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Dedicato a miei Nonni



“Remember to look up at the stars and not down at your feet. Try to make sense of

what you see and wonder about what makes the universe exist. Be curious. And however

difficult life may seem, there is always something you can do and succeed at. It matters

that you don’t just give up.”

Stephen Hawking

“Logic will get you from A to Z; imagination will get you everywhere.”

Albert Einstein



Abstract

The growing need of integrate renewable energies, such as wind and solar has been driven

by the necessity of reducing air pollutant, reducing greenhouse gases emissions, improv-

ing public health and having energy supply diversification. This need of sustainability

cannot exclude the necessity to guarantee reliability and stability of the electrical power

system, and more specifically Microgrid systems, both in normal operating scenarios and

during unexpected events such as unintentional islanding or fault events. For this rea-

son renewable generation as to be support by intelligent system such as Battery Energy

Storage Systems in order to have an energy reserve able to follow the oscillations of the

renewable energies and to guarantee a stable control of voltage and frequency. These

energy sources are typically connected via power electronics in order to have rapid re-

sponse and degree of freedom to implement several control techniques. But the increase

in the interfacing of energy sources with inverters has contributed to the reduction of

system inertia and this aspect has to be investigated. This thesis proposes a new control

algorithm for Battery Energy Storage System able to provide inertial contribution in

order to mimic the behaviour of a synchronous generator and then a new approach to

adapt this algorithm to fault condition which can cause severe instability of the Micro-

grid.

After a first introduction chapter, Chapter 2 presents the new Virtual Synchronous Gen-

erator control algorithm and some simulations carried out with the dedicated simulation

software DIgSILENT PowerFactory® show the correct dynamic behaviour in normal

operating scenarios. Then Chapter 3 deals with the modification of the proposed control

scheme in order to properly manage symmetrical faults in islanded and grid connected

configuration with a particular focus on the resynchronisation problem. Chapter 4 pro-

poses a complete set of simulations in order to show the excellent results obtained in

this research field. Overall conclusions and final remarks are reported in Chapter 5.

This Ph.D. thesis is an outcome of a scientific research that I have conduct during the

three years long Ph.D. program, in collaboration with and founded by Hitachi Power

Grids.
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Grazie a tutte le belle persone che ho conosciuto nella palestra MSA, ed in particolare

a te Dani, durante un periodo buio le tue lezioni su Zoom erano la salvezza sotto più
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Chapter 1

Introduction

1.1 Virtual Synchronous Generator: State of Art

In the recent years the electricity energy scenario has been the protagonist of impressive

changes due to the strong growth of Distributed Energy Resources (DERs) including,

among others, microturbines, Electrical Storage Systems (ESS), fuel cells and Renew-

able Energy Sources (RES), such as photovoltaic and wind generation [1].

This allows the ensuring of better exploitation of RES, increasing system efficiency and

a lower environmental impact of energy production. On the other hand, many new

technical issues have to be tackled, such as the management of inverse power flows, the

variability of RES generation and the possible deterioration of power quality.

However, the possible aggregation of local generation and loads have given rise to the

generalisation of the concept of Microgrid (MG), i.e. an electricity distribution system

containing loads and DERs that can be operated in a controlled, coordinated way either

while connected to the main power network or while islanded. When an MG operates in

a grid-connected configuration, the interface with the main distribution grid is achieved

via a Point of Common Coupling (PCC).

MGs are usually operated with a hierarchical control architecture divided into three

levels, namely tertiary, secondary, and primary regulation.

The tertiary control level is the so-called Energy Management System (EMS) and this

defines the production of the dispatchable units that minimises the MG operational cost

or other environmental/technical indicators. The EMS operates on long time frames

(e.g., 15 minutes or longer). The two lower layers have different aims depending on

1
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whether they manage islanded or grid-connected MGs. In the grid-connected mode,

primary and secondary control levels are expected to i) perform voltage or frequency

regulation in order to support the grid and ii) to make the DERs provide the active and

reactive powers ordered by the EMS, while variation in load demands is satisfied by the

main distribution grid.

Islanded operation, on the other hand, is much more challenging since the MG controllers

need to provide suitable voltage and frequency regulation and, of course, guarantee the

balance between production and demand. In this framework, the MG control system

needs to replicate the hierarchical structure of the main power grid but on a smaller

scale including a primary layer (that guarantees active and reactive power balance) and

a secondary one (aiming at restoring suitable values for the frequency and voltages.

Achieving the goals of primary regulation becomes even more challenging if all the DERs

are connected to the MG distribution network by means of power electronic devices (usu-

ally referred to as no-inertia MGs). Primary control is typically a communication-less

control layer; it is normally implemented in a decentralized manner in order to properly

control voltage and frequency and/or active and reactive powers [2]. Inner control loops

are adopted to regulate the output voltage and to control the current while maintaining

the system stable. Considering the normative aspect, IEEE Std.1547 [3] clearly defines

the inverter’s primary control functionalities that can be essentially clustered in two

operational configurations (i) Grid-Following Operation or Grid Support Mode (GSM)

and (ii) Grid-Forming Operation. In GSM, the inverter is controlled as a current source

in which the main control goals are to supply the load connected to the MG and to

participate in frequency and voltage support [4, 5]; for these reasons, GSM is the typical

configuration in grid-connected state. Just to propose some examples of BESS around

the world used for Grid Support, it is possible to mention that the electricity utility

installed a 3 MW/750 kWh lead–acid battery system in Alaska, as spinning reserve, in

order to mitigate the curtailment of energy from wind farms and to provide frequency

response within 0.5 s [6]. In Illinois, a 31.5 MW battery storage was located near a wind

farm project and solar plant to provide fast frequency response as well as other ancillary

services. Similarly, Australia’s energy market operator contracted Tesla’s 100 MW/129

MWh lithium-ion battery in Hornsdale. This battery was considered the largest ESS

when it was built and it provides frequency control and participates in the ancillary

services market [7]. In Germany, it was recognized that BESS can play an active role

in providing fast frequency response: in 2017, BESS systems provided about 200 MW
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of Frequency Containment Reserve, about 31% of the market. In Italy, to date, only

significant thermal and programmable hydroelectric plants (i.e., larger than 10 MVA)

compulsory provide ancillary services. On the contrary, Grid-Forming Operation is

typically exploited in islanded mode where the inverter can be either the voltage and

frequency master (stand-alone mode) or allow parallel operations with other DERs.

An obvious consequence of this high penetration of inverter-interfaced DERs is the re-

duction of total inertia and damping because most of the proposed control methods

for Grid-Forming inverters, e.g., droop control methods [8], provides barely any inertia

or damping support for the MG. For this reason, one of the most performing primary

control technique for Grid-Forming inverters is the Virtual Synchronous Machine or

Virtual Generator Mode (VGM) [9], where the control acts on the inverter in order to

mimic the dynamical behaviour of a traditional synchronous generator [10–13], virtually

adding some inertia and frequency damping to the system and accordingly, improving

MG stability [14] and , since inertia response is the result of rotating heavy mass and

it is proportional to the rotor speed, the VGM concept can also directly improve the

frequency response [15, 16]. In [17–19], the VGM primary control is developed using the

complete model of the synchronous generator and this makes the algorithm complex and

the controller tuning difficult. Simpler design models for the VGM control are proposed

in [20–23], where only the inertial behaviour of a synchronous generator is considered by

imposing the swing equation in the primary controller. In [24], a VGM control technique

is proposed showing how it can theoretically provide all the required functionalities of

Grid-Forming inverters (according to IEEE Std.1547) and also presenting some practi-

cal applications of VGM control technique for Battery Energy Storage System (BESS)

around the world.

So it is clear that the VGM approach to the converter control is an interesting and

challenging field for academic and industrial research and several aspects need to be

investigated and need to have reliable and practicable solutions. One of the most inter-

esting field on VGM algorithms is the study of their behaviour during faults and this is

meticulously detailed in the following section.
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1.2 Virtual synchronous generator algorithm during faults:

an overview

Today electricity energy production mainly comes from centralized power plants, which

thanks to their large rotational inertia, are able to provide the main grid high transient

stability and robust performance. However, a large number of DERs connected via

inverter can negatively affect the network stability when disturbances and faults occur.

The VGM strategy can contribute to the creation of inertia and damping effect and solve

the issues related to frequency deviations [25–27]. Moreover, it has been demonstrated

that VGM can be integrated with droop characteristic, and thus, such VGM inherited the

advantages of droop control, for instance, proper load sharing among parallel-connected

DERs. Still, other concerns exist over grid stability under the large DERs penetration.

One of the most important concerns is the interrupted/unstable operation in the DERs

system due to the effect of transient disturbances on the utility grid [28–30]. Without a

proper countermeasure, the whole grid could suffer from a large imbalance between the

power supply and power demand. According to several grid codes, the requirements for

Low Voltage Ride Through (LVRT), state that for fault of a given duration and with

voltage drop larger than a specific value of rated voltage, the DER converters have to

remain connected and guarantee the following requests:

� The converter has to limit the output current when a fault occurs both in GSM

and VGM operating modes;

� Ride-through behaviour during low voltage conditions is required;

� When the converter is in islanded configuration, it must be able to restore the

voltage level of the pre-fault operating point;

� When the converter is connected to an external grid or to a diesel generator, it

has to resynchronize when the fault is cleared.

This indicates that in such an event of a fault, the DER converter must not be tripping.

Nevertheless, unlike a conventional generator, semiconductor switches in the inverter-

based DERs system cannot tolerate over-current condition due to their low thermal

inertia [31]. Therefore, the fault must be quickly detected to prevent over-current in
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the inverter and equipment connected to the grid. However, the LVRT ability of VGM

based converter has not yet been thoroughly analysed.

For instance, a current restraining method under the balance voltage sag was presented

in [32] based on control mode switching; however, it faces a challenge of managing the

transition between normal mode and over current mode during and after fault condition,

especially against the case of asymmetrical voltage sag, where the current becomes os-

cillatory under the unbalanced condition. But in this case the proposed VGM algorithm

uses active and reactive power references, so there is the need of a PLL to generate

current references and for this reason it can not work independently.

In [33], evaluation of voltage sag consequences and current suppressing strategy was

conducted for both symmetrical and asymmetrical voltage sags; however, only the case

of mild voltage sag (over 0.9 pu) was studied in the presented work. Recently, a grid-

connected based DER that uses voltage references provided by VGM to achieve current

control via virtual admittance is proposed in [34]. Although the referred control is able

to cope with unbalanced faults, since the issue of over-current limiting was not addressed

specifically, it is undetermined whether the dynamic response of the method in [34] is

quick enough to deal with over current condition.

Another way to deal with over-current limiting in VGM is to use multiple loop control

of voltage and current, and the current limiting can be implemented in the inner cur-

rent control loop by simply limiting current reference as proposed in [35]. However, to

ensure stability in all operating conditions, tuning of Proportional–Integral-Derivative

(PID) has to be done appropriately, which can be challenging when a number of DERs

are connected together. Wind-up and waveform clipping can be also the disadvantages

of this method. Furthermore, when multi loop control is connected to another volt-

age source, the control has a problem with active and reactive power regulators during

and after disturbance. Moreover, it is possible to point out that maintaining stability

after disturbances and exiting current limiting are other issues for multi loop control.

