TECHNISCHE
UNIVERSITAT
DARMSTADT

A SYSTEM FOR PRIVACY-PRESERVING MOBILE HEALTH AND
FITNESS DATA SHARING: DESIGN, IMPLEMENTATION AND
EVALUATION

MAX JAKOB MAASS

Master Thesis
April 15, 2016

Secure Mobile Networking Lab
Department of Computer Science

SEs(T1:

SECURE MOBILE NETWORKING

A System for Privacy-Preserving Mobile Health and Fitness Data Sharing: Design, Implemen-
tation and Evaluation

Master Thesis

SEEMOQO-MSC-0076

Submitted by Max Jakob Maaf3
Date of submission: April 15, 2016

Advisor: Prof. Dr.-Ing. Matthias Hollick
Supervisor: Prof. Dr.-Ing. Matthias Hollick

Technische Universitdt Darmstadt
Department of Computer Science
Secure Mobile Networking Lab

ABSTRACT

The growing spread of smartphones and other mobile devices has
given rise to a number of health and fitness applications. Users can
track their calorie intake, get reminders to take their medication, and
track their fitness workouts. Many of these services have social com-
ponents, allowing users to find like-minded peers, compete with their
friends, or participate in open challenges. However, the prevalent ser-
vice model forces users to disclose all of their data to the service
provider. This may include sensitive information, like their current
position or medical conditions. In this thesis, we will design, imple-
ment and evaluate a privacy-preserving fitness data sharing system.
The system provides privacy not only towards other users, but also
against the service provider, does not require any Trusted Third Par-
ties (TTPs), and is backed by strong cryptography. Additionally, it
hides the communication metadata (i.e. who is sharing data with
whom). We evaluate the security of the system with empirical and
formal methods, including formal proofs for parts of the system. We
also investigate the performance with empirical data and a simula-
tion of a large-scale deployment. Our results show that the system
can provide strong privacy guarantees. However, it incurs a signifi-
cant networking overhead for large deployments.

ZUSAMMENFASSUNG

Die wachsende Popularitit von Smartphones und anderen mobilen
Geréten hat eine Reihe an Gesundheits- und Fitness-Anwendungen
hervorgebracht. NutzerInnen konnen ihren Kalorien-Haushalt verfol-
gen, sich an ihre Medizin erinnern lassen, und ihre Leistung beim
Fitness-Training verfolgen. Viele dieser Dienste haben einen sozialen
Anteil, der es Nutzerlnnen erlaubt, sich mit ihren FreundInnen zu
vergleichen oder an offenen Wettbewerben teilzunehmen. Allerdings
zwingt das aktuelle Geschiftsmodell dieser Dienste die NutzerInnen,
alle ihre Daten an den Anbieter zu iibertragen. Dies konnte private
Daten wie den Aufenthaltsort oder Gesundheitsprobleme beinhalten.
In dieser Masterarbeit werden wir ein System zum privatheitserhal-
tenden Teilen von Fitnessdaten entwerfen, implementieren und eva-
luieren. Das System soll die Privatheit nicht nur gegeniiber anderen
NutzerInnen, sondern auch gegenitiber den Systembetreibern sicher-
stellen. Es erfordert keine Trusted Third Parties (TTPs) und garantiert
seine Sicherheitsziele durch Kryptographie. Desweiteren versteckt es
die Metadaten der Kommunikation (wer kommuniziert mit wem).

iii

Wir evaluieren die Sicherheit des Systems mit empirischen und for-
mellen Methoden und bieten einen formellen Sicherheitsbeweis fiir
einen Teil des Systems. Auflerdem untersuchen wir die Performanz
des Systems mit empirischen Daten und der Simulation eines grofsen
Systems mit hunderttausenden von NutzerInnen. Unsere Resultate
zeigen, dass das System starke Privatheitsgarantien bietet, dabei al-
lerdings bei grofieren Nutzerzahlen einen signifikanten zusitzlichen
Netzwerkverkehr verursacht.

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to my family for supporting
me in the years of my studies, and giving me the time I needed to
find out that computer science is indeed the right match for me. In
the same way, I'd like to thank Prof. Dr. Hannes Federrath and
Dr. Dominik Herrmann at the University of Hamburg for awakening
and supporting my interest in IT Security and academic research, and
Prof. Dr.-Ing. Matthias Hollick of the TU Darmstadt for helping me
take the next steps in that area.

I would also like to thank Daniel Wegemer, Lars Almon, Tom Schons,
and Jacqueline Brendel for proofreading (parts of) the thesis. Any re-
maining mistakes are my own. Additionally, I'd like to thank the
Center for Advanced Security Research Darmstadt (CASED), Uwe
Miiller, and Sven Oliver Pagel / the IVV Geo of the WWU Miinster
for providing computational resources for the simulations.

Finally, I'd like to thank all of the open source software and open
knowledge projects I used over the course of this thesis: Android,
Android-Maps-Utils, ArXiv.org, Bash, BibTgX, Bitstring, Bouncycastle,
the Cryptography Stack Exchange, Debian, Dia, DNSJava, ejabberd,
EventBus, Evince, Firefox, Git, Gitolite, GnuPG, GnuPlot, the IACR
ePrint Archive, Inkscape, JodaTime, ETgX, LibreOffice, Linux, Linux
Mint, Nosetests, Numpy, Okular, OpenSSH, OwnCloud, Pidgin, Pro-
tocol Buffers, PyCrypto, PyProgressbar, PyPy, Python, SciPy, Screen,
Signal, SimPy, SpongyCastle, SQLCipher, SQLite, SQLite-]JDBC, Stack-
Overflow.com, TgXmaker, Ubuntu, Vim, the Wikipedia, ZXing, and
many others. In the spirit of coding it forward, all code and data cre-
ated for this thesis have been released under open licenses.

We can only see a short distance ahead,
but we can see plenty there that needs to be done.

— Alan M. Turing

CONTENTS

ii

INTRODUCTION

INTRODUCTION
Privacy Issues in Health Tracking Services

1.1
1.2

1.3

Contributions . . .
Outline

RELATED WORK
Privacy-Preserving OSNs

Functions

Authenticated Encryption
Information Retrieval
2.4.1 Private Information Retrieval
2.4.2 Private Set Intersection.

2.4.4 Counting Bloom Filters
2.4.5 Variable-Increment Counting Bloom Filters . . .

3.1.3 Registration and Authentication

Secure Unlinkable Shared Identifiers

3.4.2 Identifier Generation

3.4.4 Comparison with Related Work

3.5.1 Friendship establishment

3.6.1 DataSelection

Lo

3.6.4 DataDeletion

2.1
2.2 Cryptographic Hash
2.3
2.4
2.4.3 Bloom Filters
2.5 Summary
CONTRIBUTION
DESIGN
3.1 System Overview .
3.1.1 Design Goals
3.1.2 Architecture
3.2 Adversary Model .
3.3 Secure Local Storage
3-4
3.4.1 Assumptions
3.4.3 Revocation .
3.5 Friend Discovery .
3.5.2 Revocation .
3.6 Sharing Process . .
3.6.2 Data Storage
3.6.3 Data Retrieva
3.7 Research Functionali

3.7.1 Creation and
3.7.2 Retrieval and
3.7.3 Termination

ty « o oo
Registration

Participation

O O 0O NN Ul B W R

_oR R R
N R R O

=
W

15
17
17
17
19
19
21
22
22
22
24
28
30
32
33
34
35
35
36
38
42
42
43
44
45

vii

viii

CONTENTS

3.8 Protocol Variants 46
3.9 Summary 47
4 IMPLEMENTATION 49
4.1 The Android Operating System 49
4.1.1 Security Model 49
4.1.2 Cryptographic Libraries 50
4.1.3 Communication Channels 50
4.1.4 SENSOTS 51

4.2 Secure Local Storage 51
4.3 Collecting Sensor Data 52
4.4 SEIVET i i i 54
441 VI-CBF 54

4.5 Friend Discovery 55
4.5.1 Connection Establishment 55
452 Key Agreement 57

4.5.3 Key Derivation 57
4.5.4 Verification 58

4.6 Sharing Process 59
4.6.1 Data Encryption and Storage 59
4.6.2 Data Retrieval and Decryption 61

4.6.3 DataDeletion 62

4.7 Research Functionality 63
4.7.1 Study Creation and Registration 63
4.7.2 Study Retrieval and Participation 66

4.7.3 Study Data Management 67
4.7.4 Study Termination 67

4.8 Protocol Simulator, . 68
4.8.1 Initial Population Generation 68

4.8.2 Network Evolution 69

4.8.3 Sharing Behaviour 71
4.8.4 VI-CBF Parameter Approximation 73

4.9 SUMMATIY oottt 74
5 EVALUATION 75
5.1 Security of Local Storage 75
5.1.1 Confidentiality 75

5.1.2 Integrity and Authenticity 76

513 Conclusion. 76

5.2 Security of Identifiers 76
5.2.1 Implementation Choices 77

522 Openlssues 77

5.3 Security of Remote Storage 82
5.3.1 Honest-but-Curious Server 82

5.3.2 MaliciousUser 85

5.3.3 Malicious Researcher 87

53.4 Conclusion. 88

5.4 Computational Performance 88

iii

iv

5.4.1
5.4.2
5-5
5.5.1
5.5.2

5.6 Summary

Networking Performance

Cryptographic Operations

VI-CBF Operations

Stored Key-Value-Pairs
VI-CBF Transmission Overhead

DISCUSSION AND CONCLUSIONS

DISCUSSION

6.1 Adversary Model,
6.1.1 Active Adversaries
6.1.2 Colluding Adversaries

6.2 FutureWork

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

6.3 Summary

CuckooFilters

Private Information Retrieval

Alternative Security Goals

Metadata Obfuscation
Study Data De-Identification
Distributed /Peer-to-Peer Infrastructure

CONCLUSIONS

APPENDIX
APPENDIX

A.1 VI-CBF Serialization Algorithm
A.2 Source Code and Raw Data

CONTENTS

ix

LIST OF FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Figure 16
Figure 17

