs to the
governors.

5.9.4 Case Study

In this section, the proposed observers-based distributed control approach is assessed in
simulation by implementing a power network partitioned into four control areas.

The topology of the power network is represented in Fig. 5.3 together with the com-
munication network (dashed lines). The relevant parameters of the power network and
the power demand ∆Pdi of each area are provided in Table 5.2, where a base power of
1000 MVA is assumed, while the line parameters are Γ1 = 5.4 p.u., Γ2 = 5.0 p.u., Γ3 = 4.5
p.u. and Γ4 = 5.2 p.u. The gains of the observers are selected as follows: k1i = k4i = 20;
k2i = k5i = 67; k3i = k6i = 250, ∀i = 1, . . . , 4. The matrices in (5.34) are chosen as



116 5 Passivity Based Design of Sliding Modes

M1 = 3I4,M2 = I4,M3 = 0.1I4 and M4 = −(M2 + M3), I4 ∈ R4×4, while, for the
sake of simplicity, in the cost function (5.25), we select Ri = Ci = 0 for all i ∈ V. In
simulation, the system is initially at the steady state. At the instant t = 1 [s], the power
demand in each area is increased according to the values shown in Table 5.2. Fig. 5.6
shows, from the top, that the estimated sliding variables are steered to the sliding man-
ifold after a transient due to the observers convergence. From figure 5.6 one can also
notice a transient during which the frequency drops because of the increasing load. Then,
in order to bring the frequency deviation back to zero, the proposed controllers increase
the power generation.

5.10 Conclusions

A Distributed Suboptimal Second Order Sliding Mode (D-SSOSM) control scheme has
been proposed to solve an optimal load frequency control problem in power systems.
In this work, we have adopted a nonlinear model of a power network, including voltage
dynamics, where each control area is represented by an equivalent generator including
second order turbine-governor dynamics. Based on a suitable chosen sliding manifold, the
controlled turbine-governor system, constrained to this manifold, possesses an incremental
passivity property that is exploited to prove that the frequency deviation asymptotically
approaches zero and an economic dispatch is achieved. An important feature of the pro-
posed distributed control approach is that the controllers do not require the measurement
of the power demand nor rely on load observers. Designing the sliding modes, based on
passivity considerations, appears to be powerful and we will pursue this approach within
different settings, such as achieving power sharing in microgrids. Additionally, we would
like to compare the performance of the proposed sliding mode based control scheme with
other approaches to OLFC appearing in the literature. Then, two third order sliding mode
observers capable of estimating the frequency deviation and the governor output variation
of each control area have been designed.
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Energy Function Based Design of Sliding Modes

Abstract. This chapter proposes a decentralized Second Order Sliding Mode (SOSM)
control strategy for Automatic Generation Control (AGC) in power networks, where fre-
quency regulation is achieved, and power flows are controlled towards their desired values.
This work considers a power network partitioned into control areas, where each area is
modelled by an equivalent generator including second-order turbine-governor dynamics,
and where the areas are nonlinearly coupled through the power flows. Asymptotic conver-
gence to the desired state is established by constraining the state of the power network
on a suitable sliding manifold. This is designed relying on stability considerations made
on the basis of an incremental energy (storage) function. Simulation results confirm the
effectiveness of the proposed control approach.

6.1 Preliminaries on Automatic Generation Control

As a result of power mismatch between generation and load demand, the frequency in
a power system can deviate from its nominal value. Whereas primary droop control is
utilized to prevent destabilization of the network, the frequency is controlled back to
its nominal value by the so-called ‘Automatic Generation Control’ (AGC). In an AGC
scheme, each Control Area (CA) determines its Area Control Error (ACE) and changes the
setpoints to the governor accordingly to compensate for local load changes and to main-
tain the scheduled tie line power flows. Due to the increasing share of renewable energy
sources, it is however unsure if the existing implementations are still adequate [ADGS16].

To cope with the increasing uncertainties affecting a CA and to improve the controllers
performance, advanced control techniques have been proposed to redesign the conven-
tional AGC schemes (see for instance [EIU16, ZARA05, CF97]). In this chapter we propose
a new control strategy based on the SM control methodology, which has been previously
used in the literature to improve the conventional AGC schemes [MFWW13, Don16,
VPP10, MFL+16, PPK15].

Although SM control in AGC has received a considerable amount of attention, the so-
lution proposed in this chapter and the associated stability analysis differ substantially

117
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from the aforementioned works. Foremost, we consider a nonlinear coupling between the
various control areas, induced by the nonlinear power flow equations, which poses new
challenges in the design of the sliding manifold.

In this chapter, we adopt the model of a power network partitioned into control areas,
having an arbitrarily complex and meshed topology. The generation side is modelled by an
equivalent generator including second-order turbine-governor dynamics, where the pro-
posed decentralized control scheme continuously adjusts the governor set point. To be
able to control the power system using continuous control signals, which can be benefi-
cial in field implementations, the well known Suboptimal SOSM (SSOSM) control algo-
rithm [BFU98a] is exploited. Moreover, the convergence to the sliding manifold is obtained
neither measuring the power demand, nor using load observers.

When the nonlinear power system is constrained to the designed sliding manifold, the
convergence towards the desired state is established relying on a suitable incremental en-
ergy function [TBD16] and Lyapunov arguments. Indeed, an incremental energy function
based stability analysis suggests the design of the sliding manifold. Finally, the case study
considered in this chapter shows the effectiveness of the proposed controller and demon-
strates that, besides the immediate application to AGC, the combined use of SM control
and other nonlinear control techniques can provide new insights and control strategies.

6.2 Control Areas with Second Order Turbine-Governor Dynamics

In this section the dynamic model of a power network partitioned into control areas
is presented (see Section 5.3). For the reader’s convenience, we rewrite the equivalent
generator dynamics (5.13), and the turbine-governor dynamics (5.14) for all nodes i ∈ V
as

η̇ = BTf
TpK

−1
p ḟ = −K−1p f + Pt − Pd −BΓ sin(η)

TtṖt = −Pt + Pg

TgṖg = −R−1f − Pg + u,

(6.1)

where η = BT δ ∈ Rm, f ∈ Rn, Pt ∈ Rn, Pg ∈ Rn, Γ = diag{Γ1, . . . , Γm}, with
Γk = V i V j/Xij , where line k connects areas i and j, sin(η) = (sin(η1), . . . , sin(ηm))T ,
Pd ∈ Rn and u ∈ Rn. Matrices Tp,Tt,Tg,Kp,R are suitable n × n diagonal matrices,
e.g., Kp = diag{Kp1 , . . . ,Kpn}.

To permit the controller design in the next sections, the following assumption is made on
the disturbances (unknown loads) and the available measurements:

Assumption 6.1 (Available measurements). The variables fi, Pti, Pgi and the power
flow (BΓ sin(η))i are locally available at control area i. The unmatched disturbance Pdi
is unknown, and can be bounded as |Pdi| ≤ Di where Di is a positive constant available
at control area i.
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6.3 Frequency Regulation and Power Flows Scheduling

In this section we formulate two objectives of automatic generation control. The first
objective is concerned with the steady state frequency deviation, i.e. with limt→∞ f(t).

Objective 6.1 (Frequency regulation).

lim
t→∞

f(t) = 0. (6.2)

The second objective is to maintain the scheduled net power flows in a control area, where
the net power flow is the total power flow exchanged by a control area.

Objective 6.2 (Maintaining scheduled net power flows).

lim
t→∞

BΓ sin(η(t)) = BP f , (6.3)

where BP f is the desired net power flow. In case the power network does not contain
cycles, Objective 6.2 is equivalent to limt→∞ Γ sin(η(t)) = P f , such that the power flow
on every line is identical to its desired value (see Remark 6.6 in Section 6.5). To be able
to satisfy Objectives 6.1 and 6.2, we make the following assumption on the feasibility of
the control problem.

Assumption 6.2 (Feasibility). For a given constant Pd, there exist a u and state (f =
0,η,P t,P g) that satisfies

0 = BT0

0 =−K−1p 0 + Pt − Pd −BΓ sin(η)

0 =− Pt + P g

0 =−R−10− P g + u,

(6.4)

where BΓ sin(η) = BP f .

Remark 6.1 (Constant power demand). To satisfy Assumption 6.2, the power de-
mand (unmatched disturbance) is required to be constant. This is not needed to reach the
desired sliding manifold, but is required to establish the asymptotic convergence proper-
ties in Objective 6.1 and Objective 6.2. We make this assumption on the constant power
demand explicit in the stability analysis in Section 6.5.

Furthermore we desire the controllers to be decentralized and able to provide a continuous
control input. We are now in a position to formulate the control problem:

Problem 6.1. Let Assumptions 6.1 and 6.2 hold. Given system (6.1), design a decentral-
ized control scheme, providing a continuous control input, capable of guaranteeing that
the controlled system is asymptotically stable with zero steady state frequency deviation,
maintaining, at the steady state, the scheduled (net) power flows.
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6.4 Decentralized Sliding Mode Control

In this section a decentralized Suboptimal Second Order Sliding Mode (SSOSM) control
algorithm is proposed to solve the aforementioned control problem. To do so, the well
established SSOSM controller proposed in [BFU98a] is applied to the power network
augmented with an additional state variable θ ∈ Rn with dynamics

Tθθ̇ = −θ + Pt. (6.5)

We select the sliding function σ ∈ Rn as

σ = M1f +M2Pt +M3Pg +M4θ +M5B(Γ sin(η)− P f ), (6.6)

where M1, . . .M5 are constant n × n diagonal matrices, suitable selected in order to
assign the dynamics of the augmented system when σ = 0. The permitted values for
M1, . . .M5 follow from the stability analysis in Section 6.5.

Remark 6.2 (Local measurements). BecauseM1, . . . ,M5 are diagonal matrices, each
sliding variable σi is defined by only local variables at node i.

By regarding the sliding function (6.6) as the output function of system (6.1), (6.5), it
appears that the relative degree of the system is one. This implies that a first order sliding
mode controller can be naturally applied [Utk92] in order to attain in a finite time, the
sliding manifold defined by σ = 0. However, the input u to the governor affects the first
time derivative of the sliding function, i.e. u affects σ̇. Since sliding mode controllers
generate a discontinuous signal, we additionally require σ̇ = 0, to guarantee that the
signal u is continuous. Therefore, we define the desired sliding manifold as

{(η,f ,Pt,Pg,θ) : σ = σ̇ = 0}. (6.7)

We continue by discussing a possible controller attaining the desired sliding manifold (6.7)
while providing a continuous control input u.

6.4.1 Suboptimal Second Order Sliding Mode Controller

To prevent chattering, it is important to provide a continuous control input u to the
governor. Since sliding mode controllers generate a discontinuous control signal, we adopt
the procedure suggested in [BFU98a] by artificially increasing the relative degree of the
system. To do this, we introduce two auxiliary variables ξ1 = σ and ξ2 = σ̇, and define
the so-called auxiliary system as follows

ξ̇1 = ξ2

ξ̇2 = φ+Gw

u̇ = w,

(6.8)

where w is the new (discontinuous) input generated by a sliding mode controller discussed
below. Bearing in mind (6.6) and that ξ̇2 = σ̈ = φ + Gw, the expressions for the
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mapping φ and matrix G can be straightforwardly obtained from (6.6) by taking the
second derivative of σ with respect to time, yielding for the latter10 G = M3T

−1
g ∈ Rn×n.

We assume that the entries of φ and G have known bounds

|φi| ≤ Φi ∀i ∈ V
0 < Gmini ≤ Gii ≤ Gmaxi ∀i ∈ V

(6.9)

with Φi, Gmini and Gmaxi being positive constants. Second, w is a discontinuous control
input described by the SSOSM control algorithm [BFU98a], and consequently for each
area i ∈ V, the control law wi is given by

wi = −αiWmaxi sign

(
ξ1i −

1

2
ξ1,maxi

)
, (6.10)

with

Wmaxi > max

(
Φi

α∗iGmini

;
4Φi

3Gmini − α∗iGmaxi

)
, (6.11)

α∗i ∈ (0, 1] ∩
(

0,
3Gmini

Gmaxi

)
, (6.12)

αi switching between α∗i and 1, according to [BFU98a, Algorithm 1]. Note that indeed

the input signal to the governor, u(t) =
∫ t
0
w(τ)dτ , is continuous, since the input w is

piecewise constant. The extremal values ξ1,maxi in (6.10) can be detected by implementing
for instance a peak detection as in [BFU98b].

Remark 6.3 (Uncertainty of φ and G). The mapping φ and matrix G are uncertain
due to the presence of the unmeasurable power demand Pd and voltage angle θ, and
possible uncertainties in the system parameters. In practical cases the bounds in (6.9) can
be determined relying on data analysis and physical insights. However, if these bounds
cannot be a-priori estimated, the adaptive version of the SSOSM algorithm proposed
in [ICF16] can be used to dominate the effect of the uncertainties.

Remark 6.4 (Alternative SOSM controllers). In this work we rely on the SOSM
control law proposed in [BFU98a]. However, to constrain system (6.1) augmented with
dynamics (6.5) on the sliding manifold (6.7), where σ = σ̇ = 0, any other SOSM con-
trol law that does not need the measurement of σ̇ can be used (e.g. the super-twisting
control [Lev93]). An interesting continuation of the presented results is to study the per-
formance of various SOSM controllers within the setting of AGC.

6.5 Stability Analysis

In this section we study the stability of the proposed control scheme. In order to prove
stability we formulate two (nonrestrictive) assumptions. In the first assumption the desired
sliding manifold is defined.

10The expression for φ is rather long and is omitted.
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Assumption 6.3 (Desired sliding manifold). LetM1 � 0,M2 � 0,M3 � 0 diagonal
matrices and let M4 and M5 be defined as

M4 = −(M2 +M3)

M5 = M1X,
(6.13)

where X is a diagonal matrix satisfying11

0 < TpK
−1
p −XTpK−1p BΓ [cos(η)]BTK−1p TpX, (6.14)

and

0 < K−1p −
1

4
K−1p XK−1p −

1

2
(TpK

−1
p XBΓ [cos(η)]BT + BΓ [cos(η)]BTXK−1p Tp).

(6.15)

Remark 6.5. (Required information on the network topology) The value of X
needs to be calculated once for the whole network and can be determined offline. The
obtained value of Xii needs then to be transmitted to control area i. Since M1, . . . ,M5

are diagonal, the proposed control scheme is fully decentralized once the value of X is
obtained. We note that (6.14) and (6.15) have the form of an algebraic Riccati inequality
and a Lyapunov inequality respectively and efficient numerical methods exist to find
a diagonal solution X. To facilitate a distributed controller design that improves the
scalability of the proposed solution, we provide a distributed algorithm to determine a
value of X satisfying (6.14) and (6.15) in Subsection 6.5.1.

Second, the following assumption is made on the differences of voltage angles at steady
state, which is generally satisfied under normal operating conditions of the power network.

Assumption 6.4 (Steady state voltage angles). The differences in voltage angles
in (6.4) satisfy

η ∈
(
−π

2
,
π

2

)m
. (6.16)

The restrictions onM1, . . . ,M5 and η are required to apply LaSalle’s invariance principle
in Theorem 6.1, where stability of the proposed control scheme is proven. This shows how
the sliding manifold can be designed relying on an energy (storage) function based stability
analysis. Before discussing this main result, some useful intermediate results are derived.
First, we show that the second order sliding mode controller (6.6)–(6.12) constrains the
system in a finite time to the manifold characterized in the lemma below.

11Let [cos(η)] denote the m×m diagonal matrix diag{cos(η1), . . . , cos(ηm)}.
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Lemma 6.1 (Convergence to the sliding manifold). Let Assumption 6.1 hold. Sys-
tem (6.1) augmented with (6.5) converges in a finite time tr to the sliding manifold where

Pg =−M−1
3 (M1f +M2Pt +M4θ +M5B(Γ sin(η)− P f )). (6.17)

Proof. Following [BFU98a], the application of (6.10)–(6.12) to each control area guaran-
tees that a second order sliding mode is enforced, i.e. ∃ tr ≥ t0 : σ(t) = σ̇(t) = 0, ∀ t ≥ tr,
where t0 and tr are the initial time instant and the reaching time, respectively. Then, from
the definition of σ(t) in (6.6), one can easily obtain (6.17), where M3 is invertible since,
according to Assumption 6.3, M3 � 0. ut

Exploiting relation (6.17), the equivalent system on the sliding manifold is as follows:

η̇ = BTf
TpK

−1
p ḟ = −K−1p f + Pt − Pd −BΓ sin(η)

M−1
1 M3TtṖt = −M−1

1 (M2 +M3)Pt −M−1
1 M4θ − f −M−1

1 M5B(Γ sin(η)− P f )

Tθθ̇ = −θ + Pt

σ = 0,

(6.18)

where we include the auxiliary system (6.5). As we now focus on the asymptotic conver-
gence of the equivalent system we require the following assumption:

Assumption 6.5 (Constant power demand). The power demand (unmatched distur-
bance), Pd is constant.

As a consequence of Assumption 6.2 there exists a (f = 0,η,Pt,θ) satisfying

0 = BT0

0 = −K−1p 0 + P t − Pd −BΓ sin(η)

0 = −M−1
1 (M2 +M3)P t −M−1

1 M4θ − 0−M−1
1 M5B(Γ sin(η)− P f )

0 = −θ + P t

σ = 0,

(6.19)

where in (6.4), P g = θ = u.

To show the desired convergence properties of the equivalent system (6.18) we consider
the function

S(f ,η,Pt,θ) =
1

2
fTTpK

−1
p f − 1TmΓ cos(η) + fTTpK

−1
p XBΓ sin(η)

+
1

2
P T
t M

−1
1 M3TtPt +

1

2
θTM−1

1 (M2 +M3)Tθθ,

(6.20)
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that consists of an energy function of the power network [TBD16], a cross-term and
common quadratic functions for the states of the turbine and the auxiliary dynamics.
The stability of the system is then proven using an incremental storage function that is
the Bregman distance [Bre67] associated to the function (6.20). The Bregman distance
associated to S is defined as (notice the use of calligraphic S):

S = S(f ,η,Pt,θ)− S(0,η,P t,θ)

− ∂S

∂f

∣∣∣∣T
f=0

(f − 0) − ∂S

∂η

∣∣∣∣T
η=η

(η − η) − ∂S

∂Pt

∣∣∣∣T
Pt=P t

(Pt − P t)−
∂S

∂θ

∣∣∣∣T
θ=θ

(θ − θ)

=
1

2
fTf − 1TmΓ cos(η) + 1TmΓ cos(η)− (Γ sin(η))T (η − η)

+ fTTpK
−1
p XB(Γ sin(η)− Γ sin(η)) +

1

2
(Pt − P t)TM−1

1 M3Tt(Pt − P t)

+
1

2
(θ − θ)TM−1

1 (M2 +M3)(θ − θ),

(6.21)

where (0,η,P t,θ) satisfies (6.19). We remark that the Bregman distance S is equal to S
minus the first order Taylor expansion of S around (0,η,P t,θ). We now derive two useful
properties of S, namely that S has a local minimum at (0,η,P t,θ) and that Ṡ ≤ 0. We
start with the first claim.

Lemma 6.2 (Local minimum of S). Let Assumptions 6.2–6.5 hold. Then S has a local
minimum at (0,η,P t,θ).

Proof. Since S is a Bregman distance associated to (6.20) it is sufficient to show that (6.20)
is convex at the point (0,η,P t,θ) in order to infer that S has a local minimum at
that point. We consider therefore the Hessian matrix H(S(f ,η,Pt,θ)), evaluated at
(0,η,P t,θ), which we briefly denote H(S). A straightforward calculation shows that

H(S) =

[
Q 0
0 M

]
, (6.22)

with

Q =

 TpK
−1
p TpK

−1
p XBΓ [cos(η)]

[cos(η)]ΓBTXK−1p Tp Γ [cos(η)]

 , (6.23)

M =

M−1
1 M3Tt 0

0 M−1
1 (M2 +M3)Tθ

 . (6.24)

It is immediate to see that M � 0, such that H(S) � 0 if and only if Q � 0. Since
Γ [cos(η)] � 0 as a result of Assumption 6.4, it is sufficient that the Schur complement
of block Γ [cos(η)]

∣∣
η=η

of matrix Q satisfies

0 < TpK
−1
p −XTpK−1p BΓ [cos(η)]BTK−1p TpX. (6.25)

The claim then follows from Assumption 6.3. ut
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We now show that S satisfies Ṡ ≤ 0 along the solutions to (6.18).

Lemma 6.3 (Evolution of S). Let Assumptions 6.2–6.5 hold. Then Ṡ ≤ 0.

Proof. We have that

Ṡ = fT (−K−1p f + Pt − Pd −BΓ sin(η)) + (Γ sin(η)− Γ sin(η))TBTf
+ fTTpK

−1
p XBΓ [cos(η)]BTf

+ (BΓ (sin(η)− sin(η)))TX(−K−1p f + Pt − P l −BΓ sin(η))

+ (Pt − P t)T (−M−1
1 (M2 +M3)Pt −M−1

1 M4θ − f
−M−1

1 M5B(Γ sin(η)− P f )) + (θ − θ)TM−1
1 (M2 +M3)(−θ + Pt)

=−
(

f
BΓ (sin(η)− sin(η))

)T
Z

(
f

BΓ (sin(η)− sin(η))

)
− (Pt − θ)TM−1

1 (M2 +M3)(Pt − θ),

(6.26)

where we exploited (6.19) in the second equality above and define

Z =

K−1p − TpK−1p XBΓ [cos(η)]BT 1
2K
−1
p X

1
2XK

−1
p X

 . (6.27)

Since X > 0, it follows that Ṡ ≤ 0 if the Schur complement of block X of matrix
1
2 (Z +ZT ) satisfies

0 < K−1p −
1

4
K−1p XK−1p −

1

2
(TpK

−1
p XBΓ [cos(η)]BT + BΓ [cos(η)]BTXK−1p Tp).

(6.28)

The claim then follows from Assumption 6.3. ut

Now, we can prove the main result of this work concerning the evolution of the augmented
system controlled via the proposed SSOSM control strategy.

Theorem 6.1 (Main result). Let Assumptions 6.1–6.5 hold. Consider system (6.1),
augmented with (6.5) and controlled via (6.6)–(6.12). Then, the solutions of the closed-
loop system starting in a neighbourhood of the equilibrium (f = 0,η,P t,P g) approach the
set where f = 0 and BΓ sin(η) = BP f , where BP f is the desired net power exchanged
by the control areas.