In the literature, other types of current limiting strategies are proposed, which can be

accomplished in the voltage control loop. These current-limiting methods are typically

accomplished by reducing the voltage magnitude when the current exceeds a thresh-

old [36] or by a current-limiting PID controller [37]. Adopting these methods in VGM

control, however, could lead to another shortcoming, because a complicated strategy to

guarantee current limits during fault and the restoring of previous current value can be

required.
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Considering all these aspects, the aim of this thesis is to present a new VGM algorithm

which can guarantee optimal performances in normal operation scenarios and in fault

conditions in order to satisfy all grid code requirements. The thesis is organized as

follows: Chapter 2 presents the new Virtual Synchronous Generator control algorithm

and some simulations carried out with the dedicated simulation software DIgSILENT

PowerFactory® to show the correct dynamic behaviour in normal operating scenarios.

Then Chapter 3 deals with the modification of the proposed control scheme in order to

properly manage symmetrical faults in islanded and grid connected configuration with

a particular focus on the resynchronisation problem. Chapter 4 proposes a complete

set of simulations in order to deeply discuss the performances obtained in this research

field. Overall conclusions and final remarks are reported in Chapter 5.



Chapter 2

Virtual Synchronous Generator

Control Algorithm

Brief: This chapter proposes the design of a comprehensive inverter BESS (Battery Energy

Storage System) primary control capable of providing satisfactory performances both in grid-

connected and islanded configurations as required by international standards and grid codes,

such as IEEE Std. 1547. Such a control guarantees smooth and fast dynamic behaviour of

the converter in islanded configuration as well as fast power control and voltage-frequency

support in grid-connected mode. The performances of the proposed primary control are

assessed by means of Electro Magnetic Transients (EMT) simulations in the dedicated software

DIgSILENT PowerFactory®. The simulation results show that the proposed BESS primary

control is able to regulate frequency and voltage in Grid-Forming mode independently of

the number of paralleled generators. This is achieved adopting a virtual generator technique

which presents several advantages compared to the conventional one. Moreover, the proposed

control can be switched to Grid Support Mode (GSM) in order to provide fast control actions

to allow frequency and voltage support as well as power control following the reference signals

from the secondary level.

Personal contribution: I developed the control system and performed simulations in the

dedicated simulation software.

As explained on Chapter 1, the aim of this chapter is to present a new primary control

for BESS converter based on the concept of the virtual synchronous generator, able

to guarantee relevant performances in grid-connected and islanded configurations, and

more precisely:

7
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� Regulation of frequency and voltage in Grid-Forming mode independently of the

number of paralleled generators using the VGM technique in order to mimic the

dynamic behaviour of synchronous generators;

� Ability to guarantee MG black-start in Grid-Forming mode;

� Correct active and reactive power sharing in parallel with other DERs;

� Fast control actions in grid-connected mode to allow providing frequency and volt-

age support (GSM) as well as power control following the reference signals from

the secondary level control;

� Synchronization and connection of the BESS to the external main grid or to other

DERs in islanded mode with minimum transients.

The results will show that the new primary control proposed in this thesis is also in-

teresting not only from an academic point of view, but also from an industrial one for

these aspects:

� The BESS converter is able to work both in VGM and in GSM guaranteeing the

possibility to work in parallel with other DERs or to an external main grid;

� The primary control can be switched from Grid-Forming mode to Grid-Support

mode and vice versa without converter power interruption;

� Considering the Grid-Support mode, the proposed control is able to provide fast

actions to the MG because this functionality is implemented in the primary level

and not in the secondary one;

� When the support to the MG is not necessary, the control is able to use control

signal coming from the secondary level control in order to satisfy other tasks re-

ported in IEEE Std. 1547 such as State of Charge management, power smoothing,

and compliance with power flow constraints imposed at the connection point with

the external Main Grid (peak lopping);

� Considering the Grid-Forming operating mode, the proposed VGM technique is a

PI-based one, which means that the tuning procedure can be easily managed by

operators and not just by control engineers. In summary, all these aspects and the
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level of detail in which they have been implemented and presented in this thesis

represent the main contribution of the work and a good starting point for actual

implementation on industrial controller (which is the final aim of the Hitachi Power

Grids/University of Genoa’s final goal).

Finally, it is important to highlight that in the present work the DC part of the BESS

converter is modelled as an ideal voltage source. This is a common practice when dealing

with the converter primary and inner loops control, in fact the fast dynamics involved

are not relevant for the State of Charge of the battery. More precisely the primary

control level and inner control loops work on the time scales of seconds and milliseconds

respectively, and so in these time scales the State of Charge can be considered constant

[10].

2.1 Primary Control Method Description

The aim of this section is to provide an effective description of the proposed primary level

BESS control: as stated before, it can provide a proper BESS converter regulation both

in Grid-Forming and Grid-Support operating modes as it will be detailed in the following

subsections. As one can see from figure 2.1, the BESS converter has a R-L-C filter at its

output (Rf , Lf , and Cf ) and the primary control needs some measurements from the

field in order to guarantee optimal performances in the two operating modes. In detail,

these measurements are active power PBESSmeas and reactive power QBESSmeas at the output

of the BESS converter, the RMS value of the controlled voltage Vmeas, the controlled

frequency fmeas and phase angle θmeas coming from a Phase Locked Loop (PLL) control

function synchronized at the connection bus to the MG. The output of the BESS primary

control are the reference voltages vαref and vβref in the α−β stationary reference frame for

the Grid-Forming operating mode and the d-q reference frame currents iGSMd,ref and iGSMq,ref

for the Grid-Support operating mode. In order to generate the control signals for the

BESS converter vinvd,ref and vinvq,ref , voltage and current control loops are mandatory, more

precisely when the Grid-Forming operating mode is required, voltage and current control

loops are used in a cascade configuration, while in Grid-Support operating mode only

the current control loop is required. In the next subsection, VGM and GSM techniques

as well as voltage and current control loops are described in detail.
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Figure 2.1: Proposed BESS (Battery Energy Storage System) primary control scheme.

2.1.1 Grid-Forming Operating Mode: VGM

Considering the Grid-Forming operating mode, the VGM technique presented in [24] is

exploited and its control block diagram is reported in figure 2.2 where AVR (Automatic

Voltage Regulator) and Rotor Flux Model make the reactive power/voltage magnitude

similar to that of a synchronous generator. More precisely, the Rotor Flux Model,

modelled as an integrator with a gain KΨ, responds to the reactive power QBESSmeas at the

output of the inverter with an initial voltage variation of V V GM
ref to model the machine

flux variation through the following virtual electrical dynamic equation:

dV V GM
ref

dt
= KΨ

(
QBESSAV R −QBESSmeas

)
(2.1)

where QBESSAV R is the control action of the BESS converter AVR. Then, the AVR brings

the RMS voltage at the output of the inverter Vmeas back to its set point Vset. Similarly,

the Inertia model and the Frequency Governor make the VGM similar to a synchronous

generator active power/frequency dynamics. In particular, the Inertia model, described

by an integrator and by two gains KH for the inertia itself and Kd for the damping

effect, reacts to the active power PBESSmeas at the output of the inverter, drawing energy

from the inertia and slowing the rotational speed of the virtual generator ωV GMref using

the following virtual mechanical dynamic equation:

dωV GMref

dt
= KH

(
PBESSGOV − PBESSmeas −Kdω

V GM
ref

)
(2.2)
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where PBESSGOV is the regulating action of the BESS converter Governor. Then, the

Governor brings back the frequency fmeas to its set point fset. To allow operation

in parallel with other sources, the control includes droop factors mdroop and ndroop to

achieve power sharing control in the steady state; while for stand-alone operation, the

droop coefficients are usually set to zero. Then, in order to guarantee the black-start

capability [38] of the MG using the BESS, two different selectors are implemented in the

control diagram:

� If the measured RMS voltage Vmeas is zero, the primary control is able to under-

stand the necessity to provide a black-start procedure; so, imposing the logic signal

named Bl-St equal to 1, the VGM channel is bypassed and the MG is energized

using a ramp voltage reference V Bl−St
ref and the rated angular frequency ωn.

� When the voltage reaches a specific percentage k% of the rated voltage Vn, the

VGM control channel is activated (reset of the control integrators) and the selectors

switch to the VGM control actions V V GM
ref and θV GMref .

Finally, the control actions are transformed in the α− β stationary reference frame. As

a final remark, it is worth pointing out that the tuning procedure of the VGM control

is based on a “trial and error” strategy due to the intrinsic simplicity of the proposed

primary controller. For example, the inertia parameter KH of the virtual generator is

set in order to have a precise frequency dynamic after an active power step. Then, the

governor parameters are set in order to guarantee a desired time response.

2.1.2 Grid-Support Operating Mode: GSM

Considering now the grid-connected operating mode, the proposed control must provide

fast control actions to allow frequency and voltage support (GSM-fV ) as well as power

control following the reference signals from the secondary level control (GSM-PQ). To

meet these control requests, the block diagram in grid-connected mode is depicted in

2.3.

In grid-connected mode, the BESS inverter is controlled starting from the measurements

of frequency and voltage at the inverter output, i.e., fmeas and Vmeas, respectively. Based

on an error between measurements and respective set points, it is possible to carry
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Figure 2.2: Proposed VGM (Virtual Generator Mode) control model for Grid-Forming
operating mode.

Figure 2.3: Proposed GSM (Grid Support Mode) control diagram in grid-connected
operating mode.

out the target values of active and reactive powers PGSM−fVref and QGSM−fVref through

user-defined P-f envelope curve and Q-V envelope curve, respectively. Considering,

for example, the P-f envelope curve, it is described by maximum (PGSM−PQref,max ) and

minimum (PGSM−PQref,min ) active power references and by threshold frequency errors ±∆f1

and ±∆f2. The same characterization is done for the Q-V envelope curve. As stated

before, the control also gives the possibility to track the reference values coming from the

secondary level regulation, i.e., PGSM−PQref and QGSM−PQref , so the two blocks “P setpoint

aggregation and limits” and “Q setpoint aggregation and limits” are implemented. Then,
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the d-q axis currents set points iGSMd,ref and iGSMq,ref are generated by closed-loop controllers

which use the voltage measurement Vmeas. Then, they are processed by the BESS

inverter Current controller as depicted in figure 2.1.

