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Abstract—Due to the low inertia of inverter-based islanded
microgrids (IMGs), these systems require a delicate and accurate
load frequency control (LFC) scheme. The deployment of such
a control scheme, which preserves the balance between the load
and generation, needs a cyber layer on top of the physical
system that makes IMGs an appealing target for a variety of
cyber-physical attacks (CPAs). Among these CPAs, there is a
family of malicious CPAs whose aim is to compromise the LFC
scheme by changing the topology of IMG and its parameters. On
this basis, an online system identification method is developed
to estimate the parameters of IMG using the recursive least
square forgetting factor (RLS-FF) approach. Then, based on
the estimated parameters, an anomaly-based intrusion detection
system (IDS) is developed to identify CPAs and distinguish
them from the uncertainties in the normal operation of IMG.
Following anomaly detection, a mitigation scheme is proposed
to regulate the IMG’s frequency using an adaptive interval
type-2 fuzzy logic controller (IT2FLC). The proposed IT2FLC
uses different types of distributed energy resources (DERs)—
i.e., tidal power plants and solar panels which are, respectively,
equipped with inertia emulation and droop-based controllers—
to improve the frequency excursion resulting from CPAs. The
simulation results verify the performance of the developed
detection and mitigation schemes, particularly when the RLS-
FF parameters, i.e., forgetting factor, covariance matrix, and
reset parameter, are obtained through the grey wolf optimization
(GWO) algorithm. Furthermore, the designed mitigation scheme
is corroborated by comparing its performance with several
well-known attack-resilient control frameworks in LFC studies,
e.g., linear quadratic regulator (LQR) and H∞, using real-time
simulations.

Keywords—Islanded Microgrid, Cyber-Physical Attacks, Recur-
sive Least Square with Forgetting Factor, Online System Identifi-
cation, Interval Type-2 Fuzzy Logic Controller.

NOMENCLATURE

Abbreviation:
IMG Islanded microgrid
LFC Load frequency control
CPAs Cyber physical attacks
RLS-FF Recursive least square forgetting factor
IDS Intrusion detection system
DERs Distributed energy resources
IT2FLC Interval type-2 fuzzy logic controller

T1FLC Type-1 fuzzy logic controller
LQR Linear quadratic regulator
IED Intelligent electronic device
GWO Grey wolf optimization
ICTs Information and communication technologies
ANN Artificial neural network
TPPs Tidal power plants
PV Photovoltaic
LS Least Square
SGs Synchronous generators
CBs Circuit breakers
CFMD Central frequency measurement device
RESs Renewable energy sources
GTs Gas turbines
IAE Integral absolute error
ISE Integral square error
SNR Signal noise ratio
SM Security margin
MFs Membership functions
Parameters and Variables:
Req, Heq Equivalent droop speed governor, and equiva-

lent inertia constant
Tf Mea, Deq Time constant of central frequency measure-

ment device (CFMD), and equivalent damping
coefficient

TM−tpp, TM−pv Time constant of tidal power plant (TPP), and
PV frequency measurement device (FMD)

∆f, ∆f
′

Real and measured frequency deviation
∆Pg1...∆Pgn Governor valve positions for n synchronous

generators
∆Pmt1...∆Pmtn Changes in output power for n synchronous

generators
∆PC Supplementary control action
Tti, Tgi Turbine time constant, and governor time con-

stant
γ1...γn Participation factors of gas turbines in LFC

studies
PTPP
MPPT Maximum mechanical output power from tidal

stream
PPV
MPPT Maximum output power extracted from solar

energy
∆f

′

PV , ∆P inv Measured frequency by FMD, and PV inverter
power

∆f
′

tpp, ∆f
′
wf Measured frequency, and filtered frequency

obtained from a washout filter
∆ωr, ∆Pω Rotor speed variation, and output proportional-

integral (PI) speed controller
β Pitch angle (degree)
∆Vss Tidal stream speed



∆Pout PV Output power of PV solar arrays
∆Pout tpp Output power of tidal power plant (TPP)
Tinv, Tid PV Time constant of PV inverter, and interconnec-

tion device
Twf ,Mtpp Time constant of washout filter, and mechan-

ical inertia of rotational masses in TPP
Kpf ,Kdf Extra damping and extra inertia of TPP
θ(k) Parameter vector at time index k
θ̂(k) Estimated parameter vector at time index k
bp. . . aq Elements of parameter vector θ̂(k)
e(k) Error signal at time index k
∆f(k) Frequency of IMG at time index k
∆f̂(k) Estimated frequency of IMG at time index k
u(k) Control input signal from LFC controller
JM Loss function at time index k
ϕ(k) Regression vector at time index k
L(k) Gain matrix of RLS-FF estimation method at

time index k
P (k) Covariance matrix at time index k
λ Forgetting factor
λ0 Initial value of forgetting factor
P0 = σ0I Initial value of covariance matrix P (k = 0)
I Identity matrix for system identification pro-

cess
σ0 Coefficient for initialization process of estima-

tion
θ0 Initial value of system parameter
Cov Reset factor (0 or 1)
Ts Sampling time
t0 Initial tracking time
ts Average estimation time
rs(k) Residual signal for alarm activation
χ Predetermined threshold for each IMG param-

eter
S0, S1 Indicator for normal operation of the IMG, and

occurrence of attack
K1,K2 Input scaling factor of fuzzy logic controller
α

′
, β

′
Output scaling factors of type-2 fuzzy con-
troller

s The number of fuzzy rules
Rules{1, ...s} Fuzzy rules from number 1 to s
Ãs1, Ãs2 Type-2 membership functions (MFs) for input-

1 and input-2 signals
W1...Ws A set of consequent parameters of type-2 MFs
r1, r2 Input signals of fuzzy logic controller after

scaling
uf Output signal of type-2 fuzzy logic controller
µ, µ Upper and lower bounds of type-2 MFs

f
l
, f l Upper and lower firing strength of rule-s

α∗, β∗ Optimal values of output scaling factors
V (t) Lyapunov function
ψ A vector of all fuzzy rules
ε(t) Output error signal
J = ∂y/∂u Jacobian Matrix
κ1, κ2 Coefficients of derivative of output scaling

factors
*Other parameters/variables are defined in the paper’s content.

I. INTRODUCTION

RECENTLY, the deployment of information and commu-
nication technologies (ICTs) in various applications of

smart grids, e.g., wide-area monitoring and control systems
[1], protection devices [2], and smart meters [3], has witnessed
a surge of interest. In smart grids, islanded microgrids (IMGs)
are among the most vulnerable systems to cyber-physical at-
tacks (CPAs) due to their inherent specifications, i.e., wide use
of distributed energy resources (DERs) with low inertia and
huge dependency on intelligent electronic devices (IEDs) for
protection and control purposes [4]. One of the main purposes
of CPAs is to compromise specific functionalities in IMGs
that can cause disruption in their normal operations [5]. Load
frequency control (LFC), which plays a significant role in
keeping the frequency of an IMG in the acceptable ranges and
providing high-quality electricity energy for consumers, can
be maliciously exploited by such attacks [6]. Targeting this
extremely delicate scheme can lead to frequency instability
in IMGs, and consequently total curtailment of its loads. As
a result, the development of effective online detection and
adaptive mitigation schemes to combat cyber attacks against
this control scheme during different operating points of the
IMG is of paramount importance [7].

A wide range of publications has recently addressed dif-
ferent detection methods, which can report failures and at-
tacks on LFC models. Detection approaches generally are
categorized into learning-based and model-based methods [8].
Learning-based approaches use machine learning algorithms,
e.g., support vector machine [9], multi-layer perceptual clas-
sification [10], and artificial neural network (ANN) [11], to
detect attacks on LFC systems. The major drawbacks of these
techniques are the need for abundant data for training them,
and their dependence on the operating point of the system.