Proof. Following Lemma 6.1 we have that the SSOSM control enforces system (6.1),
(6.5) to evolve ∀ t ≥ tr on the sliding manifold characterized by σ = σ̇ = 0, resulting
in the reduced order system (6.18). Consider the incremental storage function S, given
by (6.21). In view of Lemma 6.2 and Lemma 6.3 we have that S has a local minimum at
(f = 0,η,P t,θ) and satisfies along the solutions to (6.18)



126 6 Energy Function Based Design of Sliding Modes

Ṡ =−
(

f
BΓ (sin(η)− sin(η))

)T
Z

(
f

BΓ (sin(η)− sin(η))

)
− (Pt − θ)TM−1

1 (M2 +M3)(Pt − θ)

≤ 0,

(6.29)

where Z + ZT > 0. Consequently, there exists a forward invariant set, Υ around (f =
0,η,P t,θ) and by LaSalle’s invariance principle the solutions that start in Υ approach
the largest invariant set contained in

Υ ∩ {f ,η,Pt,θ) : f = 0,BΓ sin(η) = BΓ sin(η),Pt = θ}. (6.30)

Bearing in mind that BΓ sin(η) = BP f , we can indeed observe hat system (6.1) ap-
proaches the set where the frequency deviation is zero, and where the net exchanged
power is equal to the desired value, i.e., BΓ sin(η) = BP f . ut

Remark 6.6 (Acyclic network topologies). In case the topology of the power network
does not contain any cycles, we have that the corresponding incidence matrix B has full
column rank and therefore has a left-inverse satisfying B+B = Im, such that we can
conclude from Theorem 6.1 that the system approaches the set where

BΓ sin(η) =BP f
B+BΓ sin(η) =B+BP f .

Γ sin(η) =P f .

(6.31)

Remark 6.7 (Region of attraction). LaSalle’s invariance principle can be applied to
all bounded solutions. As follows from Lemma 6.2, we have that the considered incremen-
tal storage function has a local minimum at the desired steady state, whereas the time to
converge to the sliding manifold can be made arbitrarily small by properly choosing the
gains of the SSOSM control. This guarantees that solutions starting in the vicinity of the
steady state of interest remain bounded. A thorough analysis of the region of attraction is
outside the scope of this thesis and an interesting future direction is to incorporate recent
results of [VT16, DLC15] where energy functions, similar to the one used in this chapter,
are further characterized.

6.5.1 A distributed tuning algorithm

In this subsection we provide a distributed algorithm to determine a possible value of X
that satisfies (6.14) and (6.15). We first derive two useful lemmas.

Lemma 6.4 (Satisfying (6.14)). If X = ε1KpT
−1
p , with

ε1 < min
i∈V

(√
Tpi

2Kpi

∑
k∈Ni Γk

)
, (6.32)

then (6.14) is satisfied.
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Proof. Note that (6.14) becomes

0 < TpK
−1
p − ε21BΓ [cos(η)]BT , (6.33)

which holds if the largest eigenvalue λmax satisfies

λmax(ε21T
−1
p KpBΓ [cos(η)]BT ) < 1. (6.34)

By the Gershgorin circle theorem, every eigenvalue of ε21T
−1
p KpBΓ [cos(η)]BT lies within

at least one of the Gershgorin disk Di(ci, ri) centered at ci, and with radius ri, where

ci = ri = ε21T
−1
pi Kpi

∑
k∈Ni

|Γk cos(ηk)|, (6.35)

where Ni is the set of lines connecting control area i. We therefore have that

λmax(ε21T
−1
p KpBΓ [cos(η)]BT ) < 1. (6.36)

if

ε1 < min
i∈V

(√
Tpi

2Kpi

∑
k∈Ni Γk

)
. (6.37)

ut

Lemma 6.5 (Satisfying (6.15)). If X = ε2KpT
−1
p , with

ε2 < min
i∈V

(
Tpi

1
2 + 2KpiTpi

∑
k∈Ni Γk

)
. (6.38)

then (6.15) is satisfied.

Proof. Note that (6.15) becomes

0 < K−1p (In −
1

4
ε2T

−1
p )− ε2BΓ [cos(η)]BT . (6.39)

which holds, in analogy to Lemma 6.4, if

λmax(ε2Kp(In −
1

4
ε2T

−1
p )−1BΓ [cos(η)]BT ) < 1. (6.40)

Following the same argument as in Lemma 6.4, applying the Gershgorin circle theorem
we have that (6.15) is satisfied when

ε2 < min
i∈V

(
Tpi

1
2 + 2KpiTpi

∑
k∈Ni Γk

)
. (6.41)

ut
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Area 1

Area 2

Area 4

Area 3

P12 P23

P34

Fig. 6.1. Scheme of the considered power network partitioned into 4 control areas, where Pij =
V ?i V

?
j

Xij
sin (δi − δj). The arrows indicate the positive direction of the power flows through the

power network.

From Lemma 6.4 and Lemma 6.5 the following corollary is immediate.

Corollary 6.1 (Satisfying (6.14) and (6.15)). Let

X = εKpT
−1
p , (6.42)

with ε = min{ε1, ε2}, then (6.14) and (6.15) are satisfied.

The result of this subsection can be used as follows. Every control area determines an
upper bound for ε using (6.32) and (6.38), and broadcasts it to the rest of the network.
Using the minimum of all estimated upper bounds of ε it is ensured that Assumption 6.3
holds.

6.6 Case Study

In this section, the proposed control solution is assessed in simulation by implementing
a power network partitioned into four control areas (e.g. the IEEE New England 39-bus
system [NC13]). The topology of the power network is represented in Fig. 6.1. The rele-
vant network parameters of each area are provided in Table 6.1, where a base power of
1000 MW is assumed. The line parameters are Γ1 = 5.4 p.u., Γ2 = 5.0 p.u. and Γ3 =
5.2 p.u., while the scheduled power flows are P f1 = 0.015 p.u., P f2 = 0.0125 p.u. and
P f3 = 0.01 p.u. The matrices in (6.6) are chosen as M1 = 10I4,M2 = I4,M3 = 0.1I4,
M4 = −(M2 + M3) and M5 = 0.5I4, I4 ∈ R4×4 being the identity matrix, while the
control amplitude Wmaxi and the parameter α∗i , i = 1, . . . , 4 , in (6.10) are selected equal
to 100 and 1, respectively.

In simulation, at the initial time instant t0 = 0 s the system is at the steady state with
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Table 6.1. Network parameters and power demand

A
re

a
1

A
re

a
2

A
re

a
3

A
re

a
4

Tpi (s) 21.0 25.0 23.0 22.0
Tti (s) 0.30 0.33 0.35 0.28
Tgi (s) 0.080 0.072 0.070 0.081
Kpi (Hz p.u.−1) 120.0 112.5 115.0 118.5
Ri (Hz p.u.−1) 2.5 2.7 2.6 2.8
Tθi (s) 0.1 0.1 0.1 0.1
Pdi(0) (p.u.) 0.010 0.014 0.012 0.013
P di (p.u.) 0.020 0.028 0.024 0.026

power demand Pdi(0). Then, at the time instant t = 2 s, the power demand in each area
becomes P di (see Table 6.1). From Fig. 6.2, one can observe that the frequency devia-
tion converges asymptotically to zero after a transient during which the frequency drops
because of the increasing load. Moreover, one can note that the proposed controllers
increase the power generation in order to reach again a zero steady state frequency de-
viation, maintaining, at the steady state, the scheduled power flows P fk on each line.

6.7 Conclusions

A decentralized Suboptimal Second Order Sliding Mode control scheme has been proposed
for Automatic Generation Control (AGC). We considered a power network partitioned
into control areas, where each area is modelled by an equivalent generator including
second-order turbine-governor dynamics, and where the areas are nonlinearly coupled
through the power flows. Relying on stability considerations made on the basis of an
incremental energy (storage) function, a suitable sliding manifold has been designed.
Asymptotic convergence is proven to the state where the frequency deviation is zero and
where the power flows are regulated towards their desired values. A case study shows the
effectiveness of the proposed control scheme. In a future research we aim at including
saturation [FR09] and measurement noise in the current setting.
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Fig. 6.2. Evolution of the controlled power system considering a power demand variation at the
time instant t = 2 s. (a) Frequency deviation in each control area. (b) Generated power at the
output of each steam turbine. (c) Power flows in each line (the scheduled power flows are given
by the dashed lines).
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Sliding Mode Observers for Power Systems

Abstract. This work deals with the design of a novel sliding mode observer-based scheme
to estimate and reconstruct the unmeasured state variables in power networks including
hydroelectric power plants and thermal power plants. The proposed approach is flexible
to topological changes to power networks and can be easily updated only where changes
occur.

7.1 Model Description

We consider a power network characterized by nt thermal power plants and nh hydroelec-
tric power plants. For each kind of power plant, specific dynamic models are presented
in this section. More precisely, each power plant is characterized by the turbine-governor
dynamics, and the generator dynamics which is the same for the two considered types
of plants. In addition, each power plant is linked to the neighboring plants via power
transmission lines allowing exchange of electrical active power [KBL94]. Table 7.1 shows
the physical meanings and the measurement units of the states variables and the model
parameters adopted in this chapter.

A power network can be interpreted as an undirected graph G (V, E). Specifically, V rep-
resents the set of nodes of the graph (which are the plants in this case), and it consists of
two subsets, i.e., V = Vt ∪ Vh. The set Vt denotes all the nt thermal power plants, whilst
Vh denotes all the nh hydroelectric power plants. The set of edges E = {1, . . . , k, . . . ,m}
comprises all the power transmission lines linking the plants. Each k-th edge is denoted
as

k , [(i, j); Xij ] , (7.1)

where (i, j) is the unordered pair of the distinct nodes linked by the k-th power transmis-
sion line, and Xij is the reactance of the k-th power transmission line.

The topology of the graph can be encapsulated in the Laplacian Matrix X ∈ RN×N ,
where N = nt + nh, and its elements are defined as follows

X =


Xii =

∑
j∈Ni Xij

Xij = −Xij if ∃ k = [(i, j); Xij ] ∈ E
Xij = 0 otherwise,

(7.2)

131
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Table 7.1. State Variables and Model Parameters Adopted in the Paper

Symbols Meanings Units
Pmai , Pmbi , Pmci a, b, c turbines powers (p.u.)

Pgi governor power (p.u.)
Pmi total mechanical power (p.u.)
Pdi electrical power demand (p.u.)
Tai ∈ [0.1− 0.4] a-turbine time constant (s)
Tbi ∈ [4− 11] b-turbine time constant (s)
Tci ∈ [0.3− 0.5] c-turbine time constant (s)
Tgi ∈ [0.2− 0.3] governor time constant (s)
αi, βi, γi power conversion constants (−)
Pci transient compensator power (p.u.)
Wi water speed (p.u.)
Tc1i ≈ 5 compensator time constant 1 (s)

Tc2i ≈ 50 compensator time constant 2 (s)

Thi ∈ [1− 2] hydro turbine time constant (s)
δi generator angle (rad)
ωi generator frequency deviation (rad/s)
ω∗ network nominal frequency (rad/s)
Ji generator inertia (kg m2)
Di generator damping (N ·m · s)
Xij reactance of the line (p.u.)
V i constant voltage magnitude (p.u.)

where Ni is the set of nodes directly connected to the i-th node via power transmission
lines.

Remark 7.1 (Conservative topology). From the point of view of the power network
operations, it is reasonable to suppose that the use of the power transmission lines changes
with respect to time due to scheduled electricity trade among the plants. Therefore,
the set of edges E represents all the possible interconnections among the plants in the
most conservative situation, which means that all the available power transmission lines
are used. Consequently, also the Laplacian Matrix in (7.2) encapsulates the power grid
topology in the most conservative situation, as well as the set Ni for each node.

7.1.1 Steam Turbines and Governor Dynamics

The so-called single tandem reheat arrangement represents the most common configura-
tion used for large thermal power plants [MBB08] and it is adopted in this chapter. In
such arrangement, three steam turbines, denoted as a, b, and c, are attached to the same
shaft. The steam coming from the boiler is expanded through three stages producing
mechanical power and it is reheated only once in the boiler. The following differential
equations describe the dynamics of the three steam turbines and the governor:
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Ṗmai = − 1

Tai
Pmai +

1

Tai
Pgi

Ṗmbi = − 1

Tbi
Pmbi +

1

Tbi
Pmai

Ṗmci = − 1

Tci
Pmci +

1

Tci
Pmbi

Ṗgi = − 1

Tgi
Pgi +

1

Tgi
ui −

1

RiTgi
ωi

yti1 = αiPmai + βiPmbi + γiPmci = Pmi .

(7.3)

We let the reader refers to Table 7.1 for the physical meaning and the measurement units of
the introduced state variables and model parameters, and to Fig. 7.1 for a block-diagram
representation of the adopted dynamics. Note that, according to (7.3), it is assumed to
measure only the total mechanical power output Pmi , which is given by the sum of the
total power developed in each turbine stage (three contributions). Typical values for the
constants are αi = 0.3, βi = 0.4 , γi = 0.3, and the basic relation αi + βi + γi = 1
holds [MBB08].

It is possible to compactly rewritten equation (7.3) by introducing the following vectors
and matrices:

Ati =


− 1
Tai

0 0 1
Tai

1
Tbi
− 1
Tbi

0 0

0 1
Tci
− 1
Tci

0

0 0 0 − 1
Tgi

 , Bti =


0
0
0
1
Tgi

 , (7.4)

Cti =
[
αi βi γi 0

]
,Mti =


0,
0
0

− 1
RiTgi

 , (7.5)

xpti
=
[
Pmai Pmbi Pmci

Pgi

]T
. (7.6)

The following representation holds:

ẋpti
= Atixpti

+Btiui +Mtiωi

yti1 = Ctixpti
.

(7.7)

It is worth noting that the eigenvalues of the matrix Ati are −1/Tai , −1/Tbi , −1/Tci ,
−1/Tgi . System (7.7) will be used as a basis to design an observer to estimate all the
three steam turbine powers.

7.1.2 Hydraulic Turbine and Governor Dynamics

The linearized hydraulic turbine and governor dynamics comprises a governor (similar
to the one described for thermal power plants), a transient droop compensator and the
hydraulic turbine. It is worth precising that the transient droop compensator is introduced
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between the governor and the hydraulic turbine to ensure and to enhance the stability of
the system [KBL94, MBB08]. More precisely, according to [KBL94], the compensator is
required considering the specific dynamics of the hydraulic turbines due to the particular
response of water inertia. The hydraulic turbine can be considered as the transfer function
block in Fig. 7.2, in which a zero with positive real part is introduced. The resulting
differential equations describe the turbine-governor dynamics for the hydroelectric power
plants:

Ṗgi = − 1

Tgi
Pgi +

1

Tgi
ui −

1

RiTgi
ωi

Ṗci = − 1

Tc1i
Pci + Pgi

Ẇi =
Tc1i
Tc2i

Pgi +
Tc2i − Tc1i

T 2
c2i

Pci −
2

Thi
Wi

yhi1 = −2
Tc1i
Tc2i

Pgi + 2
Tc1i−Tc2i
T 4
c2i

Pci +
6

Thi
Wi = Pmi .

(7.8)

We let again the reader refers to Table 7.1 for the physical meanings and the measure-
ment units of the introduced state variables and model parameters, and to Fig. 7.2 for
a block-diagram representation of the adopted dynamics. Note that, according to (7.8),
it is assumed to measure only the total mechanical output power Pmi , which is a linear
combination of the three state variables of the hydraulic turbine-governor. Also in this
case, it is possible to compactly rewritten the system (7.8) by introducing the following
vectors and matrices:

Ahi =


− 1
Tgi

0 0

1 − 1
Tc2i

0
Tc1i
Tc2i

Tc2i
−Tc1i
T 2
c2i

− 2
Thi

 , Bhi =

 1
Tgi
0
0

 , (7.9)

Chi =

[
−2

Tc1i
Tc2i

2
Tc1i−

Tc2i
T 4
c2i

6
Thi

]
,Mhi =

− 1
RiTgi
0
0

 , (7.10)

xphi
=
[
Pgi Pci Wi

]T
. (7.11)

The following compact representation holds:

ẋphi
= Ahixphi

+Bhiui +Mhiωi

yhi1 = Chixphi
.

(7.12)

It is worth noting that the eigenvalues of the matrix Ahi are −1/Tgi , −1/Tc2i , −2/Thi .
System (7.12) will be used as a basis to design an observer to estimate the governor power,
the transient compensator power, and the water speed.

7.1.3 Generator Dynamics

Both the steam turbines and the hydroelectric turbines are coupled with a generator
(typically a synchronous machine) which is capable of turning the mechanical input power



7.1 Model Description 135

delivered by the turbines into electrical active power to be injected into the power network.
Several models have been adopted in the literature for the generator dynamics (see, e.g.,
the detailed description provided in [MBB08]). Moreover, a large number of works in
the literature have adopted the so-called classical swing equations to model synchronous
generators. However, in the last few years it has been shown that this model is not accurate
and leads to erroneous behaviours, even under small oscillations [MDPMvdS16, CT15].
For the aforementioned reasons, in the present work, the generator of each thermal and
hydroelectric power plant is modeled by using the so-called nonlinear improved swing
equations proposed in [MDPMvdS16] given by:

δ̇i = ωi

ω̇i = −
∑
j∈Ni

V iV j
Xij

sin (δi − δj)
Ji (ωi + ω∗)

+
Pmi − Pdi
Ji (ωi + ω∗)

− Diωi
Ji

y•i2 = δi.

(7.13)

We let again the readers refer to Table 7.1 for the physical meaning and the measurements
units of the introduced model parameters and state variables. It is worth noting from
equation (7.13) that it is assumed to locally measure only the generator angle δi. This
can be easily implemented in practice by equipping each generator with an encoder to
measure the position of the rotor [CHD+15]. Moreover, the subscript • in y•i2 is equal to
• = t in case of thermal power plant, and • = h in case of hydroelectric power plant.

Remark 7.2 (Mutual interactions). It is worth noting, by exploiting equation (7.13),
that the only mutual interaction among the plants takes place at the level of electrical ac-
tive power exchange, which can be modeled according to the power flow method [MBB08]
as

PiNi ,
∑
j∈Ni

V iV j
Xij

sin (δi − δj), (7.14)

where PiNi is the total electrical active power transmitted by the i-th plant to its neigh-
bors. This peculiar mutual interaction among the plants represents an interesting feature
for the observer-design procedure as detailed in the rest of the present work.

Assumption 7.1 (Available informations). Each thermal power plant node is gov-
erned by (7.3) together with (7.13), whilst each hydroelectric power plant is governed by
(7.8) together with (7.13). It is assumed to measure at the node level only the mechanical
power delivered by the turbine Pmi and the generator angle δi both in the thermal and
hydroelectric power plants. Moreover, the matrices and vectors in (7.4)-(7.5) are assumed
to be known at each thermal power plant node level, whilst the matrices and vectors in
(7.9)-(7.10) are assumed to be known at each hydroelectric power plant node level.

In the next sections, the design procedures of the sliding mode observers to estimate
the unmeasured state variables of each node of the power network is described in detail.
Specifically, a first-order sliding mode observer is proposed to robustly estimate the powers
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Fig. 7.1. The block diagram of the i-th thermal power plant node dynamics with the designed
observers.
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Fig. 7.2. The block diagram of the i-th hydroelectric power plant node dynamics with the
designed observers.



7.2 Suboptimal Sliding Mode Observer for Generator 137

associated with the three turbines and the governor of the thermal power plant node. By
following the same idea, another similar first-order sliding mode observer is proposed
to robustly estimate the governor power, the transient compensator power and the water
speed of the hydraulic turbine. Moreover, we propose a sub-optimal sliding mode observer
to robustly estimate the frequency deviation of each generator. This kind of observer is
required to perform state estimation in nonlinear dynamic systems in the form of (7.13),
as detailed in the sequel.

Specific rules to easily update the estimation scheme to topological changes affecting the
power network will be discussed in Section 7.5, such as the addition or the removal of
edges and nodes, making also reference to the physical meaning of these changes. From
this analysis, one can derive that the proposed observer-based estimation scheme has
interesting scalability and resilience properties.

7.2 Suboptimal Sliding Mode Observer for Generator

For the sake of clarity, it is better to start to design the sub-optimal sliding mode ob-
server to robustly estimate the frequency deviation of each plant. The convergence results
obtained in this section are instrumental to design the aforementioned sliding mode ob-
servers for the turbine-governor dynamics in Section 7.3.

Assumption 7.2 (Bounded disturbance). Introducing the signals

φi , −
∑
j∈Ni

V iV j
Xij

sin (δi − δj)
Ji (ωi + ω∗)

+
Pmi − Pdi
Ji (ωi + ω∗)

+
Diωi
Ji

, (7.15)

and

Φi ,

∣∣∣∣∣∣
∑
j∈Ni

V iV j
Xij

Ji (ωi + ω∗)

∣∣∣∣∣∣+

∣∣∣∣ Pmi − PdiJi (ωi + ω∗)

∣∣∣∣+

∣∣∣∣Diωi
Ji

∣∣∣∣ , (7.16)

it is assumed that φi is a bounded disturbance, i.e.,

|φi| ≤ Φi < Λi. (7.17)

where Λi is a known positive constant which can be determined from the understanding
of the power network.

Assumption 7.2 is reasonable, considering the terms composing φi in equation (7.15).
Note also that the term Φi include all the neighboring plants in the most conservative
situation specified by Remark 7.1. It follows that the condition (7.17) is fulfilled also
in case the network is not operating in the most conservative situation. Moreover, in
such approach, the interactions among the plants detailed in Remark 7.2 are threated as
bounded disturbances. This gives to the sub-optimal sliding mode observers a completely
decentralized feature.
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Consider the following sub-optimal sliding mode observer

˙̂
δi = ω̂i

˙̂ωi = usubi ,
(7.18)

where δ̂i is the estimate of δi, ω̂i is the estimate of ωi, and usubi is equal to (see [BFU98b])

usubi , −µiUmax
i sgn

(
eδi −

1

2
emax
δi

)
. (7.19)

Moreover, the following relations are considered

µ∗i ∈ (0, 1]

Umax
i > max

(
Λi
µ∗i
,

4Λi
3− µ∗i

)
.

(7.20)

The signal emax
δi

can be detected by implementing for instance a peak detector as
in [BFU98b]. Moreover, one defines

µi =

{
µ∗i if

(
eδi − 1

2e
max
δi

) (
emax
δi
− eδi

)
> 0

1 if
(
eδi − 1

2e
max
δi

) (
emax
δi
− eδi

)
≤ 0.

(7.21)

The following theorem can be proven.

Theorem 7.1 (Estimation of ωi). Given the generator dynamics (7.13), the Assump-
tion 7.2, and the signal usubi defined by (7.19), then, the suboptimal sliding mode observer
in the form of (7.18) leads to a correct estimation of the frequency deviation ωi of each
generator in a finite time.