Figure 18
Figure 19
Figure 20

Figure 21

Bloom Filter with two inserted items (x and y)

and one false positive query (z). Source: [98,
Fig.1(@)] 11
Counting Bloom Filter with two inserted items
(xand y) and one false positive query (z). Source:
[08, Fig.1(b)] 12
Variable-Increment Counting Bloom Filter with

two inserted items (x and y) and one true neg-

ative query (z). Source: [98, Fig. 1(c)] 13
High-level overview of the system 20
Identifier generation using random oracle h and

two shared secrets kag and ctrag 24
Revocation authenticator generation, using ran-

dom oracle h and shared secrets 28
CTR mode illustration (simplified), using block

cipherEnc 30
HMAC illustration, using hash functionh . . . 31
Relationship and key establishment 34
Data encryption and storage on server 36
Data retrieval and decryption 40
Recording and saving a GPS track 53

Friend connection establishment, key exchange
and -verification in proof of concept implemen-

tation o 56
High-level overview of the implementation of

the sharing protocol 60
Selecting recipient(s), description and granu-
larity for data sharing 61
Study creation, join, and data inspection 64
Example degree distribution in a scale-free net-
work with 100000 nodes, on a log-log scale . . 69
Development of the friend degree distribution

over time (100000 initial users) 70
Development of the user count over time (100 000
initial users) L. 71
Probability distribution of sharing data n steps

after lastshare 72

Overview of processing time for Variable-Increment
Counting Bloom Filter (VI-CBF) inserts in proof

of concept (Java) implementation for different

hash function numbers (k) and slot counts (m)
(results in ms, 10000 samples) 94

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

List of Figures

Overview of processing time for true-positive
VI-CBF queries in proof of concept (Java) imple-
mentation for different hash function numbers

(k) and slot counts (m) (results in ms, 10000
samples, VI-CBF with 10000 entries) 96
Overview of processing time for false positive

and true negative VI-CBF queries in proof of
concept (Java) implementation for different hash
function numbers (k) and slot counts (m) (re-

sults in ms, 10000 samples, VI-CBF with 10000
entries) Lo 97
Overview of processing time to serialize a VI-CBF
with 10 000 entries in proof of concept (Python)
implementation for different hash function num-
bers (k) and slot counts (m) (results in ms, 1 000
samples, no compression) 98
Median processing time required to compress
serialized VI-CBF with 10000 entries in proof of
concept (Python) implementation for different

hash function numbers (k) and slot counts (m)
(results in ms, 1000 samples, DEFLATE com-
pression) L. 99
Number of non-orphaned records at different
steps of the simulation (100000 initial users,

200 steps, 1000 samples) 102
Number of non-orphaned records at different
steps of the simulation (1000 initial users, 200
steps, 1000 samples, static network) 103
Median number of Type I and Type II orphans
(100000 initial users, 200 steps, 1000 samples,
Protocol 1) 104
Number of Type I orphans at different steps of

the simulation (100 000 initial users, 200 steps,

1000 samples, Protocol 1) 105
Number of Type II orphans at different steps of

the simulation (100 000 initial users, 200 steps,

1000 samples, Protocol 1) 106
Median number of Type I and Type 1I orphans
(1000 initial users, 200 steps, 1000 samples, Pro-
tocol1) 107
Uncompressed (u) and compressed (c) size in

MB and number of slots m of optimal VI-CBF
containing only median number of orphans (100 000
initial users, False-Positive-Rate (FPR) = 0.01 +
0.0001, number of hash functions k = 5, 1000
samples, values after step 9o approximated) . 108

el

Xii

List of Figures

Figure 33

Figure 34

Figure 35

Number of slots (m) and compressed (c) size in
MB of optimal VI-CBF containing only median
number of orphans for different FPRs (100000
initial users, Protocol 1, 1000 samples)
Number of slots (m) and compressed (c) size
in MB of optimal VI-CBF containing only me-
dian number of non-orphans for different FPRs
(100000 initial users, 1000 samples)
Comparison of serialization size with smart and

109

110

full strategy, with and without compression (10 000

slots, 3 hash functions)

126

LIST OF TABLES

Table 1 Sequence of events leading to desynchronization 81

Table 2 Overview of processing time for operations in
proof of concept implementation (results in ms,
10000 samples) 92

Table 3 Overview of required cryptographic operations
for Protocol 1 (P1)and 2 (P2) 93

Table 4 Software and dataset licenses 128

ACRONYMS

ABE Attribute-Based Encryption

ADB Android Debugging Bridge

AE Authenticated Encryption

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

API Application Programming Interface

BF Bloom Filter

CA Certification Authority

CBC Cipher-Block Chaining

CBF Counting Bloom Filter

CFNG Collision-Free Number Generator

CTR Counter

DH Diffie-Hellman

DHT Distributed Hashtable

DNS Domain Name System

DRBG Deterministic Random Bit Generator

DRM Digital Rights Management

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

FPR False-Positive-Rate

GCM Galois/Counter Mode

HKDF HMAC-Based Extract-and-Expand Key Derivation
Function

HMAC Hash-Based Message Authentication Code

IKEv2 Internet Key Exchange, Version 2

v Initialization Vector

xiii

Xiv

ACRONYMS

JCA
KBKDF
KDF
MAC
MitM
NFC
NIST
OCB
OOB
OSN
P2P
PBKDF2
PCS
PIR
PPT
PRG
PRNG
PSI

QR
RSA
RIT
SHA
TCP
TLS
TTP

Ul
VI-CBF
VoIP
XOR

Java Cryptography Architecture
Key-Based Key Derivation Function

Key Derivation Function

Message Authentication Code
Man-in-the-Middle

Near-Field Communication

National Institute of Standards and Technology
Offset Codebook

out-of-band

Online Social Network

Peer-to-Peer

Password-Based Key Derivation Function 2
Post-Compromise Security

Private Information Retrieval

Probabilistic Polynomial Time
Pseudo-Random Generator
Pseudo-Random Number Generator
Private Set Intersection

Quick Response

Rivest, Shamir, Adleman

Round-Trip Time

Secure Hash Algorithm

Transmission Control Protocol

Transport Layer Security

Trusted Third Party

User Interface

Variable-Increment Counting Bloom Filter
Voice over IP

eXclusive OR

Part I

INTRODUCTION

The first chapter of this part gives an introduction and a
motivation to this thesis, followed by a chapter present-
ing related work and important concepts from the area of
private information sharing.

[

INTRODUCTION

With the ongoing rise in mobile computing performance and the de-
creasing cost of hardware, wearable sensors have passed from being
professional medical equipment into the realm of mainstream con-
sumer products. While early wearable devices like the Pulsar Calcu-
lator Watch' (1970) cost over 1800 USD adjusted for inflation,* a high-
end wearable with GPS tracking, heart rate monitoring, and calory
and step counters costs less than 300 USD today.3

This proliferation of affordable wearable sensors has led to the so-
called gquantified self movement, whose adherents attempt to quan-
tify their bodies and fitness over time, using smartwatches, fitness
wristbands, smart scales, and even air quality sensors and genome
sequencing services. The devices and services necessary to collect
and interpret this wealth of data are offered by commercial entities,
which earn money from device sales, service subscriptions, and/or
advertising. These services usually have a strong social component,
with users competing with their friends and checking each others
progress. Proponents argue that this leads to a better understanding
of their bodies and a healthier lifestyle.

Over the last years, the quantified self has been studied by differ-
ent scientific disciplines. Computer scientists investigated it as a tool
for disease prevention [5], crowdsourced health research [107, 109]
and personalized medicine [58, 106, 108], while the social sciences
examined the inherent gamification and surveillance elements [116].
However, the collection of health data raises questions of privacy, for
both participants and, in the case of genome sequencing, their rela-
tives [62, 99].

In her PhD thesis [95], Raynes-Goldie distinguishes two forms of
privacy for online social networks: social privacy, which encompasses
privacy towards people (friends, neighbors, employers, stalkers, ...),
and institutional privacy, which is privacy towards the service provider.

While most services offer their users controls for social privacy, insti-
tutional privacy is rarely adressed by existing quantified self solutions.
As Raynes-Goldie puts it (using the example of Facebook), ,Face-
book’s privacy settings are entirely focused on the control of infor-

See http://www.vintagecalculators.com/html/pulsar_calculator_watchl.html
accessed 18th of march, 2016

300 USD in 1970, inflation adjustment calculated using http://data.bls.gov/
cgi-bin/cpicalc.pl, accessed 18th of march, 2016

Example: Fitbit Surge for 250 USD (https://www.fitbit.com/surge), or Garmin
Forerunner 230 for 250 USD (https://buy.garmin.com/en-US/US/into-sports/
running/forerunner-230/prod523893.html). Accessed 18th of march, 2016

http://www.vintagecalculators.com/html/pulsar_calculator_watch1.html
http://data.bls.gov/cgi-bin/cpicalc.pl
http://data.bls.gov/cgi-bin/cpicalc.pl
https://www.fitbit.com/surge
https://buy.garmin.com/en-US/US/into-sports/running/forerunner-230/prod523893.html
https://buy.garmin.com/en-US/US/into-sports/running/forerunner-230/prod523893.html

INTRODUCTION

mation with respect to other people (social privacy), while providing
users no means to prevent information from being shared with Face-
book Inc. (institutional privacy)” [95, pp. 105].

The same problem applies to existing health tracking services, which
we will discuss next.

1.1 PRIVACY ISSUES IN HEALTH TRACKING SERVICES

A large number of applications currently offer fitness or health track-
ing features. For example, Runkeepert allows runners to track their
runs and create personalized fitness plans, while Fitbit> sells special-
ized peripherals that allow users to track their step count, calories,
and even sleep quality.

These systems usually consist of a combination of a smartphone
application (an app) and a web service, which is used to synchronize
data between devices and provide social features like sharing data
with friends or participating in challenges. The data is linked with an
account, which is in turn linked to an email address of the user.

Some of the uploaded data is sensitive information. For example,
knowing the sleeping habits of people may be interesting to burglars,
and knowing the routes a person is regularly running may be valu-
able information for a stalker. Additionally, advertising companies
could use the information to target users with ads they consider rel-
evant: If a user has created a weight-loss training plan, she may be
interested in diet products.