2.1.3 Voltage and Current Inner Control Loops for L-C Filter

In this subsection, the inner control loops of the BESS converter are presented in order

to provide a detailed description of the entire control system. Voltage control loop is

depicted in figure 2.4, and as one can see, it is based on PI regulators described by

proportional gain KPV and integral gain KIV . Its main control objective is to regulate

the output voltage of the inverter by minimizing the errors between the references vBESSd,ref ,

vBESSq,ref and the measurements vBESSd , vBESSq . The outputs of the voltage controller are

the inverter output current references iV GMd,ref and iV GMq,ref . The Park transform adopted is

the following:

K(θp) =
2

3


cos (θp) cos

(
θp −

2

3
π

)
cos

(
θp +

2

3
π

)
− sin (θp) − sin

(
θp −

2

3
π

)
− sin

(
θp +

2

3
π

)
1

2

1

2

1

2

 (2.3)

In order to decouple the d-q axis in the voltage controller it is necessary to insert some

feed-forwards actions; considering the voltage-current relation for the filter capacitor Cf

below:

Cf
dvBESSABC

dt
= iinvABC − iBESSABC (2.4)

it is possible to perform the Park transformation as follows:

K(θp)Cf
dK−1(θp)v

BESS
dq0

dt
= K(θp)

(
iinvABC − iBESSABC

)
(2.5)

and after some calculations, it is possible to write:

Cf
dvBESSdq0

dt
+ ωnCf


0 −1 0

1 0 0

0 0 0

 vBESSdq0 = iinvdq0 − iBESSdq0 (2.6)
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and consequently:

Cf
dvBESSd

dt
= iinvd − iBESSd + ωnCfv

BESS
q (2.7)

Cf
dvBESSq

dt
= iinvq − iBESSq − ωnCfvBESSd (2.8)

Considering equations (2.7) and (2.8) it is possible to write the two feed-forward actions

iff,d and iff,q for the two regulating channels:

iff,d = iBESSd − ωnCfvBESSq (2.9)

iff,q = iBESSq + ωnCfv
BESS
d (2.10)

Moreover, Virtual Impedance strategy is added to the voltage control loop through alge-

braic manipulation of the α−β voltage reference signals coming from primary controller

as follows:

vαref,v = vαref −
(
Rvi

BESS
α −Xvi

BESS
β

)
(2.11)

vβref,v = vβref −
(
Rvi

BESS
β +Xvi

BESS
α

)
(2.12)

with Rv and Xv being virtual resistance and reactance, respectively. This modification

enables the output impedance to be set (by parameters, or adaptively) and this is usu-

ally made predominantly inductive to ensure a strong coupling between active power

and frequency, a strong coupling between reactive power and voltage and an inherent

decoupling between these two relationships, even in LV MG.

Figure 2.4: Voltage controller for BESS converter.

Current control loop is instead depicted in figure 2.5: due to the fact it is used not

only in VGM, but also in GSM operating mode, two selectors are implemented in order

to choose the d-q current references coming from the VGM (iV GMd,ref and iV GMq,ref ) or from

the GSM (iGSMd,ref and iGSMq,ref ). The current controller is based on PI regulators described
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by proportional gain KPC and integral gain KIC and it acts on the system in order to

control the converter output current by minimizing the errors between the references and

the measured current described by iinvd and iinvq . The outputs of the current controller

are the inverter voltage modulation signals in the d-q reference frame vinvd,ref and vinvq,ref .

In order to implement feed-forward actions for the channels decoupling the first step is

to write the Kirchhoff law for the filter:

Lf
diinvABC
dt

= vinvABC −Rf iinvABC − vBESSABC (2.13)

performing the Park transform as follows:

K(θp)Lf
dK−1(θp)i

inv
dq0

dt
= K(θp)

(
vinvABC −Rf iinvABC − vBESSABC

)
(2.14)

and after some calculations as done for the voltage controller is possible to write:

Lf
diinvd
dt

= vinvd −Rfiinvd − vBESSd + ωnLf i
inv
q (2.15)

Lf
diinvq
dt

= vinvq −Rfiinvq − vBESSq − ωnLf iinvd (2.16)

Considering equations (2.15) and (2.16) it is possible to write the two feed-forward

actions vff,d and vff,q for the two regulating channels:

vff,d = vBESSd − ωnLf iinvq (2.17)

vff,q = vBESSq + ωnLf i
inv
d (2.18)

2.2 DIgSILENT PowerFactory® Model for Testing

2.2.1 Synchronous Diesel Generator Model for Paralleling Operation

As stated in the introduction section, the proposed BESS control is implemented in

the widely used power system simulator DIgSILENT PowerFactory® in order to have

reliable and high-fidelity simulation results. Due to the fact that in Grid-Forming op-

erating mode the BESS inverter must be the voltage/frequency master in stand-alone
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Figure 2.5: Current controller for BESS converter.

configuration and must allow parallel operations with other DERs, a Synchronous Diesel

Generator (SDG) model has been included in the simulated power system; the SDG

model is briefly described below starting from the conceptual model depicted in figure

2.6. As one can see, it consists of three main elements: Synchronous Generator EMT

Figure 2.6: Synchronous Diesel Generator (SDG) conceptual model.

model is available from PowerFactory library [39], while the Diesel Engine with Gover-

nor and Excitation System models are depicted in figure 2.7 and figure 2.8, respectively.

The frequency-active power regulation of the SDG is realized using a Governor whose

inputs are the electrical speed fSDG and the active power measurement PSDGe . Droop

coefficient fdroop is implemented to guarantee the correct power sharing in islanded mode
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Figure 2.7: Diesel Engine and Governor model for the SDG.

Figure 2.8: Exciter and Automatic Voltage Regulator model for the SDG.

and in parallel with the BESS unit. A PID regulator generates the torque input for the

diesel generator, which is modelled by the combustion gain Kc, the fuel dynamics time

delay Tr, and by a first order dynamic where Ta models the engine fuel system time

constant. The voltage-reactive power regulation is performed by an AVR where RMS

voltage and reactive power measurements are the inputs and where the droop logic is

implemented by the use of the coefficients udroop. The AVR output is then processed by

the exciter, which is modelled by a first order dynamic with time constant equal to Tex

[40].

2.2.2 Test MG Layout and Parameters

In order to test the performances of the proposed BESS primary control, the test case

MG reported in figure 2.9 is used. The main element in the MG is the BESS unit, which

is connected to the MG via inverter. The storage component of the BESS is modelled

as ideal DC voltage source and so its internal dynamics are neglected. Similarly, the
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inverter model, provided by DIgSILENT PowerFactory® library, is considered as an

ideal controlled AC voltage source. The inverter is interfaced to the MG with a R-L-C

filter modelled by the parameters Rf , Lf and Cf , respectively, and with a unitary-ratio

transformer TBESS . The SDG exploits the DIgSILENT PowerFactory® synchronous

generator model and it is connected to the MG Point of Common Coupling (PCC)

using longitudinal impedance ŻSDG. An external grid is connected to the MG through

a medium voltage/low voltage transformer TMV−LV in order to test the Grid support

and the paralleling functionalities. Load centre bus is connected to the PCC with a line

Żline while Load1 is connected to Load centre bus using a cable Żcable. MG data are

reported in table 2.1.

Figure 2.9: Test case microgram (MG) one-line diagram.

BESS Data SDG Data Load Data Impedances at fn

ABESS=500 kVA ASDG=1250 kVA Pn(Load1)=300 kW ŻSDG = 0.007+j0.0008 Ω

Vn=400 V (AC-side) cosφn=0.8 Qn(Load1)=100 kVAr Żline = 0.014+j0.0016 Ω

fn=50 Hz Vn 400 V Pn(Load2)=50 kW Żcable = 0.0037+j0.004 Ω

Rf=0.044 Ω fn 50 Hz Qn(Load2)=0 kVAr

Lf=0.088 mH

Cf=50 µF

Table 2.1: Test case microgrids (MG) parameters.
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2.3 Simulations Results

2.3.1 Black Start and Load Step in a Stand-Alone Configuration

This is the first functionality that the BESS primary control has to satisfy. IEEE 1547.4

Std. gives a clear definition of the black-start, i.e., the ability to start local generation

with no external source of power. During this phase, the main grid and the diesel

generator are disconnected from the MG and no load is connected. As described in the

previous section, the BESS is controlled in Grid-Forming operating mode and the VGM

control is bypassed imposing voltage and frequency reference signals. As one can see

from 2.10, the three-phase voltages at the controlled node of the MG perfectly follow

the ramp reference signal Vref , and the zoomed box highlights the correct dynamic

behaviour when the VGM control channel is activated with the switch of Vref from

V Bl−St
ref to V V GM

ref and of θref from θBl−Stref to θV GMref and with the reset of the integrators

of the VGM control. When the black-start procedure ends (the ramping time is defined
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Figure 2.10: Controlled BESS bus voltage time profiles during black-start procedure.

through a parameter and in this case it was chosen to last 1 s), a load step event is

implemented in the simulation in order to test the dynamic response of the BESS in

VGM mode in terms of voltage and frequency in a stand-alone configuration. As one

can see from figure 2.11, after the load step occurred at t = 4s, frequency and voltage
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have a time profile in which it is possible to note the effects of the inertia model and

of the governor regulating action for the frequency and of rotor flux model and AVR

regulating action for the voltage. In this simulation, the droop coefficient mdroop and

ndroop are equal to zero because the power sharing functionality is not required in a

stand-alone configuration, and for this reason, after the transient, frequency and voltage

return to their rated values (namely 50 Hz for the frequency and 400 V for the voltage).

Moreover, it is possible to notice the effect of the virtual impedance implemented in the

voltage control loop of the converter; in fact, in the final steady state, the reference value

V V GM
ref is greater than the controlled inverter output voltage Vmeas. Finally, figure 2.12

reports the active and reactive powers’ time profile after load step contingency (Pload

and Qload), and it is possible to see how the BESS is able to supply the load power

request with a fast and smooth dynamic response.
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Figure 2.11: Frequencies (first panel) and RMS (Root Mean Square) voltages (second
panel) time profile during load step in stand-alone configuration.
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Figure 2.12: Active (first panel) and reactive (second panel) powers’ time profile
during load step in stand-alone configuration.