Proof. The error dynamics is computed by subtracting the generator dynamics (7.13) to
the sub-optimal observer dynamics (7.18) and is given by

ėδi = eωi

ėωi = φi − µiUmax
i sgn

(
eδi −

1

2
emax
δi

)
,

(7.22)

where eδi , δ̂i − δi, eωi , ω̂i − ωi. Note that (7.22) is in the standard form for the sub-
optimal sliding mode controlled system [BFU98b]. More precisely, if the signal usubi is
designed in such a way to fulfill the inequalities in (7.20), it follows that (7.22) converges
to the origin in a finite time, guaranteeing a correct state estimation of the frequency
deviation of each generator. ut

It is worth noting that the proposed sub-optimal sliding mode observer differs from the
one proposed in [CFdLF12]. In our approach the sliding surface to be reached is equal
to σi = eδi , while in [CFdLF12], a linear combination of the two state errors has been
measured in the form of σi = eδi + νeωi , where ν ∈ R+.
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7.3 Sliding Mode Observer for Steam Turbine and Governor

In order to design a sliding mode observer to estimate the unmeasured variables Pgi ,
Pmai , Pmbi , Pmci it is first necessary to verify the observability of the pair (Ati ,Cti).

Theorem 7.2 (Observability of (Ati ,Cti)). The pair (Ati ,Cti) in (7.4)–(7.5) is ob-
servable.

Proof. In order to ensure that the pair (Ati ,Cti) in (7.4)–(7.5) is observable, one has
to compute the Observability Matrix Oti and to verify that its determinant det (Oti) is
different from zero [Kha96]. One has

det (Oti) =− γi
T 3
aiT

3
bi
T 3
ciT

2
gi

(Tbi − Tci − αiTbi + αiTci + γiTci)

· (T 2
gi − TgiTci + αiTbiTci − αiTbiTgi + γiTgiTci)

· (T 2
ai − TaiTci + αiTbiTci − αiTbiTai + γiTaiTci).

(7.23)

The key-idea here is to show that the expression of the determinant in (7.23) is never
equal to zero by analyzing the three terms constituting its expression, and by considering
the possible values that all the time constants can assume according to Table 7.1. One
has

− γi
T 3
aiT

3
bi
T 3
ciT

2
gi

< 0. (7.24)

and

Tbi − Tci − αiTbi + αiTci + γiTci = (1− αi)Tbi + (αi + γi − 1)Tci

= (βi + γi)Tbi + βiTci > 0.
(7.25)

As for the term (
T 2
gi − TgiTci + αiTbiTci − αiTbiTgi + γiTgiTci

)
, (7.26)

two possible situations can take place:

1. If Tgi = Tci , then the term (7.26) can be simplified as:

T 2
gi − T

2
gi + αiTbiTgi − αiTbiTgi + γiT

2
gi = γiT

2
gi > 0,

which is always greater than zero.
2. If Tgi < Tci , then the term (7.26) can be simplified as:

(Tgi − αiTbi) (Tgi − Tci) + γiTgiTci . (7.27)

By exploiting (7.27), it is easy to show that γiTgiTci > 0 and the product

(Tgi − αiTbi) (Tgi − Tci) > 0,

since Tgi−Tci < 0 by assumption, and the inequality Tgi−αiTbi < 0 is always fulfilled
according to Table 7.1.
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Therefore, the term in (7.26) is always strictly greater than zero. Consider now the term(
T 2
ai − TaiTci + αiTbiTci − αiTbiTai + γiTaiTci

)
. (7.28)

It is worth noting that equation (7.28) and (7.26) have the same structure. More precisely,
equation (7.28) can be obtained by replacing in equation (7.26) the term Tai with Tgi .
Also in this case, two possible situations can take place

1. If Tai = Tci , then the term (7.28) becomes

γiT
2
ai > 0. (7.29)

2. If Tai < Tci , then the term (7.28) can be simplified as:

(Tai − αiTbi) (Tai − Tci) + γiTaiTci . (7.30)

By exploiting (7.30), it is easy to show that γiTaiTci > 0, and

(Tai − αiTbi) (Tai − Tci) > 0,

since, by assumption, Tai − Tci < 0, and according to Table 7.1, Tai − αiTbi < 0 .

Therefore, also the term in (7.28) is always greater than zero. ut

Consider now the linear change of coordinates xpti
= Etixpti

, in which

Eti =

[
NT
ti

Cti

]
=


1 0 −αi/γi 1
0 1 −βi/γi 1
1 −αi/βi 0 1
αi βi γi 0

 , (7.31)

where the submatrixNti spans the null-space of the vectorCti [SEFL14b]. By introducing
the following vectors and matrices,

Ati = EtiAtiE
−1
ti
, (7.32)

Cti = CtiE
−1
ti

=
[
0 0 0 1

]
, (7.33)

Bti = EtiBti , M ti = EtiMti , (7.34)

then, the system (7.7) can be rewritten as

ẋpti
= Atixpti

+Btiui +M tiωi

yti1 = Ctixpti
.

(7.35)

Note that according to equations (7.4) and (7.5), it yields Mti = − 1
Ri
Bti . Therefore,

also the relation M ti = − 1
Ri
Bti holds, and equations (7.35) can be rewritten as follows

ẋpti
= Atixpti

+Bti

(
ui −

ωi
Ri

)
yti1 = Ctixpti

.

(7.36)
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Consider now the following sliding mode observer

˙̂xpti
= Ati x̂pti

+Bti

(
ui −

ω̂i
Ri

)
−GtiCtiepti

−Btiρti
FiCtiepti∣∣∣FiCtiepti

∣∣∣ , (7.37)

where epti
, x̂pti

− xpti
, Fi ∈ R, ρti ∈ R+ is a positive design constant, Gti is a design

matrix, and ω̂i is the estimated value of the frequency deviation ωi, communicated by
the sub-optimal observer for the generator of the same plant. From the development in
Section 7.2, it is reasonable to assume that

ψi , (ω̂i − ωi) /Ri = eωi/Ri (7.38)

is a bounded disturbance, which means that its modulus is upper-bounded. Moreover, ψi
converges to zero by virtue of Theorem 7.1. The following Theorem holds.

Theorem 7.3 (Estimation of xpti
). Given the thermal turbine-governor dynamics (7.36),

suppose that for a positive definite symmetric matrix P i, one has

P iA0ti
+A

T

0ti
P i ≺ 0, (7.39)

where A0ti
, Ati −GtiCti and the following structural constraint [ES94] is fulfilled

P iBti = C
T

ti
Fi. (7.40)

Then, the sliding mode observer in the form of (7.37) asymptotically leads to a correct
state estimation of xpti

provided that the positive design constant ρti is chosen such that

ρti > |ψi| . (7.41)

Proof. By subtracting the first line of (7.36) to (7.37), the so-called error system dynamics
can be obtained as follows

ėpti
= A0ti

epti
−Btiψi −Btiρti

FiCtiepti∣∣∣FiCtiepti

∣∣∣ , (7.42)

Equation (7.42) is in the standard form of the perturbed sliding mode observer error
dynamics [SEFL14b], with the associated sliding manifold σi = FiCtiepti

= 0 to be
reached in a finite time. The aim here is to show, in analogy to [SEFL14b], that the
function Vpti (epti

) , eTpti
P iepti

is a Lyapunov function for the system (7.42), ensuring

that the point epti
= 0 is an asymptotically stable equilibrium point. It is immediate to

show that Vpti (0) = 0. Moreover, by differentiating with respect to time Vpti , it yields

V̇pti = ėTpti
P iepti

+ eTpti
P iėpti

= eTpti

(
P iA0ti

+A
T

0ti
P i

)
epti

− 2eTpti
P iBtiψi

− 2eTpti
P iP

−1
i C

T

ti
Fiρti

FiCtiepti∣∣∣FiCtiepti

∣∣∣ .
(7.43)
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By exploiting equation (7.43), one has that V̇pti (0) = 0. Consider now epti
6= 0. By virtue

of (7.39), it yields

eTpti

(
P iA0ti

+A
T

0ti
P i

)
epti

< 0, ∀epti
6= 0. (7.44)

By using (7.40) and (7.44), after few algebraic simplifications in (7.43), the following
inequality yields

V̇pti ≤ −2eTpti

CT

ti
Fiψi +C

T

ti
Fiρti

FiCtiepti∣∣∣FiCtiepti

∣∣∣
 . (7.45)

Multiplying and dividing the term C
T

ti
Fiψi by FiCtiepti

, which is different from zero in
our case, one can rewrite inequality (7.45) as follows

V̇pti ≤ −2eTpti
C
T

ti
Fi

 ψi

FiCtiepti

+
ρti∣∣∣FiCtiepti

∣∣∣
FiCtiepti

. (7.46)

Considering the scalar nature of the terms ψi and ρti , the right hand side of inequal-
ity (7.46) is strictly negative if

ρti∣∣∣FiCtiepti

∣∣∣ > − ψi

FiCtiepti

, (7.47)

which is surely fulfilled if

ρti∣∣∣FiCtiepti

∣∣∣ > |ψi|∣∣∣FiCtiepti

∣∣∣ , (7.48)

or in other words
ρti > |ψi| . (7.49)

By virtue of the Lyapunov Theorem [Kha96], epti
= 0 is an asymptotically stable equi-

librium point, and therefore, a correct state estimation of the unmeasured state variables
can be performed. It is worth noting that although epti

= 0 is asymptotically reached,

according to [SEFL14b], Ctiepti
= 0 is reached in a finite time. ut

It is worth underlining that a detailed algorithm to numerically solve the Linear Matrix
Inequality in (7.39) combined with the linear constraint (7.40) has been provided in the
literature (see for instance [ES94]), and is not reported here for the sake of simplicity.

Note that the estimate x̂pti
has to be transformed according to the linear relation x̂real

pti
=

E−1ti x̂pti
in order to obtain the estimates in the physical coordinates reference, which can

be easily done in practice.
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7.4 Sliding Mode Observer for Hydraulic Turbine and Governor

In this section, a sliding mode observer is designed to estimate the unmeasured state vari-
ables for the hydraulic turbine-governor dynamics. Since the design procedure is similar
to the one discussed in Section 7.3, only the relevant key-ideas are here reported.

In order to design a sliding mode observer to estimate the governor power variation, the
transient compensator power variation and the water speed, it is necessary to verify the
observability of the pair (Ahi ,Chi).

Theorem 7.4 (Observability of (Ahi ,Chi)). The pair (Ahi ,Chi) in (7.9)-(7.10) is
observable.

Proof. In order to ensure that pair (Ahi ,Chi) in (7.9)- (7.10) is observable, one has to
compute the Observability Matrix Ohi and to ensure that its determinant det (Ohi) is
different from zero [Kha96]. One has

det (Ohi) = 24
(Tgi + Tti)

(
Tc2i + Thi

) (
Tgi − Th1i

) (
Tc1i − Tc2i

)
T 2
giTc2iT

3
hi

. (7.50)

The right side of (7.50) can be equal to zero only if Tgi = Th1i
or Tc1i = Tc2i . These two

equalities are not acceptable according to the order of magnitude of the considered time
constants. To this end, we let the reader refers to Table 7.1. ut

Consider now the linear change of coordinates xphi
= Ehixphi

, in which

Ehi =

[
NT
hi

Chi

]
=


Tc2i
2Tc1i

T 2
c2i

2
(
Tc1i
−Tc2i

) 0

Tc2i
2Tc1i

0 −Thi6
−2

Tc1i
Tc2i

2
Tc1i−

Tc2i
T 4
c2i

6
Thi

 , (7.51)

where the submatrix Nhi spans the null-space of the vector Chi [SEFL14b]. By intro-
ducing the following vectors and matrices,

Ahi
= EhiAhiE

−1
hi
, (7.52)

Chi
= ChiE

−1
hi

=
[
0 0 1

]
, (7.53)

Bhi
= EhiBhi , Mhi

= EhiMhi = − 1

Ri
EhiBhi , (7.54)

then, the system (7.12) can be rewritten as

ẋphi
=Ahi

xpti
+Bhi

(
ui −

ωi
Ri

)
yhi =Chi

xhi
.

(7.55)
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In perfect analogy to Section 7.3, the following observer can be introduced

˙̂xphi
= Ahi

x̂phi
+Bhi

(
ui −

ω̂i
Ri

)
−GhiChi

ephi
−Bhi

ρhi
FiChi

ephi∣∣∣FiChi
ephi

∣∣∣ , (7.56)

where ephi
, x̂phi

− xphi , Fi ∈ R, ρhi ∈ R+ is a positive design constant, Ghi is a
design matrix, and ω̂i is the estimated value of the frequency deviation ωi. The following
Theorem holds.

Theorem 7.5 (Estimation of xphi
). Given the hydraulic turbine-governor dynam-

ics (7.55), suppose that for a positive definite symmetric matrix P i, one has

P iA0hi
+A

T

0hi
P i ≺ 0, (7.57)

where A0hi
, Ahi

−GhiChi
, and the following structural constraint is fulfilled

P iBhi
= C

T

hi
Fi. (7.58)

Then, the sliding mode observer in the form of (7.56) asymptotically leads to a correct
state estimation of xphi

provided that the positive design constant ρhi is chosen such that

ρhi > |ψi| . (7.59)

Proof. Theorem 7.5 can be proven in perfect analogy to Theorem 7.3. ut

7.5 Scalability and Resilience of Observers

The proposed estimation scheme can be easily adapted and modified in case topological
changes affect the power network. For the convenience of the reader, we consider separately
two possible kinds of changes. In case the changes take place simultaneously, one has to
apply the following rules together.

Opening or Closing of a Power Transmission Line

As stated by Remark 7.1, the interconnection between the plants can change with respect
to time. However, as detailed in Assumption 7.2, the sub-optimal sliding mode observer
for the generators in each plant is designed taking into account the maximum source of
uncertainty which is upper-bounded according to (7.17). This means that in case of a
opening of the power transmission line linking the i-th and the j-th plant, the magnitude
of uncertainty in the signals Φi and Φj decreases (see equation (7.16) to this end) and the
sliding motion cannot be lost, guaranteeing a correct frequency estimation in each plant.
For the same reason, if a power transmission line linking the i-th and the j-th plant is
closed, all the estimation schemes do not need to be updated, as well. This is true because
the gains are designed taking into account the maximum source of uncertainty.
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Plugging-in of a Plant

Suppose now that a plant is plugged in a power network comprising a given number of
thermal and hydroelectric power plants. This new j-th plant is linked to a given number
of existing plants via power transmission lines. Let Nj be the set of the existing nodes
directly connected to the new j-th node (considering also in this case the most conservative
situation defined in Remark 7.1). Our proposed estimation scheme can be easily updated
according to the following steps:

1. For the given j-th new plant, design a sliding mode observer to estimate the unmea-
sured state for the turbine-governor dynamics in the form of (7.37) in case of a new
thermal power plant, or in the form of (7.56) in case of a new hydroelectric power
plant.

2. Re-tune the gains of the preexisting sub-optimal observers for the generators of all
the neighbours nodes k ∈ Nj , by updating the terms Λk and fulfilling the tuning rules
in (7.20). This is required considering that the source of uncertainty increases in the
nodes directly connected to the new one (see equation (7.16)).

3. Design a new sub-optimal sliding mode observer to estimate the frequency deviation
of the new k-th plant.

According to the highlighted considerations, it is clear that the proposed observer-based
estimation scheme has to be updated only where topological changes occur: basically at
the level of the new node and of its neighborhood. All the other observers do not need to
be updated. Therefore, one can conclude that the estimation scheme is scalable in case
of adding new plants and is resilient in case of changing in the operation of the power
transmission lines.

7.6 Case Study

In this section, the observer-based scheme is assessed in simulation to verify its effective-
ness. A power network comprising two thermal power plants and two hydroelectric power
plants linked via power transmission lines is considered (see Fig. 7.3). For the sake of
simplicity, in this simulation case it is assumed that each power plant is controlled only
via primary frequency controller [KBL94]. This means that the control input ui is set
equal to zero in each plant during all the simulation.

The simulation time interval is of 200 seconds and the following three scenarios are con-
sidered:

1. Scenario 6.1, 0 ≤ t < 20 s, during which the power network is at steady state, which
means that there is a perfect balance between electrical active power generation and
consumption;

2. Scenario 6.2, 20 ≤ t < 100 s, during which, after a step variation of the active power
demand in each node according to Table 7.2, the frequency decreases;

3. Scenario 6.3, 100 ≤ t ≤ 200 s, during which the power transmission line X14 in
Fig. 7.3 is removed.
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Fig. 7.3. Scheme of the considered power network comprising two thermal power plants and
two hydroelectric power plants in the most conservative operation (left), and with the power
transmission line X14 open (right). The blue circles indicate the hydroelectric power plants,
whilst the red circles indicate the thermal power plants. The black arrows indicate the power
transmission lines Xij . The power transmission line X14 is open for any t > 100 s.

Table 7.2. Electrical Active Power Demand Variation in each plant

Plant Demand Variation
Plant 1 0.1 (p.u.)
Plant 2 0.5 (p.u.)
Plant 3 0.2 (p.u.)
Plant 4 0.7 (p.u.)

Scenario 7.1 (Steady-state). During this scenario the power network is at steady-state.
In such situation each sliding mode observer for turbine-governor dynamics and each sub-
optimal sliding mode observer for the frequency deviation are capable of asymptotically
estimating all the unmeasured states (see Figs. 7.4, 7.5, 7.6, 7.7). It is worth noting the
presences of fast transients during the first seconds. These are due to the initial conditions
of the observers which are set different from the actual states to be estimated (see again
Figs. 7.4, 7.5, 7.6, 7.7).

Scenario 7.2 (Active power demand variation). During this scenario, the sudden
variation of electrical active power demand Pdi in each plant causes a transient during
which the frequency of each generator decreases (see also equation (7.13) for a mathemat-
ical justification). All the plants, governed by the primary frequency controllers, response
by increasing the electrical active power generation. All the observers are capable of track-
ing the time evolution of all the unmeasured state variables (see again Figs. 7.4, 7.5, 7.6,
7.7).
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Fig. 7.4. Evolution of the of the frequency deviation ωi in each plant and its estimated value
ω̂i. An enlarged view is provided for 95 ≤ t ≤ 105 s.

Scenario 7.3 (Opening of the line {1, 4}). During this scenario, the power transmis-
sion line linking the 1-st plant and the 4-th plant is open. In such situation more relevant
oscillations of the frequencies take place in these two plants (see the enlargements in
Fig. 7.4). Also in such situation, all the observers track the unmeasured state without
losing the induced sliding motion (see Figs. 7.4, 7.5, 7.6, 7.7).

7.7 Conclusions

In this chapter, a novel decentralized sliding mode observers scheme has been designed
to estimate and track the unmeasured states of power networks comprising thermal and
hydraulic power plants linked via power transmission lines. The flexibility of the proposed
scheme to topological changes affecting the network has also been discussed. Moreover,
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Fig. 7.5. Evolution of the of the governor power variation Pgi in each plant and its estimated
value P̂gi .

the simulation performances in the discussed scenarios have validated the effectiveness
of our proposal. Possible future works may involve the design of decentralized observers-
based sliding mode control algorithms relying on the detailed mathematical models of the
plants considered in this work.
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Fig. 7.6. Evolution of the transient compensator power variation Pci , and water speed variation
Wi in each hydroelectric power plant and their estimated value P̂ci and Ŵi.
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Fig. 7.7. Evolution of the turbine power variation Pmai , Pmbi and Pmci in each thermal power

plant and their estimated value P̂mai , P̂mbi and P̂mci .
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AC Microgrids

Abstract. The present chapter deals with modelling of complex microgrids and the design
of advanced control strategies of sliding mode type to control them in a decentralized way.
More specifically, the model of a microgrid including several distributed generation units
(DGus) working in islanded operation mode (IOM), is proposed. Moreover, it takes into
account the connection line parameters and it is affected by unknown load dynamics
and unavoidable modelling uncertainties, which make sliding mode control algorithms
suitable to solve the considered control problem. The overall control scheme is theoretically
analyzed, proving the asymptotic stability of the whole microgrid system.

8.1 Preliminaries on AC Microgrids

In recent years, the increasing of energy sources of renewable type has given rise to a
new paradigm in the power generation. There is a clear trend towards the realization of
much smaller and geographically Distributed Generation units (DGus) [PML03], which
enables to achieve technical, economical and environmental benefits, in terms of energy
efficiency and reduced carbon emissions [LP04]. DGus also improve the service quality
and continuity [GLLC13], by supplying at least a portion of the load, even after being
disconnected from the main grid [KIL05].

In the literature, a set of multiple mutual connected DGus, which are usually strictly
close to the energy consumers, is identified as a microgrid [Las02, PGdMA+13, PKG14].
The latter, characterized by some intelligent computation and metering capability, can
be considered as the basic unit of the so-called smart grid [AW05]. Each DGu, constitut-
ing the considered microgrid, can work in both grid-connected operation mode (GCOM)
and islanded operation mode (IOM). Because of the intermittence, randomness and the
uncertainty caused by meteorological factors, it is difficult to integrate renewable energy
sources directly into the main grid. This is the reason why voltage control, fault detection,
reliability enforcement, and power losses minimization are among the issues to solve in
order to integrate DGus into the distribution network [PL06].

In past years, several control strategies have been proposed to deal with DGus. The ma-
jority of them uses traditional PI controllers in IOM [BK13]. In [KNI08], a structurally

153
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simple controller is proposed to stabilize a DGu in spite of the presence of some uncer-
tainties. The stability properties of the algorithm proposed in [KNI08] are investigated
in [KDI10], where the existence conditions, the design of the controllers and the robustness
features are theoretically analyzed. Furthermore, master-slave configurations [BK13] and
Plug-and-Play decentralized algorithms [RSFT15, SSK17] have been designed to manage
the generation in a large scalable meshed microgrids, while an internal model approach
and Bregman storage functions have been proposed in [TBD14, DM17].

The basic element VDCi of the i-th DGu is usually an energy source of renewable type,
which can be represented by a direct current (DC) voltage source. The latter is inter-
faced with the main grid through two components: a voltage-sourced-converter (Vsc)
and a filter. Usually, the first component is a Pulse Width Modulation (PWM) inverter,
which converts DC to alternate current (AC), while the second component is a resistive-
inductive-capacitive filter (RtiLtiCti), able to extract the fundamental frequency of the
Vsc output voltage. The electrical connection point of the DGu to the main grid (or to
other DGus) is the so-called point of common coupling (PCC) where a local three-phase
parallel resistive-inductive load (RiLi) is connected.

The single DGu can work in both GCOM and IOM.