In the current systems, all uploaded data is available to the service
provider (no institutional privacy is provided). Thus, the (mis-)use
of uploaded data cannot be prevented by the user, she has to trust
the service provider not to misuse the data and to ensure sufficient
protection against unauthorized access.

The privacy policy of these services can also shed light on their use
of the provided information. For example, at the time of writing, the
privacy policy of Runkeeper® states:

This Privacy Policy shall not apply to any unsolicited in-
formation you provide to us. This includes [...] all User
Content, as that term is defined in our Terms of Use, that
by its nature is accessible or intended to be accessible to
other users of the Services. All such Unsolicited Informa-
tion shall be deemed to be non-confidential and we shall
be free to reproduce, use, disclose, and distribute such
Unsolicited Information to others without limitation or at-
tribution.

4 See https://runkeeper.com/, accessed 18th of march, 2016
5 See https://fitbit.com/, accessed 18th of march, 2016
6 See https://runkeeper.com/privacypolicy, accessed 18th of march, 2016

https://runkeeper.com/
https://fitbit.com/
https://runkeeper.com/privacypolicy

1.2 CONTRIBUTIONS

The company reserves the right to do almost anything with the data
that is uploaded to its servers, as long as the data is “intended to be
accessible to other users”. This is the case if the data is being shared
with friends. Similar clauses exist in the privacy policies of other
companies. The user has no way of preventing this use, short of not
using the service. As is the case for many other internet companies
offering free services, the user pays with her data.

However, a study by TNS Emnid [45] recently found that 51% of
German users would be willing to pay a monthly fee in return for
better data protection. 87% of these 51% would be willing to pay 5 €
or more per month. This indicates an untapped market for privacy-
focussed applications, as long as they offer the same features and ease
of use as existing solutions. This would require a design that guar-
antees data privacy not only through company policy, but through
strong cryptography, in order to be trustworthy.

Additionally, research has shown that metadata can be as critical
as content. For example, De Montoye et al. [35] were able to uniquely
identify 90% of credit card users using 4 or less known data points
in a pseudonymized dataset of credit card transactions. While these
results are not immediately applicable to a health data scenario, they
show the importance of considering metadata in a system design.
Consequently, any privacy-preserving application should also strive
to minimize the metadata available to all parties.

1.2 CONTRIBUTIONS

The main goal of this thesis is the design, implementation and evalu-
ation of a privacy-preserving mobile health and fitness data sharing
system. The contributions of this thesis are:

* Design of a privacy-preserving identifier generation scheme

* Specification of a secure data sharing system that does not re-
quire any Trusted Third Parties (TTPs)

¢ Implementation of a proof-of-concept Android application us-
ing the designed system

* Formal and informal security evaluations of the system
¢ Performance evaluation in a simulated large-scale deployment

¢ Discussion of the advantages and issues of the proposed solu-
tion

Our results show that the system can ensure the confidentiality of the
shared data and hide most of the metadata normally associated with

Margin notes like
this will give
additional
information

INTRODUCTION

data sharing. However, this comes at the price of a potentially sig-
nificant overhead in the amount of transmitted data for large deploy-
ments (> 100000 users). Further work is required to bring the trans-
mission overhead into manageable regions for large deployments.

1.3 OUTLINE

This document is structured in four major parts: An INTRODUCTION,
followed by the conTRiBUTION and finally the DISCUSSION AND CON-
CLUSION, with the APPENDIX containing additional information and
the bibliography.

The first part states and motivates the problem in Chapter 1, fol-
lowed by an overview of related work and important concepts in
Chapter 2. The second part introduces the design of the system in
Chapter 3 and describes the implementation in Chapter 4. Finally,
it contains the evaluation in Chapter 5. The third part contains a
discussion of the system and an overview of possible future work
in Chapter 6, followed by the conclusion of the thesis in Chapter 7.
Finally, the fourth part contains the Appendix and Bibliography.

RELATED WORK

In this section, we give an overview of related work. We will first
discuss a number of existing proposals for privacy-preserving Online
Social Networks (OSNs). Afterwards, we will discuss a number of
building blocks that can be used to build privacy-preserving OSNs:
Cryptographic hash functions, authenticated encryption to ensure
confidentiality and authenticity of data, and techniques for privacy
information retrieval.

2.1 PRIVACY-PRESERVING OSNS

The past ten years have seen a number of works on privacy-preserving
OSNs. Generally, they can be divided into centralized and decentralized
approaches, where the centralized proposals often attempt to add
privacy features to existing social networks. We will give a brief
overview over some of the proposals.

Guha et al. propose NOYB [56], which adds privacy to existing
OSNs like Facebook by substituting private information in the user
profile with the information of others, a process that can only be
reversed by friends of the user who are in possession of a specific
key. This approach was chosen over regular cryptography because it
is hard to detect and therefore hard to prevent for the OSN provider.
However, it does not protect metadata (who is friends with whom?) or
communication content.

Starin et al. designed Persona [2], using Attribute-Based Encryp-
tion (ABE) [16] to protect the data of users while still allowing users
to encrypt data for friends of their friends. This is especially useful
for comment features, where a comment should be readable to all
friends of the user who posted the original entry. However, ABE is
computationally expensive, and the system does not specifically at-
tempt to hide metadata, which is one of our goals.

Cutillo et al. propose Safebook [28, 29], a distributed (peer-to-peer)
social network. Data is mirrored on the machines of close friends,
and is encrypted unless the user chooses to make it public. However,
the design requires a trusted identification service as a Trusted Third
Party (TTP).

Finally, Sun et al. propose a system [105] for privacy-preserving
OSNs that offers an efficient method to revoke access for certain users
once they are no longer trusted. They use Identity-Based Cryptogra-
phy (1BC) [19], broadcast encryption [50], and searchable public-key
encryption [20]. In order to achieve this, it uses a trusted credential

ABE allows efficient
encryption to all
users with a specific
attribute, like
friends with Alice”

In this thesis, the
term hash function
always refers to
cryptographic hash
functions

More properties of
hash functions are

discussed by
Rogaway et al. in

[97]

This is also known
as diffusion

RELATED WORK

authority as a TTP, which we would like to avoid, as this presents a
single point of failure.

This concludes our brief overview on privacy-preserving OSN pro-
posals. None of the proposed systems offer an efficient method for
privacy-preserving data sharing with minimal metadata.

2.2 CRYPTOGRAPHIC HASH FUNCTIONS

Cryptographic hash functions (usually denoted with the letter h) are
widely used in many cryptographic applications, from message au-
thentication [8, 68] to key derivation functions [67] and Pseudo-Random
Generators (PRGs) [4].
They take an input of an arbitrary length and map it to a fixed-
length output:
h({0,1}") — {0, 1}"

We are interested in four major properties of hash functions:
1. Efficiency: They are fast to compute

2. Preimage resistance (cf. [97, § 3.1]): They are non-invertible (i.e.
given only a hash h(x), it is infeasible to find x)

3. Collision-resistance (cf. [97, § 3.3]): It is infeasible to generate two
different messages with the same hash value (i.e. m; # m;, but
h(m7) =h(mz))

4. Avalanche effect: Changing one bit of the input value will change,
on average, half of the bits of the output

In our case, we are interested in one additional property: Their out-
put looks random if the input is not known. While the formal definition
of (cryptographic) hash functions does not include this property, real-
world hash functions like the Secure Hash Algorithm (SHA) family
[53] fulfill this property (with some limitations).

Notably, the avalanche effect combined with the pseudorandom-
ness of the output ensures that hashing two related values (e.g. the
integers 1 and 2) produces output that looks unrelated if the input
values are not known. This will be relevant later in our design.

2.3 AUTHENTICATED ENCRYPTION

Traditional encryption algorithms like the Advanced Encryption Stan-
dard (AES) [30] in a normal mode of operation like Cipher-Block
Chaining (CBC) or the Rivest, Shamir, Adleman (RSA) system [96]
offer encryption, but no authentication of the data. This allows an
adversary to modify the ciphertext without being detected, unless

2.4 INFORMATION RETRIEVAL

the encrypted data is protected using a message authentication al-
gorithm like the Hash-Based Message Authentication Code (HMAC)
system [8].

In recent years, a new paradigm called Authenticated Encryption
(AE) (or sometimes Authenticated Encryption with Associated Data
(AEAD)) has gained popularity. AE algorithms combine the encryption
and authentication of the data, thereby both increasing the efficiency
and decreasing the complexity of using cryptography as a developer.

There are a number of AE algorithms [9, 69, 115], but the most pop-
ular one is the Galois/Counter Mode (GCM) [81]. GCM (usually used
with AES) internally uses a regular Counter (CTR) mode to perform
the encryption, but also calculates an authentication fag at the same
time. While it isn’t as fast as some of its competitors (most notably
Offset Codebook (OCB) [69]), it is free from any known patents and
still provides good performance and security.

2.4 INFORMATION RETRIEVAL

Encrypting data solves only half of the problem: We also need to be
able to retrieve the data from a server in a privacy-preserving way.
In this section, we will first discuss private information retrieval and
private set intersection and motivate why we won’t be using them,
before moving on to bloom filters, which will play an important role
in our design.

2.4.1 Private Information Retrieval

Traditional data retrieval methods work by directly or indirectly re-
questing a certain piece of data from a server. This necessarily im-
plies that the server receives the information which piece of data we
are interested in. This raises privacy concerns, ranging from personal
issues (user has requested information about a certain illness) to busi-
ness decisions (a high number of queries from one company for cer-
tain stock prices may indicate preparations for a buyout or invest-
ment).

Private Information Retrieval (PIR) tries to solve this problem by
allowing users to privately retrieve data from a server, without the
server knowing which data the user requested. PIR can be divided
into two classes:

1. Information-theoretic PIR, proposed by Chor et al. [25], provides
privacy through the use of multiple, non-colluding servers.

2. Computational PIR (cPIR), proposed by Kushilevitz et al. [71],
achieves privacy through cryptographic guarantees and does
not require multiple servers.

