
MRRR-based Eigensolvers for
Multi-core Processors and

Supercomputers

Von der Fakultät für Mathematik, Informatik und

Naturwissenschaften der RWTH Aachen University zur

Erlangung des akademischen Grades eines Doktors der

Naturwissenschaften genehmigte Dissertation

vorgelegt von

Dipl.-Ing. Matthias Petschow

aus Hannover, Deutschland.

Berichter: Juniorprofessor Paolo Bientinesi, Ph.D.

Universitätsprofessor Dr. rer. nat. Lars Grasedyck

Tag der mündlichen Prüfung: 11.12.2013

Diese Dissertation ist auf den Internetseiten der

Hochschulbibliothek online verfügbar.

Abstract

The real symmetric tridiagonal eigenproblem is of outstanding importance in numer-
ical computations; it arises frequently as part of eigensolvers for standard and gen-
eralized dense Hermitian eigenproblems that are based on a reduction to tridiagonal
form. For its solution, the algorithm of Multiple Relatively Robust Representations
(MRRR or MR3 in short) – introduced in the late 1990s – is among the fastest meth-
ods. To compute k eigenpairs of tridiagonal T ∈ Rn×n, MRRR only requires O(kn)
arithmetic operations; in contrast, all the other practical methods require O(k2n) or
O(n3) operations in the worst case. This thesis centers around the performance and
accuracy of MRRR.

First, we investigate how MRRR can make efficient use of modern multi-core
architectures. We present a parallelization strategy that dynamically divides and
schedules the work into tasks. This task-based approach is flexible and produces
remarkable workload balancing. In a number of experiments, comparing our multi-
threaded eigensolver, mr3smp, with the widely used LAPACK (Linear Algebra
PACKage) and Intel’s Math Kernel library (MKL), we show that mr3smp outper-
forms even the fastest solvers available.

Second, for massively parallel distributed/shared-memory systems, we introduce
an eigensolver, PMRRR, that merges the task-based approach with a parallelization
based on message-passing. Our design uses non-blocking communications, thus al-
lowing processes to proceed computation while waiting to receive data. Experimen-
tally, we show the importance of such an overlap of computation and communication
for load balancing and scalability. Moreover, with a thorough performance study,
we demonstrate that the new eigensolvers of the Elemental library, which are based
on PMRRR, are faster and more scalable than the widely used eigensolvers of ScaLA-
PACK.

Third, we present a mixed precision variant of MRRR, which improves the stan-
dard algorithm in multiple ways. In fact, compared with the best available methods
(Divide & Conquer and the QR algorithm), the standard MRRR exhibits inferior
accuracy and robustness. Moreover, when confronted with heavily clustered eigen-
values, its performance and scalability can suffer severely; such scalability problems
especially arise on distributed-memory architectures. Our mixed precision approach
makes MRRR at least as accurate as Divide & Conquer and the QR algorithm.

In particular in context of direct methods for large-scale standard and generalized
Hermitian eigenproblems, such an improvement comes with little or no performance
penalty: eigensolvers based on our mixed precision MRRR are oftentimes faster
than solvers based on Divide & Conquer and, in some circumstances, even faster
than solvers based on the standard MRRR. Additionally, the use of mixed precisions
considerably enhances robustness and parallel scalability.

Acknowledgments

I am very thankful for the guidance and support of Prof. Paolo Bientinesi. De-
spite my different professional background, he gave me the opportunity to work in
the interesting field of numerical linear algebra and high-performance computing.
My work would not have been possible without his technical advise as well as his
constructive suggestions on scientific writing. Besides technical help, I am equally
thankful for his efforts to initiate group activities outside the work environment and
thereby generating a friendly atmosphere at work as well as outside of work.

I wish to express my sincere gratitude to a number of people and institutions. In
particular, I would like to acknowledge the former and current members of the HPAC
group: Edoardo Di Napoli, Diego Fabregat Traver, Roman Iakymchuk, Elmar Peise,
Paul Springer, Daniel Tameling, Viola Wierschem, and Lucas Beyer. I would like to
especially express my deep gratitude to Diego Fabregat Traver for many technical and
even more non-technical discussions. I also want to thank all other AICES students
and the AICES technical stuff, particularly, Annette de Haes, Nadine Bachem, Joelle
Janssen, Nicole Faber, and my former office colleague Aravind Balan.

I would also like to extend my thanks to the people of the Center for Computing
and Communication at RWTH Aachen and the people of the Jülich Supercomput-
ing Center (JSC) for granting access to their computational resources and their
support. From the JSC, I like to explicitly mention Inge Gutheil and Prof. Ste-
fan Blügel. Financial support from the Deutsche Forschungsgemeinschaft (German
Research Association) through grant GSC 111 is gratefully acknowledged.

I received valuable and constructive help from Jack Poulson, Prof. Robert van de
Geijn, and Prof. Enrique S. Quintana-Ort́ı. I enjoyed my visits to University Jaime
I, Castellón, Spain – enabled by DAAD (Deutscher Akademischer Austausch Dienst)
project 50225798 PARSEMUL. I would also like to thank Prof. Lars Grasedyck for
agreeing to be a reviewer of this dissertation.

Last but not least, I want thank my family and friends for making life worth
living. I feel this is not the right place for a long speech and I rather convey my
feeling to you in person.

Contents

1 Motivation & Contributions 1

1.1 Motivation . 1

1.2 Contributions . 4

1.3 Outline of the thesis . 8

2 Background & Related Work 9

2.1 The Hermitian eigenproblem . 9

2.2 Notation . 11

2.3 Existing methods . 12

2.3.1 The real symmetric tridiagonal eigenproblem 12

2.3.2 The Hermitian eigenproblem 18

2.3.3 The generalized Hermitian eigenproblem 22

2.4 Existing software . 24

2.5 Objectives . 26

3 The MRRR Algorithm 31

3.1 The big picture . 32

3.1.1 Computing with exact arithmetic 33

3.1.2 Computing with finite precision arithmetic 36

3.2 A closer look . 45

3.2.1 Preprocessing . 46

3.2.2 Eigenvalues of symmetric tridiagonals 46

3.2.3 Eigenvectors of symmetric tridiagonals 49

4 Parallel MRRR-based Eigensolvers 55

4.1 MRRR for multi-core architectures 56

4.1.1 A brief motivation . 57

4.1.2 Parallelization strategy . 58

4.1.3 Dividing the computation into tasks 59

4.1.4 The work queues and task scheduling 63

i

ii CONTENTS

4.1.5 Memory requirement . 65
4.1.6 Experimental results . 66

4.2 MRRR for modern supercomputers 70
4.2.1 PMRRR and its parallelization strategy 70
4.2.2 Elemental’s eigensolvers . 72
4.2.3 A study of ScaLAPACK’s eigensolvers 73
4.2.4 Experimental results . 78
4.2.5 Remaining limitations . 82

5 Mixed Precision MRRR 87
5.1 A mixed precision approach . 87

5.1.1 Adjusting the algorithm . 90
5.1.2 Memory cost . 97

5.2 Practical aspects . 98
5.2.1 Implementations . 98
5.2.2 Portability . 99
5.2.3 Robustness . 100

5.3 Experimental results . 101
5.3.1 Tridiagonal matrices . 101
5.3.2 Real symmetric dense matrices 105

6 Conclusions 109

A A list of (Sca)LAPACK’s Eigensolvers 111
A.1 (Sca)LAPACK’s symmetric tridiagonal eigensolvers 111
A.2 (Sca)LAPACK’s Hermitian eigensolvers 112
A.3 (Sca)LAPACK’s generalized eigensolvers 113

B Algorithms 115

C Hardware 117

D Test Matrices 119

E Elemental on Jugene 121

F Mixed Precision MRRR: Experiments I 123
F.1 Real symmetric matrices . 124
F.2 Complex Hermitian matrices . 127
F.3 Summary . 129

G Mixed Precision MRRR: Experiments II 131

Chapter 1
Motivation & Contributions

1.1 Motivation

The algorithm of Multiple Relatively Robust Representations (MRRR or MR3 in
short) is a method for computing a set of eigenvalues and eigenvectors (i.e., eigen-
pairs) of a real symmetric tridiagonal matrix [40, 44, 43, 118, 119]. The algorithm
achieves what has been sometimes called the “holy grail of numerical linear alge-
bra” [78]: It is capable of computing k eigenpairs of tridiagonal T ∈ R

n×n with
O(kn) arithmetic operations, while all the other existing methods require O(k2n) or
O(n3) operations in the worst case. For this reason, its invention by Dhillon and Par-
lett [40, 44, 43] in the late 1990s was widely acknowledged as a breakthrough in the
field. The method was expected to be (almost always) faster than all existing meth-
ods, while being equally accurate. Furthermore, it promised to be embarrassingly
parallel and thus ideally suited for parallel computers. In light of these expectations,
early after its introduction, it was natural to believe that the MRRR algorithm would
make all the other methods obsolete.1 After roughly 15 years of experience with the
algorithm, this has not been the case for a number of reasons.

Speed. A detailed investigation on the performance and accuracy of LAPACK’s [5]
symmetric tridiagonal eigensolvers revealed that, although MRRR performs the
fewest floating point operations (flops), due the phenomenon of numerical deflation
and its higher flop-rate (flops per second), the Divide & Conquer algorithm (DC)
can be faster [37]. Not investigated in [37] is how the performance is influenced by
the parallelism of modern architectures. For a matrix of size 4,289 and by increasing
the number of computational threads, Fig. 1.1 illustrates that, although MRRR is
the fastest sequential method, as the amount of available parallelism increases, DC
becomes faster than MRRR. The reason for this behavior is that DC casts most of
the work in terms of matrix-matrix multiplication and takes advantage of parallelism
by multi-threaded Basic Linear Algebra Subprograms (BLAS) [97, 49, 50]. In con-

1“[...] the new method will make all other tridiagonal eigensolvers obsolete” [95].

2 CHAPTER 1. MOTIVATION & CONTRIBUTIONS

4 8 12 16 20 24
0

2

4

6

8

10

12

14

T
im

e
in

 s
ec

on
ds

Number of threads

MRRR (MKL)

MRRR (LAPACK)

DC (MKL)

(a) Execution time.

Number of threads

F
ra

ct
io

n
of

 e
xe

cu
tio

n
tim

e

1 2 4 8 16 24
0

0.2

0.4

0.6

0.8

1

Backtransformation

Sequential MRRR

Reduction

(b) Breakdown of time by stages.

Figure 1.1: (a) Timings as function of the number of threads used in the computation.
Qualitatively, the graph is typical for the applications matrices that we tested. As the
available parallelism increases, DC becomes faster than MRRR. (b) Fraction of time spent in
the solution of the real symmetric dense eigenproblem for (1) reduction to tridiagonal form,
(2) tridiagonal eigenproblem, and (3) backtransformation of the eigenvectors. For details of
the experiment, see [122].

trast, neither LAPACK’s MRRR nor the version included in Intel’s MKL exploit any
parallelism offered by multiple cores. Figure 1.1(b) displays that, since MRRR does
not scale, it can become a significant portion of the common three stage approach
to the dense Hermitian eigenproblem.

Scalability. Today, parallel computing is everywhere. While for many years the us-
age of parallel computers was limited to high-end products, the advent of multi-core
processors has revolutionized the world of computing: Performance improvements
of existing sequential code will not occur by simply waiting for the next genera-
tion of processors, but by explicitly exploiting the available parallelism [149]. Since
multi-core processors became the standard engines for both commodity computers
(desktops and laptops) and supercomputers, the sequential computation model be-
came obsolete and replaced by parallel paradigms [133]. Given the current trends in
the development of computer hardware, it is expected that the number of process-
ing units (cores) of uniprocessors and supercomputers increase rapidly in the near
future. In light of this development, many algorithms and existing software must be
reevaluated and rewritten and it becomes increasingly important how well algorithms
can exploit the ever growing parallelism [7, 74].

A number of software packages (like LAPACK and ScaLAPACK) address the
need for eigensolvers on both uniprocessor and distributed-memory architectures.
However, at the time of beginning this dissertation, the support for multi-core archi-
tectures and mixed distributed/shared-memory architectures was limited. Explicit
exploitation of shared-memory was largely confined to methods that rely heavily on
multi-threaded BLAS. On a uniprocessor, methods that do not make use of suitable

1.1. MOTIVATION 3

BLAS kernels – e.g., MRRR – cannot exploit any parallelism beyond that at the
instruction level and, consequently, do not scale.

Despite the initial expectations on MRRR, the computation is not embarrassingly
parallel. However, as demonstrated by Bientinesi et al. [13] and later Vömel [162],
MRRR is well suited for parallel computations. Existing parallel implementations
– ParEig [13] and ScaLAPACK [20, 162] – target distributed-memory architectures.
On multi-core architectures, those implementations require the availability and ini-
tialization of a message-passing library and are penalized by the redundant compu-
tations they perform to avoid costly communication. Furthermore, they might not
achieve load balancing due to static workload division. Even on distributed-memory
systems, neither ScaLAPACK’s MRRR – added to the library in 2011 [162] – nor al-
ternatives like ScaLAPACK’s DC scale perfectly to a large number of processor cores,
as illustrated in Fig. 1.2. All these factors motivated research that targets multi-core
architectures and hybrid distributed/shared-memory architectures specifically.

64 128 256 512 1,024 2,048
0

100

200

300

400

500

Number of cores

T
im

e
in

 s
ec

on
ds

20k 40k 80k

Matrix size

MRRR (ScaLAPACK)

DC (ScaLAPACK)

(a) 1–2–1 type matrices.

64 128 256 512 1,024 2,048
0

10

20

30

40

50

60

70

80

90

Number of cores

T
im

e
in

 s
ec

on
ds

20k 40k 80k

Matrix size

MRRR (ScaLAPACK)

DC (ScaLAPACK)

(b) Wilkinson type matrices.

Figure 1.2: Weak scalability (the matrix size is increased according to the number of cores)
for the computation of all eigenpairs of two different test matrix types. Each type provides an
example in which one of the two solvers performs rather poorly for highly parallel executions.
The left and right graphs have different scales. For MRRR the execution time should remain
roughly constant. For details of the experiment, see [124].

Accuracy. The aforementioned study also shows that MRRR is less accurate than
DC or the QR algorithm (QR) [37]. Especially for large-scale problems, both residu-
als and orthogonality of the computed eigenpairs are inferior, cf. [37, Figure 6.1] and
[175, Table 5.1]. In our experience, as depicted in Fig. 1.3, the disadvantages are
mainly confined to the orthogonality. Through increased robustness, Willems and
Lang [174, 178, 176] were able to improve the orthogonality. Nonetheless, their anal-
ysis [175] shows that the accuracy of any MRRR implementation is inferior to those
of DC and QR. For instance, “one must be prepared for orthogonality levels of about
O(1000nε), [where ε denotes the unit roundoff,] because they can occur even if all of

4 CHAPTER 1. MOTIVATION & CONTRIBUTIONS

10 20 30 40

10
−16

10
−15

10
−14

10
−13

10
−12

Test case

R
es

id
ua

l

MRRR (LAPACK)

DC (LAPACK)

(a) Largest residual norm.

10 20 30 40

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

Test case

O
rt

ho
go

na
lit

y

MRRR (LAPACK)

DC (LAPACK)

(b) Orthogonality.

Figure 1.3: Accuracy of LAPACK’s MRRR and DC for a set of test matrices from the
Stetester [104] test suite, ranging in size from 1,000 to about 8,000. The results for QR
are similar to the ones of DC.

the requirements [of the algorithm] are fulfilled with very benign parameters” [175].

Robustness. The QR algorithm has been analyzed for more than half a cen-
tury, which led to extremely robust implementations. MRRR – with a number of
novel features – was only introduced in the 1990s and, almost naturally, its use on
challenging problems brought forth non-satisfactory results and even failure [45].
The causes of failure were soon identified and mostly eliminated [45, 174]. In par-
ticular, the research of Vömel, Willems and Lang improved the reliability of the
method [45, 174, 178, 176]. Even though MRRR usually gives satisfactory results,
there is a problem not quite apparent to a user: The proofs of correctness in [43, 175]
hinge on finding so called relatively robust representations (RRRs) of the input ma-
trix with shifted spectrum. A representation is accepted as an RRR if it passes a
simple test, which is frequently the case. However, sometimes no representation is
found that passes the test and instead a promising candidate is selected, which might
or might not fulfill the requirements. In such a situation, accuracy is not guaran-
teed. Willems and Lang reduce – but not eliminate – this problem by expanding the
forms a representation can take [178, 176], changing the shifting strategy, and using
a more sophisticated test for relative robustness [164, 175]. Nevertheless, for some
input matrices, the accuracy of MRRR cannot be guaranteed.

1.2 Contributions

In this dissertation, we make four main contributions:

1. We introduce a strategy, MR3-SMP, specifically tailored for current multi-core
and future many-core processors. Our design makes efficient use of the on-chip
parallelism and the low communication overhead thanks to the shared-memory

1.2. CONTRIBUTIONS 5

and caches. Parallelism is achieved by dynamically dividing the computation
into tasks that are executed by multiple threads. We show that the task-based
approach scales well on multi-core processors and small shared-memory systems
made out of them; in most cases, it scales better than state-of-the-art eigen-
solvers for uniprocessors and distributed-memory systems. Good speedups are
observed even in the case of relatively small matrices. For the example in
Fig. 1.1, the results of our solver mr3smp are shown in Fig. 1.4. With the
exploitation of parallelism, independent of the number of threads used for
the computation, MRRR remains faster than DC. The good scalability of the
tridiagonal eigensolver is reflected in the execution time of the dense Hermitian
problem. While previously the fraction of the tridiagonal stage was up to 40%
of the total execution time [Fig. 1.1(b)], the fraction spent in the tridiagonal
stage is reduced to less than 7% [Fig. 1.4(b)].

4 8 12 16 20 24
0

2

4

6

8

10

12

14

T
im

e
in

 s
ec

on
ds

Number of threads

mr3smp

MRRR (MKL)

MRRR (LAPACK)

DC (MKL)

(a) Execution time.

Number of threads

F
ra

ct
io

n
of

 e
xe

cu
tio

n
tim

e

1 2 4 8 16 24
0

0.2

0.4

0.6

0.8

1

Reduction

mr3smp

Backtransformation

(b) Breakdown of time by stages.

Figure 1.4: (a) Timings as function of the number of threads used in the computation.
Qualitatively, the graph is typical for the applications matrices that we tested. (b) Fraction
of time spent in the solution of the corresponding real symmetric dense eigenproblem for (1)
reduction to tridiagonal form, (2) tridiagonal eigenproblem, and (3) backtransformation of
the eigenvectors. For details of the experiment, see [122].

2. For massively parallel distributed/shared-memory architectures, we develop a
variant of MRRR that merges the task-based approach with the parallelization
strategy proposed by Bientinesi et al. [13]. Our new solver, PMRRR, can make
use of messages-passing for inter-node communication and shared-memory for
intra-node communication. It can also be used in a purely message-passing or
shared-memory mode, allowing the user to decide which programming model
to employ. Our design uses non-blocking communications in conjunction with a
task-based approach, which enables processes to proceed the computation while
waiting to receive data. Such an overlap of computation and communication
is crucial for load balancing and scalability. For the example in Fig. 1.2, the
results are shown in Fig. 1.5. For instance, in the experiment with a Wilkinson

6 CHAPTER 1. MOTIVATION & CONTRIBUTIONS

64 128 256 512 1,024 2,048
0

100

200

300

400

500

Number of cores

T
im

e
in

 s
ec

on
ds

20k 40k 80k
Matrix size

PMRRR

MRRR (ScaLAPACK)

DC (ScaLAPACK)

(a) 1–2–1 type matrices.

64 128 256 512 1,024 2,048
0

10

20

30

40

50

60

70

80

90

Number of cores

T
im

e
in

 s
ec

on
ds

20k 40k 80k
Matrix size

PMRRR

MRRR (ScaLAPACK)

DC (ScaLAPACK)

(b) Wilkinson type matrices.

Figure 1.5: Weak scalability (the matrix size is increased according to the number of cores)
for the computation of all eigenpairs of two different test matrix types. The left and right
graphs have different scales. For MRRR the execution time should remain roughly constant.
For details of the experiment, see [124].

type matrix on 1024 cores, ScaLAPACK’s MRRR spends about 30 out of 50
seconds in exposed communication. As Fig. 1.5(b) demonstrates, even for
matrices that strongly favor DC, due to its superior scalability, eventually our
solver becomes faster than ScaLAPACK’s DC.

3. PMRRR is integrated into Elemental, a development framework and library for
distributed-memory dense linear algebra, which can now be used to solve large-
scale dense eigenproblems. We perform a thorough performance study of Ele-
mental’s new eigensolvers on two high-end computing platforms. A comparison
with the widely used ScaLAPACK eigensolvers reveals that each ScaLAPACK
routine present performance penalties that are avoided by calling a different
sequence of subroutines and choosing suitable settings. We show how to built
– within the ScaLAPACK framework – an eigensolver faster than the existing
ones. By comparing Elemental’s eigensolvers with the standard ScaLAPACK
solvers as well as the ones build according to our guidelines, we show that
Elemental is fast and highly scalable.

4. We present a variant of MRRR based on mixed precisions, which addresses
the existing weaknesses of the algorithm: (i) inferior accuracy compared with
DC or QR; (ii) the danger of not finding suitable representations; and (iii)
for distributed-memory architectures, load balancing problems and commu-
nication overhead for matrices with large clustering of the eigenvalues. Our
approach adopts a new perspective: Given input/output arguments in a bi-
nary x floating point format, we use a higher precision binary y arithmetic to
obtain the desired accuracy. An analysis shows that we gain enormous freedom

1.2. CONTRIBUTIONS 7

to choose important parameters of the algorithm. In particular, we are able
to select these parameters to reduce the operation count, increase robustness,
and improve parallelism; at the same time, we meet more stringent accuracy
goals [Fig. 1.6].

10 20 30 40

10
−16

10
−15

10
−14

10
−13

10
−12

Test case

R
es

id
ua

l

mr3smp

MRRR (LAPACK)

DC (LAPACK)

(a) Largest residual norm.

10 20 30 40

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

Test case

O
rt

ho
go

na
lit

y

mr3smp

MRRR (LAPACK)

DC (LAPACK)

(b) Orthogonality.

Figure 1.6: For real symmetric tridiagonal matrices with dimension from 1,000 to about
8,000, accuracy of our mixed precision solver compared with LAPACK’s DC and MRRR.

10 20 30 40

10
0

10
1

10
2

Test case

T
im

e
in

 s
ec

on
ds

mr3smp

MRRR (LAPACK)

DC (LAPACK)

(a) Execution time: multi-threaded.

10 20 30 40

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

Test case

O
rt

ho
go

na
lit

y

mr3smp

MRRR (LAPACK)

DC (LAPACK)

(b) Orthogonality.

Figure 1.7: For real symmetric dense matrices with dimension from 1,000 to about 8,000,
time and accuracy of our mixed precision solver compared with LAPACK’s DC and MRRR.

This work is mainly motivated by the performance study of Elemental’s eigen-
solvers. In the context of dense eigenproblems, the tridiagonal stage is often
completely negligible in terms of execution time: to compute k eigenpairs of a
tridiagonal matrix, it only requires O(kn) operations; the reduction to tridi-
agonal form requires O(n3) operations and is the performance bottleneck. In
terms of accuracy, the tridiagonal stage is responsible for most of the loss of

8 CHAPTER 1. MOTIVATION & CONTRIBUTIONS

orthogonality. The natural question is whether it is possible to improve the
accuracy to the level of the best methods without sacrificing too much per-
formance. We show that this is indeed possible. In fact, our mixed precision
solver is more accurate than the ones based on DC or QR [Fig. 1.7(b)], and
remains as fast as the classical MRRR [Fig. 1.7(a)]. Finally, an important
feature of the mixed precision approach is a considerably increased robustness
and parallel scalability.

1.3 Outline of the thesis

In Chapter 2, we give background material concerning eigenproblems. In particu-
lar, we focus on methods for real symmetric tridiagonal eigenproblems and direct
methods for standard and generalized Hermitian eigenproblems. We introduce basic
terminology, existing algorithms, and available software. We also quantify goals such
as accuracy, scalability, and load balance. A reader familiar with the above issues
can safely skip all or parts of Chapter 2.

In Chapter 3, we focus on the MRRR algorithm and its most prominent features.
We introduce the method to an appropriate level for our purposes. Our goal is
neither to provide a rigorous exposition nor all the numerous details of MRRR.
Instead, the chapter serves – together with Chapter 2 – as a basis for the later
discussion of Chapters 4 and 5. Therefore, we focus on features that are important
for parallelization and introduce the factors that influence parallelism, robustness,
and accuracy. An expert of MRRR will not find anything new and can safely skip
all or parts of Chapter 3.

In Chapter 4, we introduce our work on parallel versions of MRRR targeting
modern multi-core and hybrid distributed/shared-memory architectures. Section 4.1
presents the task-based parallelization strategy for multi-core architectures. Sec-
tion 4.2 presents PMRRR, which merges the task-based parallelization with a paral-
lelization for distributed-memory architectures via message-passing. We further dis-
cuss Elemental’s new eigensolvers for dense Hermitian eigenproblems, which make
use of PMRRR, and their performance compared with ScaLAPACK.

Finally, in Chapter 5, we introduce our mixed precision approach for MRRR.
We demonstrate how it improves accuracy, robustness, and parallelism. Experi-
ments indicate that these benefits come with little or even no extra cost in terms of
performance.

Chapter 2
Background & Related Work

In this chapter, we compile background material concerning basic terminology, ex-
isting algorithms, and state-of-the-art software. The organization is as follows: Sec-
tion 2.1 introduces the Hermitian eigenproblem (HEP) and summarizes its basics
properties. In Section 2.2, we comment on our notation. In Section 2.3, we give a
brief overview of the existing methods with special emphasis on the real symmetric
tridiagonal eigenproblem (STEP), which is the main focus of this dissertation. We
then return to the more general HEP and introduce existing methods, in particular,
direct methods based on a reduction to tridiagonal form. The discussion of the HEP
is important for two reasons: first, it demonstrates that the STEP underlies most
methods for the HEP, and second, in later chapters, we show results of our solvers
in the context of direct methods for the HEP, referring to the material of this chap-
ter repeatedly. For the same reasons, we briefly discuss the generalized Hermitian
eigenproblem (GHEP). In Section 2.4, we list popular software that implements the
previously specified algorithms. Finally, in Section 2.5, we list a set of objectives
for any eigensolver. These objectives are used to compare different implementations
throughout later chapters.

Our discussion is far from complete as “the computation of eigenvalues of
matrices is one of the problems most intensively studied by numerical analysts,
and the amount of understanding incorporated in state-of-the-art software [...]
is [tremendous]” [154]. As most of the material can be found in textbooks
(e.g., [114, 32, 147, 168, 66, 154]), we limit the content of this chapter to important
aspects for this dissertation. Hence, a reader familiar with the basics of Hermitian
eigenproblems can safely skip the rest this chapter. For the other readers, we rec-
ommend to read this chapter as we use the material and notation without reference
in later chapters.

10 CHAPTER 2. BACKGROUND & RELATED WORK

2.1 The Hermitian eigenproblem

The Hermitian eigenproblem (HEP) is the following: Given an Hermitian matrix
A ∈ C

n×n (i.e., A = A∗, where A∗ denotes the complex-conjugate-transpose of A),
find solutions to the equation

Ax = λx ,

where λ ∈ R, x ∈ C
n, and x 6= 0. Without loss of generality, we assume ‖x‖ =√

x∗x = 1 subsequently. For such a solution, λ is called an eigenvalue (of A) and x
an associated eigenvector. An eigenvalue together with an associated eigenvector are
said to form an eigenpair, (λ, x). In matrix form, the computation of k eigenpairs is
written

AX = XΛ ,

where the eigenvalues are entries of the diagonal matrix Λ ∈ R
k×k and the associated

eigenvectors form the columns of X ∈ R
n×k.

The HEP is “one of the best understood“ and “the most commonly occurring
algebraic” [34] eigenproblems; it has a number of distinct features. In particular, we
make use of the following well-known result, cf. [79, Theorem 4.1.5].

Theorem 2.1.1 (Spectral Theorem for Hermitian matrices). Let A ∈ C
n×n be given.

Then A is Hermitian if and only if there is a unitary matrix X ∈ C
n×n, X∗ = X−1,

and a diagonal matrix Λ ∈ R
n×n such that A = XΛX∗. Proof: See [79, 66].

The decomposition A = XΛX∗ is called an eigendecomposition of A and, by
the Spectral Theorem, such a decomposition always exists for an Hermitian matrix.
This is equivalent to saying that n distinct eigenpairs exist, i.e., Axi = λixi for
1 ≤ i ≤ n, where all eigenvalues are real and the eigenvectors can be chosen to form
an orthonormal basis for Cn. Hence, the eigenvalues can be ordered as

λ1 ≤ λ2 ≤ . . . ≤ λi ≤ . . . ≤ λn ,

where λi is the i-th smallest eigenvalue of A. In situations where the underlying
matrix is not clear, we write λi[A] explicitly. The set of all eigenvalues is called the
spectrum of A and denoted by spec[A].

The eigenvectors can be chosen such that for all i, j ∈ {1, 2, . . . , n},

x∗ixj =

{
1 if i = j ,
0 if i 6= j .

(2.1)

For distinct eigenvalues, corresponding eigenvectors are given as (orthonormal) bases
of N (A − λiI) – the null space of A − λiI. This means that the eigenvectors are
generally not unique. However, when an eigenvalue λi is simple, i.e., distinct from all
the other eigenvalues, then dimN (A − λiI) = 1 and the corresponding eigenvector
is unique up to scaling.

2.2. NOTATION 11

Besides individual eigenvectors, subspaces spanned by a set of eigenvectors –
called invariant subspaces1 – are of special importance. For a given index set I ⊆
{1, 2, . . . , n},

XI = span{xi : i ∈ I}

denotes the invariant subspace associated with I. As with the eigenvalues, we write
XI [A] for XI whenever the underlying matrix is not understood from context.

When computing eigenpairs, it is useful to have transformations that change
the problem in a simple prescribed way. Two of these transformations are shifts and
similarities. Transforming A to A−σI is called shifting and σ ∈ R is called a shift. It
is easily verified that (λ, x) is an eigenpair of A if and only if (λ−σ, x) is an eigenpair
of A − σI. Thus, the spectrum is shifted by σ and the eigenvectors are invariant.
Similarly, given a nonsingular Q ∈ C

n×n, transforming A to Q−1AQ is called a
similarity transformation or a change of basis. In this case, (λ, x) is an eigenpair
of A if and only if (λ,Q−1x) is an eigenpair of Q−1AQ. Thus, the spectrum is
invariant under similarity transformations, while the eigenvectors change in a simple
way. In particular, if Q is unitary, Q∗ = Q−1, the transformation is called a unitary
similarity transformation. Using this notion, the Spectral Theorem states that every
Hermitian matrix is unitarily similar to a real diagonal matrix.

An important subclass of the HEP is the real symmetric eigenproblem, which
means A is restricted to be real-valued, A ∈ R

n×n. In this case, all complex-valued
quantities become real-valued and the discussion of the HEP holds with the words
’Hermitian’ and ’unitary’ respectively replaced by ’symmetric’ and ’orthogonal’. The
focus of this dissertation is on the even more specialized case of real symmetric
tridiagonal matrices. Before providing an overview of existing methods for the real
symmetric tridiagonal eigenproblem, we give a number of comments regarding our
notation throughout this document.

2.2 Notation

Generally, matrices are denoted by upper case Roman or Greek letters, while vectors
and scalars are denoted with lower case Roman or Greek letters. The underlying
field (R or C) and the dimensions are specified in context. Some letters and symbols
are reserved for special quantities:

• I denotes the identity matrix of appropriate size and ej denotes its j-th column,
with all elements being zero except the j-th, which is one.

• λ is used for eigenvalue and is always real-valued in this document.
• A of size n-by-n denotes a generic Hermitian matrix, possibly real-valued,

with eigenvalues λ1 ≤ . . . ≤ λn and corresponding eigenvectors x1, . . . , xn.
When computing (a subset of) eigenpairs, Λ is the diagonal matrix with the
eigenvalues as its entries and X contains the corresponding eigenvectors as
columns.

1For every invariant subspace, we can chose a set of eigenvectors as a basis, cf. [114].

12 CHAPTER 2. BACKGROUND & RELATED WORK

• T of size n-by-n denotes a generic real symmetric tridiagonal matrix with
eigenvalues λ1 ≤ . . . ≤ λn and corresponding eigenvectors z1, . . . , zn. When
computing (a subset of) eigenpairs, Λ is the diagonal matrix with the eigenval-
ues as its entries and Z contains the corresponding eigenvectors as columns.

• ε is used for machine precision or unit roundoff, defined as half the distance
between one and the next larger floating point number.

• spdiam[A] denotes the spectral diameter of matrix A, i.e., spdiam[A] = λn−λ1.
• For x ∈ R

n, ‖x‖ =
√
x∗x is the Euclidean norm; ‖x‖1 =

∑n
i=1 |x(i)| is the

1-norm.
• For A ∈ C

n×n, ‖A‖ = max{|λ1|, |λn|} denotes the spectral norm; ‖A‖1 =
max1≤j≤n

∑n
i=1 |A(i, j)| denotes the 1-norm.

• For t ∈ R, we use the notation O(t) informally as “of the order of t in magni-
tude.” The notion is used to hide moderate constants that are of no particular
interest.

Despite R ⊂ C, we frequently use the term complex-valued matrix or A ∈ C
n×n

implying that at least one of its elements is not real-valued. We use A∗ to denote the
complex-conjugate-transpose of matrix A. (If A ∈ R

n×n, A∗ denotes its transpose.)
We use the term Hermitian as the generic term; symmetric, however, is used synony-
mously with real symmetric, that is, no complex symmetric matrices are encountered
in this document. Similarly, a tridiagonal matrix is implicitly real symmetric.

Although eigenvectors are not unique, we talk about the eigenvectors and, al-
though we compute approximations to eigenvalues and eigenvectors, we simply refer
to computed eigenvalues and computed eigenvectors. Such computed quantities are
represented by hatted symbols (e.g., λ̂ or ẑ). The set of computed eigenvectors is
numerically orthogonal. We frequently, omit the terms ’set’ and ’numerically’ and
say that computed eigenvectors are orthogonal.

The topic of this dissertation is the efficient solution of “large-scale” eigenvalue
problems. On a single processor, we consider problems as “small” if the entire
input and output fits into the processors cache. Similarly, on a distributed-memory
system, we consider problems as “small” if the entire problem can effectively be
solved on a uniprocessor system. For instance, for today’s hardware, computing the
eigendecomposition of A ∈ C

5000×5000 (in IEEE double precision) is considered large
on a uniprocessor system, but small on a massively parallel supercomputer.

2.3 Existing methods

Methods differ in various aspects: the number of floating point operations (flops) they
have to perform (on average, in the worst case), the flop-rate at which the operations
are performed, the amount of memory required, the possibility of computing subsets
of eigenpairs at reduced cost, the attainable accuracy (on average, in the worst case),
the simplicity and robustness of an implementation, and the suitability for parallel
computations. In this section, we comment on the main features of different methods
for solving Hermitian eigenproblems in various forms.

2.3. EXISTING METHODS 13

2.3.1 The real symmetric tridiagonal eigenproblem

A number of excellent algorithms for the real symmetric tridiagonal eigenprob-
lem exist. Among them, bisection [12, 114, 33] and inverse iteration [169, 121,
172, 84, 41, 82], the QR algorithm [61, 90, 114], the Divide & Conquer algo-
rithm [29, 51, 67, 68], and the method of Multiple Relatively Robust Representations
(MRRR) [40, 44, 43, 118, 119].2 All four methods are implemented in publicly avail-
able software (see Section 2.4) and a user is required to make a selection among
the algorithms, each of them with its strengths and weaknesses and without a clear
winner in all situations. The “best” algorithm might be influenced by a number
of factors: the problem (e.g., size, spectrum, subsets), the architecture (e.g., cache
sizes, parallelism), external libraries (e.g., BLAS), and the specific implementation of
the algorithm. At this point, we collect the main characteristics of each algorithm;
an experimental comparison of their implementations is found in later chapters.
Further comparisons – general and experimental – of the algorithms can be found
in [37, 40, 13, 78, 32, 34].

We motivate our presentation: The comments about QR demonstrate why the
method is, when eigenvectors are desired, not competitive for the STEP. The discus-
sion about DC is important as the method is generally fast, scalable, and accurate;
we therefore frequently compare our results to it. We introduce inverse iteration as
it is closely related to MRRR; in fact, “it is difficult to understand MRRR without
appreciating the limitations of standard inverse iteration” [46]. Finally, MRRR is
the main focus of this dissertation and it is described more detailed in Chapter 3; at
this point, we only mention its most salient features.

We remark that all four methods are numerically stable and, if completed suc-
cessfully, computed eigenpairs of input matrix T fulfill

‖T ẑi − λ̂iẑi‖ = O(nε‖T‖) , (2.2)

and for i 6= j

|ẑ∗i ẑj| = O(nε) . (2.3)

MRRR’s accuracy and limitations (not for all inputs accuracy is guaranteed) com-
pared with other methods is the topic of Chapter 5.

Bisection and inverse iteration (BI)

Bisection, which is discussed in more detail in Section 3.2.2, may be used to find an
approximation to any eigenvalue with O(n) arithmetic operations [32, 147]; thus, it
computes k eigenvalues requiring only O(kn) flops. Given an initial interval [α, β]
which contains a sought after eigenvalue, the interval is bisected until sufficiently
small. Roughly −3n log2 ε flops are required to compute an eigenvalue to sufficient

2We concentrate on these four well-established algorithms. Other methods – often modifications
of four mentioned methods – exist (e.g., [99, 100, 110, 142, 107, 155, 76]).

14 CHAPTER 2. BACKGROUND & RELATED WORK

accuracy [40]. Convergence is linear and rather slow.3 Nonetheless, bisection has
a number of great features [114, 33, 103]: (1) It can be used to obtain approxima-
tions to just a subset of eigenvalues at reduced cost; (2) It can be used to obtain
approximations to low accuracy at reduced cost; (3) It can be used to refine approx-
imate eigenvalues to higher accuracy; (4) It can be used to compute eigenvalues to
high relative accuracy (whenever the data defines them to such accuracy); (5) all
computations are embarrassingly parallel.

After finding approximations to k eigenvalues via bisection, inverse iteration may
be used to compute the corresponding eigenvectors. Inverse iteration is one of the
oldest methods for computing selected eigenvectors when given approximations to
the eigenvalues. According to an interesting article on the history of the method [81],
it was introduced by Wielandt as early as 1944. Given an approximate eigenvalue λ̂i

of input matrix T and a starting vector ẑ
(0)
i ∈ R

n, the procedure consists of repeated
solutions of linear systems: for k ≥ 1,

(T − λ̂iI)ẑ
(k)
i = s(k)ẑ

(k−1)
i ,

where s(k) ∈ R is a positive scaling factor, say for simplicity chosen such that

‖ẑ(k)i ‖ = 1. Under mild assumptions, the sequence ẑ
(k)
i converges to an eigenvec-

tor approximation ẑi with small residual norm, i.e., such that (2.2) is satisfied. In

fact, the residual norm ‖r‖ = ‖T ẑ(k)i − λ̂iẑ
(k)
i ‖ = s(k) is readily available and is used

to signal convergence [82]. A small residual of O(nε‖T‖) implies that (λ̂i, ẑi) is an
eigenpair of a “close matrix”, that is, there exist a perturbation E such that (λ̂i, ẑi)
is an eigenpair of A + E and ‖E‖ ≤ ‖r‖ [82]. However, small residuals (backward
errors) are not sufficient to guarantee orthogonality among independently computed
eigenvectors – i.e., (2.3) might not hold. Whenever λ̂i is not well-separated (in an
absolute sense) from the rest of the spectrum, even for a simple eigenvalue, the com-
puted eigenvector ẑi might be a poor approximation to the true eigenvector zi.

4 Only
if almost all eigenvalues are well-separated, inverse iteration is efficient and requires
O(kn) operations to compute the eigenvectors. In such a scenario, the computation
of the eigenvectors is also easily performed in parallel. In contrast, if eigenvalues
are clustered, orthogonality must be enforced, usually by means of Gram-Schmidt
orthogonalization [1]. This process is potentially costly and requires in the worst case
O(k2n) flops; additionally, parallelism might be lost almost entirely. For large-scale
problems, the Gram-Schmidt procedure almost always increases the computation
time significantly [13].

Together, bisection and inverse iteration, which is often considered a single
method, has the advantage of being adaptable; that is, the method may be used
to compute a subset of eigenpairs at reduced cost. For this reason, it is still today
probably the most commonly used method for computing subsets of eigenpairs. Un-
fortunately, current software can fail to deliver correct results [41, 32] and, due to the

3“Convergence of the intervals can be accelerated by using a zero-finder such as zeroin [...],
Newton’s method, Rayleigh quotient iteration [...], Laguerre’s method, or other methods” [35].

4Measured by the acute angle ∠(ẑi, zi) = arccos |ẑ∗i zi|, see Theorem 3.1.2 or [82, 41].

2.3. EXISTING METHODS 15

explicit orthogonalization of eigenvectors, its performance suffers severely on matri-
ces with tightly clustered eigenvalues [32]. While BI has been the method of choice
for computing a subset of eigenpairs for many years, the authors of [37] suggest that
today MRRR “is preferable to BI for subset computations.”

The QR algorithm (QR)

The QR algorithm5 is arguably the most ubiquitous tool for the solution of (dense)
eigenvalue problems. On that account, it was placed in the list of the top ten
algorithms of the 20th century [116]. The algorithm was independently discovered
in the 1950s by Francis [61] and Kublanovskaja [90] and has been studied extensively
since then. While “for the general, nonsymmetric eigenvalue problem, QR is still
king” [167], it faces serious competition in the real symmetric tridiagonal case – for
instance, Divide & Conquer, which is usually faster and equally accurate [136, 151].

The method generates a sequence of orthogonally similar tridiagonals Tk =
Z∗
kTZk whose off-diagonal entries are driven rapidly to zero. In other words, Tk con-

verges to Λ, containing the eigenvalues, and Zk converges to Z, containing the eigen-
vectors. For each QR step, Tk = Q∗

k(Z
∗
k−1TZk−1)Qk, with k ≥ 1 and Z0 = I, Qk is a

product of n−1 Givens rotations [64], which must be accumulated, Zk = Zk−1Qk, if
the eigenvectors are desired. The process is guaranteed to converge [170, 77, 114, 166]
and leads to simple, robust and elegant implementations. Crucial for performance
and convergence are the implicit use of shifted matrices Tk−σkI and the exploitation
of deflation whenever an off-diagonal is close to zero [114].

When only eigenvalues are desired, the rotations need not be accumulated and
the computation can be rearranged such that no square-roots, which are usually more
expensive than other operations, are needed. This leads to the so called square-root
free QR or the PWK algorithm [111, 134, 114]. This algorithm is quite efficient and
requires only about 9n2 operations to compute all eigenvalues [114]. The square-root
free variant – with its O(n2) costs – is frequently used when only eigenvalues are
computed on a uniprocessor. On the other hand, alternative methods like bisection
are more amendable on parallel computing environments [35].

The cost of QR changes dramatically when also the eigenvectors are desired. In
this case, the majority of the work is performed in accumulating the Givens rotations.
As the accumulation costs about 3n2 operation per QR step and roughly 2n QR steps
are necessary for convergence, about 6n3 arithmetic operations are necessary in total.
For large problems, due to the higher cost compared to other methods, QR is usually
not competitive for the STEP when eigenvectors are desired. In contrast to the
“eigenvalues only” case, if eigenvectors are desired, the computation is parallelized
quite effectively [13, 35].

5It is oftentimes called the QR Iteration and sometimes Francis algorithm. We do not distinguish
between QR and QL algorithms. Excellent expositions of the method can be found in [114, 147,
168, 32].