In model-based methods, however, an observer is often de-
signed using the mathematical model of the system to estimate
state variables under normal conditions. As a result, an attack
can be detected when there is a meaningful difference between
the measured and the estimated states. In [12], the authors
used the Kalman filter to estimate state variables of the LFC
scheme and detect the attack; however, the accuracy of this
static estimation can be affected by the selected threshold used
to distinguish anomaly. Other well-established model-based
approaches in the literature include the parametric feedback
linearization using a static estimation process [13], graphical-
based methods [14], chi-square detector [15], matrix separa-
tion approach [16], nonlinear observer-based methods [17],
and non-stationary signal processing approach of Hilbert-
Huang transform [18]. Despite the advantages of mentioned
approaches for CPAs detection, e.g., real-time detection and
low computational burden, they are often designed for a single
time slot, i.e., operation point, not a wide range of system
operation [19], [20]. Moreover, the mentioned approaches
neglect the uncertainties in the operation of IMG, e.g., varying
parameters, topology change owing to load disturbances,
intermittent nature of RESs, and operation in islanded and
grid-connected modes [21]. Additionally, the performance of
these techniques depends on the accuracy of the system’s
mathematical model and parameters [22], [23]. In summary,
the dependence on the operating point of the system, and the
accuracy of the system’s mathematical model are drawbacks
of learning-based and model-based methods, respectively.

On the other hand, many research works have recently
addressed mitigation methods of attacks targeting control or
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measurement channels of LFC systems. In [24], a new virtual
inertia control strategy in IMGs is introduced to alleviate the
impact of the attack. Additionally, researchers in [25]–[27]
deploy approaches to estimate attack vectors with the aim
of removing false data from feedback control loops. These
methods ignore a part of the dynamic model of systems and
lead to large error signals and low performance. In this regard,
the above-mentioned mitigation approaches are not suitable
for the LFC model of IMGs when IMGs require high-speed
performance in case of uncertainty and critical changes in
system operation. Moreover, recent studies on the mitigation
of attacks on LFC models cannot represent a delicate approach
to alleviate the destructive impacts of attacks resulting in a
change of IMG topology [28], [29].

Inspired by the above discussions, in this paper, a frame-
work for the detection and mitigation of CPAs, which target
the LFC model of IMGs, has been proposed. First, the IMG is
modeled accurately, and tidal power plants (TPPs) and solar
panels are used in the LFC scheme to improve the frequency
excursion stems from the CPAs. Then, in the detection part
of the developed framework, a well-tuned online system
identification technique—which is based on the RLS-FF
method—estimates the parameters of IMGs. The performance
of the RLS-FF is improved by the GWO algorithm and
compared with the least square (LS) method. Next, using
the estimated parameters, an online anomaly-based intrusion
detection system (IDS) is proposed to find CPAs in the IMG.
Since the developed system identification provides the real-
time parameters of the IMG, an adaptive interval type-2 fuzzy
logic controller (IT2FLC) is used to mitigate CPAs that target
the topology of IMG by updating control input signals. The
effectiveness of the proposed framework is evaluated using
real-time simulations. The contributions of this paper are:

1) Analyzing the security of the IMG in the presence of
attacks targeting the topology of IMG, and investigat-
ing the potential use of DERs, i.e., TPPs and solar
panels, for improving the resultant frequency deviation;

2) Developing an online anomaly-based IDS based on the
RLS-FF as a well-tuned system identification approach
to (i) update IMG’s state matrix (A) for the adaptive
control scheme and (ii) detect the impacts of attacks
targeting the topology of the IMG;

3) Designing an adaptive fuzzy control mechanism along
with the developed system identification technique to
mitigate the impacts of CPAs that target the topology
of the IMG leading to instability. The proposed frame-
work is implemented in a real-time simulator (RTS)
and its performance is compared with recent attack-
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Figure 1. The diagram of cyber-physical attacks (CPAs) on the IMG.

resilient LFC schemes, e.g., the LQR and H∞ control
frameworks, to demonstrate its superior performance.

Generally speaking, many previous papers have focused on
the behaviours of state variables and used model-based or
alternatively utilized learning-based approaches to identify the
type of cyber attacks which manipulate only measurement and
control channels [19]–[21]. The suggested detection and mit-
igation methods in these works depend heavily on operating
points and they are designed for a single time slot. On this
basis, they cannot be practically deployed for a wide range
of system operations during external uncertainties. However,
in this paper, a family of malicious CPAs is introduced,
whose aim is to compromise the topology of IMGs, leading
to changes in the system’s parameters. From this perspective,
online detection and adaptive mitigation must be proposed
to combat such attacks during different operating points
of IMGs. To show the difference between our work and
existing studies, a summarized comparison has been made
in Table I. Compared to the authors’ previous work [33],
this manuscript fills a number of important research gaps. In
[33], for the first time, a family of malicious attacks—which
aim to compromise the topology of the IMG and change
its parameters—were studied. It has been shown that these
attacks, which change the operating point of the system, have
more detrimental impacts on the system stability compared to
previously-studied ones, which manipulate control commands
or sensory networks. However, no mitigation mechanism was
developed there to counter the attacks for different operating
points [33]. Moreover, the detection mechanism proposed
in [33] was only a simple proof of concept, and thus it
was neither realistic nor verified using real-time simulations.
Finally, the behavior of DERs following CPAs and their
impact on possible countermeasures were not studied there.

The rest of the paper is organized as follows. Section II
explains the physical and cyber attacks on different compo-
nents of IMG. Section III represents the system modeling and
LFC model of IMG. Section IV describes the online system
identification and detection strategies. In the following, sec-
tion V discusses adaptive mitigation for detrimental impacts
of CPAs and the stability proof. Section VI depicts real-time
simulation results, the impacts of concurrent CPAs on IMG’
stability, and the scalability of the proposed techniques. The
conclusion is drawn in Section VII.
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Figure 2. Load frequency control model of the IMG for CPAs studies.

II. THREAT MODEL

As building blocks of smart grids, IMGs can provide
reliable energy production for residential/industrial customers
and generate clean energy. These improvements require the
deployment of extensive cyber systems and IEDs on top
of the physical layers, that result in the vulnerability of
IMGs to CPAs, e.g., attacks that target LFC schemes. Several
examples of CPAs against the topology of LFC models, whose
aims are to maliciously target the frequency stability, are
demonstrated in Fig. 1, i.e., (i) Attack I: physically attack IMG
generation units and eliminate them from the IMG, (ii) Attack
II: compromise the communication network or LFC controller
and disconnect RESs by sending false commands, (iii) Attack
III: delay the measurement of the frequency response in LFC
schemes, and (iv) Attack IV: target the intelligent electronic
devices (IEDs) by sending trip commands to circuit breakers
and disconnect their corresponding components from the
IMG. These threats can be categorized into two different
groups, namely, cyber and physical attacks as follows:

A. Physical Attacks

The considered threat model in this type of attack is
described as follows: (i) Attack Objective: The aim of
adversarial actions is to cause an outage of equipment, e.g.,
gas turbine, and create a mismatch between load demand
and generation (i.e., frequency stability condition) that can
cause a complete outage of loads in the IMG; (ii) Attacker’s
Actions: The adversary physically intrudes into IMG and
disconnect a piece of equipment by launching deliberate
physical damage; (iii) Attacker’s Knowledge: The attacker’s
knowledge includes the topology of IMG and the location
of DERs. The adversaries wait for the critical moment of
operation, e.g., when MG supplies load variations, and then
launch their attack; and (iv) Attack Formulation: The attack
results in an outage of several droop-based generation units,
i.e., units 1 to nout. To fix the frequency, in normal operation,
these units measure frequency and adjust their generation
based on a droop gain, Ri,∀i ∈ {1, . . . , n}, where n is
the number of droop-based generation units. However, under
attack conditions and with the outage of units 1 to nout, the
equivalent droop speed governor, expressed in (1), changes
and the ability of IMG to control the frequency will decrease
[34]:

1
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Figure 3. Dynamic model of parallel gas turbine systems