8.1.1 Grid Connected Operation Mode

In this operation mode, the PCC voltage magnitude and frequency are dictated by the
main grid. Thus, the system is forced to operate in stiff synchronization with the grid by
using the so-called phase-locked-loop (PLL), which provides the reference angle θ for the
Park’s transformation [Par29]. According to the Park’s transformation, the active and
reactive power are expressed as

Pi =
3

2
(VdiItdi + VqiItqi ), Qi =

3

2
(VqiItdi − VdiItqi ) (8.1)

with Vdi and Vqi being the direct and quadrature components of the load voltage vi, Itdi
and Itqi being the direct and quadrature components of the delivered current ıti . In order
to achieve the lock with the main grid, a proportional-integral (PI) controller can be used
to keep the PCC quadrature voltage component Vqi equal to to zero. In such a case, the
active and reactive power in (8.1) are equal to

Pi =
3

2
VdiItdi , Qi = −3

2
VdiItqi (8.2)

which depend only on the direct and quadrature current component, respectively. Hence,
the DGu works in current control mode in order to supply the desired active and reactive
power. According to the Park’s transformation, the AC currents generated by the Vsc are
referred to a synchronous rotating dq-frame and regulated like DC signals. The direct and
quadrature components are compared with the corresponding current references to com-
pute the errors, which are sent to the current controllers in order to generate the voltage
references. The latter are transformed back into the stationary abc-frame according to the
inverse Park’s transformation, and used by the Vsc to generate the modulating signals
through the comparison with a triangular carrier, according to the PWM technique.
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Fig. 8.1. The considered electrical single-line diagram of a typical AC microgrid composed of
two DGus.

8.1.2 Islanded Operation Mode

When an islanding event occurs, the PCC voltage and frequency could deviate signifi-
cantly from the rated values, due to the power mismatch between the DGu and the load.
Therefore, in IOM the DGu has to provide the voltage and frequency control in order
to keep the load voltage magnitude and frequency constant with respect to the reference
values. According to the Park’s transformation, the AC output voltages generated by the
Vsc are referred to the synchronous rotating dq-frame. Then, the direct and quadrature
voltage components are compared with the corresponding references to compute the er-
rors, which are sent to the voltage controllers in order to generate the control variables.
The latter are transformed back into the stationary abc-frame according to the inverse
Park’s transformation and used by the PWM to generate the modulating signals. In IOM
the Park’s transformation angle θ is provided by an internal oscillator set to the rated
angular frequency, namely ω0 = 2πf0. The transition from the GCOM to the IOM has to
be smoothly performed to avoid system performance degradation. Thus, when the voltage
control is activated, the instantaneous phase angle, provided by the PLL, in the current
control mode, must be used as the initial condition for the internal oscillator. To avoid
hard transients, also before the reconnection to the main grid, the PCC voltage must
be resynchronized with the grid voltage, for instance as proposed in [VCR12, BLY+11].
Specifically, in this work we consider only the IOM case (we refer to [CIF15] for the
GCOM case) and the frequency is controlled in open-loop by equipping each DGu in
the microgrid with an internal oscillator which provides the Park’s transformation angle
θ(t) =

∫ t
t0
ω0dτ , with ω0 = 2πf0, f0 being the nominal frequency.

8.2 AC Microgrid Model

Consider a microgrid of n DGus (see Fig. 8.2 for the schematic electrical single-line di-
agram of a typical microgrid composed of two DGus). The network is represented by a
connected and undirected graph G = (V, E), where the nodes V = {1, ..., n}, represent the
DGus and the edges E ⊂ V ×V = {1, ...,m} represent the distribution lines interconnect-
ing the DGus. The network structure can be represented by its corresponding incidence
matrix B ∈ Rn×m. The ends of edge k are arbitrarily labeled with a ‘+’ and a ‘-’, i.e.,
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Bik =


+1 if i is the positive end of k

−1 if i is the negative end of k

0 otherwise .

Consider the scheme reported in Fig. 8.2 and assume the system to be symmetric and
balanced. For the sake of simplicity, the dependence of the variables on time t is omitted
throughout this work. In the stationary abc-frame, by applying the Kirchhoff’s current
and voltage laws, the dynamics equations of the microgrid in IOM are expressed as follow,

[Ct]v̇ = ıt + [B]ı−w
[Lt]ı̇t = −[Rt]ıt − v + u

[L]ı̇ = −[BT ]v − [R]ı

, (8.3)

where s = [sTa , s
T
b , s

T
c ]T ∈ R3n, sπ = [sπ1 , . . . , sπn ]T ∈ Rn, with π = a, b, c and

s ∈ {v, ıt,w,u}, while ı = [ıTa , ı
T
b , ı

T
c ]T ∈ R3m, ıπ = [ıπ1 , . . . , ıπm ]T ∈ Rm. In (8.3)

v, ıt, ı, w, and u represent the following three-phase signals: the loads voltages, the cur-
rents generated by the DGus, the currents along the interconnecting lines, the currents
demanded by the loads, and the converters output voltages. Moreover, in system (8.3) we
used [M ] to denote the following block diagonal matrix

[M ] =

M 0 0
0 M 0
0 0 M

 ,
whereM ∈ {Ct, Lt, Rt, L, R}, with Ct, Lt, Rt being n×n diagonal matrices and L, R
being m×m diagonal matrices, e.g.,Rt = diag{Rt1 , . . . , Rtn} andR = diag{R1, . . . , Rm},
with Rk = Rij .

Remark 8.1 (Kron reduction). Note that in (8.3), the load currents are located only
at the PCC of each DGu (see also Fig. 8.2). However, in many cases the loads are not
close to the DGus. Then, by using the well known Kron reduction method, it is possible
to map arbitrary interconnections of DGus (boundary nodes) and loads (interior nodes),
into a reduced network with only local loads [ZD15, DB13].

Each three-phase variable of (8.3) can be transferred to the rotating dq-frame by applying
the Clarke’s and Park’s transformations. In the following we use x[S] to denote the vector
[S1, . . . , Sn]T with S ∈ {Vd,Vq, Itd , Itq}, and x[Z] to denote the vector [Z1, . . . , Zm]T ,
with Zk = Zij and Z ∈ {Id, Iq}. Then, the so-called state-space representation of the
whole system (8.3) can be expressed as
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Ctẋ[Vd] = ω0Ctx[Vq ] + x[Itd ]
+ Bx[Id] −wd

Ctẋ[Vq ] = −ω0Ctx[Vd] + x[Itq ]
+ Bx[Iq ] −wq

Ltẋ[Itd ]
= −x[Vd] −Rtx[Itd ]

+ ω0Ltx[Itq ]
+ ud

Ltẋ[Itq ]
= −x[Vq ] − ω0Ltx[Itd ]

−Rtx[Itq ]
+ uq

Lẋ[Id] = −BTx[Vd] −Rx[Id] + ω0Lx[Iq ]

Lẋ[Iq ] = −BTx[Vq ] − ω0Lx[Id] −Rx[Iq ]

yd = x[Vd]

yq = x[Vq ]

, (8.4)

where x =
[
xT[Vd] x

T
[Vq ]

xT[Itd ]
xT[Itq ]

xT[Id] x
T
[Iq ]

]T
∈ R4n+2m is the state variables vector,

u = [uTd u
T
q ]T ∈ R2n is the input vector, w = [wT

d w
T
q ]T ∈ R2n is the disturbance vector,

and y = [xT[Vd] x
T
[Vq ]

]T ∈ R2n is the output vector. Then, the previous system can be
written as

ẋ = Ax+Bu+Bww

y = Cx
, (8.5)

where A ∈ R(4n+2m)×(4n+2m) is the dynamics matrix of the microgrid, B ∈ R(4n+2m)×2n,
Bw ∈ R(4n+2m)×2n, and C ∈ R2n×(4n+2m), defined as

A =



0 ω0In C−1t 0 C−1t B 0
−ω0In 0 0 C−1t 0 C−1t B
−L−1t 0 −L−1t Rt ω0In 0 0

0 −L−1t −ω0In −L−1t Rt 0 0

−L−1BT 0 0 0 −L−1R ω0Im
0 −L−1BT 0 0 −ω0Im −L−1R

 , B =


0 0
0 0
L−1t 0
0 L−1t
0 0
0 0

 ,

Bw =


−C−1t 0

0 −C−1t
0 0
0 0
0 0
0 0

 , C =

[
In 0 0 0 0 0
0 In 0 0 0 0

]
.

To permit the controller design in the next section, the following assumption is required
on the state and the disturbance.

Assumption 8.1 (Available informations). The load voltages Vdi and Vqi are locally
available at the i-th DGu, i = 1, . . . , n. The disturbances wdi and wqi are unknown but
bounded, of class C and Lipschitz continuous.
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Fig. 8.2. The proposed SSOSM control scheme in IOM

Remark 8.2 (Decentralized control). Note that Assumption 8.1 requires only the
local measurement of the load voltage that is used only by the controller of the i-th DGu.

Now we are in a position to formulate the control problem. Let Assumption 8.1 hold.
Given system (8.3)-(8.5), design a decentralized control scheme capable of guaranteeing
that the tracking error between any controlled variable and the corresponding reference is
steered to zero in a finite time in spite of the uncertainties, such that the overall system
is asymptotically stable.

8.3 Decentralized Sliding Mode Voltage Control

In this section, the decentralized SSOSM control algorithm, used to solve the aforemen-
tioned control problem, is designed. Moreover, a Third Order Sliding Mode (3SM) control
algorithm is proposed in order to obtain continuous control signals.

8.3.1 Suboptimal Second Order Sliding Mode (SSOSM) Control Algorithm

Consider the state-space model (8.5) and select the so-called sliding function as

σ = y − y?

= Cx− y?,
(8.6)

where y? = [x?
T

[Vd]
x?

T

[Vq ]
]T is the vector of reference values. To permit the controller design,

the following assumption is required on the generation of reference values.

Assumption 8.2 (Desired voltages). The load voltage references V ?di and V ?qi are of
class C2 and with first time derivatives Lipschitz continuous.
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With reference to (8.6), it appears that the relative degree is equal to 2, so that a Second
Order Sliding Mode (SOSM) control naturally applies [BFU97, BFU98a]. According to
the SOSM control theory, the so-called auxiliary variables ξ1ν = σν and ξ2ν = σ̇ν , with
the subscript ν = d, q, have to be defined and the corresponding auxiliary systems can be
expressed as

ξ̇1ν = ξ2ν

ξ̇2ν = fν(x,w) +Gνuν
, (8.7)

where uν are the control inputs previously defined, and ξ2ν is assumed to be unmeasur-
able. More specifically, one has that

fd(x,w) =−
(
ω2
0In +C−1t L−1t +C−1t BL−1BT

)
x[Vd] −C

−1
t L−1t Rtx[Itd ]

+ 2ω0C
−1
t x[Itq ]

−C−1t BL−1Rx[Id] + 2ω0C
−1
t Bx[Iq ]

−C−1t ẇd − ω0C
−1
t wq − ẍ?[Vd]

fq(x,w) =−
(
ω2
0In +C−1t L−1t +C−1t BL−1BT

)
x[Vq ] − 2ω0C

−1
t x[Itd ]

−C−1t L−1t Rtx[Itq ]
− 2ω0C

−1
t Bx[Id] −C

−1
t BL−1Rx[Iq ]

+ ω0C
−1
t wd −C−1t ẇq − ẍ?[Vq ]

Gd = Gq = C−1t L−1t ,

(8.8)

are allowed to be uncertain with known bounds for each entry, i.e.,

|fνi(·)| ≤ Fνi , Gminνi
≤ Gνii ≤ Gmaxνi

, i = 1, . . . , n , (8.9)

with Fνi , Gminνi
and Gmaxνi

, ν = d, q, being positive constants. Note that, it is reasonable
to assume that such bounds exist. In fact, the function fν depends on electrical signals
related to the finite power of the system, while Gνii is an uncertain constant value. In
practical cases, these bounds can be estimated relying on data analysis and engineering
understanding.

The i-th control law, uνi that we propose to steer ξ1νi and ξ2νi , i = 1, . . . , n, to zero in
a finite time in spite of the uncertainties, in analogy with [BFU98a], can be expressed as
follows

uνi = −ανiUmaxνi
sign

(
ξ1νi −

1
2ξ1maxνi

)
, (8.10)

with bounds

Umaxνi
> max

(
Fνi

α∗νiGminνi

;
4Fνi

3Gminνi
− α∗νiGmaxνi

)
(8.11)

α∗νi ∈ (0, 1] ∩
(

0,
3Gminνi

Gmaxνi

)
. (8.12)



160 8 AC Microgrids

8.3.2 An Alternative Solution: Third Order Sliding Mode

Usually, to control inverters, the Pulse Width Modulation (PWM) technique is used. To
do this, the Vsc requires continuous control signals udi and uqi , that can be transferred
back to the stationary abc-frame and used to generate the gating signals through the
comparison with a triangular carrier. In order to obtain continuous control signals, as
suggested in [BFU97], the system relative degree can be artificially increased. Then, a
Third Order Sliding Mode (3SM) control law to solve the microgrid voltage control prob-
lem in question, can be introduced. Defining the auxiliary variables ξ1ν = σν , ξ2ν = σ̇ν
and ξ3ν = σ̈ν , then the auxiliary system can be expressed as

ξ̇1ν = ξ2ν

ξ̇2ν = ξ3ν

ξ̇3ν = φν(x,w,u) + Γνµν

u̇ν = µν ,

(8.13)

where µν is an auxiliary control variable, ξ2ν , ξ3ν are assumed to be unmeasurable, while
φν = ḟν and Γν = Gν are uncertain smooth bounded functions, such that for each entry

|φνi(·)| ≤ Φνi , Γminνi
≤ Γνii ≤ Γmaxνi

, i = 1, . . . , n, (8.14)

with Φνi , Γminνi
and Γmaxνi

, ν = d, q being positive constants (in case of 3SM, Assump-

tions 8.1 and 8.2 are modified accordingly). The 3SM control algorithm requires that the

discontinuous controls only affect σ
(3)
ν , but not σ̈ν , so that the controls fed into the plant

are continuous.

Let sνi = [σνi , σ̇νi , σ̈νi ]
T

, then the i-th discontinuous control law µνi can be expressed as
follows

µνi = −ανi


µνi,1 = sign (σ̈νi), sνi ∈Mνi,1/Mνi,0

µνi,2 = sign (σ̇νi +
σ̈2
νi
µνi,1

2ανi,r
), sνi ∈Mνi,2/Mνi,1

µνi,3 = sign (ψνi), else

(8.15)

where

ψνi = σνi +
σ̈3
νi

3α2
νi,r

+ µνi,2
[ 1
√
ανi,r

(
µνi,2σ̇νi +

σ̈2
νi

2ανi,r

) 3
2 +

σ̇νi σ̈νi
ανi,r

]
, (8.16)

with ανi,r being the reduced control amplitude, such that

ανi,r = ανiΓminνi
− Φνi > 0. (8.17)

In (8.15) the manifolds Mνi,0,Mνi,1,Mνi,2 are defined as

Mνi,0 = {sνi ∈ R3 : σνi = σ̇νi = σ̈νi = 0}

Mνi,1 = {sνi ∈ R3 : σνi −
σ̈3
νi

6α2
νi,r

= 0, σ̇νi +
σ̈νi |σ̈νi |
2ανi,r

= 0}

Mνi,2 = {sνi ∈ R3 : ψνi = 0}.

(8.18)

From (8.15), one can observe that the controller of the i-th DGu requires not only σνi , but
also σ̇νi and σ̈νi . Yet, according to Assumption 8.1, only the load voltages Vdi and Vqi are
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measurable at the i-th DGu. Then, one can rely on Levant’s second-order differentiator
to retrieve σ̇νi and σ̈νi in a finite time. With reference to system (8.13), for ν = d, q, and
i = 1, . . . , n, one has

˙̂
ξ1νi = −λ0νi

∣∣∣ξ̂1νi − ξ1νi ∣∣∣ 23 sign
(
ξ̂1νi − ξ1νi

)
+ ξ̂2νi

˙̂
ξ2νi = −λ1νi

∣∣∣ξ̂2νi − ˙̂
ξ1νi

∣∣∣ 12 sign
(
ξ̂2νi −

˙̂
ξ1νi

)
+ ξ̂3νi

˙̂
ξ3νi = −λ2νi sign

(
ξ̂3νi −

˙̂
ξ2νi

)
,

(8.19)

where ξ̂1νi , ξ̂2νi , ξ̂3νi are estimates of ξ1νi , ξ2νi , ξ3νi , respectively, and λ0νi = 3Λ
1/3
νi , λ1νi =

1.5Λ
1/2
νi , λ2νi = 1.1Λνi , Λνi > 0, is a possible choice of the differentiator parameters.

8.4 Stability Analysis

With reference to the proposed decentralized sliding mode control approach, the following
results can be proved.

Lemma 8.1 (Convergence to the sliding manifold: SSOSM). Let Assumptions 8.1
and 8.2 hold. Given the auxiliary system (8.7) controlled via the SSOSM algorithm (8.10)-
(8.12), then the sliding variables (8.6) and their first time derivatives are steered to zero
in a finite time tr, in spite of the uncertainties.

Proof. This result directly follows from [BFU98a, Theorem 1]. ut

Let x̃ be the error given by the difference between the state and the equilibrium point
associated to the desired value of voltages y? when w is constant, and let ũ be the
corresponding control input. Hence, the error system is defined as

˙̃x = Ax̃+Bũ

σ = Cx̃.
(8.20)

Theorem 8.1 (Main result). Let Assumptions 8.1 and 8.2 hold. Consider system (8.3)-
(8.5) controlled via the SSOSM control algorithm (8.10)-(8.12). Then, given constant ref-
erence y? and constant disturbance w, ∀ t ≥ tr,∀x(tr) ∈ R4n+2m, the origin of the error
system (8.20) is a robust exponentially stable equilibrium point.

Proof. Consider the d component of the sliding variable σd = x̃[Vd]. Compute now the
first time derivative and the second time derivative of σd, i.e.,
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σ̇d = ˙̃x[Vd] = ω0x̃[Vq ] +C−1t x̃[Itd ]
+C−1t Bx̃[Id]

σ̈d = ¨̃x[Vd] =−
(
ω2
0In +C−1t L−1t +C−1t BL−1BT

)
x̃[Vd] −C

−1
t L−1t Rtx̃[Itd ]

+ 2ω0C
−1
t x̃[Itq ]

−C−1t BL−1Rx̃[Id] + 2ω0C
−1
t Bx̃[Iq ] +C−1t L−1t ũd.

According to the equivalent control concept [Utk92], by posing σ̈d = 0, one obtains

ũdeq = Rtx̃[Itd ]
− 2ω0Ltx̃[Itq ]

+LtBL−1Rx̃[Id] − 2ω0LtBx̃[Iq ]. (8.21)

Analogously, the q component of the sliding variable σq = x̃[Vq ] and its time derivatives
can be computed as

σ̇q = ˙̃x[Vq ] =− ω0x̃[Vd] +C−1t x̃[Itq ]
+C−1t Bx̃[Iq ]

σ̈q = ¨̃x[Vq ] =−
(
ω2
0In +C−1t L−1t +C−1t BL−1BT

)
x̃[Vq ] − 2ω0C

−1
t x̃[Itd ]

−C−1t L−1t Rtx̃[Itq ]
− 2ω0C

−1
t Bx̃[Id] −C

−1
t BL−1Rx̃[Iq ] +C−1t L−1t ũq .

The corresponding equivalent control, obtained by posing σ̈q = 0 is

ũqeq = 2ω0Ltx̃[Itd ]
+Rtx̃[Itq ]

+ 2ω0LtBx̃[Id] +LtBL−1Rx̃[Iq ]. (8.22)

Considering that, after tr, σν = σ̇ν = 0, that is x̃[Vd] = x̃[Vq ] = ˙̃x[Vd] = ˙̃x[Vq ] = 0, one
obtains the following set of algebraic equations

0 = C−1t x̃[Itd ]
+C−1t Bx̃[Id]

0 = C−1t x̃[Itq ]
+C−1t Bx̃[Iq ]

. (8.23)

Then, by using the relations in (8.23) and by substituting (8.21) and (8.22) into sys-
tem (8.20), the residual dynamics results in being

˙̃x[Itd ]
= BL−1Rx̃[Id] − ω0Bx̃[Iq ]

˙̃x[Itq ]
= ω0Bx̃[Id] + BL−1Rx̃[Iq ]

˙̃x[Id] = −L−1Rx̃[Id] + ω0x̃[Iq ]

˙̃x[Iq ] = −ω0x̃[Id] −L
−1Rx̃[Iq ].

(8.24)

Note that, since the relative degree of the system is r = 2, the original system with
4n+2m dynamic independent equations, ∀ t ≥ tr, can be described by the 4n sliding
constraints σd = σq = σ̇d = σ̇q = 0 , and by 2m independent dynamic equations. More
specifically, the resulting order reduction dynamics can be represented by the last two
equations related to the distribution lines dynamics, i.e.,[

˙̃x[Id]
˙̃x[Iq ]

]
= Ã

[
x̃[Id]

x̃[Iq ]

]
=

[
−L−1R ω0Im
−ω0Im −L−1R

] [
x̃[Id]

x̃[Iq ]

]
, (8.25)

where the matrix Ã is Hurwitz so that x̃[Id] and x̃[Iq ] exponentially converge to zero.
Then, from the algebraic equations (8.23), one can observe that also x̃[Itd] and x̃[Itq ]

exponentially converge to zero, which concludes the proof. ut



8.5 Case Study 163

DGu 1

DGu 2

DGu 4

DGu 3

ı12

ı14

ı23

ı34

Fig. 8.3. Scheme of the considered microgrid composed of 4 DGus. The solid arrows indicate
the positive direction of the currents flows through the distribution network.

Lemma 8.2 (Convergence to the sliding manifold: 3SM). Let Assumptions 8.1
and 8.2 hold. Let assume t0 ≥ tLd, t0, tLd being the initial time instant and the finite time
necessary for the convergence of the Levant’s differentiator (8.19), respectively. Given the
auxiliary system (8.13) controlled via the 3SM control law (8.15)-(8.18), then the sliding
variables (8.6) and their first and second time derivatives are steered to zero in a finite
time tr, in spite of the uncertainties.

Proof. This result directly follows from [DF09, Theorem 2]. ut

Theorem 8.2. Let Assumptions 8.1 and 8.2 hold. Consider system (8.3)-(8.5) controlled
via the 3-SM control law (8.15)-(8.18). Then, given constant reference y? and constant
disturbance w, ∀ t ≥ tr ≥ t0 ≥ tLd, ∀x(tr) ∈ R4n+2m, the origin of the error system (8.20)
is a robust exponentially stable equilibrium point.