16 CHAPTER 2. BACKGROUND & RELATED WORK

Divide & Conquer (DC)

DC is among the fastest and most accurate methods available [37, 136, 32, 151]. The
method is called by the authors of [154] “the most important advance in matrix
eigenvalue algorithms since the 1960s.” It was introduced by Cuppen in 1981 [29],
but it took more than a decade to find a stable variant of the algorithm [67, 68].
The divide and conquer strategy works by dividing the problem into two smaller
subproblems, which are solved recursively and whose solutions are combined to the
solution of the original problem. In our case, the tridiagonal is expressed as rank-one
modification of a direct sum of tridiagonals T1 = Z1Λ1Z

∗
1 and T2 = Z2Λ1Z

∗
2 :

T =

(
T1

T2

)
+ ρuu∗ =

(
Z1

Z2

)[(
Λ1

Λ2

)
+ ρvv∗

](
Z∗

1

Z∗

2

)
,

where ρ ∈ R and u, v ∈ R
n are readily available without further computation.

The problem is solved by recursively applying the procedure to T1 and T2 to find
their eigendecompositions and solving the eigenproblem for a rank-one update of a
diagonal matrix: (Λ1 ⊕ Λ2) + ρvv∗ = ZDΛZ

∗
D. To complete the computation of T ’s

eigendecomposition, T = ZΛZ∗, the eigenvectors are found by the matrix-matrix
product Z = (Z1 ⊕ Z2) · ZD.

Both the eigenvalues and the eigenvectors of a rank-one update of a diagonal
matrix are computed efficiently with only O(n2) operations, but the process must be
done with great care to be numerically stable [98, 67, 68]. The vast majority of the
computation is spent in the matrix-matrix product to obtain Z – hence, it is crucial
for performance of the algorithm that an optimized matrix-matrix multiplication is
available. Neglecting the cost for computing the eigendecomposition of (Λ1 ⊕ Λ2) +
ρvv∗, assuming that all the matrices are dense, the subproblems are of size n/2, and
a standard matrix multiplication is used, the overall process requires roughly 4

3n
3

flops [32, 147, 150]. However, the method frequently does much better than this
because of numerical deflation [51, 136, 150]: Whenever entries of v are sufficiently
small in magnitude or two entries in (Λ1⊕Λ2) are almost equal, some columns of ZD

can be made essentially columns of the identity matrix. This means, computations in
the matrix-matrix product are saved and eigenpairs of the subproblem (padded with
zeros) are accepted as eigenpairs of the larger problem.6 For both performance and
numerical stability, the “deflation process is essential for the success of the divide
and conquer algorithm” [150]. The amount of deflation depends on the eigenvalue
distribution and the structure of the eigenvectors [40].

Depending on the sample of test matrices and the deflation criterion, a different
behavior of the algorithm is observed in practice: in [32, 150] it is reported that for
random test matrices “it appears that [the algorithm takes] only O(n2.3) flops on
average, and as low as O(n2) for some eigenvalue distributions.” More complete tests
in [37] lead to the conclusion that “DC is O(n2.5) measured using time and O(n2.8)

6Assuming a fraction of δ eigenpairs that can be deflated at any level, the total work becomes
4
3
(1− δ)2n3 flops [136].

2.3. EXISTING METHODS 17

measured using flop counts” on average, where the run time behavior is specific to
the architecture of the experiment and is explained by an increasing flop-rate with
the size of matrix-matrix multiplications.

A big advantage of DC lies in the inherent parallelism of the divide and conquer
approach and its reliance on the (usually available) highly optimized matrix-matrix
kernel for computing the eigenvectors. The main drawback of the method is that
it requires the largest amount of memory of all methods (it requires at least addi-
tional n2 floating point numbers of workspace [37, 136, 150]). Additionally, most
implementations cannot be used to compute a subset of eigenpairs at reduced cost.
A study in [8] argues that up to 70% of the compute time is spent in the final two
matrix-matrix multiplications, unless extreme deflation takes place, cf. also [136].
By only propagating the desired subset of eigenvectors in these steps, the compu-
tation time is reduced by up to a factor three; see [8, 136] for details. While these
savings for computing subsets are significant in practice, “the adaptation [of Divide
& Conquer] to this case is somewhat artificial” [43]. Similarly, if only eigenvalues are
desired, DC requires only O(n2) operations, but other methods, like the square-root
free QR Iteration, are often preferred.

Therefore, as stated in [136], “if [enough memory] is available, if the full eigen-
decomposition is desired, and if either highly optimized BLAS are available or highly
clustered eigenvalues are possible, we recommend divide and conquer as the algorithm
of choice.” Since all these conditions are frequently satisfied, DC is one of the most
commonly used method.

For a pedagogical treatment of the main principles behind DC, we refer
to [32, 147, 168]. For the sake of completeness, we mention that the Divide &
Conquer method does not exist, but a family of methods varying in different parts of
the described procedure. Also, the operation count can be lowered to O(n2) for com-
puting all eigenpairs and O(n log2 n) for computing only eigenvalues – with implicit
constants too high to be used in practice today. As these aspects are not important
for our discussion, we simply refer to [32, 68] and the references therein.

Multiple Relatively Robust Representations (MRRR)

To compute n eigenpairs, all the practical methods discussed so far charge O(n3)
arithmetic operations in the worst case. The MRRR algorithm is the first stable
method that does the job using O(n2) flops. Furthermore, the method is adaptable
and computes k eigenpairs in O(kn) time.7

The method was introduced by Dhillon and Parlett in the late 1990s [40]. Proofs
of its correctness and a number of improvements were added at the beginning of this
century [43, 44, 174]; however, the method remains the subject of active research. It
is a variant of inverse iteration that removes the need for the costly orthogonalization
of the eigenvectors; details of the approach are given in Chapter 3. While MRRR is

7In practice, usually less than 200kn flops are required.

18 CHAPTER 2. BACKGROUND & RELATED WORK

a tremendous accomplishment, in Chapter 1, we already discussed remaining limi-
tations and justified the need for further improvements.

A brief comparison

As mentioned, a number of factors, such as the spectrum of the input matrix and
the underlying hardware, influence the performance and accuracy of the methods.
Consequently, their evaluation is a difficult task. In particular, when experimentally
comparing different algorithms, we compare specific implementations of the algo-
rithms8 on a specific architecture and with specific external libraries (e.g., BLAS or
MPI) for a specific task (e.g., 20% of eigenpairs) on a set of specific test matrices.

Probably the most complete study is given by Demmel et al. [37], comparing
implementations of the four algorithms on a number of architectures and a wide
range of test matrices. Here we summarize their main results: (1) Despite the
fact that all methods deliver results that satisfy (2.2) and (2.3), QR and DC are
more accurate than BI and MRRR; (2) DC requires O(n2) additional memory and
therefore much more than all the other algorithms, which only require O(n) extra
storage; (3) DC and MRRR are much faster than QR and BI; despite the fact that
MRRR uses the fewest flops, DC is faster on certain classes of matrices. If the full
eigendecomposition is desired, DC is generally the method of choice, but whether
DC or MRRR is faster depends on the spectral distribution of the input matrix;
(4) If only a subset of eigenpairs is desired, MRRR is the method of choice.

All these results are for sequential executions and do not take into account how
well-suited the algorithms are for parallel computations. For experimental compar-
isons of parallel implementations, we refer to Chapter 4 and [13, 151, 162, 122, 123,
124].

2.3.2 The Hermitian eigenproblem

Direct methods

So called direct methods are usually employed if the input and output can be stored
as full matrices in a computers memory and a significant portion (say more than
3% [3]) of eigenvalues and optionally eigenvectors are desired [34]. A good overview
targeting the non-expert is given by Lang [95]; we concentrate on the importance
of the STEP within most methods and keep the discussion of the other parts to a
minimum.

Given an arbitrary (or banded) Hermitian matrix A, the most common approach
to solve the eigenproblem consists of three stages:

1. Reduction of A to a real symmetric tridiagonal T = Q∗AQ via a unitary
similarity transformation.

2. Solution of the real symmetric tridiagonal eigenproblem: compute a (partial)
eigendecomposition T = ZΛZ∗, where Λ ∈ R

k×k and Z ∈ R
n×k.

8On the danger of judging an algorithms based on a specific implementation, see [38].

2.3. EXISTING METHODS 19

3. Backtransformation of the eigenvectors via X = QZ.

Stage 3 becomes unnecessary in case only eigenvalues are desired. In the following,
we give comments and pointers to the literature for all three stages.

Stage 1: Reduction to tridiagonal form. A classical direct reduction to tridiag-
onal form, the so called Householder tridiagonalization, is covered in most textbooks
of numerical linear algebra, e.g., [66, 168, 147, 154, 78].9 Details on the procedure
in general and parallel implementations – as actually used on modern (parallel) ar-
chitectures – are given respectively in [52, 160] and [72, 145, 73, 53, 25].

The classical tridiagonalization proceeds in n− 2 steps (unitary similarity trans-
formations):

Q∗
1AQ1 = A1 → Q∗

2A1Q2 = A2 → . . . → Q∗
n−2An−3Qn−2 = An−2 =: T ,

where Qj = I − 2
uju

∗

j

u∗

juj
, uj ∈ C

n, are Householder reflectors responsible for setting

the elements of the j-th column below the first subdiagonal (and by symmetry, the
elements of the j-th row above the first super-diagonal) to zero. Due to the use of
unitary matrices the process is numerically stable [172]. The overall cost are 16

3 n
3

flops (43n
3 flops if A ∈ R

n×n). It is not necessary to compute Q = Q1Q2 · · ·Qn−2

explicitly, which would require about the same number of flops as the reduction;
instead, the Householder vectors, which define the transformation, are commonly
stored in the original matrix A.

Dongarra, Sorensen, and Hammarling [52] showed that the computation can
be restructured for more efficient data reuse; thereby, increasing the performance
on processors with a distinct memory hierarchy. The computation is restructured
by delaying the application of a “block” of nb transformations to a part of the
matrix and then applying them in an aggregated fashion, a level-3 BLAS operation.
“The performance of the blocked tridiagonalization algorithm depends heavily on
an appropriate choice of the ’blocking factor’ nb. On the one hand, increasing nb

will usually increase the performance [...]. On the other hand, blocking introduces
O(nbn

2) additional operations” [94]. For nb ≪ n, the effect of blocking on the overall
flop count is negligible, while data reuse is greatly enhanced. Despite the improved
data reuse, only about half of the flops are performed as matrix-matrix operations
(level-3 BLAS), while the other half of the flops are in matrix-vector products (level-
2 BLAS). The slow flop-rate at which the matrix-vector products are performed
– not the total number of flops – makes the tridiagonalization in many situations
the performance bottleneck in the three-stage approach. However, this is only true
provided the tridiagonal eigensolver is properly chosen; in later chapters, we show
situations in which, due to its inferior scalability, the tridiagonal stage is responsible
for a significant fraction of the overall execution time.10

9Alternatively, the reduction can be performed with rotations [64] or by Lanczos algorithm [114],
which are both less efficient.

10For instance, see Fig. 1.1(b) in Chapter 1 or Fig. 4.8(b) in Chapter 4.

20 CHAPTER 2. BACKGROUND & RELATED WORK

An alternative to the blocked tridiagonalization is successive band reduction
(SBR) [18]. The idea is to split the reduction in two stages.11 In the first stage,
the matrix is reduced to banded form with bandwidth b > 1 [17, 92]. Unlike the
direct reduction to tridiagonal form, this stage can be cast almost entirely in terms of
matrix-matrix operations, thus attaining high-performance and parallel scalability.
The reduction is then completed, in a second stage, with a final band-to-tridiagonal
reduction [91, 132]. While this stage is negligible in terms of arithmetic operations
(assuming b ≪ n), it can significantly contribute the the overall execution time due
to its limited parallelism [9].12 Compared with the classical reduction, SBR requires
only O(n2b) additional flops, which is negligible if b ≪ n [8]. However, achieving
optimal performance is a balancing game as “larger b allows BLAS routines to op-
erate near peak performance and decreases [communication], but it also increases
the run-time of the reduction from banded to tridiagonal form” [8]. The downside
of SBR lies in the increased operation count in the backtransformation stage. For
this reason, SBR is commonly used when only the eigenvalues are desired or only a
(small) fraction of the eigenvectors is computed.13

Stage 2: Solution to the STEP. Any tridiagonal eigensolver can be used; in
particular, one of the aforementioned methods (BI, QR, DC, MRRR). Since the
various solvers based on a reduction to tridiagonal form commonly differ only in this
stage, differences in performance and accuracy are solely attributed to the tridiagonal
eigensolver. Consequently, the previous comparison of the methods largely applies
to the three-stage approach for the HEP.

The only exception is QR: if eigenvectors are desired, it is not competitive for
the STEP. In contrast, using the techniques of [93], it has been shown that, in the
context of direct methods for the HEP, QR can be (almost) competitive to MRRR
or DC [159].14 For QR, the three-stage approach is (usually) modified:15 after
Stage 1, matrix Q is build explicitly and the rotations arising in the tridiagonal
solver are applied to Q, i.e., we set Z0 = Q instead of Z0 = I; Stage 3 becomes
unnecessary.16 If the one-stage reduction is used, building Q requires about 16

3 n
3

flops (43n
3 flops if A ∈ R

n×n); if SBR is used, it requires additional 8n3 flops (2n3

flops if A ∈ R
n×n) [159, 94]. Applying the rotations to Q requires about 6n2 flops

per QR step (3n2 flops if A ∈ R
n×n). Since roughly 2n QR steps are necessary

for convergence, about 12n3 flops (6n3 flops if A ∈ R
n×n) are required for the

accumulation of rotations. As Stage 3 is omitted, if properly implemented, QR
becomes competitive to MRRR and DC in the context of the standard HEP.

11In general more than two stages might be used [18].
12If A is banded with moderate bandwidth to begin with, the reduction to tridiagonal form

requires significantly less effort than for a full matrix.
13For more on SBR in general, as well as implementations for uniprocessors and distributed-

memory systems, we refer to respectively [18, 92], [19, 14, 101, 11], and [17, 92, 94, 9, 8].
14The tests were performed sequentially on a uniprocessor and it remains to been seen if QR can

be equally competitive in a parallel environment.
15See [159], which also discusses an alternative approach.
16A similar approach can be used for DC, but it is not commonly done.

2.3. EXISTING METHODS 21

Furthermore, while QR overwrites input A with the eigenvectors, all the other
methods require additional storage for the eigenvectors of T . Consequently, if all
eigenvectors are desired, QR requires the least amount of memory. If only k ≪ n
eigenvectors are computed, no such savings are observed.

Independent of the tridiagonal eigensolver, if only eigenvalues are desired, the
O(kn) or O(n2) cost of Stage 2 is usually negligible compared with the reduction
to tridiagonal form. Similarly, if MRRR is used to compute k eigenpairs, its O(kn)
cost is oftentimes insignificant compared with the O(n3) cost of the reduction.

Stage 3: Backtransformation. The matrix Q of the first stage is applied to the
eigenvectors of T . Normally, Q is given implicitly by a sequence of Householder trans-
formation and the computation is cast almost entirely in terms of efficient matrix-
matrix multiplications using the compact WY or the UT representation of a product
of Householder transformations [139, 85]. Consequently, the backtransformation at-
tains high performance and “like any algorithm involving mainly products of large
matrices, [it is] easily and efficiently parallelized” [95].

If the one-stage reduction is used, the cost of the backtransformation is 8kn2 flops
(2kn2 flops if A ∈ R

n×n). If the two-stage reduction is used, the backtransformation
stage equally slits into two stages: first, the eigenvectors of the intermediate banded
matrix are computed, and then the eigenvectors of the input matrix [8].17 The cost
is about twice that of the one-stage reduction, which is considerable if k is large.
As already mentioned, this is the reason why SBR is usually used if k is sufficiently
small compared with the matrix size or no eigenvectors are desired.

Methods without tridiagonalization.

A variation of the described methods is the reduction to banded form followed by a
direct solution of the banded eigenproblem [105, 6, 62, 63, 71]. In terms of perfor-
mance, if eigenvectors are desired, such an approach is currently inferior to methods
based on a reduction to tridiagonal form [71]. Methods without any initial reduction
to condensed (tridiagonal or banded) form are Jacobi’s method [83], spectral divide
and conquer approaches [109, 15, 182, 183], and others [180, 47].

In terms of execution time, Jacobi’s method is generally not competitive to meth-
ods that are based on a reduction to tridiagonal form [32], but it remains valuable:
When implemented carefully, it has the advantage of finding eigenvalues to high
relative accuracy (whenever the data defines them to such accuracy) [39, 114]; fur-
thermore, it is naturally suitable for parallelism [66, 138] and it is fast when used on
strongly diagonally dominant matrices.

Spectral divide and conquer techniques, such as presented by Nakatsukasa and
Higham in [109], “have great potential for efficient, numerically stable computations
on computing architectures where the cost of communication dominates the cost of

17Alternatively, Q is built explicitly during the reduction phase and applied via a matrix-matrix
multiplication.

22 CHAPTER 2. BACKGROUND & RELATED WORK

arithmetic” [109]. By casting all computation in terms of QR (or Cholesky) factor-
izations and matrix-matrix multiplications, the computation is performed efficiently
and with low communication overhead [109]. Furthermore, the natural parallelism
of the divide and conquer approach makes it promising for parallel computations. So
far, no parallel implementation of the algorithm presented in [109] exists and future
investigations will show if and under which conditions the approach is superior to a
reduction to condensed form.

Iterative methods.

If problem sizes exceed the capability to store input and output in main memory,
sometimes direct methods are still applied in an out-of-core fashion [96, 152]. How-
ever, very large-scale problems are usually sparse and sparse matrix storage in com-
bination with iterative methods are employed. Commonly, these methods are used
to compute just a few eigenvalues and eigenvectors, while computing a large number
of eigenpairs efficiently remains an open research question [137]. While extremely
important, iterative methods are not considered in this dissertation. Instead, we
merely note that “all subspace-based algorithms [...] need to use dense, tridiago-
nal, or banded matrix routines as inner iterations to get Ritz approximations to
subspace eigenvalues” [34]. Also, “the large and dense eigenvalue problem will gain
importance as systems become larger. This is because most methods solve a dense
eigenvalue problem [that can] reach a size in the tens of thousands. Because of the
cubic scaling of standard eigenvalue methods for dense matrices, these calculations
may become a bottleneck” [137].

The only algorithm we mention explicitly is the well-known Lanczos method, as
it naturally leads to real symmetric tridiagonal eigenproblems – demonstrating once
more the importance of the STEP. Lanczos method and other iterative methods are
discussed in [181, 34, 114, 147]; a survey of available software is given in [75, 34].

2.3.3 The generalized Hermitian eigenproblem

As we consider a specific generalization of the Hermitian eigenproblem in later chap-
ters, we introduce it briefly. A generalized Hermitian eigenproblem (GHEP) is the
following: Given Hermitian matrices A,B ∈ C

n×n, with B positive definite (i.e.,
λ1[B] > 0), find solutions to the equation

Ax = λBx , (2.4)

where λ ∈ R, x ∈ C
n, and x 6= 0. The sought after scalars λ and associated

vectors x are called eigenvalues and eigenvectors, respectively. We say that (λ, x) is
an eigenpair of the pencil (A,B). If B is the identity matrix, (2.4) reduces to the
standard HEP.

Subsequently, we concentrate on direct methods for the GHEP, which make use
of the following fact: Given nonsingular matrices G and F , the eigenvalues of the

2.3. EXISTING METHODS 23

pencil (A,B) are invariant under the equivalence transformation (GAF,GBF); fur-
thermore, x is an eigenvector of (A,B) if and only if F−1x is an eigenvector of
(GAF,GBF) [114].

The most versatile tool for the generalized eigenproblem, the QZ algorithm [108],
uses a sequence of unitary equivalence transformations to reduce the original pencil to
generalized (real) Schur form. By design, the QZ algorithm is numerically backward
stable and imposes no restrictions on the input matrices; unfortunately, the algorithm
does not respect the symmetry of the Hermitian pencil (A,B) and is computationally
rather costly. The QZ algorithm and other methods – both direct and iterative –
are discussed in [114, 66, 34, 24] and references therein.

To preserve the symmetry of the problem while reducing the pencil (A,B) to
simpler form, methods are limited to sequences of congruence transformations –
that is, using G = F ∗, where G and F are no longer required to be unitary. The
traditional approach for computing all or a significant fraction of the eigenpairs of
(A,B) – and the only one that will be of relevance later – relies on a transformation
to a HEP [106]. The HEP is in turn solved via a reduction to tridiagonal form.
Overall, the process for solving a generalized eigenproblem – also known as the
Cholesky-Wilkinson method – consists of six stages:

1. Cholesky factorization: B = LL∗, where L ∈ C
n×n is lower triangular.

2. Reduction to standard form: The original pencil (A,B) is transformed to
(L−1AL−∗, I), which takes the form of a standard Hermitian eigenproblem.
With M = L−1AL−∗, an eigenpair (λi, xi) of the pencil (A,B) is related to an
eigenpair (λi, yi) of M by yi = L∗xi.

3. Reduction to tridiagonal form: Reduction of M to a real symmetric tridiagonal
form via a unitary similarity transformation, T = Q∗MQ. The pencil (M, I)
is transformed to (Q∗MQ, I), which takes the form of a STEP. An eigenpair
(λi, yi) of M and an eigenpair (λi, zi) of T are related by zi = Q∗yi.

4. Solution of the tridiagonal eigenproblem: compute a (partial) eigendecomposi-
tion T = ZΛZ∗, where Λ ∈ R

k×k and Z ∈ R
n×k.

5. First backtransformation: In accordance to Stage 3, the eigenvectors of the
standard eigenproblem are obtained by computing Y = QZ.

6. Second backtransformation: In accordance to Stage 2, the eigenvectors of the
original pencil are obtained by computing X = L−∗Y .

The above discussion shows that X∗AX = Λ, X∗BX = I, and AX = BXΛ. Fur-
thermore, with slight modifications of Stages 2 and 6, the same six-stage procedure
also applies to eigenproblems in the form ABx = λx and BAx = λx. In the first case,
the reduction to standard form and the final backtransformation become M = L∗AL
and X = L−∗Y , respectively; in the second case, they become M = L∗AL and
X = LY .

The Cholesky-Wilkinson method should only be used if B is sufficiently well-
conditioned with respect to inversion. For a detailed discussion of problems arising
for ill-conditioned B, we refer to the standard literature, including [114, 146, 34, 66].
As we have already discussed Stages 3–5, we now give some remarks on the other

24 CHAPTER 2. BACKGROUND & RELATED WORK

three stages.

Stage 1: Cholesky factorization. The factorization requires about 4
3n

3 flops
(13n

3 flops if A,B ∈ R
n×n), which can be cast almost entirely in terms of level-3

BLAS. Consequently, it is highly efficient and scalable. For details, we refer to [128,
23, 131].

Stage 2: Reduction to standard form. A comprehensive exposition for the two-
sided triangular solve, L−1AL−∗, and the two-sided multiplication, L∗AL, is given
in [130, 129]. The derived algorithms require about 4n3 flops (n3 flops if A,B ∈
R
n×n). Efficient and scalable implementations for distributed-memory architectures

are discussed in [130, 129, 141]. If A and B are banded with moderate bandwidth
the algorithm presented in [28] can be more efficient as it “reduces the generalized
problem to an ordinary eigenvalue problem for a symmetric band matrix whose
bandwidth is the same as A and B”.

Stage 6: Backtransformation for the GHEP. The triangular solve with mul-
tiple right hand sides or the triangular matrix multiply is a level-3 BLAS operation;
consequently, it is efficient and parallelizable [27]. The computations require roughly
the same number of flops as Stage 2; the flop count is reduced if B is banded.

Section 2.3 is summarized in Fig. 2.1, which emphasizes the importance of the
STEP in solving dense or sparse Hermitian eigenproblems. As direct methods do
not exploit any sparsity of the inputs, here and in the following, the term dense
eigenproblem implies the use of direct methods for its solution, i.e., the input is
treated as if it were dense. Besides its importance for eigenvalue problems, the
STEP is an integral part in the computation of singular value decompositions [177].

Figure 2.1: Computational paths leading to the real symmetric tridiagonal eigenproblem
(STEP). Dense means that the matrix is treated as a dense matrix and a direct method is
used for the solution, while sparse refers to the use of an iterative method, which are mainly
used for large-scale sparse eigenproblems.

2.4. EXISTING SOFTWARE 25

2.4 Existing software

Numerous software implements the previously described methods for the solution of
eigenvalue problems. In this section, we list a few libraries – with no intention of
being exhaustive.18

In 1972, EISPACK [143] was released – a collection of Fortran subroutines based
on the ALGOL programs by Wilkinson et al. [173]. LAPACK – first released in 1992
– superseded EISPACK and includes a number of new and improved algorithms for
eigenvalue problems. Efficiency and (trans)portability is achieved by casting the
computation in terms of common building blocks – the BLAS (Basic Linear Algebra
Subprograms) [97, 49, 50].19 BLAS are commonly provided in optimized, machine-
specific form such as included in Intel’s MKL. Today, LAPACK is the most widely
used numerical linear algebra library on serial and shared-memory machines; it is
provided in optimized form by all major computer vendors (e.g., Intel’s MKL, IBM’s
ESSL, AMD’s ACML, Sun Performance library) and commonly used through high-
level interfaces (e.g., Matlab, Maple, NAG Numerical libraries). For the tridiagonal
eigenproblem, LAPACK includes implementations of the four described methods
(BI, DC, QR, and MRRR). In line with the discussion in Section 2.3, the tridiagonal
eigensolvers form the basis of direct methods for standard and generalized Hermitian
eigenproblems. A list of LAPACK’s eigensolvers relevant to this dissertation can be
found in Appendix A.20 LAPACK does not support successive band reduction, but
the corresponding routines are provided by the SBR toolbox [19] and are included
in some vendor-specific LAPACK libraries. LAPACK’s support for multi-core archi-
tectures is confined to the use of multi-threaded BLAS.

A number of research efforts are currently devoted to adapt LAPACK’s func-
tionality to multi-core and many-core processors. Among them, PLASMA [2],
MAGMA [2], and FLAME [157, 158]. When this dissertation started, none of those
projects included routines for the solution of eigenproblems.21 Recent effort changed
this situation: Today, FLAME includes a solver for the HEP based on the direct
reduction to tridiagonal form [160] and a QR [159] that is significantly faster than
its LAPACK analog. MAGMA has support for the HEP [70, 165] and PLASMA
added support for the GHEP and the HEP based on SBR [101] and QR.

Several libraries address distributed-memory architectures, including ScaLA-
PACK [20], PLAPACK [156], PeIGS [54, 42], PRISM [15, 16], and Elemental [128].
ScaLAPACK was introduced in 1995; its goal is to provide the same functional-
ity as LAPACK. A list of ScaLAPACK’s eigensolvers relevant to this dissertation
can be found in Appendix A. Routines for an alternative one-stage reduction and

18For a list of freely available software for linear algebra computations, see [48].
19The term “transportability” is sometimes used instead of “portability” because LAPACK relies

on a highly optimized BLAS implemented for each machine [5].
20As a side note: all these libraries are usually designed to be efficient for larger problem sizes.

For efficient solution of 3x3 problems, see [89].
21PLASMA User’s Guide Version 2.0: “PLASMA does not support band matrices and does not

solve eigenvalue and singular value problems.”

26 CHAPTER 2. BACKGROUND & RELATED WORK

the two-stage SBR were released within the ELPA project in 2011 [9, 8]. Intro-
duced in the 1990s was also PLAPACK, which is “an [...] infrastructure for rapidly
prototyping” [179] parallel algorithms and “resulted from a desire to solve the pro-
grammability crisis that faced computational scientists in the early days of massively
parallel computing” [127]. For PLAPACK related to eigenproblems, see [13, 179].
As the “major development on the PLAPACK project ceased around 2000” [127],
today, it is largely outdated and superseded by Elemental. Elemental is equally a
framework for dense matrix computations on distributed-memory architectures. Its
main objective is to ease the process of implementing matrix operations without
conceding performance or scalability. Elemental includes a library for commonly
used matrix operations; for standard and generalized Hermitian eigenproblems, the
library includes eigensolvers based on the parallel MRRR presented in Chapter 4.
More on Elemental’s eigensolvers can be found in Chapter 4.

2.5 Objectives

The ideal eigensolver is accurate, fast, scalable, and reliable. In this section, we state
how to quantify these attributes. Basic definitions such as accuracy, scalability and
load balancing are adopted from [114, 140].

Accuracy. Given an Hermitian matrix A ∈ C
n×n (possibly real-valued and tridi-

agonal) and a set of computed eigenpairs {(λ̂i, x̂i) : i ∈ I}, ‖x̂i‖ = 1, we quantify
the results by the largest residual norm and the orthogonality, which are defined as

R = max
i

‖Ax̂i − λ̂ix̂i‖1
‖A‖1

and O = max
i

max
j 6=i

|x̂∗i x̂j| , (2.5)

respectively.22 If both R and O are O(nε), with implied constant in the hundreds,
we say that the eigenpairs are computed accurately. In the following, we accept this
definition of accuracy without further discussion.

The accuracy depends on a number of factors: the algorithm A used23, a set
of parameters P of a specific implementation of A, and the input matrix A – in
particular its dimension n. Consequently, we have R(A,P, n,A) and O(A,P, n,A).
From each algorithm A, we isolate the set of parameters P, including convergence
criteria and thresholds, so that if two implementations of the same algorithm only
differ in P, then they are still considered implementations of the same algorithm.

To compare a set of algorithms, each with a fixed set of parameters, we factor
in the dependence of the input matrix by obtaining results for a large set of test
matrices. Ideally, such a test set would be somewhat standardized and consist of a
variety of application and artificial matrices in a wide range of sizes. Taking for each
size n the average and worst case accuracy usually represents well the accuracy of an
algorithm and gives some practical upper bounds on the residuals and orthogonality.

22In the following, we assume that ‖x̂i‖ = 1 holds exactly.
23See Section 2.3 for the discussion of different algorithms.

2.5. OBJECTIVES 27

In general, for a stable algorithm it is possible to provide theoretical error bounds,
independently of all properties of the input matrix but its size. These theoretical
upper bounds are essential for proving stability and for improving algorithms, but
often greatly overestimate the actual error. Wilkinson wrote [171, 66], “a priori
bounds are not, in general, quantities that should be used in practice. Practical
error bounds should usually be determined in some form of a posteriori error analysis,
since this takes full advantage of the statistical distribution of rounding error [...].”
In this thesis, we will evaluate and compare the accuracy of algorithms by executing
them with a set of test matrices.

Speed. Suppose we solve a fixed problem using p processing units, indexed by
1 ≤ i ≤ p, with individual execution times t̃i. The time to solution, tp, is naturally
defined as

tp = max{t̃i : 1 ≤ i ≤ p} . (2.6)

For different values of p, similar to the accuracy assessment, the average and
worst case execution times on a set of test matrices can be used to compare the
performance of different eigensolvers. Such an approach, with p = 1, is taken in [37]
to evaluate the performance of LAPACK’s symmetric tridiagonal eigensolvers. As
the performance not only depends on the input matrices, but also on the architecture
and the implementation of external libraries, an evaluation is a difficult task. In many
of our experiments, not only the test set is inadequate in its generality, but also the
variety of the underlying hardware is not large enough to draw final conclusions (it
never is). However, from our observations, we can derive some general behavior of
the different methods and their implementations.

Scalability. For a fixed problem, let tp be as defined in (2.6) and let tref be a
reference time using pref ≤ p processing units. The speedup, sp, is defined as

sp =
tref · pref

tp
. (2.7)

Usually tref = t1 refers to the execution of the best available sequential solution and,
consequently, pref = 1. The corresponding parallel efficiency, ep, is defined as

ep =
sp
p

=
tref · pref

tp · p
. (2.8)

When investigating the scalability (speedup or efficiency) for a fixed problem, we
refer to strong scalability. For practical problems and values for p, the goal is to
achieve sp ≈ p and ep ≈ 1. If this is achieved, we say that we obtain perfect speedups
or perfect scalability.

By Amdahl’s law [4], even without taking synchronization and communication
cost into account, perfect speedup is not always attainable. If a fraction f of a code
is inherently sequential, the speedup and efficiency are limited by

sp ≤
1

f + (1− f)/p
<

1

f
and ep ≤ 1

1 + (p− 1)f
. (2.9)

28 CHAPTER 2. BACKGROUND & RELATED WORK

Since always f > 0, the efficiency eventually goes to zero as p increases for any
parallel code.

Besides strong scalability, we are interested in the so called weak scalability, where
the number of processors is increased together with the problem size. As attested
by Fred Gustafson in his article “Reevaluating Amdahl’s Law”, weak scalability has
often a greater significance as in “practice, the problem size scales with the number of
processors [...] to make use of the increased facilities” [69]. In particular, we consider
the so called memory-constraint scaling, where the amount of memory per processor
is kept constant while problem size and number of processors are increased.

For weak scalability, the parallel efficiency, ěp, is defined as

ěp =
ep · θ
θref

=
tref · pref · θ
tp · p · θref

, (2.10)

where θ and θref are measures of the work required to solve respectively the problem
and the reference problem. For standard and generalized dense eigenvalue problems,
we have θ/θref = n3/n3

ref and, for MRRR, we have θ/θref ≈ n2/n2
ref . If in an

experiment ěp ≈ 1, we say that we obtain perfect scalability. As with accuracy and
timings, the average and worst case efficiency on a set of test matrices can be used
to compare the scalability of different eigensolvers.

Load and memory balancing. With t̃i as defined above, the average execution
time, t̄p, is given by

t̄p =
1

p

p∑

i=1

t̃i . (2.11)

The load balance is quantified by

bp =
t̄p

max{t̃i : 1 ≤ i ≤ p} . (2.12)

An execution is called load balanced if bp ≈ 1 and unbalanced if bp ≈ 0. Using (2.8)
with tref = t1 and assuming t1 ≤ ∑n

i=1 t̃i, we have ep ≤ bp. Consequently, without
load balancing, it is not possible to achieve good parallel efficiency.

Besides a balanced workload, the total memory usage should be equally dis-
tributed among the p processing units. For a specific problem, let m denote the
total memory requirement and let m̃i = c̃im/p be the memory requirement for pro-
cessing unit i. If cp = max{ci : 1 ≤ i ≤ p} is bounded by a small constant for the
tested values of p, we say that we achieved perfect memory balancing. Again, for
a fixed problem, if p increases, eventually memory balancing is lost for any parallel
code. Therefore, as for the weak scaling, we often are interested in the memory
balancing for problems that increase in size as the number of processors increase.
For computing all eigenpairs, we have m = νn2, with ν being a constant depend-
ing on the solver. Consequently, memory balancing is achieved when the maximum
memory required by any processing unit,

mp = max{m̃i : 1 ≤ i ≤ p} , (2.13)

2.5. OBJECTIVES 29

is O(n2/p), with a small implicit constant.

Robustness. In order to quantify the robustness of an eigensolver, we use the
following measure: For a given test set of matrices, TestSet, the robustness φ ∈
[0, 1] is expressed as

φ(TestSet) = 1− NumFailures

|TestSet| (2.14)

where NumFailures is the number of inputs for which the method “fails”. We will
be more concrete on what to consider failure in Chapter 5.

30 CHAPTER 2. BACKGROUND & RELATED WORK

Chapter 3
The MRRR Algorithm

Since its introduction in the 1990s, much has been written about the MRRR algo-
rithm; its theoretical foundation is discussed in several publications [40, 118, 43, 44,
119, 117, 164, 174, 175, 178] and practical aspects of efficient and robust implemen-
tations are discussed in [46, 45, 102, 103, 13, 162, 124, 123, 163]. In particular, Paul
Willem’s dissertation [174] as well as Inderjit Dhillon’s and Beresford Parlett’s two
seminal articles [43, 44] provide excellent and essential reading for everyone inter-
ested in the algorithm. One could say, with an implementation of the algorithm in
the widely used LAPACK library and the description of (parts of) the algorithm in
textbooks such as [168], MRRR has become mainstream.

Most publications however are either concerned about a proof of correctness or
only a specific detail of the algorithm. Our description of the algorithm has a dif-
ferent purpose: for the non-expert, we describe the factors influencing performance,
parallelism, accuracy, and robustness. We highlight the main features of the algo-
rithm, the sources of parallelism, and the existing weaknesses. Our exposition, which
is largely based on [43, 44, 174, 175], serves as a basis for the discussion in Chapters 4
and 5. We are not afraid to omit details and proofs, which can be found in other
places in the literature. In contrast to Chapters 4 and 5, in this chapter we are not
primarily concerned with efficiency.

The chapter is organized as follows: In Section 3.1, we give a high-level description
of MRRR, with the main goal being the introduction of Algorithm 3.2. Furthermore,
we establish the terminology and notation used in later chapters. For the discussion
in Chapter 5, we present in Theorem 3.1.4 all the factors that influence the accuracy
of MRRR. By fixing the form to represent tridiagonals, Section 3.2 provides a more
concrete description of the computation of eigenvalues and eigenvectors. An expert
of MRRR might safely skip the entire chapter and continue with Chapter 4 or 5.
We recommend however to read at least Section 3.1, as it contains all the required
background and notation for the later chapters.

32 CHAPTER 3. THE MRRR ALGORITHM

3.1 The big picture

Consider the symmetric tridiagonal T ∈ R
n×n with diagonal a = (α1, . . . , αn) and

off-diagonal b = (β1, . . . , βn−1):

T =

α1 β1

β1 α2
. . .

. . .
. . . βn−1

βn−1 αn

. (3.1)

Recall that the goal is to compute a set of eigenpairs {(λ̂i, ẑi) : i ∈ I}, ‖ẑi‖ = 1,
such that for all i ∈ I

‖T ẑi − λ̂iẑi‖ = O(nε‖T‖) , (3.2)

and for all i, j ∈ I with i 6= j

|ẑ∗i ẑj| = O(nε) . (3.3)

For now, without any loss of generality, we assume βi 6= 0 for 1 ≤ i ≤ n − 1, as
otherwise the matrix is the direct sum of tridiagonals and the eigenpairs are found
by inspecting each tridiagonal submatrix separately [172]. As no off-diagonal element
is equals to zero, the matrix T is irreducible and the following theorem holds.

Theorem 3.1.1. The eigenvalues of an irreducible real symmetric tridiagonal matrix
are simple, i.e., they are distinct. Proof: See [114].

Although the eigenvalues are distinct, they might be equal to working preci-
sion [114]. Nonetheless, distinct eigenvalues imply that each normalized eigenvector
is uniquely determined up to a factor of −1. Consequently, if we could compute
normalized eigenvectors ẑi and ẑj , i 6= j, such that the (acute) error angle1 with the
true eigenvectors are small, that is

sin∠(ẑi, zi) ≤ O(nε) and sin∠(ẑj , zj) ≤ O(nε) , (3.4)

the computed eigenvectors would be numerically orthogonal:

|ẑ∗i ẑj | ≤ sin∠(ẑi, zi) + sin∠(ẑj , zj) ≤ O(nε) . (3.5)

In general, in finite precision computations, accuracy as in (3.4) is not achievable
as, whenever the eigenvalues are “close” to one another, “small” perturbation in the
data can lead to “large” perturbations in the eigenvectors [172, 114]. Different algo-
rithms therefore have particular means to ensure the goal of numerical orthogonality.
For example, algorithms like QR or Jacobi, which obtain eigenvector approximations
by accumulating orthogonal transformations, achieve the goal automatically without
(3.4) necessarily being satisfied [44]. The method of inverse iteration addresses the

1Given by ∠(ẑi, zi) = arccos |ẑ∗i zi|.

3.1. THE BIG PICTURE 33

problem by explicitly orthogonalizing the eigenvectors corresponding to close eigen-
values (in the absolute sense) – as discussed in Section 2.3, potentially this is an
expensive procedure. For Divide & Conquer and MRRR, more sophisticated tech-
niques are used [67, 68, 43, 44]. The way the MRRR algorithm computes numerically
orthogonal eigenvectors – without explicit othogonalization – is at the heart of this
chapter.

In the next two sections, we illustrate the principles behind MRRR assuming ex-
act and finite precision arithmetic, respectively. Generally, (3.4) can only be achieved
in exact arithmetic, while in finite precision more effort is required to ensure orthog-
onality among eigenvectors.

3.1.1 Computing with exact arithmetic

In general, even when operating in exact arithmetic, there exists no procedure to
compute eigenvalues of matrices in a finite number of steps, cf. [154, Theorem 25.1].
As a results, only approximations to eigenvalues and eigenvectors can be computed.
In this section, we concentrate on the way approximations to eigenvectors are ob-
tained from given approximations to eigenvalues.

First however, suppose an eigenvalue λ is known exactly. The corresponding true
eigenvector z is given by

(T − λI)z = 0 , (3.6)

or, using (3.1), equally by

(α1 − λ)z(1) + β1z(2) = 0 , (3.7a)

βi−1z(i− 1) + (αi − λ)z(i) + βiz(i+ 1) = 0 , (3.7b)

βn−1z(n − 1) + (αn − λ)z(n) = 0 , (3.7c)

where the second equation holds for 1 < i < n. Equations (3.7) imply that z(1) 6= 0
and z(n) 6= 0 as otherwise z = 0. Therefore, setting either z(1) = 1 or z(n) = 1 and
using respectively the first or last n−1 equations yields the sought after eigenvector.
Furthermore, as T − λI is singular, the unused equation is automatically satisfied.

Due to finiteness of any approximation procedure, even in exact arithmetic, the
approximation λ̂ has generally a nonzero error. (In practice, whenever we attempt
to compute the corresponding eigenvector, we ensure that λ̂ is closer to λ than to
any other eigenvalue.) Since λ̂ /∈ spec[T], T − λ̂I is nonsingular and solving in
the described way for an eigenvector results in ẑ that satisfies (T − λ̂I)ẑ = γnen
or (T − λ̂I)ẑ = γ1e1, where the scaling factor γk takes into account that the k-
th equation in (3.7) does not hold automatically anymore. In fact, there is nothing
special about omitting the last or the first equation: we might omit the k-th equation
for any 1 ≤ k ≤ n and therefore solve (T − λ̂I)ẑ = γkek. Those computations are
naturally not equivalent: Omitting the k-th equation, (T − λ̂I)ẑ = γkek, leads to ẑ
with residual norm ‖r̄‖ given by

‖r̄‖ =
‖T ẑ − λ̂ẑ‖

‖ẑ‖ =
|γk|
‖ẑ‖ . (3.8)

34 CHAPTER 3. THE MRRR ALGORITHM

It has been known for a long time (see [82]) that there exists at least one index r
with |z(r)| ≥ n−1/2 satisfying2

‖r̄‖ =
|γr|
‖ẑ‖ ≤ |λ̂− λ|

|z(r)| ≤ √
n|λ̂− λ| . (3.9)

Due to the inability of determining such an index r cheaply, the procedure was
abandoned by Wilkinson and replaced by inverse iteration using a “random” starting
vector [172]. In the 1990s however, Dhillon and Parlett [118] showed – extending the
work of Godunov et al. [65] and Fernando [58, 59, 57] – how to find such an index
r.3 As a consequence, if λ̂ is a good approximation of λ, say |λ̂− λ| = O(

√
nε‖T‖),

the method delivers an eigenvector approximation ẑ with a small residual norm
(backward error) that satisfies (3.2). Unfortunately, if the eigenvalue is not well-
separated from the rest of the spectrum, such ẑ does not necessarily satisfy the
accuracy dictated by (3.4) as the following classical theorem reveals.