Lower complexity
generally results in
fewer bugs

GCM uses Galois
fields for
authentication,
hence the name

Hypbrid approaches
exist, for example
Devet et al. [37]

10

RELATED WORK

PIR is an active field of research, and is connected to a number of
other fields, like Oblivious Transfer [47, 22] and Collision-Resistant
Hashing [64]. A survey from 2007 listed a number of different cPIR
schemes, based on homomorphic encryption, the ¢-hiding assump-
tion and one-way trapdoor permutations (cf. Ostrovsky et al. [87]).

Efficient cPIR was long thought infeasible (cf. Sion ef al. [104]), but
new cryptographic systems have enabled more efficient approaches.
At the time of writing, the most efficient published cPIR scheme is
called XPIRe. Proposed by Barrier et al. [82], it uses lattice-based
cryptography and achieves a throughput of up to 10 Gbps, depending
on the size of the database (cf. [82, Figure 6]).

However, the user-perceived delay until the data starts arriving
scales with the number of database entries, with a worst-case delay of
100 000 seconds for 100 000 database entries (cf. [82, Figure 7]). While
the best-case delay is only around 4 seconds for the same number
of database entries, the necessary parameters reduce the throughput
considerably.

Generally, PIR scales with the number of database entries, making
it less and less practical the more entries a database contains.

2.4.2 Private Set Intersection

Given two users with two sets of items Si, S,, Private Set Intersec-
tion (PSI) is used to privately compute the intersection S; NS, with-
out one party having to disclose their set to the other party. This
could, for example, be used after a data breach at a company re-
sulted in a large number of unencrypted passwords being published
to the web. Users could determine if their password is in the set of
compromised passwords without disclosing their passwords to any
third party, and without having access to the full password database,
by privately computing the intersection of the set containing their
credentials and the set of compromised credentials. If the resulting
intersection is not empty, their credentials are compromised.

PSI protocols, first proposed by Huberman ef al. [61], are an active
field of research. Existing proposals use RSA [34], oblivious transfer
[92], garbled or oblivious bloom filters [43, 46], or garbled circuits
[60], among other technologies.

Like PIR, all of these protocols introduce a significant overhead in
terms of computation and data transmission. The performance char-
acteristics vary between the different techniques and often depend on
the size of the sets that are to be intersected. A performance evalu-
ation by Pinkas et al. showed the best evaluated protocol to require
the transmission of 78.3 MB over the network, with a computation
time of 13.8 seconds to compute the intersection between two sets
of 2'8 items (cf. [92, Table 5 and 6]). The large overhead makes PSI
unsuitable for a large-scale deployment with large sets, especially on

2.4 INFORMATION RETRIEVAL

Xy Y

1 111

|0|1|0|1J.‘.0|0]A1[0]1]?‘._]&1]0]

1
z

Figure 1: Bloom Filter with two inserted items (x and y) and one false posi-
tive query (z). Source: [98, Fig. 1(a)]

devices with limited capabilities and/or slow networks, like smart-
phones.

2.4.3 Bloom Filters

Bloom Filters (BFs) were originally proposed by Burton H. Bloom [18].
They are a space-efficient data structure that can be used for set mem-
bership queries (i.e. ,is this item in a specific set of items?”). They
may give false positives (i.e. claim that an item is in a set while it is
not), but will never return a false negative.

Bloom filters work by allocating a fixed number m of bits. When
an item is inserted into a bloom filter, it is hashed using k different
hash functions. The resulting hashes are used to derive k positions
within the m-bit-array, and the bits at these positions are set to 1 (see
x and y in Figure 1).

To test if a certain item was inserted into the bloom filter, the same
hashes are computed. If at least one of the k bits indicated by the
hashes is not set to 1, the item cannot have been inserted into the
bloom filter. If all k bits are set to one, the item may have been in-
serted.

Note that bloom filters cannot give a definite statement that an item
has been inserted, as false positives are possible: See the query for z
in Figure 1 for an example: z hashes to three slots that have been
set to 1 when x and y were inserted. This results in the bloom filter
falsely claiming that z has been inserted. The False-Positive-Rate (FPR)
depends on the number of bits, the number of hash functions, and the
number of items that have been inserted into the bloom filter.

Another problem with bloom filters is that they do not allow entries
to be deleted once they have been inserted. Thus, the number of set
bits will never decrease, leading to an ever increasing false positive
rate as more and more bits are set.

2.4.4 Counting Bloom Filters

Counting Bloom Filters (CBFs) improve on regular bloom filters by
also allowing the deletion of items. They were originally proposed
by Fan et al. [49] and work by using m counters instead of m single
bits. When an item is inserted, the k counters determined by the

11

12

In the later parts of
the thesis, the term
bloom filter” will

always refer to a
VI-CBF

Example:
Dy ={2,3},
D4 ={4,5,6,7}, ...

RELATED WORK

X y
+1 +1 +1_4] +1
+1

[oT1ToJ1ToJo2]o]1Jo]1]0]
.., 24

(R (e p

z

Figure 2: Counting Bloom Filter with two inserted items (x and y) and one
false positive query (z). Source: [98, Fig. 1(b)]

hash functions are incremented by one (see Figure 2). Membership
tests check if the respective counters are larger than zero, instead of
checking for a binary 1. Deletion of items from the filter is achieved by
decrementing the adressed counters by one. As illustrated in Figure 2,
false positives are still possible.

As counters require multiple bits, they also require more space than
a regular bloom filter to achieve the same FPR. Additionally, counters
may overflow if too many items are inserted: If 4 bits are used per
counter, the maximum number that can be represented is 1111, =
1510. If enough inserts increment the same counter, it could overflow.
In order to prevent that, counters are never incremented past their
maximum value. However, they are also no longer decremented on
deletions if they have reached their maximum value. Otherwise, false
negatives would become possible.

False negatives are, however, still possible when working with dy-
namic datasets: If a false-positive item is removed from the CBF, a
false negative could later occur. These problems are described in de-
tail by Guo et al. [57].

2.4.5 Variable-Increment Counting Bloom Filters

A Variable-Increment Counting Bloom Filter (VI-CBF) further improves
on CBFs by incrementing the counters by different values, depending
on the value to be inserted into the BF. Originally proposed by Rot-
tenstreich et al. [98], VI-CBFs use two sets of k different hash func-
tions. One family of hash functions determines the counter that is
incremented, the other selects the value by which the counter is incre-
mented. This value is taken from a list D of values.

For D, they propose to use a D sequence, where L = 2! (i.e. Lis a
power of two). Dy is defined as

Dy =[L2L) ={L,L+1,.,2L—1}

The value at position 0 < i < |[Dy| of the Dy sequence can be calcu-
lated as L + 1. Using these values allows us to attempt to reconstruct
which numbers have been added onto a counter, further reducing the
chance of false positives: For example, if we are using D4 =1{4,5,6,7}
and the counter has the value 9, we know that two values have been
inserted into it: a 4 and a 5. If we query for a value that would have

2.5 SUMMARY

X y
+7 +4 +5 5
+5

[of7[o]s]ofofo]o]4]o]s]0]
<o [i

6
z

Figure 3: Variable-Increment Counting Bloom Filter with two inserted items
(x and y) and one true negative query (z). Source: [98, Fig. 1(c)]

incremented this slot by 7, we can thus be sure that it was not inserted
before (see Figure 3).

This strategy decreases the FPR of the VI-CBF, making it more effi-
cient than a regular counting bloom filter. Rottenstreich et al. show
that the VI-CBF will achieve a lower FPR with the same number of bits
as a regular counting bloom filter.

2.5 SUMMARY

In this chapter, we discussed a number of related systems and im-
portant concepts. We discussed existing privacy-preserving OSNs and
briefly described the concept of cryptographic hash functions, authen-
ticated encryption, and several variants of bloom filters. These will
be relevant for our design, which we will motivate, describe and eval-
uate in the next part.

13

Part 11

CONTRIBUTION

The contribution starts with a design chapter, where we
describe the design of the privacy-preserving health data
sharing system. After the design follows the implementa-
tion of a proof of concept on an Android device. The last
chapter concentrates on evaluating the performance of our
system using the proof of concept, simulations, and theo-
retical analysis.

DESIGN

In this chapter, we will motivate and introduce the design of our sys-
tem for privacy-preserving sharing of health and fitness data. We
will start with a high-level overview of the goals and architecture,
followed by defining our adversary model. We will briefly discuss
existing work on securing local data storage, before going into more
detail on the server and the different steps involved in our data shar-
ing protocol.

3.1 SYSTEM OVERVIEW

Before we go into more detail, we will give a high-level overview of
the system we are designing. We will motivate and discuss the design
goals and architecture we have chosen to use.

3.1.1 Design Goals

The term ,privacy-preserving” can have many different meanings,
depending on the context. We need to more precisely define what we
want to achieve. For this purpose, we will be defining a number of
security goals that our system should achieve.

We will be using the definitions introduced by Pfitzmann et al. [90]
and RFC 4949 [102]. Our system should achieve the following goals:

* Confidentiality
,The property that data is not disclosed to system entities unless
they have been authorized to know the data” [102, pp. 94]

* Integrity
,The property that data has not been changed, destroyed, or lost
in an unauthorized or accidental manner” [102, pp. 95]

* Authenticity
, The property of being genuine and able to be verified and be
trusted” [102, pp. 28]

* Availability
,[...] a system is available if it provides services according to the
system design whenever users request them” [102, pp. 30]

* Anonymity against the Server
,Anonymity of a subject from an attackers perspective means
that the attacker cannot sufficiently identify the subject within
a set of subjects, the anonymity set” [9o, § 3]

17

18

Finding a business
model for server
operators and
developers is out of
scope for this thesis

A number of
proposals for making
use of this data exist,
e.g. [5, 58, 106, 107,

108, 109]

DESIGN

* Unlinkability of individual records
,Unlinkability of two or more [records] from an attacker’s per-
spective means that within the system (comprising these and
possibly other [records]), the attacker cannot sufficiently distin-
guish whether these [records] are related or not” [9o, § 4]

We decided to aim for an approach that maximizes privacy and
minimizes the knowledge any system participant has about others.
Notably, we not only aim for data privacy (i.e. keeping the content of
the shared data private), but also metadata privacy (i.e. keeping pri-
vate who communicates with whom - anonymity and unlinkability).