Proof. The proof is analogous to that of Theorem 8.1. ut

8.5 Case Study

In this section, the proposed control solution is assessed in simulation by implementing
the realistic model of an AC islanded microgrid with nominal frequency f0 = 60 Hz, and
composed of four DGus (n =4) for the sake of clarity, even if the proposed approach has
a more general validity, even for more extended architectures. The DGus are in a ring
topology (m =4), as depicted in Fig. 8.3. The incidence matrix B ∈ R4×4, which describes
the network structure can be expressed as

B =


−1 0 0 −1
1 −1 0 0
0 1 −1 0
0 0 1 1

 ,
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Table 8.1. Electrical parameters of the microgrid

DGus
Filter Parameters Shunt capacitance Load Currents Reference Voltages
Rti [mΩ] Lti [mH] Cti [µF] Wdi [A] Wqi [A] V ?di [V] V ?qi [V]

DGu1 40.2 9.5 62.86 50 -20 120.0
√

2 0

DGu2 38.7 9.2 62.86 100 -15 120.0
√

2 0

DGu3 34.6 8.7 62.86 40 -10 122.4
√

2 0

DGu4 31.8 8.3 62.86 80 -18 117.6
√

2 0

Table 8.2. Electrical parameters of the distribution lines

Line impedance Zij Rij [Ω] Lij [µH]

Z12 0.25 1.2
Z23 0.27 1.3
Z34 0.24 1.8
Z14 0.26 2.1

while the electrical parameters of the single DGus and of the interconnecting distribution
lines are reported in Table 8.1 and in Table 8.2, respectively. The dynamic performances
of the controlled microgrid system in Fig. 8.3 are validated considering unknown load dy-
namics and voltage reference changes. In particular, at t = 0.04 s, V ?d2 becomes 114

√
2V,

i.e., it is reduced by 5%, and at t = 0.06 s, the power demanded by the local load of the
DGu4 increases by 25%, i.e., Wd4 becomes 100 A.

In Fig. 8.4 the time evolution of the dq-components of the loads voltages is represented.
One can observe the robustness of the proposed decentralized control approach with re-
spect to both reference and load variations. In particular, the voltage dynamics of the
nearby DGus are not affected neither by load nor by reference variations. The time evolu-
tion of the d-component of the generated and exchanged currents are also represented. In
particular, one can observe that when the voltage reference V ?d2 becomes lower than the
d-component of the voltage at PCC1 and PCC3, respectively, then DGu1 and DGu3 (i.e.,
the neighbors of DGu2) increase the generated current, and deliver, through the distribu-
tion lines, the extra power to the DGu2, which, instead, decreases its own generation. On
the other hand, when the local load of DGu4 requires more power, only DGu4 increases
its own generation.

Fig. 8.5 shows the three-phase signals of the DGu2, i.e., the load voltages (dashed lines)
and the generated currents (solid lines). Moreover, one can observe that all the load
voltages are synchronized, with frequency equal to the nominal one f0 = 60 Hz.

8.6 Conclusions

In this chapter a decentralized SM control scheme has been designed for an AC microgrid
with arbitrary topology, affected by load variations, operating in IOM. The system has
been modelled by introducing an incidence matrix and the controller has been suitably
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Fig. 8.4. (a) Time evolution of the d-component of the load voltages. (b) Time evolution of
the q-component of the load voltages. (c) Time evolution of the d-component of the generated
currents. (d) Time evolution of the d-component of the currents exchanged among the DGus
through interconnecting power lines.

designed on the basis of the proposed model. The asymptotical stability of the whole
microgrid has been proved and the performance of the proposed algorithm have been
evaluated in simulation considering a microgrid with four DGus in a ring topology.
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Fig. 8.5. (a) Time evolution of the three-phase signals (load voltage and generated current) of
DGu2. (b) Time evolution of the a-phase of the load voltages.
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Buck-Based DC Microgrids

Abstract. In this paper a novel distributed control algorithm for current sharing and
voltage regulation in Direct Current (DC) microgrids is proposed. The DC microgrid is
composed of several Distributed Generation units (DGus), interfaced with Buck convert-
ers, and current loads. The considered model permits an arbitrary network topology and
is affected by unknown load demand and modelling uncertainties. The proposed control
strategy exploits a communication network to achieve proportional current sharing using
a consensus-like algorithm. Voltage regulation is achieved by constraining the system to a
suitable manifold. Two robust control strategies of Sliding Mode (SM) type are developed
to reach the desired manifold in a finite time. The proposed control scheme is formally
analyzed, proving the achievement of proportional current sharing, while guaranteeing
that the weighted average voltage of the microgrid is identical to the weighted average of
the voltage references. The latter objective is often desired in practical implementations,
but difficult to obtain, even with advanced control methodologies, rendering the proposed
solution relevant for the further deployment of DC microgrids.

9.1 Preliminaries on Buck-Based DC Microgrids

As discussed in Chapter 8, in the last decades, due to economic, technological and en-
vironmental aspects, the main trends in power systems focused on the modification of
the traditional power generation and transmission systems towards incorporating smaller
Distributed Generation units (DGus). Moreover, the ever-increasing energy demand and
the concern about the climate change have encouraged the wide diffusion of Renewable
Energy Sources (RES). The so-called microgrids have been proposed as conceptual so-
lutions to integrate different types of RES and to electrify remote areas. Microgrids are
low-voltage electrical distribution networks, composed of clusters of DGus, loads and stor-
age systems interconnected through power lines [LP04].

Due to the widespread use of Alternate Current (AC) electricity in most industrial, com-
mercial and residential applications, the recent literature on this topic mainly focused on
AC microgrids [SSK17, TBD14, DM17, GLLC13]. However, several sources and loads (e.g.
photovoltaic panels, batteries, electronic appliances and electric vehicles) can be directly
connected to DC microgrids by using DC-DC converters. Indeed, several aspects make DC

167
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microgrids more efficient and reliable than AC microgrids [JMLJ13]: i) lossy DC-AC and
AC-DC conversion stages are reduced, ii) there is not reactive power, iii) harmonics are
not present, iv) frequency synchronization is overcame, v) skin effect is absent. Moreover,
a DC microgrid can be connected to an islanded AC microgrid (even to the main grid) by
a DC-AC bidirectional converter, forming a so-called hybrid microgrid [LWL11, GLLC13].
Moreover, the growing need of interconnecting distant power networks (e.g. off-shore wind
farms) has encouraged the use of High Voltage Direct Current (HVDC) technology, which
is advantageous not only for long distances, but also for underwater cables, asynchronous
networks and grids running at different frequencies [FAD09]. Different control approaches
have been investigated in the literature (see for instance [BdPFDC+16, AWD+17, ZOS17]
and the references therein). Finally, DC microgrids are widely deployed in aircrafts and
trains, and recently used in modern design for ships and large charging facilities for elec-
tric vehicles. For all these reasons, DC microgrids are attracting growing interest and
receive much research attention.

Two main control objectives in DC microgrids are voltage regulation and current sharing
(or, equivalently, load sharing). Regulating the voltages is required to ensure a proper
functioning of connected loads, whereas current sharing prevents the overstressing of any
source. Moreover, since a microgrid can include DGus with different generation capac-
ity, it is often desired in practical cases that the DGus share the total current demand
proportionally to their generation capacity. In order to achieve both objectives, hierarchi-
cal control schemes are conventionally adopted [GVM+11]. In these hierarchical control
schemes, a primary (low level) control, typically based on a droop method, is designed
to perform load sharing. However, since traditional droop controllers cannot guarantee to
achieve both the aforementioned objectives simultaneously [LGSV14], the primary control
is usually supplemented with a secondary (high level) control to maintain the voltages in
a microgrid close to their desired reference values. Generally, the requirement of current
sharing does not permit to regulate the voltage at each node towards the corresponding
desired value. Then, a reasonable alternative is to satisfy the voltage requirement defined
in [NMDL15], according to which the average voltage across the whole microgrid (not a
specific node) should be regulated at the global voltage set point (e.g., the average of the
voltage references). This kind of voltage regulation is called global voltage regulation or
voltage balancing (see for instance [NDLG14, PAMD+16, SM17, PGA17, TMGFT16] and
the references therein).

In the literature, these control problems in DC microgrids have been addressed by dif-
ferent approaches. To compensate steady state error due to primary droop controller,
a distributed secondary controller based on averaging the total current supplied by the
sources is proposed in [AFG13], while decentralized and distributed secondary integral
control strategy are formally analyzed in [ZD15]. In [NMDL15] each power converter is
equipped with current and voltage regulators. The latter uses the average voltage estima-
tion made by an observer to perform global voltage regulation. In [TMGFT16] the authors
propose a consensus-based secondary controller for current sharing and voltage balancing
even in presence of plugging-in or -out of DGus. An oscillatory current sharing is designed
in [HGMK15] for DC microgrids where single-phase inverter and/or three-phase unbal-
anced AC loads are introduced. A consensus algorithm that guarantees power sharing in
presence of ‘ZIP’ (constant impedance, constant current, constant power) loads, as well
as preservation of the weighted geometric average of the source voltages is designed and
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formally analyzed in [DWD16].

In this chapter we propose a novel robust control algorithm to obtain simultaneously
proportional current sharing among the DGus and a form of voltage regulation in the
DC power network, where the interconnecting lines of the microgrid are assumed to be
resistive-inductive. In order to achieve current sharing, a communication network is ex-
ploited where each DGu communicates in real-time the value of its generated current to
its neighbouring DGus. Adding this additional communication layer to achieve current
sharing, leading to a distributed controller, has been widely adopted and studied thor-
oughly. In comparison to the existing results in the literature, we additionally propose
the design of a manifold that couples the aforementioned objective of current sharing to
the objective of voltage regulation. By doing this, the proposed control algorithm guaran-
tees that the weighted average voltage of the microgrid is equal to the weighted average
of the reference voltages, where the weights depend on the DGus generation capacities,
performing the so called global voltage regulation or voltage balancing [TMGFT16]. This
is achieved independently of the initial voltage conditions, facilitating plug-and-play ca-
pabilities.

To constrain the state of the system to the designed manifold in a finite time, we pro-
pose robust controllers of Sliding Mode (SM) type [Utk92, UGS99, YSE17]. SM control
is appreciated for its robustness property against a wide class of modelling uncertainties
and external disturbances, commonly present in DC microgrids. In this work, we first
propose a Second Order Sliding Mode (SOSM) controller that determines the, possibly
non-constant, switching frequency of the power converter, which might lead increased the
power losses. Then, to overcome this issue, we additionally propose a third order slid-
ing mode controller (3SM) to obtain a continuous control signal that can be used as the
duty cycle of the power converter. Furthermore, the proposed control solution is robust
with respect to failed communication. In fact, if the communication among the DGus is
disabled, then the voltage of each node converges in a finite time to the corresponding
reference value. For the considered microgrid model, convergence to the state of current
sharing and voltage regulation is theoretically analyzed, and we show that convergence is
achieved globally, for any initialization of the microgrid.

The remainder of this chapter is organized as follows. In Section 9.2 the microgrid model
is presented, while in Section 9.3 the control problem is formulated. In Section 9.4 the
proposed manifold-based consensus algorithm is designed, and in Section 9.5 sliding mode
control strategies are proposed to reach the desired manifold. In Section 9.6 the stabil-
ity properties of the controlled system are analyzed, while in Section 9.7 the simulation
results are illustrated and discussed. Some conclusions are gathered in Section 9.8.

9.2 Buck-Based DC Microgrid Model

In this work we consider a typical buck converter-based DC microgrid of which a schematic
electrical diagram is provided in Fig. 9.1 for a two DGus network. The energy source of
a DGu is represented by a DC voltage source VDCi , and it is interfaced with the electric
DC network through a DC-DC Buck converter. The local DC load is connected to the so-
called Point of Common Coupling (PCC) and it can be treated as a current disturbance
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Fig. 9.1. The considered electrical diagram of a (Kron reduced) DC microgrid composed of two
DGus.

ILi (see also Remark 9.2). At the output of the Buck converter a low-pass filter RtiLtiCti
is considered, where Rti represents the filter parasitic resistance. Moreover, the DGui can
exchange power with the DGuj through a line with resistance Rij and inductance Lij .

By applying the Kirchhoff’s current and voltage laws, the governing dynamic equations12

of the i-th node (DGu) are the following:

Lti İti = −RtiIti − Vi + ui

Cti V̇i = Iti − ILi −
∑
j∈Ni

Iij ,
(9.1)

where Ni is the set of nodes (i.e., the DGus) connected to the i-th DGu by distribution
lines, while the control input ui represents the buck converter output voltage13. The
current from DGu i to DGu j is denoted by Iij and its dynamic is given by

Lij İij = (Vi − Vj)−RijIij . (9.2)

The symbols used in (9.1) and (9.2) are described in Table 9.1.

The overall network is represented by a connected and undirected graph G = (V, E), where
the nodes, V = {1, ..., n}, represent the DGus and the edges, E = {1, ...,m}, represent
the distribution lines interconnecting the DGus. The network topology is represented by
its corresponding incidence matrix B ∈ Rn×m. The ends of edge k are arbitrarily labeled
with a + and a −, and the entries of B are given by

Bik =


+1 if i is the positive end of k

−1 if i is the negative end of k

0 otherwise.

By substituting (9.2) in (9.1), the overall microgrid system can be written compactly for
all nodes i ∈ V as

12For notational simplicity, the dependence of the variables on time t is omitted throughout
most of the chapter.

13Note that ui in (9.1) can be expressed as δiVDCi , where δi is the duty cycle of the Buck i
and VDCi is the DC voltage source provided by a generic renewable energy source or a battery
at node i.
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Table 9.1. Description of the used symbols

State variables

Iti Generated current
Vi Load voltage
Iij Exchanged current

Parameters

Rti Filter resistance
Lti Filter inductance
Cti Shunt capacitor
Rij Line resistance
Lij Line inductance

Inputs

ui Control input
ILi Unknown current demand

Ltİt = −RtIt − V + u

CtV̇ = It + BI − IL
Lİ = −BTV −RI,

(9.3)

where V , It, IL,u ∈ Rn, and I ∈ Rm. Moreover, Ct,Lt,Rt ∈ Rn×n and R,L ∈ Rm×m
are positive definite, diagonal matrices, e.g. Rt = diag(Rt1 , . . . , Rtn). To permit the con-
troller design in the next sections, the following assumption is introduced on the available
information of the system:

Assumption 9.1 (Available information). The state variables Iti and Vi are locally
available at the i-th DGu. The network parameters Rt,Lt,Ct,R,L, and the current
demand IL are constant and unknown, but with known bounds.

Remark 9.1 (Varying parameters and current demand). We assume that the pa-
rameters and the current demand are constant, to allow for a steady state solution and
to theoretically analyze the stability of the microgrid. Yet, the control strategy that we
propose in the next sections is applicable even if this assumption is removed.

Remark 9.2 (Kron reduction). Note that in (9.1), the load currents are located at
the PCC of each DGu (see also Fig. 9.1). This situation is generally obtained by a
Kron reduction of the original network, yielding an equivalent representation of the net-
work [ZMD15, DB13]. It is important to realize that the network (topology) of the Kron
reduced network is generally unknown and differs from the original network. It is therefore
desirable that a control structure is independent of the underlying distribution network.
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9.3 Current Sharing and Voltage Balancing

In this section we make the considered control objectives explicit. First, we note that for a
given constant control input u, a steady state solution (It,V , I) to system (9.3) satisfies

V = −RtIt + u

−BI = It − IL
I = −R−1BTV ,

(9.4)

The second line of (9.4) implies14 that, at steady state, the total generated current 1TnIt
is equal to the total current demand 1TnIL. To improve the generation efficiency, it is
generally desired that the total current demand is shared among the various DGus pro-
portionally to the generation capacity of their corresponding energy sources (proportional
current sharing). This desire can be expressed as wiIti = wjItj for all i, j ∈ V, where wi
relates to the generation capacity of converter i, and leads to the first objective concerning
the desired steady state value of the generated currents It.

Objective 9.1 (Proportional current sharing).

lim
t→∞

It(t) = It = W−11ni
∗
t , (9.5)

with i∗t = 1TnIL/(1
T
nW

−11n) ∈ R, W = diag{w1, . . . , wn}, wi > 0, for all i ∈ V.

Note that (9.5) indeed satisfies 1TnIt = 1TW−11ni
∗
t = 1TnIL. From the second and third

lines of (9.4) it follows that the corresponding steady state voltages V satisfy

BR−1BTV = W−11ni
∗
t − IL, (9.6)

that prescribes the value of the required differences in voltages, BTV , achieving propor-
tional current sharing. This admits the freedom to shift all steady state voltages with
the same constant value, since BTV = BT

(
V + a1n

)
, with a ∈ R any scalar. To define

the optimal steady state voltages, we assume that for every DGu i, there exists a desired
reference voltage V ?i .

Assumption 9.2 (Desired voltages). There exists a constant reference voltage V ?i at
the PCC, for all i ∈ V.

Often the values for V ?i are chosen identical for all i ∈ V, and are set to the desired voltage
level of the overall network. Generally, the requirement of current sharing does not permit
for V = V ?, and might cause voltages deviations from the corresponding reference values.
Then, a reasonable alternative is to keep the average value of the PCC voltages at the
steady state identical to the weighted average value of the desired reference voltages of
V ? (voltage balancing) [TMGFT16]. Particularly, we choose the weights to be 1/wi, for

14The incidence matrix B, satisfies 1TnB = 0, where 1n ∈ Rn is the vector consisting of all
ones.
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all i ∈ V, such that at the converters with a relatively large current generation, there is a
relatively large voltage deviation. Therefore, given a V ?, we aim at designing a controller
that, in addition to Objective 9.1, also guarantees voltage balancing, i.e.,

Objective 9.2 (Voltage balancing).

lim
t→∞

1TnW
−1V (t) = 1TnW

−1V = 1TnW
−1V ?. (9.7)

Remark 9.3. (Equal current sharing) Note that by setting in (9.5) and (9.7) the
weights wi, for all i ∈ V, identical, the total current demand is equally shared among
the DGus and the arithmetic average of the microgrid voltage is equal to the arithmetic
average of the voltage references.

By substituting (9.5) and (9.7), in (9.4), one can easily verify that the achievement of
Objective 9.1 and Objective 9.2 prescribes the (optimal) steady state output voltages of
the buck converters, u = uopt.

Lemma 9.1 (Optimal feedforward input). If system (9.3), at steady state, achieves
Objective 9.1 and Objective 9.2, then the control input u to system (9.3) is given by

uopt = −
(
BR−1BT − Ψ

)−1(
ΨV ? + IL

)
, (9.8)

with

Ψ =
(In + BR−1BTRt)W−11n1

T
nW

−1

1TnW
−1RtW−11n

, (9.9)

and In ∈ Rn×n the identity matrix.

Proof. When Objective 9.1 and Objective 9.2 hold, the steady state of (9.3) necessarily
satisfies

0 = −RtW−11ni
∗
t − V + uopt

0 = W−11ni
∗
t −BR−1BTV − IL

0 = 1TnW
−1V − 1TnW−1V ?,

(9.10)

with i∗t = 1TnIL/(1
T
nW

−11n) ∈ R A tedious, but straightforward, calculation permits to
solve (9.10) for uopt, yielding (9.8). ut

In order to determine (9.8), exact knowledge of almost all network parameters, as well
as the current demand IL, is required. Since this information is not available (see also
Assumption 9.1), we propose in the next sections distributed controllers that, provably,
achieve voltage balancing using only local measurements of Vi, and that achieve propor-
tional current sharing by exchanging information on Iti among neighbours over a com-
munication network. In the remainder of this section we further elaborate on the steady
state voltages imposed by the control objectives.
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9.3.1 Steady state voltages

First, we notice that it follows from (9.5) and (9.10) that the steady state voltages V
satisfy

V = −RtW
−11n1

T
nIL

1TnW
−11n

+ uopt. (9.11)

From (9.8) and (9.11) it is evident that the steady state values of the voltages at each
node depend on the loads IL and the voltage references V ?. Since V ? is free to design,
it can be potentially chosen in such a way that too low or too high voltages are avoided.
To help the design of V ?, we show that the the steady state voltages V i, for all i ∈ V,
are shifted by the same quantity, when V ? is altered.

Lemma 9.2. (Voltage shifting property) Let Objective 9.1 and Objective 9.2 hold,
and let V (1) ∈ Rn denote the steady state voltage value associated to the voltage reference
V ?
(1) ∈ Rn. Consider the new voltage reference V ?

(2) ∈ Rn and the corresponding steady

state voltage value V (2) ∈ Rn. Then, ∆V = V (2) − V (1) satisfies

∆V = 1n
1TnW

−1∆V ?

1TnW
−11n

, (9.12)

with ∆V ? = V ?
(2) − V

?
(1).

Proof. When Objective 9.2 holds, we have

1TnW
−1(V (1) +∆V ) = 1TnW

−1(V ?
(1) +∆V ?), (9.13)

which implies
1TnW

−1∆V = 1TnW
−1∆V ?. (9.14)

Bearing in mind that the voltage differences between any node of the microgrid are pre-
scribed by the achievement of current sharing (see the paragraph below Objective 9.1),
we have BTV (1) = BTV (2), implying ∆V = 1nν, with ν ∈ R. Then, from (9.14),
ν = 1TnW

−1∆V ?/1TnW
−11n, i.e., all the voltages are shifted by the same quantity. ut

Consequently, any node i in the network can lower or increase its steady state voltage
V i, by adjusting its own reference V ?i . Although, the design and the analysis of a voltage
reference generator is postponed to a future research, the property proven in Lemma 9.2
could be exploited to avoid that the voltages at some nodes could be lower or higher than
some given thresholds.

9.4 Distributed Sliding Mode Control

In this section we introduce the key aspects of the proposed solution to achieve Objec-
tive 9.1 and Objective 9.2, consisting of a consensus algorithm and the design of a manifold
to where the solutions to the system should converge. First, we augment system (9.3) with
additional state variables (distributed integrators) θi, i ∈ V, with dynamics given by
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θ̇i = −
∑
j∈N ci

γij(wiIti − wjItj ), (9.15)

whereN c
i is the set of the DGus that communicate with the i-th DGu, and γij = γji ∈ R>0

are additional gain constants, and wi, wj ∈ R>0 are constant weights depending on the
DGus generation capacity. Let Lc denote the (weighted) Laplacian matrix associated
with the communication graph, which can be different from the topology of the (reduced)
microgrid. Then, the dynamics in (9.15) can be expressed compactly for all nodes i ∈ V
as

θ̇ = −LcWIt, (9.16)

that indeed has the form of a consensus protocol, permitting a steady state where WIt ∈
im(1n) (see also Objective 9.1). We impose the following restrictions on (9.16):

Assumption 9.3 (Controller structure). For all i ∈ V, the integrators states θi are
initialized such that 1Tnθ(0) = 0. Furthermore, the graph corresponding to the topology
of the communication network is undirected and connected.

The most straightforward choice of initialization of the state θi(0), that satisfies Assump-
tion 9.3, is to initialize all θi to zero, i.e. θ(0) = 0. Whereas connectedness of the com-
munication graph is needed to ensure power sharing among all DGus, the consequence of
the required initialization of θ(0) is that the average value of the entries of θ is preserved
and identical to zero for all t ≥ 0, as proved in the following lemma.