Theorem 3.1.2 (Gap Theorem). Given a symmetric matrix T ∈ R
n×n and an

approximation (λ̂, ẑ), ‖ẑ‖ = 1, to the eigenpair (λ, z), with λ̂ closer to λ than to any
other eigenvalue, let r̄ be the residual T ẑ − λ̂ẑ; then

sin∠(ẑ, z) ≤ ‖r̄‖
gap(λ̂)

, (3.10)

with gap(λ̂) = minj{|λ̂ − λj | : λj ∈ spec[T] ∧ λj 6= λ}. The residual norm is

minimized if λ̂ is the Rayleigh quotient of ẑ, λ̂ = ẑ∗T ẑ. In this case,

‖r̄‖
spdiam[T]

≤ sin∠(ẑ, z) and |λ̂− λ| ≤ min

{
‖r̄‖, ‖r̄‖2

gap(λ̂)

}
. (3.11)

Proof: See [114, 32, 31, 174].

Inequality (3.10) gives not only an upper bound, but also a good approximation
for the error angle [115]. Therefore, by (3.9) and (3.10), we require the separation
relative to ‖T‖ to be reasonably large for (3.4) to hold, say gap(λ̂)/‖T‖ ≥ abstol with
abstol ≈ 10−3. On the other hand, if λ̂ approximates λ to high relative accuracy, i.e.,
|λ̂− λ| = O(nε|λ|), a small error angle to the true eigenvector is obtained whenever
the relative gap, i.e.,

relgap(λ̂) = gap(λ̂)/|λ| (3.12)

is sufficiently large, say relgap(λ̂) ≥ gaptol with gaptol ≈ 10−3.4 Thus, given ap-
proximations to the desired eigenvalues to high relative accuracy, the above procedure

2See [44, Theorem 11], [82], and [174, Theorem 2.19] for a proof. A corresponding vector ẑ is
sometimes called an FP-vector, where FP stands for Fernando and Parlett. Note that by (3.11) the
residual norm of such an eigenpair is within a factor

√
n of the optimal.

3We refer to [118, 44] for a historical review.
4If λ = 0, its relative gap is ∞. Although (3.9) delivers ‖r̄‖ = O(n3/2ε|λ|) and (3.10) sin∠(ẑ, z) =

O(n3/2ε/gaptol), there exist various reasons to ignore the
√
n-factor introduced by (3.9). Among

them, the simple facts that often relgap(λ̂) ≫ gaptol and n−1/2 ≪ z(r) ≤ 1. A more thorough
discussion is found in [44].

3.1. THE BIG PICTURE 35

Algorithm 3.1 MRRR using exact arithmetic

Input: Irreducible symmetric tridiagonal T ∈ Rn×n; index set Iin ⊆ {1, . . . , n}.
Output: Eigenpairs (λ̂i, ẑi) with i ∈ Iin.
1: Compute λ̂i[T] with i ∈ Iin to high relative accuracy.
2: Form a work queue Q and enqueue task {T, Iin, 0}.
3: while Q not empty do
4: Dequeue a task {M, I, σ}.
5: Partition I =

⋃S

s=1 Is according to the separation of the eigenvalues.
6: for s = 1 to S do
7: if Is = {i} then
8: // process well-separated eigenvalue associated with singleton Is //

9: Solve (M − λ̂i[M]I)ẑi = γrer with appropriate index r for ẑi.

10: Return λ̂i[T] = λ̂i[M] + σ and normalized ẑi.
11: else
12: // process cluster associated with Is //
13: Select shift τ ∈ R and compute Mshifted = M − τI.

14: Refine λ̂i[Mshifted] with i ∈ Is to high relative accuracy.
15: Enqueue {Mshifted, Is, σ + τ}.
16: end if
17: end for
18: end while

allows to compute an accurate eigenvector whenever the relative gap of the eigenvalue
is large.

Assuming we have approximated the desired eigenvalues {λ̂i : i ∈ I} to high
relative accuracy, whenever relgap(λ̂i) ≥ gaptol, we compute eigenvector ẑi with a
small error angle. In practice, we are slightly more restrictive on when to compute
an eigenvector; at this point of the discussion, this detail is not important and we
will return to this matter later. If our (slightly adjusted) criterion indicates that we
can compute the eigenvector with a small error angle, λ̂i is said to be well-separated,
isolated, or a singleton. For all well-separated eigenvalues, we can independently
compute the corresponding eigenvectors so that all resulting eigenpairs satisfy our
accuracy goals given by (3.2) and (3.3).

If some eigenvalues are non-isolated, they come in collections of two or more con-
secutive values, say {λ̂p[T], λ̂p+1[T] . . . , λ̂q[T]}. These collections are called clusters
and the eigenvalues are said to be clustered. To compute the eigenvectors for clusters,
the following observation is used: the eigenvectors are invariant under shifts (i.e.,
forming T − τI for some τ ∈ R), while the relative gaps are not. Indeed, by choosing
τ to be (close to) one eigenvalue, say τ = λ̂p[T], one can decrease the magnitude of
this eigenvalue and therefore increase its relative gap:

relgap(λ̂p[T − τI]) = relgap(λ̂p[T])
|λp[T]|

|λp[T]− τ | ≫ relgap(λ̂p[T]) . (3.13)

In exact arithmetic, there exists a shift τ to make the relative gap as large as desired;

36 CHAPTER 3. THE MRRR ALGORITHM

in particular, we can make the eigenvalue well-separated with respect to the shifted
matrix T − τI. Using T − τI, for all those eigenvalues of the original cluster that
are now well-separated, we then compute the eigenvectors with small error angle to
the corresponding true eigenvectors. For the eigenvalues that are still clustered, we
apply the procedure recursively until we have computed all eigenvectors. The overall
procedure is summarized in Algorithm 3.1.

3.1.2 Computing with finite precision arithmetic

While the procedure described above sounds seemingly simple, there are several
obstacles when applied in finite precision arithmetic. Most notably, the invariance
of the eigenvectors under shifts is lost. Furthermore, rounding errors could spoil
the computation of an eigenvector in Line 9 of Algorithm 3.1. Finally, we have
not specified how the so called twist index r is chosen in exact arithmetic and this
task might be impossible in finite precision or computationally expensive. In this
section, we give an overview of how these problems are addressed. The ideas were
developed in [40, 43, 44, 119, 174, 178, 176, 175] and realized the above procedure
in floating point arithmetic – today known as the algorithm of Multiple Relatively
Robust Representations.

Change of representation. Small element-wise relative perturbations of the di-
agonal and off-diagonal entries of T can lead to large relative perturbations of small
(in magnitude) eigenvalues [44, 115]. In such a case, it is said that the data does
not define these eigenvalues to high relative accuracy. As a consequence, using fi-
nite precision arithmetic, we cannot hope to compute eigenvalues to high relative
accuracy. In order for the procedure of Algorithm 3.1 to work, the representation
of tridiagonals by their diagonal and off-diagonal entries must be abandoned and
alternative representations must be used. To discuss these alternatives, we give a
general definition of the concept of a representation first.

Definition 3.1.1 (Representation). A set of 2n−1 scalars, called the data, together
with a mapping f : R2n−1 → R

2n−1 to define the entries of a symmetric tridiagonal
matrix T ∈ R

n×n is called a representation of T [175].

According to the above definition, the set containing the diagonal and off-diagonal
entries together with the identity mapping is a representation of a tridiagonal. Un-
fortunately, such a representation generally does not have desirable properties under
small element-wise relative perturbations. As all perturbations in this chapter are
element-wise and relative, we sometimes omit these attributes for the sake of brevity.

Definition 3.1.2 (Perturbation of a representation). Let x1, . . . , x2n−1 be the scalars
used to represent the symmetric tridiagonal T ∈ R

n×n and x̃i = xi(1+ ξi) be relative
perturbations of them; using the same representational mapping as for T , they define
a matrix T̃ . If ξi ≤ ξ ≪ 1 for all 1 ≤ i ≤ 2n − 1, we call T̃ a small perturbation of
T bounded by ξ [175].

3.1. THE BIG PICTURE 37

We are interested in representations that have the property that small perturba-
tions cause small perturbations in some of the eigenvalues and eigenvectors. Such a
representation is called relatively robust and constitutes a relatively robust represen-
tation (RRR). As the definition of relative robustness – given below – requires the
notion of a relative gap connected to an index set I ⊂ {1, . . . , n}, we define such a
relative gap first.

Definition 3.1.3. Given a symmetric T ∈ R
n×n with simple eigenvalues {λi : 1 ≤

i ≤ n} and an index set I ⊂ {1, . . . , n}, the relative gap connected to I is defined as

relgap(I) = min

{ |λj − λi|
|λi|

: i ∈ I, j /∈ I
}

where |λj − λi|/|λi| is ∞ if λi = 0 [43].

Definition 3.1.4 (Relative robustness). Given a representation of the irreducible
symmetric tridiagonal T ∈ R

n×n and an index set I ⊂ {1, . . . , n}, we say that the
representation is relatively robust for I if for all small perturbations T̃ bounded by ξ
and i ∈ I, we have

|λ̃i − λi| ≤ krrnξ|λi| ,

sin∠(Z̃I ,ZI) ≤
krrnξ

relgap(I) ,

where λ̃i and Z̃I denote the eigenvalues and the corresponding invariant subspaces of
the perturbed matrices, respectively, and ∠(Z̃I ,ZI) the largest principle angle [66];
krr is a moderate constant, say about 10 [43, Property I].5

We say that an RRR for {i} is relatively robust for the eigenpair (λi, zi), or
alternatively, that such an RRR defines the eigenpair to high relative accuracy. As
we will see later, when using suitable representations and algorithms, the matrix
shifts performed in Line 13 of Algorithm 3.1, Mshifted = M − τI, introduce small
relative perturbations in the data ofM andMshifted. In order for those perturbations
not to influence too much the invariant subspace ZIs associated to a cluster, we must
modify Algorithm 3.1 in such a way that M and Mshifted are RRRs for Is. Similarly,
in order to compute a highly accurate eigenpair, we need a representation that defines
the eigenpair to high relative accuracy. Thus, we have to replace the original T with
a suitable initial or root representation Mroot = T −µI for some µ ∈ R and carefully
select every intermediate representation, Mshifted, that is computed in Line 13 of
Algorithm 3.1.

There are multiple candidates – existence assumed – for playing the role of RRRs,
which often but not always are relatively robust for index sets connected to small
eigenvalues (in magnitude) and the associated invariant subspaces:

5According to [174, 175], the requirement on the perturbation of the eigenvalues can be removed.

38 CHAPTER 3. THE MRRR ALGORITHM

1. Lower bidiagonal factorizations of the form T = LDL∗ and upper bidiagonal
factorizations of the form T = UΩU∗, where D = diag(d1, d2, . . . , dn) ∈ R

n×n

and Ω = diag(ω1, ω2, . . . , ωn) ∈ R
n×n are diagonal, L ∈ R

n×n and U ∈ R
n×n

are respectively unit lower bidiagonal and unit upper bidiagonal, i.e.,

L =

1
ℓ1 1

ℓ2 1
. . .

. . .

ℓn−1 1

and U =

1 u1

1 u2

1
. . .

. . . un−1

1

.

Lower bidiagonal factorizations were used to represent the intermediate tridi-
agonal matrices (M in Algorithm 3.1) in the original implementations of the
algorithm [40, 46]. In the definite case, i.e., |D| = ±D or |Ω| = ±Ω, a bidiag-
onal factorization is an RRR for all eigenpairs [36]. Therefore, such a definite
factorization is often used as an initial representation Mroot = T − µI.

2. A generalization of the above are so called twisted factorizations or BABE-
factorizations [57, 118] of the form T = Nk∆kN

∗
k , where k denotes the twist

index. Nk has the form

Nk =

1
ℓ1 1

. . .
. . .

ℓk−1 1 uk

. . .
. . .

1 un−1

1

, (3.14)

and ∆k = diag(d1, . . . , dk−1, γk, ωk+1, . . . , ωn) is diagonal. The factorizations
for all 1 ≤ k ≤ n are almost entirely defined by elements of the bidiagonal
factorizations T = LDL∗ = UΩU∗; only γk, 1 < k < n, has to be computed.
There are multiple formulations for γk, see [118, Corollary 4]; one of them
is: γk = dk + ωk − αk. Twisted factorizations are crucial in computing
accurate eigenvectors in Line 9 of Algorithm 3.1 [118, 44]. Although it was
known that these factorizations can additionally serve as representations
of tridiagonals [40, 44, 117, 115], their benefits were only demonstrated
recently [174, 178]. Due to their additional degree of freedom in choosing k,
the use of twisted factorizations, which includes the bidiagonal factorizations
as special cases, is superior to using only lower bidiagonal factorizations.

3. Blocked factorizations [55, 176] are further generalizations of bidiagonal and
twisted factorizations. The quantities D, Ω, and ∆k are allowed to be block
diagonal with blocks of size 1× 1 or 2× 2. The other factors – L, U , and Nk

– are partitioned conformally with one or the 2 × 2 identity on the diagonal.

3.1. THE BIG PICTURE 39

These class of factorizations contain the unblocked bidiagonal and twisted fac-
torizations as special cases. With their great flexibility, these factorizations
have been used very successfully within the MRRR algorithm [174, 176].

All factorizations are determined by 2n−1 scalars, the data; the same number as
for T given by its diagonal and off-diagonal elements. Through the mapping deter-
mined by the factorization, they define a tridiagonal. For instance, for lower bidiag-
onal factorizations, 2n − 1 floating point numbers d1, . . . , dn, ℓ1, . . . , ℓn−1 determine
a tridiagonal that is generally not exactly representable in the same finite precision.
Such representation by the non-trivial entries of the factorization is called an N -
representation [178]. Similarly, the floating point numbers d1, . . . , dn, β1, . . . , βn−1 –
with βi = diℓi being T ’s off-diagonal elements – represent a tridiagonal whose di-
agonal entries are in general not representable. Such representation, which includes
T ’s off-diagonal elements, is called an e-representation [178].6 It is important to
distinguish between the tridiagonal – not necessarily machine representable – and
the finite precision scalars that constitute the representation. The 2n − 1 scalars
constituting the representation are called the primary data. Other quantities that
are computed using the primary data are called secondary or derived data. For in-
stance, the off-diagonal βi = diℓi is secondary for an N -representation while being
primary for an e-representation.7 Subsequently, we do not distinguish between the
representation of a tridiagonal and the tridiagonal itself; that is, it is always implied
that tridiagonals are represented in one of the above forms. More on different forms
of representing tridiagonals can be found in [40, 115, 174, 178, 176].

It is not at all obvious that these representations are more suitable for compu-
tations than the standard way of representing tridiagonals. This is the topic of the
relative perturbation theory covered in [117, 119, 44, 40], which shows how sensitive
individual eigenvalues and eigenvectors are under relative component-wise perturba-
tions.

Shifting the spectrum. In exact arithmetic, shifting the spectrum, as in Line 13
of Algorithm 3.1, leaves the eigenvectors unchanged; this invariance is lost in fi-
nite precision. An essential ingredient of MRRR is the use of special forms of
Rutishauser’s Quotienten-Differenzen (qd) algorithm [135, 60, 44] to perform the
spectrum shifts. Given representation M , we require that Mshifted = M − τI

is computed in a element-wise mixed relative stable way, i.e., M̃shifted = M̃ − τI
holds exactly for small perturbations of Mshifted and M bounded by ξ↑ = O(ε) and
ξ ↓ = O(ε), respectively. In the following, we assume ξ↑ and ξ ↓ are bounds for all
spectrum shifts performed during an execution of the algorithm.8

Since both Mshifted and M in Line 13 of Algorithm 3.1 can take any of the dis-
cussed forms, these leads to a variety of (similar) algorithms with different character-
istics. For instance, using lower bidiagonal factorizations to represent intermediate

6The name e-representation is used as the off-diagonals βi are denoted ei in [178].
7See [178] for details and another so called Z-representation of the data.
8The requirement is called Shiftrel in [175].

40 CHAPTER 3. THE MRRR ALGORITHM

matrices, we require to perform L+D+L
∗
+ = LDL∗ − τI. This can be accomplished

by the so called differential form of the stationary qd transformation (dstqds) given
in Algorithm 3.5 [40, 44]. Similarly, using twisted factorizations, we require an al-
gorithm that is stable in the above sense to compute Nt∆tN

∗
t = Ns∆sN

∗
s − τI for

arbitrary twist indices s and t [178]; the same is true for blocked factorizations [176].
In Algorithm 3.1, provided that Mshifted and M are relatively robust for

Is and relgap(Is) ≥ gaptol, the mixed stability implies that invariant sub-
spaces connected to clusters are not perturbed too much due to rounding errors,
sin∠(ZIs [Mshifted],ZIs [M]) ≤ krrn(ξ ↓ + ξ↑)/gaptol.

9 After the shifting, we can
therefore hope to compute an orthonormal basis for such a subspace, which is au-
tomatically numerically orthogonal to the subspace spanned by the other computed
eigenvectors. This is one of the main ideas behind MRRR.

The special computation of the spectrum shifts is essential for eigenvectors com-
puted from different representations to be numerically orthogonal. In order to ensure
that the eigenpairs also enjoy small residual norms with respect to the input matrix,
the intermediate representations should additionally exhibit the so called conditional
element growth.

Definition 3.1.5 (Conditional element growth). A representation M exhibits condi-

tional element growth for I ⊂ {1, 2, . . . , n} if for any small perturbation M̃ bounded
by ξ and i ∈ I

‖M̃ −M‖ ≤ spdiam[Mroot] , and

‖(M̃ −M)ẑi‖ ≤ kelgnξ · spdiam[Mroot] ,

where ẑi denote the computed eigenvectors and kelg is a moderate constant, say about
10 [43, 175].

In particular, Mshifted, computed in Line 13 of Algorithm 3.1, needs to exhibit
conditional element growth for Is. At this point, we are not concerned about how
to ensure that the involved representations satisfy the requirements; this is the topic
of [117, 119, 44, 175].10 We remark however that there exist the danger that no
suitable representation that passes the test ensuring the requirements is found. In
this case, commonly a promising representation is selected. As such a representation
might not fulfill the requirements, the accuracy of MRRR is not guaranteed anymore.

Independently of the form to represent the intermediate tridiagonals, the com-
putation of twisted factorizations is essential for finding an eigenvector. Therefore,
the possibility of computing twisted factorizations Nk∆kN

∗
k = M − τI for 1 ≤ k ≤ n

must be provided for any representation used for M . This means we must be able
to compute the lower bidiagonal factorization L+D+L

∗
+ = M − τI, the upper bidi-

agonal factorization U−Ω−U
∗
− = M − τI and the γk terms in a stable way in order

for rounding errors not to spoil the computation of an eigenvector [44, 178].

9The requirement relgap(Is) ≥ gaptol is called Relgaps in [175] and corresponds to Property
III in [43].

10It is not necessary to compute the eigenvectors in order to give bounds on the conditional
element growth.

3.1. THE BIG PICTURE 41

Using twisted factorizations to find an eigenvector. At the moment we
attempt to compute an accurate eigenvector approximation ẑi in Line 9 of Al-
gorithm 3.1, we have given an RRR for {i} and λ̂i – an approximation to λi

with high relative accuracy. Furthermore, the relative gap is sufficiently large,
relgap(λ̂i) ≥ gaptol. This special situation is analyzed in [44, 118].

Suppose M − λ̂iI = L+D+L
∗
+ = U−Ω−U

∗
− permits lower and upper bidiagonal

factorization. We can determine all the twisted factorizations Nk∆kN
∗
k = M − λ̂iI

cheaply by computing the missing γk for 1 < k < n. The computation must however
be done with care, i.e., in a element-wise mixed relative stable way [44, 178].

When solving (M − λ̂iI)ẑi = Nk∆kN
∗
k ẑi = γkek, by (3.9), in exact arithmetic,

the residual norm is given by |γk|/‖ẑi‖. Thus, a natural choice for the twist index is
r = argmink |γk|, which is indeed used in practice. This is justified as follows: Since
|γk|/‖ẑi‖ ≤ |λ̂i−λi|/|zi(k)| for all 1 ≤ k ≤ n with zi(k) 6= 0, see [40, Theorem 3.2.3],
finding an |zi(k)| ≥ n−1/2, i.e., an entry of the true eigenvector that is above average
in magnitude, results in the desired bound of (3.9). As in the limiting case λ̂i → λi,

γ−1
k∑n

j=1 γ
−1
j

→ zi(k)
2 ,

provided λ̂i is an accurate eigenvalue approximation, r = argmink |γk| implies |zi(r)|
is above average, see [40, Lemma 3.2.1] or [118, Lemma 11].

After finding r and its associated twisted factorization, the following system needs
to be solved

Nr∆rN
∗
r ẑi = γrer ⇐⇒ N∗

r ẑi = er , (3.15)

where the equivalence stems from the fact that N−1
r er = er and ∆rer = γrer. This

system is easily solved by setting ẑi(r) = 1 and

ẑi(j) =

{ −ℓ+j ẑi(j + 1) for j = r − 1, . . . , 1 ,

−u−j−1ẑi(j − 1) for j = r + 1, . . . , n .

Finally, λ̂i might be improved by the Rayleigh quotient correction term γr/‖ẑi‖2,
and finally ẑi is normalized and returned. A more careful implementation of the
procedure, taking into account possible breakdown due to finite precision arithmetic,
is given in Algorithm 3.7 and discussed in the next section. For the sake of brevity,
we neglect this issue at this point of the discussion.

The above procedure of computing an eigenvector approximation using a twisted
factorization is called Getvec. A rigorous analysis of Getvec in [44], which takes all
effects of finite precision into account, reveals that the computed eigenvector ẑi has
a small error angle to the true eigenvector zi.

Theorem 3.1.3. Suppose ẑi is computed by Getvec under the conditions stated
above. For a small perturbation of M bounded by α = O(ε), M̃ , and a small element-
wise relative perturbation of ẑi bounded by η = O(nε), z̃i, the residual norm satisfies

‖r̄(local)‖ = ‖M̃ z̃i − λ̂iz̃i‖ ≤ krsgap(λ̂i[M̃])nε/gaptol , (3.16)

42 CHAPTER 3. THE MRRR ALGORITHM

where krs = O(1). In this case,

sin∠(ẑi, zi) ≤ krrnα/gaptol + krsnε/gaptol + η = Gnε ,
where krr is given by the relative robustness of M for {i} and G is defined by the
equation. Proof: See [44].

As we have seen in (3.4) and (3.5), the small error angle, sin∠(ẑi, zi) ≤ Gnε =
O(nε/gaptol), is essential for computing numerically orthogonal eigenvectors without
explicit orthogonalization.11

A high-level view and the representation tree. Although most parts of the
procedure deserve a more detailed discussion, we can now apply all the changes to
Algorithm 3.1 to obtain a high-level view of the so called core MRRR algorithm work-
ing on irreducible tridiagonals. The whole procedure is assembled in Algorithm 3.2.

Algorithm 3.2 MRRR

Input: Irreducible symmetric tridiagonal T ∈ Rn×n; index set Iin ⊆ {1, . . . , n}.
Output: Eigenpairs (λ̂i, ẑi) with i ∈ Iin.
1: Select shift µ ∈ R and compute Mroot = T − µI.
2: Perturb Mroot by a “random” relative amount bounded by a small multiple of ε.
3: Compute λ̂i[Mroot] with i ∈ Iin to relative accuracy sufficient for classification.
4: Form a work queue Q and enqueue task {Mroot, Iin, µ}.
5: while Q not empty do
6: Dequeue a task {M, I, σ}.
7: Partition I =

⋃S

s=1 Is according to the separation of the eigenvalues.
8: for s = 1 to S do
9: if Is = {i} then

10: // process well-separated eigenvalue associated with singleton Is //

11: Refine λ̂i[M] to high relative accuracy.

12: Find twisted factorization Nr∆rN
∗

r = M − λ̂i[M]I and solve N∗

r ẑi = er
for ẑi.

13: Return λ̂i[T] := λ̂i[M] + σ and normalized ẑi.
14: else
15: // process cluster associated with Is //
16: Select shift τ ∈ R and compute Mshifted = M − τI.

17: Refine λ̂i[Mshifted] with i ∈ Is to sufficient relative accuracy.
18: Enqueue {Mshifted, Is, σ + τ}.
19: end if
20: end for
21: end while

Most notably, tridiagonal matrices are replaced by representations of tridiagonals,
i.e., the tridiagonals are given only implicitly. These representations are required to

11As (3.9) shows, the best we can hope for is ‖r̄(local)‖ = O(n3/2ε|λi|) and sin∠(ẑi, zi) =
O(n3/2ε/gaptol). However, as the discussion of [44] indicates, the bounds in the theorem are achieved
under mild assumptions.

3.1. THE BIG PICTURE 43

exhibit conditional element growth and be relatively robust, which is reflected in the
name of the algorithm. In Line 2, we added a small random perturbation of the root
representation.12 Such a perturbation is crucial to break very tight clusters [45].

The unfolding of Algorithm 3.2 is best described as a rooted tree, the so called
representation tree [40, 43, 175]. Each task {M,I, σ} (or just {M,I}) is connected
to a node in the tree; that is, all of the nodes consist of a representation and an
index set. The index set corresponds to the indices of all eigenpairs computed from
the representation. The node {Mroot,Iin} is the root node (hence the name). The
other tasks, {M,I}, are connected to ordinary nodes. Each node has a depth – the
number of edges on the unique path from the root to it. The maximum depth for all
nodes (i.e., the height of the tree) is denoted dmax. The edges connecting nodes are
associated with the spectrum shifts τ that are performed in Line 16 of Algorithm 3.2.

The concept is best illustrated by an example such as in Fig. 3.1, where
Iin = {1, 2, . . . , 9}. The root consists of Mroot = M (0) together with Iin. Ordi-

Figure 3.1: An exemplary representation tree.

nary nodes, which are colored in white, correspond to clustered eigenvalues with
respect to the parent representation. Eigenvalues {λ̂2[M

(0)], λ̂3[M
(0)], λ̂4[M

(0)]}
and {λ̂6[M

(0)], λ̂7[M
(0)], λ̂8[M

(0)], λ̂9[M
(0)]} form clusters and the first invocation

of Line 7 in Algorithm 3.2 partitions the input index set as follows: Iin = {1} ∪
{2, 3, 4}∪{5}∪{6, 7, 8, 9}. For both clusters, a new representation is computed – i.e.,
M (1) = M (0)−τ (1)I andM (2) = M (0)−τ (2)I. Although in the definition of dmax they
are not counted nodes, singletons {i} (that is, well-separated eigenvalues with respect
the parent representation) are associated with leaves of the tree. For each eigenpair
there exists exactly one associated leaf. For instance, λ̂1[M

(0)] is well-separated, and
the corresponding eigenpair can be computed following Lines 11–13 of Algorithm 3.2,
which require the twisted factorization N (1)∆(1)(N (1))∗ = M (0)−λ̂1[M

(0)]I. Accord-
ing to our definition, which excludes leaves from the definition of nodes, dmax is two.

12True randomness is not necessary; any (fixed) sequence of pseudo-random numbers can be used.

44 CHAPTER 3. THE MRRR ALGORITHM

In [40, 43] dmax is defined differently: according to their definition, dmax would be
three. Besides for the definition of dmax, from now on, we consider leaves as nodes
of the representation tree as well.

The tree of Fig. 3.1 illustrates sources of natural parallelism: All the singletons as
well as clusters with the same depth in the tree can be processed independently. As
an example, given M (0), eigenpairs (λ̂1, ẑ1) and (λ̂5, ẑ5) can be computed in parallel.
At the same time, we can independently process the clusters associated with {2, 3, 4}
and {6, 7, 8, 9}. When clusters are present, the computation of the eigenpairs is not
independent and the amount of work associated to each eigenpair varies. If the work
of computing a set of eigenpairs is divided statically by assigning a subset of indices
to each processing unit, the presence of large clusters leads to load imbalance and
limits scalability. Only if all the eigenvalues are well-separated with respect to the
root representation, the computation of the eigenpairs is embarrassingly parallel.

Accuracy of MRRR. As the eigenpairs are computed using possibly different
representations, the main concern of the error analysis given in [43, 44, 175] is if the
resulting eigenpairs enjoy small residual norm with respect to the input matrix and
are mutually numerically orthogonal. The elegant analysis in [175] – a streamlined
version of the proofs in [43, 44] – shows that, provided the algorithm finds suitable
representations, this is indeed the case. For our discussion in Chapter 5, in following
theorem we state the upper bounds on the residual norm and the orthogonality.

Theorem 3.1.4 (Accuracy). Let λ̂i[Mroot] be computed (exactly) by applying the
spectrum shifts to λ̂i[M] obtained in Line 11 of Algorithm 3.2. Provided all the
requirements of the MRRR algorithm are satisfied (in particular, that suitable repre-
sentations are found), we have

‖Mroot ẑi − λ̂i[Mroot] ẑi‖ ≤
(
‖r̄(local)‖+ γ spdiam[Mroot]

) 1 + η

1− η
(3.17)

with ‖r̄(local)‖ being bounded by Theorem 3.1.3 and γ = kelgn (dmax(ξ ↓ + ξ↑) + α) +
2(dmax +1)η. Furthermore, we have for any computed eigenvectors ẑi and ẑj , i 6= j,

|ẑ∗i ẑj | ≤ 2

(
Gnε+ krrn(ξ ↓ + ξ↑)dmax

gaptol

)
. (3.18)

where Gnε = krrnα/gaptol + krsnε/gaptol + η. Proof: See [174, 175] or [43, 44].

We give a number of remarks regarding the theorem:
1. The theorem hinges on the fact that suitable representations are found. If we

accept one or more representations for which conditional element growth and
relative robustness (i.e., being an RRR) is not verified, the accuracy of the
result is not guaranteed.

2. For a reasonable implementation, we have α = O(ε), η = O(nε), ξ ↓ = O(ε),
and ξ↑ = O(ε). Furthermore, krr, krs, and kelg can be bounded by a small
constant, say 10.

3.2. A CLOSER LOOK 45

3. The assumption that the accumulation of the shifts is done in exact arithmetic
is not crucial; we simply stated the theorem as in [174, 175].

4. Provided the computation Mroot = T − µI is performed in a backward stable
manner, i.e., Mroot = T + ∆T − µI with ‖∆T‖ = O(nǫ‖T‖), small residual
norms with respect to the root representation, as given in (3.17), imply small
residual norms to the level dictated by (3.2) [40].

5. Instead of accumulating the shifts to obtain the eigenvalues, the Rayleigh quo-
tient of ẑi might be returned as the corresponding eigenvalue λ̂i.

6. Element-wise mixed relative stability for the shifts are key to success and imply
that ξ ↓ = O(ε) and ξ↑ = O(ε).

7. Relative robustness of the representations is essential and is exposed by the
multiple appearances of krr in (3.17) (together with Theorem 3.1.3) and (3.18).
The first appearance in (3.18), together with the stable spectrum shifts, indi-
cates that invariant subspaces connected to clusters are not perturbed too
much. The second appearance in (3.18) allows the computation of an eigen-
vector with small error angle to the true eigenvector.

8. If relgap(λ̂) is almost as small as gaptol, high relative accuracy of the eigen-
value approximation is necessary. If relgap(λ̂) ≫ gaptol, the accuracy of the
eigenvalue approximation can be relaxed [46].

9. Large relative gaps of the clusters and well-separated eigenvalues are crucial
for obtaining orthogonal eigenvectors; this is reflected in the dependence on
gaptol in (3.17) and (3.18).

10. Shallow representation trees (that is, small values of dmax) are preferable over
deep trees. In the optimal scenario of dmax = 0, many terms in (3.17) and
(3.18) cancel. In such a scenario, all eigenvalues are well-separated with re-
spect to the root representation, and consequently, not only is the computation
embarrassingly parallel, but the danger of not finding suitable representations
is also entirely removed.13

11. The bound (3.18) is a quite realistic estimate of the result. The observed worst
case orthogonality grows as nε/gaptol. As oftentimes gaptol = 10−3, this
explains the quote in Chapter 1 that one needs to be prepared of orthogonality
levels of about O(1000nε), even if all requirements of the algorithm are fulfilled.

3.2 A closer look

In the previous section, we discussed the basics of MRRR independently of the form
to represent tridiagonals. In this section, we want to be more concrete: We use of N -
representations of lower bidiagonal factorizations and assume full support for IEEE
arithmetic. In such settings, we detail the preprocessing stage, the computation and
refinement of eigenvalues as well as the computation of eigenvectors.

13A root representation can always be found, for instance, by making T − µI definite.

46 CHAPTER 3. THE MRRR ALGORITHM

3.2.1 Preprocessing

The preprocessing of the input matrix T ∈ R
n×n, given by its diagonal and its

off-diagonal entries as in (3.1), includes the scaling of the entries and the so called
splitting of the matrix into principal submatrices if off-diagonal entries are sufficiently
small in magnitude.

Proper scaling strategies are discussed in [33, 86] and are of no special importance
for our discussion. After the scaling, we usually set element βi to zero whenever

|βi| ≤ tolsplit‖T‖ , (3.19)

and thereby reduce the problem to smaller (numerically irreducible) subproblems for
which we invoke Algorithm 3.2 [33, 114, 87]. A common choice for tolsplit is a small
multiple of unit roundoff ε or even nε; specifically, we might use tolsplit = ε

√
n.

Remarks: (1) If the tridiagonal is known to define its eigenvalues to high relative
accuracy and it is desired to compute them to such accuracy, ‖T‖ in (3.19) has to be
replaced by for example

√
|αkαk+1|; (2) If all eigenpairs or a subset with eigenvalues

in the interval [vℓ, vu) are requested, the same is true for each subproblem; on the
other hand, whenever a subset of eigenpairs with indices iℓ to iu is requested, it
requires to find the eigenpairs that need to be computed for each subproblem; (3)
Normally, we assume that the preprocessing has been done and each subproblem is
treated independently (possibly in parallel) by invoking Algorithm 3.2. This justifies
our previous assumption that βi 6= 0 – in fact, |βi| > tolsplit‖T‖. As we did previ-
ously and continue to do, whenever we refer to input matrix T , it is assumed to be
(numerically) irreducible; whenever we reference the matrix size n, it refers to the
size of the processed block.

3.2.2 Eigenvalues of symmetric tridiagonals

Algorithm 3.2 requires at several stages (Lines 3, 11, and 17) to either compute
eigenvalues of tridiagonals, or refine them to some prescribed relative accuracy. A
natural choice for these tasks (in particular in a parallel environment) is the method
of bisection, whose main features were already listed in Section 2.3.1.

The bisection procedure relies on the ability to count the number of eigenvalues
smaller than given value σ ∈ R. Assuming this is accomplished by the function
NegCount(T, σ), Algorithm 3.3 bisects a given interval [λk, λk], which is known to
contain the eigenvalue λk, until sufficiently small. After convergence, we consider
λ̂k = (λk + λk)/2 as the approximation of λk with error λ̂k,err = (λk − λk)/2. Since
we are generally interested in relative accuracy, atol is fixed to a value of O(ω),
say atol = 2ω, where ω denotes the underflow threshold. Quantity rtol reflects
the required accuracy. If the hypothesis of Algorithm 3.3 is not satisfied, an actual
implementation should inflate the input interval until the condition is met.

At each iteration, the width of the interval is reduced by a factor two and,
consequently, convergence is linear and rather slow. Several schemes might be used

3.2. A CLOSER LOOK 47

Algorithm 3.3 Bisection

Input: Tridiagonal T , function NegCount, index k, initial interval [wℓ, wu], stopping criteria
rtol and atol
Output: Interval [wℓ, wu] containing the eigenvalue with index k
Require: NegCount(T,wℓ) < k ∧ NegCount(T,wu) ≥ k

1: while |wu − wℓ| > rtol ·max{|wℓ|, |wu|} ∨ |wu − wℓ| > atol do
2: werr := (wu − wℓ)/2
3: w := wℓ + werr

4: if NegCount(T,w) < k then
5: wℓ := w
6: else
7: wu := w
8: end if
9: end while

10: return [wℓ, wu]

to accelerate the procedure. Bisection is mainly used to classify eigenvalues into well-
separated and clustered, for which only limited accuracy in the approximations is
necessary. To obtain eigenvalues to full precision (i.e., in Line 11 of Algorithm 3.2)
a form of Rayleigh quotient iteration (RQI) is commonly used. Bisection to full
precision is only used if the RQI fails to converge to the correct eigenvalue, and to
compute the extremal eigenvalues before selecting the shifts µ and τ in Lines 1 and
16 of Algorithm 3.2.

To complete the eigenvalue computation via Algorithm 3.3, we require to specify
the function NegCount for tridiagonals given either in form of (3.1) or in factored
form, LDL∗, and we need to specify initial intervals containing the desired eigenval-
ues.

Counting eigenvalues. Recall that two symmetric matrices A,H ∈ R
n×n are

congruent if there exist a nonsingular matrix S ∈ R
n×n such that A = SHS∗.

The function NegCount, which is required by Algorithm 3.3, is then derived by
Sylvester’s law of inertia.

Theorem 3.2.1 (Sylvester). Two real symmetric matrices are congruent if and only
if they have the same inertia, that is, the same number of positive, negative, and zero
eigenvalues. Proof: See [32, 66].

Given the lower bidiagonal factorization LDL∗ = T −σI, matrices D and T −σI
have the same inertia, i.e., NegCount(D, 0) = NegCount(T, σ). Hence, all that is
needed to determine NegCount(T, σ) is to count the number of negative entries in
D. A similar approach is taken if the tridiagonal is given in factored form, LDL∗.
In this case, L+D+L

∗
+ = LDL∗−σI, and D+ and LDL∗−σI have the same inertia.

These considerations lead to Algorithm B.1 and Algorithm B.2 in Appendix B.

Initial intervals. If we want to use bisection to compute either the extremal
eigenvalues of input matrix T to full accuracy or a first approximation to the desired

48 CHAPTER 3. THE MRRR ALGORITHM

eigenvalues, we need a starting interval. Such an interval that contains all eigenvalues
(and therefore the k-th eigenvalue) might be found by means of the Gershgorin
Theorem.

Theorem 3.2.2 (Gershgorin). Let A ∈ C
n×n be an arbitrary matrix. The eigenval-

ues of A are located in the union of n disks:

n⋃

i=1

{z ∈ C : |z − aii| ≤
n∑

j=1
j 6=i

|aij |} .

Proof: See [79, 66].

Using Gershgorin’s theorem, the initial interval is found by Algorithm B.3 in
Appendix B. Bisection is then used to find any eigenvalue of T to the accuracy
warranted by the data. For instance, the statements

[gℓ, gu] = Gershgorin(T)
for i = 1 to n do[

λi[T], λi[T]
]
= Bisection(T,NegCount, i, [gℓ, gu], rtol = 10−8, atol = 2ω)

end for

compute approximations λ̂i[T] to about 8 digits of accuracy (if the data defines the
eigenvalues to such accuracy).

In later stages of the algorithm, we generally have approximate intervals
(
[
λi[T]− µ, λi[T]− µ

]
or

[
λi[M]− τ, λi[M]− τ

]
), which can be inflated and used

as a starting point for limited bisection to refine the eigenvalues to a prescribed
accuracy.

Remarks: (1) Although the eigenvalue computation as well as their refinement
by limited bisection is embarrassingly parallel, it is often beneficial to not keep an
interval for each eigenvalue separately. By starting from an initial interval containing
all desired eigenvalues, bisection is performed to obtain nonoverlapping intervals
containing one or more eigenvalues. The computation is described by an unbalanced
binary tree. (2) As the work associated with an eigenvalue depends on its value
(and possibly the neighboring eigenvalues), a static division of work can lead to
load imbalance. (3) In Lines 3 and 17 of Algorithm 3.2, only sufficient accuracy to
classify eigenvalues into well-separated and clustered is needed. For that purpose,
rtol = 10−2 ·gaptol might be used. Depending on the absolute gap of the eigenvalue,
the refinement can be stopped earlier on [46]. (4) In Line 3 of Algorithm 3.2, any
algorithm that computes eigenvalues to sufficient relative accuracy can be employed.
If Mroot is positive/negative definite and (almost) all eigenvalues are desired, the
best choice is often the dqds algorithm [60, 120], as it can be significantly faster than
bisection. Then Lines 1–3 of Algorithm 3.2 become similar to Algorithm 3.4.14 (5)
For implementations targeting highly parallel systems, the dqds algorithm is usually
not used.

14Cf. [46, Algorithm 5].

3.2. A CLOSER LOOK 49

Algorithm 3.4 Initial eigenvalue approximation

Input: Irreducible symmetric tridiagonal T ∈ Rn×n; index set Iin ⊆ {1, 2, . . . , n}.
Output: Root representation Mroot and shift µ; eigenvalues λ̂i[Mroot] with i ∈ Iin.
1: if only a subset of eigenpairs desired or enough parallelism available then
2: Compute crude approximations λ̂i[T] for i ∈ Iin via bisection.
3: end if
4: Select shift µ ∈ R and compute Mroot = T − µI.
5: Perturb Mroot by a “random” relative amount bounded by a small multiple of ε.
6: if already computed initial eigenvalue approximations then
7: Refine λ̂i[Mroot] via bisection to accuracy sufficient for classification.
8: else
9: Compute eigenvalues λ̂i[Mroot] for i ∈ {1, 2, . . . , n} via the dqds algorithm.

10: Discard λ̂i[Mroot] if i ∈ {1, 2, . . . , n} \ Iin.
11: end if

3.2.3 Eigenvectors of symmetric tridiagonals

For each irreducible subblock, after computing a root representation and initial ap-
proximations to the eigenvalues, in Line 7 of Algorithm 3.2, the index set is parti-
tioned according to the separation of the eigenvalues. For well-separated eigenvalues,
the eigenpair is computed directly, while for clustered eigenvalues more work is nec-
essary. In the following, we detail the classification, the computation of eigenvectors
for well-separated eigenvalues, and the computation of eigenvectors for clustered
eigenvalues.

Classification. For all i ∈ I, let λ̂i denote the midpoint point of a computed
interval of uncertainty [λi, λi] containing the eigenvalue λi. We have to partition
the index set, I =

⋃S
s=1 Is, such that the resulting subsets have relgap(Is) ≥ gaptol

and, whenever Is = {i}, additionally relgap(λ̂i) ≥ gaptol. To achieve the desired
partitioning of I, let j, j + 1 ∈ I and define

reldist(j, j + 1) =
λj+1 − λj

max{|λj |, |λj|, |λj+1|, |λj+1|}

as a measure of the relative gap. If reldist(j, j+1) ≥ gaptol, then j and j+1 belong
to different subsets of the partition. Additionally, this criterion based on the relative
separation can be amended by a criterion based on the absolute separation of the
eigenvalues [161].

Computation of an eigenvector for a well-separated eigenvalue. We briefly
discussed Algorithm Getvec in Section 3.1.2. In this section, by Algorithm 3.7,
we give a concrete example for lower bidiagonal factorizations, LDL∗. As in Sec-
tion 3.1.2, we assume LDL∗ is an RRR for eigenpair (λ, z) and λ̂ is well-separated
as well as an approximation with high relative accuracy.

The first ingredient of Algorithm Getvec is the computation of a suitable
twisted factorization, which is done by determining the lower bidiagonal factorization

50 CHAPTER 3. THE MRRR ALGORITHM

Algorithm 3.5 dstqds transform
Input: Non-trivial entries of LDL∗ given by
d ∈ R

n and ℓ ∈ R
n−1; shift τ ∈ R.

Output: Non-trivial entries of L+D+L
∗

+ =
LDL∗ − τI , d+ ∈ R

n and ℓ+ ∈ R
n−1; auxiliary

quantities s ∈ R
n.

s(1) := −τ
for i = 1, . . . , n− 1 do

d+(i) := s(i) + d(i)
if |s(i)| = ∞∧ |d+(i)| = ∞ then

q := 1
else

q := s(i)/d+(i)
end if

ℓ+(i) := d(i)ℓ(i)/d+(i)
s(i+ 1) := q · d(i)ℓ(i)ℓ(i)− τ

end for

d+(n) := s(n) + d(n)
return d+, ℓ+, s

Algorithm 3.6 dqds transform
Input: Non-trivial entries of LDL∗ given by
d ∈ R

n and ℓ ∈ R
n−1; shift τ ∈ R.