B. Cyber Attacks

The cyber attacks considered in this threat model are
divided into two groups, i.e., cyber attack A and B. Cyber
attack A targets the synchronous generators (SGs) aiming to
disconnect them and impact the frequency stability of the LFC
scheme. The cyber attack B focuses on adding delays to the
measurements devices and feedback control loops of the LFC
model with the aim of destabilizing the IMG:

1) Cyber attack A: In attack A, adversaries compromise
the LFC controller, communication infrastructure, or IEDs
associated with SGs with the aim of disconnecting them
from the IMG’s energy production planning. The threat model
for this attack includes: (i) Attack Objective: The aim
of adversaries is to disconnect SGs, reduce the inertia of
the IMG, and create a frequency instability issue that can
result in the shutdown of the IMG; (ii) Attacker’s Actions:
Attackers are entities who can inject false data into the
communication links, compromised LFC controller or forward
generic object-oriented substation events (GOOSE) messages
based on IEC-61850 with the aim of tripping circuit breakers
(CBs) associated with SGs [35]; (iii) Attacker’s Knowledge:
The adversaries have knowledge about the communication
infrastructure, the protocols used to transmit the data, or the
protective IEDs to craft a fake trip command; and (iv) Attack
Formulation: The attackers aim at opening CBs of one or
several SGs, i.e., units 1 to mout and change the equivalent
inertia constant as expressed in (2). In normal operation,
having high values for Heq guarantees lower variations of
the frequency following any change in generation or load.
However, during the mentioned attack, this value reduces and
IMG can be exposed to large frequency excursions [34]:

Heq =
∑m

j=mout

Hj

2) Cyber attack B: In this attack, adversaries delay the
data packets to disrupt the operation of the IMG [36].
The considered threat model includes several assumptions
as follows: (i) Attack Objective: The main objective of
adversaries is to delay the feedback loop of the LFC scheme,
destabilize the frequency response, and create a complete
load disconnection in the IMG; (ii) Attacker’s Actions:
Attackers penetrate into the communication infrastructure



s
KK ip 

f
Frequency Measurement Device  Washout Filter



PI Speed ControllerMechanical Inertia 

dfK
pfK

ref

ref








SSV
+

+

+
in TPPP 

max

min

ref

r
Tidal Power Plant

_out TPPP+

P
+

-

-

+

-

-

tppsT1
1

s
Damping 

Emulated Inertia
wf

wfsT
sT
1

r

s
1

1
1 M tppsT  +

1
tppsM

idPtppf  wff 

-

-

TPPu

PI Controller

TPPMPPT
ss

P
V





TPPMPPT
r

P






TPPMPPTP






Figure 4. Load frequency control model of tidal power plant (TPP).

of frequency measurement devices (FMDs) to prevent the
LFC from receiving timely feedback signals; (iii) Attacker’s
Knowledge: The attackers should have sufficient knowledge
about the communication infrastructure and protocols as well
as the structure of CFMDs, and (iv) Attack Formulation: The
adversaries adds predefined delay to the readings of the central
frequency measurement device (CFMD) and consequently to
the dynamic model of IMG. As a result, the dynamic model
of the CFMD can be defined as follows [37]:

∆̇f
′

=
1

Tf Mea
(∆f −∆f

′
) (3)

where ∆f and ∆f
′

are, respectively, the real and measured
frequency deviation, and Tf Mea is the time constant obtained
from the delay model.

III. THE SYSTEM MODEL

To have an efficient identification system for the estimation
of IMG parameters and detection and mitigation of the de-
scribed CPAs, the first step is to obtain the detailed LFC model
of the IMG based on Fig. 2. In this layout, the IMG deploys
the LFC centralized control unit which can improve the
stability of the IMG by updating the control input signals of
RESs, e.g., parallel gas turbines and synchronous generations,
tidal power plants, and PV arrays. The linearized state-space
representation of this system can be represented as:{

ẋ(t) = Amx(t) +Bmu(t) + Emw(t)
y(t) = Cmx(t) +Dmu(t)

(4)

where the vectors x(t), u(t), and y(t) are, respectively, states,
control input, and output vectors of the system. Moreover,
w(t) represents all disturbances and power fluctuations related
to RESs. In the following, the DERs of the IMG, which play
an important role in the LFC model, are studied in detail.

A. Gas Turbine System Model
The low-order model for the turbine–governor dynamics in

the frequency analysis is illustrated in Fig. 3. In this figure,
Tg1, . . . , Tgn are governor time constants, and Tt1, . . . , Ttn
are referred to as turbine time constants. Furthermore, ∆Pg ,
∆Pmt, and ∆PC denote the variation of governor valve
position, change in the output power of the gas turbine, and
supplementary control action, respectively. γ1, γ2, ..., γn are
also defined as participation factors of gas turbines [34].
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Figure 5. load frequency control model of photovoltaic panels.

B. Tidal Power Plants Model

The LFC model of the tidal power plant is illustrated in
Fig. 4. Based on this model, the integration of emulated inertia
and damping coefficients are suggested to simulate virtual
inertial and droop control schemes for frequency studies that
is shown by the following equation:

∆P id = −Kpf (∆f)−Kdf (
∂(∆f)

∂t
) (5)

To follow the reference tidal stream speed during transient
situations, a proportional-integral (PI) speed controller is
defined in this model as follows:

∆Pω = Kp (∆ωr −∆ωref )+Ki

∫
(∆ωr −∆ωref )dt (6)

The input active power of the proposed TPP is ob-
tained from the maximum power point tracking (MPPT)
method and depends on three components, i.e., ∂PTPP

MPPT

/
∂β,

∂PTPP
MPPT

/
∂ω, and ∂PTPP

MPPT

/
∂Vss [38]:

∆Pin TPP = ∆β
∂PTPP

MPPT

∂β
+∆ωr

∂PTPP
MPPT

∂ωr
+∆Vss

∂PTPP
MPPT

∂∆Vss
(7)

In this LFC model, ∆ωr, β, and ∆Vss denotes rotor speed
deviation, pitch angle, and tidal stream speed, respectively. A
high-pass washout filter is also used to remove the impacts of
the high-frequency noise in the LFC studies. Furthermore,
Mtpp and Ttpp are defined as the mechanical inertia of
rotational masses and the time constant of TPP, respectively.

C. Photovoltaic Panels Model

The LFC model of photovoltaic panels in the under-study
IMG has been illustrated in Fig. 5. Active power, which can
be generated by the PV array, is defined based on the MPPT
method as follows [39]:

∆P in−PV =
∂PPV

MPPT

∂V
∆V +

∂PPV
MPPT

∂t
∆t (8)

where two mentioned items, i.e., ∂PPV
MPPT

/
∂V and

∂PPV
MPPT

/
∂t, can be calculated and explained in more detail

in [39]. In this model, the DC-AC converter, interconnection
devices, and frequency measurement device is represented by
the first-order model. Droop-based model is also considered
to control active power in case of LFC studies.