Lemma 9.3 (Preservation of 1Tnθ). Let Assumption 9.3 hold. Given system (9.16),
the average value 1

n

∑
i∈V θi is preserved, i.e.,

1

n
1Tnθ(t) =

1

n
1Tnθ(0) ∀t ≥ 0. (9.17)

Proof. Pre-multiplying both sides of (9.16) by 1Tn yields

1Tn θ̇ = −1TnLcWIt = 0, (9.18)

where 1TnLc = 0, follows from Lc being the Laplacian matrix associated with an undi-
rected graph. ut

The fact that 1Tnθ(t) = 0, is essential to the second aspect of the proposed solution, the
design of a manifold. Bearing in mind Objective 9.2, we propose the following desired
manifold:

{(It,V , I,θ) : W−1 (V − V ?)− θ = 0}. (9.19)

Indeed, exploiting the preservation of 1Tnθ, we have on the desired manifold (9.19),
1TnW

−1V = 1Tn (θ + W−1V ?) = 1TnW
−1V ?. Constraining the solutions to a system

to a specific manifold is typical for sliding mode based controllers, and we will discuss
some suitable controller designs in the next section.
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Remark 9.4. (Plug-and-Play) The main results in this work assume a constant net-
work topology. Nevertheless, an interesting extension is to consider the plugging in or
out of various converters. The analysis of the corresponding switched/hybrid system is
outside the scope of this work. Here, we merely describe how the required initialization θi
should be extended towards the setting of changing topologies, in order to preserve the
crucial property 1Tnθ = 0. First, if a new DGu (say DGun+1) wants to join the network,
its integrator state is initialized to zero, i.e., θn+1(tnew) = 0, tnew being the time instant
when DGun+1 is plugged-in. Second, if a DGu (say DGu i) is unplugged at the time
instant tout, we let θi(t) = θi(tout) for all t > tout, without re-setting any integrator. If
DGu i wants to join again the network at the time instant tin > tout, the dynamic of
θi is described again by (9.15) for all t > tin. Since θi(tin) = θi(tout), also the plug-in
operation occurs without re-setting any integrator state.

9.5 Sliding mode controllers

We now propose a Distributed Second Order Sliding Mode (D-SOSM) control law, and
a Distributed Third Order Sliding Mode (D-3SM) control law, to steer, in a finite time,
the state of system (9.3), augmented with (9.16), to the desired manifold (9.19). As will
be discussed in the coming subsections, the choice of the particular control law, D-SOSM
or D-3SM, depends on the desired implementation.

Bearing in mind the desired manifold (9.19), we consider the following sliding function
σ ∈ Rn:

σ(V ,θ) = W−1 (V − V ?)− θ. (9.20)

9.5.1 Second order SM control: variable switching frequency

Regarding the sliding function (9.20) as the output function of system (9.3), (9.16), it
appears that the relative degree15 is two. This implies that a second order sliding mode
(SOSM) controller can be naturally applied in order to make the state of the controlled
system reach, in a finite time, the sliding manifold {(It,V , I,θ) : σ = σ̇ = 0}. According
to the SOSM control theory, the auxiliary variables ξ1 = σ and ξ2 = σ̇ have to be defined,
resulting in the so-called auxiliary system

ξ̇1 = ξ2

ξ̇2 = b(It,V , I,u) +Gdu.
(9.21)

Taking into account the expressions for σ and σ̇, a straightforward calculation shows
that, in the auxiliary system (9.21), the expression for b ∈ Rn is given by

b =−
(
W−1C−1t + LcW

)
L−1t RtIt

−
((
W−1C−1t + LcW

)
L−1t +W−1C−1t BL−1BT

)
V

−W−1C−1t BL−1RI −Gau,

(9.22)

15 The relative degree is the minimum order ρ of the time derivative σ
(ρ)
i , i ∈ V, of the sliding

variable associated with the i-th node in which the control ui, i ∈ V explicitly appears.
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and Gd,Ga ∈ Rn×n are

Gd = (W−1C−1t + DcW )L−1t ,

Ga = AcWL−1t .
(9.23)

Here, Dc and Ac are the degree matrix and the adjacency matrix of the communication
graph, respectively, i.e. Lc = Dc −Ac. We assume that the entries of b and Gd have
known bounds for all i ∈ V:

|bi| ≤ bmaxi

Gmini ≤ Gdii ≤ Gmaxi ,
(9.24)

with bmaxi , Gmini and Gmaxi being positive constants. According to the theory underlying
the so-called Suboptimal SOSM (SSOSM) control algorithm [BFU98a], the i-th SOSM
control law, that can be used to steer ξ1i and ξ2i , to zero in a finite time, even in presence
of uncertainties, is given by

ui = −µiUmaxi sign
(
ξ1i − 1

2ξ
max
1i

)
, (9.25)

with

Umaxi > max

(
bmaxi

µ∗iGmini

;
4bmaxi

3Gmini − µ∗iGmaxi

)
, (9.26)

µ∗i ∈ (0, 1] ∩
(

0,
3Gmini

Gmaxi

)
, (9.27)

µi switching between µ∗i and 1, according to [BFU98a, Algorithm 1]. The extremal
value ξmax

1i in (9.25) can be detected by implementing for instance a peak detector as
in [BFU98b]. Note that only the value of ξ1i , i.e., Vi−V ?i − θi, is required to generate the
control signal ui.

Remark 9.5 (Switching frequency). The discontinuous control signal (9.25) can be
directly used in practice to open and close the switch of the Buck converter. As a result,
the Insulated Gate Bipolar Transistors (IGBTs) switching frequency cannot be a-priori
fixed and the power losses could be high. Usually, in order to achieve a constant IGBTs
switching frequency, Buck converters are controlled by implementing the so-called Pulse
Width Modulation (PWM) technique. To do this, a continuous control signal, that rep-
resents the so-called duty cycle of the Buck converter, is required. In the next subsection
we will clarify how a continuous control input can be obtained.

9.5.2 Third Order SM control: duty cycle

To ensure a continuous control input (duty cycle), we adopt the procedure suggested
in [BFU98a] and first integrate the (discontinuous) control signal generated by a sliding
mode controller, yielding for system (9.3) augmented with (9.16)

Ltİt = −RtIt − V + u

CtV̇ = It + BI − IL
Lİ = −BTV −RI
θ̇ = −LcWIt

u̇ = v,

(9.28)
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Fig. 9.2. Block diagram of the proposed Distributed Third Order Sliding Mode (D–3SM) control
strategy.

where v is the new (discontinuous) control input. Note that the input signal to the con-

verter, u(t) =
∫ t
0
v(τ)dτ , is continuous, so that ui can be used as duty cycle for the

switch of the i-th Buck converter. A consequence is that the system relative degree
(with respect to the new control input v) is now equal to three, so that we need to
rely on a third order sliding mode (3SM) control strategy to reach the sliding manifold
{(It,V , I,θ) : σ = σ̇ = σ̈ = 0} in a finite time. To do so, we define the auxiliary variables
ξ1 = σ, ξ2 = σ̇ and ξ3 = σ̈, and build the auxiliary system as follows

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = ḃ(It,V , I,u) +Gdv

u̇ = v,

(9.29)

with b as in (9.22), Gd and Ga as in (9.23). Then, we assume that the entries of ḃ can
be bounded as

|ḃi(·)| ≤ βmaxi ∀i ∈ V, (9.30)

where βmaxi is a known positive constant.

Remark 9.6 (Uncertainty of b, ḃ and Gd). The mappings b, ḃ and matrix Gd are un-
certain due to the presence of the unmeasurable current demand IL and possible network
parameter uncertainties. However, relying on Assumption 9.1 and observing that b and ḃ
depend on the electric signals related to the finite power of the microgrid, b, ḃ and Gd are
in practice bounded. Generally, the bounds of the unknown quantities can be determined
by data analysis and engineering understanding.

Now, the 3SM control law proposed in [DF09] can be used to steer ξ1i , ξ2i and ξ3i , i ∈ V,
to zero in a finite time. It is given by

vi = −αi


v1i = sign(σ̈i) si ∈M1i/M0i

v2i = sign
(
σ̇i +

σ̈2
i v1i
2αri

)
si ∈M2i/M1i

v3i = sign(φi(si)) otherwise,

(9.31)

where si = [σi, σ̇i, σ̈i]
T and
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φi(si) = σi +
σ̈3
i

3α2
ri

+ v2i

[
1
√
αri

(
v2i σ̇i +

σ̈2
i

2αri

) 3
2

+
σ̇iσ̈i
αri

]
,

with
αri = αiGmini − βmaxi > 0. (9.32)

Then, given the bounds Gmini and βmaxi , the control amplitude αi is chosen such that
αri is positive. The manifolds M1i , M2i , M3i in (9.31) are defined as

M0i =
{
si ∈ R3 : σi = σ̇i = σ̈i = 0

}
M1i =

{
si ∈ R3 : σi −

σ̈3
i

6α2
ri

= 0, σ̇i +
σ̈i|σ̈i|
2αri

= 0
}

M2i =
{
si ∈ R3 : φi(si) = 0

}
.

From (9.31), one can observe that the controller of DGui requires not only σi, but also
σ̇i and σ̈i. Yet, according to Assumption 9.1, only Iti and Vi are measurable at the i-th
DGu. Then, one can rely on Levant’s second-order differentiator [Lev03] to retrieve σ̇i
and σ̈i in a finite time. Consequently, for system (9.29), the estimators are given by

˙̂
ξ1i = −λ0i

∣∣∣ξ̂1i − ξ1i∣∣∣ 23 sign
(
ξ̂1i − ξ1i

)
+ ξ̂2i

˙̂
ξ2i = −λ1i

∣∣∣ξ̂2i − ˙̂
ξ1i

∣∣∣ 12 sign
(
ξ̂2i −

˙̂
ξ1i

)
+ ξ̂3i

˙̂
ξ3i = −λ2i sign

(
ξ̂3i −

˙̂
ξ2i

)
,

(9.33)

where ξ̂1i = σ̂i, ξ̂2i = ˙̂σi and ξ̂3i = ¨̂σi are the estimated values of ξ1i = σi, ξ2i = σ̇i and
ξ3i = σ̈i, respectively. The estimates obtained via (9.33) can be used in (9.31), replac-

ing the original variables. The other parameters are λ0i = 3Λ
1/3
i , λ1i = 1.5Λ

1/2
i , λ2i =

1.1Λi, Λi > 0, as suggested in [Lev03]. The block diagram of the proposed control strategy
is depicted in Fig. 9.2.

Remark 9.7 (Scalability and distributed control). Since the selected sliding func-
tion (9.20) is designed by using the additional state θ in (9.16), the overall control scheme
is indeed distributed, and only information on generated currents It needs to be shared.
More precisely, the controller of the i-th DGu needs information only from the DGus
that communicate with it. Note that the design of the local controller for each DGu is
not based on the knowledge of the whole microgrid, so that the complexity of the control
synthesis does not depend on the microgrid size. Specifically, the synthesis of the i-th
local controller requires the knowledge of the bounds of Gmini , Gmaxi , bmaxi (SSOSM),
βmaxi (3SM), which depend on the parameters of the i-th DGu and of the DGus and
lines connected to it. Note that only the estimate of the bounds of these parameters is
required, not their exact knowledge.

Remark 9.8 (Alternative SM controllers). In this work we rely on the SOSM control
algorithm proposed in [BFU98a] and on the 3SM control law proposed in [DF09]. However,
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the results in this work are obtained independent of the particular choice of sliding mode
controller. In case of the SOSM controller, any other SOSM control algorithm that does
not need the measurement of σ̇ can be used to constrain system (9.3) augmented with
dynamics (9.16) on the sliding manifold σ = σ̇ = 0, with σ as in (9.20). Similarly, any
other 3SM control law can be used (e.g. the one proposed in [Lev03]), to constrain system
(9.3) augmented with dynamics (9.29) on the sliding manifold σ = σ̇ = σ̈ = 0, with σ as
in (9.20). An interesting continuation of the presented results is to study the performance
of various SM controllers within the setting of current sharing and voltage regulation in
DC microgrids.

9.6 Stability Analysis

In this section we first show that the states of the controlled microgrid are constrained,
after a finite time, to the manifold σ = 0, where Objective 9.2 is achieved. Thereafter,
we prove that the solutions to the system, once the sliding manifold is attained, converge
exponentially to a constant point, achieving additionally Objective 9.1.

9.6.1 Equivalent reduced order system

As a first step, we study the convergence to the sliding manifold when the SSOSM or the
3SM control law is applied to the system.

Lemma 9.4 (Convergence to the sliding manifold: SSOSM). Let Assumption 9.1
hold. The solutions to system (9.3) augmented with (9.16), controlled via the SSOSM
control law (9.25), converge in a finite time Tr, to the sliding manifold {(It,V , I,θ) : σ =
σ̇ = 0}, with σ given by (9.20).

Proof. Following [BFU98a], the application of (9.25) to each converter guarantees that
σ = σ̇ = 0, for all t ≥ Tr. The details are omitted, since they are an immediate conse-
quence of the used SSOSM control algorithm [BFU98a]. ut

Lemma 9.5 (Convergence to the sliding manifold: 3SM). Let Assumption 9.1
hold. The solutions to system (9.3) augmented with (9.16), controlled via 3SM control
algorithm (9.29)-(9.33), converge in a finite time Tr, to the sliding manifold {(It,V , I,θ) :
σ = σ̇ = σ̈ = 0}, with σ given by (9.20).

Proof. By implementing the Levant’s differentiator (9.33) in each node, the values of
ξ1, ξ2 and ξ3 are estimated in a finite time TLd ≥ 0. Then, the application of (9.31)
to each converter guarantees that σ = σ̇ = σ̈ = 0, for all t ≥ Tr ≥ TLd. The details
are omitted, since they are an immediate consequence of the used Levant’s second order
differentiator [Lev03], and the 3SM control algorithm [DF09]. ut

As we will show in the proof of Theorem 9.2 in the next subsection, converging to the
sliding manifold where σ = 0, is sufficient to conclude that Objective 9.2 (voltage bal-
ancing) is achieved. We postpone the analysis, in order show additionally convergence to
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a constant voltage.

For the analysis of the system, when the solutions are constrained to the sliding manifold,
it is convenient to exploit the so-called system order reduction property, typical of sliding
mode control methodology (see Subsection 2.2.8). Indeed, when the state of system (9.3)
augmented with (9.16) is constrained to the sliding manifold {(It,V , I,θ) : σ = σ̇ = 0},
with σ given by (9.20), the controlled system is described by 3n+m differential equations
and 2n algebraic equations. Then, it is possible to obtain 2n state variables depending
on the other n+m ones. The resulting system of order n+m represents the reduced or-
der system equivalent to the system controlled with a discontinuous law, with the initial
condition (It(Tr),V (Tr), I(Tr),θ(Tr)), when σ = σ̇ = 0.

Lemma 9.6. (Equivalent reduced order system) For all t ≥ Tr, the dynamics of
the controlled system (9.3) augmented with (9.16) are given by the following equivalent
system of reduced order

CtV̇ =
(
In − (In +CtWLcW )

−1
)
BI

−
(
In − (In +CtWLcW )

−1
)
IL

Lİ =−BTV −RI,

(9.34)

together with the following algebraic relations

θ = W−1 (V − V ?) (9.35)

It = (In +CtWLcW )
−1

(−BI + IL) . (9.36)

Proof. Given the sliding function (9.20), by virtue of Lemma 9.4 and Lemma 9.5, the
state of system (9.3) augmented with (9.16) is constrained to the manifold {(It,V , I,θ) :
σ = σ̇ = 0}, where θ = W−1 (V − V ?) and V̇ = Wθ̇. From the latter, one can
straightforwardly obtain (9.36). After substituting expression (9.36) for It in (9.3), the
dynamics of the voltage V become as in (9.34). ut

9.6.2 Exponential convergence and objectives attainment

In the pervious subsection, we established that after a finite time Tr, the dynamics of
the controlled microgrid are described by the equivalent system (9.34). In this subsection
we study the convergence properties of this equivalent system. To do so, we rely on the
concept of semistability [BB95], of which we recall the definition for convenience.

Definition 9.1 (Semistability). Consider the autonomous system

ẋ(t) = Ax(t), (9.37)

where t ≥ 0, x ∈ Rn and A ∈ Rn×n. System (9.37) is semistable if limt→∞ x(t) exists for
all initial conditions x(0).
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Furthermore, the following lemma turns out to be useful in the upcoming analysis:

Lemma 9.7 (P −
(
P−1 +Q

)−1 � 0). Given a positive definite matrix P ∈ Rn×n and a
positive semidefinite matrix Q ∈ Rn×n, then

P −
(
P−1 +Q

)−1 � 0. (9.38)

Proof. Let Q̃ = P
1
2QP

1
2 . Clearly, Q̃ � 0, and In×n + Q̃ � 0. Then,

P −
(
P−1 +Q

)−1
= P

1
2

[
In×n −

(
In×n + Q̃

)−1]
P

1
2 (9.39)

is a positive semidefinite matrix if and only if In×n−(In×n+Q̃)−1 = Q̃(In×n+Q̃)−1 � 0.
Observing that (In×n + Q̃)−1 � 0, it yields

Q̃(In×n + Q̃)−1 v (In×n + Q̃)−
1
2 Q̃(In×n + Q̃)−

1
2 � 0, (9.40)

which completes the proof. ut

Next, we show that the line currents I converge to a constant value.

Lemma 9.8 (Convergence of I). Let Assumptions 9.1 and 9.2 hold. Given the equiv-
alent reduced order system (9.34), limt→∞ I(t) exists for all initial conditions I(Tr).

Proof. Let Ṽ = V − V and Ĩ = I − I be the error given by the difference between the
state of system (9.34) and the steady state value. Then, the dynamics of the corresponding
error system are given by

Ct
˙̃V =

(
In − (In +CtWLcW )

−1
)
BĨ

L ˙̃I =−BT Ṽ −RĨ,
(9.41)

From (9.41), we obtain

˙̃V = C−1t

(
In − (In +CtWLcW )

−1
)
BĨ

=
(
C−1t − (Ct +CtWLcWCt)

−1
)
BĨ,

(9.42)

and
L¨̃I +R ˙̃I + BT ˙̃V = 0. (9.43)

Substituting expression (9.42) for ˙̃V in (9.43) leads to

L¨̃I +R ˙̃I + BT
(
C−1t − (Ct +CtWLcWCt)

−1
)
B︸ ︷︷ ︸

K

Ĩ = 0. (9.44)
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Since, by virtue of Lemma 9.7 (with P = C−1t ,Q = CtWLcWCt), C
−1
t − (Ct +

CtWLcWCt)
−1 � 0, then we also have

K = BT
(
C−1t − (Ct +CtWLcWCt)

−1
)
B � 0. (9.45)

According to [BB95, Corollary 2], system (9.44) is semistable (see Definition 9.1) if and
only if

rank


R

R(L−1K)
R(L−1K)2

...
R(L−1K)m−1

 = m. (9.46)

Since R is a positive definite m × m diagonal matrix it can be readily confirmed that
condition (9.46) holds, such that system (9.44) is indeed semistable. Since I is a constant
vector, it immediately follows that limt→∞ I(t) exists. ut

Lemma 9.8 established that limt→∞ I(t) exists for all initial conditions I(Tr). This result
can now be exploited to show that also the voltages converge to constant values.

Lemma 9.9 (Convergence of V ). Let Assumptions 9.1–9.3 hold. Given the equivalent
reduced order system (9.34), limt→∞ V (t) exists for all initial conditions V (Tr).

Proof. Exploiting the convergence of I to a constant vector (see Lemma 9.8), from (9.43)
we have

lim
t→∞

BT V̇ (t) = 0, (9.47)

implying that
lim
t→∞

V̇ (t) = 1nκ, (9.48)

with κ ∈ R. By virtue of Lemma 9.3 and Lemma 9.4 or Lemma 9.5, for all t ≥ Tr, we
also have

1TnW
−1V = 1Tn (θ +W−1V ?) = 1Tnθ(0) + 1TnW

−1V ?. (9.49)

Taking the derivative with respect to time on both sides of (9.49), it follows that
1TnW

−1V̇ (t) = 0 for all t ≥ Tr. Exploiting (9.48), we obtain

lim
t→∞

1TnW
−1V̇ (t) = 1TnW

−1 lim
t→∞

V̇ (t)

= 1TnW
−11nκ

= 0,

(9.50)

which implies κ = 0 and consequently that limt→∞ V (t) exists for all initial conditions
V (Tr). ut
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We are now ready to establish the first main result of this paper.

Theorem 9.1 (Achieving current sharing). Let Assumptions 9.1–9.3 hold. Consider
system (9.3), (9.16), controlled with the proposed distributed SSOSM (Subsection 9.5.1)
or 3SM (Subsection 9.5.2) control scheme. Then, the generated currents It(t) converge,
after a finite time, exponentially to W−11n1

T
nIL/(1

T
nW

−11n), achieving proportional
current sharing.

Proof. According to Lemma 9.6, for all t ≥ Tr, the dynamics of the controlled system
(9.3), (9.16) are given by the autonomous system (9.34) together with the algebraic equa-
tions (9.35) and (9.36). Bearing in mind the results proved in Lemma 9.8 and Lemma 9.9,
the dynamics of the line current I and the voltage V are semistable. From the algebraic
equations (9.35) and (9.36), it follows that limt→∞ θ(t) and limt→∞ It(t) exist as well.
Since (9.34) is linear and ker(Lc) = im(1n), (9.16) implies that the vector It(t), with ini-
tial condition It(Tr), converges exponentially to a constant vector, achieving proportional
current sharing.

We now proceed with establishing the second main result of this paper.

Theorem 9.2 (Achieving voltage balancing). Let Assumptions 9.1–9.3 hold. Con-
sider system (9.3), (9.16), controlled with the proposed distributed SSOSM (Subsection
9.5.1) or 3SM (Subsection 9.5.2) control scheme. Then, given a desired references vector
V ?, the voltages V (t) satisfy 1TnW

−1V (t) = 1TnW
−1V ? for all t ≥ Tr, with Tr a finite

time.

Proof. Following Lemma 9.4 or Lemma 9.5, for all t ≥ Tr, the equality W−1V (t) =
W−1V ?+θ(t) holds. Pre-multiplying both sides by 1Tn yields 1TnW

−1V (t) = 1TnW
−1V ?+

1Tnθ(t). Due to Assumption 9.3 and by virtue of Lemma 9.3, one has that 1Tnθ(t) =
1Tnθ(0) = 0. Then, one can conclude that voltage balancing is achieved for all t ≥ Tr.