Output: Non-trivial entries of U−Ω−U
∗

− =
LDL∗ − τI , ω− ∈ R

n and u− ∈ R
n−1; auxil-

iary quantities p ∈ R
n.

p(n) := d(n)− τ
for i = n− 1, . . . , 1 do

u−(i+ 1) := p(i+ 1) + d(i)ℓ(i)ℓ(i)
if |p(i+1)| = ∞∧|ω−(i+1)| = ∞ then

q := 1
else

q := p(i+ 1)/ω−(i+ 1)
end if

u−(i) := d(i)ℓ(i)/ω−(i+ 1)
p(i) := q · d(i)− τ

end for

ω−(1) := p(1)
return ω−, u−, p

L+D+L
∗
+ = LDL∗ − λ̂I, the upper bidiagonal factorization U−Ω−U

∗
− = LDL∗ − λ̂I

and quantities γk, 1 ≤ k ≤ n. The bidiagonal factorizations are determined by the
differential form of the stationary qd transformation with shift (dstqds) and the dif-
ferential form of the progressive qd transformation with shift (dqds), which are given
in Algorithm 3.5 and Algorithm 3.6, respectively. We use the following notation:
d ∈ R

n denotes the diagonal elements of D, and ℓ ∈ R
n−1 denotes the off-diagonal

elements of L.15 Similarly, d+, ω− ∈ R
n and ℓ+, u− ∈ R

n−1 denote the non-trivial
entries of respectively L+D+L

∗
+ and U−Ω−U

∗
−.

We give a number of remarks regarding the transformations, of which the first
three are discussed in [103]: (1) IEEE arithmetic is exploited to handle possible
breakdown of the algorithms; (2) Other ways can be employed to prevent breakdown
that do not require IEEE arithmetic; (3) The computation can be accelerated by
removing the if statement in the loop and checking if a NaN (“Not a Number”)
value is produced in course of the computation; (4) An error analysis as well as
alternative formulations can be found in [44] and [178].

In Algorithm 3.7, after determining the appropriate twist index r, the linear
system is solved as described in Section 3.1.2, only this time we include the handling
of zero pivots that might have occurred in the factorizations. Under the above
assumptions on the inputs, Algorithm 3.7 returns an eigenvector approximation that
satisfies Theorem 3.1.3.

Remarks: (1) An elaborate version of Getvec is implemented in LAPACK as
xLAR1V. (2) Often the computed eigenvector has small numerical support, that is, for

15In Matlab notation, d = diag(D) and ℓ = diag(L,−1).

3.2. A CLOSER LOOK 51

Algorithm 3.7 Getvec

Input: Non-trivial entries of LDL∗ given by d ∈ Rn and ℓ ∈ Rn−1; eigenvalue λ̂ ∈ R.
Output: Eigenvector ẑ.

1: [d+, ℓ+, s] = dstqds(d, ℓ, λ̂)

2: [ω−, u−, p] = dqds(d, ℓ, λ̂)
3: for k = 1, . . . , n do
4: if k = n then
5: γk := s(n) + d(n)
6: else
7: γk := s(k) + d(k)

ω−(k+1) · p(k + 1)

8: end if
9: end for

10: r := argmink |γk|
11: ẑ(r) := 1
12: for i = r − 1, . . . , 1 do
13: if d+(i) 6= 0 then
14: ẑ(i) := −ℓ+(i) · ẑ(i+ 1)
15: else
16: ẑ(i) := − d(i+1)ℓ(i+1)

d(i)ℓ(i) · ẑ(i + 2)

17: end if
18: end for
19: for i = r, . . . , n− 1 do
20: if ω−(i + 1) 6= 0 then
21: ẑ(i + 1) := −u−(i) · ẑ(i)
22: else
23: ẑ(i + 1) := − d(i−1)ℓ(i−1)

d(i)ℓ(i) · ẑ(i− 1)

24: end if
25: end for
26: return ẑ := ẑ/‖ẑ‖

all i < ifirst and for all i > ilast, ẑ(i) can be set to zero, where ilast − ifirst + 1 ≪ n.
Such phenomenon is easily detected and exploited. For details on the numerical
support as well as Getvec in general, we refer to [44]. (3) Getvec is commonly
used to improve λ̂ = λ̂(0) by Rayleigh quotient iteration (RQI): in the j-th iteration,
compute ẑ(j) via Getvec and use the Rayleigh quotient correction term to update the
eigenvalue λ̂(j+1) = λ̂(j) + γr/‖ẑ(j)‖2. The process is stopped if the residual norm is
sufficiently small [102]. During the iteration, it is not needed to recompute index r at
each iteration and the amount of work in Getvec can be reduced as only the twisted
factorization with index r needs to be computed. For performance reasons, RQI is

commonly used instead of Lines 11–13 in Algorithm 3.2. As ∆
(j)
r (from the twisted

factorization) has the same inertia as LDL∗ − λ̂(j)I, NegCount(LDL∗, λ̂(j)) can be
used to monitor if the RQI converges to the desired eigenvalue [46]. If not, bisection
is used to compute the eigenvalue to full accuracy, followed by one invocation of
Getvec.

52 CHAPTER 3. THE MRRR ALGORITHM

Computation of eigenvectors for clustered eigenvalues. If eigenvalues are
clustered, in Line 16 of Algorithm 3.2, we need to find a new representation with
shifted spectrum. When using lower bidiagonal factorizations, the spectrum shifts
are performed by the dstqds transform such as in Algorithm 3.5, L+D+L

∗
+ =

LDL∗ − τI. Shift τ must be selected such that the new representation fulfills two
requirements: relative robustness and conditional element growth. As the entire al-
gorithm depends on finding such representations, the spectrum shifts are one of the
most crucial steps (and the only possible source of failure). The topic of how to en-
sure that the requirements are satisfied is beyond the scope of our discussion, we refer
to [119, 117, 44, 40, 175, 174] for an in-depth treatment. However, in Algorithm 3.8,
we give a high-level description of the process.16

Algorithm 3.8 Shifting the spectrum

Input: A representation LDL∗; clustered eigenvalues {λ̂p, λ̂p+1, . . . , λ̂q}.
Output: A representation L+D+L

∗

+ = LDL∗ − τI.

1: Refine the extremal eigenvalues to full accuracy by bisection to obtain intervals [λp, λp]

and [λq, λq] with midpoints λ̂p and λ̂q, respectively.

2: Select shifts close to λ̂p and λ̂q; e.g., τℓ = λp − 100ε|λp| and τr = λq + 100ε|λq|.
3: for i = 1 to a maximal number of iterations do
4: Use shifts τℓ and τr to compute a shifted representation via the dstqds transform,

L+D+L
∗

+ = LDL∗ − τℓI and L+D+L
∗

+ = LDL∗ − τrI.
5: if not both factorizations exist then
6: τℓ := τℓ − δℓ and τr := τr + δr for some small δℓ, δr
7: continue
8: else if both factorizations exist then
9: Select the one with smaller element growth, i.e., minimizing ‖D+‖.

10: else
11: Select the existing one.
12: end if
13: if the element growth of selected L+D+L

∗

+ is below a threshold then
14: return the representation, L+D+L

∗

+.
15: else if L+D+L

∗

+ passes a more sophisticated test then
16: return the representation, L+D+L

∗

+.
17: end if
18: τℓ := τℓ − δℓ and τr := τr + δr for some small δℓ, δr
19: end for
20: return L+D+L

∗

+ with the smallest element growth of all computed representations.

Remarks: (1) If a factorization does not exist, nonnumerical values are produced
in its computations and such a factorizations must be discarded. (2) As it defines
all eigenpairs to high relative accuracy, a factorization with essentially no element
growth is accepted immediately [46].17 (3) A more sophisticated test consists of an

16See [46, Algorithms 9 and 10] for a similar discussion.
17If ‖D+‖ is O(spdiam[Mroot]), the factorization is accepted; see [174, Section 2.5] for comments

and more thorough tests.

3.2. A CLOSER LOOK 53

approximation of the conditioning of the relevant eigenpairs as well as the so called
envelope of the invariant subspace to obtain information on where all eigenvectors of
the invariant subspace have small entries [119, 117, 164, 44, 175]; with this informa-
tion, it can be checked if the representation is relatively robust and has conditional
element growth for the relevant eigenpairs. (4) The values for δℓ and δr must be
chosen with care, as “backing off too far even might, in an extreme case, make the
algorithm fail [as tight clusters are not broken, while] backing off too little will not
reduce the element growth” [46]; (5) Shifting inside the cluster is possible, but often
avoided [43, 175]. (6) If no suitable representation is found, the candidate with the
least element growth is returned. Such a strategy is potentially dangerous as accu-
racy might be jeopardized (“code may fail but should never lie”) [41, 40]. Instead,
an implementation could explicitly check the accuracy of the eigenpairs connected
to the cluster or fall back to another method like the submatrix method [112, 113].

After we found a new RRR for a cluster, L+D+L
∗
+ = LDL∗−τI, the eigenvalues

are refined to the desired accuracy via bisection, and then reclassified. If [λi, λi]
denote the approximation of an eigenvalue of LDL∗, we might use as a starting
interval [λ+

i , λ
+
i] for limited bisection:

λ+
i := (λi(1± ν)− τ)(1± ν) ,

λ
+
i := (λi(1± ν)− τ)(1± ν) ,

with ν = 10krrnε and the appropriate signs to enlarge the interval [175].

54 CHAPTER 3. THE MRRR ALGORITHM

Chapter 4
Parallel MRRR-based Eigensolvers

In this chapter, we introduce our work on parallel versions of the MRRR algorithm
targeting modern multi-core architectures and distributed-memory systems. In Sec-
tion 4.1, we present a task queue-based parallelization strategy that is especially
designed to take advantage of the features of multi-core and symmetric multiproces-
sor (SMP) systems. We provide a detailed discussion of the new parallel eigensolver
mr3smp. Experiments give ample evidence that the task queue-based approach leads
to remarkable results in terms of scalability and execution time: Compared with the
fastest solvers available on both artificial and application matrices, mr3smp consis-
tently ranks as the fastest. All results of Section 4.1 are published in [122, 123].

When problem sizes become too large for a typical SMP system, or the exe-
cution times are too high, scientists place their hopes on massively parallel super-
computers. In Section 4.2, we focus on modern distributed-memory architectures,
which themselves use multi-core processors as their building blocks. These hybrid
shared/distributed-memory systems are often briefly denoted as hybrid architec-
tures.1 We present a novel tridiagonal solver, PMRRR, which merges the task queue-
based approach introduced previously in Section 4.1, and the distributed-memory
parallelization strategy of Bientinesi et al. [13].

PMRRR was integrated into the Elemental library for the solution of large-scale
standard and generalized dense Hermitian eigenproblems.2 Our study of these prob-
lems is motivated by performance issues of commonly used routines in the ScaLA-
PACK library. After identifying those issues, we provide clear guidelines on how
to circumvent them: By invoking suitable routines with carefully chosen settings,
users can assemble solvers that perform considerably better than those included in
ScaLAPACK. In a thorough performance study on two state-of-the-art supercomput-
ers, we compare Elemental with the solvers built within the ScaLAPACK framework
according to our guidelines. For a modest amount of parallelism and provided the

1The term hybrid architecture is also used if two or more types of processors are part of the
system.

2See Section 2.4 for a brief introduction of Elemental.

56 CHAPTER 4. PARALLEL MRRR-BASED EIGENSOLVERS

fastest routines with suitable settings are invoked, ScaLAPACK’s solvers obtain re-
sults comparable to Elemental. In general, Elemental attains the best performance
and obtains the best scalability of all solvers. In particular, compared to the most
widely used ScaLAPACK routines, the performance improvements are quite signifi-
cant. Most results of Section 4.2 are published in [124].

4.1 MRRR for multi-core architectures

In this section, we present a task-based design of the MRRR algorithm specifically
tailored to multi-core processors and shared-memory architectures. We call our task-
based approach MR3-SMP. The rationale behind MR3-SMP is that the unfolding of
the algorithm, which is summarized (in slightly altered form than before) in Algo-
rithm 4.1, is only determined in course of the computation. As the work associated

Algorithm 4.1 MRRR

Input: Irreducible symmetric tridiagonal T ∈ Rn×n; index set Iin ⊆ {1, . . . , n}.
Output: Eigenpairs (λ̂i, ẑi) with i ∈ Iin.
1: Select shift µ ∈ R and compute Mroot = T − µI.
2: Perturb Mroot by a “random” relative amount bounded by a small multiple of ε.
3: Compute λ̂i[Mroot] with i ∈ Iin to relative accuracy sufficient for classification.

4: Partition Iin =
⋃S

s=1 Is according to the separation of the eigenvalues.
5: Form a work queue Q and enqueue each task {Mroot, Is, µ}.
6: while Q not empty do
7: Dequeue a task {M, I, σ}.
8: if I = {i} then
9: // process well-separated eigenvalue associated with singleton I //

10: Perform Rayleigh quotient iteration (guarded by bisection) to obtain eigenpair

(λ̂i[M], ẑi) with sufficiently small residual norm, ‖Mẑi − λ̂i[M] ẑi‖/‖ẑi‖.
11: Return λ̂i[T] := λ̂i[M] + σ and normalized ẑi.
12: else
13: // process cluster associated with I //
14: Select shift τ ∈ R and compute Mshifted = M − τI.

15: Refine λ̂i[Mshifted] with i ∈ I to sufficient relative accuracy.

16: Partition I =
⋃S

s=1 Is according to the separation of the eigenvalues.
17: Enqueue each {Mshifted, Is, σ + τ}.
18: end if
19: end while

with each eigenpair is unknown a priori, any static assignment of eigenpairs to com-
putational threads is likely to result in poor load balancing, which in turn negatively
effects parallel efficiency.3 In order to achieve perfect load balancing, computational
tasks are created and scheduled dynamically. Naturally, the tasks can be executed
by multiple compute threads. Our C implementation of this concept, which we call

3See Section 2.5 for the connection of load balance and scalability.

4.1. MRRR FOR MULTI-CORE ARCHITECTURES 57

mr3smp, is based on LAPACK’s DSTEMR version 3.2, and makes use of POSIX threads
(IEEE POSIX 1003.1c). The use of POSIX threads is motivated by the desire to
have a maximal control about the threading behavior. Other threading environments
supporting task-based parallelism (such as OpenMP, Threading Building Blocks, or
Cilk) might be used instead.

During and after our work on the parallel solver, several refinements to the MRRR
algorithm have been proposed to improve its robustness [174, 178, 175, 176]. Among
these improvements is the use of alternative forms of representing intermediate tridi-
agonals.4 LAPACK, and therefore mr3smp, uses the N -representation of lower bidi-
agonal factorizations; that is, in the following, any relatively robust representation
(RRR) of a tridiagonal is associated with a lower bidiagonal factorization, LDL∗.
We have designed mr3smp in a modular fashion to be able to incorporate algorithmic
changes with minimal efforts.

4.1.1 A brief motivation

We already gave a motivation for investigating how MRRR can make efficient use of
modern multi-core architectures in Chapter 1; here we partly repeat this argument.
Considering the four methods (BI, QR, DC, MRRR) introduced in Section 2.3.1,
exhaustive experiments of LAPACK’s implementations indicate that for sufficiently
large matrices DC and MRRR are the fastest [37]. Whether DC or MRRR is faster
depends on the spectral distribution of the input matrix.

When executed on multi-core architectures, which algorithm is faster additionally
depends on the amount of available parallelism; indeed, if many cores are available,
DC using multi-threaded BLAS becomes faster than MRRR. In Fig. 4.1, we report
representative timings for the computation of all eigenpairs as a function of the
number of threads used; the tridiagonal input matrix of size 12,387 comes from a
finite-element model of an automobile body (see [13] for more details). Shown are
LAPACK’s DC and MRRR implementations, as well as the new mr3smp. LAPACK’s
BI with about 2 hours and QR with more than 6 hours are much slower and not
shown.

While DC takes advantage of parallelism by using a multi-threaded BLAS library,
the other LAPACK routines do not exploit multi-core architectures. Once enough
hardware parallelism is available, DC becomes faster than the sequential MRRR.
Our parallel mr3smp on the other hand is specifically designed for multi-core proces-
sors, and results to be faster and, as Fig. 4.1 suggests, more scalable than all the
other LAPACK routines.5 As experiments in [122] revealed, similar results hold for
comparisons with the vendor-tuned Intel MKL.

4See Chapter 3 for a discussion on different form of representing tridiagonals.
5Only LAPACK’s DC takes advantage of the multiple cores. In contrast, Intel MKL’s QR is

equally multi-threaded.

58 CHAPTER 4. PARALLEL MRRR-BASED EIGENSOLVERS

4 8 12 16 20 24
0

50

100

150

200

T
im

e
in

 s
ec

on
ds

Number of threads

mr3smp

DC (LAPACK)

MRRR (LAPACK)

(a) Execution time.

4 8 12 16 20 24
0

5

10

15

S
pe

ed
up

Number of threads

mr3smp

DC (LAPACK)

(b) Speedup.

Figure 4.1: Execution of mr3smp and LAPACK’s DC and MRRR for a matrix of size 12,387.
The experiment is performed with LAPACK 3.2.2 on Dunnington (see Appendix C). The
routines are linked to a multi-threaded MKL BLAS. The slope of mr3smp’s speedup curve
at 24 threads is still positive, indicating that more available hardware parallelism will yield
higher speedups.

4.1.2 Parallelization strategy

Existing distributed-memory versions of MRRR aim at minimizing communication
among processors while attaining perfect memory balancing [13, 162].6 As the di-
vision of work is performed statically, this approach comes at the expense of load
balancing. Since on multi-core and shared-memory architectures the memory bal-
ance is not a concern, our objective is instead to identify the right computational
granularity to distribute the workload perfectly. In this section, we illustrate how
this is accomplished by dividing and scheduling the work dynamically.

The MRRR algorithm, as given in Algorithm 4.1, conceptually splits into two
parts: (1) Computation of a root representation and initial approximation of eigen-
values; (2) Computation of eigenvectors, which includes the final refinement of eigen-
values. The two parts correspond to Lines 1–3 and 4–19 in Algorithm 4.1, respec-
tively.

The first part is detailed in Algorithm 3.4 in Section 3.2 and is, like all the other
computations, performed independently for each irreducible subblock. The compu-
tation of a root representation (as for each RRR subsequently) only costs O(n) flops
and is performed sequentially. The initial approximation of eigenvalues instead costs
O(n) flops per eigenvalue, and is performed in parallel using bisection; alternatively,
whenever faster, the sequential dqds algorithm is used. Assuming a user requests k
eigenpairs, bisection is preferable over the dqds algorithm if the number of processors
is larger than or equal to 12 · k/n [13]. In the parallel case, the computation of a
subset of eigenvalues is encapsulated as an independent computational task. The

6See Section 2.5 for a definition of memory balancing.

4.1. MRRR FOR MULTI-CORE ARCHITECTURES 59

granularity of the tasks ensures load balancing among the computational threads.7

In the second part, we also divide the computation into tasks, which are exe-
cuted by multiple threads in parallel. As many different strategies for dividing and
scheduling the computation can be employed, we discuss possible variants in more
detail. Although the eigenvalues are refined in the second part of the algorithm, for
simplicity, we refer to the eigenvalue computation and the eigenvector computation
as the first and the second part, respectively.

4.1.3 Dividing the computation into tasks

We now concentrate on the second – more costly – part of the computation. Since the
representation tree, which is introduced in Section 3.1.2, characterizes the unfolding
of the algorithm, it is natural to associate each node in the tree with a unit of
computation. Because of this one-to-one correspondence, from now on, we use the
notion of task and node interchangeably. Corresponding to interior nodes and leaf
nodes, we introduce two types of tasks, C-tasks and S-tasks. C-tasks deal with the
processing of clusters and create other tasks, while S-tasks are responsible for the
final eigenpair computation. C-tasks and S-tasks embody the two branches of the
if statement in Algorithm 4.1: Lines 14–17 and 10–11, respectively. The flow of the
computation is schematically displayed in Fig. 4.2.

classify
eigenvalues

well-
separated?

compute
eigenpair

shift
spectrum

refine
eigenvalues

yes
no

Figure 4.2: The computational flow of MRRR. An S-task performs to the final computation
of eigenpairs. A C-task performs the spectrum shift, refinement, and reclassification of the
eigenvalues.

Irrespective of scheduling strategies, the granularity of this first approach pre-
vents a parallel execution of tasks: In the presence of a large cluster, the threads
might run out of executable tasks well before the large cluster is processed and bro-
ken up into smaller tasks. As an example, consider the computation of the eigenpairs

7We used a simple work division strategy in mr3smp as the resulting load imbalance was negligible
in the total run time.

60 CHAPTER 4. PARALLEL MRRR-BASED EIGENSOLVERS

with indices {1, 2, . . . , 9} of an irreducible input matrix. Assume eigenvalues λ̂2 to
λ̂9 are clustered, and that we want to solve the problem on a 4-core processor; in this
case, one of the four cores will tackle the singleton {1}, a second core will process
the cluster, and the third and forth cores will sit idle until the cluster is decomposed.
Since the cluster computation is more expensive than the processing of a singleton,
even the first core will have idle time, waiting for new available tasks.

Corresponding to statements 14–17 in Algorithm 4.1, the computation associ-
ated with a C-task is summarized in Algorithm 4.2. Eigenvalues and eigenvectors

Algorithm 4.2 C-task

Input: An RRR and the index set of a cluster Ic, {RRR, Ic}.
Output: S-tasks and C-tasks associated with the children of the cluster.

1: Call subroutine ComputeNewRRR.
2: Call subroutine RefineEigenvalues.
3: Call subroutine ClassifyEigenvalues.

Subroutine: ComputeNewRRR

Input: An RRR and the index set of a cluster Ic, {RRR, Ic}.
1: Compute RRRshifted using DLARRF.

Subroutine: RefineEigenvalues

Input: An RRR and the index set of a cluster Ic, {RRRshifted, Ic}.
1: if |Ic| > ⌈nleft/nthreads⌉ then
2: Decompose the refinement into R-tasks.
3: else
4: Refine eigenvalues {λ̂i[RRRshifted] : i ∈ Ic} using DLARRB.
5: end if

Subroutine: ClassifyEigenvalues

Input: An RRR and the index set of a cluster Ic, {RRRshifted, Ic}.
1: Partition Ic into subsets Ic =

⋃S

s=1 Is.
2: for s = 1 to S do
3: if |Is| > 1 then
4: Create and enqueue C-task {RRRshifted, Is}.
5: else
6: Create and enqueue S-task {RRRshifted, Is}.
7: end if
8: end for

are specified by their index and generally shared among all threads. Quantities nleft
and nthreads denote the number of eigenpairs not yet computed and the number of
threads used, respectively. In our implementation, an RRR is a reference counted
object, which contains information such as the data of the representation, the accu-
mulated shift, the depth in the representation tree, and a counter that indicates the
number of tasks that depend on the RRR. Whenever tasks are executed that make
use of an RRR, its counter is decremented; if the counter becomes zero the memory

4.1. MRRR FOR MULTI-CORE ARCHITECTURES 61

of the RRR is released. To reduce the granularity of the computation, we introduce
a third type of tasks, the R-task, that allows the decomposition of the eigenvalue re-
finement – the most expensive step in C-tasks – originating immediately executable
tasks for all threads even if large clusters are encountered. An R-task takes as input
an RRR and a list of eigenvalues. As output, it returns the refined eigenvalues. As
a guiding principle for load balance, we decompose C-tasks into subtasks whenever
they involve more than smax = ⌈nleft/nthreads⌉ eigenpairs; the rationale being
that at any moment, each thread is conceptually “responsible” for the computation
of not more than smax eigenpairs.8 The algorithm directly invokes LAPACK’s rou-
tines DLARRF and DLARRB; we point out that if these are amended, our parallelization
of MRRR still stands, without modifications.

Vice versa, to avoid too fine a granularity, we extend S-tasks to compute eigen-
pairs of multiple singletons from the same RRR; we call this strategy “bundling”.
This form of bundling might be seen as widening the base case (by joining leaf nodes)
of the recursive algorithm. Bundling brings several advantages: among them, (1)
better usage of cached data through temporal and spatial locality; (2) fewer tasks
and less contention for the work queues; (3) reduced false sharing; and (4) the pos-
sibility of lowering the overall memory requirement. For similar reasons, we execute
C-tasks without creating additional tasks, provided they are sufficiently small.

Corresponding to Lines 10–11 in Algorithm 4.1, the computation performed by
an S-task is summarized by Algorithm 4.3. Instead of bisection followed by one

Algorithm 4.3 S-task

Input: An RRR and an index set Is of well-separated eigenvalues, {RRR, Is}.
Output: Local eigenpairs {(λ̂i, ẑi) : i ∈ Is}.
1: for each index i ∈ Is do
2: while eigenpair (λ̂i, ẑi) is not accepted do

3: Invoke DLAR1V to solve (LDLT − λ̂iI)ẑi = N∆Nẑi = γrer.
4: Record the residual norm |γr|/‖ẑi‖ and the RQC γr/‖ẑi‖2.
5: if |γr|/‖ẑi‖ < tol1 · gap(λ̂i) or |γr|/‖ẑi‖2 < tol2 · |λ̂i| then
6: Normalize ẑi and accept the eigenpair (λ̂i, ẑi).
7: end if
8: if RQC improves λ̂i then
9: λ̂i := λ̂i + γr/‖ẑi‖2

10: else
11: Use bisection to refine λ̂i to full accuracy.
12: end if
13: end while
14: end for

step of inverse iteration, it uses Rayleigh quotient iteration for performance reasons.
The Rayleigh quotient correction (RQC) is used to improve the eigenvalue if the
following applies: the sign of the correction is correct and it leads to a value within

8In practice, a minimum threshold prevents the splitting of small clusters.

62 CHAPTER 4. PARALLEL MRRR-BASED EIGENSOLVERS

the uncertainty interval [λ̂i − λ̂i,err, λ̂i + λ̂i,err] [46]. When the eigenpair is accepted,
a final RQC could be added to reduce the residual. For the eigenvector computation,
the algorithm invokes LAPACK’s auxiliary routine DLAR1V; the same comment as
for Algorithm 4.2 applies here. Quantities tol1 = O(nε) and tol2 = O(ε) denote
appropriate constants to signal convergence.

An example. Figure 4.3 shows the execution trace of an exemplary eigenvector
computation. The examined matrix is the one for which timings were presented
in Fig. 4.1. Computing the eigenvectors took about 49.3 seconds sequentially and
about 3.3 seconds with 16 threads. In the time-line graph, the green, blue and yellow
sections correspond to the processing of S-tasks, C-tasks, and R-tasks, respectively.
Everything considered as parallelization overhead is colored in red. On average,
each thread spends about 66% of the execution time in computing the eigenvectors
of singletons, 34% in computing new RRRs of clusters and to refine the associated
eigenvalues. Due to the dynamic task scheduling, load balancing is achieved and
almost no overhead computations occurs.

Figure 4.3: Exemplary execution trace for a matrix of size 12,387 using 16 threads on
Dunnington. The colors green, blue, and yellow represent time spent in the execution of
S-tasks, C-tasks, and R-tasks, respectively.

We want to point out important details of the trace. The first yellow bar cor-
responds to a refinement of eigenvalues that is split via R-tasks. A cluster of size
8,871 is encountered by the bottommost thread. Since the cluster contains a large
part of the eigenvectors that are still to be computed, the refinement of its eigenval-
ues is split among all the threads. The procedure of splitting the refinement among
all threads is repeated two more times during the computation. Later during the
computation there are yellow regions that provide examples where the refinement of
eigenvalues is split into R-tasks but not distributed among all threads anymore.

4.1. MRRR FOR MULTI-CORE ARCHITECTURES 63

4.1.4 The work queues and task scheduling

We analyze data dependencies among tasks, and discuss how they may be scheduled
for execution. To differentiate the task priority, we form three work queues for high,
medium, and low priority tasks, respectively. Each active thread polls the queues,
from the highest to the lowest in priority, until an available task is found; the task
then is dequeued and executed. The process is repeated until all eigenpairs are
computed.

Task data dependencies

Since the index sets associated to C-tasks and S-tasks are disjoint, no data depen-
dencies are introduced. Dependencies among tasks only result from the management
of the RRRs. Each task in the work queues requires its parent RRR, which serves as
input in Algorithms 4.2 and 4.3; as a consequence, an RRR must be available until
all its children tasks are processed. A possible solution – but not the one used –
is to dynamically allocate memory for each new RRR, pass the memory address to
the children tasks, and keep the RRR in memory until all the children are executed.
An example is given by node {6, 7, 8, 9} in Fig. 3.1 in Section 3.1. M (2) must be
available as long as the children nodes {6, 7}, {8}, and {9} have not been processed.
This solution offers the following advantages: When multiple threads are executing
the children of a C-task, only one copy of the parent RRR resides in memory and is
shared among all threads; similarly, the auxiliary quantities dℓ(i) = D(i, i)·L(i+1, i)
and dℓℓ(i) = D(i, i) · L(i+ 1, i)2, for all 1 ≤ i ≤ n− 1, might be evaluated once and
shared; in architectures with shared caches, additional performance improvements
might arise from reuse of cached data. On the downside, this approach needs an
extra O(n2) workspace in the worst case.

In order to reduce the memory requirement, we make the following observation.
Each task can associate the portion of eigenvector matrix Z corresponding to Ic in
Algorithm 4.2 or Is in Algorithm 4.3 with local workspace, i.e., a section of memory
not accessed by any other task in the work queues. Continuing with the example of
node {6, 7, 8, 9} at depth one of the tree in Fig. 3.1, the columns 6 to 9 are regarded
as local storage of the corresponding task. If the RRR required as input is stored in
the task’s local workspace, then we call such a task independent. If all the children
of a task are independent, then the task’s RRR is not needed anymore and can
be discarded. Additionally, all the children tasks can be executed in any order,
without any data dependency. We now illustrate that all the C-tasks can be made
independent and that practically all S-tasks can be made independent too.

C-tasks: As a cluster consists of at least two eigenvalues, the corresponding
portion of Z – used as local workspace – is always large enough to contain a rep-
resentation. We therefore use Z to store the parent RRR’s data.9 Unfortunately,

9An alternative, used by DSTEMR, is to compute and store the new RRR of the cluster. We use
the other approach to generate tasks more quickly at the beginning.

64 CHAPTER 4. PARALLEL MRRR-BASED EIGENSOLVERS

rendering the tasks independent comes with an overhead due to storing the parent
RRR into Z and retrieving the parent RRR from Z.

S-tasks: The same approach is feasible for S-tasks whenever at least two sin-
gletons are bundled. Conversely, the approach cannot be applied in the extreme
scenario in which a cluster is decomposed into smaller clusters plus only one sin-
gleton. The leaf node {2} in Fig. 3.1 represents such an exception. All the other
S-tasks may be bundled in groups of two or more, and therefore can be made in-
dependent. One drawback of this approach is that when several S-tasks children of
the same node are processed simultaneously, multiple copies of the same RRR reside
in memory, preventing the reuse of cached data. In the example of node {6, 7, 8, 9}
in Fig. 3.1, storing M (2) into columns 6 and 7, as well as columns 8 and 9, cre-
ates an independent C-task for the node {6, 7}, and an independent S-task {8, 9} in
which the two singletons {8} and {9} are bundled. We point out that while working
with independent tasks introduces some overhead, it brings great flexibility in the
scheduling, as tasks can now be scheduled in any order.

Task scheduling

Many strategies can be employed for the dynamic scheduling of tasks. As a general
guideline, in a shared memory environment, having enough tasks to feed all the
computational cores is paramount to achieve high-performance. In this section,
we discuss the implementation of two simple but effective strategies that balance
task-granularity, memory requirement, and creation of tasks. In both cases, we
implemented three separate FIFO queues, to avoid contention when many worker
threads are used. Both approaches schedule R-tasks with high priority, because they
arise as part of the decomposition of large clusters, and originate work in the form
of tasks.

C-tasks before S-tasks: All enqueued C-tasks and S-tasks are made independent.
(In the rare event that a S-task cannot be made independent, the task is executed
immediately without being enqueued.) Consequently, all C-tasks and S-tasks in the
work queues can be scheduled in any order. Since processing C-tasks creates new
tasks that can be executed in parallel, we impose that C-tasks (medium priority)
are dequeued before S-tasks (low priority). This ordering is a special case of many
different strategies in which the execution of C-tasks and S-tasks are interleaved.
No other ordering offers more executable tasks in the work queues; thus, for the
scenario that all tasks are independent, we expect that the strategy attains the best
performance.

S-tasks before C-tasks: No S-task is made independent. In order to obtain a
similar memory requirement as in the first approach, we are forced to schedule the
S-tasks before the C-tasks. The reason is that for each cluster an RRR must be
kept in memory until all its children S-tasks are executed. The ordering guarantees
that at any time only S-tasks originating no more than nthreads clusters are in the
queue, and we limit the number of RRRs to be kept in memory to nthreads. While
the flexibility in scheduling tasks is reduced, the overhead from making the S-tasks

4.1. MRRR FOR MULTI-CORE ARCHITECTURES 65

independent is avoided. In practice, this second approach is slightly faster – about
5–8% in our tests; it is used for all timings in Section 4.1.6.

4.1.5 Memory requirement

Routines mr3smp and LAPACK’s DSTEMR make efficient use of memory by using
the eigenvector matrix Z as temporary storage. Additionally, DSTEMR overwrites the
input matrix T to store only the RRR of the currently processed node. This approach
is not feasible in a parallel setting, as the simultaneous processing of multiple nodes
requires storing the associated RRRs separately. Moreover, in our multi-threaded
implementation, each thread requires its own workspace. As a consequence, the
parallelization and its resulting performance gain come at the cost of a slightly
higher memory requirement than in the sequential case.

While DSTEMR requires extra workspace to hold 18n double precision numbers
and 10n integers [46], mr3smp requires extra storage of about (12n + 6n · nthreads)
double precision numbers and (10n+5n ·nthreads) integers. For a single thread the
total workspace requirement is roughly the same as for DSTEMR, and the requirement
increases linearly with the number of threads participating in the computation. We
remark that thanks to shared data, the required memory is less than nthreads times
the memory needed for the sequential routine. In Fig. 4.4 we show for two different

0 2,000 4,000 6,000 8,000 10,000

2

4

6

8

M
em

or
y

us
ag

e
[M

B
]

Matrix size

Hermite

Clement

Estimate

(a) Using a fixed number of 12 threads.

0 5 10 15 20 25

2

4

6

8

M
em

or
y

us
ag

e
[M

B
]

Number of threads

Hermite

Clement

Estimate

(b) Using a fixed matrix size of 5,000.

Figure 4.4: Peak memory requirement of mr3smp. The workspace requirement has to be
compared with the n2 double precision numbers of the output matrix. For instance, for
matrices of size 5,000 the output requires about 190 MB memory.

kind of matrices, namely the so called Hermite and symmetrized Clement matrices,
the measured peak memory usage by mr3smp.10 By setting nthreads to 12, Fig. 4.4(a)
shows that the extra memory requirement is linear in the matrix size. In Fig. 4.4(b),
the matrix size has a fixed value of 5,000 and the dependence of the required memory
with the number of threads is shown. Although the memory requirement increases

10See Appendix D for a description of test matrices.

66 CHAPTER 4. PARALLEL MRRR-BASED EIGENSOLVERS

with the number of threads, even if 24 threads are used, the required extra storage
only makes up for less than 5% of the memory required by the output matrix Z.
Since the DC algorithm requires O(n2) double precision workspace, the advantage
of MRRR in requiring much less memory than DC is maintained.

4.1.6 Experimental results

We now turn the attention on timing and accuracy results of mr3smp. We used
similar settings for thresholds, convergence parameters, and classification criteria as
DSTEMR to clearly identify the effects of the parallel execution.

We compare our solver to the fastest solvers available in LAPACK and the parallel
ParEig (a solver for a distributed-memory systems).11 As not all solvers allow for
the computation of a subset of eigenpairs at reduced cost, we consider this scenario
for mr3smp first. All tests were run on Dunnington, with the settings described
in Appendix C. We used LAPACK version 3.2.2 in conjunction with Intel’s MKL
BLAS version 10.2, and ParEig version 2.0 together with OpenMPI version 1.4.2.
Descriptions of the LAPACK routines and test matrices are found in Appendix A
and D, respectively. We also refer to [122, 123] for further results and additional
information on the experiments.

Subset Computations

An important feature of MRRR is the ability of computing a subset of eigenpairs
at reduced cost. We show that with our task-based parallelization, the same is true
also in the multi-threaded case. In Fig. 4.5(a), we show mr3smp’s total execution
time against the fraction of requested eigenpairs. The test matrices are of size
10,001, and the computed subsets are on the left end of the spectrum. Additionally,
Fig. 4.5(b) shows the obtained speedup with respect to DSTEMR. Intuitively, the
speedup is limited if very few eigenpairs are computed. However, it is often higher
for computing subsets than for finding all eigenpairs.

The experiments indicate that mr3smp is especially well suited for subsets compu-
tation. However, in order to compare timings with other solvers that cannot compute
subsets of eigenpairs at reduced cost, we show results for computing all eigenpairs
subsequently. It is important to notice that the execution time of MRRR is propor-
tional to the number of eigenpairs, which is not true for other methods. This makes
MRRR the method of choice for computing subsets of eigenpairs, but often MRRR
is the fastest method even when all eigenpairs are desired [37, 124, 13].

As a final note: if MRRR is used to compute small subsets of eigenpairs of
dense matrices after a reduction to tridiagonal form, it might be advantageous to
use successive band reduction (SBR) instead of the direct reduction to tridiagonal
form provided by LAPACK.12 Routines for SBR are found in the SBR toolbox [19],
and in vendor-tuned libraries such as Intel’s MKL.

11See [122] for a comparison with Intel’s MKL.
12See Chapter 2.

4.1. MRRR FOR MULTI-CORE ARCHITECTURES 67

100 75 50 25 1
0

1

2

3

4

5

T
im

e
in

 s
ec

on
ds

Fraction of spectrum [%]

Wilkinson

Clement

Hermite

Legendre

1−2−1

Laguerre

(a) Execution time.

100 75 50 25 1
0

4

8

12

16

20

24

S
pe

ed
up

Fraction of spectrum [%]

Wilkinson

Clement

Hermite

Legendre

1−2−1

Laguerre

(b) Speedup with respect to DSTEMR.

Figure 4.5: Computation of a subset of eigenpairs using mr3smp with 24 threads on Dun-

nington.

MR3–SMP vs. LAPACK

Arguably, the most important test matrices come from applications. In the following,
we concentrate on timing and accuracy results for a set of tridiagonal matrices arising
in different scientific and engineering disciplines.

In Table 4.1 we show timings for QR (DSTEQR), BI (DSTEVX), MRRR (DSTEMR),
as well as for DC (DSTEDC) and MR3-SMP (mr3smp). Since they cannot achieve
parallelism through multi-threaded BLAS, the execution time for the first three
routines is independent of the number of threads. Conversely, both DC and mr3smp

take advantage of multiple threads, through multi-threaded BLAS and the task-
based approach, respectively. All the timings refer to the execution with 24 threads,
that is, as many threads as cores available. The execution times for QR and BI
are significantly higher than for the other algorithms; thus, we omit the results for
the largest matrices. In all cases, even if parallelized and achieving perfect speedup,
the routines would still be noticeably slower than the other methods. In all tests,
MR3-SMP outperforms the other solvers considerably.

Matrix Size QR BI MRRR DC MR3–SMP

ZSM-5 2,053 68.4 6.24 0.92 0.70 0.15
Juel-k2b 4,289 921 382 4.41 3.39 0.52
Auto-a 7,923 6,014 2,286 18.8 12.2 1.88
Auto-b 12,387 22,434 7,137 59.5 32.9 4.65
Auto-c 13,786 – 9,474 56.6 35.4 5.34
Auto-d 16,023 – – 87.8 45.8 7.76

Table 4.1: Execution times in seconds for a set of application matrices.

Fig. 4.6(a) shows mr3smp’s and DSTEDC’s (in light gray) total speedup. All the

68 CHAPTER 4. PARALLEL MRRR-BASED EIGENSOLVERS

other routines do not attain any speedups at all. Regarding mr3smp, every line up
to 12 threads converges to a constant value, a phenomenon which is better under-
stood by looking at Fig. 4.6(b). For matrix Auto-b, we plot the execution time for
the initial eigenvalue approximations and the eigenvectors computation separately.
When all the eigenpairs are requested, the sequential dqds algorithm is used in a
single-threaded execution to approximate the eigenvalues. Because of the sequential
nature of the dqds algorithm, by Amdahl’s law, the maximal speedup of mr3smp
is limited to about 7.6. When enough parallelism is available, bisection becomes
faster than dqds; according to the criterion discussed in Section 4.1.2, if more than
12 threads are used, we switch to bisection. Such a strategy is essential to achieve
scalability: using 24 threads, the speedup is about 13, that is almost twice of the
limit dictated by Amdahl’s law. Moreover, all the speedup curves in Fig. 4.6(a)
have positive slope at 24 threads, thus indicating that further speedups should be
expected as the amount of available cores increases.

4 8 12 16 20 24
0

5

10

15

S
pe

ed
up

Number of threads

ZSM−5

Juel−k2b

Auto−a

Auto−b

Auto−c

Auto−d

(a) Speedup.

LAPACK 2 4 8 16
0

10

20

30

40

50

60

70

Number of threads

T
im

e
in

 s
ec

on
ds

Eigenvalues

Eigenvectors

(b) Execution time.

Figure 4.6: Speedup for the total execution time of mr3smp and DSTEDC. (a) mr3smp’s
speedup is with respect to DSTEMR, while speedups for DSTEDC (shown in light gray) are with
respect to its sequential execution. (b) For input matrix Auto-b, separate execution time for
the initial eigenvalue approximation and for the subsequent eigenvector computation.

MR3–SMP vs. ParEig

In Table 4.2 we compare the timings of mr3smp and ParEig. ParEig is designed for
distributed-memory architectures, and uses the Message-Passing-Interface (MPI)
for communication. Since ParEig was at the time of writing the fastest distributed-
memory parallel symmetric tridiagonal eigensolver, we omit a comparison to other
routines such as ScaLAPACK’s PDSTEDC. Instead, we refer to [13, 162] for com-
parisons of ParEig to other eigensolvers. In the experiments, we present ParEig’s
timings for 22 processes as they were consistently faster than the execution with 24
processes. Timings of ParEig do not include the overhead of initializing the MPI li-

4.1. MRRR FOR MULTI-CORE ARCHITECTURES 69

Matrix Size MR3-SMP ParEig

ZSM-5 2,053 0.15 (0.16) 0.13
Juel-k2b 4,289 0.52 (0.49) 1.29
Auto-a 7,923 1.88 (1.62) 2.89
Auto-b 12,387 4.65 (3.93) 5.48
Auto-c 13,786 5.34 (3.02) 5.98
Auto-d 16,023 7.76 (5.69) 7.99

Table 4.2: Execution times in seconds for a set of matrices arising in applications. The
timings in brackets are achieved if mr3smp uses the same splitting criterion as ParEig.

brary. The performance of mr3smp matches and even surpasses that of ParEig. For a
direct comparison of mr3smp with ParEig, it is important to stress that, even though
both routines implement the MRRR algorithm, several internal parameters are dif-
ferent. Most importantly, the minimum relative gap, gaptol, which determines when
an eigenvalue is to be considered well-separated, is set to min{10−2, n−1} and 10−3

in ParEig and mr3smp, respectively. In order to make a fair comparison, in brackets
we show the execution time of mr3smp when using the parameter gaptol as set in
ParEig.13 The numbers indicate that with similar tolerances, in the shared-memory
environment, mr3smp outperforms ParEig.

MR3–SMP’s accuracy

In Fig. 4.7, we present accuracy results for mr3smp and ParEig, as well as LAPACK’s
DSTEMR and DSTEDC. For all test matrices, the routines attain equally good residuals,

2,053 7,923 12,387 16,023

10
−16

10
−15

10
−14

10
−13

10
−12

R
es

id
ua

l

Matrix size

mr3smp

DSTEMR

DSTEDC

ParEig

(a) Largest residual norm.

