348 research outputs found

    A symmetric cryptographic scheme for data integrity verification in cloud databases

    Get PDF
    Cloud database services represent a great opportunity for companies and organizations in terms of management and cost savings. However, outsourcing private data to external providers leads to risks of confidentiality and integrity violations. We propose an original solution based on encrypted Bloom filters that addresses the latter problem by allowing a cloud service user to detect unauthorized modifications to his outsourced data. Moreover, we propose an original analytical model that can be used to minimize storage and network overhead depending on the database structure and workload. We assess the effectiveness of the proposal as well as its performance improvements with respect to existing solutions by evaluating storage and network costs through micro-benchmarks and the TPC-C workload standard

    効率的で安全な集合間類似結合に関する研究

    Get PDF
    筑波大学 (University of Tsukuba)201

    A System for Privacy-Preserving Mobile Health and Fitness Data Sharing: Design, Implementation and Evaluation

    Get PDF
    The growing spread of smartphones and other mobile devices has given rise to a number of health and fitness applications. Users can track their calorie intake, get reminders to take their medication, and track their fitness workouts. Many of these services have social components, allowing users to find like-minded peers, compete with their friends, or participate in open challenges. However, the prevalent service model forces users to disclose all of their data to the service provider. This may include sensitive information, like their current position or medical conditions. In this thesis, we will design, implement and evaluate a privacy-preserving fitness data sharing system. The system provides privacy not only towards other users, but also against the service provider, does not require any Trusted Third Parties (TTPs), and is backed by strong cryptography. Additionally, it hides the communication metadata (i.e. who is sharing data with whom). We evaluate the security of the system with empirical and formal methods, including formal proofs for parts of the system. We also investigate the performance with empirical data and a simulation of a large-scale deployment. Our results show that the system can provide strong privacy guarantees. However, it incurs a significant networking overhead for large deployments
    corecore