Remark 9.9 (Robustness to failed communication). The proposed control scheme
is distributed and as such requires a communication network to share information on
the generated currents. However, note that the integrators θ in (9.16) are not needed to
regulate the voltages in the microgrid to their desired values, but are only required to
achieve current sharing and voltage balancing. In fact, by omitting the variable θ in the
analysis, the controlled microgrid converges, in a finite time, to the manifold σ = 0, where
V = V ?. Moreover, considering constant value of θi (e.g. after the plug-out of the DGu i,
or the failing of the communication link between DGu i and DGu j), the controlled DGu
i converges, in a finite time, to the manifold σi = 0, where Vi = V ?i + wiθi.
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Fig. 9.3. Scheme of the considered microgrid with 4 power converters. The dashed lines represent
the communication network.

Table 9.2. Microgrid Parameters and Current Demand

DGu 1 2 3 4

Rti (Ω) 0.2 0.3 0.5 0.1
Lti (mH) 1.8 2.0 3.0 2.2
Cti (mF) 2.2 1.9 2.5 1.7
V ?i (V) 380.0 380.0 380.0 380.0
Vi(0) (V) 380.2 380.05 379.95 379.8
ILi(0) (A) 25.0 15.0 10.0 30.0
∆ILi (A) 5.0 7.5 12.5 −5.0

Remark 9.10 (Perturbations in the controller states). In case Assumption 9.3 is vi-
olated, we have 1Tnθ(t) = 1Tnθ(0), and consequently 1TnW

−1V (t) = 1TnW
−1V ?+1Tnθ(0)

on the sliding manifold, implying that the weighted average voltage of the microgrid is
shifted by 1Tnθ(0). However, the presented stability analysis is still valid such that the
stability of the whole microgrid and the achievement of proportional current sharing is
still guaranteed.

9.7 Case Study

In this section, the proposed manifold-based consensus algorithm is assessed in simula-
tion by implementing the third order sliding mode control strategy discussed in Sub-
section 9.5.2. We consider a microgrid composed of 4 DGus interconnected as shown
in Fig. 9.3, where also the communication network is depicted. The parameters of each
DGu, including the current demand, and the line parameters are reported in Tables 9.2
and 9.3, respectively. The weights associated with the edges of the communication graph
are γ12 = γ23 = γ34 = 1× 103. For all the DGus the controller parameter αi in (9.31)
is set to 2.5× 103, while the gain Λi of Levant’s differentiator (9.33) is set to 5.0× 105.
In order to investigate the performance of the proposed control approach within a low
voltage DC microgrid, four different scenarios are implemented (see Fig. 9.4).
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Table 9.3. Line Parameters

Line {1,2} {2,3} {3,4} {1,4}

Rij (mΩ) 70 50 80 60
Lij (µH) 2.1 2.3 2.0 1.8
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(a) Scenario 1
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(b) Scenario 2
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(d) Scenario 4

Fig. 9.4. Configurations of the considered microgrid implemented in simulations. Zij denotes
the resistive-inductive impedance of the distribution line interconnecting DGu i with DGu j.

9.7.1 Scenario 1: proportional current sharing

The system is initially at the steady state. Then, consider a current demand variation
∆ILi at the time instant t = 1 s (see Table 9.2). The PCC voltages and the generated
currents are illustrated at the top of Fig. 9.5. One can appreciate that the weighted
average of the PCC voltages (denoted by Vav) is always equal to the weighted average of
the corresponding references (see Objective 9.2), and the current generated by each DGu
converges to the desired value, achieving proportional current sharing (see Objective 9.1).
Note that, even during the transient phase, current sharing is practically maintained.
Moreover, at the bottom of Fig. 9.5 the currents shared among the DGus are reported
together with the control signals generated by the 3SM control algorithm (9.31). Note
that the 3SM controllers, which require only local measurements of Vi and information
on It from neighbours over the communication network, generate control signals that are
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Fig. 9.5. Scenario 1: (a) Voltage at the PCC of each DGu together with its weighted average
value (dashed line). (b) Generated currents together with the corresponding values (dashed line)
that allow the achievement of proportional current sharing. (c) control inputs ui(t) =

∫ t
0
vi(τ)dτ ,

vi as in (9.31), together with the optimal feedforward inputs (9.8) indicated by the dashed lines.
(d) Currents shared among the DGus through the lines.

equal to the optimal feedforward input (9.8), without exact knowledge on the network
parameters and the current demand IL.

9.7.2 Scenario 2: opening of a distribution line

In the second scenario, we investigate the performance of the proposed controllers when
a distribution line is opened (e.g. due to an electric fault). The system is initially at the
steady state, and at the time instant t = 0.4 s, the distribution line interconnecting the
DGus 1 and 4 is opened. Then, consider a current demand variation as in Scenario 1.
The PCC voltages and the generated currents are illustrated at the top of Fig. 9.6. One
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Fig. 9.6. Scenario 2: (a) Voltage at the PCC of each DGu together with its weighted average
value (dashed line). (b) Generated currents together with the corresponding values (dashed line)
that allow the achievement of proportional current sharing. (c) control inputs ui(t) =

∫ t
0
vi(τ)dτ ,

vi as in (9.31), together with the optimal feedforward inputs (9.8) indicated by the dashed lines.
(d) Currents shared among the DGus through the lines.

can appreciate that the weighted average of the PCC voltages (denoted by Vav) is always
equal to the weighted average of the corresponding references (see Objective 9.2), and
the current generated by each DGu converges to the desired value, achieving proportional
current sharing (see Objective 9.1). Note that, even during the transient phases, current
sharing is practically maintained. Moreover, at the bottom of Fig. 9.6 the currents shared
among the DGus are reported together with the control signals generated by the 3SM
control algorithm (9.31).
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9.7.3 Scenario 3: plug-out and plug-in of a DGu

In the third scenario, we investigate the Plug-and-Play (PnP) capabilities of the proposed
controllers. For the sake of clarity, in this scenario and the next one we consider equal
current sharing among the DGus. The system is initially at the steady state, and at the
time instant t = 0.4 s, the DGu 4 is disconnected from the considered DC network (in
this configuration the impedance of the line interconnecting DGu 1 and DGu 3 is equal
to the sum of the line impedances Z14 and Z34). After a current demand variation as in
Scenario 1, at the time instant t = 1.4 s, the DGu 4 is reconnected to the DC network.
The PCC voltages and the generated currents are illustrated at the top of Fig. 9.7. One
can appreciate that the arithmetic average of the PCC voltages (denoted by Vav) is
equal to the arithmetic average of the corresponding references (see Remark 9.3), even
after disconnecting the DGu 4. Moreover, when the DGu 4 operates isolated from the
considered DC network, equal current sharing is achieved only among the DGus 1, 2 and
3, while the DGu 4 supplies its local load. However, when the DGu 4 is reconnected to
the DC network, current sharing among all the DGus is again reestablished. Moreover, at
the bottom of Fig. 9.7 the currents shared among the DGus are reported together with
the control signals generated by the 3SM control algorithm (9.31). Note that, when the
DGu 4 is isolated from the network, the comparison between u4 and the corresponding
optimal feedforward input loses its meaning.

9.7.4 Scenario 4: failing of a communication link

In the last scenario, we investigate the robustness of the proposed controllers to failed
communication. The system is initially at the steady state, and at the time instant t =
0.4 s, the communication between DGu 3 and DGu 4 is interrupted. We observe that as
long as the demand does not change, current sharing among all the DGus in mainteined.
The PCC voltages and the generated currents are illustrated at the top of Fig. 9.8. One
can note that after a current demand variation (see Table 9.2), equal current sharing is
achieved only among the DGus 1, 2 and 3, while the DGu 4 generates a current such that
the voltage at node 4 is kept constant. One can appreciate that the arithmetic average of
the PCC voltages (denoted by Vav) is equal to the arithmetic average of the corresponding
references (see Remark 9.3), even after interrupting the communication between DGu 3
and DGu 4. Moreover, at the bottom of Fig. 9.8 the currents shared among the DGus are
reported together with the control signals generated by the 3SM control algorithm (9.31).
Note that, when the communication with DGu 4 fails, the comparison between u4 and
the corresponding optimal feedforward input loses its meaning.

Even if IEEE Standards or guidlines for DC power distribution networks do not exist yet
(to the best of our knowledge), it is usually required in practical cases that the voltage
deviations are within the 5 % of the desired value (see for instance [TMGFT16, SASS17,
Sch07]). In all the previous scenarios, the voltage at the PCC of each DGu is within the
range 380 ± 1 V, implying that the voltage deviations are less than the 0.3 % of the
nominal value V ? = 380 V, even during transients and critical conditions.
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Fig. 9.7. Scenario 3: (a) Voltage at the PCC of each DGu together with its arithmetic average
value (dashed line). (b) Generated currents in case of equal current sharing, which is achieved
by DGus 1, 2, 3 for all the simulation time interval, and by DGu 4 only when it is connected to
the microgrid. (c) control inputs ui(t) =

∫ t
0
vi(τ)dτ , vi as in (9.31), together with the optimal

feedforward inputs (9.8) indicated by the dashed lines. (d) Currents shared among the DGus
through the lines.

9.8 Conclusions

In this chapter we have developed a distributed control algorithm, obtaining current
sharing and voltage regulation in DC microgrids. Its convergence properties have been
analytically investigated, and a case study shows the effectiveness of the proposed solution.
The proposed control scheme exploits a communication network to achieve current sharing
using a consensus-like algorithm. Another useful feature of the proposed control scheme is
that the average voltage of the microgrid converges to the average of the voltage references,
independently of the initial voltage conditions. The latter is achieved by constraining the
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Fig. 9.8. Scenario 4: (a) Voltage at the PCC of each DGu together with its arithmetic average
value (dashed line). (b) Generated currents in case of equal current sharing, which is achieved
by DGus 1, 2, 3 for all the simulation time interval, and by DGu 4 only before the failing of
the communication link. (c) control inputs ui(t) =

∫ t
0
vi(τ)dτ , vi as in (9.31), together with the

optimal feedforward inputs (9.8) indicated by the dashed lines. (d) Currents shared among the
DGus through the lines.

system to a suitable manifold. To ensure that the desired manifold is reached in a finite
time, even in presence of modelling uncertainties, two sliding mode control strategies
have been proposed, that provide the switching frequencies or the duty cycle of the power
converters.
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Boost-Based DC Microgrids

Abstract. This chapter deals with the design of a robust decentralized control scheme for
voltage regulation in boost-based DC microgrids. The proposed solution consists of the
design of a suitable manifold on which voltage regulation is achieved even in presence of
unknown load demand and modelling uncertainties. A second order sliding mode control
is used to constrain the state of the microgrid to this manifold by generating continuous
control inputs that can be used as duty cycles of the power converters. The proposed
control scheme has been theoretically analyzed and validated through experiments on a
real DC microgrid.

10.1 Preliminaries on Boost-Based DC Microgrids

As described in the previous chapter (see Section 9.1), voltage regulation and current
(or power) sharing are the two main control objectives in DC microgrids. Typically,
both objectives are simultaneously achieved by designing hierarchical control schemes,
and they have been addressed by different approaches in the literature (see for in-
stance [AFG13, ZD15, NMDL15, TMGFT16, HGMK15, DWD16] and the references there
in). However, all these works deal with DC-DC buck converters only (or do not take into
account the model of the power converter), while, in many battery-powered applications
such as hybrid electric vehicles and lighting systems, DC-DC boost converters are used in
order to achieve higher voltage and reduce the number of cells16. Since the dynamics of
the boost converter are nonlinear, regulating the output voltage in presence of unknown
load demand and uncertain network parameters is not an easy task. For all these rea-
sons, the solution in this chapter relies on a Sliding Mode (SM) control methodology to
solve the voltage control problem in boost-based DC microgrids affected by nonlinearities
and uncertainties [Utk92, ES98, UGS99]. Indeed, sliding modes are well known for their
robustness properties and, belonging to the class of Variable Structure Control Systems,
have been extensively applied in power electronics, since they are perfectly adequate to
control the inherently variable structure nature of DC-DC converters. SM controllers re-
quire to operate at very high (ideally infinite) and variable switching frequency. This
condition increases the power losses and the issues related to the electromagnetic inter-
ference noise, making the design of the input and output filters more complicated. SM

16Battery-powered applications often stack cells in series to increase the voltage level.
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controllers based on the hysteresis-modulation (also known as delta-modulation) have
been proposed in order to restrict the switching frequency (see for instance [CMMC92]).
To do this, additional tools such as constant timer circuits or adaptive hysteresis band
are required, making the solution more elaborated and then unattractive. Moreover, this
approach (called quasi-SM) reduces the robustness of the control system [Bar98]. Alterna-
tively, the so-called equivalent control approach has been proposed together with the Pulse
Width Modulation (PWM) technique (otherwise known as duty cycle control) to achieve
constant switching frequency. However, computing the equivalent control often requires
the perfect knowledge of the model parameters as well as the load and the input volt-
age [FGO06], or alternatively the implementation of observers to estimate them [OG13].
In this work, in order to control the output voltage of a boost converter, a fully decen-
tralized Second Order SM (SOSM) control solution is proposed, capable of dealing with
unknown load and input voltage dynamics, as well as uncertain model parameters, with-
out requiring the use of observers. Making reference to the hierarchical control levels of a
microgrid adopted in [GVM+11], the proposed control scheme lies in “Level 0”, which is
also known as “inner voltage control loop”. Due to its decentralized and robust nature,
the design of each local controller does not depend on the knowledge of the whole micro-
grid, making the control synthesis simple and the control scheme scalable and suitable
for be coupled with higher-level control schemes aimed at generating voltage references
that guarantee load sharing. Since a higher order sliding modes methodology is used, the
proposed controllers generate continuous inputs that can be used as duty cycles, in order
to achieve constant switching frequency. Besides, being of higher order, a distinguishing
feature of the proposed control scheme is that an additional auxiliary integral controller
is coupled to the controlled converter, via suitable designed sliding function. Moreover,
with respect to the existing literature (to the best of our knowledge) in this work the
local stability of a boost-based microgrid is analyzed, instead of the single boost con-
verter, theoretically proving that on the obtained sliding manifold, the desired operating
point is locally exponentially stable. Additionally, the analysis is useful to choose suitable
controller parameters ensuring the stability, and facilitates the tuning of the controllers.
The proposed control scheme has been validated through experimental tests on a real DC
microgrid test facility at Ricerca sul Sistema Energetico (RSE), in Milan, Italy [RL16],
showing satisfactory closed-loop performances.

10.2 Boost-Based DC Microgrid Model

Before introducing the model of the considered boost-based DC microgrid, for the readers’
convenience, some basic notions on DC microgrids are presented.

Fig. 10.1 shows the electrical scheme of a typical boost-based DC microgrid, where two
DGus, with local loads, exchange power through the distribution line represented by
the resistance Rij . The energy source of a DGu, which can be of renewable type, is
represented, for simplicity, by a DC voltage source VDCi . The boost converter feeds a
local DC load with a voltage level Vi higher than VDCi . Note that, the boost converter
allows to obtain an output voltage level higher than or equal to the voltage input. This
is done due to the quick succession of two different operation stages during which the
inductance Lti accumulates or supplies energy. The resistance Rti , instead, represents all
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Fig. 10.1. The considered electrical scheme of a typical boost-based DC microgrid composed of
two DGus.

the unavoidable energy losses. Finally the capacitor Cti is used in order to maintain a
constant voltage at the output. The local DC load is connected to the so-called Point of
Common Coupling (PCC) and it can be treated as a current disturbance ILi .

The network is represented by a connected and undirected graph G = (V, E), where
the nodes V = {1, ..., n}, represent the DGus and the edges E = {1, ...,m}, represent
the distribution lines interconnecting the DGus. First, consider the scheme reported in
Fig. 10.1. By applying the Kirchhoff’s current and voltage laws, and by using an average
switching method, the governing dynamic equations17 of the i-th node are the following

Lti İti = −RtiIti − uiVi + VDCi

Cti V̇i = uiIti − ILi −
∑
j∈Ni

Iij ,
(10.1)

where Ni is the set of nodes (i.e., DGus) connected to the i-th DGu by distribution lines,
while ui = 1 − di is the control input and di is the duty cycle (0 ≤ di ≤ 1). Exploiting
the Quasi Stationary Line (QSL) approximation of power lines [VSZ95, AWA07], for each
j ∈ Ni, one has

Iij =
1

Rij
(Vi − Vj). (10.2)

The symbols used in (10.1) and (10.2) are described in Table 10.1.

Remark 10.1 (Kron reduction). Note that in (10.1), the load currents are located
only at the PCC of each DGu (see also Fig. 10.1). However, in many cases the loads
are not close to the DGus. Then, by using the well known Kron reduction method, it is
possible to map arbitrary interconnections of DGus (boundary nodes) and loads (interior
nodes), into a reduced network with only local loads [ZD15, DB13].

The network topology can be represented by its corresponding incidence matrix B ∈
Rn×m. The ends of edge k are arbitrarily labeled with a + and a −. More precisely, one
has that

17For the sake of simplicity, the dependence of all the variables on time t is omitted throughout
the chapter.
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Table 10.1. Description of the used symbols

State variables

Iti Inductor current
Vi Boost output voltage
Iij Exchanged current

Parameters

Rti Filter resistance
Lti Filter inductance
Cti Shunt capacitor
Rij Line resistance

Inputs

ui Control input
VDCi Voltage source
ILi Unknown current demand

Bik =


+1 if i is the positive end of k

−1 if i is the negative end of k

0 otherwise.

Let ‘◦’ denote the so-called Hadamard product (also known as Schur product). Given
the vectors p ∈ Rn, q ∈ Rn, then (p ◦ q) ∈ Rn with (p ◦ q)i = piqi for all i ∈ V. After
substituting (10.2) in (10.1), the overall microgrid system can be written compactly for
all nodes i ∈ V as

Ltİt = −RtIt − u ◦ V + VDC

CtV̇ = u ◦ It −BR−1BTV − IL,
(10.3)

where It = [It1 , . . . , Itn ]T , V = [V1, . . . , Vn]T , VDC = [VDC1 , . . . , VDCn ]T , IL =
[IL1 , . . . , ILn ]T , and u = [u1, . . . , un]T . Moreover Ct,Lt and Rt are n × n positive
definite diagonal matrices, while R is a m × m positive definite diagonal matrix, e.g.
Rt = diag{Rt1 , . . . , Rtn} and R = diag{R1, . . . , Rm}, with Rk = Rij for all k ∈ E , where
line k connects nodes i and j.

10.3 Problem Formulation

Before introducing the control problem and in order to permit the controller design in
the next sections, the following assumption is introduced:

Assumption 10.1 (Available information). The state variables Iti and Vi are locally
available only at the i-th DGu. The network parameters Rti , Ri, Lti , Cti , the current
disturbance ILi , and the voltage source VDCi are constant, unknown but bounded, with
bounds a-priori known.
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Remark 10.2 (Decentralized control). Since, according to Assumption 10.1, Iti and
Vi are available only at the i-th DGu, the control scheme needs to be designed in a
decentralized manner.

Remark 10.3 (Varying parameters and current demand). Note that the parameter
uncertainty, the current disturbance and the voltage source are required to be constant
(Assumption 10.1) only to allow for a steady state solution and to theoretically analyze its
stability. In fact, since a robust control strategy is adopted, Assumption 10.1 is not needed
to reach and remain on the desired sliding manifold that is designed in Section 10.4.

Note that given a constant current disturbance IL, and a constant voltage source VDC ,
there exist a constant control input u and a steady state solution (It,V ) to system (10.3)
that satisfy

It = R−1t
(
−u ◦ V + VDC

)
BR−1BTV = u ◦ It − IL.

(10.4)

The second line of (10.4) implies18 that at the steady state the total generated current
1Tn (u◦It) is equal to the total current demand 1TnIL. To formulate the control objective,
aiming at voltage regulation, it is assumed that for every DGu, there exists a desired
reference voltage V ?i .

Assumption 10.2 (Desired voltages). There exists a constant reference voltage V ?i at
the PCC, for all i ∈ V.

The objective is then formulated as follows: Given system (10.3), and given a V ? =
[V ?1 , . . . , V

?
n ]T , we aim at designing a fully decentralized control scheme capable of guar-

anteeing voltage regulation, i.e.

Objective 10.1 (Voltage regulation).

lim
t→∞

V (t) = V = V ?. (10.5)

10.4 Decentralized Sliding Mode Voltage Control

In this section a fully decentralized Suboptimal Second Order Sliding Mode (SSOSM)
control scheme is proposed in order to achieve Objective 10.1, providing a continuous
control input. As a first step, system (10.3) is augmented with additional state variables
θi for all i ∈ V, resulting in:

18The incidence matrix B satisfies 1TnB = 0, where 1n ∈ Rn is the vector consisting of all
ones.
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Ltİt = −RtIt − u ◦ V + VDC

CtV̇ = u ◦ It −BR−1BTV − IL
θ̇ = − (V − V ?) .

(10.6)

The additional state θ will be coupled to the control input u via the proposed control
scheme, and its dynamics provide a form of integral action that is helpful to obtain the
desired voltage regulation.

Now, a suitable sliding function σ(It,V ,θ) for system (10.6) will be introduced, that
permits to prove the achievement of Objective 10.1. The choice is indeed motivated by
the stability analysis in the Section 10.5, but is stated here for the sake of exposition.
First, the sliding function σ : R3n → Rn is given by

σ(It,V ,θ) = M1It +M2(V − V ?)−M3θ, (10.7)

where M1 = diag{m11 , . . . ,m1n}, M2 = diag{m21 , . . . ,m2n}, M3 = diag{m31 , . . . ,m3n}
are positive definite diagonal matrices suitable selected in order to assign the dynamics
of system (10.3) when it is constrained on the manifold σ = 0. Since M1, M2, M3 are
diagonal matrices, σi, i ∈ V, depends, according to Assumption 10.1, only on the state
variables locally available at the i-th node, facilitating the design of a decentralized control
scheme (see Remark 10.2).

By regarding the sliding function (10.7) as the output function of system (10.3), it appears
that the relative degree19 of the system is one. This implies that a first order sliding mode
controller can be naturally applied [Utk92] in order to attain in a finite time the sliding
manifold σ = 0. In this case, the discontinuous control signal generated by a first order
sliding mode controller can be directly used to open and close the switch of the boost
converter.

Remark 10.4 (Switching frequency). By using a (discontinuous) first order sliding
mode control law to open and close the switch of the boost converter, the Insulated
Gate Bipolar Transistors (IGBTs) switching frequency cannot be a-priori fixed and the
corresponding power losses could be very high. Usually, in order to achieve a constant
IGBTs switching frequency, boost converters are controlled by implementing the so-called
Pulse Width Modulation (PWM) technique. To do this, a continuous control signal that
represents the so-called duty cycle of the boost converter is required.