Experience with paradigms like Onion Routing [41] or Mix Net-
works [24, 32] has shown that stronger privacy guarantees usually
imply a higher communication and computation overhead. Part of
the purpose of this thesis is to evaluate what overhead we have to
expect when building a strongly privacy-preserving system.

Note that not all of our security goals can be achieved through
protocol specifications alone. For example, the availability may be
attacked by performing a denial of service attack on the server, which
cannot be ruled out by protocol design.

In order to allow sharing of data, the system needs to support the
following operations in a secure manner:

¢ Setting up relationships between users

Selecting which data to share with which friend

Storing that data in the system
* Retrieving the data from the system
¢ Removing information from the system

* Revoking friendships and associated access rights to data

Additionally, we would like to support making the data available to
researchers. This way, the data can still be used for scientific purposes
instead of being locked away completely, assuming the user consents
to this use of their data (opt-in). This decision is made by the user, and
on a case-by-case basis, giving the users certainty that they always
know by whom and for which purpose their data is used (informed
consent). This research functionality requires four additional features:

* Registering research studies
¢ Joining studies
¢ Submitting data to studies

* Stopping participation or terminating studies

All of these operations should fulfill the security goals defined above.
Now that we have defined the design goals of our system, we will
discuss the architecture of the system.

3.1 SYSTEM OVERVIEW

3.1.2 Architecture

We decided to use a centralized (client-server) architecture instead of
a Peer-to-Peer (P2P) system, as the limitations of mobile devices (e.g.
battery life, processing power, frequent short connectivity outages,
limited internet speeds and traffic quotas) can cause problems for P2P
systems.

We chose to use a key-value-store paradigm for the server. Clients
can store data under a specific key (i.e. an n-bit identifier) using
the STORE(KEY, VALUE) function, and retrieve data using the GET(KEY)
function. They can also delete data by providing a revocation token
using the DELETE(REV) command. If a client attempts to store data
under a key that is already in use, requests data for a key under
which no data has been stored yet, or attempts a deletion with an
invalid revocation token, an error will be returned.

When a new key-value-pair is stored on the server, the key is also
inserted into a Variable-Increment Counting Bloom Filter (VI-CBF) (cf.
Section 2.4.5). Upon request, the VI-CBF is transmitted to the client.
This allows clients to determine if a key is stored at the server (lim-
ited by the False-Positive-Rate (FPR) of the Bloom Filter). The server
also offers some additional functionality to support research studies,
which will be discussed in Section 3.7.

The key-value-store paradigm was chosen because it does not re-
quire user accounts (which would violate unlinkability). It also allows
us to put most of the application logic into the clients, requiring only
a simple server application, which reduces the potential for security
issues on the server.

Connections to the server are secured against eavesdroppers and ac-
tive attackers using a standard transport security protocol like Trans-
port Layer Security (TLS) [39]. This provides confidentiality, integrity
and authenticity during transport to and from the server, and also
serves to authenticate the server to the clients.

Figure 4 shows a high-level overview of the planned protocol flow.
Initially, Alice and Bob communicate directly to perform security-
critical actions like establishing and authenticating shared secrets.
This step will be specified in Section 3.5. They will then collect data,
derive shared identifiers, encrypt the data and upload it. The recipi-
ent will also derive the expected identifier, retrieve the ciphertext, and
decrypt the data. These steps will be described in Section 3.6.

3.1.3 Registration and Authentication

Almost all web services use some form of authentication to prevent
unauthorized access to data. However, authentication almost always
implies linkability and at least pseudonymity, as all actions of an
authenticated user can be linked to that user’s identity.

19

Techniques like
Certificate Pinning
can be used to
increase the security
of the connection.

20

The potential
damage will be
evaluated in detail
in Section 5.3

DESIGN

Alice Server Bob

Est. secrets Est. secrets

Collect data

Derive identifiers

Encrypt data

Store ciphertext Derive identifiers

Retrieve ciphertext

Decrypt data

Save data

Figure 4: High-level overview of the system

There are some systems which allow for anonymous authentication.
For example, Au et al. proposed PERM [1], a scheme for anonymous
authentication which does not require any trusted third party, and
which still allows for the blacklisting of misbehaving users. However,
the solution introduces an overhead in transmitted data and computa-
tion which limits its practicality in a resource-constrained system like
a mobile device. The same is true for other anonymous authentica-
tion systems [75, 101], making them unsuitable for use in our system
until further improvements have reduced the overhead to a manage-
able level.

As regular authentication protocols violate the goal of unlinkabil-
ity and anonymous authentication is currently impractical for mobile
devices, we chose to forego authentication entirely and rely on the en-
cryption of records on the server. As all records are encrypted using
keys known only to authorized devices, the damage from unautho-
rized read-only access to the data is minimal.

3.2 ADVERSARY MODEL

3.2 ADVERSARY MODEL

To define a secure system, we first need to define the capabilities of
the strongest adversary the system is still secure against, and our
assumptions about the technologies and algorithms our system uses.
In our case, we will distinguish three types of adversaries: An honest-
but-curious server, a malicious user, and a malicious researcher.

HONEST-BUT-CURIOUS SERVER An honest-but-curious server ad-
versary will obey the protocol (i.e. it will not deviate from the proto-
col to gain additional information), but will try to find out as much
information as possible from the data it stores, sends and receives. It
can read any data it has access to (as per the protocol), but is com-
putationally bounded (i.e. it cannot break cryptographic algorithms
better than anyone else).

This is equivalent to a malicious server administrator that wants to
invade the privacy of the users without being found out, and thus
limits itself to reading all the data stored on and transmitted to and
from the server.

MALICIOUS USER A malicious user is a user that tries to attack
other users and/or the server. She can interact with the server in any
way, including deviating from the protocol if necessary. She may also
interact with other (adversarial or non-adversarial) users, and is also
computationally bounded.

MALICIOUS RESEARCHER A malicious researcher tries to attack
users of the system. She may, for example, be running a legitimate
study with participating users, but try to deanonymize the users.
She, too, can interact with the server in any way, including deviating
from the protocol, may interact with others, and is computationally
bounded.

OTHER ASSUMPTIONS We assume the user device to be trusted.
This implies that the device will not sabotage our calculations or dis-
close any information to others unless the user chooses to allow it.

Additionally we assume the network connection used by clients to
be anonymous, unlinkable, and confidentiality- and integrity-protected.
The server is authenticated. This can be achieved by using an exist-
ing anonymization technique like Onion Routing [41] combined with
TLS [39] to provide confidentiality, integrity-protection, and authen-
tication of the server. This also implies security against Dolev-Yao-
Attackers [42], as Onion Routing and TLS are secure against them.

We will discuss the impact of deviating from these assumptions
and models in Chapter 6.

21

Dishonest servers
will be considered in
the discussion

Otherwise,
trustworthy
cryptography is
impossible

The widely-deployed
Tor network could
provide onion
routing for this
purpose

22

TrueCrypt is
continued in
projects like TCNext
or VeraCrypt

Data deletion should
be authenticated to
prevent deletion of

other users’ data

DESIGN

3.3 SECURE LOCAL STORAGE

The problem of encrypted data storage has been solved in a num-
ber of ways. Matt Blaze proposed the encrypted file system CFS
[17], which performs all encryption on the file system layer, requir-
ing no explicit support from the applications generating the data.
Manual file encryption is possible using software like PGP/GnuPG
[119] or the recently discontinued TrueCrypt. There are also encrypted
database solutions like SQLCipher that can transparently encrypt re-
lational databases.

Designing our own system for local data encryption is error-prone
and outside the scope of this thesis. We will assume that a system for
secure storage of files on the local device exists. This system will be
used to store the data collected by the system, and all sensitive key
material.

3.4 SECURE UNLINKABLE SHARED IDENTIFIERS

The use of a key-value-store implies that the sender (Alice) has a way
to let the recipient (Bob) know which identifier the data is stored un-
der. Otherwise, Bob would be unable to receive any messages from
Alice. It follows that Bob needs to be able to predict the identifier Al-
ice is going to use. However, predictable identifiers seem to conflict
with the security goal of unlinkability, which requires the identifiers
to seem unrelated to observers.

The solution lies in using secrets shared between Alice and Bob.
The identifier generation system we need should make it possible
for Bob to predict the identifiers Alice is going to use. At the same
time, the resulting identifiers must be unlinkable to anyone not in
possession of the shared secret(s). The system should also support a
method to generate authentication tokens that can be used to authen-
ticate requests to delete data from the server in a privacy-preserving
manner.

The following sections describe how our solution achieves these
goals. First, we are going to describe the assumptions under which
the system operates. Afterwards, we will discuss the identifier gen-
eration procedure. We continue with the revocation authentication
strategy, and conclude with a brief comparison between our solution
and related systems.

3.4.1 Assumptions

Our system operates under the assumption that Alice and Bob share
four secrets in total: Two symmetric cryptographic keys, kag and
kga, and two counters, ctrap and ctrga, initialized to a random
value. These secrets are only known to Alice and Bob.

3.4 SECURE UNLINKABLE SHARED IDENTIFIERS

We also assume that h is a cryptographic (one-way) hash function
whose output is pseudorandom (i.e. the function is deterministic, but
the output is indistinguishable from a random oracle [11]). This func-
tion h is known to everyone using the system, including any adver-
saries.

Before we continue with the specification of the system, we will
give a brief overview about the Random Oracle model, as specified
by Bellare et al. [11]. We will later use this model to prove the security
of our identifier scheme.

THE RANDOM ORACLE MODEL Informally, given an input x €
{0, 1} of arbitrary length, a random oracle O maps x to a uniformly
random output O(x) € {0, 1}™ of length n. If the oracle later receives
the same input again, it will give the same output. This makes it simi-
lar to a (cryptographic) hash function, with the added guarantee that
the output is indistinguishable from random data of the same length
if the input is not known.