2,053 7,923 12,387 16,023

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

O
rt

ho
go

na
lit

y

Matrix size

mr3smp

DSTEMR

DSTEDC

ParEig

(b) Orthogonality.

Figure 4.7: Accuracy of mr3smp, LAPACK’s DSTEMR and DSTEDC, and ParEig for a set of
application matrices. The largest residual norm and the orthogonality are defined in (2.5).

13Despite a slight loss of performance, in mr3smp we conservatively set tol = 10−3 for accuracy
reasons [162].

70 CHAPTER 4. PARALLEL MRRR-BASED EIGENSOLVERS

while in terms of orthogonality DC is more accurate than the three MRRR-based
routines. The results are underpinned by the tests of Demmel et al. [37], which shows
a similar behavior for a large test set of artificial and application test matrices. In
general, our parallel MRRR obtains the same accuracy as its sequential counterpart.

While the accuracy of MRRR is sufficient for many users, it might be a concern
to others. It is therefore natural to ask whether the accuracy of the MRRR-based
routines can be improved to levels of DC. Unfortunately, this is not an easy task as
Theorem 3.1.4 shows that one needs to be prepared of orthogonality levels of about
O(1000nε) even if all requirements of the algorithm are fulfilled. Our workaround
to this dilemma resorts to the use of higher precision arithmetic and is the topic of
Chapter 5.

4.2 MRRR for modern supercomputers

In this section we present a tridiagonal solver, PMRRR, which merges the task-based
approach introduced in the previous section and the distributed-memory paralleliza-
tion of Bientinesi et al. [13].14 Our target architecture are supercomputers with
hybrid shared/distributed-memory. For these architectures, parallelism is achieved
by executing multiple processes that communicate via message passing. Each of
these processes in turn might execute multiple threads that communicate via shared
memory. In this way, PMRRR is well-suited for both single node and large-scale mas-
sively parallel computations.

PMRRR was integrated to the Elemental library [128] for the solution of large-scale
standard and generalized dense Hermitian eigenproblems (in short, GHEP and HEP,
respectively). In Section 4.2.2, we introduce EleMRRR (from Elemental and PMRRR),
a set of distributed-memory MRRR-based eigensolvers within Elemental. EleMRRR
provides full support for hybrid message-passing and multi-threading parallelism. If
multi-threading is not desired, EleMRRR can be used in purely message-passing
mode.

A thorough performance study comparing EleMRRR with ScaLAPACK’s eigen-
solvers on two high-end computing platforms is provided. This study accomplishes
two objectives: First, it reveals that the commonly15 used ScaLAPACK routines
(PxHEGVX, PxSYGVX, PxHEEVD, PxSYEVD) present performance penalties that are
avoided by calling a different sequence of subroutines and by choosing suitable set-
tings. Second, it indicates that EleMRRR is scalable – both strongly and weakly
– to a large number of processors, and outperforms the ScaLAPACK solvers even
when used according to our guidelines.

4.2.1 PMRRR and its parallelization strategy

PMRRR is built on top of the multi-threaded mr3smp introduced in the previous section.

14PMRRR should not be confused with the solver introduced in [13].
15E.g., see [30, 80, 88, 148, 153].

4.2. MRRR FOR MODERN SUPERCOMPUTERS 71

Our parallelization strategy consists of two layers, a global and a local one. At the
global level, the k desired eigenpairs are statically divided into equal parts and
assigned to the processes. Since the unfolding of the algorithm depends on the
spectrum, it is still possible that the workload is not perfectly balanced among the
processes; this deficit is accepted in order to achieve the more important memory
balancing.16 At the local level (within each process), the computation is decomposed
into tasks, which are equal to the ones introduced in Section 4.1. The tasks can be
executed in parallel by multiple threads and lead to the dynamic generation of new
tasks. The new feature is that some tasks involve explicit communication with other
processes via messages.

When executed with p processes, the algorithm starts by broadcasting the input
matrix and by redundantly computing the root representation Mroot.

17 Once this is
available, the computation of the approximations λ̂i[Mroot] via bisection is embar-
rassingly parallel: Each process is responsible for at most kpp = ⌈k/p⌉ eigenvalues.
Within a process however, to obtain workload balance, the assignment of eigenvalues
to threads is done dynamically.

Once the eigenvalues are computed locally, each process gathers all eigenvalues,
and the corresponding eigenpairs are assigned as desired. At this point, each process
redundantly classifies the eigenvalues into singletons and clusters and only enqueues
tasks that involve eigenpairs assigned to the process. To increase workload balance,
the first classification of eigenvalues is amended with a criterion based on the absolute
gaps of the eigenvalues [161, 162, 163].

Locally, the calculation of the eigenpairs is split into computational tasks of
three types as in MR3-SMP: S-tasks, C-tasks, and R-tasks. Multi-threading sup-
port within each process is easily obtained by having multiple threads dequeue and
execute tasks. In contrast to the multi-core parallelization, the C-tasks must deal
with two scenarios: (i) no communication is required to process the task, or (ii)
communication with other processes is required for its execution. The computation
associated with each of the three tasks is detailed below.

1. S-task: The corresponding eigenpairs are computed locally as in Algorithm 4.3.
No further communication among processes is necessary.

2. C-task: When a cluster contains eigenvalues assigned to only one process, no
cooperation among processes is needed. The necessary steps are the same as
those in Algorithm 4.2. When a cluster contains a set of eigenvalues which
spans multiple processes, inter-process communication is needed. In this case,
all involved processes redundantly compute a new RRR, the local set of eigen-
values is refined, and the eigenvalues of the cluster are communicated among
the processes. At this point, the eigenvalues of the cluster are reclassified and
the corresponding tasks created and enqueued.

3. R-task: Exactly as in MR3-SMP, the task is used to split the work for refining

16See Section 2.5.
17In the discussion, we assume the input is numerically irreducible. In fact, after splitting the

matrix, a root representation is computed for each submatrix.

72 CHAPTER 4. PARALLEL MRRR-BASED EIGENSOLVERS

a set of eigenvalue among threads.

In order to deal with the two different flavors of C-tasks, Algorithm 4.2 is mod-
ified: for each C-task it checks whether communication with other processes is
required. If communication is required, the refinement is limited to the portion
of eigenvalues assigned to the process and a communication of refined eigenvalues
among the involved processes is added. If no communication is required, the task
corresponds to Algorithm 4.2.

While the overall execution time depends on the spectral distribution, the mem-
ory requirement is matrix independent (with O(nk/p) floating point numbers per
process), and perfect memory balance is achieved [13, 162]. To appreciate this fea-
ture, we mention that such a memory balance is not guaranteed by ScaLAPACK’s
bisection and inverse iteration implementation. In this case, clusters are processed
within a single process, effectively leading (in the worst case) to a requirement of
O(nk2) operations and O(nk) floating point numbers memory for a single process.

Our tests show that the hybrid parallelization approach is equally fast than the
one purely based on MPI. This is generally true for architectures with a high degree
of inter-node parallelism and limited intra-node parallelism. By contrast, on archi-
tectures with a small degree of inter-node parallelism and high degree of intra-node
parallelism, we expect the hybrid execution of PMRRR to be preferable to pure MPI.

We stress that even when no multi-threading is used, the task-based design of
PMRRR is advantageous: By scheduling tasks that require inter-process communica-
tion with priority and using non-blocking communication, processes continue exe-
cuting tasks while waiting to receive data. This strategy often leads to a perfect
overlap of communication and computation. As an example, the scalability advan-
tage of PMRRR compared with ScaLAPACK’s PDSTEMR in Fig. 4.10(b) is the result
of non-blocking communications; in the experiment with 1,024 cores, ScaLAPACK’s
MRRR spends about 30 out of 50 seconds in exposed communication.

4.2.2 Elemental’s eigensolvers

Elemental’s eigensolvers, HermitianGenDefiniteEig and HermitianEig, follow the
classical reduction and backtransformation approach described in Sections 2.3.2 and
2.3.3.18 As Elemental’s solvers are equivalent to their sequential counterparts in
terms of accuracy, we concentrate on their performance in later experiments. In
terms of memory, Elemental’s solvers are quite efficient. In Table 4.3, we report
approximate total memory requirements for computing k eigenpairs of generalized
and standard eigenproblems. As a reference, we provide the same numbers for the
solvers we later built from ScaLAPACK routines. (In Section 4.2.4, we define the
meaning of “ScaLAPACK DC” and “ScaLAPACK MRRR” precisely.) The numbers
in the table are expressed in units of the size of a single complex and real floating
point number, depending on the required arithmetic. The memory requirement per

18Detailed discussions the reduction and backtransformation stages, both in general and within
the Elemental environment, can be found in [144, 72, 130, 141].

4.2. MRRR FOR MODERN SUPERCOMPUTERS 73

Complex Real
GHEP HEP GHEP HEP

ScaLAPACK DC 4n2 3n2 5n2 4n2

ScaLAPACK MRRR 2n2 + 1.5nk n2 + 1.5nk 2n2 + 2nk n2 + 2nk

Elemental 2n2 + nk n2 + nk 2n2 + nk n2 + nk

Table 4.3: Total memory requirements in units of complex and real floating point numbers
for the computation of k eigenpairs.

process can be obtained by dividing by the total number of processes.

For performance reasons, as we discuss later, both Elemental and ScaLAPACK
are best executed with processes that are logically organized in a two-dimensional
grid. For square process grids, Elemental’s memory requirement is between 0.5n2

and 2n2 floating point numbers lower than that of the ScaLAPACK-based solvers. If
non-square grids are used, a user concerned about memory usage can make use of the
non-square reduction routines – at the cost of suboptimal performance. The reduc-
tion routines for square process grids would otherwise need a data redistribution that
adds a n2 term to Elemental and ScaLAPACK MRRR, but not to DC. However, in
this situation, ScaLAPACK MRRR can save workspace to perform its redistribution
of the eigenvectors from a one-dimensional to a two-dimensional block-cyclic data
layout, reducing its terms by nk real floating point numbers. This eigenvector redis-
tribution is performed in Elemental in-place, resulting in a smaller memory footprint
than possible for ScaLAPACK’s routines.

Subsequently, we call Elemental’s eigensolvers based on PMRRR briefly EleMRRR.
Before we show experimental results of EleMRRR, we make a little detour discussing
ScaLAPACK’s solvers. The reason being that the solvers that are included in the
library each present performance penalties, which are easily avoided. In order to
have a fair comparison, and to provide our findings to a large group of ScaLAPACK
users, we build eigensolvers from a sequences of ScaLAPACK routines with optimal
settings, which are generally faster than the commonly used solvers.

4.2.3 A study of ScaLAPACK’s eigensolvers

Highly parallel computers (e.g., Juropa, which is used for the experiments below
and described in Appendix C) are frequently used when the execution time and/or
the memory requirement of a simulation become limiting factors. With respect to
execution time, the use of more processors would ideally result in faster solutions.
When memory is the limiting factor, additional resources from large distributed-
memory environments should enable the solution of larger problems. We study the
performance of eigensolvers for both situations: increasing the number of processors
while keeping the problem size constant (strong scaling), and increasing the number
of processors while keeping the memory per processors constant (weak scaling).

ScaLAPACK is a widely used library for the solution of large-scale dense

74 CHAPTER 4. PARALLEL MRRR-BASED EIGENSOLVERS

eigenproblems on distributed-memory systems. Version 1.8 of the library, at the
time of performing the experiments the latest release, is used within this section.
Later versions, such as 2.0 (released in Nov. 2011), presents no significant changes in
the tested routines. From version 2.0 on, the MRRR-based routines for the HEP are
added to the library. The available routines for the GHEP and HEP and their func-
tionality are described in Appendix A. Without loss of generality, we concentrate
on the case of double precision complex-valued input.

Generalized eigenproblems

As presented in Table A.5 of Appendix A, PZHEGVX is ScaLAPACK’s only routine
for Hermitian generalized eigenproblems. The routine implements the six-stage pro-
cedure described in Section 2.3.3 and is based on bisection and inverse iteration. In
Fig. 4.8(a), we report the weak scalability of PZHEGVX for computing 15% of the eigen-
pairs of Ax = λBx associated with the smallest eigenvalues.19 This task frequently
arises in electronic structure calculations via density functional theory (DFT); some
methods require between 1/6 and 1/3 of the eigenpairs associated with the small-
est eigenvalues of a large number matrices whose dimensions can be in the tens of
thousands [141]. Fig. 4.8(a) indicates that as the problem size and the number of
processors increase, PZHEGVX does not scale as well as EleMRRR, which we included
as a reference.

32 64 128 256 512 1,024

5

10

15

20

25

Number of cores

T
im

e
in

 m
in

ut
es

5k 10k 20k

Matrix size

PZHEGVX

EleMRRR

(a) Execution time.

Number of cores

F
ra

ct
io

n
of

 e
xe

cu
tio

n
tim

e

32 64 128 256 512 1,024

20

40

60

80

10k 20k
Matrix size

PDSTEBZ + PZSTEIN

(Stage 4)

Stage 3

(b) Breakdown of time by stages.

Figure 4.8: Weak scalability for the computation of 15% of the eigenpairs. As commonly
done in practice, the eigenvectors are requested to be numerically orthogonal [148].

By Fig. 4.8(b), it is evident that the routines PDSTEBZ and PZSTEIN, which im-

19We used all default parameters. In particular, the parameter orfac, which indicates which
eigenvectors should be orthogonalized during inverse iteration, has the default value 10−3. In order
to exploit ScaLAPACK’s fastest reduction routines, the lower triangular part of the matrices is
stored and referenced.

4.2. MRRR FOR MODERN SUPERCOMPUTERS 75

plement BI for the tridiagonal stage, are the main cause for the poor performance of
PZHEGVX. For instance in the problem of size 20,000, these routines are responsible for
almost 90% of the compute time. BI’s poor performance is a well-understood phe-
nomenon (e.g., see the comments in [26] and Section 2.3), directly related to the effort
necessary to orthogonalize eigenvectors corresponding to clustered eigenvalues. This
issue led to the development of MRRR, which avoids the orthogonalization entirely.
In addition to the performance issue, PZHEGVX suffers from memory imbalances, as
all the eigenvalues belonging to a cluster are computed on a single processor.

Observation 1. In light of the above considerations, the use of ScaLAPACK’s rou-
tines based on bisection and inverse iteration is not recommended.

Consequently, we do not provide further comparisons between EleMRRR and
PZHEGVX or PDSYGVX. Instead, we illustrate how the performance of these drivers
changes when BI for the tridiagonal eigensolver is replaced with other – faster –
methods, namely DC and MRRR.

Standard eigenproblems

Among the solvers available in ScaLAPACK, only PZHEEVX (BI) and PZHEEVR

(MRRR) offer the possibility of computing a subset of eigenpairs. PZHEEVX is widely
used, even though, as highlighted in the previous section, it is highly non-scalable.
Similarly, if eigenvectors are computed, the QR algorithm is known to be slower
than DC for large problems [13]. Therefore, we omit comparisons with routines that
are based on the QR algorithm. However, as discussed Section 2.3.2, QR requires
significantly less memory than DC.

Observation 2. Provided enough memory is available, ScaLAPACK’s DC is prefer-
able over QR.

We now focus on the weak scalability of PZHEEVD, which uses DC for the tridiag-
onal eigenproblem. For an experiment similar to that of Fig. 4.8, we show the results
for PZHEEVD and EleMRRR in Fig. 4.9(a). Note that all eigenpairs were computed,
since PZHEEVD does not allow for subset computation. While BI might dominate the
run time of the entire eigenproblem, DC required less than 10% of the total execu-
tion time. Instead, as the matrix size increases, the reduction to tridiagonal form
(PZHETRD) becomes the performance bottleneck, requiring up to 70% of the total
time. A comparison of Fig. 4.9(a) and Fig. 4.9(b) reveals that, for large problems,
using PZHETRD for the reduction to tridiagonal form is more time consuming than
the complete solution with EleMRRR.

ScaLAPACK also includes PZHENTRD, a routine for the reduction to tridiagonal
form especially optimized for square processor grids. The performance improvement
with respect to PZHETRD can be so dramatic that, for this stage, it is preferable
to limit the computation to a square number of processors and redistribute the
matrix accordingly [72].20 Provided enough workspace is made available, a necessary

20See also the results in Appendix E.

76 CHAPTER 4. PARALLEL MRRR-BASED EIGENSOLVERS

32 64 128 256 512 1,024

50

100

150

200

Number of cores

T
im

e
in

 s
ec

on
ds

5k 10k 20k

Matrix size

PZHEEVD

EleMRRR

(a) Execution time.

32 64 128 256 512 1,024

50

100

150

200

Number of cores

T
im

e
in

 s
ec

on
ds

5k 10k 20k

Matrix size

PZHETRD

PZHENTRD

(b) Execution time of the first stage.

Figure 4.9: Weak scalability for the computation of all eigenpairs using DC. (a) Total
execution time of PZHEEVD and EleMRRR. (b) Execution time for ScaLAPACK’s routines
PZHETRD and PZHENTRD, which are responsible for the reduction to tridiagonal form. The
former, used within the routine PZHEEVD, causes a performance penalty and accounts for
much of the time difference compared with EleMRRR.

redistribution is automatically done within PZHENTRD. In any case, it is important to
note that the performance benefit of PZHENTRD is only exploited if the lower triangle
of the input matrix is stored, otherwise the slower routine, PZHETRD, is invoked.21

Observation 3. ScaLAPACK’s reduction routines optimized for square grids of pro-
cessors are to be preferred over the regular reduction routines, even when non-square
process grids are used; moreover, only the lower triangle of implicitly Hermitian
matrices should be referenced.

For performance and scalability reasons, we use the reduction routines that are
optimized for square grids to build the fastest solver within the ScaLAPACK frame-
work.

Tridiagonal eigenproblems

In contrast to all other stages of generalized and standard eigenproblems, the number
of arithmetic operations of the tridiagonal eigensolver depends on the input data.
When all eigenpairs are desired, depending on the matrix entries, either DC or
MRRRmay be faster. Fig. 4.10 provides an example of how performance is influenced
by the input data. We already justified why we only consider DC and MRRR in our
experiments. DC is implemented as PDSTEDC [151]. The MRRR routine corresponds
to the tridiagonal stage of PDSYEVR [162] and it is not available as a separate routine;

21Similar considerations apply for the reduction to standard form via the routines PZHEGST and
PZHENGST, see [130].

4.2. MRRR FOR MODERN SUPERCOMPUTERS 77

64 128 256 512 1,024 2,048

100

200

300

400

Number of cores

T
im

e
in

 s
ec

on
ds

20k 40k 80k

Matrix size

PDSTEDC

PDSTEMR

PMRRR

(a) 1–2–1 type.

64 128 256 512 1,024 2,048

20

40

60

80

Number of cores

T
im

e
in

 s
ec

on
ds

20k 40k 80k
Matrix size

PDSTEDC

PDSTEMR

PMRRR

(b) Wilkinson type.

Figure 4.10: Weak scalability for the computation of all eigenpairs of two different test
matrix types. The left and right graphs have different scales. The execution time of the
MRRR routines should remain roughly constant as the number of cores is increased. In
contrast to the results reported in [162], where a similar experiment to comparing PDSTEDC

and PDSTEMR is performed, even when the matrices offer an opportunity for heavy deflation,
eventually our PMRRR becomes faster than DC due to its superior scalability.

nonetheless, we call it PDSTEMR subsequently. Both routines are compared on two
types of test matrices: “1–2–1” and “Wilkinson”. Due to deflation, the Wilkinson
matrices are known to strongly favor the DC [104]. For both matrix types, the
ScaLAPACK codes do not scale to a large number of cores and PMRRR eventually
becomes the fastest solver.

Observation 4. ScaLAPACK’s tridiagonal eigensolvers based on DC and MRRR
are generally fast and reasonably scalable; depending on the target architecture and
specific requirements from the application, either one may be used. Specifically, if
only a small subset of the spectrum has to be computed, in terms of performance,
the MRRR-based solver is to be preferred to DC. In terms of accuracy, DC is to be
preferred.

Later, we include experimental data on generalized eigenproblems for both DC
and MRRR. One of the challenges in building a scalable solver is that every stage
must be scalable. This is illustrated in Fig. 4.11, which shows the results for ScaLA-
PACK’s DC for a GHEP of size 20,000. While the reduction to tridiagonal form and
the tridiagonal eigensolver are respectively the most and the least expensive stages
on 64 cores, on 2,048 cores the situation is reversed. The behavior is explained by
the parallel efficiencies shown in Fig. 4.11(b).

The ScaLAPACK experiments demonstrate that a comparison with the com-
monly used routines would be misleading. In fact, by calling the suitable set of
routines, we can build much faster solvers within the ScaLAPACK framework. We
use these fast solvers to compare EleMRRR with. However, we stress that what we

78 CHAPTER 4. PARALLEL MRRR-BASED EIGENSOLVERS

Number of cores

F
ra

ct
io

n
of

 e
xe

cu
tio

n
tim

e

64 128 256 512 1,024 2,048

20

40

60

80

100

Stage 5

Stage 4

Stage 3

Stage 6

Stage 2

(a) Breakdown of time by stages.

64 128 256 512 1,024 2,048

0.2

0.4

0.6

0.8

1

Number of cores

P
ar

al
le

l e
ffi

ci
en

cy

Stage 3

Stage 4

(b) Parallel efficiency as in (2.8).

Figure 4.11: Scalability of the computation of all eigenpairs for a GHEP of size 20,000
using ScaLAPACK’s DC. The details of the experiment can be found in [124].

call “ScaLAPACK’s DC” and “ScaLAPACK’s MRRR” do not correspond to routines
in ScaLAPACK and are not (yet) frequently used in practice.

4.2.4 Experimental results

We present experimental results for the execution on two state-of-art supercomput-
ers at the Research Center Jülich, Germany: Juropa and Jugene. In this section
we concentrate on Juropa; results on Jugene are similar and outsourced to Ap-
pendix E. We limit ourselves to generalized eigenproblems of the form Ax = λBx;
the results for standard eigenproblems are given implicitly by stages three to five.

All tested routines were compiled using the Intel compilers (ver. 11.1) with the
flag -O3 and linked to the ParTec’s ParaStation MPI library (ver. 5.0.23).22 Gener-
ally, we used a two-dimensional process grid Pr × Pc (number of rows × number of
columns) with Pr = Pc whenever possible, and Pc = 2Pr otherwise.23 If not stated
otherwise, one process per core was employed.

The ScaLAPACK library (ver. 1.8) was used in conjunction with Intel’s MKL
BLAS (ver. 10.2). From extensive testing, we identified that in all cases the opti-
mal block size was close to 32; therefore, we carried out the ScaLAPACK experi-
ments only with block sizes of 16, 32, 48; the best result out of this pool is then
reported. Since no driver for the generalized eigenproblem that makes use of DC
is available, we refer to ScaLAPACK’s DC as the following sequence of routines:
PZPOTRF–PZHENGST–PZHENTRD–PDSTEDC–PZUNMTR–PZTRSM. Similarly, ScaLAPACK’s
MRRR corresponds to the same sequence with PDSTEDC replaced by PDSTEMR.24 We

22Version 5.0.24 was used when support for multi-threading was needed.
23As discussed in Sections 4.2.3 and 4.2.2, Pc ≈ Pr or the largest square grid possible should be

preferred. These choices do not affect the qualitative behavior of our performance results.
24As PDSTEMR is not contained in ScaLAPACK, it corresponds to the sequence PZPOTRF–PZHENGST–

4.2. MRRR FOR MODERN SUPERCOMPUTERS 79

do not use routines PZHEGST and PZHETRD for the reduction to standard and tridi-
agonal form, respectively. Instead, we replaced them (when necessary) by the faster
PZHENGST and PZHENTRD. Furthermore, in order to make use the fast reduction rou-
tines, only the lower triangular part of the matrices is referenced, and enough memory
for a possible redistribution of the data is provided.

Elemental (ver. 0.6) – incorporating PMRRR (ver. 0.6) – was used for the EleMRRR
timings. In general, since Elemental does not tie the algorithmic block size to the
distribution block size, different block sizes could be used for each of the stages.
We do not exploit this fact in the reported timings. Instead the same block size is
used for all stages. A block size of around 96 was optimal in all cases, therefore,
experiments were carried out for block sizes of 64, 96, and 128, but only the best
timings are reported.25

Since the timings of the tridiagonal eigenproblem depend on the input data, so
does the overall solver. In order to compare fairly different solvers, we fixed the
spectral distribution: for 1 ≤ k ≤ n, λk = 2− 2 cos(πk/(n+1)). The performance of
every other stage is data independent. Moreover, since the output of the tridiagonal
solvers has to be in a format suitable for the backtransformation, the MRRR-based
routines have to undergo a data redistribution; in all the experiments, the timings
for Stage 4 include the cost of such a redistribution.

Strong Scaling

In Fig. 4.12(a), we present timings of EleMRRR for fixed problem of size 20,000.26

Fig. 4.12(b) shows the parallel efficiency as defined in (2.8); the reference is the
execution on 64 cores.

Once the proper sequence of routines is rectified, the performance of ScaLAPACK
is comparable to that of EleMRRR, up to 512 cores (see Fig. 4.12). For 64 to
512 cores, ScaLAPACK’s DC is about 10% to 40% slower than EleMRRR, while
ScaLAPACK’s MRRR is about 7% to 20% slower. The advantage of EleMRRR
mainly comes from the Stages 1, 2, and 6, i.e., those related to the generalized
eigenproblem. The timings for the standard problem (Stages 3–5) are nearly identical
for all solvers, with DC slightly slower than both MRRR-based solutions.

The story for 1,024 and 2,048 cores changes; the performance of ScaLAPACK’s
routines for the generalized eigenproblem drops dramatically. Compared to DC,
EleMRRR is about 3.3 and 6.3 times faster; with respect to ScaLAPACK’s MRRR
instead, EleMRRR is 2.7 and 4.7 times faster. The same holds for the standard
eigenproblem, where EleMRRR is about 2.9 and 6.2 times faster than DC and 1.9

PZHEEVR–PZTRSM.
25The block size for matrix vector products were fixed to 32 in all cases. For the biggest matrices

in the weak scaling experiment only the block size of 32 and 96 were used for ScaLAPACK and
EleMRRR, respectively.

26We did not investigate the cause for the increased run time of ScaLAPACK using 1,024 and
2,048 cores. We observed that while most subroutines in the sequence are slower compared with the
run time using 512 cores, PZHENTRD scales well up to the tested 2,048 cores – see also Fig. 4.9(b).

80 CHAPTER 4. PARALLEL MRRR-BASED EIGENSOLVERS

64 128 256 512 1,024 2,048
10

1

10
2

Number of cores

T
im

e
in

 s
ec

on
ds

EleMRRR

ScaLAPACK’s DC

ScaLAPACK’s MRRR
25s

40s

125s

70s

244s

459s DC: 98s
MRRR: 86s

(a) Execution time.

64 128 256 512 1,024 2,048

0.2

0.4

0.6

0.8

1

Number of cores

P
ar

al
le

l e
ffi

ci
en

cy

EleMRRR

ScaLAPACK’s DC

ScaLAPACK’s MRRR

(b) Parallel efficiency.

Number of cores

F
ra

ct
io

n
of

 e
xe

cu
tio

n
tim

e

64 128 256 512 1,024 2,048

20

40

60

80

100

Stage 5

Stage 3

Stage 6

Stage 2

(c) Breakdown of time by stages.

64 128 256 512 1,024 2,048

0.2

0.4

0.6

0.8

1

Number of cores

P
ar

al
le

l e
ffi

ci
en

cy

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

(d) Parallel efficiency.

Figure 4.12: Strong scalability for the computation of all eigenpairs, Ax = λBx. Matrices A
and B are of size 20,000. (a) Total execution time in a log-log scale. (b) Parallel efficiency as
defined in (2.8); normalized to the execution using 64 cores. (c) Fraction of time spent in all
six stages of the computation. The time spent in the last three stages is proportional to the
number of eigenpairs computed. (d) Parallel efficiency for all six stages of the computation.

and 3.7 times faster than MRRR.
In Figs. 4.12(c) and 4.12(d), we take a closer look at the six different stages of

EleMRRR. Fig. 4.12(c) tells us that roughly one third of EleMRRR’s execution time
– corresponding to Stages 4, 5, and 6 – is proportional to the fraction of computed
eigenpairs. Computing a small fraction of eigenpairs would therefore require about
two thirds of computing the complete decomposition. In Fig. 4.12(d), we report the
parallel efficiency for all six stages separately. When analyzed in conjunction with
the left figure, this figure indicates if and when a routine becomes a bottleneck due
to bad scaling.

The most time consuming stages are the reduction to tridiagonal form, the reduc-
tion to standard form, and the first backtransformation; the tridiagonal eigensolver
(Stage 4) is negligible. Stage 4 attains the highest parallel efficiency and contributes

4.2. MRRR FOR MODERN SUPERCOMPUTERS 81

for less than 2.2% of the overall run time.

Up to 1,024 cores, ScaLAPACK’s MRRR shows a similar behavior: the tridiago-
nal stage makes up for less than 6% of the execution time. With 2,048 cores instead,
the percentage increases to 21. The situation is even more severe for DC, as the
fraction spent in the tridiagonal stage increases from about 4.5% with 64 cores to
41% with 2,048 cores [Fig. 4.11(a)]. The experiment illustrates that the tridiagonal
stage, unless as scalable as the other stages, will eventually account for a significant
portion of the execution time.

Weak Scaling

Fig. 4.13 shows EleMRRR’s timings, when the matrix size increases (from 14,142 to
80,000) together with the number of cores (from 64 to 2,048). Fig. 4.13(a) contains
the parallel efficiency as defined in (2.10), where the reference configuration is the
same as in the previous section (the reference matrix size is 14,142).

64 128 256 512 1,024 2,048

5

10

15

20

25

30

35

40

45

50

Number of cores

T
im

e
in

 m
in

ut
es

20k 40k 80k

Matrix size

EleMRRR

ScaLAPACK’s DC

ScaLAPACK’s MRRR

(a) Execution time.

64 128 256 512 1,024 2,048

0.2

0.4

0.6

0.8

1

Number of cores

P
ar

al
le

l e
ffi

ci
en

cy

20k 40k 80k

Matrix size

EleMRRR

ScaLAPACK’s DC

ScaLAPACK’s MRRR

(b) Parallel efficiency.

Figure 4.13: Weak scalability for the computation of all eigenpairs, Ax = λBx. Matrices
A and B are varied in size such that the memory requirement per core remains constant.

In the tests using 512 cores and less, EleMRRR outperforms ScaLAPACK only
by a small margin, while using 1,024 cores and more, the difference becomes signif-
icant. The right graph indicates that EleMRRR scales well to large problem sizes
and high number of processes, with parallel efficiency close to one. Thanks to its
better scalability, for the biggest problem, EleMRRR is 2.1 and 2.5 times faster than
ScaLAPACK’s MRRR and DC, respectively.

The execution time is broken down into stages in Fig. 4.14(a). Four comments
follow: (1) The time spent in PMRRR (Stage 4) is in the range of 2.5% to 0.7% and
it is completely negligible, especially for large problem sizes. The timings relative
to only Stage 4 are detailed in Fig. 4.10(a). (2) The timings corresponding to the
standard eigenproblem (Stages 3–5) account for about 72% of the generalized prob-

82 CHAPTER 4. PARALLEL MRRR-BASED EIGENSOLVERS

Number of cores

F
ra

ct
io

n
of

 e
xe

cu
tio

n
tim

e

64 128 256 512 1,024 2,048

20

40

60

80

100 20k 40k 80k
Matrix size

Stage 5

Stage 3

Stage 6

Stage 2

(a) Breakdown of time by stages.

64 128 256 512 1,024 2,048
0

5

10

15

20

Number of cores

T
im

e
in

 m
in

ut
es

20k 40k 80k

Matrix size

Pure MPI

Hybrid (4 threads/process)

(b) Hybrid mode execution.

Figure 4.14: EleMRRR’s weak scalability for the computation of all eigenpairs. (a) Fraction
of the execution time spent in the six stages, from bottom to top. (b) Comparison between
a pure MPI execution and a hybrid execution using one process per socket with four threads
per process.

lem’s execution time. (3) The part of the solver whose execution time is roughly
proportional to the fraction of desired eigenpairs (Stages 4–6) makes up 32%–37% of
the execution for both the GHEP and HEP. (4) No one stage in EleMRRR becomes
a performance bottleneck, as all of them scale equally well.

Fig. 4.14(b) shows the execution of EleMRRR using one process per socket with
four threads per process. The resulting execution time is roughly the same as for the
pure MPI execution, highlighting the potential of Elemental’s hybrid mode. Further
experimental results can be found in Appendix E.

4.2.5 Remaining limitations

We have shown that, in context of direct methods for generalized and standard Her-
mitian eigenproblems, the tridiagonal stage is often negligible. However, because of
the lower complexity of MRRR, inefficiencies in the tridiagonal stage do not become
visible. For PMRRR, there are three major issues remaining:

• Although mostly negligible in terms of execution time, PMRRR is the primary
source of “loss of orthogonality” in the overall solution (see Section 5.3.2).

• When matrices possess large clusters of eigenvalues, the work is increased, load
balance issues arise, and communication among processes is introduced. As a
consequence, parallel scalability is limited (see experiments below).

• For some inputs, accuracy is not guaranteed as one or more representation is
accepted without passing the test for its requirements (see Line 20 of Algo-
rithm 3.8).

While the last point is discussed in the next chapter, at this point, we illustrate the
remaining performance and accuracy issues of PMRRR. As the performance is matrix

4.2. MRRR FOR MODERN SUPERCOMPUTERS 83

depended, we use a set of artificial matrices for our experiment. In Fig. 4.15, we
show strong scaling results for matrices of size 20,001. The experiment corresponds
to the one displayed in Fig. 4.12, but differs in two respects. First, we used a hybrid
execution with one process per node and eight threads per process; the pure MPI
results however are very similar. Second, while in the dense case the redistribution
from one-dimensional to two-dimensional matrix layout is considered part of the
tridiagonal stage, here it is excluded from the timings.

64 128 256 512 1,024 2,048
10

−1

10
0

10
1

Number of cores

T
im

e
in

 s
ec

on
ds

1−2−1

Clement

Hermite

Legendre

Laguerre

Wilkinson

4.9s

0.8s

0.5s
0.3s

1.4s

2.5s

(a) Execution time.

64 128 256 512 1,024 2,048
0

0.2

0.4

0.6

0.8

1

Number of cores

P
ar

al
le

l e
ffi

ci
en

cy

1−2−1

Clement

Hermite

Legendre

Laguerre

Wilkinson

(b) Parallel efficiency.

Figure 4.15: Strong scalability for the computation of all eigenpairs.

For all test matrices, the execution time of PMRRR is negligible in the dense case.
For instance, EleMRRR timings for the generalized problem are 459 seconds and 25
seconds on 64 cores and 2,048 cores, respectively. Also, PMRRR’s parallel efficiency is
in the same ballpark as for the other stages of the dense problem. Although timings
and scalability are sufficient in context of dense problems, the parallel efficiency drops
to only about 0.5 on 2,048 cores. Consequently, if we further increase the number of
cores, we cannot expect an adequate reduction in run time.

In Fig. 4.16, we detail the weak scaling results of Figs. 4.10, 4.13 and 4.14. We
use a hybrid execution mode, but the results for pure MPI are very similar. For 1-2-1
and Wilkinson type matrices, Fig. 4.10 shows similar results, but with a different
scale. According to Figs. 4.13 and 4.14, for the largest problem of size 80,000 on 2,048
cores, Elemental requires for the generalized eigenproblem about 1000 seconds and
for the standard eigenproblem about 700 seconds. For all the test matrices, PMRRR
contributes less than 15 seconds to the execution time; and this only if all eigenpairs
are computed. However, the parallel efficiency drops dramatically for some matrices,
while it behaves well for others. Ideally, the execution time would remain constant
as the number of cores are increased. This is roughly observed for the Clement
and Wilkinson matrices. For the Laguerre matrices however, the parallel efficiency
clearly degenerates.

84 CHAPTER 4. PARALLEL MRRR-BASED EIGENSOLVERS

64 128 256 512 1,024 2,048
0

2

4

6

8

10

12

14

16

18

Number of cores

T
im

e
in

 s
ec

on
ds

1−2−1

Clement

Hermite

Legendre

Laguerre

Wilkinson

20k 40k 80k
Matrix size

(a) Execution time.

64 128 256 512 1,024 2,048
0

0.2

0.4

0.6

0.8

1

Number of cores

P
ar

al
le

l e
ffi

ci
en

cy

1−2−1

Clement

Hermite

Legendre

Laguerre

Wilkinson

20k 40k 80k
Matrix size

(b) Parallel efficiency.

Figure 4.16: Weak scalability for the computation of all eigenpairs.

The loss in efficiency is directly related to the clustering of the eigenvalues. To
formalize clustering, we define clustering ρ ∈ [1/n, 1] to be the largest encountered
cluster divided by the matrix size. For two extreme case, we show clustering and
parallel efficiency in Table 4.4. High clustering has two negative impacts: (1) The
overall work is increased by O(ρn2) flops. As clustering tends to increase for large
matrices, in practice, MRRR does not quite performs work proportional to n2 [37];
(2) The static assignment of eigenpairs to processes leads to workload imbalance.

Metric Matrix Matrix size

20,001 28,285 40,001 56,569 80,001

Clustering Wilkinson 1.5e−4 1.1e−4 7.5e−5 5.3e−5 3.8e−5
Laguerre 0.46 0.49 0.51 0.52 0.53

Efficiency Wilkinson 0.98 0.96 0.94 0.91 0.88
Laguerre 0.87 0.70 0.46 0.32 0.20

Table 4.4: Clustering and parallel efficiency for the two extreme types of test matrices. If
ρ is close to 1/n, the parallel efficiency remains good.

The available parallelism is conservatively approximated by ρ−1. The measure is
pessimistic as it assumes that clusters are processed sequentially. In reality, the bulk
of the work in processing clusters is parallelized: (1) the refinement of the eigenvalues
via R-tasks in the shared-memory environment and C-tasks with communication in
the distributed-memory environment; (2) the final computation of the eigenpairs.
However, significant clustering poses limitations on scalability, while small clustering
implies great potential for parallelism.

While PMRRR’s performance is quite satisfactory for most practical purposes (es-
pecially in context of dense eigenproblems), its accuracy can be problematic. PMRRR

4.2. MRRR FOR MODERN SUPERCOMPUTERS 85

generally obtains similar accuracy to its sequential and multi-core counterparts,
which was already discussed in Section 4.1.6: For all MRRR implementations, we
must be prepared for orthogonality of about 1000nε.

20,000 40,000 80,000

10
−15

10
−14

10
−13

10
−12

Matrix size

R
es

id
ua

l

(a) Largest residual norm.

20,000 40,000 80,000

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

Matrix size

O
rt

ho
go

na
lit

y

(b) Orthogonality.

Figure 4.17: Accuracy of PMRRR for the following matrices: (©) 1–2–1, (△) Clement, (▽)
Hermite, (×) Legendre, (�) Laguerre, and (♦) Wilkinson.

In Fig. 4.17, we show the largest residual norm and the orthogonality as defined
in (2.5). Both quantities growth linearly with the matrix size. The orthogonality
results are bounded by nε, which is better than the worst case expected for other
matrices. Nevertheless, the accuracy is not at the level of the most accurate methods,
which we approximated by ε

√
n (the dashed line).

86 CHAPTER 4. PARALLEL MRRR-BASED EIGENSOLVERS

Chapter 5
Mixed Precision MRRR

In the previous chapter, we showed that (i) MRRR is oftentimes used in context
of direct methods for Hermitian eigenproblems; (ii) MRRR is frequently the fastest
algorithm; and, (iii) MRRR is less accurate than other methods. In particular for
dense eigenproblems, MRRR is responsible for much of the loss of orthogonality.
However, it has a lower computational complexity than the reduction to tridiagonal
form, which requires O(n3) arithmetic operations. These observations raise the
question whether it is possible to trade (some) of MRRR’s performance to obtain
better accuracy.

For any MRRR-based solver, we present how the use of mixed precisions leads to
more accurate results at very little or even no extra costs in terms of performance.
In this way, MRRR-based solvers are not only among of the fastest but also among
the most accurate methods. An important feature of our approach is that leads to
more scalable and more robust implementations.

At this point, we assume that the reader is familiar with the content of Chapter 3.
In particular, Algorithm 3.2 and Theorem 3.1.4 serve as the basis of the following
discussion.1

5.1 A mixed precision approach

The technique is simple, yet powerful: Inside the algorithm, we use a precision
higher than of the input/output in order to improve accuracy. To this end, we
build a tridiagonal eigensolver that differentiates between two precisions: (1) the
input/output precision, say binary x, and (2) the working precision, binary y, with
y ≥ x. If y = x, we have the original situation of a solver based on one precision;
in this case, the following analysis is easily adapted to situations in which we are

1The results in this chapter have been published in form of [126].

88 CHAPTER 5. MIXED PRECISION MRRR

satisfied with less accuracy than achievable by MRRR in x-bit arithmetic.2 Since
we are interested in accuracy that cannot be accomplished in x-bit arithmetic, we
restrict ourselves to the case y > x. Provided the unit roundoff of the y-bit format is
sufficiently smaller than the unit roundoff of the x-bit format, say four or five orders
of magnitude, we show how to obtain, for practical matrix sizes, improved accuracy
to the desired level.

Although any x-bit and y-bit floating point format might be chosen, in practice,
only those shown in Table 5.1 are used in high-performance libraries. For example,
for binary32 input/output (single precision), we might use a binary64 working format
(double precision). Similarly, for binary64 input/output, we might use a binary80 or
binary128 working format (extended or quadruple precision). For these three con-
figurations, we use the terms single/double, double/extended, and double/quadruple;
practical issues of their implementation are discussed in Section 5.2. In this section,
however, we concentrate on the generic case of binary x/binary y and only use the
concrete cases to illustrate our arguments.3

Name IEEE-754 Precision Support

single binary32 εs = 2−24 Hardware
double binary64 εd = 2−53 Hardware
extended binary80 εe = 2−64 Hardware
quadruple binary128 εq = 2−113 Software

Table 5.1: The various floating point formats used and their support on common hardware.
The ε-terms denote the unit roundoff error (for rounding to nearest). We use the letters s,
d, e and q synonymously with 32, 64, 80, and 128. For instance, ε

32
= εs.

In principle, we could perform the entire computation in y-bit arithmetic and, at
the end, cast the results to form the x-bit output; for all practical purposes, we would
obtain the desired accuracy. This naive approach is not satisfactory for two reasons:
First, since the eigenvectors need to be stored explicitly in the binary y format, the
memory requirement is increased; and second, if the y-bit floating point arithmetic
is much slower than the x-bit one, the performance suffers severely. While the first
issue is addressed rather easily (as discussed Section 5.1.2), the latter requires more
care. The key insight is that it is unnecessary to compute eigenpairs with residual
norms and orthogonality bounded by say 1000nεy ; instead, these bounds are relaxed
to εx

√
n (for example, think of εx ≈ 10−16, εy ≈ 10−34, and n ≈ 10,000). While in

the standard MRRR the choice of algorithmic parameters is very restricted, as we
show below, we gain enormous freedom in their choice. In particular, while meeting
more demanding accuracy goals, we are able to select values such that the amount

2A similar idea was already mentioned in [40], in relation to a preliminary version of the MRRR
algorithm, but was never pursued further.

3When we refer to binary x, we mean both the x-bit data type and its unit roundoff εx.

5.1. A MIXED PRECISION APPROACH 89

of necessary computation is reduced, the robustness is increased, and parallelism is
improved.