2.3.2 VGM Operating Mode With Setpoints Variation

As stated in the introduction, when the VGM operating mode is activated, the BESS

converter has to provide fast regulation of voltage and frequency. In these simulations,

the main grid is connected to the MG and the load request is totally fed by the main

grid. The BESS converter is then connected to the MG in Grid-Forming operating mode

without active and reactive powers production. In order to highlight the advantages of

the proposed VGM control technique, a comparison with the conventional droop control

for Grid-Forming operating mode is shown. When this conventional control technique is

adopted, all the macro blocks of the proposed controller (i.e., the AVR, the Rotor Flux

Model, the Governor and the Inertia Model) are bypassed avoiding all the dynamics

introduced by the virtual generator scheme. So, the control signals Vref and θref with
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the conventional droop control technique become:


Vref = Vset − ndroopQBESSmeas

θref = 2π
∫ [
fset(s)−mdroopP

BESS
meas (s)

]
ds

(2.19)

The first simulation results are depicted in figure 2.13: in this scenario, the frequency

setpoint fset is fixed at the MG rated value, while the voltage setpoint Vset changes

from 400 V to 410 V at t = 2s then from 410 V to 390 V at t = 6s and finally from

390 V to 400 V at t = 10s. As one can see, the set point is correctly followed by the

controlled RMS voltage Vmeas with good time response and minimum overshoots (the

droop parameters mdroop and ndroop are equal to zero in this simulation since there are

no other DERs to share the load request). The second panel shows instead reactive

powers time profile, and it is possible to see that an increase/decrease of the controlled

voltage corresponds to a BESS converter reactive power production/absorption, which

is balanced by the main grid, due to the strong coupling between voltage and reactive

power. Considering the comparison, the conventional droop control has a faster time

response because there is no effect of the virtual generator dynamics, but it has two

main drawbacks: (i) voltage steady-state errors due to the absence of an AVR in the

droop control to compensate the effect of the virtual impedance implemented in the

voltage controller (the greater the output current of the BESS converter, the greater

the voltage steady-state error, as apparent in equations (2.11) and (2.12)) and (ii) large

initial overshoots in the reactive power time profiles as detailed in figure 2.14. Then, in

order to test the possibility of managing the BESS converter active power production by

changing the frequency setpoint, in the second scenario the voltage setpoint Vset is fixed

to the rated value while the frequency setpoint fset changes from 50 Hz to 50.1 Hz V at

t = 2s, then from 50.1 Hz to 49.9 Hz V at t = 6s and finally from 49.9 Hz to 50 Hz at

t = 10s. Due to synchronism with Main Grid requirement, the frequency droop factor

mdroop is activated. As one can see from Figure 15, the frequency setpoint is not tracked

(first panel), but varying its value it is possible to correctly manage the BESS active

power production (second panel), which is correctly balanced by the Main Grid. Also,

in this test case, conventional droop control guarantees a faster active power regulation

due to the lack of the virtual inertia of the VGM control technique but, as one can see

from Figure 16, the droop control creates a greater frequency variation in the very first

transient.
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Figure 2.13: Voltage (first panel) and reactive powers (second panel) time profiles
with voltage setpoint variations with Virtual Generator Mode (VGM) (solid lines) and

conventional (dotted lines) techniques.
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Figure 2.14: Detail on the comparison between the proposed technique (solid lines)
and conventional droop control (dotted lines).
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Figure 2.15: Frequency (first panel) and active powers (second panel) time profiles
with frequency setpoint variations with VGM (solid lines) and conventional (dotted

lines) techniques.
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Figure 2.16: Detail on the comparison between the proposed technique (solid lines)
and conventional droop control (dotted lines).
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2.3.3 Paralleling Action and Load Sharing

The aim of this simulation is to show how the BESS converter can be connected to

an islanded MG where a diesel generator is already on-line in Grid-Forming operating

mode and to also show the correct power sharing functionality. As one can see from

figure 2.17, at t = 0.1s a live-start of the BESS converter is activated: the controlled

voltage (vBESSAn , vBESSBn , vBESSCn ) starts to follow the connection bus voltages (vMG
An ,

vMG
Bn , vMG

Cn ) and, at t = 0.2s, the phase reference output of the primary control θV GMref

is synchronized with the measured phase angle θmeas at the connection bus to the MG.

Finally, at t = 0.25s, the AC-breaker of the BESS converter is closed and in figure 2.18

is possible to notice a really limited power transient quantifiable in a transient current

less than 1 % of the BESS-converter-rated value current. Then in order to test the
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Figure 2.17: Voltage (first panel) and phase angles (second panel) during synchro-
nization with MG.

proper active and reactive power sharing between the diesel generator and the BESS, a

load step contingency is implemented at t = 4s. Figure 2.19 shows active and reactive

powers time profile and it is possible to highlight the correct active and reactive power

sharing according to the rated apparent power of the two units. The proper active power
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Figure 2.18: Active (first panel) and reactive (second panel) powers time profile
during paralleling procedure.

sharing can be guaranteed by the relation ABESSmdroop = ASDGfdroop, while a correct

reactive power sharing can be achieved if the droop factors ndroop for the BESS and

udroop for the diesel generator are correctly set in order to overcome the mismatch in the

connection impedances to the MG of the two units. The virtual impedance Rv + jXv

affects the reactive power sharing only during the transient, because in steady state its

effect is nullified out by the BESS AVR regulating action on the controlled voltage Vmeas.

Instead, figure 2.20 shows frequencies and RMS voltages time profile during the load step

contingency and it is possible to highlight the inertial behaviour of the BESS converter

and voltage and frequency deviations from the respective rated values according to the

droop logic in the proposed primary control.

2.3.4 Grid Support Action

In this subsection, the results of the BESS converter controlled in GSM operating mode

are presented in detail. The first simulation is carried out in order to test the correct

behaviour of the proposed primary control in GSM-fV, i.e., when the active/reactive
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Figure 2.19: Active (first panel) and reactive (second panel) powers time during load
step in paralleling configuration.
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during paralleling procedure.
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power references come from the envelope curves. In order to highlight the positive

effects of the BESS converter in support mode, two different MG configurations are

considered:

� In the first configuration, the BESS converter is not connected to the MG. Two

different loads, namely Load1 and Load2 are connected to the MG with Pload,1 =

300kW , Qload,1 = 100kV Ar and Pload,2 = 50kW (pure resistive load). Loads are

supplied by the SDG, while the main grid is disconnected.

� In the second configuration, the BESS is connected to the MG in GSM-fV mode

ready to provide voltage and frequency support after MG contingencies. At t = 2s,

Load1 is disconnected to the MG and simulation results are depicted in figures 2.21

and 2.22.
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Figure 2.21: Active powers and Point of Common Coupling (PCC) frequency in
GSM-fV mode.

As one can see after the load disconnection, MG frequency fPCC and voltage V PCC

(measured at PCC) start to increase: if the BESS is connected in GSM mode, when

voltage and frequency exceed the threshold values ∆f1 and ∆V1, respectively, the BESS
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Figure 2.22: Reactive powers and PCC voltage in GSM-fV mode.

converter starts to absorb active and reactive power according the implemented envelope

curves. It is easy to notice that the dynamic response in terms of frequency and voltage

with BESS converter controlled in GSM-fV mode (solid lines) is better with respect to

the response without BESS connected to the MG (dashed lines). Finally, figure 2.23

shows the correct response of the primary controller in GSM-PQ mode, i.e., when the

active and reactive power references PGSM−PQref and QGSM−PQref are not provided by

envelope curve, but are sent by the system controller. In this configuration, the SDG is

not connected, while the MG is connected to the main grid: the primary controller is

able to correctly track powers references guaranteeing fast regulating actions.
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Figure 2.23: Active and reactive powers time profile in GSM-PQ mode.



Chapter 3

BESS converter response during

faults: theory and models

Brief: This chapter proposes a detailed analysis of the BESS converter response during and

after a symmetrical fault. In particular, the first part of this chapter is dedicated to describing

inner control loops architectures able to correctly block the converter output current when a

fault occurs. The primary level control, based on VGM algorithm, is then analysed in order to

carry out a new control strategy to correctly manage the virtual inertia, virtual flux, Governor

and AVR contributions also during external disturbances.

Personal contribution: I developed the conceptualization, all the part of the Simulink

project and the control logic.

The aim of this chapter is to propose a VGM detailed control scheme in which multi

loop inner control and the VGM algorithm can work together in order to satisfy all grid

codes requirements. The first focus is the converter inner control loops functionality

of properly limiting the output current value when a fault occurs. Then a strategy is

presented to adapt the VGM control to the action of the multi inner control loops in the

phases of fault recognition, fault and fault clearing. The BESS converter primary control

and the system model are implemented in the MATLAB/Simulink environment and all

the details are reported in the dedicated subsections. The choice to develop the controls

and the power system model on MATLAB/Simulink and no longer on DIgSILENT

was driven by the need for a powerful and versatile simulation support which offers

the possibility to develop more detailed control logics than DIgSILENT PowerFactory.

Moreover, a control logic developed in MATLAB/Simulink can be compiled for different

targets as .ddl files and can be interfaced with DIgSILENT PowerFactory.

31
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3.1 System model configuration

In this section the MG system configuration is presented in figure 3.1. The BESS

converter is connected to the MG through an isolation Dy11 transformer (primary circuit

modelled by resistance R1,T and inductance L1,T and secondary circuit modelled by R2,T

and inductance L2,T ) and a line with a resistive part RL and an inductive part LL. A

three phase load can be connected and disconnected to/from the MG with a three phase

breaker and it is modelled as a constant impedance load with a rated active power Pn

and a rated reactive power Qn. Moreover, an external grid is connected to PCC through

a line with a with a resistive part Rline and an inductive part Lline.

Figure 3.1: System model implemented in Simulink environment.

The detailed BESS converter model is depicted in figure 3.2.

Figure 3.2: BESS converter model implemented in Simulink environment.
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The BESS converter is a three level IGBT inverter modulated (see figure 3.3) with a

carrier frequency fs = 5 kHz and connected to an ideal DC voltage source Vdc, which

is a common practice when the fault analysis is considered [31–33]. The converter is

connected to the the grid through a LCL filter where the converter part is modelled

by a resistance Rfc and inductance Lfc, the grid part is modelled by a resistance Rfg

and inductance Lfg and the shunt part is a capacitance Cf . The MG relevant data are

reported in table 3.1.
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Figure 3.3: BESS converter output voltage.

BESS Load Lines and Transformer

ABESS=7.35 kVA Pn=6 kW RL = 0.1 p.u.;LL = 0.04 p.u.

Vn=400 V (AC-side) Qn=2 kVAr Rgrid = 0.1 p.u.;Lgrid = 0.04 p.u.

fn=50 Hz R1,T = 0.002 p.u.;L1,T = 0.08 p.u.

Vdc=730 V R2,T = 0.002 p.u.;L2,T = 0.08 p.u.

fs = 5 kHz V1n/V2n = 1

Rfc = 0.005 p.u.;Lfc = 0.07 p.u. Connection = Dy11

Rfg = 0.005 p.u.;Lfg = 0.04 p.u.

Cf = 0.07 p.u.

Table 3.1: Test case MG parameters.
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3.2 Inner control loops architectures

3.2.1 PID based inner control loops

Voltage control loop for converter connected to the grid with in LCL filter is depicted

in figures 3.4 and 3.7. In this configuration, it is based on PID regulators described

by proportional and integral gains. Its main control objective is to regulate the output

voltage of the inverter by nullifying the error between the reference voltage, which can be

created from the VGM outputs Vref and θref,V GM , and the measurement vabc,conv. The

outputs of the voltage controller are the inverter output current references id,ref,GFM and

iq,ref,GFM , where GFM means Grid Forming Mode, and a signal named ”faultsignal”

whose functionality will be explained later on in this chapter.

Figure 3.4: BESS converter voltage controller based on PID regulators.

The Park transform adopted, depicted in figure 3.5, is the one which has the rotating

frame aligned with a-axis as reported below:

K(θp) =
2

3


cos (θp) cos
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θp −

2

3
π

)
cos

(
θp +
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3
π

)
− sin (θp) − sin
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(
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π
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 (3.1)
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Figure 3.5: Park transform orientation.