A system is secure in the random oracle model if no efficient suc-
cessful attacker with access to the same oracle O (but not the secret
inputs and outputs of the system users) exists. An attacker A is ef-
ficient if it runs in Probabilistic Polynomial Time (PPT) (i.e. trying
out every possible input does not qualify as efficient), and successful
if it breaks the system with non-negligible advantage Adva (i.e. the
probability that it breaks the system is non-negligibly higher than the
probability that it does not). What constitutes a break of the system
depends on the security goals we are trying to achieve.

Note that a random oracle is a theoretical construct, and non-trivial
to achieve in practice. For example, hash functions using the Merkle-
Damgédrd construction [31, 83] cannot be used as random oracles, as
the structure they introduce to the output can be detected using a
length extension attack (cf. Tsudik [113]).

However, it is useful to prove the security of a system under the as-
sumption that a random oracle exists. Once this has been shown, we have
a baseline of security, and our problem has been reduced to finding
a way to implement a random oracle in the real world. For example,
the Sponge construction (used by the designated SHA-3 algorithm
Keccak [15]) was shown to be indistinguishable from a random or-
acle if it uses a random transformation or permutation as its round
function (cf. Bertoni et al. [14]).

In the following evaluations, unless otherwise stated, all adver-

saries must be efficient (run in PPT), and successful with a non-negligible

probability. Using the shared secrets and the random oracle h, we can
now specify our system.

23

{0, 1}™ denotes the
set of all n-bit
strings

Note that this does
not mean that
SHA-3 itself is a
random oracle

24

The reason for
applying h twice
will be explained in
Section 3.4.3

DESIGN

kas | ctras

+1

Figure 5: Identifier generation using random oracle h and two shared secrets
kag and ctrap

3.4.2 Identifier Generation

The identifier generation process is shown in Figure 5. To generate
an identifier idap Bob can predict, Alice will concatenate the shared
key kap and the counter ctrap, applying the random oracle h to the
result twice, as shown in Equation 1.

idag = h(h(kas || ctrag)) (1)

Afterwards, she will increment the counter ctrap and use the incre-
mented value for the next identifier.

The system can also generate random identifiers that are not pre-
dictable to anyone except the generating party. For this, a random
seed value r of n bits is chosen. The identifier id. is then derived by
calculating

idy =h(r) (2)

We will now analyze this system and show a number of desireable
properties. A more detailed analysis will be given in Section 5.2.

For the purpose of this analysis, we will assume h to be a random
oracle. The effects of replacing the random oracle with a real hash
function for the implementation will be discussed in Section 5.2.

PREDICTABILITY FOR RECIPIENT One important property of the
system must be that Bob can predict which identifier Alice is going
to use next, using the secrets he shares with her.

Theorem 1. Given the shared secrets kag and ctrag, Bob can predict
idasg.

Proof (sketch). Bob is in posession of kag and ctrag. To predict the
identifier, Bob calculates idag according to Equation 1. As h will
always return the same output for the same input, Bob will receive
the same identifier as Alice. O

3.4 SECURE UNLINKABLE SHARED IDENTIFIERS

UNLINKABILITY At the same time, we want the generated identi-
fiers to be unlinkable. This means that an adversary who does not
know the shared secrets is unable to determine if two identifiers are
related (e.g. were generated by the same person, are adressed to the
same person, ...). If the identifiers do not have this property, we could
not fulfill the unlinkability goal specified in Section 3.1.1.

Theorem 2. If his a random oracle, the results idag and id/, 5 of two iter-
ations of Equation 1 with the same ka and different ctrap are unlinkable.

Proof (sketch). Assume Theorem 2 does not hold. This implies the ex-
istence of a PPT algorithm A capable of linking idag and id/, 5 with a
non-negligible advantage Adva. This algorithm can be used to build
a PPT distinguisher B that distinguishes the output of h from truly
random data (which is, by definition, unlinkable) in the following
way:

Let O be an oracle that either returns the output of the random
oracle h or truly random data, depending on a hidden variable b &
{0, 1}, where b = 1 means that it uses h, and b = 0 indicates the use of
true random data. The goal of algorithm B is to determine the value
of b (and thereby determine if O contains true random data or the
random oracle h).

Given O, B selects a kap and a ctrap and computes

x1 = O(O(kas || ctrag))
Afterwards, it sets ctr), 5 = ctrag + 1 and computes
x2 = O(O(kas Il ctriyp))

It now passes x1 and x; to A. If A claims that x; and x; are linked
(A(x1,x2) = 1), B claims that h is a random oracle (B(O) = 1). Oth-
erwise (A(x1,x2) = 0), it claims that h produces truly random data
(B(O) =0).

The advantage of B depends on the advantage of A: If b =1, O uses
h. This means that O(O(kag || ctrag)) is equivalent to Equation 1
and is therefor a valid input for attacker A. The advantage of A,
Adva, thus remains unchanged. B will be correct iff A is correct.
This leads to

Pr[B(O)=1|b=1]=0.5+Adva/2
It follows that
Pr[B(O)=0|b=1]=0.5—Adva/2

If b =0, A will return 1 (,,data is linked”) only with a negligible
probability negl(n), as true random data is unlinkable. This will

25

iff stands for ,,if and
only if”

26

The lightning
symbol 4 indicates a
contradiction to our

assumptions

This follows from
Theorem 2, but is
given explicitly for
clarity

DESIGN

lead to B returning 0 (,true random data”) and thereby being right
in all but a negligible number of cases.

This results in the following advantage Advg for B:

Advg = |Pr[B(O)=1]|b=1]—Pr[B(0)=1|b=20]]
=05+ Adva /2 —negl(n)|

Subtracting a negligible amount from a non-negligible amount results
in a non-negligible amount. Since Adva is not negligible, this implies
that Advg isn’t negligible, either. Since A is efficient and a constant
number of uses of O are also efficient, B is efficient.

This means that B can efficiently distinguish h from true random
data with a non-negligible probability. This contradicts our assump-
tion that h is a random oracle (which is, by definition, indistinguish-
able from true random data). %

It follows that the results of Equation 1 must be unlinkable for
different values of ctrag. O

UNPREDICTABILITY FOR OTHERS Also related to unlinkability is
the requirement that no adversary may be able to predict which iden-
tifier we are going to use next. This is covered in the following two
theorems.

Theorem 3. No adversary not in possession of kap and ctrag can predict
idaB. No adversary not in possession of r can predict id..

Proof (sketch). The output of h is indistinguishable from random data
if the input values are not known. This implies that no adversary can
do better than randomly guess idag. Assuming a fixed length of n
bits for idag, this gives the adversary a chance of 1/2™ to guess the
identifier correctly. Anything else would contradict the assumption
that h is a random oracle.

The proof for id, is analogous.]

Theorem 4. No adversary knowing the used identifiers idag,, ..., idaB,,
(generated with ctragp, ..., ctrap + n), but not knowing kap and ctras,
can predict the next identifier, idap =h(h(kag || ctrag +n+1)).

n+1

Proof (sketch). In the literature, Goyal et al. discuss a more general
version of this concept under the name correlated-input security [55].
They propose a number of security definitions based on correlated
input, one of which is the selective correlated-input unpredictability [55,
Def. 6], based on the selective Correlated-Input Predicting (sCI-pred)
experiment.

3.4 SECURE UNLINKABLE SHARED IDENTIFIERS 27

In this experiment, the adversary is given the outputs of the tested
function h for n correlated inputs. It then has to predict the output This is a simplified
of h for the n + Ist correlated input. h is selective correlated-input explanation. For the
unpredictable if no (efficient) adversary can achieve this (with a non- J[CZ 151 li;fel ;zéz]on, check
negligible probability). T
According to Goyal et al., it can be shown that random oracles are
selective correlated-input unpredictable using the techniques used by Bel-
lare et al. in [12, Theorem 5.1]. This proves Theorem 3. O

CONFIDENTIALITY Finally, the system involves secret values which
have to be kept secret to ensure the security guarantees. This means
that we need to make sure our generators do not disclose any infor-
mation about the cryptographic keys used in the system.

Theorem 5. idap does not disclose kap and/or ctrap to any adversary.
Analogously, id, does not disclose .

Proof (sketch). Two approaches can be used to prove this theorem. We
will briefly outline the first before referring to the second, stronger
proof.

Assume Theorem 5 does not hold. This would imply an efficient at-
tacker A with non-negligible advantage that could infer information
about kag and/or ctrap from idag. From this, we could construct
an efficient attacker B on the unlinkability of identifiers that uses the
information about kag/ctrap that A provides to to link the identi-
fiers with non-negligible advantage, violating Theorem 2.

Impagliazzo et al. [63] have proven random oracles to be one-way
for all but polynomially many cases (defined by poly(n)). This leads
to a chance of poly(n)/2™ to invert a random input of length n, which
becomes negligible for sufficiently large n. This result implies that
no PPT attacker can invert h to calculate information about kag or
ctrap from idap with non-negligible probability, confirming Theo-
rem 5. The proof for id, is analogous. O

This matches our intuition, as random oracles are, informally, im-
proved cryptographic hash functions (adding the guarantee of random-
looking output), and cryptographic hash functions have the one-way
property, meaning that they cannot be efficiently inverted. Addition-
ally, random oracles generate their output randomly, independent of
the input they were given. The randomly generated output is in no
other way related to the input data, meaning that it does not contain
any information about the input data that it could leak.

The general concept is described by Goyal el al. as selective correlated-
input one-wayness [55, Def. 5], and can be proven for the random
oracle using the same method used for the selective correlated-input
unpredictability discussed before.

28

DESIGN

kas | ctras

Figure 6: Revocation authenticator generation, using random oracle h and
shared secrets

Now that we have shown our identifier system to be unlinkable
and secure against information leakage (in the random oracle model),
we will proceed with the revocation system.

3.4.3 Revocation

Now that we have a privacy-preserving way to store data, we also
need a method to privately delete data from the server. On the other
hand, we don’t want others to be able to remove our data, so we
require some form of authentication.