D. State-Space Model

The first step in obtaining the state-space representation is
to define appropriate state variables based on the proposed
models in section II-(A,B,C). In this regard, a set of governor
valve positions (xg = [∆Pg1 ... ∆Pgn ]) and changes in
output power (xmt = [∆Pmt1 ... ∆Pmtn ]) is defined to
be independent state variables for GT systems. Moreover, state
variables related to PV arrays consist of ∆f

′

PV , ∆P inv and
∆Pout PV , which are referred to the measured frequency by
FMD, the power of inverter, and the output power of PV
panels, respectively. The state variables related to TPP are
∆f ′tpp, ∆f ′wf , ∆ωr, ∆Pω , and ∆Pout tpp, which denote
the measured frequency, filtered frequency obtained from
the washout filter, the rotor speed variation, the output PI
controller with the aim of tracking transient behaviours, and
the output power of TPPs, respectively. All state variables can
be summarized in x(t) vector:

x(t) = [ xg xmt ∆f ′ ∆f ′PV ∆Pinv ∆Pout PV ...
∆f ′tpp ∆f ′wf ∆ωr ∆Pω ∆Pout tpp ∆f ]T

(9)
The LFC centralized control unit must update control

signals and forward new commands to RESs during CPAs
using the control input vector:

u(t) = [uGT uPV uTPP ]
T (10)

To study the impacts of time-varying disturbances and
weather changes on the performance of the IMG during CPAs,
a disturbance vector w(t) is also defined. This vector includes
changes in solar irradiation ∆Pin−PV , tidal power fluctuation
∆Pin−TPP , and a multi-step variation of load demand ∆PL:

w(t) = [∆Pin−PV ∆Pin−TPP ∆PL ]
T (11)

Since CPAs introduced in the threat model, can manipulate
the topologies of the IMG, finding nominal components of the
state matrix, i.e. Am is a critical issue. Since the dimension
of the under-study state matrix is relatively large, this paper
divides it into several sub-sections as follows:

Am =

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 (12)

where the first row of this matrix, i.e. A11, A12, A13, A14 is
related to gas turbine systems used in the IMG that includes
system parameters as follows:

A11 = AGT , A12 = 0(2n+1)×3, A13 = 0(2n+1)×5, ...

A14 = [ 01×2n 1/Tf Mea ]
T

(13)

AGT =

[
η11 η12 η13
η21 η22 η23
η31 η32 η33

]
(14)

where AGT is one of the elements of matrix Am that consist
of information of parallel GTs including droop speed gain Ri,
turbine time constant Tti, and governor time constant Tgi:

η11 = diag[ −1/Tg1 ... −1/Tgn ], η12 = 0n×n, ...
η13 = [ −1/Tg1R1 −1/Tg2R2 ... −1/TgnRn ]T

(15)

η21 = diag[ 1/Tt1 ... 1/Ttn ], η22 = −η21, η23 = 0n×1

(16)

η31 = η32 = 01×n, η33 = [−1/Tf Mea] (17)

The second row of the state matrix is the interaction be-
tween PV arrays and other sections of the IMG. A22 = APV

is a PV element that describes the dynamic model of solar
panels. TM−pv , Tinv , and Tid PV are the time constant of
PV-FMD, inverter, and interconnection device, respectively:

A21 = 03×(2n+1), A22 = APV , A23 = 03×5, ...

A24 = [ 1/TM−pv 0 0 ]
T

(18)

APV =

[ −1/TM−pv 0 0
−1/RPV Tinv −1/Tinv 0

0 1/Tid PV −1/Tid PV

]
(19)

The third row of the state matrix is allocated to the TPP and
interaction with other energy sources. Similar to the previous
description, A33 = ATPP is a sub-section that represents
the parameters of the TPP. TM−tpp, Twf , Mtpp, and Ttpp
are the time constant of TPP-FMD, the time constant of
washout filter, mechanical inertia of rotational masses, and
time constant of TPP unit, respectively. Moreover, Kpf and
Kdf are referred to as the extra damping and the extra inertia
of TPPs:

A31 = 05×(2n+1), A32 = 05×3, A33 = ATPP , ...

A34 = [ 1/TM−tpp 1/TM−tpp 0 0 −Kdf/TttpTM−tpp ]
T

(20)

ATPP =



−1
TM−tpp

0 0 0 0
−1

TM−tpp

−1
Twf

0 0 0

0 0 0 0 −1
Mtpp

0 0 Ki 0
−Kp

Mtpp
Kdf

TM−tppTtpp

(Kdf−KpfTwf )
TwfTtpp

0 −1
Ttpp

−1
Ttpp


(21)

Finally, the fourth row of Am is considered to depict the
equivalent inertia (Heq) of the IMG and equivalent load
damping coefficient (Deq):

A41 = [ 01×n [ 1/2Heq ... 1/2Heq ]
1×n

0 ], ...

A42 = [ 0 0 1/2Heq ] , ... (22)

A43 = [ 0 0 0 0 1/2Heq ], A44 = −Deq/2Heq

The control input matrix (Bm) includes three elements,
i.e., B11, B21, and B31, for GTs, PV, and TPP, respectively,
as well as a zero element B41, which can be expressed as
follows:
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mitigation schemes.

Bm = [ B11 B21 B31 B41 ]T (23)

B11 = BGT , B21 = BPV , B31 = BTPP , B41 = 01×3 (24)

BGT =

[
[ γ1/Tg1 γ2/Tg2 ... γn/Tgn ] 01×(n+1)

02×n 02×(n+1)

]T

(25)

BPV =

[
0 0 0
0 1/Tinv 0
0 0 0

]
BTPP =

[
04×3

[ 0 0 1/Ttpp ]

]
(26)

Moreover, the disturbance matrix (Em), which provides coef-
ficients for load changes, TPP fluctuation, and variation in solar
radiation, is represented by four elements as follows:

Em = [ E11 E21 E31 E41 ]T (27)

E11 = 0(2n+1)×3, E21 = EPV , E31 = ETPP , ...

E41 = [ 0 0 1/2Heq ]
(28)

EPV =

 0 0 0
1/Tinv 0 0

0 0 0

 , ETPP =

 02×3

[ 0 1/Mtpp 0 ]
[ 0 Kp/Mtpp 0 ]

01×3


(29)

Eventually, the output matrix (Cm) and the feed-forward matrix
(Dm) is defined as:

Cm = [ 01×(2n+9) 1 ] , Dm = 01×3 (30)

IV. DETECTION STRATEGY

The overall layout of the online detection and mitigation has been
illustrated in Fig. 6. The detection scheme consists of two different
steps. First, the RLS-FF approach is developed for the online esti-
mation of the parameters of the IMG. To improve the performance
of the RLS-FF method in the estimation of the IMG’s parameter,
the GWO algorithm is also implemented offline by optimizing the
amount of the forgetting factor, the covariance matrix, and the reset
parameter of the RLS-FF approach (Step 1 in Fig. 6). Collaboration
between the RLS-FF and GWO algorithm can be defined as online

system identification. Then, the estimation of the parameters of the
IMG is sent to the anomaly-based IDS and compared with the
nominal values of the system’s parameters to identify the attack
on the different components of the IMG (Step 2 in Fig. the LFC
centralized controller unit updates control input signals at each time
index based on the estimated parameters of the IMG and keeps the
frequency response in the permissible range during different CPAs.

A. Background to Recursive Least Square Method with For-
getting Factor

During the normal operation of IMGs, the system’s state matrix
A(k) at time index k remains generally constant. However, there are
the attacks proposed in the threat model (Section II) that target the
topology of the IMG, i.e., elements of the matrix A(k), leading to
the frequency deviation. To follow the changes of A(k), the RLS-FF
is customized to estimate elements of the state matrix of the IMG.
Compared to the frequent least square (LS) methods [40], the RLS-
FF can provide an online accurate estimation of system parameters to
update control input signals. Based on the proposed scheme in Fig. 6,
the control input signals, i.e., uGT (k), uTPP (k), and uPV (k), are
consequently updated, and then used to calculate parameters of the
IMG. Additionally, to study the impacts of external disturbances,
three terms, i.e., ∆PL, ∆Pin−TPP , and ∆Pin−PV , are added to
the IMG. At each time index k, the transfer function of the system
is firstly calculated by the following equation [41]:

∆f(k)

u(k)
=

b1z
−1 + b2z

−2 + ...+ bpz
−p

1 + a1z−1 + a2z−2 + ...+ aqz−q
(31)

where ∆f(k) and u(k) are defined as the IMG output
and control input signals at time index k, respectively. The
b1, b2, . . . bp, a1, a2, . . . aq are referred to as elements of the system
parameters vector. Additionally, p and q are real numbers and z is
a forward shift operator in z-domain transformation. Equation 31
is rewritten in the form of a matrix according to two following
expressions:

∆f(k) +

q∑
i=1

ai∆f(k − i) =

p∑
j=1

biu(k − j) (32)