From the VGM output is possible to construct the d-q axis voltage references vref,vd and

vrefq,v as follows:

vabc,ref (t) =



Vref
√

2√
3

sin (θref,V GM )

Vref
√

2√
3

sin

(
θref,V GM −

2π

3

)
Vref
√

2√
3

sin

(
θref,V GM +

2π

3

)

 (3.2)

Let’s now consider the Clarke transformation reported below:

Kabc→αβγ =
2

3


1 −1

2
−1

2

0

√
3

2
−
√

3

2
1

2

1

2

1

2

 (3.3)

It is possible to use it on relations (3.2) and on the measured currents at the filter output

iabc,conv, and so the virtual impedance algorithm is implemented as follows:

vref,vα = vrefα −
(
Rvi

conv
α −Xvi

conv
β

)
(3.4)

vref,vβ = vrefβ −
(
Rvi

conv
β +Xvi

conv
α

)
(3.5)
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and consequently:

vref,vd = vref,vα cos (θref,V GM ) + vref,vβ sin (θref,V GM ) (3.6)

vref,vq = −vref,vα sin (θref,V GM ) + vref,vβ cos (θref,V GM ) (3.7)

As already done for the LC filter structure presented in the previous chapter, in order to

decouple the d-q axis in the voltage controller it is necessary to insert some feed-forwards

actions; considering the voltage-current relation for the filter capacitor Cf below, where

vabc,cap is the voltage measured at filter capacitor terminals and iabc,inv is the current

measured at the inverter output.

Cf
dvabc,cap
dt

= iabc,inv − iabc,conv (3.8)

It is possible to perform the Park transformation as follows:

K(θp)Cf
dK−1(θp)v

cap
dq0

dt
= K(θp) (iabc,inv − iabc,conv) (3.9)

and after some calculations, it is possible to write:

Cf
dvcapdq0

dt
+ ωnCf


0 −1 0

1 0 0

0 0 0

 vcapdq0 = iinvdq0 − iconvdq0 (3.10)

and consequently:

Cf
dvcapd

dt
= iinvd − iconvd + ωnCfv

cap
q (3.11)

Cf
dvcapq

dt
= iinvq − iconvq − ωnCfvconvd (3.12)

Considering equations (3.11) and (3.12) it is possible to write the two feed-forward

actions iff,d and iff,q for the two regulating channels:

iff,d = iconvd − ωnCfvcapq (3.13)

iff,q = iconvq + ωnCfv
cap
d (3.14)
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Finally, the PID control action can be easily described by the following equations:

id,ref,GFM = KPV

(
vrefd − vconvd

)
+KIV

∫ (
vref,vd − vconvd

)
dt+ iff,d (3.15)

iq,ref,GFM = KPV

(
vrefq − vconvq

)
+KIV

∫ (
vref,vq − vconvq

)
dt+ iff,q (3.16)

Therefore, there is the necessity to implement a current limiting strategy in order to

avoid over-currents during a fault events which may cause converter circuit breaker

tripping and/or semiconductors damage. In this work the current limiting strategy is

based on a scaling factor named Current Limiting Factor (CLF) that is used to modify

the voltage controller output id,ref,GFM and iq,ref,GFM when a fault occurs, i.e.:

i′d,ref,GFM = CLF id,ref,GFM (3.17)

i′q,ref,GFM = CLF iq,ref,GFM (3.18)

This factor can be easily calculated with the following procedure: If the RMS value

of the current references
√
i2d,ref,GFM + i2q,ref,GFM exceeds the threshold value Ifault,th,

the scaling factor can be calculated as CLF =
Ifault,th√

i2d,ref,GFM + i2q,ref,GFM

, otherwise

CLF = 1. As one can see from figure 3.7, the scaled current reference values i′d,ref,GFM

and i′q,ref,GFM are saturated: the reason for this is that a temporary limiting strategy

is required to protect the inverter against large currents from over-currents start to the

proposed method activation instant. After activation of the proposed limiting strategy,

as the current reference is limited, the instantaneous saturation limit does not affect this

reference, but an anti wind-up method is implemented in the PID regulators in order to

discharge the PID internal integrator when the controller hits the saturation limits and

enters non-linear operation.

BESS converter current regulator is depicted in figures 3.6 and 3.8. The current con-

troller is based on PI regulators described by proportional gain KPC and integral gain

KIC and it acts on the system in order to control the converter output current by min-

imizing the errors between the references coming from the voltage controller and the

measured current described by iabc,inv. The outputs of the current controller are the

inverter voltage modulation signals in the d-q reference frame vd,inv,ref and vq,inv,ref .

Also in this case there is the need to decouple the two regulating channels, so the first
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Figure 3.6: BESS converter current controller based on PID regulators.

step is to write the Kirchhoff law for the LCL filter:

Lfc
diabc,inv
dt

= vabc,inv −Rfciabc,inv − vabc,cap (3.19)

performing the Park transform as follows:

K(θp)Lfc
dK−1(θp)i

inv
dq0

dt
= K(θp) (vabc,inv −Rfciabc,inv − vabc,cap) (3.20)

and after some calculations as done for the voltage controller is possible to write:

Lfc
diinvd
dt

= vinvd −Rfciinvd − vcapd + ωnLfci
inv
q (3.21)

Lfc
diinvq
dt

= vinvq −Rfciinvq − vcapq − ωnLfciinvd (3.22)

Considering equations (3.21) and (3.22) it is possible to write the two feed-forward

actions vff,d and vff,q for the two regulating channels:

vff,d = vcapd − ωnLfciinvq (3.23)

vff,q = vcapq + ωnLfci
inv
d (3.24)
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Figure 3.7: Detailed BESS converter voltage controller based on PID regulators.
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Figure 3.8: Detailed BESS converter current controller based on PID regulators.
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3.2.2 Resonant controller based inner control loops

In this section a different inner control loops architecture is presented. In general, three

phase stationary frame regulators are regarded as being unsatisfactory for AC voltage

and current regulations since a conventional PID regulator in this reference frame suffers

from significant steady-state amplitude and phase errors. In contrast, synchronous frame

– regulators can achieve zero steady-state error by acting on DC signals in the rotating

reference frame, and are therefore usually considered to be superior to stationary frame

regulators. However, a synchronous frame regulator is more complex, as it requires a

means of transforming a measured stationary frame AC quantities (or error) to rotating

frame DC ones, and transforming the resultant control action back to the stationary

frame for execution. These transformations can introduce errors if the synchronous

frame identification is not accurate. The transfer function of a resonant controller can

be expressed as follows:

G(s) = Kp +
2Kiωcs

s2 + 2ωcs+ ω2
o

(3.25)

where Kp is the proportional gain, Ki is the integral gain, ωc is the resonant bandwidth

and ωo is the resonant frequency. Constructing the current regulator in the stationary

reference frame α − β has the advantage of requiring much less signal processing than

the synchronous frame demodulation approaches, and it is also less sensitive to noise.

Bode diagram is depicted in figure 3.9, while the response when varying the term ωc

is depicted in figure 3.10. The implementation of the resonant controllers in Simscape

environment is depicted in figures 3.11 and 3.12. The voltage controller provide the

reference currents for the current regulator in the α−β reference frame and the current

controller provides the reference voltages for the converter modulation. The logic for

the fault current limitation is the same as the implemented in the PID approach.

In figure 3.13 it is possible to see a comparison between the two proposed architectures

when a fault event occurs. Both PID and Proportional-Resonant (P-R) controllers are

able to limit the converter current (this simulation is performed in islanded configura-

tion), and it is possible to see that the P-R controllers are able to guarantee a reduced

peak current compared to the PID ones. In figure 3.14 it is possible to see the dynamic

of the CLF, i.e. it is equal to 1 when there are no fault conditions, while it has its dy-

namic when the limitation logic is activated by the reference currents from the voltage

controller.
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Figure 3.9: Bode plot of a resonant controller
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Figure 3.11: Detailed BESS converter voltage controller based on resonant regulators.
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Figure 3.12: Detailed BESS converter current controller based on resonant regulators.
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Figure 3.13: Converter current during fault.

Figure 3.14: Current Limiting Factor during fault.
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3.3 Virtual Generator algorithm for fault conditions

In the last chapter the VGM algorithm was presented considering normal operation

scenarios. In the present section this control technique is modified in order to proper

manage the fault contingencies in different operating mode and in order to correct man-

age the current limiting action implemented in the voltage inner control loop. The

complete model implemented in Simscape environment is depicted in figure 3.15. The

Figure 3.15: Virtual Generator algorithm in Simscape environment.

input of the proposed primary controller are the voltage set point Vref , the frequency

set point fref , active and reactive powers measurement, respectively Pmeas and Qmeas,

frequency and voltage measurements fmeas and Vmeas, the voltage angle θ for the syn-

chronization phase and finally a logic signal named faultsignal which comes from the

voltage controller. The outputs are the voltage reference Vref,V GM and the angle refer-

ence θref,V GM .

As explained in the last chapter the VGM algorithm proposed in this work consists of
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four macro parts: (i) the Governor model, (ii) the AVR model, (iii) the Inertia model

and (iv) the Rotor Flux model. The equations which describe the four macro parts are:

�

PBESSGOV = KP,GOV (fref − fmeas) +KI,GOV

∫ t

0
(fref − fmeas) dτ (3.26)

�

QBESSAV R = KP,AV R (Vref − Vmeas) +KI,AV R

∫ t

0
(Vref − Vmeas) dτ (3.27)

�

θref,V GM =

∫ t

0

∫ t

0
KH

(
PBESSGOV − Pmeas −Kdfref,V GM

)
d2τ (3.28)

�

Vref,V GM =

∫ t

0
KΨ

(
QBESSAV R −Qmeas

)
dτ (3.29)

When a fault occurs it produces a voltage sag in Vmeas and a modification in the measured

frequency fmeas and, as can be seen from equations (3.26) and (3.27), this produces a

variation on the Governor and AVR outputs PBESSGOV and QBESSAV R respectively. From

equations (3.28) and (3.29) it is possible to see that the Governor and AVR regulating

action during fault causes a variation in VGM algorithm output θref,V GM and Vref,V GM

and this variation is modulated by the inertia constant KH and the rotor flux constant

KΨ.

Now, in order to have an example that acts as a guiding thread in the theoretical

treatment of this chapter, from this point forward, let us consider a resistive fault event

at t = 4s located at the PCC bus in islanded configuration. It is possible to see the

VGM regulating actions in figure 3.16. As one can see the voltage sag imposed by the

symmetrical fault causes a reduction of active power and the Governor try to reduce

the reference PBESSGOV in order to restore the rated frequency. Moreover, the voltage sag

causes a fast variation in the AVR output QBESSAV R which is limited to 1.2p.u. and the

error between QBESSAV R and the measured reactive power Qmeas produces a fast increase

of the VGM reference voltage Vref,V GM which reaches is maximum value of 1.1p.u..

These dynamics cause a poor restoring phase when the fault is cleared, and, as it will be

shown in the next chapter, in the islanded configuration the VGM can cause a slow and

oscillatory response, while in the grid-connected one can cause voltage and frequency

instability.
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Figure 3.16: VGM regulating actions during a fault event.

These considerations on VGM algorithm dynamic behaviour lead to the fact of having to

implement a corrective logic that allows the control to properly manage the regulating

variables in order to ensure compliance with the requirements imposed by grid codes.