In a system using some form of persistent identifiers for users (e.g.
user accounts, public keys, ...), ensuring that only authorized users
can delete a certain record can be achieved by binding the data to
their identities and validating their user credentials. However, our
system does not have any user accounts, as this would violate the un-
linkability goal. Thus, we need to find a way to securely authenticate
deletion requests on a per-object basis.

We solve this problem by using the one-way property of the random
oracle: Since it is impossible to efficiently invert h, Alice can provide
a preimage of idap as proof that she was the one to generate that
identifier. The preimage resistance (cf. Rogaway [97]) of the oracle pre-
vents other from efficiently calculating the preimage, even knowing
the identifier.

Recall that identifiers are generated as h(h(kap || ctrag)). It fol-
lows that Alice can calculate the preimage, her revocation token revasg,
as

revap = h(kasg || ctraB) (3)

(using the value of ctrap used to generate the identifier). The process
is also illustrated in Figure 6. The token can be authenticated by
checking if

h(revap) = idag
This also means that both Alice and Bob have the knowledge needed
to create a revocation token for data shared between them.

3.4 SECURE UNLINKABLE SHARED IDENTIFIERS

For a random identifier id,, only the person generating them knows
the proper preimage: As these identifiers are generated as id, = h(r),
the value r is required to authenticate their deletion. Disclosing the
value r directly (instead of a hash of the value) is not an issue, as it
is random and only used for this one identifier, so its disclosure does
not impact the security or privacy of the system.

We're now going to briefly state the most important characteristics
of this revocation system.

PREDICTABILITY FOR SENDER AND RECIPIENT Alice should be
able to predict the revocation token for data she sends - otherwise,
she could not use the revocation system. This is true for both idas
and id,.

Bob should also be able to revoke data sent directly to him under
idag. As the identifier is specific to Alice sending data to Bob, any
deletion will only affect Alice and Bob.

Theorem 6. Given the shared secret kap and the value of ctrap used to
generate the identifier idaw, both Alice and Bob are able to create a valid
revocation token revap for it.

Proof (sketch). Analogous to Theorem 1, Alice and Bob are in posses-
sion of all required secrets to derive revag. O

UNLINKABILITY Adding the revocation system should not harm
the unlinkability of the scheme. A limited linkability is trivially
shown: revap can be linked to its corresponding idap by comput-
ing h(revap). This is required, as it constitutes the authentication we
need. However, two different revocation tokens, revag and rev) g,
generated from the same kap but different values of ctrag, should
not be linkable.

Theorem 7. If h is a random oracle, the results revap and rev) z of two

iterations of Equation 3 with the same kag and different ctrap are unlink-
able.

Proof. Analogous to proof for Theorem 2. O

UNPREDICTABILITY FOR OTHERS While Alice and Bob should be
able to derive the necessary revocation tokens for their communica-
tion, no one else should, even if they for some reason know the used
identifiers. In the same way, if Alice has generated a random identi-
fier id,, no one except her should be able to revoke it.

Theorem 8. No adversary not in possession of kag and ctrap can derive
a valid revocation token for idag. No adversary not in possession of r can
derive a valid revocation token for id..

29

30

DESIGN

key e,
ctr j
Enc

Data () Output

Figure 7: CTR mode illustration (simplified), using block cipher Enc

Proof (sketch). Deriving revap from idap is equivalent to inverting h,
as

idas = h(h(kasg Il ctrag))
= h(Te\)AB)

= TeVAB = h_1 (idAB)

However, inverting h is not possible, as shown in the proof for The-
orem 5. Thus, the adversary is reduced to random guessing without
knowing kag and ctrag, which does not succeed in PPT with non-
negligible probability.

The proof for id, is analogous. O

CONFIDENTIALITY Finally, disclosing revap should not disclose
kap and/or ctrag, as they are still being used for other identifiers.

Theorem 9. revap does not disclose kap and/or ctrap.
Proof (sketch). Analogous to Theorem 5. O

With this, we have shown a number of important properties of our
scheme. Note that this is not a full security analysis. Further analysis
will be provided in Section 5.2. Next, we are going to take a brief
look at the similarities and differences to other, similar systems.

3.4.4 Comparison with Related Work

The identifier generation scheme has a few similarities with other
algorithms, some of which we will briefly mention here. We will also
motivate why we deviated from their design instead of using these
algorithms.

BLOCK CIPHER CTR-MODE The most obvious similarity is with
the Counter (CTR) mode of operation of block ciphers. Originally
proposed by Diffie and Hellman [40], it turns a block cipher (e.g. AES)

3.4 SECURE UNLINKABLE SHARED IDENTIFIERS

key e message f— s s na s .

A

@ opad & ipad

Figure 8: HMAC illustration, using hash function h

into a stream cipher by encrypting different values of a counter and
using the resulting ciphertext as a key stream to encrypt data using
an eXclusive OR (XOR) operation (denoted by @, cf. Figure 7).

The CTR mode can also be used as a Pseudo-Random Number Gen-
erator (PRNG) by skipping the XOR step and returning the keystream
generated by encrypting the counter. As long as the key and counter
values remain secret and we are using a secure cipher, the data should
be indistinguishable from true random data.

However, we cannot use this to generate our identifiers: While the
values would be predictable to Bob, it does not offer an elegant way to
create revocation tokens without disclosing key and counter. This is a
fundamental limitation of using such a PRNG. Additionally, symmet-
ric ciphers like AES are slightly slower than hash functions, although
the impact would be negligible in a real implementation.

HASH-BASED MESSAGE AUTHENTICATION CODES Hash-Based Mes-

sage Authentication Codes (HMACs), proposed by Bellare et al. [8] and
standardized in RFC 2104 [68], are used to authenticate messages in
cryptographic protocols. They use a shared secret key and a hash
function to create an authentication token for some arbitrary mes-
sage.

The basic construction is using two nested hash functions (cf. Fig-
ure 8): The authentication token t for a message m under key k is
computed as

t=h(k@®opad || h(k®ipad || m))

where opad and ipad are two fixed values used to ensure a high
hamming distance between the two keys.

This construction is more complex than the intuitive h(k || m), as it
prevents a number of attacks based on details of the underlying hash

See, for example, the benchmarks by Crypto++: https://www.cryptopp.com/
benchmarks.html, last visited March 11th, 2016.

31

https://www.cryptopp.com/benchmarks.html
https://www.cryptopp.com/benchmarks.html

32

DESIGN

functions. The most important is the length extension attack, which
would work on all hash functions using the Merkle-Damgard con-
struction [31, 83] (e.g. MD5 and the SHA1 and SHA2 family, but not
SHA3). This attack would allow attackers to append information to a
message and compute a valid authentication token for the new mes-
sage without knowing the secret key (cf. Tsudik [113]). It is prevented
by the two nested hash functions HMAC uses.

However, we do not require resistance against this attack, as we
do not try to authenticate arbitrary messages, but create identifiers
from a fixed-length string of data. An attacker would gain nothing
from a length-extension attack, as all identifiers are computed on the
clients, without using any external inputs. As the inputs to the hash
function have a constant length, the length extension attack also can-
not be used to predict future identifiers. Additionally, computing the
identifiers as a nested hash prevents a trivial length extension attack
on them, as the adversary could only perform a length extension on
the result of the inner hash and not the original input values.

Additionally, we again encounter the problem of keeping the identi-
fiers predictable while at the same time being able to generate a revo-
cation token that the server can verify without knowing the secret key.
We could compute the identifier as idag = h(HMAC(kag,ctras))
and use HMAC(kag,ctrag) as the revocation token. This would al-
low the server to verify the revocation token without knowing the
key and still keep everything predictable for Bob, but the added secu-
rity benefit compared to using a simple nested hash as in Equation 1
would be doubtful.

COLLISION-FREE NUMBER GENERATORS Using Collision-Free Num-

ber Generators (CFNGs), system-wide unique values can be generated.
In [100], Schartner proposes three different types of CENGs with vary-
ing degrees of privacy protection. They have a similar construction
to our system, but use an encryption function with a random key in-
stead of or in addition to a hash function. This means that all three
types of CFNGs have a random component that cannot be predicted
by Bob, making them unsuitable for our use case. Additionally, the
same revocation authentication problem as before applies.

3.5 FRIEND DISCOVERY

Any social application faces the problem of letting users add each
other as friends, which is a prerequisite for sharing data. In our
case, we also need to establish the shared secrets required by the
identifier system. In this section, we will discuss how friendships are
established and deleted in our system.

3.5 FRIEND DISCOVERY

3.5.1 Friendship establishment

Current systems often establish relationships between users by either
matching their address book against a list of registered users, or by
having the user enter an identifier of their friend (eMail, username,
phone number, ...) and matching it against the database of registered
users. These approaches have the advantage of being simple and fast,
but they come at the price of having to disclose both your own and
your friends contact information to the server.

PRIVATE CONTACT DISCOVERY Some schemes for private contact
discovery have been proposed. These schemes are based on a num-
ber of different primitives like Diffie-Hellman [61], Garbled Circuits
[60], Bloom Filters [43, 46] and Oblivious Transfer [92]. However, the
best of these protocols introduces an overhead of multiple seconds
of calculations and multiple megabytes of transmission [92], making
them unsuited for practical use in our scenario.

FRIENDSHIP SETUP Instead, we use a direct method for setting up
friendships in the system: Two users establish a direct connection be-
tween their devices. This connection can use almost any technology -
Bluetooth, wireless networks, Near-Field Communication (NFC), even
optical channels (scanning QR codes) would be possible.

Once a connection has been established, Alice and Bob perform a
key exchange algorithm (e.g. Diffie-Hellman (DH) or Elliptic Curve
Diffie-Hellman (ECDH)) to generate a shared secret secret k (cf. Fig-
ure 9). They then use a Key Derivation Function (KDF) to derive the
two shared secret keys, kag and kga, which are securely stored in
their respective local databases. They also derive and store the start-
ing values of the two counters, ctrag and ctrga, in the same way.