∆f(k) = θ(k)× ϕT (k) (33)

where θ(k) = [−a1, ...,−aq, b1, ..., bp] is the nominal parameter
vector at time index k, and ϕT (k) is defined as the transpose of the
regression vector:

ϕ(k) = [∆f(k − 1), ...,∆f(k − q), u(k − 1), ..., u(k − p)] (34)

This regression vector is computed by the use of measured control
inputs and outputs of IMG. Since the main aim of the proposed
RLS-FF method is to estimate IMG parameters, it is more efficient
to have a recursively updated estimation. As a result, an error signal
(e(k) = ∆f(k) −∆f̂(k)), which measures the difference between
estimated and true values of the output signal at time index k, is
updated consecutively to converge estimation of IMG’s parameters
to their true values using the minimization of the loss-function (JM )
as follows:

JM =

k∑
τ=1

λk−τe2(τ) (35)

where λ is a forgetting factor that improves the speed of convergence,
and e(τ) is the error signal. This loss function ignores the old
measurements exponentially. In this regard, an observation related
to t old samples has a λt times weighted compared to recent
observations. Minimization of JM results in a gain matrix, i.e.,
L(k), that can update the estimation of parameters vector (θ̂(k)),
as follows:

θ̂(k) = θ̂(k − 1) + L(k)(∆f(k)−∆f̂(k)) (36)



The value of L(k) at time index (k) can be updated based on the
following statement:

L(k) = ϕ(k)× P (k − 1)

λ+ ϕT (k)P (k − 1)ϕ(k)
(37)

where P (k) and P (k − 1) are defined as the covariance matrix of
the estimated parameters at time indexes k and k − 1, respectively.
This matrix can be recursively obtained as:

P (k) =
P (k − 1)

λ
[I − L(k)ϕT (k)] (38)

To calculate the P (k) matrix, the gain matrix L(k) is firstly
updated at each time index using 37. The performance of the RLS-FF
method during the estimation of IMG parameters is related to initial
values of (i) system parameters (θ0), (ii) the covariance matrix (P0),
and (iii) the forgetting factor (λ0) that can be optimally obtained
using the GWO algorithm.

B. Grey Wolf Optimization Algorithm
Since the initialization of the RLS-FF parameters can dramatically

impact the convergence speed and accuracy of the proposed detection
method, this paper utilizes the grey wolf optimization (GWO)
algorithm due to its superior convergence speed and acceptable
performance in unknown research space [42]. The evaluation criteria
as objective function and optimization variables need to be first
defined for the GWO algorithm: (i) the ability to follow initial
values of IMG parameters by an initial tracking time (t0), (ii) the
capability to estimate system parameters during a proposed time
interval by average estimation time (ts), (iii) presenting a measure
of method performance by integrating the absolute error over a fixed
interval, i.e. the integral absolute error (IAE), and (iv) proposing
another measure by integrating the square of the error over a fixed
interval, i.e., the integral square error (ISE). By deployment of the
GWO algorithm, initial values of the forgetting factor (λ0) and the
covariance matrix are tuned offline. Given P0 = σ0I as the standard
form of the initial covariance matrix, σ0 is used in the initialization
process in this paper. Furthermore, a reset parameter Cov is defined
to update the initial value of the covariance matrix after specific
iterations in the case of an online estimation process. If Cov is
equal to 1, it means that this matrix is returned to its initial value,
whereas if Cov is 0, no return to the initial value is considered.
Therefore, in the offline process, the variable vector of the optimiza-
tion algorithm can consider an agent with three-dimension including
the initial values of λ0, σ0, and Cov and obtain optimal values.

Algorithm 1: System Identification for Estimation of IMG’s Parameters

Inputs: Input signal vector u(t) and output signal vector (∆f ) ;
Output: Estimation of IMG’s parameter vector,θ̂(k), at time index k ;
1) Initialize: P0, λ0, Cov and θ0 by GWO algorithm;
2) Initialize: θ0 by Operator;
3) Select: Sampling time (Ts);
4) Measure: Initial values of input and output signals (∆f(k), u(k)) ;
5) Calculate: Regression vector (ϕT (k));
6) Calculate: ∆f̂(k) = θ̂(k − 1)× ϕT (k) ;
7) Calculate: Error signal: e(k) = ∆f(k)−∆f̂(k) ;
8) Minimize: JM loss function;
9) Obtain: Gain matrix L(k) ;
10) Estimate: IMG’s parameters vector:
θ̂(k) = θ̂(k − 1) + L(k)(∆f(k)−∆f̂(k)) ;

11) Update: Covariance matrix P (k) ;
for k=1:1: [Time Interval]/ Ts do

Update e(k) = ∆f(k)−∆f̂(k) ;
Update L(k) ;
Calculate θ̂(k) = θ̂(k − 1) + L(k)(∆f(k)−∆f̂(k)) ;
Update P (k) ;
Save estimation of IMG parameters (θ̂(k)) in the
Centralized Computation Center;

end
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Figure 7. Anomaly-based intrusion detection system (IDS) in centralized
computation center.

Algorithm 2: Anolmaly-based Intrusion Detection System

Inputs: Estimation of parameter vector θ̂(k) ;
Output: S0 or S1 as indicator for attack detection ;
Location of IDS: At centralized computation center;

while Measure input and output signals do
Define different thresholds: {χ1, χ2, ...χn} based on

SM (%) and SNR (dB) for each IMG’s parameter ;
Calculate rs1(k) = R̂eq −Req ;
Calculate rs2(k) = Ĥeq −Heq ;
Calculate rs3(k) = T̂f Mea − Tf Mea ;
if rs(k) > χ then

Attack detection and alarm activation ⇒S1 ;
if rs(k) ≤ χ then

Display normal operation and no attack ⇒S0 ;
end

end
end

The design parameters of the GWO algorithm, i.e., the minimum
and maximum values of λ0 and σ0, are considered to be 0.4, 1×103,
1, and 1×1030, respectively. The value of Cov. is a binary number.
i.e., 0 or 1, and the number of iterations is 1000. The number of
search agents for this problem is 200.

C. Online Anomaly-based Intrusion Detection System (IDS)
The recursive method and offline optimization process are under

the umbrella of the online estimation of the IMG parameters,
which can be carried out by using the pseudo-code of Algorithm
1. Fig. 7 illustrates the platform of the proposed anomaly-based
intrusion detection system (IDS), which is installed in the centralized
computation center of the IMG. First, acceptable ranges for the
parameters of IMG, which may be targeted based on the threat
model, must be defined in the strict sense. In this regard, during
normal operation of the IMG, a noise is modeled as independent,
white, and Gaussian, with a signal-to-noise ratio (SNR) based on
dB for system parameters. Moreover, a security margin (SM) is also
added to these system parameters to model parametric uncertainties
in the IMG operation. Any deviation from the assumed acceptable
ranges can be introduced as suspicious activity, which could trigger
system alarms. For instance, to detect the occurrence of the physical
attack on the equivalent droop speed governor of gas turbines (Req),



Table II. THE FUZZY RULE BASE USED FOR UPPER AND LOWER
MEMBERSHIP FUNCTIONS

∆f/∆t

∆f

LN MN SN ZO SP MP LP
LN LP LP LP MP MP SP ZO
MN LP MP MP MP SP ZO SN
SN LP MP SP SP ZO SN MN
ZO MP MP SP ZO SN MN MN
SP MP SP ZO SN SN MN LN
MP SP ZO SN MN MN MN LN
LP ZO SN MN MN LN LN LN

Figure 8. Layout of proposed interval type-2 fuzzy logic controller.

a conventional detector is proposed. One detector, which can take
advantage of a residual signal, can be calculated as:

rs(k) = |R̂eq(k)−Req(k)| (39)

where R̂eq(k) is defined as the online estimation of equivalent droop
of governor at time index k, and Req(k) is referred to as the nominal
value of this parameter. A comparator identifies the occurrence of an
attack by comparison of rs(k) with a predetermined threshold (χ),
which is a function of a predefined security margin and noise. The
main rule of this detector in the centralized computation center is
defined as: {

if : rs(k) ≤ χ(SM,SNR) ⇒ S0

if : rs(k) > χ(SM,SNR) ⇒ S1
(40)

where the indicator S0 depicts the normal operation of the IMG
and the indicator S1 informs operators about the occurrence of an
attack that disturbs the physical performance of the speed governor.
The performance of this anomaly-based IDS with the help of the
proposed system identification is summarized in Algorithm 2. After
each estimation of parameters, the centralized computation center is
notified of this new estimation and updates its control input vectors.

