2,153 research outputs found

    ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers

    Full text link
    Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aims to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. Comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.Comment: 55 pages, 14 figures, 2 table

    An Optimized and Scalable Eigensolver for Sequences of Eigenvalue Problems

    Get PDF
    In many scientific applications the solution of non-linear differential equations are obtained through the set-up and solution of a number of successive eigenproblems. These eigenproblems can be regarded as a sequence whenever the solution of one problem fosters the initialization of the next. In addition, in some eigenproblem sequences there is a connection between the solutions of adjacent eigenproblems. Whenever it is possible to unravel the existence of such a connection, the eigenproblem sequence is said to be correlated. When facing with a sequence of correlated eigenproblems the current strategy amounts to solving each eigenproblem in isolation. We propose a alternative approach which exploits such correlation through the use of an eigensolver based on subspace iteration and accelerated with Chebyshev polynomials (ChFSI). The resulting eigensolver is optimized by minimizing the number of matrix-vector multiplications and parallelized using the Elemental library framework. Numerical results show that ChFSI achieves excellent scalability and is competitive with current dense linear algebra parallel eigensolvers.Comment: 23 Pages, 6 figures. First revision of an invited submission to special issue of Concurrency and Computation: Practice and Experienc

    Two-sided orthogonal reductions to condensed forms on asymmetric multicore processors

    Get PDF
    [EN] We investigate how to leverage the heterogeneous resources of an Asymmetric Multicore Processor (AMP) in order to deliver high performance in the reduction to condensed forms for the solution of dense eigenvalue and singular-value problems. The routines that realize this type of two-sided orthogonal reductions (TSOR) in LAPACK are especially challenging, since a significant fraction of their floating-point operations are cast in terms of memory-bound kernels while the remaining part corresponds to efficient compute-bound kernels. To deal with this scenario: (1) we leverage implementations of memory-bound and compute-bound kernels specifically tuned for AMPs; (2) we select the algorithmic block size for the TSOR routines via a practical model; and (3) we adjust the type and number of cores to use at each step of the reduction. Our experiments validate the model and assess the performance of our asymmetry-aware TSOR routines, using an ARMv7 big.LITTLE AMP, for three key operations: the reduction to tridiagonal form for symmetric eigenvalue problems, the reduction to Hessenberg form for non-symmetric eigenvalue problems, and the reduction to bidiagonal form for singular-value problems.The researchers from Universidad Jaume I were supported by project TIN2014-53495-R of MINECO and FEDER, and the FPU program of MECD. The researcher from Universitat Politecnica de Valencia was supported by the Generalitat Valenciana PROMETEOII/2014/003. The researcher from Universitat Politecnica de Catalunya was supported by projects TIN2015-65316-P from the Spanish Ministry of Education and 2014 SGR 1051 from the Generalitat de Catalunya, Dep. d'Innovacio, Universitats i Empresa.Alonso-Jordá, P.; Catalán, S.; Herrero, JR.; Quintana-Ortí, ES.; Rodríguez-Sánchez, R. (2018). Two-sided orthogonal reductions to condensed forms on asymmetric multicore processors. Parallel Computing. 78:85-100. https://doi.org/10.1016/j.parco.2018.03.005S851007

    MRRR-based Eigensolvers for Multi-core Processors and Supercomputers

    Get PDF
    The real symmetric tridiagonal eigenproblem is of outstanding importance in numerical computations; it arises frequently as part of eigensolvers for standard and generalized dense Hermitian eigenproblems that are based on a reduction to tridiagonal form. For its solution, the algorithm of Multiple Relatively Robust Representations (MRRR or MR3 in short) - introduced in the late 1990s - is among the fastest methods. To compute k eigenpairs of a real n-by-n tridiagonal T, MRRR only requires O(kn) arithmetic operations; in contrast, all the other practical methods require O(k^2 n) or O(n^3) operations in the worst case. This thesis centers around the performance and accuracy of MRRR.Comment: PhD thesi
    corecore