The basic idea is to exploit the possibilities given by the intrinsic nature of a virtual

generator, i.e. all the four macro parts are configurable and can be adapted when a

specific contingency is detected. For this reason, a modification on the inertia constant

KH and to rotor flux constant KΨ is implemented when a fault is detected as this

strategy, proposed in the present work, is called adaptive VGM. If these two parameters

are modified by reducing their rated value (RV ) of a factor named Fault constant (Fc <

1) when the fault event is detected by the voltage controller as follows:

KH ,KΨ =


RV if t < tfault

RV ∗ Fc if tfault < t < tclearing

RV if t > tclearing

(3.30)

it is possible to guarantee stiff dynamics in the VGM output as depicted in figure 3.17.
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Moreover, another modification of the proposed VGM algorithm can be implemented in

3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

1.04

1.06

1.08

1.1
C

o
n

v
er

te
r 

V
o

lt
ag

e 
[p

.u
.]

3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

time [s]

1

1.002

1.004

1.006

1.008

1.01

C
o

n
v

er
te

r 
fr

eq
u

en
cy

 [
p

.u
.]

Figure 3.17: Comparison between VGM outputs with different parameter modifica-
tions.

order improve the performance during a fault event. This improvement consists in the

possibility given by the virtual synchronous generator of freezing the regulating actions

of Governor and AVR when a fault is detected, i.e. the outputs of Governor and AVR

PBESSGOV and QBESSAV R respectively are fixed to the values previous fault. Defining eGOV

the error between the reference frequency fref and the measured one fmeas and eAV R

the error between the reference voltage Vref and the measured one Vmeas, the freezing

actions can be described as:

eGOV =


fref − fmeas if t < tfault

0 if tfault < t < tclearing

fref − fmeas if t > tclearing

(3.31)

eAV R =


Vref − Vmeas if t < tfault

0 if tfault < t < tclearing

Vref − Vmeas if t > tclearing

(3.32)
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Therefore the implementation of adaptive VGM and the freezing actions on Governor

and AVR improve the transient response of the BESS converter when a fault occurs as

depicted in figure 3.18.

3.5 4 4.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ct

iv
e 

P
o

w
er

 [
p

.u
.]

3.5 4 4.5

0.26

0.28

0.3

0.32

R
ea

ct
iv

e 
P

o
w

er
 [

p
.u

.]

3.5 4 4.5

time [s]

0.95

1

1.05

V
G

M
 F

re
q

u
en

cy
 [

p
.u

.]

3.5 4 4.5

time [s]

0

0.2

0.4

0.6

0.8

1

1.2

V
G

M
 V

o
lt

ag
e 

[p
.u

.]

AVR

Freezing

Governor

Freezing

Adaptive

VGM Adaptive

VGM

Figure 3.18: Effects of adaptive VGM and Governor and AVR freezing.

Now, another important aspect regarding the modification of the proposed VGM algo-

rithm is the fault signal sent from the voltage controller. Of course the faster the fault

event is detected the more efficient are the strategies of adaptive VGM and Governor

and AVR freezing, but the same thing is not true for the clearing phase. In fact it can

be demonstrated that if a short intentional delay on the fault signal is added for the

clearing phase, a relevant improvement in terms of recovery time and system variable

overshoots can be achieved. The intentional delay is expressed as a multiple k of the

control time step Ts, so relations (3.30), (3.31) and (3.32) are modified as follows:

KH ,KΨ =


RV if t < tfault

RV ∗ Fc if tfault < t < tclearing + kTs

RV if t > tclearing + kTs

(3.33)
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eGOV =


fref − fmeas if t < tfault

0 if tfault < t < tclearing + kTs

fref − fmeas if t > tclearing + kTs

(3.34)

eAV R =


Vref − Vmeas if t < tfault

0 if tfault < t < tclearing + kTs

Vref − Vmeas if t > tclearing + kTs

(3.35)

The positive effects of the intentional delay on the clearing phase can be appreciated in

figures 3.19 and 3.20 where the VGM variables and the BESS converter RMS current

is depicted for different values of the control time step multiple k. More precisely it is

possible to see the dynamic behaviour with no intentional delay and with three different

values of k, and the greater the value is the better performances can be guaranteed. Of

course there is a compromise between the length of k, which can not be too long, and

the ability of restoring the variables previous the fault event and, as shown in the figures

below, a correct choice is k = 1000, which corresponds to a delay of 100ms (i.e. 5 cycles

at the fundamental frequency).

For sake of completeness, the performances of the VGM algorithm with the implemen-

tation of relations (3.33), (3.34) and (3.35) in grid connected configuration considering a

fault event at the PCC bus, can be appreciated in figures 3.21 and 3.22, but a exhaustive

set of simulations will be presented in the following chapter.
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Figure 3.19: Effect of delay length k on the VGM variables.
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Figure 3.20: Effect of delay length k on BESS RMS current.
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Figure 3.21: Effect of delay length k on the VGM variables in grid connected config-
uration.
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Figure 3.22: Effect of delay length k on BESS RMS current in grid connected con-
figuration.
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For sake of clarity the conceptual final control scheme of the proposed modified VGM

algorithm implemented in MATLAB/Simscape environment is reported in figure 3.23.

Figure 3.23: Conceptual scheme of Virtual Generator algorithm in Simscape envi-
ronment.



Chapter 4

BESS converter response during

faults: simulation results

Brief: This Chapter proposes a complete set of simulations in order to test in different

relevant operating scenarios the performances of the BESS control algorithm presented in

the previous chapter. The VGM algorithm is tested both in islanded configuration and grid

connected one in order to show the ability of a proper resynchronization. In the grid connected

configuration also the BESS pre-load is considered.

Personal contribution: I have developed all the MATLAB/Simulink model, the control

tuning and I have chosen all the scenarios to test the proposed control scheme. I have per-

formed all the simulations.

4.1 Islanded Configuration

In this operating scenario the BESS converter is in islanded configuration, at t = 2s a

three phase load is connected to the converter, while at t = 4s a three phase symmetrical

fault occurs at the common busbar. A previous load connection is implemented in order

to stress the control algorithm, i.e., a pre-load configuration brings to have Governor

and AVR working with active and reactive powers respectively and this can reduce the

possibility of the converter to manage properly the fault event. In order to show the

proper performance of the proposed algorithm four different test cases are considered:

� Test Case A: Inertia and Rotor Flux parameters are not modified when the

fault is detected and Governor and AVR outputs are not frozen when the fault

55
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is detected. This is the situation with a standard virtual synchronous generator

algorithm;

� Test Case B: Inertia and Rotor Flux parameters are not modified when the fault

is detected while Governor and AVR outputs are frozen when the fault is detected.

The freezing control action, as explained in the previous chapter, consists in putting

to zero the Governor and AVR input as described by relations (3.31) and (3.32);

� Test Case C: Inertia and Rotor Flux parameters are modified when the fault

is detected while Governor and AVR outputs are not frozen when the fault is

detected;

� Test Case D: Inertia and Rotor Flux parameters are modified when the fault is

detected and Governor and AVR outputs are frozen when the fault is detected;

4.1.1 Test Case A - The base case

In this configuration the Inertia and Rotor Flux values are the standard one and freezing

actions of Governor and AVR are not implemented. The currents time profile is reported

in figure 4.1 and in figure 4.2 it is possible to see that without correcting actions, voltage

Vmeas and frequency fmeas are restored after a long transient of 1s and 1.5s respectively

and this is due to the fact that, as can be easily seen, VGM output Vref,V GM and

fref,V GM have their dynamics because no corrective actions are implemented.
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Figure 4.1: Currents during faults in Test Case A.
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Figure 4.2: Voltage and current during faults in Test Case A.
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4.1.2 Test Case B - Freezing actions case

In this configuration the Inertia and Rotor Flux values are the standard one, but freezing

actions of Governor and AVR are implemented. The currents time profile is reported in

figure 4.3 and in figure 4.4 it is possible to see that only with freezing actions, voltage

Vmeas and frequency fmeas are restored after a long transient and this is due to the fact

that, as can be easily seen, VGM output Vref,V GM and fref,V GM are not blocked when

the fault is detected and moreover they reach their respective maximum limits which is

only accepted in the islanded stand-alone case. If the BESS converter is running islanded

in parallel with a conventional synchronous generator it would desynchronise surely.
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Figure 4.3: Currents during faults in Test Case B.
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Figure 4.4: Voltage and current during faults in Test Case B.

4.1.3 Test Case C - Parameters modification case

In this configuration the Inertia and Rotor Flux values are modified, but freezing actions

of Governor and AVR are not implemented. The currents time profile is reported in

figure 4.5 and in figure 4.6 it is possible to see that only with parameters modification,

voltage Vmeas and frequency fmeas are restored after a long transient but shorter than

test case A.
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Figure 4.5: Currents during faults in Test Case C.
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Figure 4.6: Voltage and current during faults in Test Case C.
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4.1.4 Test Case D - Complete case

In this configuration the Inertia and Rotor Flux values are modified, freezing actions

of Governor and AVR outputs are implemented. The currents time profile is reported

in figure 4.7 and in figure 4.8 it is possible to see that with the combination of the

two strategies, voltage (Vmeas) and frequency (fmeas) are restored with fast and smooth

transient, more precisely the frequency is restored in 250ms while the voltage in 150ms.

0 1 2 3 4 5 6 7 8

-20

0

20

C
o
n
v
er

te
r 

cu
rr

en
ts

 [
A

]

0 1 2 3 4 5 6 7 8

time [s]

0

1

2

C
o
n
v
er

te
r 

R
M

S
 c

u
rr

en
t 

[p
.u

.]

Figure 4.7: Currents during faults in Test Case D.

A comparison between the four test cases in terms of measured frequencies is reported

in figure 4.9, while a comparison between converter voltage after the fault clearing is

reported in figure 4.10.

As one can see the strategy implemented in Test Case D proposes better performances

compared to Test Case A, Test Case B and Test Case C. Considering Test Case D

converter RMS voltage is restored in about 70ms without undershoots or overshoots

and also the frequency returns to the previous value in approximately 250ms as stated

before. Finally, a quantitative comparison in terms of recovery times (r.t.) is reported

in table 4.1.
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Figure 4.8: Voltage and current during faults in Test Case D.
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Figure 4.9: Frequency during faults: comparison between test cases.
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Figure 4.10: Voltage during faults: comparison between test cases.

RMS Current r.t. RMS Voltage r.t. Frequency r.t.

Test Case A 800ms 1s 1.5s

Test Case B 600ms 600ms 600ms

Test Case C 800ms 1s 800ms

Test Case D 40ms 70ms 250ms

Table 4.1: Comparative analysis in islanded configuration.

4.2 Grid-Connected Configuration

In order to test the correct behaviour of the BESS converter during fault in a Grid-

Connected configuration, a non-deal external grid is considered as one can see in the

voltage time profile depicted in figure 4.11. The grid voltage contains a 7th harmonic

with an amplitude of 10 V and a 13th harmonic with an amplitude of 20 V. Moreover, a

random noise voltage (NV ) limited between −10 V and +10 V is added to each phases

as reported in (4.1).
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Figure 4.11: External grid voltage time profile.