To illustrate our goal of trading performance for accuracy, we use the dou-
ble/quadruple case as an example. As depicted in Fig. 5.1(b), the standard MRRR,
represented by LAPACK’s DSTEMR, computes eigenpairs with accuracy achievable us-
ing double precision arithmetic; with a significant performance penalty, Fig. 5.1(a),
QSTEMR, which is an adaptation of DSTEMR for quadruple precision, naturally com-
putes more accurate results. In a naive approach, we use such a solver to achieve
better accuracy and cast the result to double precision. However, all extra accuracy
provided by QSTEMR is lost once the result is transformed.

2,053 4,704 7,923 12,387 16,023

5

10

15

20

T
im

e
 /

T
im

e
D

S
T

E
M

R

Matrix size

mr3smp (mixed)

DSTEMR

QSTEMR

(a) Relative execution time.

2,053 4,704 7,923 12,387 16,023
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

O
rt

ho
go

na
lit

y

Matrix size

mr3smp (mixed)

DSTEMR

QSTEMR

(b) Accuracy.

Figure 5.1: (a) Execution time of the mixed precision solver relative to the standard MRRR
and a naive approach to improve accuracy. In the experiment, all eigenpairs were computed
and all solvers executed sequentially. The experiment was performed on Westmere with the
application matrices from Table F.1 of Appendix F. (b) Accuracy in form of orthogonality
of the eigenvectors. As a reference, we added εd and εq as dashed lines.

Instead, as we merely require improved accuracy with respect to DSTEMR, we
speed up a solver that uses quadruple precision arithmetic internally. The results
of such an approach is presented in form of mr3smp (with mixed precision).4 While
computing sufficiently accurate results, Fig. 5.1(b), the reward for the relaxed accu-
racy requirement is a remarkable up to five-fold speedup compared with the naive
approach, Fig. 5.1(a). Although, in a sequential execution, our solver is slower than
the standard double precision solver, it comes with two important advantages: ro-
bustness and parallelism are increased significantly. Furthermore, the strategy can
be adapted to any binary x/binary y solver; in case y-bit arithmetic is not that much
slower than x-bit arithmetic, the mixed precision approach leads to faster executions
compared with the standard MRRR. In the next section, we describe our strategy
in detail.

4In order to compute the orthogonality, we kept the eigenvectors in the quadruple format.

90 CHAPTER 5. MIXED PRECISION MRRR

5.1.1 Adjusting the algorithm

At this point, it is necessary to recall Theorem 3.1.4 in Section 3.1.2, which specifies
the accuracy of any MRRR implementation. The exact values of the parameters in
the theorem differ slightly for various implementations of the algorithm and need
not to be known in the following analysis. The bounds on the residual norm and
orthogonality are theoretical, that is, for a worst case scenario. In practice, the
results are smaller than the bounds suggest: with common parameters, realistic
practical bounds on the residual norm and on the orthogonality are nε and 1000nε,
respectively. In order to obtain accuracy similar to that of the best available methods,
we need to transform the dependence on n by one on

√
n. Furthermore, it is necessary

to reduce the orthogonality by about three orders of magnitude.5

Consider the input/output being in a x-bit format and the entire computation
being performed in y-bit arithmetic. Starting from this configuration, we expose
the new freedom in the parameter space and justify changes that we make to the
algorithm. For example, we identify parts that can be executed in x-bit arithmetic,
which might be considerably faster.

Assuming εy ≪ εx (again, think of εx ≈ 10−16 and εy ≈ 10−34), we simplify The-
orem 3.1.4 by canceling terms that do not contribute significantly even with adjusted
parameters (i.e., terms that are comparable to εy in magnitude; in particular, we
require that nεy ≤ εx

√
n.6). In our argumentation, we hide all constants, which any-

way correspond to the bounds attainable for a solver purely based on binary y. For
any reasonable implementation of the algorithm, we have the following: α = O(εy),
η = O(nεy), ξ ↓ = O(εy), ξ↑ = O(εy). Thus, the orthogonality of the final result is
given by

|ẑ∗i ẑj| = O
(
krs

nεy
gaptol

+ krr dmax
nεy

gaptol

)
. (5.1)

Similarly, for the bound on the residual norm, we get

‖Mroot ẑi − λ̂i[Mroot] ẑi‖ = O
(
‖r̄(local)‖+ γ spdiam[Mroot]

)
(5.2)

with ‖r̄(local)‖ ≤ krs gap
(
λ̂i[M]

)
nεy

gaptol and γ = O(kelg dmax nεy).

We now provide a list of changes that can be done to the algorithm. We discuss
their effects on performance, parallelism, and memory requirement.

Preprocessing. We assume scaling and splitting is done as in a solver purely
based on x-bit floating point arithmetic, see Section 3.2.1. In particular, off-diagonal
element βi of the input T is set to zero whenever

|βi| ≤ εx
√
n‖T‖ ,

5We will achieve this by transforming nεx/gaptol terms (with gaptol ≈ 10−3) in the bound into
εx
√
n.

6Commonly, such an assumption does not introduce any further restriction on the matrix size,
as commonly nεx < 1 is assumed for any error analysis.

5.1. A MIXED PRECISION APPROACH 91

where n and T refer to the unreduced input.7 We remark that this criterion is less
strict than setting elements to zero whenever |βi| ≤ εy

√
n‖T‖. Splitting the input

matrix into submatrices is beneficial for both performance and accuracy as these are
mainly determined by the largest submatrix. Throughout this section, we assume
that the preprocessing has been done and each subproblem is treated independently
by invoking Algorithm 3.2. In particular, whenever we refer to matrix T , it is
assumed to be irreducible; whenever we reference the matrix size n in the context of
parameter settings, it refers to the size of the processed block.

Choice of form to represent tridiagonals. For the various forms to represent
tridiagonals (e.g., bidiagonal, twisted, or blocked factorizations) and their data (e.g.,
N -, e-, or Z-representation), different algorithms implement the shift operation in
Line 16 of Algorithm 3.2: Mshifted = M − τI. All these algorithms are stable in the
sense that the relation holds exactly if the data for Mshifted and M are perturbed
element-wise by a relative amount bounded by O(εy). The implied constants for the
perturbation bounds vary slightly. As εy < εx, instead of concentrating on accuracy
issues, we can make our choice based on robustness and performance. A discussion of
performance issues related to different forms to represent tridiagonals can be found
in [178, 174]. Based on this discussion, it appears that twisted factorizations with
e-representation seem to be a good choice. As the off-diagonal entries of all the
matrices stay the same, they only need to be stored once and are reused during the
entire computation.

Random perturbations. In Line 2 of Algorithm 3.2, to break up tight clusters,
the data of Mroot, {x1, ..., x2n−1}, is perturbed element-wise by small random rela-
tive amounts: x̃i = xi(1+ ξi) with |ξi| ≤ ξ for all 1 ≤ i ≤ 2n − 1. In practice, a value
like ξ = 8ε is used. Although our data is in binary y, we can be quite aggressive
and adopt ξ = εx or a small multiple of it.8 For y = 2x, about half of the digits
in each entry of the representation are chosen randomly and with high probability,
eigenvalues do not agree to many more than ⌈− log10 εx⌉ digits. This has two major
effects: First, together with the changes in gaptol (see below), the probability to
encounter large values for dmax (say 4 or larger) becomes extremely low. Second, it
becomes easier to find suitable shifts such that the resulting representation satisfies
the requirements of relative robustness and conditional element growth. The positive
impact of small dmax on the accuracy is apparent from (5.1) and (5.2). Furthermore,
as discussed below, due to limiting dmax, the computation can be reorganized for ef-
ficiency. Although it might look innocent, the more aggressive random perturbations
lead to much improved robustness: A detailed discussion can be found in [45, 40].

7In our implementation, we used |βi| ≤ εx‖T‖ [125].
8Two comments: (1) If we later choose to relax the requirements on the representations, we do

not do so for the root representation. Commonly, we take a definite factorization that defines all
eigenpairs to high relative accuracy; (2) A reader might wonder if we loose the ability to attain
the more demanding bound on the residual. First, it is not the case in practice and, second, it is
irrelevant in context of dense eigenproblems.

92 CHAPTER 5. MIXED PRECISION MRRR

Classification of the eigenvalues. Due to the importance of the gaptol-
parameter, adjusting it to our requirements is key to the success of our approach.
The parameter influences nearly all stages of the algorithm; most importantly, the
classification of eigenvalues into well-separated and clustered. As already discussed,
the choice of gaptol is restricted by the loss of orthogonality that we are willing to
accept; in practice, the value is often chosen to be 10−3 [43].9 As we merely require
orthogonality of εx

√
n, we usually accept more than three orders of magnitude loss

of orthogonality. Both terms in (5.1) (and the in practice observed orthogonality)
grow as nεy/gaptol. Consequently, we might select any value satisfying

min

{
10−3,

εy
√
n

εx

}
≤ gaptol ≤ 10−3 , (5.3)

for gaptol, where the 10−3 terms are derived from practice and might be altered
slightly. Note that gaptol can become as small as 10−9√n in the single/double case
and 10−18√n in the double/quadruple one. If we restrict the analysis to matrices
with size n ≤ 106, we can choose a constant gaptol as small as 10−6 and 10−15

respectively for the single/double and double/quadruple cases.
We use again the double/quadruple case to illustrate the choice of gaptol. With

gaptol = 10−3, Fig. 5.2(a) shows a practical upper bound on the orthogonality of
MRRR in double precision arithmetic, 1000nε. Depending on the specific goal, which

1,000 10,000 100,000

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

Matrix size

O
rt

ho
go

na
lit

y Double precision MRRR

Goal

(a) Double precision arithmetic.

1,000 10,000 100,000

10
−28

10
−24

10
−20

10
−16

10
−12

10
−8

Matrix size

O
rt

ho
go

na
lit

y

gaptol = 10−21

gaptol = 10−12

gaptol = 10−9

gaptol = 10−6

gaptol = 10−3

gaptol = 10−15

(b) Quadruple precision arithmetic.

Figure 5.2: Selection of the important parameter gaptol. By using higher precision arith-
metic we gain freedom in the choice of the parameter.

for instance growths as ε
√
n, we aim at improving the orthogonality. If the goal is

set as in Fig. 5.2(a), a reader looking at (5.1) might wonder whether it is possible
to simply increase gaptol until the accuracy goal is met. Unfortunately, as Fig. 5.3
illustrates, it is not possible to achieve better accuracy by simply selecting a larger
value for gaptol. Even with gaptol = 10−1, no significant accuracy improvement

9For instance, LAPACK’s DSTEMR uses 10−3 and SSTEMR uses 3 · 10−3.

5.1. A MIXED PRECISION APPROACH 93

10 20 30 40
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

Test case

O
rt

ho
go

na
lit

y

10−1 10−2 10−3 10−4 10−5 10−6

Figure 5.3: Orthogonality of mr3smp (without mixed precision) for various values of gaptol.
The experiment was performed on test set Application, which is detailed in Appendix D.

is observed. On the contrary, such a large value of gaptol negatively impacts per-
formance and reliability. If gaptol is too large, it can become impossible to break
clusters and a code might fail completely. For this reason, gaptol < 1 is required and
gaptol ≪ 1 is desired. By Fig. 5.3, even with gaptol being several orders of magni-
tude smaller than 10−3, the orthogonality is sufficient for single precision outputs. It
is this observation that we exploit in our mixed precision MRRR. For double preci-
sion input/output, instead of performing the entire computation in double precision
arithmetic, we use quadruple arithmetic. By (5.3), we gain freedom in choosing
gaptol. We might chose a constant value of gaptol = 10−15 to fulfill our goal, as
depicted in Fig. 5.2(b). Alternatively, we can let gaptol be a function of matrix
size n as in the lower bound of (5.3). However, if we do not decrease gaptol to the
smallest possible value, by (5.1) and (5.2), we can instead relax other parameters
(krr,krs) that influence accuracy.

Returning to the general case of binary x/binary y, with any choice of gaptol
complying (5.3), accuracy to the desired level is guaranteed, and there is room to
choose the specific value of gaptol, as well as other parameters, to optimize per-
formance or parallelism. In particular, by generally reducing the clustering of the
eigenvalues, the smallest possible value of gaptol provides the greatest parallelism.
As we have done in Section 4.2.5, to quantify this statement, for any matrix, we
define clustering ρ ∈ [1/n, 1] formally as the size of the largest cluster divided by
the matrix size. The two main advantages in decreasing ρ were also discussed in
Section 4.2.5: the work of processing the largest cluster introduces of O(ρn2) flops
is reduced and the potential parallelism is increased. A conservative estimate of the
parallelism of a problem is provided by ρ−1 (for instance, ρ = 1/n implies that the
problem is embarrassingly parallel10). Matrices with high clustering pose difficulties

10Communication of the initial eigenvalue approximation is still necessary, but the rest of the

94 CHAPTER 5. MIXED PRECISION MRRR

as they introduce load balancing issues and communication, which can considerably
reduce the parallel scalability [162, 161]. Even if we do not desire to guarantee im-
proved accuracy, we can use mixed precisions to enhance parallelism. In this case,
the

√
n-dependence on the lower bound for the value of gaptol would be removed

and the bound could be loosened by another three orders of magnitude; that is, we
might choose a value of 10−12 and 10−21 for the single/double and double/quadruple
cases, respectively.11 Most results would still be improved, as the relative gaps of
the eigenvalues are often larger than gaptol. In addition, we expect that almost all
computations become embarrassingly parallel.

As an example, Table 5.2 shows the clustering for double precision Hermite type12

test matrices of various sizes with four distinct classification criteria:13 (I) gaptol =
10−3, (II) gaptol = 10−3, combined with splitting based on the absolute gap as
proposed in [161] to enhance parallelism, (III) gaptol = 10−10, and (IV) gaptol =
10−15. As with this example, experience shows that, thanks to a reduced value of
gaptol as in criteria III or IV, many problems become embarrassingly parallel and
guarantee improved accuracy. In case ρ = 1/n, dmax is zero, which not only benefits
accuracy by (5.1) and (5.2), but also has a more dramatic effect: the danger of not
finding representations that satisfy the requirements is entirely removed. This follows
from the fact that a satisfactory root representation can always be found (e.g., by
making T − µI definite) and no other representation needs to be computed. Even
in cases with dmax > 0, the number of times Line 16 of Algorithm 3.2 needs to be
executed is often considerably reduced.14

Criterion Matrix size
2,500 5,000 10,000 20,000

I 0.70 0.86 0.93 0.97
II 0.57 0.73 0.73 0.73
III 4.00e-4 2.00e-4 1.00e-4 5.00e-5
IV 4.00e-4 2.00e-4 1.00e-4 5.00e-5

Table 5.2: The gaptol-parameter effect on clustering ρ ∈ [1/n, 1].

On the downside, selecting a smaller gaptol can result in more work in the initial
approximation and later refinements15 – in both cases, eigenvalues must be approxi-

communication is removed.
11If we select values 10−9 and 10−18, we still improve the bounds by three orders of magnitude,

which is sufficient for many practical purposes; see also Fig. 5.2(b).
12For information on test matrices, see Appendix D.
13Criterion I is used in LAPACK [46] and in results of mr3smp in [123], which usually uses II.

Criterion II is used in ScaLAPACK [162] and Elemental [124]. In massively parallel computing
environments, criteria III and IV can (and should) additionally complemented with the splitting
based on absolute gaps; see also [125].

14For example, consider the experiment in Appendix F and G.
15For instance, if bisection is used to obtain initial approximations to the eigenvalues.

5.1. A MIXED PRECISION APPROACH 95

mated to relative accuracy of about gaptol; as a result, optimal performance is often
not achieved for the smallest possible value of gaptol. Moreover, as we discuss below,
if one is willing to limit the choice of gaptol, the approximation of eigenvalues can be
done (almost) entirely in x-bit arithmetic.16 If the y-bit arithmetic is significantly
slower than the x-bit one, it might be best to take advantage of the latter. And,
as we see below as well, if not the smallest possible value is chosen for gaptol, the
requirements the intermediate representations must fulfill are relaxed.

Another corollary of adjusting gaptol is slightly hidden: in Line 16 of Algo-
rithm 3.2, we gain more freedom in selecting τ such that, at the next iteration, the
cluster is broken apart. For instance, when choosing τ close to one end of the clus-
ter, we are able to “back off” further away than usual from the end of the cluster in
cases where we did not find a representation satisfying the requirements in a previous
attempt (see Algorithm 3.8 in Section 3.2.3).

We cannot overemphasize the positive effects an adjusted gaptol has on robust-
ness and parallel scalability. In particular, in parallel computing environments, the
smallest value for gaptol can significantly improve the parallel scalability. Since many
problems become embarrassingly parallel, the danger of failing is removed entirely.

Arithmetic used to approximate eigenvalues. In Lines 3 and 17 of Algo-
rithm 3.2, eigenvalues are respectively computed and refined to a specified relative
accuracy. In both cases, we are given a representation, which we call My henceforth,
and an index set I that indicates the eigenvalues that need to be approximated.
When the y-bit arithmetic is much slower than the x-bit one (say a factor 10 or
more), the use of the latter is preferred: One creates a temporary copy of My in bi-
nary x – called Mx henceforth – that is used for the eigenvalue computation in x-bit
arithmetic. The creation of Mx corresponds to an element-wise relative perturbation
of My bounded by εx. By the relative robustness of My,

|λi[Mx]− λi[My]| ≤ krrnεx|λi[My]| . (5.4)

For instance, bisection can be used to compute eigenvalue approximations λ̂i[Mx] to
high relative accuracy, after which Mx is discarded. As casting the result back to
binary y causes no additional error, it is λ̂i[My] = λ̂i[Mx] and

|λ̂i[My]− λi[Mx]| ≤ kbinεx|λi[Mx]| ,

where kbi is a constant given by the bisection method.17 To first order, by the triangle
inequality, it holds

|λ̂i[My]− λi[My]| ≤ (krr + kbi)nεx|λi[My]| . (5.5)

16For the refinement of extreme eigenvalues prior to selecting shifts, we still need to resort to y-bit
arithmetic.

17In practice, kbi is bounded by a small multiple of krr, meaning the eigenvalues are computed to
the accuracy granted by the representation.

96 CHAPTER 5. MIXED PRECISION MRRR

Provided (krr + kbi)nεx . gaptol, x-bit arithmetic can be used to approximate the
eigenvalues. Thus, an additional constraint on both the size n and gaptol arises:
Given gaptol, we must limit the matrix size up to which we can do the computation
purely in x-bit arithmetic. Similarly, for a given matrix size, we need to adjust the
lower bound on gaptol in (5.3). As an example, if say krr ≤ 10, kbi ≤ 10, n ≤ 106,
and εx = εd = 2−53, it is required that that gaptol & 10−10. When resorting to x-bit
arithmetic or if gaptol is chosen too small, one might respectively verify or refine the
result of the x-bit eigenvalue computation using y-bit arithmetic without significant
costs.18

Requirements on the representations. As long as kelgnεy ≪ εx
√
n, by (5.2),

the residual with respect the Mroot is mainly influenced by the local residual. In our
mixed precision approach, without loss of accuracy, it is possible to allow for

kelg ≤ max

{
10,

εx
εy
√
n

}
, (5.6)

where we assumed 10 was the original value of kelg. As a result, the requirement
on the conditional element growth is considerably relaxed. For instance, in the
single/double and double/quadruple cases, assuming n ≤ 106, bounds on kelg of
about 106 and 1015 are sufficient, respectively. If gaptol is not chosen as small as
possible, the bound on krr can be loosened in a similar fashion:

krr ≤ max

{
10,

εx
εy
√
n
· gaptol

}
. (5.7)

As an example, in the double/quadruple case, assuming n ≤ 106 and gaptol set to
10−10, krr ≤ 105 would be sufficient to ensure accuracy.

Rayleigh quotient iteration. Our willingness to lose orthogonality up to a cer-
tain level, which is noticeable in the lower bound on gaptol, is also reflected in
stopping criterion for RQI, which is given by (3.16). As nεy/gaptol ≤ εx

√
n, we can

stop the RQI when

‖r̄(local)‖ ≤ krs · gap
(
λ̂i[M]

)
εx
√
n , (5.8)

where krs is O(1). In practice, we take krs ≈ 1 or even krs ≈ 1/
√
n. As a conse-

quence, the iteration is stopped earlier on and overall work reduced.

As a side note: In the rare cases where RQI fails to converge (or as a general
alternative to RQI), we commonly resort to bisection to approximate the eigenvalue
λi and then use only one step of RQI (with or without applying the correction
term). In the worst case, we require the eigenvalue to be approximated to high
relative accuracy, |λ̂i−λi| = O(nεy|λi|) [44]. With mixed precision, we can relax the

condition to |λ̂i − λi| = O(εx
√
n|λi| gaptol), which is less restrictive if gaptol is not

18If the first requirement in Definition 3.1.4 is removed, we can still make use of x-bit arithmetic
although (5.5) might not always be satisfied anymore.

5.1. A MIXED PRECISION APPROACH 97

chosen as small as possible.19 If relgap(λ̂i) ≫ gaptol, the restriction on the accuracy
of the approximated eigenvalue can be lifted even further [174].

Traversal of the representation tree. Thanks to the random perturbation of
the root representation and a properly adjusted gaptol-parameter, we rarely expect
to see large values for dmax. For all practical purposes, in the case of y = 2x, we
may assume dmax ≤ 2. As a result, the computation can be rearranged, as discussed
in [175] and summarized in the following: To bound the memory consumption, a
breath-first strategy such as in Algorithm 3.2 is used; see for instance in [46, 123].
This means that, at any level of the representation tree, all singletons are processed
before the clusters. A depth-first strategy would instead process entire clusters, with
the only disadvantage that meanwhile up to dmax representations need to be kept
in memory. If dmax is limited as in our case, the depth-first strategy can be used
without disadvantage. In fact, a depth-first strategy brings two advantages: (i)
copying representations to and from the eigenvector matrix is avoided entirely (see
the next section on the benefit for the mixed precision MRRR) and (ii) if at some
point in the computation no suitable representation is found, there is the possibility
of backtracking, that is, we can process the cluster again by choosing different shifts
at a higher level of the representation tree. For these reasons, in the mixed precision
MRRR, a depth-first strategy is preferred.

5.1.2 Memory cost

We stress both input and output are in binary x format; only internally (i.e., hidden
to a user) y-bit arithmetic is used. The memory management of an actual imple-
mentation of MRRR is affected by the fact that output matrix Z ∈ R

n×k, containing
the desired eigenvectors, is commonly used as intermediate workspace. Since Z is
in binary x format, whenever y > x, the workspace is not sufficient anymore for
its customary use: For each cluster, a representation is stored in the corresponding
columns of Z [46, 123]. As these representations consist of 2n− 1 binary y numbers,
this approach is generally not applicable. If we restrict to y ≤ 2x, we can store the
2n − 1 binary y numbers whenever a cluster of size four and more is encountered.
Thus, the computation must be reorganized so that at least clusters containing less
than four eigenvalues are processed without storing any data in Z temporarily. In
fact, using a depth-first strategy, we remove the need to use Z as temporary storage
entirely. Furthermore, immediately after computing an eigenvector in binary y, it is
converted to binary x, written into Z, and discarded. Consequently, while our ap-
proach slightly increases the memory usage, we do not require much more memory:
with p denoting the level of parallelism (i.e., number of threads or processes used),

19The implied constants being the same and given by the requirement of a regular solver based
on y-bit arithmetic. In a similar way, we could say that the Rayleigh quotient correction does not
improve the eigenvalue essentially anymore if |γr|/‖ẑi‖ = O(εx|λ̂i| gaptol/

√
n), instead of |γr|/‖ẑi‖ =

O(εy|λ̂i|). We never employed such a change as it will hardly have any effect on the computation
time.

98 CHAPTER 5. MIXED PRECISION MRRR

the mixed precision MRRR still needs only O(pn) binary x floating point numbers
extra workspace.

5.2 Practical aspects

We have implemented the mixed precision MRRR for three cases: single/double,
double/extended, and double/quadruple. The first solver accepts single precision in-
put and produces single precision output, but internally uses double precision. The
other two are for double precision input/output. The performance of the solvers,
compared with the traditional implementation, depends entirely on the difference in
speed between the two involved arithmetic. If the higher precision arithmetic is not
much slower (say less than a factor four), the approach is expected to work well,
even for sequential executions and relatively small matrices. If the higher precision
arithmetic is considerably slower, the mixed precision MRRR might still perform
well for large matrices or, due to increased parallelism, when executed on highly
parallel systems. Our target application is the computation of a subset of eigenpairs
of large-scale dense Hermitian matrices. For such a scenario, we tolerate a slowdown
of the tridiagonal eigensolver due to the use of mixed precisions without affecting
overall performance significantly [124, 125].

5.2.1 Implementations

In Section 5.3, we present experimental results of our implementations. All mixed
precision implementations are based on mr3smp, presented in Chapter 4, and use N -
representations of lower bidiagonal factorizations. As discussed in Algorithm 3.4 in
Section 3.2, bisection is used for the initial eigenvalue computation if a small subset
of k eigenpairs is requested or if the number of executing threads exceeds 12k/n.
If all eigenpairs are requested and the number of threads is less than 12, the fast
sequential dqds algorithm [60, 120] is used instead of bisection. As a consequence,
speedups compared to the sequential execution appear less than perfect even for an
embarrassingly parallel computation.

As several design decisions can be made and the run time depends on both
the specific input and the architecture, optimizing a code for performance is non-
trivial. However, we can choose settings in a way that in general yields good, but
not necessarily optimal, performance. For instance, on a highly parallel machine one
would pick a small value for gaptol to increase parallelism. For testing purposes,
we disabled the classification criterion based on the absolute gaps of the eigenvalues
proposed in [161], which might reduce clustering even further (it has no consequences
for our test cases shown in the next section).

For now, we did not relax the requirements on the representations according
to (5.6) and (5.7); we only benefit from the possibility of doing so indirectly: As
shown in Algorithm 3.8 in Section 3.2, if no suitable representation is found, a good
candidate is chosen, which might fulfill the relaxed requirements. In the following,

5.2. PRACTICAL ASPECTS 99

we provide additional comments to all of the mixed precision solvers individually.

Single/double. With widespread language and hardware support for double pre-
cision, the mixed precision MRRR is most easily implemented for the single/double
case. In our test implementation, we fixed gaptol to 10−5. When bisection is used, the
initial approximation of eigenvalues is done to a relative accuracy of 10−2 · gaptol;
the same tolerance is used for the later refinements. We additionally altered the
computation of compared with mr3smp: Thanks to the reduced clustering, the initial
eigenvalue approximation often becomes the most expensive part of the computation.
In order to achieve better load balancing in this stage, we reduced the granularity
of the tasks and used dynamic scheduling of tasks.

As on most machines the double precision arithmetic is not more than a factor
two slower than the single precision one, we carry out all computations in the former.
Data conversion is only necessary when reading the input and writing the output.
As a result, compared with a double precision solver using a depth-first strategy,
merely a number of convergence criteria and thresholds must be adjusted, and the
RQI must be performed using a temporary vector that is, after convergence, written
into the output eigenvector matrix. The mixed precision code closely resembles a
conventional double precision implementation of MRRR.

Double/extended. Many current architectures have hardware support for a 80-
bit extended floating point format (see Table 5.1 in Section 5.1). As the unit roundoff
is only about three orders of magnitude smaller than for double precision, we can
improve the accuracy of MRRR by this amount. For matrices of moderate size, the
accuracy becomes comparable to that of the best methods (see Appendix F). The
main advantage of the extended format is that, compared with double precision, its
arithmetic comes without any or only a small loss in speed. On the downside, we
cannot make any further adjustments in the algorithm to positively effect its robust-
ness and parallelism. We do not include test results in the experimental section;
however, we tested the approach and results can be found in Appendix F.

Double/quadruple. As quadruple precision arithmetic is not widely supported
by today’s processors, we had to resort to a rather slow software-simulated arith-
metic. For this reason, we used double precision for the initial approximation and
for the refinement of the eigenvalues. The necessary intermediate data conversions
make the mixed precision approach slightly more complicated to implement than the
single/double one. We used the value 10−10 for gaptol in our tests. Further details
can be found in [125].

5.2.2 Portability

The biggest problem of the mixed precision approach is a potential lack of support
for the involved data types. As single and double precisions are supported by vir-
tually all machines, languages, and compilers, the mixed precision approach can be

100 CHAPTER 5. MIXED PRECISION MRRR

incorporated to any linear algebra library for single precision input/output. How-
ever, for double precision input/output, we need to resort to either extended or
quadruple precision. Not all architectures, languages, and compilers support these
formats. For instance, the 80-bit floating point format is not supported by all pro-
cessors. Furthermore, while the FORTRAN REAL*10 data type is a non-standard
feature of the language and is not supported by all compilers, a C/C++ code can
use the standardized long double data type (introduced in ISO C99) that achieves
the desired result on most architectures that support 80-bit arithmetic. For the use
of quadruple precision, there are presently two major drawbacks: (i) it is usually not
supported in hardware, which means that one has to resort to a rather slow software-
simulated arithmetic, and (ii) the support from compilers and languages is rather
limited. While FORTRAN has a REAL*16 data type, the quadruple precision data
type in C/C++ is compiler-dependent: for instance, there exist the float128 and
Quad data types for the GNU and Intel compilers, respectively. An external library
implementing the software arithmetic might be used for portability. In all cases, the
performance of quadruple arithmetic depends on its specific implementation. It is
however likely that the hardware/software support for quadruple precision will be
improved in the near future.

5.2.3 Robustness

The mixed precision MRRR provides improved robustness. To quantify the robust-
ness of an eigensolver, as discussed in Section 2.5, we propose the following measure:
For a given test set of matrices, TestSet, the robustness φ is expressed as

φ(TestSet) = 1− NumFailures

|TestSet| (5.9)

where NumFailures is the number of inputs for which the method “fails”. At this
point, we elaborate on what constitutes as failure.20

If the output does not comply with even the theoretical error bounds (which
includes failing to return a result at all), one or more assumptions in the derivation
of the bounds are not satisfied. For MRRR, usually a representation that is not
relative robustness is accepted as an RRR. We therefore suggest that cases in which
at least one representation is accepted without passing the test for relative robustness
are considered failures. Furthermore, for any method, we might be more strict and
classify an execution as troublesome if the output exceeds practical error bounds as
well, which often signals problems earlier on.

If we use such a strict standard to measure robustness, we believe that use of
mixed precisions might be an important ingredient for MRRR to achieve robustness
comparable to the most reliable solvers (in particular, implementations of QR). A

20For some test cases, even xSTEVX or xSTEDC fail to return correct results [41, 174]. For measure
φ to be meaningful, the TestSet should be large and include matrices that lead or led to failure of
different solvers.

5.3. EXPERIMENTAL RESULTS 101

number of improvements of MRRR’s robustness are proposed in [174] (e.g., changing
the form to represent intermediate tridiagonals, using of the substructure of clusters
to obtain more reliable envelope information, and allowing shifts inside clusters21).
We remark that our implementations of the mixed precision MRRR do not implement
all of them, but since these measures are orthogonal to our approach, they can and
should be additionally adopted for maximal robustness.

5.3 Experimental results

All tests, in this section, were run on an multiprocessors system comprising four
eight-core Intel Xeon X7550 Beckton processors, with a nominal clock speed of 2.0
GHz. Subsequently, we refer to this machine as Beckton (see Appendix C). We
used LAPACK version 3.4.2 and linked the library with the vendor-tuned MKL
BLAS version 12.1. In addition to the results for LAPACK’s routines and our mixed
precision solvers, which we call mr3smp(mixed) subsequently, we also include results
for mr3smp without mixed precisions. All routines of this experiment were compiled
with Intel’s compiler version 12.1 and optimization level -O3 enabled. Although we
present only results for computing all eigenpairs (LAPACK’s DC does not allow the
computation of subsets), we mention that MRRR’s strength and main application
lies in the computation of subsets of eigenpairs.

For our tests, we used matrices of size ranging from 2,500 to 20,000 (in steps of
2,500) of six different types: uniform eigenvalue distribution, geometric eigenvalue
distribution, 1–2–1, Clement, Wilkinson, and Hermite. The dimension of the Wilkin-
son type matrices is n + 1, as they are only defined for odd sizes. Details on these
matrix types can be found in Appendix D. To help the exposition of the results,
in the accuracy plots, the matrices are sorted by type first and then by size; vice
versa, in the plots relative to timings, the matrices are sorted by size first and then
by type. Subsequently, we call the test set Artificial.

We use a second test set, Application, which consists of 45 matrices arising in
scientific applications. Most matrices, , listed in Appendix D, are part of the publicly
available Stetester suite [104] and range from 1,074 to 8,012 in size.

5.3.1 Tridiagonal matrices

For the Artificial matrices in single precision, Figs. 5.4 and 5.5 shows timing and
accuracy results, respectively. As a reference, we include results for LAPACK’s
SSTEMR (MRRR) and SSTEDC (Divide & Conquer).22 Even in a sequential execution,
Fig. 5.4(a), our mixed precision solver mr3smp(mixed) is up to an order of magnitude
faster than LAPACK’s SSTEMR. For one type of matrices, SSTEDC is considerably
faster than for all the others. These are the Wilkinson matrices, which represent
a class of matrices that allow for heavy deflation within the Divide & Conquer

21Several of these points were already suggested in [40].
22For all relevant LAPACK routine names, see Appendix A.

102 CHAPTER 5. MIXED PRECISION MRRR

10 20 30 40
10

−1

10
0

10
1

10
2

10
3

Test case (sorted by size)

T
im

e
in

 s
ec

on
ds

mr3smp (mixed)

SSTEMR

SSTEDC

(a) Execution time: sequential.

10 20 30 40

10
−1

10
0

10
1

10
2

Test case (sorted by size)

T
im

e
in

 s
ec

on
ds

mr3smp (mixed)

SSTEDC

(b) Execution time: multi-threaded.

Figure 5.4: Timings for test set Artificial on Beckton. The results of LAPACK’s SSTEMR
(MRRR) and SSTEDC (Divide & Conquer) are used as a reference.

10 20 30 40

10
−7

10
−6

10
−5

10
−4

10
−3

Test case (sorted by type)

R
es

id
ua

l

mr3smp (mixed) SSTEMR SSTEDC

(a) Largest residual norm.

10 20 30 40

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Test case (sorted by type)

O
rt

ho
go

na
lit

y

mr3smp (mixed)

SSTEMR

SSTEDC

(b) Orthogonality.

Figure 5.5: Accuracy for test set Artificial. The largest residual norm and the orthog-
onality are measured as in (2.5). The results of LAPACK’s SSTEMR (MRRR) and SSTEDC

(Divide & Conquer) are used as a reference. The dotted lines indicate unit roundoff εs.

approach. For all other matrices, which do not allow such extensive deflation, our
solver is usually faster than SSTEDC. As seen in Fig. 5.4(b), in a parallel execution
with one thread/core, the performance gap for the Wilkinson matrices almost entirely
vanishes, while for the other matrices mr3smp(mixed) remains faster than SSTEDC.
As depicted in Fig. 5.5, our routine is not only as accurate as desired, but it is
the most accurate. In particular, for the large matrices with geometric eigenvalue
distribution, SSTEMR even fails to return numerically orthogonal eigenvectors, while
mr3smp(mixed) returns accurate results.

The faster execution of the mixed precision solver relative to SSTEMR is explained
by Fig 5.6(a), which shows the maximal depth of the representation tree, dmax.

5.3. EXPERIMENTAL RESULTS 103

10 20 30 40
0

10

20

30

40

50

60

70

Test case (sorted by type)

d m
ax

mr3smp (mixed) SSTEMR

(a) Single precision.

10 20 30 40
0

5

10

15

20

25

Test case (sorted by type)

d m
ax

mr3smp (mixed) DSTEMR

(b) Double precision.

Figure 5.6: Maximal depth of the representation tree, dmax.

A standard MRRR using single precision requires significant effort to construct a
sequence of relative robust representations from which the eigenpairs are computed.
In contrast, using mixed precisions, dmax is limited to one – for all but two matrix
types, it is even zero.

If we consider each computation in which MRRR accepts at least one representa-
tion not passing the test for relative robustness as a failure, for SSTEMR, 38 out of the
48 test cases are problematic and φ(Artificial) ≈ 0.21. The number indicates that
in almost 80% of the test cases, SSTEMR might produce erroneous results. However,
only in three out of the 38 problematic cases this is reflected in an orthogonality ex-
ceeding nε/gaptol. Consequently, an improved test for relative robustness, such as
proposed in [174], could probably reduce the number of failures significantly. Even
without altering the selection of RRRs, mr3smp(mixed) was able to find suitable
representations and φ(Artificial) = 1. Furthermore, the orthogonality is bounded
by ε

√
n as desired. For single precision input/output arguments, we obtain a solver

that is more accurate and faster than the original single precision solver. In addition,
it is more robust and more scalable.

We now turn our attention to double precision input/output, for which timings
and accuracy are presented in Figs. 5.7 and 5.8, respectively. We included the
results for mr3smp without mixed precisions, which in the sequential case is just a
wrapper to LAPACK’s DSTEMR. In general, mr3smp obtains accuracy equivalent to
DSTEMR.

Figure 5.7(a) shows timings for sequential executions: mr3smp(mixed) is slower
than DSTEMR, which is not a surprise, as we make use of software-simulated quadruple
precision arithmetic. What might be a surprise is that even with the use of such
slow arithmetic, for large matrices, mr3smp(mixed) is often as fast as DSTEDC. As
in the single precision case, only for matrices that allow heavy deflation, DSTEDC is
considerably faster. As Fig. 5.7(b) shows, for parallel executions, such performance

104 CHAPTER 5. MIXED PRECISION MRRR

10 20 30 40

10
−1

10
0

10
1

10
2

10
3

10
4

Test case (sorted by size)

T
im

e
in

 s
ec

on
ds

mr3smp (mixed)

DSTEMR

DSTEDC

(a) Execution time: sequential.

10 20 30 40

10
0

10
1

10
2

Test case (sorted by size)

T
im

e
in

 s
ec

on
ds

mr3smp (mixed)

mr3smp

DSTEDC

(b) Execution time: multi-threaded.

Figure 5.7: Timings for test set Artificial on Beckton. The results of LAPACK’s DSTEMR
(MRRR) and DSTEDC (Divide & Conquer), as well as the multi-threaded mr3smp as introduced
Chapter 4, are used as a reference.

10 20 30 40

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

Test case (sorted by type)

R
es

id
ua

l

mr3smp (mixed) mr3smp DSTEDC

(a) Largest residual norm.

10 20 30 40

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

Test case (sorted by type)

O
rt

ho
go

na
lit

y

(b) Orthogonality.

Figure 5.8: Accuracy for test set Artificial. The largest residual norm and the orthog-
onality are measured as in (2.5). The results of mr3smp and LAPACK’s DSTEDC (Divide &
Conquer) are used as a reference. In general, mr3smp obtains accuracy equivalent to LA-
PACK’s DSTEMR (MRRR). The dotted lines indicate unit roundoff εd.

difference reduces and is expected to eventually vanish, see also Fig. 4.10(b) in Sec-
tion 4.2.3. For matrices that do not allow for extensive deflation, mr3smp(mixed) is
about a factor two faster than DSTEDC.

The reason that mr3smp(mixed) is, despite its use of software-simulated arith-
metic, not much slower than DSTEMR is depicted in Fig. 5.6(b). While for DSTEMR

dmax is as large as 21, for mr3smp(mixed), we have dmax ≤ 1. In fact, for all but the
Wilkinson type matrices, we have dmax equals zero and as a consequence: no danger
of failing to find suitable representations and embarrassingly parallel computation. To

5.3. EXPERIMENTAL RESULTS 105

Matrix Routine Matrix size

2,500 5,000 10,000 20,000

Uniform DSTEMR 0.60 0.80 0.90 0.95
mr3smp (mixed) 4.00e-4 2.00e-4 1.00e-4 5.00e-5

Geometric DSTEMR 4.00e-4 2.00e-4 1.00e-4 0.87
mr3smp (mixed) 4.00e-4 2.00e-4 1.00e-4 5.00e-5

1–2–1 DSTEMR 0.43 0.64 0.81 0.90
mr3smp (mixed) 4.00e-4 2.00e-4 1.00e-4 5.00e-5

Clement DSTEMR 0.60 0.80 0.90 0.95
mr3smp (mixed) 4.00e-4 2.00e-4 1.00e-4 5.00e-5

Wilkinson DSTEMR 0.20 0.60 0.80 0.90
mr3smp (mixed) 8.00e-4 4.00e-4 2.00e-4 1.00e-4

Table 5.3: Clustering ρ ∈ [1/n, 1] for different types of test matrices. The results for
Hermite type matrices were already presented in Table 5.2 as criterion I (DSTEMR) and III
(mr3smp with mixed precision).

illustrate the difference between the standard MRRR and the mixed precision vari-
ant, we report the clustering ρ ∈ [1/n, 1] for various matrices in Table 5.3. (Recall
that the smaller ρ the more natural parallelism is provided by the problem.) DSTEMR

is confronted with significant clustering. In contrast, in the mixed precision solver,
for all but the Wilkinson matrices, ρ = 1/n. For Wilkinson matrices, clustering ρ
was limited to 2/n, which still implies ample parallelism. The data suggest that our
approach is especially well-suited for highly parallel systems. In particular, solvers
for distributed-memory systems should greatly benefit from better load balancing and
reduced communication.

In addition to enhanced parallelism, robustness is improved. For DSTEMR, we have
φ(Artificial) ≈ 0.40 and, consequently, the accuracy of DSTEMR might have turned
out problematic for about 60% of the inputs. However, no execution actually resulted
in insufficient accuracy. For mr3smp(mixed), we have φ(Artificial) = 1, that is,
all computed representations passed the test for relative robustness. Furthermore,
as Fig. 5.8 shows, mr3smp(mixed) attains excellent accuracy; both the residuals and
the orthogonality are improved to the desired level. In fact, the latter is several
orders of magnitude better than what can be expected by the standard MRRR.

5.3.2 Real symmetric dense matrices

For single precision inputs [Fig. 5.4] or for double precision inputs in a parallel setting
[Fig. 5.7(b)], in terms of execution time, our mixed precision tridiagonal eigensolver
is highly competitive with Divide & Conquer and the standard MRRR. Hence, when
used in context of dense Hermitian eigenproblems, the accuracy improvement of the
tridiagonal stage carry over to the dense problem without any performance penalty.
Even for sequential executions with double precision inputs [Fig. 5.7(a)], the slow-

106 CHAPTER 5. MIXED PRECISION MRRR

down due to mixed precisions is often not dramatic. The reason is that, to compute
k eigenpairs, MRRR only requires O(kn) arithmetic operations, while the reduction
to tridiagonal form requires O(n3) operations. Consequently, the time spent in the
tridiagonal stage is asymptotically negligible.

In Figs. 5.9 and 5.10, we present respectively timings and accuracy for real sym-
metric matrices in single precision. The matrices are generated by applying ran-

10 20 30 40
10

0

10
1

10
2

10
3

10
4

Test case (sorted by size)

T
im

e
in

 s
ec

on
ds

mr3smp (mixed)

SSYEVR

SSYEVD

(a) Execution time: sequential.

10 20 30 40
10

0

10
1

10
2

10
3

Test case (sorted by size)

T
im

e
in

 s
ec

on
ds

mr3smp (mixed)

SSYEVR

SSYEVD

(b) Execution time: multi-threaded.

Figure 5.9: Timings for test set Artificial on Beckton. The results of LAPACK’s SSYEVR
(MRRR) and SSYEVD (Divide & Conquer) are used as a reference. In a multi-threaded
execution, SSYEVR is slower than the other two routines, as it makes use of the sequential
routine SSTEMR.

10 20 30 40

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Test case (sorted by type)

R
es

id
ua

l

mr3smp (mixed)

SSYEVR

SSYEVD

(a) Largest residual norm.

10 20 30 40
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Test case (sorted by type)

O
rt

ho
go

na
lit

y

(b) Orthogonality.