V. MITIGATION STRATEGY

A. Designing Interval Fuzzy Logic Controller
In this section, an adaptive framework is developed to mitigate

the detrimental impacts of CPAs introduced in the threat model.
Moreover, a comparison between recent techniques, like type-1 fuzzy
logic controller, Linear Quadratic Regulator (LQR) [6], [29], and
H∞ resilient control scheme [31], [32] is carried out. Based on the
proposed scheme of IT2FLC in Fig. 8, a fuzzifier section is deployed
to map input signals, i.e., ∆f and ∆f/∆t. The output signal (uf )
of this controller is able to keep an optimum balance between
generation and demand. Additionally, in this IMG, the Mamdani-type
inference system is developed and 7-segments triangular shapes, i.e.
LN (Large negative), MN (medium negative), SN (small negative),
ZO (Zero), SP (small positive), MP (medium positive), and LP (large
positive) are allocated to both lower and upper membership functions
(MFs). A set of rules that consist of 49 fuzzy maps the input signals
to the output signal which has been presented in Table II.

B. Stability Proof of Proposed Controller
In the proposed IT2FLC, patterns of rules are represented based

on the following statement [43]:
Rules{1, 2, ...s}: IF r1 is Ãs1 and r2 is Ãs2, THEN uf = W .

where Ãs1 is the type-II MFs for the first input signal (∆f) and
Ãs2 for the second input signal (∆f/∆t). Furthermore, W =
[W1 W2 ... Ws ] is defined as a set of consequent parameters
related to type-2 MFs which are depicted through centroid represen-
tation method. To show the IMG stability, the output of this controller
can be summarized as follows:

uf =
∑l=s

l=1
Wl(f

l
+ f l)

/∑l=s

l=1
(f

l
+ f l) =WTψ (41)

In 41, f
l
= µs1(r1) ∩ µs2(r2) and f l = µs1(r1) ∩ µs2(r2)

are referred to as lower and upper firing strength of rule-s that
is an intersection of the first input r1 and second input r2 of the
controller. In this equation, µ and µ are also defined as the lower
and upper bounds of MFs, respectively. To summarise all fuzzy rules,
the vector ψ is defined as well. In the under-study IMG, the main
aim is to mitigate the frequency deviation during changes in the
IMG’s topology. On this basis, an adaptive mechanism is added to
the IT2FLC that can improve the performance of the closed-loop
stability of the IMG. To prove the stability of this controller in the
platform of the IMG, a Lyapunov function can be defined as follows:

V (t) =
1

2
[ε2 +

1

κ1
(α∗ − α′)2 +

1

κ2
(β∗ − β′)2] (42)

where ε(t) = y0(t)− y(t) = ∆f0 −∆f , and α′ and β′ are output
scaling factors. Besides, α∗ and β∗ are defined as the optimal values
of α′ and β′, respectively. Adaptation laws for mentioned parameters
and the set of consequent parameters are defined:

α̇′(t) = κ1εJu̇f , β̇
′(t) = κ2εJuf , Ẇ (t) = −a0W+ψ

/
∥ψ∥2εJuf

(43)
where J = ∂y/∂u is an approximation of the Jacobean matrix
which can be calculated to obtain the sensitivity of the under-study
IMG based on adaptation laws [44]. The Lyapunov function can be
differentiated as follows:

V̇ (t) = εε̇− 1

κ1
(α∗ − α′)α̇′(t)− 1

κ2
(β∗ − β′)β̇′(t) (44)

ε̇ = ∂ε
∂t

= ∂ε
∂y

∂y
∂u

( ∂u
∂uf

∂uf

∂t
+ ∂u

∂(
∫
ufdt)

∂(
∫
ufdt)

∂t
) =

−J(α′u̇f + β′uf )
(45)

If 45 is substituted into the time derivative of the Lyapunov
function, we will have:

V̇ (t) = −εJ(α′u̇f +β
′uf )−

1

κ1
(α∗−α′)α̇′(t)− 1

κ2
(β∗−β′)β̇′(t)

(46)
With the aim of two adaptation laws in

V̇ (t) = −εJ(α∗u̇f + β∗uf ) (47)

According to the adaptive mechanism, the consequent parameters
of MFs are adjustable; consequently, the derivative of output of the
IT2FLC (uf ) can be estimated as:

u̇f ≈ ẆTψ (48)

By taking into account 47 and 48, we have:

V̇ (t) = −εJ(α∗ẆTψ + β∗WTψ) (49)

In 43, a0 = β∗/α∗ is firstly assumed, and then, the last adaptation
law is replaced in 49. The final equation is obtained which shows
the stability of this closed-loop IMG system:



Table III. NOMINAL VALUES OF IMG’S PARAMETERS

Parameter Value Parameter Value
Deq 0.015 Ki 0.15
Heq 0.1667 Kdf 0.2
Req 0.565 Kpf 2

Tf Mea 0.02 Twf 6
Tgi 0.4 TM−tpp 0.02
Tti 0.08 Tid PV 0.004

γ1. . . γ5 1 Tinv 0.04
Ttpp 0.2 RPV 0.25
Mtpp 0.3878 TM−pv 0.022
Kp 1.5 ∆f0 60
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Figure 9. Real-time experimental setup of IMG and the proposed RLS-FF
system identification and well-known attack-resilient LFC frameworks.

V̇ (t) = −ε2J2 < 0 (50)

To show how this IT2FLC works in the case of proposed CPAs
in the threat model, Algorithm 3 is developed.

Algorithm 3: Adaptive Fussy Type-2 Mitigation Startegy

Input: Estimated parameter vector, θ̂(k), at time index k ;
Output: Control input signals uGT , uTPP , and uPV at time index k ;
1) Save: θ̂(k) in centralized computation center ;
2) Update: Parameters of IMG, {Req , Heq , Tf Mea and ...} ;
3) Define: 7-segment triangle MFs and 49 fuzzy rules based on Table II;
4) Recieve: ∆f and (∆f/∆t) at each time index k ;
5) Start: Adaptive fuzzy control mechanism;
for k = 1 : 1 : [time interval]/ Ts do

Initiate: {K1, K2, α′, β′} based on Lyapunov function V (t) ;
Calculate: ε(t) = ∆f0 −∆f ;
Update: Patterns of 7-Triangles MFs ;
Minimize: ε(t) based on 7-Triangle MFs ;
Update: uGT , uTPP , and uPV at time index k.

end

VI. RESULTS AND DISCUSSION

This section evaluates the collaboration between the proposed
system identification and adaptive mitigation schemes under different
attack scenarios by real-time simulations, whose framework is shown
in Fig. 9. This framework consists of OPAL-RT-5650 as a real-time
simulator (RTS) with the aim of simulating components of the IMG,
system identification methods to estimate the IMG parameters, and
the proposed adaptive control mechanism to update control input
signals for RESs. The time step for this framework is set to 0.05
s. To build up this framework, first, the IMG model is implemented
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Figure 10. Online estimation of equivalent droop speed governor (Req).

Table IV. EVALUATION OF PROPOSED ESTIMATION METHOD FOR Req .