As in the previous section for the islanded configuration, the test cases are organized as

follows:

� Test Case A: Inertia and Rotor Flux parameters are not modified when the

fault is detected and Governor and AVR outputs are not frozen when the fault is

detected;

� Test Case B: Inertia and Rotor Flux parameters are not modified when the fault

is detected while Governor and AVR outputs are frozen when the fault is detected;
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� Test Case C: Inertia and Rotor Flux parameters are modified when the fault

is detected while Governor and AVR outputs are not frozen when the fault is

detected;

� Test Case D: Inertia and Rotor Flux parameters are modified when the fault is

detected and Governor and AVR outputs are frozen when the fault is detected;
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4.2.1 Test Case A - The base case

In this configuration the converter is connected to an external grid (with noise and

harmonics in order to test to robustness of the proposed controller and strategy). A

symmetrical three-phase fault occurs at t = 2s and it is removed after 0.5s. The inertia

and rotor flux values are the standard one and Governor and AVR outputs are not frozen

when the fault is detected. In figure 4.12 it is possible to see that in this configuration

the converter is able to restore the current previous the fault but with a long transient

of about 0.5s. This transient resynchronizing current duration is not admissible, in fact

several standard require that the transient resynchronising current in grid connected

configuration to be over within 100ms. Moreover is possible to see that the converter is

still in current limit also after 60ms from the fault clearance because when the fault is

cleared, the converter is not synchronized with the external main grid. Even if voltage

and frequency level are restored, see figure 4.13, a transient of 0.5s for the voltage and

0.6s for the frequency are not acceptable because it can lead to a severe MG instability.
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Figure 4.12: Currents during faults in Test Case A.
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Figure 4.13: Voltage and current during faults in Test Case A.

The resynchronization with the external grid can be properly shown considering the

angle difference between the VGM out θref,V GM and the grid angle measured at the end

of the grid line θgrid. The VGM algorithm is able to resynchronize with the external grid

only after a long transient that is not acceptable as it is shown in figure 4.14. The long

transient is due to the fact that during fault the VGM frequency fref,V GM decreases

because the inertia value is not modified, and this produce a fast variation in the angle

θref,V GM and so in the angle difference. The problem of the resynchronization can be

also appreciated in the active and reactive powers dynamic as depicted in figure 4.15.
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Figure 4.14: Angle during faults in Test Case A
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Figure 4.15: Active and reactive powers during faults in Test Case A (powers are
measured at the output of the converter and at the external grid connection.)
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4.2.2 Test Case B - Freezing actions case

In this configuration the converter is connected to an external grid. A symmetrical

three-phase fault occurs at t = 2s and it is removed after 0.5s. The Inertia and Rotor

Flux values are the standard ones while Governor and AVR outputs are frozen when

the fault is detected. In figure 4.16 it is possible to see that in this configuration the

converter is not able to restore the current previous the fault and the requirement of

a transient duration lower than 100ms is not guaranteed. Voltage and frequency time

profiles are reported in 4.17 and, as one can see both the VGM output Vref,V GM and

fref,V GM reach their lower limits of 0.9p.u. and 0.95p.u. when the fault occurs. This is

due to the fact that when the fault is detected the Governor and AVR outputs PBESSGOV

and QBESSAV R are frozen to respective their values previous the fault according to relations

(3.31) and (3.32) and this produces a strong variation on the VGM output because

the inertia and rotor flux constant KH and KΨ are not modified. Of course this huge

variations during the fault are not acceptable for the resynchronization with the external

grid, in fact this simulation presents a pole slipping event as depicted in figure 4.18 and

this is the cause of the different RMS current when the fault is cleared.
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Figure 4.16: Currents during faults in Test Case B.
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Figure 4.17: Voltage and frequency during faults in Test Case B.
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Figure 4.18: Angle difference during faults in Test Case B.
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4.2.3 Test Case C - Parameters modification case

In this configuration the converter is connected to an external grid. A symmetrical

three-phase fault occurs at t = 2s and it is removed after 0.5s. The Inertia and Rotor

Flux values are modified when the fault is detected while Governor and AVR outputs

are not frozen when the fault is detected. In figure 4.19 it is possible to see the dynamic

behaviour of converter currents: as can be easily seen in 30ms after the fault clearing the

converter current return at the previous value but at 2.6s it is possible to see a bump in

the currents. This is due to the fact that at 2.6s inertia and rotor flux variables KH and

KΨ return to their rated values but the actions of Governor and AVR are not blocked,

i.e. outputs PBESSGOV and QBESSAV R are not frozen to respective their values previous the

fault and so this current bump is imposed by the control when KH and HΨ return to

their rated values and by the Governor and AVR input eGOV and eAV R that are non-

zero. The effect of this parameter modification is also visible in voltage and frequency

time profiles reported in figure 4.20, and in the angle difference depicted in figure 4.21.
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Figure 4.19: Currents during faults in Test Case C.
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Figure 4.20: Voltage and frequency during faults in Test Case C.
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Figure 4.21: Angle difference during faults in Test Case C.
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4.2.4 Test Case D - Complete case

In this configuration the converter is connected to an external grid. A symmetrical

three-phase fault occurs at t = 2s and it is removed after 0.5s. The Inertia and Rotor

Flux values are modified when the fault is detected and Governor and AVR outputs

are frozen when the fault is detected. In figure 4.22 it is possible to see that in this

configuration the converter is able to restore with fast and smooth dynamics the current

previous fault in less than 30ms as depicted in figure 4.23 and comparison with the

other test cases is depicted in 4.24. Voltage and frequency level are restored after a

short transient, see figure 4.25. More precisely the RMS voltage Vmeas is restored in less

than 100ms while the measured frequency fmeas after 250ms. It is possible to see also an

overshoot in fmeas up to 1.004p.u. during the clearing phase: this is due to the dynamic

of the PLL, and not to the control algorithm. Moreover, a comparison in terms of the

voltage recovery between test cases is depicted in figure 4.26 and the best performance

can be appreciated in Test Case D. The VGM algorithm is able to resynchronize with

the external grid after a very short dynamic as it is shown in figure 4.27 in terms of

angle difference. A quantitative comparison in terms of r.t. is reported in table 4.2.

RMS Current r.t. RMS Voltage r.t. Frequency r.t.

Test Case A 500ms 500ms 600ms

Test Case B 900ms 900ms 900ms

Test Case C 500ms 800ms 800ms

Test Case D 30ms 100ms 250ms

Table 4.2: Comparative analysis in grid connected configuration.
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Figure 4.22: Currents during faults in Test Case D.
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Figure 4.23: Currents during faults in Test Case D: detail on resynchronization phase.
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Figure 4.24: Currents during faults: comparison between test cases.
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Figure 4.25: Voltage and frequency during faults in Test Case D.
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Figure 4.26: RMS Voltages during faults: comparison between test cases.
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Figure 4.27: Angle difference during faults in Test Case D.
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4.3 Grid-Connected Configuration: BESS pre-load pro-

ducing power

In this subsection another interesting scenario is analysed when a fault event occurs.

In this scenario the BESS converter is in a grid connected configuration but the initial

working point is not a no-load, i.e. the converter is in the pre-load configuration, more

precisely a pre load of +0.3p.u. active power and of −0.2p.u. reactive power. This is a

challenging test case to prove the correct behaviour of the proposed VGM algorithm in

terms of current limiting and resynchronization capability. Also this section is organized

according to the four different test cases, namely Test Case A, Test Case B, Test Case

C and Test Case D and in every test cases the active power production of the BESS is

performed with a variation of the VGM algorithm input signal fref at t = 2s from 50

Hz to 50.5 Hz and having the active power droop parameter mdroop non-zero.

4.3.1 Test Case A - The base case

In this configuration the converter is connected to an external grid. A symmetrical three-

phase fault occurs at t = 6s and it is removed after 0.5s. The inertia and rotor flux values

are the standard one and Governor and AVR outputs are not frozen when the fault is

detected. In figure 4.28 it is possible to see that in this configuration the converter is

able to restore the current previous the fault but with a long transient. This is due to the

fact that in this simulation no corrective actions are implemented, so the Governor and

AVR try to control frequency and voltage respectively during the fault and this aspect

does not guarantee a fast current restoration, more precisely the current in this base case

is restored in 600ms, i.e. six times greater than the maximum acceptable time. Even if

voltage and frequency level are restored, see figure 4.29, the VGM algorithm is able to

resynchronize with the external grid only after a long transient that is not acceptable

as it is shown in figure 4.30. As one can see when the fault occurs the angle difference

θref,V GM − θgrid starts to decrease because the VGM output fref,V GM decreases quickly

because the inertia parameter KH is not modified in this base case. This decrease is the

main cause of the slowness of the resynchronization phase.
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Figure 4.28: Currents during faults in Test Case A.
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Figure 4.29: Voltage and frequency during faults in Test Case A.
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Figure 4.30: Angle difference during faults in Test Case A.

4.3.2 Test Case B - Freezing actions case

In this configuration the converter is connected to an external grid. A symmetrical three-

phase fault occurs at t = 6s and it is removed after 0.5s. The Inertia and Rotor Flux

values are the standard ones and Governor and AVR outputs are frozen when the fault

is detected. In figure 4.31 it is possible to see that in this configuration the converter is

not able to restore the current previous the fault with fast dynamics. It is possible to

see that the converter returns in current limit when Governor and AVR star to regulate

again after the freezing actions an it stays in current limit again for 250ms. This is due

to the fact that when the fault is detected the VGM output frequency fref,V GM starts to

decrease quickly because the parameter KH is not modified and so, when Governor and

AVR are reactivated, the converter is not synchronized with the external grid and this

cause this long and not acceptable transient. Voltage and frequency time profiles are

reported in figure 4.32, and it is possible to see that the voltage output Vref,V GM reach

it maximum and minimum value and the same thing can be observed for the frequency

output fref,V GM . The incorrect resynchronization phase can be observed in terms of

angle difference in figure 4.33.



Chapter 4. BESS converter response during faults: simulation results 80

0 1 2 3 4 5 6 7 8 9 10

-20

0

20

C
o
n
v
er

te
r 

cu
rr

en
ts

 [
A

]

0 1 2 3 4 5 6 7 8 9 10

time [s]

0

1

2

C
o
n
v
er

te
r 

R
M

S
 c

u
rr

en
t 

[p
.u

.]

Figure 4.31: Currents during faults in Test Case B.
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Figure 4.32: Voltage and frequency during faults in Test Case B.
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Figure 4.33: Angle difference during faults in Test Case B.