Figure 5.10: Accuracy for test set Artificial. The largest residual norm and the orthog-
onality are measured as in (2.5). The results of LAPACK’s SSYEVR (MRRR) and SSYEVD

(Divide & Conquer) are used as a reference. The dotted line indicates unit roundoff εs.

dom orthogonal similarity transformations to the tridiagonal matrices of the pre-

5.3. EXPERIMENTAL RESULTS 107

vious experiments: A = QTQ∗, with random orthogonal matrix Q ∈ R
n×n.23 By

Theorem 3.1.2, the error in the eigenvalue is a lower bound on the residual norm:
|λ̂− λ| ≤ ‖Ax̂− λ̂x̂‖. In general, we can only hope to compute eigenvalues with an
O(nε‖A‖) error and therefore do not expect improvements in the residuals. However,
the improvements in the orthogonality directly translate to the dense eigenproblem.
Figure 5.10 demonstrates that excellent accuracy is achieved with the mixed pre-
cision approach. On top of that, as shown in Fig. 5.9, mr3smp(mixed) is faster
than LAPACK’s SSYEVR – sequentially and multi-threaded. In a multi-threaded ex-
ecution, it becomes apparent that the tridiagonal stage of SSYEVR, SSTEMR, is not
parallelized. However, the vast majority of time is spent in the reduction to tridi-
agonal form and the backtransformation of the eigenvectors. For a comparison of
Figs. 5.9(a) and 5.9(b), we remark that the reduction to tridiagonal form, SSYTRD,
does not scale and limits the speedup of a parallel execution. A similar experiment
using the Application matrices can be found in Appendix G. The experiment
underpins that generally good performance and accuracy can be expected for single
precision input/output.

Interestingly, if we allow an orthogonality of up to nε/gaptol (or close to that),
SSYEVR cannot be used reliably for matrices as large as in our test set. The or-
thogonality bound is close to or even exceeds one. Consequently, the applicability
of MRRR is limited. However, in certain situations, it might be beneficial to use
single precision computations for such large matrices: the memory requirement and
execution time of a solver is reduced by a factor two. The mixed precision MRRR
does not introduce such a tight restriction on the matrix size. As shown in Fig. 5.10,
even for large matrices, mr3smp(mixed) delivers accuracy to a level that might be
expected.

We now turn our attention again to double precision input/output. The timings
for tridiagonal inputs in Fig. 5.7(a) indicate that, in sequential execution, for small
matrix sizes, our approach introduces overhead. However, as seen in Fig. 5.11(a),
for dense eigenproblems, the execution time is effected less severely. In a parallel
execution, Fig. 5.11(b), mr3smp(mixed) is competitive even for smaller matrices. In
all cases, the improved accuracy of the tridiagonal stage carries over to the dense
eigenproblem, as exemplified by Fig. 5.12.

We also performed a similar experiment for the Application matrices. The
results are presented in Appendix G and support two previously made statements:
First, for small matrices, the sequential execution is slower than DSYEVR, but the
performance gap reduces as the matrix size increases. Second, the accuracy improve-
ments are usually limited to the orthogonality; the residuals are often comparable
for all solvers.

The above tests were limited to computing all eigenpairs of real symmetric ma-
trices. If the matrices were complex-valued and/or only a subset of eigenpairs were
computed, the mixed precision approach would work even better.24 As a result, us-

23Similar to LAPACK’s auxiliary routine xLARGE.
24For complex-valued matrices and for subset computations, experimental results can be found in

108 CHAPTER 5. MIXED PRECISION MRRR

10 20 30 40
10

0

10
1

10
2

10
3

10
4

Test case (sorted by size)

T
im

e
in

 s
ec

on
ds

mr3smp (mixed)

DSYEVR

DSYEVD

(a) Execution time: sequential.

10 20 30 40
10

0

10
1

10
2

10
3

10
4

Test case (sorted by size)

T
im

e
in

 s
ec

on
ds

mr3smp (mixed)

DSYEVR

DSYEVD

(b) Execution time: multi-threaded.

Figure 5.11: Timings for test set Artificial on Beckton. The results of LAPACK’s
DSYEVR (MRRR) and DSYEVD (Divide & Conquer) are used as a reference.

10 20 30 40

10
−16

10
−15

10
−14

10
−13

10
−12

Test case (sorted by type)

R
es

id
ua

l

mr3smp (mixed) DSYEVR DSYEVD

(a) Largest residual norm.

10 20 30 40
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

Test case (sorted by type)

O
rt

ho
go

na
lit

y

(b) Orthogonality.

Figure 5.12: Accuracy for test set Artificial. The largest residual norm and the orthog-
onality are measured as in (2.5). The results of LAPACK’s DSYEVR (MRRR) and DSYEVD

(Divide & Conquer) are used as a reference. The dotted lines indicate unit roundoff εd.

ing mixed precisions, we obtain eigensolvers for large-scale Hermitian eigenproblems
that are fast and accurate. In particular, our solvers compete with the fast Divide &
Conquer method when all eigenpairs are computed and are faster when only a small
subset of eigenpairs is desired. Furthermore, they are accurate and promise to be
highly scalable.

Appendix F. Results for a second test set can be found in Appendix G.

Chapter 6
Conclusions

Recent developments in computer hardware dictate that programs need to make
efficient use of the ever growing parallelism in order to improve their performance.
We concentrated on how eigensolvers based on the algorithm of Multiple Relatively
Robust Representations efficiently exploit modern parallel computers.

For today’s multi-core and future many-core architectures, we presented a paral-
lelization strategy, MR3-SMP, that breaks the computation into tasks to be executed
by multiple threads. The tasks are both created and scheduled dynamically. While
a static division of work would introduce smaller overheads, the dynamic approach
is flexible and produces remarkable workload balancing. Our approach matches or
outperforms parallel routines designed for distributed-memory architectures as well
as all the eigensolvers in LAPACK and Intel’s MKL.

For massively parallel supercomputers, which are themselves built out of multi-
core processors, we created an eigensolver, PMRRR, that merges the previously
introduced task-based approach with a parallelization using message-passing. With a
proper scheduling of tasks and the use of non-blocking communication, we are able to
achieve better scalability than all the solvers included in ScaLAPACK. Furthermore,
experiments indicate that our solver is among the fastest tridiagonal eigensolvers
available.

PMRRR was integrated in the publicly available Elemental library for the so-
lution of standard and generalized dense Hermitian eigenproblems. A performance
study on two supercomputers at the Research Center Jülich, Germany, revealed that
Elemental’s eigensolvers outperform the widely used ScaLAPACK – sometimes sig-
nificantly. For highly parallel executions, the tridiagonal stage of ScaLAPACK’s
eigensolvers contributed considerably to the overall run time. In contrast, Elemen-
tal’s tridiagonal stage, which makes use of PMRRR, scales well and, in all experi-
ments, was negligible in terms of execution time. As with the tridiagonal stage, for
standard and generalized dense Hermitian eigenproblems, much of Elemental’s per-
formance advantage over ScaLAPACK comes from a better scalability in the various
stages of the computation.

109

110 CHAPTER 6. CONCLUSIONS

Although fast, the accuracy of MRRR-based eigensolvers can be several orders of
magnitude worse compared with solvers based on the Divide & Conquer or the QR
algorithms. Additionally, for solvers targeting distributed-memory systems, input
matrices with highly clustered eigenvalues introduce communication and lead to
load imbalance. For such matrices, the parallel scalability is limited. Even worse, as
every now and then a crucial assumption in the proof of MRRR’s correctness cannot
be verified, the accuracy of the output is not always guaranteed.

To address the limitations of MRRR, we introduced a mixed precision variant
of the algorithm. Our approach adopts a new perspective: Given input/output
arguments in a binary x floating point format, internally to the algorithm, we use
a higher precision binary y arithmetic to obtain the desired accuracy. The use of
mixed precisions provides us with more freedom to choose important parameters
of the algorithm. In particular, while meeting more demanding accuracy goals, we
reduce the operation count, increase robustness, and improve parallelism.

Combining all the techniques presented in this thesis, eigensolvers based on our
mixed precision MRRR are not only as accurate as eigensolvers based on the Divide
& Conquer or the QR algorithms, but – in many circumstances – are also faster
or even faster than solvers using a conventional MRRR implementation. Due to
their superior scalability, such a statement is particularly true for massively parallel
computing environments.

Appendix A
A list of (Sca)LAPACK’s Eigensolvers

A.1 (Sca)LAPACK’s symmetric tridiagonal eigen-

solvers

As LAPACK is the de facto standard for dense linear algebra computations, we
frequently show performance and accuracy results for its implementations of various
algorithms. In Table A.1, we compile a list of currently available routines for the
STEP within LAPACK.1 The placeholder x in the names stands for one of the
following: S single precision, C single precision complex, D double precision, or Z

double precision complex.

Method Routine Functionality Subset Reference

Bisection xSTEBZ EW Yes [86]
Inverse Iteration xSTEIN EV Yes [84, 41]√

-free QR Iteration xSTERF EW No [111, 134, 114]

QR Iteration (positive def.) xPTEQR EW + EV No [36, 60]
QR Iteration xSTEQR EW + EV No [22]
Divide and Conquer xSTEDC EW + EV No [136]
MRRR xSTEMR EW + EV Yes [46]

Table A.1: LAPACK routines for the STEP. EW means eigenvalues only, EV means eigen-
vectors only, and EW + EV means eigenvalues and optionally eigenvectors. Additionally,
xSTEGR exist, which is just a wrapper to xSTEMR.

The routines are mainly used through four different expert routines: xSTEV,
xSTEVX, xSTEVD, and xSTEVR. They work as follows:

• xSTEV uses QR Iteration. If only eigenvalues are desired, the routine calls the
square-root free variant xSTERF and, otherwise, it calls xSTEQR.

1The list is based on version 3.4.2 of LAPACK.

111

112 APPENDIX A. A LIST OF (SCA)LAPACK’S EIGENSOLVERS

• xSTEVX uses bisection and inverse iteration. The routine calls xSTEBZ, followed
by xSTEIN.

• xSTEVD uses Divide & Conquer. If only eigenvalues are desired, the routine
uses QR (xSTERF) by default and, otherwise, calls xSTEDC.

• xSTEVR uses MRRR. If all eigenvalues are requested, the routine uses QR
(xSTERF), and, if a subset of eigenvalues is required, it uses bisection (xSTEBZ).
If all eigenpairs are requested, the routine uses xSTEMR, otherwise, it makes use
of bisection and inverse iteration (xSTEBZ and xSTEIN).2

ScaLAPACK contains a subset of the above methods.3 By convention, the cor-
responding ScaLAPACK routines have a preceding P in their names, indicating the
parallel version. Table A.2 gives an overview of the available routines.

Method Routine Functionality Subset Reference

Bisection PxSTEBZ EW Yes [33]
Inverse Iteration PxSTEIN EV Yes [38]
Divide and Conquer PxSTEDC EW + EV No [151]

Table A.2: ScaLAPACK routines for the STEP. EW means eigenvalues only, EV means
eigenvectors only, and EW + EV means eigenvalues and optionally eigenvectors.

ScaLAPACK also implements the QR algorithm and MRRR (included in 2011),
but they are not encapsulated in a separate routine. They are however used for the
solution of the HEP. We use the name PxSTEMR for the tridiagonal MRRR.

A.2 (Sca)LAPACK’s Hermitian eigensolvers

Table A.3 lists all routines for the standard HEP. Similar routines for packed storage
and banded matrices exist, but are not of any relevance in our discussion. All routines
compute eigenvalues and (optionally) eigenvectors.

Method C
n×n

R
n×n Subset

Bisection & Inverse Iteration xHEEVX xSYEVX Yes
QR Iteration xHEEV xSYEV No
Divide-and-Conquer xHEEVD xSYEVD No
MRRR xHEEVR xSYEVR Yes

Table A.3: LAPACK routines for the HEP.

LAPACK’s routines are based on a direct reduction to tridiagonal form and the
aforementioned tridiagonal eigensolvers. The reduction is performed by routines
xHETRD and xSYTRD for the complex-valued and real-valued case, respectively. For

2Older version of LAPACK used MRRR for the subset case as well.
3The list is based on version 2.0.2 of ScaLAPACK.

A.3. (SCA)LAPACK’S GENERALIZED EIGENSOLVERS 113

all methods but QR, the backtransformation is implemented by routines xUNMTR

and xORMTR for the complex-valued and real-valued case, respectively. For QR,
the transformation matrix, implicitly given by Householder reflectors, is built using
routines xUNGTR or xORGTR. The Givens rotations of the tridiagonal QR are applied
to this matrix. We give some of comments regarding the LAPACK routines:

• xHEEVX, xSYEVX: Depending on the user, when all eigenvalues or all eigenpairs
are desired, the routine uses QR.

• xHEEVD, xSYEVD: If only eigenvalues are desired, QR is used.
• xHEEVR, xSYEVR: If only eigenvalues are desired, QR is used and, if only a

subset of eigenvalues or eigenpairs is desired, BI is used. MRRR is only used
to compute all eigenpairs.

ScaLAPACK offers the same functionality. Additionally to the regular reduction
routines, PxHETRD and PxSYTRD, ScaLAPACK offers PxHENTRD and PxSYNTRD, which
are optimized for square grids of processors and should be preferred. However, not
all the ScaLAPACK routines make use of those routines for the reduction. We give
some of comments regarding the ScaLAPACK routines:

• xHEEV, xSYEV: Make use of the (often) inferior reduction routines PxHETRD and
PxSYTRD.

• xHEEVX, xSYEVX: Orthogonality of the computed eigenvectors is only guaran-
teed if enough workspace is provided.

• xHEEVD, xSYEVD: Make use of the (often) inferior reduction routines PxHETRD
and PxSYTRD. Can only be used to compute all eigenvalues and eigenvectors.

A.3 (Sca)LAPACK’s generalized eigensolvers

Table A.4 lists all available routines for the full GHEP of type Ax = λBx, ABx = λx,
or BAx = λx. Similar routines for packed storage and banded matrices exist, but
are not of any relevance in our discussion. All routines compute eigenvalues and
(optionally) eigenvectors.

Method C
n×n

R
n×n Subset

Bisection & Inverse Iteration xHEGVX xSYGVX Yes
QR Iteration xHEGV xSYGV No
Divide and Conquer xHEGVD xSYGVD No

Table A.4: LAPACK routines for the GHEP.

LAPACK’s routines are based on a transformation to a HEP and the correspond-
ing routine for the HEP. The Cholesky factor of B is computed via routine xPOTRF
and the transformation to standard form performed by routines xHEGST and xSYGST

for complex-valued and real-valued case, respectively. The final transformation of
the eigenvectors is done via routines xTRSM for type 1 and 2 and xTRMM for type 3 of

114 APPENDIX A. A LIST OF (SCA)LAPACK’S EIGENSOLVERS

the problem. No routine based on MRRR exist, but can be built by a user out of
the existing components.

As shown is Table A.5, ScaLAPACK offers only one routine. The routine compute
eigenvalues and (optionally) eigenvectors and functions as its LAPACK analog. Ad-
ditionally to the standard transformation routines to the HEP, xHEGST and xSYGST,
ScaLAPACK contains xHENGST and xSYNGST, which are optimized for square grids
of processors and should be preferred. These routines are only optimized for the
case that the lower triangular part of the matrices is stored and referenced. Solvers
based on QR, DC, and MRRR are not available, but can be built by a user out of
the existing components.

Method C
n×n

R
n×n Subset

Bisection & Inverse Iteration PxHEGVX PxSYGVX Yes

Table A.5: ScaLAPACK routines for the GHEP.

Appendix B
Algorithms

Remarks on Algorithm B.1: (1) Previous scaling to ensure |βi| ≥
√
ω is

assumed, where ω denotes the underflow threshold; (2) SignBit(d) = (d < 0), i.e.,
it is equals one whenever d < 0 and equals zero whenever d > 0; in particular,
SignBit(−0) = 1 and SignBit(+0) = 0; (3) Even if d = 0 in some iteration, the
count will be produced correctly [32]; (4) It is usually beneficial to precompute and
reuse quantities β2

i , which can serve as an input instead of the off-diagonals; (5)
See [33, 32] for an error analysis and further details.

Remarks on Algorithm B.2: (1) It is can be beneficial to precompute quan-
tities d(i)ℓ(i)ℓ(i); (2) The floating point exception handling technique discussed
in [103] can accelerate the computations.

Remarks on Algorithm B.3: See [33] for further details.

115

116 APPENDIX B. ALGORITHMS

Algorithm B.1 NegCount
Input: Symmetric tridiagonal matrix T ∈
R

n×n given by its diagonal (α1, . . . , αn) and off-
diagonal (β1, . . . , βn−1).
Output: Number of eigenvalues smaller than
σ.

1: count := 0
2: d := α1 − σ
3: count := count + SignBit(d)
4: for i = 2, . . . , n do

5: d := (αi − σ)− β2
i−1/d

6: count := count + SignBit(d)
7: end for

8: return count

Algorithm B.2 NegCount
Input: Symmetric tridiagonal matrix
LDL∗ ∈ R

n×n given by the non-trivial entries
(d1, . . . , dn) and (ℓ1, . . . , ℓn−1).
Output: Number of eigenvalues smaller than
σ.

1: count := 0
2: s := −σ
3: for i = 1, . . . , n− 1 do

4: d+ := d(i) + s
5: if |s| = ∞ ∧ |d+| = ∞ then

6: q := 1
7: else

8: q := s/d+
9: end if

10: s := q · d(i)ℓ(i)ℓ(i)− σ
11: count := count + SignBit(d+)
12: end for

13: d+ := d(n) + s
14: count := count + SignBit(d+)
15: return count

Algorithm B.3 Gershgorin

Input: Symmetric tridiagonal T ∈ R
n×n given

by its diagonal (α1, . . . , αn) and off-diagonal
(β1, . . . , βn−1).
Output: Gershgorin interval [gℓ, gu].

1: gℓ := α1 − β1

2: gu := α1 + β1

3: for i = 2 to n− 1 do

4: gℓ := min(gℓ, αi − |βi−1| − |βi|)
5: gu := max(gu, αi + |βi−1|+ |βi|)
6: end for

7: gℓ := min(gℓ, αn − |βn−1|)
8: gu := max(gu, αn + |βn−1|)
9: bnorm := max(|gℓ|, |gu|)
10: gℓ := gℓ − (2n+ 10) · bnorm · ε
11: gu := gu + (2n+ 10) · bnorm · ε
12: return [gℓ, gu]

Appendix C
Hardware

In this section, we collect information regarding of our experiments. We specify
hardware, compilers, compiler flags, and external libraries.

Dunnington: Refers to an SMP system comprising four six-core Intel Xeon
X7460 Dunnington processors, running at a frequency of 2.66 GHz. Each core pos-
sesses 32 KB data and 32 KB instruction cache; two cores share a common 3 MB
L2 cache and all six cores of a processor share a common 16 MB L3 cache. For all
our experiments, routines were compiled with version 11.1 of the Intel compilers icc
and ifort, with optimization level three enabled. LAPACK routines were linked with
MKL BLAS version 10.2.

Beckton: Refers to an SMP system comprising four eight-core Intel Xeon X7550
Beckton processors, with a nominal clock speed of 2.0 GHz. Each processor is
equipped 18 MB L3 cache; each core is equipped 256KB L2 cache as well as 32KB
L1 data cache. For all our experiments, routines were compiled with version 12.1 of
the Intel compilers icc and ifort, with optimization level three enabled. LAPACK
routines were from version 3.4.2 and linked to the vendor-tuned MKL BLAS version
12.1.

Westmere: Refers to an SMP system comprising four ten-core Intel Xeon E7-
4850 Westmere processors, with a nominal clock speed of 2.0 GHz. Each processor
is equipped 18 MB L3 cache; each core is equipped 256KB L2 cache as well as 32KB
L1 data cache. For all our experiments, routines were compiled with version 12.1 of
the Intel compilers icc and ifort, with optimization level three enabled. LAPACK
routines were from version 3.3.0 and linked to the vendor-tuned MKL BLAS version
12.1.

Juropa: The machine is installed at the Research Center Jülich, Germany. It
consists of 2,208 nodes, each comprising two Intel Xeon X5570 Nehalem quad-core
processors running at 2.93 GHz with 24 GB of memory. The nodes are connected
by an Infiniband QDR network with a fat-tree topology. All tested routines were

117

118 APPENDIX C. HARDWARE

compiled using the Intel compilers version 11.1, with the flag -O3, and linked to
the ParTec’s ParaStation MPI library (version 5.0.23 and, when support for multi-
threading was needed, 5.0.24)

Jugene: The machine is installed at the Research Center Jülich, Germany. It
consists of 73,728 nodes, each of which is equipped with 2 GB of memory and a
quad-core PowerPC 450 processor running at 850 MHz. All routines were compiled
using the IBM XL compilers (ver. 9.0) in combination with the vendor tuned IBM
MPI library.

Appendix D
Test Matrices

In this section, we collect a number of frequently used test matrices. More informa-
tion on these matrices can be found in [104].

• Uniform: Eigenvalue distribution λk = ε+(k−1)(1−ε)/(n−1), k = 1, . . . , n.

• Geometric: Eigenvalue distribution λk = ε(n−k)/(n−1), k = 1, . . . , n.

• 1–2–1: Contains ones on the subdiagonals and twos on the diagonal; its eigen-
values are λk = 2− 2 cos(πk/(n + 1)), k = 1, . . . , n.

• Clement: Has zeros on its diagonal; the off-diagonal elements are given by
βk =

√
k(n− k), k = 1, . . . , n − 1. Its eigenvalues are the integers ±n,±n −

2, . . . with the smallest (in magnitude) eigenvalue ±1 for even n and 0 for odd
n.

• Wilkinson: The off-diagonals are ones and the diagonal equals the vector
(m,m−1, . . . , 1, 0, 1, . . . ,m), with m = (n−1)/2 and odd size n. The matrices
“strongly favor Divide and Conquer over the MRRR algorithm. [...] It can be
verified that Divide and Conquer deflates all but a small number of eigenval-
ues (the number depends on the precision and the deflation threshold)” [104].
Almost all eigenvalues come in increasingly close pairs.

• Legendre: Has zeros on its diagonal; its the off-diagonal elements are given
by βk = k/

√
(2k − 1)(2k + 1), k = 2, . . . , n

• Laguerre: Its off-diagonal elements are (2, 3, . . . , n − 1) and its diagonal
elements (3, 5, 7, . . . , 2n − 1, 2n + 1).

• Hermite: Has zeros on its diagonal; its the off-diagonal elements are given by
βk =

√
k, , k = 1, . . . , n− 1.

We further used a test set of application matrices in our experiments.

119

120 APPENDIX D. TEST MATRICES

• Application: T bcsstkm08 1, T bcsstkm09 1, T bcsstkm10 1,

T 1138 bus, T bcsstkm06 3, T bcsstkm07 3, T bcsstkm11 1,

T bcsstkm12 1, Fann02, T nasa1824, T nasa1824 1, T plat1919,

T bcsstkm13 1, bcsstkm13, Fann03, T nasa2146, T nasa2146 1,

T bcsstkm10 2, T nasa2910, T nasa2910 1, T bcsstkm11 2,

T bcsstkm12 2, T bcsstkm10 3, T nasa1824 2, T bcsstkm13 2,

T sts4098, T sts4098 1, Juelich4237k1b, Juelich4289k2b,

T nasa2146 2, T bcsstkm10 4, T bcsstkm11 3, T bcsstkm12 3,

T nasa4704, T nasa4704 1, T nasa1824 3, T nasa2910 2,

T bcsstkm11 4, T bcsstkm12 4, T bcsstkm13 3, T Alemdar,

T Alemdar 1, T nasa2146 3, input7923, T bcsstkm13 4

Appendix E
Elemental on Jugene

We verify the prior results obtained on Juropa for a different architecture – namely,
the BlueGene/P installation Jugene.

We used a square processor grid Pr = Pc whenever possible and Pr = 2Pc other-
wise.1 Similarly, ScaLAPACK (ver. 1.8) in conjunction with the vendor-tuned BLAS
included in the ESSL library (ver. 4.3) was used throughout. In contrast to the Ju-

ropa experiments, we concentrate on the weak scalability of the symmetric-definite
generalized eigenproblem. Therefore ScaLAPACK’s DC timings correspond to the
sequence of routines PDPOTRF–PDSYNGST–PDSYNTRD–PDSTEDC–PDORMTR–PDTRSM. Ac-
cordingly, ScaLAPACK’s MRRR corresponds to the same sequence of routines with
PDSTEDC replaced by PDSTEMR.2 In both cases, a block size of 48 was found to be
nearly optimal and used in all experiments. As explained in Section 4.2.4, we avoided
the use of the routines PDSYGST and PDSYTRD for the reduction to standard and tridi-
agonal form, respectively. For EleMRRR’s timings we used Elemental (ver. 0.66),
which integrates PMRRR (ver. 0.6). A block size of 96 was identified as nearly
optimal and used for all experiments.3

In the left panel of Fig. E.1 we present EleMRRR’s timings for the computation
of all eigenpairs of the generalized problem in the form of Ax = λBx. While the size
of the test matrices ranges from 21,214 to 120,000, the number of cores increases
from 256 to 8,192 (64 to 2,048 nodes). In the right panel, the execution time is
broken down into the six stages of the generalized eigenproblem.

Both graphs show a similar behavior to the experiments performed on Juropa.
In all experiments EleMRRR outperforms both of the ScaLAPACK’s solvers. Most
importantly, ScaLAPACK again suffers from a breakdown in scalability.

1As noted in Section 4.2.4, Pc ≈ Pr or the largest square grid possible should be preferred. These
choices do not affect the qualitative behavior of our performance results.

2As PDSTEMR is not contained in ScaLAPACK, it corresponds to the sequence PDPOTRF–PDSYNGST–
PDSYEVR–PDTRSM.

3The block size for matrix vector products, which does not have a significant influence on the
performance, was fixed to 64 in all cases.

121

122 APPENDIX E. ELEMENTAL ON JUGENE

256 512 1024 2048 4096 8192

20

40

60

80

Number of cores

T
im

e
in

 m
in

ut
es

EleMRRR

ScaLAPACK’s DC

ScaLAPACK’s MRRR

30k 60k 120k
Matrix size

(a) Execution time.

Number of cores

F
ra

ct
io

n
of

 e
xe

cu
tio

n
tim

e

256 512 1024 2048 4096 8192

20

40

60

80

100 30k 60k 120k
Matrix size

Stage 6

Stage 5

Stage 3

Stage 2

(b) Breakdown of time by stages.

Figure E.1: Weak scalability for computing all eigenpairs of Ax = λBx. The dashed lines
refer to ScaLAPACK’s solvers when the matrices A and B are stored in the upper triangular
part; in this scenario, the non-square routines for the reductions are used.

When analyzing the results of Fig. E.1 for ScaLAPACK’s solver we the following
three observations: (1) The scalability issues can be attributed mainly to Stages 1, 2,
and 4. In particular, for the largest experiment ScaLAPACK’s reduction to standard
form (28 minutes) and MRRR (25 minutes) each exceed the time that EleMRRR
spends for the entire problem. (2) Although ScaLAPACK’s tridiagonal eigensolver
is usually not very time consuming, for highly parallel systems it might become the
bottleneck. As an example, in our experiment on 8,192 cores the tridiagonal problem
accounts for 54% (MRRR) and 33% (DC) of the total execution time of the standard
eigenproblem. (3) Due to better scalability, DC becomes faster than ScaLAPACK’s
MRRR.

We conclude with four comments regarding EleMRRRs behavior: (1) While stage
4 of ScaLAPACK’s MRRR and DC take up to 28% and 20% of the total execution
time, respectively, PMRRR accounts for less than 4%. In particular, for the largest
problem 25 minutes were spent in ScaLAPACK’s MRRR, whereas PMRRR required
only 20 seconds. In all experiments PMRRR’s execution time was negligible. (2)
The timings corresponding to the standard eigenproblem account for 70%–74% of
the generalized problem’s execution time. (3) The part which is roughly proportional
to the fraction of desired eigenpairs makes up 26%–32% of both the generalized and
standard problem. (4) All of the six stages scale equally well and no computational
bottleneck emerges.

Appendix F
First Tests of Mixed Precision MRRR

In this section, we report on the first performance and accuracy results that we
obtained for the mixed precision MRRR. All experiments were performed sequentially
on Westmere.1 For the mixed precision results, we used the same reduction and
backtransformation routines as LAPACK. For the extended precision results, we
used version 4.7 of the GNU compilers.

Since for single precision input/output the mixed precision MRRR usually
is faster than the conventional MRRR, we concentrate on double precision in-
put/output. In this case, the mixed precision approach uses either extended or
quadruple precision. We refer to these cases as mr3smp-extended and mr3smp-quad,
respectively. The use of quadruple is more critical as it shows that the approach is
applicable in many circumstances, even when the higher precision arithmetic used
in the tridiagonal stage is much slower than arithmetic in the input/output format.

We confine ourselves to experiments on a small set of application matrices as
listed in Table F.1, coming from quantum chemistry and structural mechanics prob-
lems.2 As the performance depends on the spectra of the input matrices, the plat-
form of the experiment, and the implementation of the quadruple arithmetic, we
cannot draw final conclusions from these limited test. However, the orthogonality
improvements are quite general and are observed for a much larger test set origi-
nating from [104]. We do not report on residuals as the largest residual norms are
generally comparable for all solvers.

To better display the effects of the use of mixed precisions, the performance
results are simplified in the following sense: As the routines for the reduction to
tridiagonal form and the backtransformation of all solvers are the same, we used for
these stages the minimum execution time of all runs for all solvers. In this way, the
cost of the mixed precision approach becomes more visible and we do not have to

1In [125] we mistakenly wrote that we used Beckton.
2These matrices are stored in tridiagonal form. In order to create real and complex dense

matrices, we generated a random Householder matrix H = I − τvv∗ and applied the similarity
transformation HTH to the tridiagonal matrix T .

123

124 APPENDIX F. MIXED PRECISION MRRR: EXPERIMENTS I

Matrix Size Application Reference

A 2,053 Chemistry ZSM-5 in [56] and Fann3 in [104]
B 4,289 Chemistry Originating from [21]
C 4,704 Mechanics T nasa4704 in [104]
D 7,923 Mechanics See [13] for information
E 12,387 Mechanics See [13] for information
F 13,786 Mechanics See [13] for information
G 16,023 Mechanics See [13] for information

Table F.1: A set of test matrices.

resort to statistical metrics for the timings. We point out that especially for the
subset tests, the run time of the tridiagonal stage for larger matrices is often smaller
than the fluctuations in the timings for the reduction to tridiagonal form.

F.1 Real symmetric matrices

Computing all eigenpairs. Figure F.1 refers to the computation of all eigen-
pairs. We report on the execution time of the mixed precision routines relative to
LAPACK’s MRRR (DSYEVR) and the obtained orthogonality. As a reference, results
for LAPACK’s DC (DSYEVD) are included. The orthogonality is improved using ex-
tended and quadruple precision. The left plot shows the performance penalty that
we pay for the improvements. In particular, for larger matrices, the additional cost
of the mixed precision approach becomes negligible, making it extremely attractive
for large-scale problems. For example, for test matrices E, F , and G, our solver
mr3smp-quad is as fast as DSYEVD, although it uses software-simulated arithmetic,
while achieving better orthogonality. Since the quadruple arithmetic is currently
much slower than the double one, mr3smp-quad carries a performance penalty for
small matrices. In our case, for matrices with n < 2, 000, one must expect an increase
in the total execution time of a factor larger than two. The situation is similar to
the one reported in [10] for the mixed precision iterative refinement of the solution
of linear systems of equations, where the mixed precision approach comes with a
performance penalty for small matrices.

In contrast to mr3smp-quad, the use of extended precision does not significantly
increase the execution time even for smaller matrices, while still improving the or-
thogonality. As the reason for different performance is solely due to the tridiagonal
eigensolver, in the left panel of Fig. F.2 we show the execution time of the tridiagonal
eigensolvers relative to LAPACK’s MRRR (DSTEMR).

We remark that, although the mixed precision approach slows down the tridi-
agonal stage compared to DSTEMR (at least with the current support for quadruple
precision arithmetic, see Fig. F.2), it has two features compensating this disadvan-
tage: the approach increases robustness and parallel scalability of the code. To
underpin these statements, in Table F.2, for the computation of all eigenpairs, we

F.1. REAL SYMMETRIC MATRICES 125

2,053 4,289 7,923 12,387 16,023

0.8

1

1.2

1.4

1.6

1.8

2

2.2

T
im

e
/ T

im
e

of
 D

S
Y

E
V

R

Matrix Size

mr3smp−quad

mr3smp−extended

DSYEVR

DSYEVD

2,053 4,289 7,923 12,387 16,023

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

O
rt

ho
go

na
lit

y

Matrix Size

Figure F.1: Computation of all eigenpairs. Left: Execution time relative to routine DSYEVR.
Right: Orthogonality.

2,053 4,289 7,923 12,387 16,023
0

1

2

3

4

5

6

7

T
im

e
/ T

im
e

of
 L

A
P

A
C

K
’s

 M
R

R
R

Matrix Size

mr3smp−quad

mr3smp−extended

LAPACK’s MRRR

LAPACK’s DC

2,053 4,289 7,923 12,387 16,023
0

5

10

15

20

25

30

T
im

e
/ T

im
e

of
 L

A
P

A
C

K
’s

 M
R

R
R

Matrix Size

mr3smp−quad

mr3smp−extended

LAPACK’s MRRR

LAPACK’s BI (real)

LAPACK’s BI (complex)

Figure F.2: Execution time of the tridiagonal stage relative to LAPACK’s MRRR. Left:
Computation of all eigenpairs. Right: Computation of 20% of the eigenpairs corresponding
to the smallest eigenvalues.

present the recursion depth dmax, the maximal cluster size and the number of times
Line 16 in Algorithm 3.2 (the only possible source of failure) is executed.

In all cases, mr3smp-quad computes the eigenpairs directly from the root rep-
resentation. Since this representation can be made definite, no danger of element
growth in its computation exist (thus, the RRR can be found). Such a danger occurs
in Line 16, where a new RRR for each cluster needs to be computed. By executing
Line 16 only a few times – often no times at all – the danger of not finding a proper
RRR is reduced and robustness increased.3 Since our approach is independent of
the actual form of the RRRs, it is possible to additionally use twisted or blocked
factorizations as proposed in [178, 176].

The mixed precision MRRR is especially appealing in the context of distributed-

3Besides the fact that less RRRs need to be found, additionally, the restriction of what constitutes
an RRR might be relaxed.

126 APPENDIX F. MIXED PRECISION MRRR: EXPERIMENTS I

A B C D E F G

max. depth DSTEMR 2 2 2 4 5 2 5
mr3smp-quad 0 0 0 0 0 0 0

largest cluster DSTEMR 324 1,027 10 5,011 8,871 1,369 14,647
mr3smp-quad 1 1 1 1 1 1 1

new RRR DSTEMR 311 638 1,043 1,089 1,487 1,798 1,825
mr3smp-quad 0 0 0 0 0 0 0

Table F.2: Recursion depth, largest encountered cluster, and number of times an RRR
for a cluster needs to be computed by executing Line 16 in Algorithm 3.2 for DSTEMR and
mr3smp-quad.

memory systems. The fact that all eigenpairs in our experiment are computed di-
rectly from the root representation implies that the execution is truly embarrass-
ingly parallel. That MRRR is embarrassingly parallel was already announced –
somewhat prematurely – with its introduction [40]. Only later, parallel versions of
MRRR [13, 162] found that “the eigenvector computation in MRRR is only em-
barrassingly parallel if the root representation consists of singletons” [161] and that
otherwise “load imbalance can occur and hamper the overall performance” [162].

While one can expect limited clustering of eigenvalues for application matri-
ces arising from dense inputs, it is not always the case that the recursion depth
is zero. Experiments on all the tridiagonal matrices provided explicitly by the
Stetester [104] – a total of 176 matrices ranging in size from 3 to 24,873 – showed
that the largest residual norm and worst case orthogonality were given by respec-
tively 1.5 · 10−14 and 1.2 · 10−15 and dmax ≤ 2. In fact, only four artificially con-
structed matrices, glued Wilkinson matrices [45], had clusters within clusters. In
most cases, with the settings of our experiments, the clustering was very benign or
even no clustering was observed. For example, the largest matrix in the test set,
Bennighof 24873, had only a single cluster of size 37. Furthermore, it is also possi-
ble to significantly lower the gaptol parameter, say to 10−16, and reduce clustering
even more. For such small values of gaptol, in the approximation and refinement
of eigenvalues we need to resort to quadruple precision, which so far we avoided for
performance reasons, see Chapter 5.

Our results suggest that even better results can be expected for parallel execu-
tions. The MRRR algorithm was already reasonably scalable, and the mixed pre-
cision approach additionally improves scalability – often making the computation
truly embarrassingly parallel.

Computing a subset of eigenpairs. The situation is more favorable when only
a subset of eigenpairs needs to be computed. As DSYEVD does not allow subset com-
putations at reduced cost, a user can resort to either BI or MRRR. The capabilities
of BI are accessible via LAPACK’s routine DSYEVX. Recently, the routine DSYEVR was
edited, so that it uses BI instead of MRRR in the subset case. We therefore refer
to ’DSYEVR (BI)’ when we use BI and ’DSYEVR (MRRR)’ when we force the use of

F.2. COMPLEX HERMITIAN MATRICES 127

MRRR instead.4 In Fig. F.3, we report the execution time relative to LAPACK’s
MRRR for computing 20% of the eigenpairs associated with the smallest eigenvalues
and the corresponding orthogonality.

2,053 4,289 7,923 12,387 16,023

0.6

0.8

1

1.2

1.4

1.6

T
im

e
/ T

im
e

of
 D

S
Y

E
V

R
 (

M
R

R
R

)

Matrix Size

mr3smp−quad

mr3smp−extended

DSYEVR (MRRR)

DSYEVR (BI)

2,053 4,289 7,923 12,387 16,023

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

O
rt

ho
go

na
lit

y

Matrix Size

Figure F.3: Computation of 20% of the eigenpairs corresponding to the smallest eigenval-
ues. Left: Execution time relative to routine DSYEVR that is forced to use MRRR. Right:
Orthogonality.

BI and mr3smp-quad achieved the best orthogonality. At the moment, for small
matrices (n ≪ 2,000), the use quadruple might be be too expensive. In this case, the
mixed precision routine can easily be run in double precision only or BI can be used
for accuracy and performance. As support for quadruple precision improves, the
overhead will further decrease or completely vanish. The use of extended precision
comes almost without any performance penalty. Unfortunately, for larger matrices,
the orthogonality might still be inferior to other methods and no increased robustness
and parallelism is observed. To illustrate the source of the differing run times, the
right panel of Fig. F.2 presents the execution time of the tridiagonal eigensolver
relative to LAPACK’s MRRR. As expected, due to explicit orthogonalization via the
Gram-Schmidt procedure, BI potentially becomes considerably slower than MRRR.

F.2 Complex Hermitian matrices

Computing all eigenpairs. In Fig. F.4, we show results for computing all eigen-
pairs. The left and right panel display the execution time of all solvers relative to
LAPACK’s MRRR (ZHEEVR) and the orthogonality, respectively. As predicted, the
extra cost due to the higher precision becomes relatively smaller for complex-valued
input compared to real-valued input – compare Figs. F.1 and F.4. Similarly, if the
mixed precision solver is used for the generalized eigenproblem based on Cholesky-
Wilkinson algorithm (see Section 2.3.3), the approach increases the execution only
marginally even for relatively small problems.

4In all experiments, we used BI with default parameters.

128 APPENDIX F. MIXED PRECISION MRRR: EXPERIMENTS I

2,053 4,289 7,923 12,387 16,023
0.8

0.9

1

1.1

1.2

1.3

T
im

e
/ T

im
e

of
 Z

H
E

E
V

R

Matrix Size

mr3smp−quad

mr3smp−extended

ZHEEVR

ZHEEVD

2,053 4,289 7,923 12,387 16,023
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

O
rt

ho
go

na
lit

y

Matrix Size

Figure F.4: Computation of all eigenpairs. Left: Execution time relative to routine ZHEEVR.
Right: Orthogonality.

We remark that the timing plots might be misleading and suggest that the cost
of the mixed precision approach is high. Indeed, for test matrix A, using quadruple
precision increased the run time by about 23% relative to ZHEEVR. This means in
absolute time that the mixed precision approach required about 27 seconds and
ZHEEVR only 22 seconds. For larger matrices the absolute execution time increases
as n3 and the performance gap between mixed precision approach and pure double
precision solver vanishes. Such a scenario is observed with test matrix F , for which
we obtain an orthogonality of 1.3 · 10−15 with mr3smp-quad compared to 2.9 · 10−8

with ZHEEVR, while spending only about 4% more in the total execution time.

Computing a subset of eigenpairs. We compute 20% of the eigenpairs associ-
ated with the smallest eigenvalues. The execution time relative to LAPACK’s MRRR
and the corresponding orthogonality are displayed in Fig. F.5. The extra cost due to

2,053 4,289 7,923 12,387 16,023
0.7

0.8

0.9

1

1.1

1.2

T
im

e
/ T

im
e

of
 Z

H
E

E
V

R
 (

M
R

R
R

)

Matrix Size

mr3smp−quad

mr3smp−extended

ZHEEVR (MRRR)

ZHEEVR (BI)

2,053 4,289 7,923 12,387 16,023
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

O
rt

ho
go

na
lit

y

Matrix Size

Figure F.5: Computation of 20% of the eigenpairs corresponding to the smallest eigenvalues
are computed. Left: Execution time relative to routine ZHEEVR (when forced to use MRRR).
Right: Orthogonality.

the use of higher precision in mr3smp-extended or mr3smp-quad were quite small.

F.3. SUMMARY 129

Even using quadruple precision, the run time only increased by maximally 13%.
In a similar experiment – computing 10% of the eigenpairs corresponding to the
smallest eigenvalues – the extra cost for mr3smp-quad was less than 6% compared to
LAPACK’s MRRR. Such a penalty in the execution time is already below the fluc-
tuations observed in repeated experiments. While mr3smp-extended is faster than
mr3smp-quad for smaller problems, it cannot quite deliver the same orthogonality.

The relative timings of the tridiagonal eigensolvers are depicted in the right panel
of Fig. F.2. Interestingly, BI is almost by a factor two slower than in the real-valued
case. The reason is that the Gram-Schmidt orthogonalization, a memory bandwidth-
limited operation, is performed on complex data (although all imaginary parts of the
involved vectors are zero).

F.3 Summary

The mixed precision MRRR obtains much improved orthogonality – possibly at the
cost of some performance. The performance penalty depends on the difference in
speed between the precision of input/output and the higher precision used in the
tridiagonal stage. In the single/double case, the mixed precision approach does not
introduce a penalty and usually leads faster executions; in the double/quadruple case,
the mixed precision approach does introduce a penalty for small matrices. For larger
matrices, the additional cost becomes negligible as the tridiagonal stage has a lower
complexity than the other two stages of the standard Hermitian eigenproblem. In the
future, with improved support for quadruple – through (partial) hardware support
or advances in the algorithms for software simulation – the additional cost of the
mixed precision approach vanishes. The use of a hardware supported 80-bit extended
floating point format provides an alternative. In this case, the execution time is
hardly affected, but it cannot guarantee the same orthogonality. In addition to
improving the orthogonality, our approach increases both robustness and scalability
of the solver. For this reasons, the mixed precision approach is ideal for large-scale
distributed-memory solvers.

130 APPENDIX F. MIXED PRECISION MRRR: EXPERIMENTS I

Appendix G
Mixed Precision MRRR on
Application Matrices

We use test set Application, detailed in Appendix D, to augment our previous
results for test set Artificial. Most Application matrices are part of the publicly
available Stetester suite [104] and range from 1,074 to 8,012 in size.

In Figs. G.1 and G.2, we present accuracy and timings for the single precision
matrices in tridiagonal form. The tests correspond to Figs. 5.4 and 5.5 in Section 5.3.