λ0 σ0 Cov t0 ts IAE ISE

0.6911 1.75×108 1 1.35 0.3 2.3×10−2 1.79×10−4

1.0 1.75×108 1 1.9 0.3 3.6×10−2 8.13×10−4

0.4 1.75×108 1 0.75 0.3 5.2×10−2 5.09×10−3

0.6911 1.0×1030 1 0.55 1.36 5.7×10−2 2.58×10−3

0.6911 1.0×103 1 0.75 1.2 6.3×10−2 4.78×10−3

0.6911 1.75×108 0 0.95 N.A. 5.0×10−1 1.82×10−1

in RT-LAB software, and several subsystems, including computation
and graphical user interface (GUI), are allocated to different cores of
the RTS. These subsystems are converted to C program and loaded
on this equipment. Finally, the proposed system identification and
adaptive mitigation strategies are simulated in the RTS, and results
are shown.The numeral parameters of the IMG are represented in
Table IV [45]. Additionally, the IMG consists of five GT units with
the droop coefficient value of R1 = 2 pu.s, R2 = 3 pu.s, R3 = 3.5
pu.s, R4 = 2.5 pu.s, and R5 = 4 pu.s, respectively. In line with
the threat model elaborated in Section II, three attack scenarios are
introduced as follows:
Scenario I (physical attack on GTs): The attacker consecutively
targets GTs considering a stealthy manner that induces the outage
of R2, R4, and R1 at t = 7s, t = 12s, and t = 16s, respectively.
Scenario II (cyber attack A, attack on the circuit breaker (CB) of
synchronous generators (SGs)): In this scenario, the attacker com-
promises the CB of SGs consecutively and changes the equivalent
inertia constant of the IMG at t = 6s, t = 9s, and t = 16s in a
stealthy manner to create oscillatory frequency response leading to
severe damage to residential and industrial loads and the early aging
of electric machines.
Scenario III (cyber attack B, time delay on CFMD): The attacker
targets the CFMD and increases the related time constant (Tf Mea)
from its nominal value during three steps at t = 5s, t = 11s, and
t = 17s.

A. Performance of Proposed System Identification
Before discussing anomaly-based IDS, the superiority of the RLS-

FF approach is investigated. In Scenario I, a physical attack is
launched to manipulate gas turbine generators, leading to variations
in the equivalent droop speed governor (Req) used in the physical
layer of the IMG. Considering initial values of R1. . .R5, the
equivalent droop speed governor is calculated by 1 as Req = 0.565.
Based on the threat model, attackers can target GTs by the outage of
R2 at t = 7s, R4 at t = 12s, and R1 at t = 16s, respectively. Fig. 10
shows the variation of this parameter, which has changed from 0.565
to 1.866 during 3 steps. During such an attack on the IMG, the
main aim of the RLS-FF approach is to estimate this variation
and provide enough information for LFC centralized control unit to
stabilize the IMG after any changes in IMG’s topology. To improve
the performance of the estimation process, the selection of λ0, σ0,
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Figure 11. Online estimation of equivalent inertia constant (Heq).
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Figure 12. Online estimation of time constant for CFMD (Tf Mea).

and Cov is carried out by the GWO. The impacts of different values
of λ0, σ0, and Cov on the estimation of Req have been illustrated
in Fig. 10. The results of the least square (LS) method, which is
known as a non-recursive identification approach [40], have been also
shown. It is clear that the recursive feature yields more acceptable
performance in the estimation of Req . In brief, collected results are
listed as six modes for each system parameter in Table IV. According
to these results, different estimations of Req are acquired by selecting
the minimum, maximum, or optimal values of λ0, σ0, and Cov in the
recursive method. However, to have the best estimation performance,
optimal values of λ0, σ0, and Cov are suggested to be 0.6916,
1.75 × 108, and 1, respectively, through the GWO algorithm. In
the optimal mode of estimation, IAE and ISE have less amount of
error compared to the other 5 modes. In the optimal mode, the initial
tracking time (t0) and the average estimation time (ts) for Req are
1.35s and 0.3s, respectively. Moreover, the average estimation time
cannot be obtained for one mode during the estimation of Req in
the case of Cov = 0. The main reason is that the RLS-FF method
is not able to follow the variation of this parameter due to improper
selection of the Cov parameter that is depicted as not applicable
(N.A.) in Table IV. Before launching the attack of Scenario II, the
nominal value of Heq is first considered to be 0.1667 under normal
operations of the IMG. In Scenario II, it is assumed that the attack
must be stealthy and the attacker starts manipulating the CBs of SGs
one after another, removing them and reducing the equivalent inertia
constant to 0.1334 at t = 6s. Afterward, the attacker targets several
CBs at t = 9s and t = 16 which leads to a reduction of this value
to 0.1167 and 0.0917 during 2 steps, respectively. The variation of
Heq and the performance of the RLS-FF approach in estimating this
variable is illustrated in Fig. 11. In scenario III, the attacker increases
the nominal value of this time constant from 0.02 to 0.03 at t = 5s.
Then, this time constant will rise to 0.05 at t = 11s, and the last
change occurs at t = 17s during this period as shown in Fig. 12.
Real-time simulations show that the RLS-FF method can estimate
changes of Tf Mea accurately compared to the LS method.
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Figure 13. Online anomaly-based intrusion detection system for (a) physical
attack on (Req), (b) cyber attack on equivalent inertia constant (Heq), (c)
cyber attack on the time constant of CFMD (Tf Mea).

B. Online Detection

To evaluate the performance of the proposed anomaly-based
IDS, the physical attack in Scenario I is first implemented. Based
on Fig. 13-(a), the estimated value of Req(k) is compared to a
predefined threshold (χ1). This (χ1) is a function of two items:
(i) a ±5% security margin for the nominal value of Req(k) and (ii)
25dB SNR that is added to the nominal value of (Req(k)). Any
deviation more than the permissible range can trigger the comparator
leading to anomaly notification in the IMG. This online detector is
able to trigger the alarm at t = 7s when the first estimated sample
of Req(k) goes over the predefined limits shown by two parallel
lines and reaches 0.695. To assess the effectiveness of the proposed
online detection for attack A proposed in Scenario II, a comparison
is carried out between the estimated value of the IMG equivalent
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on (Req) in scenario I.
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Figure 15. Active power changes for three different energy resources in
case of the IT2FLC.

inertia constant Ĥeq(k), obtained from the RLS-FF approach, and a
predefined threshold (χ2) similar to the previous part. As Fig. 13-(b)
illustrates, the online detector can identify this attack when the first
estimated sample of Heq(k) exceeds permissible ranges at t = 6s
and decreases from its nominal value, i.e., 0.1667 to 0.13314. In
Scenario III, one threshold based on ±5% security margin and 25dB
SNR is also defined to detect a delay attack on the time constant
of the CFMD (T̂f Mea(k)). According to Fig. 13-(c), under normal
conditions, changes of this time constant remain almost constant
between two parallel lines which are defined based on a threshold
(χ3). After the occurrence of a delay attack on Tf Mea and changes
in this system parameter from its nominal value, the detector can
inform about a delay attack on the CFMD of the IMG.