4.3.3 Test Case C - Parameters modification case

In this configuration the converter is connected to an external grid. A symmetrical

three-phase fault occurs at t = 6s and it is removed after 0.5s. The Inertia and Rotor

Flux values are modified when the fault is detected while Governor and AVR outputs are

not frozen when the fault is detected. In figure 4.34 it is possible to see the current time

profile. Here there something similar to Test Case C in grid connected configuration

but with no pre-loading. In 30ms after the fault clearing the converter current return

at the previous value but at 6.6s it is possible to see a bump in the currents. This is

due to the fact that at 6.6s inertia and rotor flux variables KH and HΨ return to their

rated values but the actions of Governor and AVR are not frozen, i.e. outputs PBESSGOV

and QBESSAV R are not blocked to respective their values previous the fault and so this

current bump is imposed by the control when KH and KΨ return to their rated values

and by the Governor and AVR input eGOV and eAV R that are non-zero. Voltage and

frequency time profiles are reported in figure 4.35 and also here it is possible to see the

effect of the parameter control modification. The resynchronization with the external

grid is depicted in figure 4.36 and it can be appreciated the fact that, when the fault
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occurs, the angle difference does not decrease and this is due to the modification of the

inertia parameter KH .
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Figure 4.34: Currents during faults in Test Case C.
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Figure 4.35: Voltage and frequency during faults in Test Case C.
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Figure 4.36: Angle difference during faults in Test Case C.

4.3.4 Test Case D - Complete case

In this configuration the converter is connected to an external grid. A symmetrical three-

phase fault occurs at t = 6s and it is removed after 0.5s. The Inertia and Rotor Flux

values are modified when the fault is detected and Governor and AVR outputs are frozen

when the fault is detected. In figure 4.37 it is possible to see that in this configuration

the converter is able to restore with fast and smooth dynamics the current previous fault

in less than 30ms as depicted in figure 4.38 and comparison with the other test cases

is depicted in figure 4.39. This speed in the regulation during the resynchronization

phase is guaranteed by the joint action of the modification on inertia and rotor flux

parameters and by the freezing actions on Governor and AVR as completely described

in the previous chapter.

Voltage and frequency level are restored after a short transient as depicted in figure 4.40,

more precisely the RMS voltage Vmeas is restored in less than 100ms while the measured

frequency fmeas after 250ms. A comparison in terms of the voltage recovery between

test cases is depicted in figure 4.41 and the best performance are guaranteed by this last

test case. The VGM algorithm is able to resynchronize with the external grid after a
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very short dynamic as it is shown in figure 4.42. A quantitative comparison in terms of

r.t. is reported in table 4.3.

RMS Current r.t. RMS Voltage r.t. Frequency r.t.

Test Case A 600ms 500ms 500ms

Test Case B 800ms 800ms 800ms

Test Case C 800ms 600ms 500ms

Test Case D 30ms 100ms 250ms

Table 4.3: Comparative analysis in grid connected configuration with pre-load pro-
ducing power.
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Figure 4.37: Currents during faults in Test Case D.
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Figure 4.38: Currents during faults in Test Case D: detail on resynchronization phase.
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Figure 4.39: Currents during faults: comparison between test cases.
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Figure 4.40: Voltage and frequency during faults in Test Case D.
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Figure 4.41: RMS Voltages during faults: comparison between test cases.



Chapter 4. BESS converter response during faults: simulation results 87

2 3 4 5 6 7 8 9 10

time [s]

0.5

0.55

0.6

0.65

A
n

g
le

 d
if
fe

re
n

c
e

 [
ra

d
]

Figure 4.42: Angle difference during faults in Test Case D.
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4.4 Grid-Connected Configuration: BESS pre-load absorb-

ing power

In this scenario the BESS converter is in a grid connected configuration but the initial

working point is not a no-load, i.e. the converter is in the pre-load configuration, more

precisely a pre load of −0.3p.u. active power and of +0.3p.u. reactive power is imple-

mented. As done in the previous chapter, in every test cases the active power absorption

of the BESS is performed with a variation of the VGM algorithm input signal fref at

t = 2s from 50 Hz to 49.5 Hz and the active power droop mdroop is not zero.

4.4.1 Test Case A - The base case

In this configuration the converter is connected to an external grid. A symmetrical

three-phase fault occurs at t = 6s and it is removed after 0.5s. The inertia and rotor

flux values are the standard one while Governor and AVR outputs are not frozen when

the fault is detected. In figure 4.43 it is possible to see that in this configuration the

converter is able to restore the current previous the fault but with a long transient and

it remains in current limit configuration for 300ms after the fault clearing and then it

returns to previous value with overshoot and a settling time of 500ms. Voltage and

frequency time profiles are reported in figure 4.44, and it is possible to see that the

VGM outputs fref,V GM and Vref,V GM have no an acceptable dynamic. As one can

see in figure 4.45, when the fault occurs the angle difference θref,V GM − θgrid starts

to decrease because the VGM output fref,V GM decreases quickly because the inertia

parameter KH is not modified in this base case. This decrease is the main cause of the

slowness of the resynchronization phase.
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Figure 4.43: Currents during faults in Test Case A.
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Figure 4.44: Voltage and frequency during faults in Test Case A.
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Figure 4.45: Angle difference during faults in Test Case A.

4.4.2 Test Case B - Freezing actions case

In this configuration the converter is connected to an external grid. A symmetrical

three-phase fault occurs at t = 6s and it is removed after 0.5s. The Inertia and Rotor

Flux values are the standard ones while Governor and AVR outputs are frozen when

the fault is detected. In figure 4.46 it is possible to see that in this configuration the

converter is not able to restore the current previous the fault in a time frame lower

than 100ms. Voltage and frequency time profiles are reported in 4.47 and, as one can

see both the VGM output Vref,V GM and fref,V GM reach their lower and upper limits.

This is due to the fact that when the fault is detected the Governor and AVR outputs

PBESSGOV and QBESSAV R are frozen to respective their values previous the fault according

to relations (3.31) and (3.32) and this produces a strong variation on the VGM output

because the inertia and rotor flux constant KH and KΨ are not modified. Of course this

huge variations during the fault are not acceptable for the resynchronization with the

external grid, in fact this simulation presents a pole slipping event as depicted in figure

4.48 and this is the cause of the different RMS current when the fault is cleared.
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Figure 4.46: Currents during faults in Test Case B.
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Figure 4.47: Voltage and frequency during faults in Test Case B.
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Figure 4.48: Angle difference during faults in Test Case B.

4.4.3 Test Case C - Parameters modification case

In this configuration the converter is connected to an external grid. A symmetrical

three-phase fault occurs at t = 6s and it is removed after 0.5s. The Inertia and Rotor

Flux values are modified when the fault is detected while Governor and AVR outputs are

not frozen when the fault is detected. In figure 4.49 it is possible to see the current time

profile. Here there something similar to Test Case C in grid connected configuration

with no pre-loading and in a pre-loading (power production). In 30ms after the fault

clearing the converter current return at the previous value but at 6.6s it is possible to

see a bump in the currents. This is due to the fact that at 6.6s inertia and rotor flux

variables KH and HΨ return to their rated values but the actions of Governor and AVR

are not frozen, i.e. outputs PBESSGOV and QBESSAV R are not blocked to respective their values

previous the fault and so this current bump is imposed by the control when KH and KΨ

return to their rated values and by the Governor and AVR input eGOV and eAV R that are

non-zero. Voltage and frequency time profiles are reported in figure 4.50 and also here it

is possible to see the effect of the parameter control modification. The resynchronization

with the external grid is depicted in figure 4.51 and it can be appreciated the fact that,
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when the fault occurs, the angle difference decreases very slowly and this is due to the

modification of the inertia parameter KH .
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Figure 4.49: Currents during faults in Test Case C.
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Figure 4.50: Voltage and frequency during faults in Test Case C.
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Figure 4.51: Angle difference during faults in Test Case C.

4.4.4 Test Case D - Complete case

In this configuration the converter is connected to an external grid. A symmetrical three-

phase fault occurs at t = 6s and it is removed after 0.5s. The Inertia and Rotor Flux

values are modified when the fault is detected and Governor and AVR outputs are frozen

when the fault is detected. In figure 4.52 it is possible to see that in this configuration

the converter is able to restore with fast and smooth dynamics the current previous fault

in less than 30ms as depicted in figure 4.53 and comparison with the other test cases

is depicted in 4.54. Voltage and frequency level are restored after a short transient as

depicted in figure 4.55, and a comparison in terms of the voltage recovery between test

cases is depicted in figure 4.56. The VGM algorithm is able to resynchronize with the

external grid after a very short dynamic as it is shown in figure 4.57. A quantitative

comparison in terms of r.t. is reported in table 4.4.
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RMS Current r.t. RMS Voltage r.t. Frequency r.t.

Test Case A 700ms 800ms 800ms

Test Case B 700ms 700ms 700ms

Test Case C 700ms 600ms 600ms

Test Case D 30ms 100ms 250ms

Table 4.4: Comparative analysis in grid connected configuration with pre-load ab-
sorbing power.
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Figure 4.52: Currents during faults in Test Case D.
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Figure 4.53: Currents during faults in Test Case D: detail on resynchronization phase.
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Figure 4.54: Currents during faults: comparison between test cases.
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Figure 4.55: Voltage and frequency during faults in Test Case D.
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Figure 4.56: RMS Voltages during faults: comparison between test cases.
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Figure 4.57: Angle difference during faults in Test Case D.



Chapter 5

Conclusions

This thesis is the final result of academic and industrial research in collaboration with

Hitachi Power Grids over the last three years. The first part of this work proposes a new

comprehensive primary control for BESS converter in order to provide all the regulations

required by IEEE Std. 1547 both in grid-connected and islanded configurations. Due to

the need to guarantee fast and smooth dynamics of voltage and frequency in islanded

configuration, the BESS converter is controlled using a VGM technique in order to have

it acting on the system as a real synchronous generator. Simulations are carried out

using the dedicated simulation software DIgSILENT PowerFactory® and show that the

proposed controller is able to provide the black-start capability, to regulate frequency

and voltage independently of the number of paralleled generators, to synchronize and

connect BESS converter to the external main grid or to other DERs in with minimum

transients and to guarantee a proper active/reactive power sharing among other DERs.

Moreover, simulations showed that the proposed primary control has the possibility to

provide fast control actions also in grid-connected mode to allow providing frequency

and voltage support (GSM-fV ) as well as power control following the reference signals

from the secondary level control (GSM-PQ). Then the thesis moves the attention to

the field of VGM algorithm behaviour during faults. It is shown that the proposed

VGM algorithm without some corrective actions is not able to guarantee fast recovery

in terms of currents and voltage in both islanded and grid-connected configurations and

a fast and stable resynchronization to the external grid when the fault is cleared. The

proposed strategy to improve the dynamic response of the BESS converter controlled

with the VGM strategy during faults is based on the idea that emulation of the dynamic

99
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behaviour of a synchronous generator with its controls leaves the possibility of modifying

parameters and acting on quantities that obviously would not be possible to apply on

a traditional synchronous generator. For this reason an adaptive VGM strategy is pro-

posed in this thesis and it is based on the inertia and rotor flux parameters modification

and Governor and AVR freezing actions when a fault event is detected. Simulations

results show that the proposed VGM algorithm, with a proper current limiting strategy

and with the adaptive algorithm for fault conditions can guarantee excellent perfor-

mances in terms of recovery time in islanded configuration and a fast resynchronization

when connected to external grid also considering voltage disturbances and pre-loading

of BESS converter.
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