10 20 30 40
10

−2

10
−1

10
0

10
1

10
2

Test case

T
im

e
in

 s
ec

on
ds

mr3smp (mixed)

SSTEMR

SSTEDC

(a) Execution time: sequential.

10 20 30 40

10
−1

10
0

10
1

Test case

T
im

e
in

 s
ec

on
ds

mr3smp (mixed)

SSTEDC

(b) Execution time: multi-threaded.

Figure G.1: Timings for test set Application on Beckton. The single precision input
matrices T ∈ R

n×n are tridiagonal.

As matrices are quite small for the resources, we hardly see any speedup through
multi-threading for the smallest matrices. Nonetheless, the mixed precision MRRR
is highly competitive with DC, both in terms of performance and accuracy.

131

132 APPENDIX G. MIXED PRECISION MRRR: EXPERIMENTS II

10 20 30 40
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

Test case

R
es

id
ua

l

mr3smp (mixed)

SSTEMR

SSTEDC

(a) Largest residual norm.

10 20 30 40
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Test case

O
rt

ho
go

na
lit

y

mr3smp (mixed)

SSTEMR

SSTEDC

(b) Orthogonality.

Figure G.2: Accuracy for test set Application. The single precision input matrices T ∈
R

n×n are tridiagonal.

Corresponding to Figs. 5.7 and 5.8 in Section 5.3, we performed the experiment
on test set Application in double precision. The results are presented in Figs. G.3
and G.4. In sequential executions, as the matrices are smaller than for test set Ar-

10 20 30 40
10

−2

10
−1

10
0

10
1

10
2

10
3

Test case

T
im

e
in

 s
ec

on
ds

mr3smp (mixed)

DSTEMR

DSTEDC

(a) Execution time: sequential.

10 20 30 40

10
−1

10
0

10
1

10
2

Test case

T
im

e
in

 s
ec

on
ds

mr3smp (mixed)

DSTEDC

(b) Execution time: multi-threaded.

Figure G.3: Timings for test set Application on Beckton. The double precision input
matrices T ∈ R

n×n are tridiagonal.

tificial and we use a rather slow software-simulated quadruple precision arithmetic,
the mixed precision solver is considerably slower than both DSTEDC and DSTEMR. Such
a performance penalty vanishes for parallel executions.

Robustness, measured by φ(Application), is increased: while for DSTEMR

φ ≈ 0.02, we have φ ≈ 0.71 for the mixed precision MRRR, even without taking
the relaxed requirements of (5.6) and (5.7) into account. By only very conserva-
tively relaxing the requirements on what constitutes an RRR, we already achieve

133

10 20 30 40

10
−16

10
−15

10
−14

10
−13

10
−12

Test case

R
es

id
ua

l

mr3smp (mixed)

DSTEMR

DSTEDC

(a) Largest residual norm.

10 20 30 40

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

Test case

O
rt

ho
go

na
lit

y

(b) Orthogonality.

Figure G.4: Accuracy for test set Application. The double precision input matrices
T ∈ R

n×n are tridiagonal.

φ ≈ 0.98; for all matrices, only a single representation is accepted without passing
the test for being an RRR.1 We suspect that, by properly adjusting the test for
relative robustness, we can easily achieve φ(Application) = 1 and thereby guar-
antee accuracy for all inputs.2 These numbers support our believe that the use of
mixed precisions might be an important ingredient for MRRR to achieve robustness
comparable to the most reliable solvers.

Similar to Fig. 5.6 in Section 5.3, we show in Fig. G.5 the maximal depth of
the representation tree, dmax. In contrast to test set Artificial, dmax is limited to

0 10 20 30 40
0

2

4

6

8

10

Test case

d m
ax

mr3smp (mixed)

SSTEMR

(a) Single precision.

10 20 30 40

1

2

3

4

5

Test case (sorted by type)

d m
ax

mr3smp (mixed)

DSTEMR

(b) Double precision.

Figure G.5: Maximal depth of the representation tree, dmax.

1This has to be compared to the 14,356 problematic cases for DSTEMR.
2Additionally, all the measures to improve MRRR’s robustness proposed in [174] can and should

be implemented for maximal robustness.

134 APPENDIX G. MIXED PRECISION MRRR: EXPERIMENTS II

small values for both SSTEMR and DSTEMR; the Applicationmatrices are smaller and
have less clustering of eigenvalues. For the mixed precision MRRR, dmax is limited
to two in the single/double case and to one in the double/quadruple case.

For single precision symmetric dense inputs A ∈ R
n×n, we show results in

Figs. G.6 and G.7. The experiment corresponds to Figs. 5.9 and 5.10 in Section 5.3.

10 20 30 40
10

−1

10
0

10
1

10
2

10
3

Test case

T
im

e
in

 s
ec

on
ds

mr3smp (mixed)

SSYEVR

SSYEVD

(a) Execution time: sequential.

10 20 30 40
10

−1

10
0

10
1

10
2

Test case

T
im

e
in

 s
ec

on
ds

mr3smp (mixed)

SSYEVR

SSYEVD

(b) Execution time: multi-threaded.

Figure G.6: Timings for test set Application on Beckton. The single precision input
matrices A ∈ R

n×n are dense.

10 20 30 40

10
−7

10
−6

10
−5

10
−4

Test case

R
es

id
ua

l

mr3smp (mixed)

SSYEVR

SSYEVD

(a) Largest residual norm.

10 20 30 40
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Test case

O
rt

ho
go

na
lit

y

(b) Orthogonality.

Figure G.7: Accuracy for test set Application. The single precision input matrices A ∈
R

n×n are dense.

The matrices are generated by applying random orthogonal similarity transforma-
tions to the tridiagonal matrices of the previous experiments: A = QTQ∗, with
random orthogonal matrix Q ∈ R

n×n. The execution time is dominated by the re-
duction to tridiagonal form and the backtransformation of the eigenvectors. As the
first stage, SSYTRD, does not scale well, so does the overall problem. Similar results

135

are also obtained for executions with a smaller number of threads.
For double precision real symmetric dense inputs A ∈ R

n×n, we show results
in Figs. G.8 and G.9. The experiment corresponds to Figs. 5.11 and 5.12 in Sec-
tion 5.3. For small matrices, the sequential execution is slower than DSYEVR, but the

10 20 30 40
10

−1

10
0

10
1

10
2

10
3

10
4

Test case

T
im

e
in

 s
ec

on
ds

mr3smp (mixed)

DSYEVR

DSYEVD

(a) Execution time: sequential.

10 20 30 40

10
0

10
1

10
2

Test case

T
im

e
in

 s
ec

on
ds

mr3smp (mixed)

DSYEVR

DSYEVD

(b) Execution time: multi-threaded.

Figure G.8: Timings for test set Application on Beckton. The double precision input
matrices A ∈ R

n×n are dense.

10 20 30 40

10
−16

10
−15

10
−14

10
−13

Test case

R
es

id
ua

l

mr3smp (mixed)

DSYEVR

DSYEVD

(a) Largest residual norm.

10 20 30 40
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

Test case

O
rt

ho
go

na
lit

y

(b) Orthogonality.

Figure G.9: Accuracy for test set Application. The double precision input matrices
A ∈ R

n×n are dense.

performance gap reduces as the matrix size increases. The accuracy improvements
are limited to the orthogonality; the residuals are often comparable for all solvers.
If input matrices become complex-valued and/or only a subset of eigenpairs needs
to be computed, a possible overhead due to the use of mixed precisions is reduced
as the reduction to tridiagonal form would carry even more weight relative to the
tridiagonal stage.

136 APPENDIX G. MIXED PRECISION MRRR: EXPERIMENTS II

Bibliography

[1] Å. Björck. Numerics of Gram-Schmidt orthogonalization. Linear Algebra and its
Applications 197198, 0 (1994), 297 – 316.

[2] Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J.,

Ltaief, H., Luszczek, P., and Tomov, S. Numerical Linear Algebra on Emerging
Architectures: The PLASMA and MAGMA Projects. Journal of Physics: Conference
Series 180 (2009).

[3] Aliaga, J., Bientinesi, P., Davidovic, D., Di Napoli, E., Igual, F., and

Quintana-Ort́ı, E. Solving Dense Generalized Eigenproblems on Multi-Threaded
Architectures. Applied Mathematics and Computation 218, 22 (2012), 11279–11289.

[4] Amdahl, G. M. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer
conference (New York, NY, USA, 1967), AFIPS ’67 (Spring), ACM, pp. 483–485.

[5] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Don-

garra, J., Croz, J. D., Greenbaum, A., Hammarling, S., McKenney, A.,

and Sorensen, D. LAPACK Users’ Guide, third ed. SIAM, Philadelphia, PA, 1999.

[6] Arbenz, P. Divide and conquer algorithms for the bandsymmetric eigenvalue prob-
lem. Parallel Computing 18, 10 (1992), 1105 – 1128.

[7] Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P.,

Keutzer, K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams, S. W.,

and Yelick, K. A. The Landscape of Parallel Computing Research: A View from
Berkeley. Tech. Rep. UCB/EECS-2006-183, EECS Department, University of Califor-
nia, Berkeley, 2006.

[8] Auckenthaler, T., Blum, V., Bungartz, H.-J., Huckle, T., Johanni, R.,

Krämer, L., Lang, B., Lederer, H., and Willems, P. Parallel Solution of Par-
tial Symmetric Eigenvalue Problems from Electronic Structure Calculations. Parallel
Comput. 37 (2011), 783–794.

[9] Auckenthaler, T., Bungartz, H.-J., Huckle, T., Kraemer, L., Lang, B.,

and Willems, P. Developing algorithms and software for the parallel solution of the
symmetric eigenvalue problem. Journal of Computational Science 2, 3 (2011), 272 –
278.

137

138 BIBLIOGRAPHY

[10] Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Langou,

J., Luszczek, P., and Tomov, S. Accelerating Scientific Computations with Mixed
Precision Algorithms. Computer Physics Communications 180, 12 (2009), 2526 – 2533.

[11] Ballard, G., Demmel, J., and Knight, N. Communication avoiding successive
band reduction. SIGPLAN Not. 47, 8 (2012), 35–44.

[12] Barth, W., Martin, R. S., and Wilkinson, J. H. Calculation of the Eigenvalues
of a Symmetric Tridiagonal Matrix by the Method of Bisection. Numer. Math. V9, 5
(1967), 386–393.

[13] Bientinesi, P., Dhillon, I., and van de Geijn, R. A Parallel Eigensolver for Dense
Symmetric Matrices Based on Multiple Relatively Robust Representations. SIAM J.
Sci. Comput. 27 (2005), 43–66.

[14] Bientinesi, P., Igual, F. D., Kressner, D., Petschow, M., and Quintana-

Ort́ı, E. S. Condensed forms for the symmetric eigenvalue problem on multi-threaded
architectures. Concurrency and Computation: Practice and Experience 23, 7 (2011),
694–707.

[15] Bischof, C., Huss-Lederman, S., Sun, X., and Tsao, A. The PRISM project:
infrastructure and algorithms for parallel eigensolvers. In Proceedings of the Scalable
Parallel Libraries Conference (1993), pp. 123 –131.

[16] Bischof, C., Huss-Lederman, S., Sun, X., Tsao, A., and Turnbull, T. Parallel
performance of a symmetric eigensolver based on the invariant subspace decomposition
approach. In Proceedings of the Scalable High-Performance Computing Conference
(1994), pp. 32 –39.

[17] Bischof, C., Lang, B., and Sun, X. Parallel tridiagonalization through two-step
band reduction. In In Proceedings of the Scalable High-Performance Computing Con-
ference (1994), IEEE Computer Society Press, pp. 23–27.

[18] Bischof, C., Lang, B., and Sun, X. A Framework for Symmetric Band Reduction.
ACM Trans. Math. Software 26 (2000), 581–601.

[19] Bischof, C. H., Lang, B., and Sun, X. Algorithm 807: The SBR toolbox-software
for successive band reduction. ACM Trans. Math. Software 26, 4 (2000), 602–616.

[20] Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon,

I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K.,

Walker, D., and Whaley, R. C. ScaLAPACK Users’ Guide. SIAM, Philadelphia,
PA, USA, 1997.

[21] Blügel, S., Bihlmeyer, G., Wortmann, D., Friedrich, C., Heide, M., Lezaic,

M., Freimuth, F., and Betzinger, M. The Jülich FLEUR Project. Jülich Research
Center, 1987. http://www.flapw.de.

[22] Bowdler, H., Martin, R., Reinsch, C., and Wilkinson, J. The QR and QL
algorithms for symmetric matrices. Numerische Mathematik 11 (1968), 293–306.

[23] Chan, E., Van Zee, F. G., Bientinesi, P., Quintana-Ort́ı, E. S., Quintana-

Ort́ı, G., and van de Geijn, R. Supermatrix: a multithreaded runtime scheduling
system for algorithms-by-blocks. In Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and practice of parallel programming (New York, NY, USA, 2008),
PPoPP ’08, ACM, pp. 123–132.

BIBLIOGRAPHY 139

[24] Chandrasekaran, S. An Efficient and Stable Algorithm for the Symmetric-Definite
Generalized Eigenvalue Problem. SIAM J. Matrix Anal. Appl. 21, 4 (2000), 1202–1228.

[25] Chang, H., Utku, S., Salama, M., and Rapp, D. A parallel householder tridiag-
onalization stratagem using scattered square decomposition. Parallel Computing 6, 3
(1988), 297 – 311.

[26] Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet,

A., Stanley, K., Walker, D., and Whaley, R. C. ScaLAPACK: a Portable Lin-
ear Algebra Library for Distributed Memory Computers – Design Issues and Perfor-
mance. Computer Physics Communications 97, 1-2 (1996), 1 – 15. High-Performance
Computing in Science.

[27] Chtchelkanova, A., Gunnels, J., Morrow, G., Overfelt, J., and van de

Geijn, R. Parallel implementation of blas: General techniques for level 3 blas. Tech.
rep., Austin, TX, USA, 1995.

[28] Crawford, C. R. Reduction of a band-symmetric generalized eigenvalue problem.
Commun. ACM 16, 1 (1973), 41–44.

[29] Cuppen, J. A Divide and Conquer Method for the Symmetric Tridiagonal Eigenprob-
lem. Numer. Math. 36 (1981), 177–195.

[30] Dai, G.-L., Liu, Z.-P., Wang, W.-N., Lu, J., and Fan, K.-N. Oxidative Dehy-
drogenation of Ethane over V2O5 (001): A Periodic Density Functional Theory Study.
J. Phys. Chem. C 112 (2008), 3719–3725.

[31] Davis, C., and Kahan, W. The Rotation of Eigenvectors by a Perturbation. III.
SIAM J. Numer. Anal. 7, 1 (1970), pp. 1–46.

[32] Demmel, J. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, USA, 1997.

[33] Demmel, J., Dhillon, I., and Ren, H. On the Correctness of some Bisection-
like Parallel Eigenvalue Algorithms in Floating Point Arithmetic. Electronic
Trans. Num. Anal. 3 (1995), 116–149.

[34] Demmel, J., Dongarra, J., Ruhe, A., and van der Vorst, H. Templates for the
Solution of Algebraic Eigenvalue Problems: a Practical Guide. SIAM, Philadelphia,
PA, USA, 2000.

[35] Demmel, J., Heath, M. T., and van der Vorst, H. A. Parallel numerical linear
algebra. Acta Numerica 2 (1993), 111–197.

[36] Demmel, J., and Kahan, W. Accurate singular values of bidiagonal matrices. SIAM
J. SCI. STAT. COMPUT 11, 5 (1990), 873–912.

[37] Demmel, J., Marques, O., Parlett, B., and Vömel, C. Performance and Ac-
curacy of LAPACK’s Symmetric Tridiagonal Eigensolvers. SIAM J. Sci. Comp. 30
(2008), 1508–1526.

[38] Demmel, J., and Stanley, K. The Performance of Finding Eigenvalues and Eigen-
vectors of Dense Symmetric Matrices on Distributed Memory Computers. Tech. Rep.
CS-94-254, University of Tennessee, Knoxville, TN, USA, 1994. LAPACK Working
Note 86.

[39] Demmel, J., and Veselic, K. Jacobi’s Method is more accurate than QR. SIAM
J. Matrix Anal. Appl 13 (1992), 1204–1245.

140 BIBLIOGRAPHY

[40] Dhillon, I. A New O(n2) Algorithm for the Symmetric Tridiagonal Eigen-
value/Eigenvector Problem. PhD thesis, EECS Department, University of California,
Berkeley, 1997.

[41] Dhillon, I. Current Inverse Iteration Software Can Fail. BIT 38 (1998), 685–704.

[42] Dhillon, I., Fann, G., and Parlett, B. Application of a New Algorithm for the
Symmetric Eigenproblem to Computational Quantum Chemistry. In Proceedings of
the Eighth SIAM Conference on Parallel Processing for Scientific Computing (Min-
neapolis, MN, 1997), SIAM.

[43] Dhillon, I., and Parlett, B. Multiple Representations to Compute Orthogonal
Eigenvectors of Symmetric Tridiagonal Matrices. Linear Algebra Appl. 387 (2004),
1–28.

[44] Dhillon, I., and Parlett, B. Orthogonal Eigenvectors and Relative Gaps. SIAM
J. Matrix Anal. Appl. 25 (2004), 858–899.

[45] Dhillon, I., Parlett, B., and Vömel, C. Glued Matrices and the MRRR Algo-
rithm. SIAM J. Sci. Comput. 27, 2 (2005), 496–510.

[46] Dhillon, I., Parlett, B., and Vömel, C. The Design and Implementation of the
MRRR Algorithm. ACM Trans. Math. Software 32 (2006), 533–560.

[47] Domas, S., and Tisseur, F. Parallel implementation of a symmetric eigensolver
based on the yau and lu method. In Selected papers from the Second International
Conference on Vector and Parallel Processing (London, UK, UK, 1997), VECPAR
’96, Springer-Verlag, pp. 140–153.

[48] Dongarra, J. Freely available software for linear algebra.
http://www.netlib.org/utk/people/JackDongarra/la-sw.html, Sept. 2011.

[49] Dongarra, J., Du Croz, J., Hammarling, S., and Hanson, R. J. An extended
set of fortran basic linear algebra subprograms. ACM Trans. Math. Software 14, 1
(1988), 1–17.

[50] Dongarra, J., Du Cruz, J., Duff, I., and Hammarling, S. A Set of Level 3
Basic Linear Algebra Subprograms. ACM Trans. Math. Software 16 (1990), 1–17.

[51] Dongarra, J., and Sorensen, D. A fully parallel algorithm for the symmetric
eigenvalue problem. SIAM J. Sci. Stat. Comput. 8, 2 (1987), 139–154.

[52] Dongarra, J., Sorensen, D. C., and Hammarling, S. J. Block reduction of
matrices to condensed forms for eigenvalue computations. J. Comput. Appl. Math 27
(1989), 215–227.

[53] Dongarra, J., and van de Geijn, R. A. Reduction to condensed form for the
eigenvalue problem on distributed memory architectures. Parallel Computing 18, 9
(1992), 973–982.

[54] Elwood, D., Fann, G., and Littlefield, R. PeIGS User’s Manual. Pacific
Northwest National Laboratory, WA, 1993.

[55] Fang, H., and O’Leary, D. Stable factorizations of symmetric tridiagonal and
triadic matrices. SIAM J. Matrix Anal. Appl. 28 (2006), 576–595.

BIBLIOGRAPHY 141

[56] Fann, G., Littlefield, R., and Elwood, D. Performance of a Fully Parallel Dense
Real Symmetric Eigensolver in Quantum Chemistry Applications. In Proceedings of
High Performance Computing ’95 (1995), Simulation MultiConference, The Society
for Computer Simulation.

[57] Fernando, K. Accurate BABE Factorisation of Tridiagonal Matrices for Eigenprob-
lems. Tech. rep., NAG Ltd., TR5/95, 1995.

[58] Fernando, K. On a classical method for computing eigenvectors. Tech. rep., NAG
Ltd., TR3/95, 1995.

[59] Fernando, K. On computing an eigenvector of a tridiagonal matrix. Tech. rep.,
NAG Ltd., TR4/95, 1995.

[60] Fernando, K. V., and Parlett, B. Accurate singular values and differential qd
algorithms. Numerische Mathematik 67 (1994), 191–229.

[61] Francis, J. The QR Transform - A Unitary Analogue to the LR Transformation,
Part I and II. The Comp. J. 4 (1961/1962).

[62] Gansterer, W. N., Schneid, J., and Ueberhuber, C. W. A Divide-and-Conquer
Method for Symmetric Banded Eigenproblems - Part I: Theoretical Results. Tech. Rep.
AURORA TR1999-12, Vienna University of Technology, 1998.

[63] Gansterer, W. N., Schneid, J., and Ueberhuber, C. W. A Divide-and-Conquer
Method for Symmetric Banded Eigenproblems - Part II: Algorithmic Aspects. Tech.
Rep. AURORA TR1999-14, Vienna University of Technology, 1998.

[64] Givens, W. Numerical computation of the characteristic values of a real matrix.
Technical Report 1574, Oak Ridge National Laboratory, Oak Ridge, TN, 1954.

[65] Godunov, S., Kostin, V., and Mitchenko, A. Computation of an eigenvector of
a symmetric tridiagonal matrix. Siberian Mathematical Journal 26 (1985), 684–696.

[66] Golub, G. H., and Loan, C. F. V. Matrix Computations, 3rd ed. The Johns
Hopkins University Press, 1996.

[67] Gu, M., and Eisenstat, S. C. A stable and efficient algorithm for the rank-one
modification of the symmetric eigenproblem. SIAM J. Matrix Anal. Appl. 15, 4 (1994),
1266–1276.

[68] Gu, M., and Eisenstat, S. C. A Divide-and-Conquer Algorithm for the Symmetric
Tridiagonal Eigenproblem. SIAM J. Matrix Anal. Appl. 16, 1 (1995), 172–191.

[69] Gustafson, J. L. Reevaluating Amdahl’s Law. Comm. ACM 31, 5 (1988), 532–533.

[70] Haidar, A., Ltaief, H., and Dongarra, J. Parallel reduction to condensed forms
for symmetric eigenvalue problems using aggregated fine-grained and memory-aware
kernels. In Proceedings of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis (New York, NY, USA, 2011), SC ’11, pp. 8:1–
8:11.

[71] Haidar, A., Ltaief, H., and Dongarra, J. Toward a high performance tile divide
and conquer algorithm for the dense symmetric eigenvalue problem. SIAM Journal on
Scientific Computing 34, 6 (2012), C249–C274.

[72] Hendrickson, B., Jessup, E., and Smith, C. Toward an Efficient Parallel Eigen-
solver for Dense Symmetric Matrices. SIAM J. Sci. Comput. 20 (1999), 1132–1154.

142 BIBLIOGRAPHY

[73] Hendrickson, B. A., and Womble, D. E. The Torus-Wrap Mapping For Dense
Matrix Calculations On Massively Parallel Computers. SIAM J. Sci. Stat. Comput.
15 (1994), 1201–1226.

[74] Herlihy, M., and Luchangco, V. Distributed computing and the multicore revo-
lution. SIGACT News 39, 1 (2008), 62–72.

[75] Hernández, V., Román, E., Tomás, and Vidal, V. A Survey of Software for
Sparse Eigenvalue Problems. Tech. Rep. SLEPc Technical Report STR-6, Universidad
Politechnica de Valencia, 2009.

[76] Hiroyuki, I., Kinji, K., and Yoshimasa, N. Implementation and performance
evaluation of new inverse iteration algorithm with householder transformation in terms
of the compact wy representation. Tech. Rep. 8, Graduate school of Informatics, Kyoto
University, 2011.

[77] Hoffmann, W., and Parlett, B. A New Proof of Global Convergence for the
Tridiagonal QL Algorithm. SIAM Journal on Numerical Analysis 15, 5 (1978), 929–
937.

[78] Hogben, L. Handbook of Linear Algebra. Discrete Mathematics And Its Applications.
Taylor & Francis, 2006.

[79] Horn, R. A., and Johnson, C. R. Matrix analysis. Cambridge University Press,
Cambridge; New York, 1985.

[80] Inaba, T., and Sato, F. Development of Parallel Density Functional Program
using Distributed Matrix to Calculate All-Electron Canonical Wavefunction of Large
Molecules. J. of Comp. Chemistry 28, 5 (2007), 984–995.

[81] Ipsen, I. A history of inverse iteration. In Helmut Wielandt, Mathematische Werke,
Mathematical Works, volume II: Matrix Theory and Analysis. Walter de Gruyter
(1995).

[82] Ipsen, I. Computing An Eigenvector With Inverse Iteration. SIAM Review 39 (1997),
254–291.

[83] Jacobi, C. G. J. Über ein leichtes Verfahren die in der Theorie der Säcularstörungen
vorkommenden Gleichungen numerisch aufzulösen. Crelle 30 (1846), 51–94.

[84] Jessup, E. R., and Ipsen, I. Improving the accuracy of inverse iteration. SIAM J.
Sci. Stat. Comput. 13, 2 (1992), 550–572.

[85] Joffrain, T., Low, T. M., Quintana-Ort́ı, E. S., van de Geijn, R., and Van

Zee, F. G. Accumulating Householder transformations, revisited. ACM Trans. Math.
Softw. 32, 2 (2006), 169–179.

[86] Kahan, W. Accurate eigenvalues of a symmetric tri-diagonal matrix. Tech. Rep.
CS41, Stanford, CA, USA, 1966.

[87] Kahan, W. When to neglect off-diagonal elements of symmetric tridiagonal matrices.
Tech. Rep. CS42, Stanford, CA, USA, 1966.

[88] Kent, P. Computational Challenges of Large-Scale Long-Time First-Principles Molec-
ular Dynamics. J. Phys.: Conf. Ser. 125 (2008).

[89] Kopp, J. Efficient numerical diagonalization of hermitian 3x3 matrices. Tech. Rep.
arXiv:physics/0610206, 2006.

BIBLIOGRAPHY 143

[90] Kublanovskaya, V. On some Algorithms for the Solution of the Complete Eigen-
value Problem. Zh. Vych. Mat. 1 (1961), 555–572.

[91] Lang, B. A parallel algorithm for reducing symmetric banded matrices to tridiagonal
form. SIAM Journal on Scientific Computing 14, 6 (1993), 1320–1338.

[92] Lang, B. Effiziente Orthogonaltransformationen bei der Eigen- und Singulärwert-
berechnung. Habilitationsschrift, Fachbereich Mathematik, Universität Wuppertal,
1997.

[93] Lang, B. Using Level 3 BLAS in Rotation-Based Algorithms. SIAM J. Sci. Comput.
19, 2 (1998), 626–634.

[94] Lang, B. Efficient eigenvalue and singular value computations on shared memory
machines. Parallel Comput. 25, 7 (1999), 845–860.

[95] Lang, B. Direct Solvers for Symmetric Eigenvalue Problems. In Modern Methods and
Algorithms of Quantum Chemistry (2000), J. Grotendorst, Ed., NIC Series, Volume 3,
pp. 231–259.

[96] Lang, B. Out-of-core solution of large symmetric eigenproblems. Z. Angew. Math.
Mech. 80 (2000), 809–810.

[97] Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T. Basic Linear
Algebra Subprograms for Fortran Usage. ACM Trans. Math. Software 5, 3 (1979),
308–323.

[98] Li, R.-C. Solving Secular Equations Stably and Efficiently. Tech. Rep. UCB/CSD-
94-260, Computer Science Dept., University of California, Berkeley, 1994.

[99] Li, T., and Rhee, N. Homotopy algorithm for symmetric eigenvalue problems.
Numerische Mathematik 55 (1989), 265–280.

[100] Li, T. Y., and Zeng, Z. Laguerre’s iteration in solving the symmetric tridiagonal
eigenproblem - revisited. SIAM J. Sci. Comput. 15 (1992), 1145–1173.

[101] Luszczek, P., Ltaief, H., and Dongarra, J. Two-stage tridiagonal reduction for
dense symmetric matrices using tile algorithms on multicore architectures. In Parallel
Distributed Processing Symposium (IPDPS), 2011 IEEE International (2011), pp. 944
–955.

[102] Marques, O., Parlett, B., and Vömel, C. Computations of Eigenpair Subsets
with the MRRR Algorithm. Numerical Linear Algebra with Applications 13, 8 (2006),
643–653.

[103] Marques, O., Riedy, E., and Vömel, C. Benefits of IEEE-754 Features in Modern
Symmetric Tridiagonal Eigensolvers. SIAM J. Sci. Comput. 28 (2006), 1613–1633.

[104] Marques, O. A., Vömel, C., Demmel, J., and Parlett, B. N. Algorithm 880:
A Testing Infrastructure for Symmetric Tridiagonal Eigensolvers. ACM Trans. Math.
Softw. 35, 1 (2008), 8:1–8:13.

[105] Martin, R., Reinsch, C., and Wilkinson, J. The QR algorithm for band sym-
metric matrices. Numerische Mathematik 16 (1970), 85–92.

[106] Martin, R., and Wilkinson, J. Reduction of the Symmetric Eigenproblem Ax =
λBx; and Related Problems to Standard Form. Numerische Mathematik 11 (1968),
99–110.

144 BIBLIOGRAPHY

[107] Matsekh, A. M. The Godunov-inverse iteration: A fast and accurate solution to the
symmetric tridiagonal eigenvalue problem. Appl. Numer. Math. 54, 2 (2005), 208–221.

[108] Moler, C., and Stewart, G. An Algorithm for Generalized Matrix Eigenvalue
Problems. SIAM J. on Numerical Analysis 10, 2 (1973), 241–256.

[109] Nakatsukasa, Y., and Higham, N. Stable and Efficient Spectral Divide and Con-
quer Algorithms for the Symmetric Eigenvalue Decomposition and the SVD. Tech.
Rep. No. 2012.52, Dept. of Mathematics, University of Manchester, 2012.

[110] Oettli, M. H. A robust, parallel homotopy algorithm for the symmetric tridiagonal
eigenproblem. SIAM J. Sci. Comput. 20, 3 (1999), 1016–1032.

[111] Ortega, J. M., and Kaiser, H. F. The LLT and QR methods for symmetric
tridiagonal matrices. The Computer Journal 6, 1 (1963), 99–101.

[112] Parlett, B. Construction of orthogonal eigenvectors for tight clusters by use of sub-
matrices. Tech. Rep. CPAM-664, Center for Pure and Applied Mathematics, University
of California, Berkeley, 1996.

[113] Parlett, B. Invariant subspaces for tightly clustered eigenvalues of tridiagonals. BIT
Numerical Mathematics 36 (1996), 542–562.

[114] Parlett, B. The Symmetric Eigenvalue Problem. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1998.

[115] Parlett, B. For tridiagonals T replace T with LDLt. Journal of Computational and
Applied Mathematics 123, 12 (2000), 117 – 130.

[116] Parlett, B. The QR Algorithm. Comput. Sci. Eng. 2, 1 (2000), 38–42.

[117] Parlett, B. Perturbation of Eigenpairs of Factored Symmetric Tridiagonal Matrices.
Foundations of Computational Mathematics 3 (2003), 207–223.

[118] Parlett, B., and Dhillon, I. Fernando’s Solution to Wilkinson’s Problem: an
Application of Double Factorization. Linear Algebra Appl. 267 (1996), 247–279.

[119] Parlett, B., and Dhillon, I. Relatively Robust Representations of Symmetric
Tridiagonals. Linear Algebra Appl. 309, 1-3 (2000), 121 – 151.

[120] Parlett, B., and Marques, O. An Implementation of the DQDS Algorithm (Pos-
itive Case). Linear Algebra Appl. 309 (1999), 217–259.

[121] Peters, G., and Wilkinson, J. Inverse Iteration, Ill-Conditioned Equations and
Newtons Method. SIAM Review 21, 3 (1979), 339–360.

[122] Petschow, M., and Bientinesi, P. The Algorithm of Multiple Relatively Robust
Representations for Multi-Core Processors. K. Jonasson, Ed., vol. 7133 of Lecture
Notes in Computer Science, Springer, pp. 152–161.

[123] Petschow, M., and Bientinesi, P. MR3-SMP: A Symmetric Tridiagonal Eigen-
solver for Multi-Core Architectures. Parallel Computing 37, 12 (2011), 795 – 805.

[124] Petschow, M., Peise, E., and Bientinesi, P. High-Performance Solvers For Dense
Hermitian Eigenproblems. SIAM J. Sci. Comput. 35, 1 (2013), 1–22.

[125] Petschow, M., Quintana-Ort́ı, E. S., and Bientinesi, P. Improved Orthogo-
nality for Dense Hermitian Eigensolvers based on the MRRR algorithm. Tech. Rep.
AICES-2012/09-1, RWTH Aachen, Germany, 2012.

BIBLIOGRAPHY 145

[126] Petschow, M., Quintana-Ort́ı, E. S., and Bientinesi, P. Improved Accuracy
and Parallelism for MRRR-based Eigensolvers – A Mixed Precision Approach. SIAM
J. Sci. Comput. (2014). Accpeted for publication.

[127] Poulson, J., Marker, B., van de Geijn, R. A., Hammond, J. R., and Romero,

N. A. Elemental: A New Framework for Distributed Memory Dense Matrix Computa-
tions. FLAME Working Note 44 (revised). Technical Report TR-10-20, The University
of Texas at Austin, Department of Computer Sciences, 2011.

[128] Poulson, J., Marker, B., van de Geijn, R. A., Hammond, J. R., and Romero,

N. A. Elemental: A New Framework for Distributed Memory Dense Matrix Compu-
tations. ACM Trans. Math. Software 39, 2 (2012).

[129] Poulson, J., van de Geijn, R., and Bennighof, J. Parallel Algorithms for
Reducing the Generalized Hermitian-Definite Eigenvalue Problem. FLAME Working
Note 56. Technical Report TR-11-05, The University of Texas at Austin, Department
of Computer Sciences, 2011.

[130] Poulson, J., van de Geijn, R., and Bennighof, J. (Parallel) Algorithms for
Two-sided Triangular Solves and Matrix Multiplication . ACM Trans. Math. Software
(2012). Submitted.

[131] Quintana-Ort́ı, G., Igual, F. D., Marqués, M., Quintana-Ort́ı, E. S., and

van de Geijn, R. A. A Runtime System for Programming Out-of-Core Matrix
Algorithms-by-Tiles on Multithreaded Architectures. ACM Trans. Math. Softw. 38, 4
(2012), 25:1–25:25.

[132] Rajamanickam, S., and Davis, T. A. Blocked band reduction for symmetric and
unsymmetric matrices. Tech. rep., Sandia National Laboratories and University of
Florida, 2012.

[133] Reinders, J. Facing the Multicore-Challenge II. Springer-Verlag, Berlin, Heidelberg,
2012, ch. Only the first steps of the parallel evolution have been taken thus far, pp. 1–9.

[134] Reinsch, C. H. A Stable, Rational QR Algorithm for the Computation of the Eigen-
values of an Hermitian, Tridiagonal Matrix. Mathematics of Computation 25, 115
(1971), 591–597.

[135] Rutishauser, H. Der Quotienten-Differenzen-Algorithmus. Zeitschrift für ange-
wandte Mathematik und Physik 5 (1954), 233–251.

[136] Rutter, J. D. A Serial Implementation of Cuppen’s Divide and Conquer Algorithm
for the Symmetric Eigenvalue Problem. Tech. Rep. UCB/CSD-94-799, EECS Depart-
ment, University of California, Berkeley, 1994.

[137] Saad, Y., Chelikowsky, J. R., and Shontz, S. M. Numerical Methods for
Electronic Structure Calculations of Materials. SIAM Rev. 52, 1 (2010), 3–54.

[138] Sameh, A. On Jacobi and Jacobi-like Algorithms for a Parallel Computer. Math.
Comp. 25, 115 (1971), 579–590.

[139] Schreiber, R., and van Loan, C. A storage-efficient wy representation for products
of householder transformations. SIAM J. Sci. Stat. Comput. 10, 1 (1989), 53–57.

[140] Scott, L., Clark, T., and Bagheri, B. Scientific Parallel Computing. Princeton
University Press, 2005.

146 BIBLIOGRAPHY

[141] Sears, M., Stanley, K., and Henry, G. Application of a High Performance
Parallel Eigensolver to Electronic Structure Calculations. In Proceedings of the 1998
ACM/IEEE conference on Supercomputing (CDROM) (Washington, DC, USA, 1998),
Supercomputing ’98, IEEE Computer Society, pp. 1–1.

[142] Simon, H. Bisection is not optimal on vector processors. SIAM Journal on Scientific
and Statistical Computing 10, 1 (1989), 205–209.

[143] Smith, B. T., Boyle, J. M., Dongarra, J., Garbow, B. S., Ikebe, Y., Klema,

V. C., and Moler, C. B. Matrix Eigensystem Routines - EISPACK Guide, Second
Edition, vol. 6 of Lecture Notes in Computer Science. Springer, 1976.

[144] Stanley, K. Execution Time of Symmetric Eigensolvers. PhD thesis, EECS Depart-
ment, University of California, Berkeley, 1997.

[145] Stanley, K. S. Execution Time of Symmetric Eigensolvers. PhD thesis, EECS
Department, University of California, Berkeley, 1997.

[146] Stewart, G., and Sun, J. Matrix Perturbation Theory. Academic Press, 1990.

[147] Stewart, G. W. Matrix Algorithms, Vol. 2: Eigensystems. SIAM, Philadelphia, PA,
USA, 2001.

[148] Storchi, L., Belpassi, L., Tarantelli, F., Sgamellotti, A., and Quiney, H.

An Efficient Parallel All-Electron Four-Component Dirac–Kohn–Sham Program Using
a Distributed Matrix Approach. Journal of Chemical Theory and Computation 6, 2
(2010), 384–394.

[149] Sutter, H. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobbs Journal 30, 3 (2005), 202–210.

[150] Tisseur, F., and Dongarra, J. Parallelizing the Divide and Conquer Algorithm for
the Symmetric Tridiagonal Eigenvalue Problem on Distributed Memory Architectures.
Tech. Rep. Numerical Analysis Report No. 317, Dept. of Mathematics, University of
Manchester, 1998.

[151] Tisseur, F., and Dongarra, J. A parallel divide and conquer algorithm for the
symmetric eigenvalue problem on distributed memory architectures. SIAM J. Sci.
Comput. 20, 6 (1999), 2223–2236.

[152] Toledo, S. External memory algorithms. American Mathematical Society, Boston,
MA, USA, 1999, ch. A survey of out-of-core algorithms in numerical linear algebra,
pp. 161–179.

[153] Tomic, S., Sunderland, A., and Bush, I. Parallel Multi-Band k·p Code for
Electronic Structure of Zinc Blend Semiconductor Quantum Dots. J. Mater. Chem.
16 (2006), 1963–1972.

[154] Trefethen, L. N., and Bau, D. Numerical linear algebra. SIAM, 1997.

[155] Tsuboi, H., Konda, T., Takata, M., Kimura, K., Iwasaki, M., and Naka-

mura, Y. Evaluation of a new eigen decomposition algorithm for symmetric tridiag-
onal matrices. In PDPTA (2006), pp. 832–838.

[156] van de Geijn, R. Using PLAPACK: Parallel Linear Algebra Package. The MIT
Press, 1997.

BIBLIOGRAPHY 147

[157] Van Zee, F. G. libflame: The Complete Reference. lulu.com, 2009.

[158] Van Zee, F. G., Chan, E., van de Geijn, R. A., Quintana-Ort́ı, E. S., and

Quintana-Ort́ı, G. The libflame library for dense matrix computations. IEEE Des.
Test 11, 6 (Nov. 2009), 56–63.

[159] Van Zee, F. G., van de Geijn, R., and Quintana-Ort́ı, G. Restructuring the QR
Algorithm for High-Performance Application of Givens Rotations. Technical Report
TR-11-36, The University of Texas at Austin, Department of Computer Sciences, 2011.

[160] Van Zee, F. G., van de Geijn, R. A., Quintana-Ort́ı, G., and Elizondo, G. J.

Families of algorithms for reducing a matrix to condensed form. ACM Trans. Math.
Softw. 39, 1 (2012).

[161] Vömel, C. A Refined Representation Tree for MRRR. LAPACK Working Note 194,
Department of Computer Science, University of Tennessee, Knoxville, 2007.

[162] Vömel, C. ScaLAPACK’s MRRR Algorithm. ACM Trans. Math. Software 37 (2010),
1:1–1:35.

[163] Vömel, C. A note on generating finer-grain parallelism in a representation tree.
Numer. Linear Algebra Appl. 19 (2012), 869–879.

[164] Vömel, C., and Parlett, B. Detecting localization in an invariant subspace. SIAM
J. Sci. Comput. 33, 6 (2011), 3447–3467.

[165] Vömel, C., Tomov, S., and Dongarra, J. Divide and Conquer on Hybrid GPU-
Accelerated Multicore Systems. SIAM Journal on Scientific Computing 34, 2 (2012),
C70–C82.

[166] Wang, T.-L. Convergence of the tridiagonal QR algorithm. Linear Algebra and its
Applications 322, 1-3 (2001), 1–17.

[167] Watkins, D. The QR Algorithm Revisited. SIAM Rev. 50, 1 (2008), 133–145.

[168] Watkins, D. Fundamentals of Matrix Computations. Pure and applied mathematics.
John Wiley & Sons, 2010.

[169] Wilkinson, J. H. The Calculation of the Eigenvectors of Codiagonal Matrices.
Comp. J. 1, 2 (1958), 90–96.

[170] Wilkinson, J. H. Global convergene of tridiagonal QR algorithm with origin shifts.
Linear Algebra and its Applications 1, 3 (1968), 409 – 420.

[171] Wilkinson, J. H. Modern error analysis. SIAM Review 13, 4 (1971), 548–568.

[172] Wilkinson, J. H. The Algebraic Eigenvalue Problem. Oxford University Press, Inc.,
New York, NY, USA, 1988.

[173] Wilkinson, J. H., and Reinsch, C. Handbook for automatic computation, Volume
II , Linear algebra. Die Grundlehren der mathematischen Wissenschaften in Einzel-
darstellungen. Springer-Verlag, New York, Berlin, Heidelberg, 1971.

[174] Willems, P. On MR3-type Algorithms for the Tridiagonal Symmetric Eigenproblem
and Bidiagonal SVD. PhD thesis, University of Wuppertal, 2010.

[175] Willems, P., and Lang, B. A Framework for the MR3 Algorithm: Theory and
Implementation. Tech. Rep. 11/21, Bergische Universität Wuppertal, 2011.

148 BIBLIOGRAPHY

[176] Willems, P., and Lang, B. Block Factorizations and qd-Type Transformations for
the MR3 Algorithm. Tech. Rep. 11/23, Bergische Universität Wuppertal, 2011.

[177] Willems, P., and Lang, B. The MR3-GK algorithm for the bidiagonal SVD.
Electronic Transactions on Numerical Analysis (ETNA) 39 (2012), 1–21.

[178] Willems, P., and Lang, B. Twisted Factorizations and qd-Type Transformations
for the MR3 Algorithm—New Representations and Analysis. SIAM Journal on Matrix
Analysis and Applications 33, 2 (2012), 523–553.

[179] Wu, Y.-J. J., Alpatov, P. A., and Bischof, C. H. A Parallel Implementation of
Symmetric Band Reduction Using PLAPACK.

[180] Yau, S.-T., and Lu, Y. Y. Reducing the symmetric matrix eigenvalue problem to
matrix multiplications. SIAM J. Sci. Comput. 14, 1 (1993), 121–136.

[181] Yousef, S. Numerical Methods for Large Eigenvalue Problems, Revised Edition.
SIAM, 2011.

[182] Zha, H., and Zhang, Z. A Cubically Convergent Parallelizable Method for the
Hermitian Eigenvalue Problem. SIAM J. Matrix Anal. Appl. 19, 2 (1998), 468–486.

[183] Zhang, Z., Zha, H., and Ying, W. Fast Parallelizable Methods for Computing
Invariant Subspaces of Hermitian Matrices. J. Comput. Math. 25, 5 (2007), 583–594.