C. Adaptive Mitigation with the help of System Identification
The frequency response is a significant benchmark of system sta-

bility that should be continuously monitored and controlled to avoid
unacceptable deviations. Based on the threat model, adversaries can
manipulate the operation of generation units, corresponding IEDs
such as CBs, and frequency measurement devices with the aim of
compromising the topology of the IMG. To validate the superiority
of the proposed type-2 fuzzy control scheme in the mitigation phase,
three different types of control frameworks, i.e., adaptive type-1
fuzzy, linear quadratic regulator (LQR), and H∞ resilient controllers,
are also deployed and their performance are compared together based
on three scenarios:

1) Physical Attack on Gas Turbine Systems: In Scenario I,
it is assumed that the attackers have enough knowledge about the
location of GTs and wait for a critical moment of operation, i.e., load
disturbances at t = 5s, 10s, and 15s, to launch their physical attack.
Under this attack, the (Req) changes at t = 7s, 12s, and 16s that
leads to oscillations in the frequency response. To meet the frequency
control objectives, the IT2FLC is implemented and its performance
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Figure 16. Multiple disturbances consist of step load changes, solar
irradiation, and tidal power fluctuation.
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Figure 17. Frequency response of IMG in case of the cyber attack on circuit
breakers of SGs in scenario II.

is compared with other controllers. The frequency response of the
IMG during a multi-snapshot of the IMG operating points in case
of the physical attack at t = 7s, 12s, and 16s and changes in
loads at t = 5s, 10s, and 15s is illustrated in Fig. 14. It can be
clearly observed that the collaboration between the adaptive IT2FLC
and online system identification yields a satisfactory performance
compared to the T1FLC, LQR, and H∞ controllers. Since the design
of the LQR is dependent on the operating point, after occurring attack
targeting the IMG topology at t = 12s, the IMG starts to move
toward instability. Moreover, since a specific amount of parametric
uncertainties can be defined for H∞ controller to have a resilient
performance, this controller cannot yield a satisfactory performance
after the attack at t = 16s; however, IT2FLC resolves this challenge
by collaboration with online system identification. According to the
participation of RESs shown in Fig. 15, GTs cannot participate in
the LFC scheme at t = 7s, 12s, and 16s and their power generation
decreases gradually. However, other energy sources, i.e., TPP and
PV, provide adequate active power to prevent frequency collapse
and stabilize the IMG after this attack.

2) Cyber Attack on CBs of Synchronous Generators: In
Scenario II, a reduction in the equivalent inertia constant of the
IMG—induced by the manipulation of CBs—can upshot oscillations
in the frequency response leading to system instability. To show
the performance of the proposed control framework in case of
weather changes, the IMG is also exploited under multi-step loads
at t = 5s, 10s, and 15s, solar irradiation changes, and tidal
power fluctuation whose related patterns are illustrated in Fig. 16.
The performance of mentioned controllers in the mitigation of the
frequency deviation during the attack on Heq at t = 6s, 9s, 16s, and
external disturbances is depicted in Fig. 17. It can be observed that
the LQR controller is not able to mitigate the frequency instability,
so after a decrease in Heq at t = 9s, this response starts to fluctuate
leading to the IMG instability. Moreover, H∞ controller after a
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Figure 18. Frequency response of IMG in case of the cyber attack on central
FMD in scenario III.
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Figure 19. Inter-dependent impacts of different concurrent CPAs on the
stability of IMG

decrease in Heq at t = 16s, cannot stabilize the IMG and has a
noticeable steady-state error.

3) Cyber Attack on Frequency Measurement Devices: In
Scenario III, the time delay on the time constant of central FMD
(Tf Mea) can disrupt the normal operation of the IMG leading to
the oscillatory frequency response. Furthermore, predefined patterns
for multiple disturbances, i.e., load demands at different times, solar
irradiation changes, and tidal power fluctuation, are also assumed
during this attack. To illustrate the superiority of the proposed adap-
tive IT2FLC along with online system identification, its performance
is compared to other controllers in Fig. 18. As can be seen, the
LQR controller can not provide satisfactory performance and the
frequency response starts to oscillate leading to the IMG instability
at t = 5s. Moreover, the H∞ can not provide a stable frequency
response during different operating points, and at t = 17s, the IMG
moves toward the instability area.

D. Multiple CPAs and Scalability
In this section, the impacts of simultaneous physical and cyber

attacks are investigated on the stability of the IMG. Then, the
performance of the proposed mitigation technique is compared with
mentioned state-of-the-art attack-resilient control frameworks in LFC
studies. These considered multiple CPAs are applied to the IMG as
follows:

• A Cyber attack on the central frequency measurement device
(Tf Mea) as well as a physical attack on GTs (Req) are
launched at t = 7s based on the proposed threat model. In
other words, the nominal value of Tf Mea increases from
0.02 to 0.03 at t = 7s, and attackers also target GTs in the
physical layer of the IMG through the outage of R2 = 3pu.s,
at the same time.

• Attackers manipulate the equivalent inertia constant of the
IMG (Heq) and decrease it from 0.1667 to 0.1167 at t = 12s.
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Figure 20. Online estimation of Req for an IMG equipped with 15 gas
turbines to show the scalability of the proposed detection method
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Figure 21. Frequency response of the IMG for a large-scale physical attack
on Req

At the same time, they compromise the time constant of the
CFMD (Tf Mea) and increase its value from 0.03 to 0.1.

According to the results shown in Fig. 19, the LQR and H∞
controllers cannot handle simultaneous cyber and physical attacks
effectively and they fail in the initial moments resulting in IMG
instability. However, the proposed IT2FLC is able to alleviate the
impacts of multiple cyber and physical attacks.

To illustrate the scalability of the suggested detection and mit-
igation techniques, the under-study IMG is first equipped with 15
parallel GTs with droop coefficient values of R1 = 2 pu.s; R2 = 3
pu.s; R3 = 3.5 pu.s; R4 = 2.5 pu.s; R5 = 4 pu.s; R6 = 2.5
pu.s; R7 = 3.5 pu.s; R8 = 4.5 pu.s; R9 = 3 pu.s; R10 = 5 pu.s;
R11 = 2.3 pu.s; R12 = 3.5 pu.s; R13 = 2.8 pu.s; R14 = 3.4 pu.s;
and R15 = 4.1 pu.s. Afterward, a physical attack is launched to
manipulate several GTs that can cause variations in the Req . Based
on the proposed threat model in Section II-A, adversaries result in
the outage of R8 at t = 7s, R10 at t = 12s, and (R14 + R15) at
t = 16s, respectively. Fig. 20 illustrates the changes in Req , which
increase from 0.207 to 0.259 during three steps. In case of such a
physical attack, the RLS-FF approach estimates an accurate value of
Req and provides its updated value for the LFC centralized control
with the aim of keeping the IMG’s stability after any changes in
IMG’s topology. Moreover, the performance of mentioned controllers
in the mitigation of the frequency deviation during the cyber attack
on Req at t = 6s, 9s, 16s, and load disturbances at t = 5s, 10s, 15s
has been depicted in Fig. 21. It can be seen that the collaboration
between the IT2FLC and online system identification delivers an
acceptable performance compared to the T1FLC, LQR, and H∞
controllers. Furthermore, to show the scalability of detection and
mitigation techniques in the presence of renewable energies in the
IMG, it is supposed that adversaries can add delay to the reading
of the frequency measurement device of PV arrays based on the
suggested threat model in Section II-B. Real-time simulations in
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Figure 22. Online Estimation of time constant of PV-FMD (TM−pv)

Fig. 22 illustrate that the RLS-FF method can estimate changes in
(TM−pv) more accurately compared to the non-recursive (LS) and
non-optimal RLS-FF methods.

VII. CONCLUSION

The cyber-dependent structure of IMGs and their sensitivity to
changes in topology make them an appealing target for a variety of
CPAs. In this paper, a new family of physical and cyber attacks on
components of IMG was studied. To detect the mentioned attacks,
the state-space representation of the IMG was first estimated by
the RLS-FF technique and then, anomaly-based detection (IDS)
was developed to identify CPAs and distinguish them from existing
uncertainties in the normal operation of the IMG. Then, an adaptive
fuzzy mechanism, which was able to manage both changes in IMG
topology and a high level of uncertainties, was introduced to mitigate
the detrimental impacts of CPAs. Real-time simulations in the RTS
showed that (i) the developed estimation method can estimate IMG
parameters and deliver a satisfactory online anomaly-based intrusion
detection system (IDS) and (ii) interval type-2 fuzzy logic controller
(IT2FLC) with the help of tidal power plant and photovoltaic panels
can better mitigate CPAs compared to recent attack-resilient LFC
schemes, e.g., linear quadratic regulator (LQR) and H∞ controllers.
In other words, the LQR depended heavily on the operating point
and could not yield an acceptable performance in the case of CPAs
that targeted the IMG topology. Moreover, the H∞ controller was
also resilient against limited parametric uncertainties and the IMG
started to move toward the instability area using the developed H∞
controller.
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