10.4.1 Suboptimal Second Order Sliding Mode Controller

Since sliding mode controllers generate a discontinuous control signal, in order to obtain
a continuous control signal, the procedure suggested in [BFU98a] is adopted where the
discontinuous signal is integrated, yielding for system (10.6)

19 The relative degree is the minimum order ρ of the time derivative σ
(ρ)
i , i ∈ V, of the sliding

function associated to the i-th node in which the control ui, i ∈ V, explicitly appears.
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Ltİt = −RtIt − u ◦ V + VDC

CtV̇ = u ◦ It −BR−1BTV − IL
θ̇ = − (V − V ?)

u̇ = h,

(10.8)

where h ∈ Rn is the new (discontinuous) sliding mode control input. From (10.8) one
can observe that the system relative degree (with respect to the new control input h)
is now two. Then, it is possible to rely on second order sliding mode control strategy in
order to steer the state of system (10.8) to the sliding manifold σ = σ̇ = 0 for all t ≥ Tr.
To make the controller design explicit, a specific second order sliding mode controller is
discussed, namely, the well known ‘Suboptimal Second Order Sliding Mode’ (SSOSM)
controller proposed in [BFU98a].

Define di equal to
∑
j∈Ni Iij , with Iij given by (10.2). For each node two auxiliary variables

are defined, ξ1i = σi and ξ2i = σ̇i, i ∈ V, and the so-called auxiliary system is build as
follows:

ξ̇1i = ξ2i

ξ̇2i = φi(İti , V̇i, ḋi, ui)− γi(Iti , Vi)hi
u̇i = hi,

(10.9)

where ξ2i is not measurable. Indeed, according to Assumption 10.1, ILi is unknown and
the parameters of the model are uncertain. Bearing in mind that ξ̇2i = σ̈i = φi+γihi, the
expressions for the mapping φi and matrix γi are straightforwardly obtained from (10.7)
by taking the second derivative of σi with respect to time, yielding

φi(·) = −m1iL
−1
ti Rti İti +m3i V̇i −m1iL

−1
ti V̇iui +m2iC

−1
ti İtiui −m2iC

−1
ti ḋi

γi(·) = m1iL
−1
ti Vi −m2iC

−1
ti Iti .

(10.10)

The following assumption is made on the uncertain functions φi and γi, i ∈ V.

Assumption 10.3 (Bounded uncertainty). Functions φi and γi in (10.9) have known
bounds, i.e.,

|φi(·)| ≤ Φi ∀i ∈ V, (10.11)

0 < Γmini ≤ γi(·) ≤ Γmaxi ∀i ∈ V, (10.12)

Φi, Γmini and Γmaxi being positive constants.

Remark 10.5 (Unknown bounds). Note that in practical cases the bounds in (10.11)
and (10.12) can be determined relying on data analysis and physical insights. However, if
these bounds cannot be a-priori estimated, the adaptive version of the SSOSM algorithm
proposed in [ICF16] can be used to dominate the effect of the uncertainties.
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With reference to [BFU98a], for each DGu i ∈ V, the control law that is proposed to steer
ξ1i and ξ2i , to zero in a finite time can be expressed as

hi = αiHmaxi sign

(
ξ1i −

1

2
ξ1,maxi

)
, (10.13)

with

Hmaxi > max

(
Φi

α∗iΓmini

;
4Φi

3Γmini − α∗iΓmaxi

)
, (10.14)

α∗i ∈ (0, 1] ∩
(

0,
3Γmini

Γmaxi

)
, (10.15)

αi switching between α∗i and 1, according to [BFU98a, Algorithm 1]. Note that the control

input ui(t) =
∫ t
0
hi(τ)dτ , is continuous, since wi is piecewise constant. Then, di = 1− ui

can be used as duty cycle of the i-th boost converter. The extremal values ξ1,maxi in (10.13)
can be detected by implementing for instance a peak detector as in [BFU98b]. Note also
that the design of the local controller for each DGu is not based on the knowledge of the
whole microgrid, making the control synthesis simpler and the proposed control scheme
scalable.

Remark 10.6 (Alternative SOSM controllers). In this work the control scheme relies
on the SSOSM control law proposed in [BFU98a]. However, to constrain system (10.8)
on the sliding manifold σ = σ̇ = 0, any other SOSM control law that does not need the
measurement of σ̇ can be used (e.g. the super-twisting control algorithm [Lev93]).

10.5 Stability Analysis

In this section the (local) stability of the desired steady state (It,V
?,θ) is studied, that

satisfies under an appropriate control input u the steady state equations

0 = −RtIt − u ◦ V ? + VDC

0 = u ◦ It −BR−1BTV ? − IL
0 = − (V ? − V ?) .

(10.16)

As a first step, system (10.6) is linearized around the point (It,V
?,θ), resulting in the

linearized system

Ltİt = −Rt(It − It)− u ◦ (V − V ?)− V ? ◦ (u− u)

CtV̇ = u ◦ (It − It) + It ◦ (u− u)−BR−1BT (V − V ?)

θ̇ = −(V − V ?).

(10.17)

Next, it is investigated how the linearized system behaves on the sliding manifold under
the proposed sliding mode control scheme. For this, one notices that the proposed SSOSM
control scheme ensures that, after a finite time, the system (10.6) is constrained to the
manifold characterized by σ = σ̇ = 0. This is made explicit in the lemma below.
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Lemma 10.1 (Convergence to the sliding manifold). Let Assumptions 10.1-10.3
hold. The solutions to system (10.6), controlled via the SSOSM control law (10.9)–(10.15),
converge in a finite time Tr, to the sliding manifold {(It,V ,θ) : σ = σ̇ = 0}, with σ
given by (10.7).

Proof. Following [BFU98a], the application of (10.9)–(10.15) to each converter guarantees
that σ = σ̇ = 0, for all t ≥ Tr. The details are omitted, since they are an immediate
consequence of the used SSOSM control algorithm [BFU98a]. ut

The so-called equivalent system for (10.17) is obtained by substituting the equivalent
control ueq for u, and is determined explicitly in the following lemma.

Lemma 10.2 (Equivalent system). Let Assumptions 10.1-10.3 hold. For all t ≥ Tr,
the linearized dynamics of the controlled microgrid are given by the equivalent version of
system (10.17) and are as follows:[

˙̃V
˙̃θ

]
=

[
F G
−In 0

]
︸ ︷︷ ︸

A

[
Ṽ

θ̃

]
, (10.18)

where Ṽ = V − V ? and θ̃ = θ − θ. Furthermore, the matrices F and G are given by

F =−M−1
1 M2diag(u)−BR−1BT +WM1L

−1
t diag(It)

(
M−1

1 M2Rt − diag(u)
)

−WM2C
−1
t diag(It)

(
diag(u)M−1

1 M2 + BR−1BT
)

+WM3diag(It),

(10.19)

and

G = M3M
−1
1 diag(u)−M3WL−1t Rtdiag(It)

+M3WM2M
−1
1 C−1t diag(It)diag(u),

(10.20)

where

W =
(
L−1t M1diag(V ?)−C−1t M2diag(It)

)−1
. (10.21)

Proof. The relation σ̇ = 0 is equivalent to

M1İt +M2V̇ −M3θ̇ = 0. (10.22)

Bearing in mind the dynamics (10.17), equation (10.22) can be solved for u, where it is
additionally exploited that on the manifold σ = 0 one has M1It = M3θ−M2(V −V ?)
and that at the point (It,V

?,θ) it holds that M1It = M3θ. This yields the following
equivalent control ueq:

ueq = u+W
(
M1L

−1
t (−RtĨt − u ◦ Ṽ ) +M2C

−1
t (u ◦ Ĩt −BR−1BT Ṽ ) +M3Ṽ

)
,

(10.23)

where Ĩt = It − It and W is given by (10.21). Substituting ueq for u in (10.17), and
using again the relations M1It = M3θ −M2(V − V ?) and M1It = M3θ, it can be
readily confirmed that the last two equations of (10.17) reduce to (10.18). ut
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Lemma 10.3 (Positive definiteness of (10.20)). Let Assumption 10.3 hold. The ma-
trix G in (10.20) is positive definite.

Proof. The matrix M3 in (10.7) is positive definite, and as a consequence of Assump-
tion 10.3 also the matrix W = diag{w1, . . . , wn} is positive definite, since wi is the steady
state value of γi(·) > 0. From (10.20), we have

(M3WL−1t )−1G = diag(u)diag(V ?)−Rtdiag(It). (10.24)

Since in practical cases Rt ≈ 0, then G > 0. ut

As a consequence of the lemmas above, in order to prove that system (10.17) is exponen-
tially stable on the attained sliding manifold, matrix A in (10.18) needs to be Hurwitz.
However, explicitly characterizing all the eigenvalues of A is difficult, mainly due to the
coupling term BR−1BT . Generally, the eigenvalues depend indeed on the particular mi-
crogrid, its parameters and its operation point. In the following proposition, it is shown
that, by LaSalle’s invariance principle, the desired operating point of the controlled mi-
crogrid can always be made locally exponentially stable by choosing appropriate values
for M1,M2 and M3 in the controller and consequently causing matrix A to be Hurwitz.

Theorem 10.1 (Local exponential stability). Let Assumptions 10.1-10.3 hold. The
desired operating point (It,V

?,θ), satisfying (10.16) can be made locally exponentially
stable on the sliding manifold characterized by σ = σ̇ = 0, by choosing the entries of M2

sufficiently big.

Proof. Consider the Lyapunov function

S(Ṽ , θ̃) = Ṽ T Ṽ + θ̃TGθ̃, (10.25)

where G > 0 follows from Lemma 10.3. A straightforward calculation shows that S(Ṽ , θ̃)
satisfies along the solutions to (10.18)

Ṡ(Ṽ , θ̃) = Ṽ T (F + F T )Ṽ ≤ 0. (10.26)

From (10.19) we have

W−1F =−M2L
−1
t

(
diag(u)diag(V ?)−Rtdiag(It)

)
−M1L

−1
t diag(u)diag(It) +M3diag(It)

−M1BR
−1BTL−1t diag(V ?).

(10.27)

Since in practical cases Rt ≈ 0, then by choosing the entries of M2 sufficiently big, the
diagonal of F can be made sufficiently negative such that F + F T < 0. By LaSalle’s
invariance principle, the solutions to (10.18) converge to the largest invariant set where
Ṽ = 0. Moreover, on this invariant set it holds, due to the invertibility of G, that θ̃ = 0.
This in turn implies that all the eigenvalues of A are negative when the entries of M2 are
chosen sufficiently big, and consequently (10.18) is exponentially stable. Furthermore, on
the set where σ = 0, V = V ? and θ = θ, it holds that It = M−1

1 M3θ. ut
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Fig. 10.2. The considered electrical scheme of the RSE’s DC microgrid adopted during the test.

Remark 10.7 (Tuning rules). First, we notice that for any i ∈ V, the requirement of
γi > 0 in Assumption 10.3 provides the following tuning rule

m1i >
LtiIti
CtiV

?
i

m2i if Iti > 0. (10.28)

If instead Iti ≤ 0, then γi is positive for any m1i ,m2i . Secondly, one can notice that
under the assumption of constant current exchanged with the neighbouring nodes, F
becomes a diagonal matrix. Then, a tedious, but straightforward, calculation provides
explicit bounds on the permitted values of M1,M2 and M3 such that the dynamics
matrix

Ai =

[
Fi Gi
−1 0

]
∈ R2×2 (10.29)

of the i-th boost converter is Hurwitz for any i ∈ V, i.e.,

m1i >
Lti
ui
m3i +

Rti
ui
m2i −

V ?i
Iti

m2i if Iti > 0

m1i <
Lti
ui
m3i +

Rti
ui
m2i −

V ?i
Iti

m2i if Iti ≤ 0.

(10.30)

Finally, combining (10.28) and (10.30), we have that

µ
i
< m1i < µi, (10.31)

with

µ
i

= max

(
Lti
ui
m3i +

Rti
ui
m2i −

V ?i
|Iti |

m2i ;
Lti |Iti |
CtiV

?
i

m2i

)
µi =

Lti
ui
m3i +

Rti
ui
m2i +

V ?i
|Iti |

m2i .

(10.32)

10.6 Experimental Results

In order to verify the proposed control strategy, experimental tests are carried out using
the DC microgrid test facility at RSE, shown in Figs. 10.2 and 10.3. The RSE’s DC grid
is unipolar with a nominal voltage of 380 V and, during the test, includes one resistive
load, with a maximum power of 30 kW at 400 V, one DC generator with a maximum
power of 30 kW, that can be used as a PV emulator, and two Energy Storage Systems,
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	 (a) photo (b) layout

Fig. 10.3. RSE’s DC microgrid adopted during the tests.

based on high temperature NaNiCl batteries, each of them with an energy of 18 kWh and
a maximum power of 30 kW for 10 s. These components are connected to a common DC
link through four 35 kW DC-DC boost synchronous converters. The DC-DC converters
are distributed and connected to the DC link with power distribution lines characterized
by different parameters, as reported in Table 10.2.

The control of each converter is realized through two dSpace controllers that measure the
inductor current and the boost output voltage and drive the power electronic converters.
The DC-DC converters of the load and of the generator have input voltages equal to 266 V
and 320 V, respectively. They are controlled in constant power mode and are treated,
during the test, as current disturbances (see Fig. 10.2). The bidirectional converters of
the batteries are controlled through the SSOSM control strategy described in Section 10.4,
in order to regulate the voltage at Node 2 and Node 4 (see Fig. 10.2). The voltage reference
V ? for these nodes is set equal to 380 V, while the input voltages VDC1

and VDC2
are both

equal to 278 V. According to the stability results in Section 10.5, the SSOSM control
parameters for the battery converters are reported in Table 10.3. In order to investigate
the performance of the proposed control approach within a low voltage DC microgrid,
four different scenarios are implemented. Note that in the following figures it is arbitrarily
assumed that the current entering any node is positive (passive sign convention).

Scenario 10.1 (Disturbance with a limited ramp rate power variation). In the
first scenario it is assumed that the system is in a steady state condition with zero power
absorbed by the load or provided by the generator. Each battery converter regulates
its output voltage at a fixed value equal to 380 V and there is no exchange of power
between these two components. At the time instant t = 5 s the power reference for the
load converter or for the generator converter (see Fig. 10.4) is set to 20 kW and at the time
instant t = 35 s, is reset to 0 kW with the ramp rate limited to 1 kW/s. As shown in the
pictures, when the disturbance has a limited ramp rate, the proposed control strategy is
able to keep the output voltage of both the batteries DC-DC converter to their reference
without any voltage variation. When the system reaches the steady state condition, the
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Table 10.2. RSE DC Microgrid parameters

Symbol Value Unit Description

VDC1
, VDC2

278 V Batteries nominal voltage
V ? 380 V DC nominal voltage
R12 250 mΩ Tie-Line resistance 1-2
R13 39 mΩ Tie-Line resistance 1-3
R34 250 mΩ Tie-Line resistance 3-4
L12 140 µH Tie-Line inductance 1-2
L13 86 µH Tie-Line inductance 1-3
L34 140 µH Tie-Line inductance 3-4

Ct1 , Ct2 6.8 mF Output capacitance
Lt1 , Lt2 1.12 mH Input inductance
fsw 4 kHz Switching frequency

Table 10.3. SSOSM control parameters

Parameter Value

m1i 0.01
m2i 0.1
m3i 1
Hmaxi 4
α∗i 0.05

two battery converters exchange power with the DC network in order to maintain the
voltage equal to the desired value. In this situation there is not a perfect current sharing
between the two battery converters because the load and the generator are not connected
to the same node of the grid and different line impedances connect the components.

Scenario 10.2 (Disturbance with a step power variation). In the second scenario
the same tests explained in Scenario 10.1 are replicated, but in this case without the ramp
rate limitation. In this situation it is possible to see, as shown in Fig. 10.5, a transient in the
DC network voltage due to the step power variation of the load (subfigures (a) and (b)),
and the generator (subfigures (c) and (d)). The transient is different in these two cases
because the dynamics of the load and the generator are different. In any case the system
exhibits a stable performance thanks to the robustness of the proposed decentralized
SSOSM control approach with respect to the disturbances.

Scenario 10.3 (Step variation of the voltage reference). In this third scenario it
is assumed that the system is in a steady state condition with a constant power equal
to 20 kW absorbed by the load or provided by the generator. Each battery converter
regulates its output voltage at a fixed value equal to 380 V, and the power exchanged by
the two batteries is different due to the different line impedances. At the time instant t =
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Fig. 10.4. Scenario 1. (a), (b) Currents and voltages in presence of a load variation of about
20 kW with a ramp rate equal to 1 kW/s. (c), (d) Currents and voltages in presence of a generator
variation of about 20 kW with a ramp rate equal to 1 kW/s.

5 s the DC voltage reference for one of the two battery converters is modified. Fig. 10.6
(subfigures (a) and (b)) shows the system performances when the constant load is set to
20 kW and the reference voltage of the first battery converter is increased by 5 V, while
Fig. 10.6 (subfigures (c) and (d)) shows the opposite situation with the constant generation
set to 20 kW and the reference voltage of the second battery converter decreased by 5 V.
In these situations it is possible to observe that the DC voltage variation in one battery
converter has no effect on the voltage at the other battery converter. The system exhibits
a stable performance thanks to the robustness of the proposed decentralized SSOSM
control approach with respect to voltage reference variations. By modifying the voltage
reference of the two battery converters it is possible to obtain a different current sharing
among the batteries of the microgrid. Acting on the voltage references, it is also possible,
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Fig. 10.5. Scenario 2. (a), (b) Currents and voltages in presence of a step load variation of
about 20 kW. (c), (d) Currents and voltages in presence of a step generator variation of about
20 kW.

as illustrated in the Scenario 10.4, to cover the control objectives related to the current
sharing.

Scenario 10.4 (Current sharing). In this scenario the proposed primary controllers
have been coupled with a secondary control scheme that calculates the voltage references
for the battery converters in order to achieve current sharing among the batteries (see
Fig. 10.7). Although the analysis of a secondary control level is not discussed in this
paper, Scenario 4 is aimed at showing that the proposed primary controllers, due to their
robustness property in tracking the voltage references, can be coupled with a secondary
control scheme that guarantees current or power sharing.
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Fig. 10.6. Scenario 3. (a), (b) Currents and voltages in presence of a step DC voltage reference
variation of battery converter number 1. (c), (d) Currents and voltages in presence of a step DC
voltage reference variation of battery converter number 2.

Finally, note that in the discussed scenarios, only the voltage at Node 2 and Node 4 have
been controlled with the proposed strategy. Nevertheless, the voltage deviations from the
nominal value in the other two nodes (i.e., Node 1 and Node 3), depending on the line
impedances, are always less than the 5% of the desired voltage value.

10.7 Conclusions

In this chapter a robust control strategy has been designed to regulate the voltage in boost-
based DC microgrids. The proposed control scheme is fully decentralized and is based on
higher order sliding mode control methodology, which allows to obtain continuous control
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Fig. 10.7. Scenario 4. Currents and voltages in presence of constant load (20 kW) and voltage
reference variation for the DC-DC battery converters in order to obtain current sharing.

inputs. The latter can be used as duty cycles of the boost converters, achieving constant
switching frequency and facilitating a PWM-based implementation. The stability of a
boost-based microgrid has been theoretically analyzed proving that, on the proposed
sliding manifold, the desired operating point is locally exponentially stable. The proposed
control scheme has been validated through experimental tests on a real DC microgrid,
showing satisfactory closed-loop performances. Interesting future research includes the
stability analysis of the obtained nonlinear equivalent system, as well as studying the
performance of the proposed control scheme in more heterogeneous networks, possibly
including different converter types and the presence of local control strategies that differ
from the one proposed here.





11

Conclusions and Future Research

11.1 Conclusions

In this thesis, we have first focused on the design of novel robust control strategies of slid-
ing mode type for a class of nonlinear uncertain systems. In particular, we have proposed
an adaptive suboptimal second order sliding mode control algorithm in order to relax the
assumption on the knowledge of the bounds of the uncertainty, required in the design
of conventional sliding mode controllers. Then, we have proposed a second order sliding
mode control algorithm aimed at reducing the control effort, which is beneficial in many
mechanical and electromechanical applications. We have designed a nonsmooth switching
line, based on the quantization of the uncertainties affecting the system. The quantized
uncertainty levels allow one to define nested box sets in the auxiliary state space, where
different control amplitudes are suitably selected for each set. Moreover, event-triggered
sliding mode control schemes have been designed for networked control systems. The
control objective is indeed to reduce the number of data transmissions over the communi-
cation network, in order to avoid problems typically due to the network congestion such
as jitter and packet loss. The proposed control strategy is capable of robustly enforcing
practical sliding modes even in presence of delayed transmission, while guaranteeing the
avoidance of the notorious Zeno behaviour.

In the second part of this work, we have proposed robust sliding mode control (and
observer) schemes for power systems. In particular, a distributed sliding mode control
scheme has been proposed to solve an optimal load frequency control problem in power
systems, including voltage dynamics and second order turbine-governor dynamics. Based
on a suitable chosen sliding manifold, the controlled turbine-governor system, constrained
to this manifold, possesses an incremental passivity property that is exploited to prove
that the frequency deviation asymptotically approaches zero and an economic dispatch
is achieved. Furthermore, relying on stability considerations made on the basis of an in-
cremental energy (storage) function, a suitable sliding manifold has been designed, where
the frequency deviation is zero and the power flows are regulated towards their desired
values. Finally, novel decentralized sliding mode observers scheme has been designed to
estimate the unmeasured states of power networks including thermal and hydraulic power
plants.

In the third and last part of this work, we have proposed robust sliding mode control
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schemes for microgrids. In particular, we have addressed the voltage control problem in is-
landed AC microgrids by designing a decentralized sliding mode control scheme, where the
controller of each node requires that voltage is available only locally. Moreover, we have
developed a distributed sliding mode control algorithm for buck-based DC microgrids.
The proposed control scheme exploits a communication network to achieve proportional
current sharing using a consensus-like algorithm. Another useful feature of the proposed
control scheme is that the weighted average voltage of the microgrid converges to the
weighted average of the voltage references, independently of the initial system conditions.
Finally, a robust fully decentralized control strategy has been designed to regulate the
voltage in boost-based DC microgrids. The local stability of the whole microgrid has been
theoretically analyzed and validated through experimental tests on a real DC microgrid,
showing satisfactory closed-loop performances.

To conclude, all the proposed solutions have been theoretically analyzed. The experimen-
tal and simulation tests presented in this work validate the theoretical results and provide
some rules to practitioners who would like to use the proposed algorithms in industrial
field applications.

11.2 Future Research

Future research will address the following challenges:

• extend and improve the design of distributed robust control strategies for general flow
networks, exploiting a communication network to achieve consensus;
• the design of robust control strategies aimed at achieving power (not current) sharing

among the agents of both AC and DC microgrids;
• the design of robust control strategies for hybrid microgrids;
• the development of control algorithms capable to optimize matching of demand and

supply that are acceptable to the end-users, considering, in the control loop, their
needs and the market price.
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