VERIFICATION The resulting counters and keys are verified in a
secure, out-of-band (OOB) channel. This channel could be created
by a number of technologies, including QR Codes, NFC, or even the
manual comparison of fingerprints, as long as the channel is not sus-
ceptible to a Man-in-the-Middle (MitM) attack that could compromise
the data exchange.

The verification itself works by calculating a hash over all derived
values (kap,kga,ctras,ctrga) and comparing the hash with that
computed by the partner. If an active MitM attack has taken place,
the key agreement protocol will have resulted in different secrets and
the hashes will not match. If the hashes do match, an attack can be
practically ruled out. In that case, the generated values are saved to
the database for later use in the protocol.

33

Private contact
discovery is an
instance of the
Private Set
Intersection problem,
cf. Section 2.4.2.

34

DESIGN

Alice Bob
Perform KEx Perform KEx
k k
Perform KDF Perform KDF
kas kpa kas kA
ctras ctrga ctras ctrga
. OOB Comm. .
Verify result Verify result

Result
matches?

Result
matches?

(Error, abort)

Save values to Save values to
Database Database

Figure 9: Relationship and key establishment

DISCUSSION This system has the additional advantage that it does
not involve the server at all, so there is no need to trust the server
with any information for this step. This also means that the server
does not get any explicit information about new friendships being
established in the system.

The disadvantage is that physical proximity is required to establish
a connection between the devices. This increases the difficulty of
using the system. A long-range friendship establishment mechanism
based on, for example, eMail would be possible, but in that case, the
resulting keys could not be trusted until they have been explicitly
authenticated - a classical problem in cryptography.

Another classical cryptographic problem is the problem of revoking
access to data, which is what we are going to discuss next.

3.5.2 Revocation

Being able to share data with friends is only half of the problem - the
other half is being able to stop sharing data.

INTUITIVE APPROACH The intuitive solution is to re-encrypt ev-
erything that the revoked user had access to with a new key and

3.6 SHARING PROCESS

distribute that key to all authorized parties. This involves a lot of
cryptographic operations and scales linearily with the amount of data
to be re-encrypted. It also does not solve the problem that the user
could have made copies of the decrypted data while she still had ac-
cess - solving this problem would be equivalent to solving the Digital
Rights Management (DRM) problem.

In our scheme, the problem is compounded by the fact that the
system relies on downloading and decrypting the data once and then
storing it in Bob’s local database, thereby making it effectively impos-
sible for Alice to regulate access to it. Any attempt to delete the data
relies on the cooperation of Bob.

On the other hand, the scheme makes it very easy for Alice to
prevent Bob from gaining any further information after the revocation:
She simply stops producing encrypted key blocks for Bob.

REVOKING PENDING SHARES As there may still be data Bob has
not retrieved from the server yet, Alice will check the VI-CBF for all
encrypted key blocks she has uploaded for Bob, and delete all that are
still on the server (i.e. have not yet been downloaded by Bob). She
will perform this process in reverse order, i.e. start with the newest
idap and work her way backwards. As soon as she finds the first
identifier that is no longer present on the server, she stops, as this
indicates that Bob has downloaded all previous key blocks.

DELETING RETRIEVED DATA In that process, she can derive the
current value of Bobs ctrap and thereby the next identifier Bob will
look for on the server. She can then leave a special message under
that identifier, encrypted with ka g using an authenticated encryption
mode, instructing Bob’s client to delete all history associated with
Alice.

Assuming Bob’s client is honest, it will see the message and per-
form the deletion as requested. However, deletion cannot be guaran-
teed, as Bob may be using a modified client, may have made backups
of the database, or even screenshots of Alice’s shared data. Thus,
privacy for previously shared data cannot be guaranteed.

3.6 SHARING PROCESS
Now that we have established the shared secrets required for our pro-

tocol, we can start sharing data between users. This section specifies
the process for sharing, retrieving and deleting data on the server.

3.6.1 Data Selection

Data can be shared individually, and with a granularity decided by
the user. For example, a user may decide to only share their step

35

36

DESIGN
(Start)
............. T o l..........................er.l.cs%.pﬁ.r..CIatacl
Key Generator Get Data d PRNG

STORE(cd,idq) idq = hash(r)
GENERATE-ID cap = Enc(kas, x)
idAB STORE(idAB,CAB)

For each recipient B

Figure 10: Data encryption and storage on server

count rounded to the closest multiple of 1000, or only share the dis-
tance and time of a run (but not the GPS coordinates). The available
granularities are decided by the implementation and may vary across
different data types.

3.6.2 Data Storage

Once Alice decides to share a piece of data with Bob, it needs to be
securely stored on the server. We will first discuss the case of sharing
data with one specific user. Later, we will expand the process to
allow for sharing with multiple users. The process is illustrated in
Figure 10.

At this point, Alice already has two shared secrets kag, kga with
Bob, established during setup of the sharing relationship. She also
has a piece of data, d, which she wants to share. d can be anything,
from a simple integer value (e.g. a step count) to a complex serial-
ized data structure (e.g. a full GPS track of a training run). d also
contains a header which identifies the type of data it describes, and
other metadata about the values enclosed in it.

DATA BLOCK GENERATION Alice will now generate a new, ran-
dom symmetric key kq and use it to generate an encrypted data block

3.6 SHARING PROCESS

cq containing the data d we want to share. The data is encrypted us-
ing a symmetric cipher in an Authenticated Encryption (AE) mode (cf.
Section 2.3), for example the Advanced Encryption Standard (AES) in
Galois/Counter Mode (GCM) [81]. She receives the data block cg4:

kg = KGen(1M)
cq = Enc(kg, d)

She now derives a random identifier idgq for the data, as defined
in Section 3.4.2 and stores the associated revocation token in her
database.

KEY BLOCK GENERATION Next, Alice needs to transmit the iden-
tifier and key for the data block to Bob. In order to do that, she
creates a key block mp for Bob, stating the identifier of the data and
the symmetric key that can be used to decrypt it:

mp = (idgq Il kq)

This key block is now symmetrically encrypted with the key kag in
an AE mode like GCM, using the current value of ctrag plus a random
nonce as Initialization Vector (Iv). This ensures that the message can
only be decrypted if the recipient is using the same counter value.
This is an additional security feature against replay attacks, which
will be discussed further in Section 6.1.1. The encryption results in

CAB-

T« {0, 11"

CAB = EnC(kAB,mB,IV == (CtTAB || T))

SERVER STORAGE She now uses the shared secrets kag and ctrapg
to derive the next identifier idag Bob expects her to use, as per Sec-
tion 3.4.2.

Now, the two pieces of data can be stored on the server with their
respective identifiers (including the random IV component 7, as it is
required to decrypt the key block):

STORE(idg,cq)

STORE(idaB,T |l cAB)

Alice then stores the old ctrap in her local database, associated
with the piece of data she shared. This allows her to derive the re-
vocation token at a later point, if necessary. She also stores the incre-
mented ctrap for use in the next sharing operation.

MULTIPLE RECIPIENTS This scheme can be trivially extended to
facilitate sharing with multiple friends: Alice simply repeats the steps
she performed for Bob for all other friends, using their respective

37

AES in an AE mode
like GCM provides
Confidentiality,
Integrity and
Authenticity of the
data using one key

KGen(1™) indicates
the generation of a
new cryptographic
key with security
parameter n

GCM supports 1Vs
of arbitrary length

38

The server gains the
knowledge that a
certain value has

been retrieved, and
nothing else

DESIGN

keys and counters, and re-using the existing cq and idg4. In the end,
she will upload 1+ n key-value-pairs: the encrypted data, and one
encrypted set of key and identifier for each of the n friends the data
is shared with.

If Bob wants to share data with Alice, he performs the same proto-
col, using kg and ctrga instead of kap and ctrag.

3.6.3 Data Retrieval

Now that Alice has uploaded data to the server, Bob needs to retrieve
it. This poses a series of problems: Because there are no user accounts,
the server does not know which user a certain shared piece of data
is destined for. This is, in fact, a requirement for the system, because
otherwise we would not achieve the goal of unlinkability. However,
this means that the server cannot actively notify the recipient about
the new piece of data (push-principle). Instead, the recipient needs to
periodically poll the server to find out if new data is available (pull-
principle).

That leaves us with another problem: With overwhelming probabil-
ity, Bob will be the only person interested in the identifier idag. But
Bob does not know if Alice has uploaded anything under that identi-
fier yet, which means that he needs to repeatedly query the server for
that identifier until Alice, at some point, uploads some data under
it. However, idap does not change in the meantime, which means
that Bob would repeatedly send the same identifier to the server - an
identifier unique to him. This violates the unlinkability property, as
it would allow the server to link his sessions.

PRIVATE DATA RETRIEVAL Intuitively, this leaves us with the prob-
lem of privately retrieving data from a server without the server
knowing which data we are interested in. This problem is called the
Private Information Retrieval (PIR) problem, and some approaches
have been discussed in Section 2.4.1. They all have one thing in com-
mon: The required computations and/or data transmission is imprac-
tical for a mobile device.

However, we do not need perfect PIR for our application. The server
is allowed to receive idag, but he may only see it once: When we
successfully retrieve the data stored under that key. Afterwards, we
will never use the same key again, and since the keys themselves are
unlinkable, it does not give the server any significant information.
This detail intuitively changes our problem from PIR to Private Set
Intersection (PSI), as we only need to know if idag is in the set of
uploaded keys.

PRIVATE SET INTERSECTION The general idea of PSI is described
in Section 2.4.2. It can be achieved with much lower overhead than

3.6 SHARING PROCESS

PIR, but the existing solutions still have a high overhead. To the best
of our knowledge, the best published PSI protocol was proposed by
Pinkas et al. [92] and achieves a communication complexity of 78.3
MB and a runtime of 4.9 seconds to compute the intersection between
two sets of 23 elements (cf. [92, Table 6 and 8]), with the runtime
increasing to 77.5 seconds for 2'® elements over a HSDPA mobile
internet connection (cf. [92, Table 7]).

In our case, the sets would be asymmetric: The set of the server
may contain many thousand or even millions of entries, while the set
of the client depends on the number of friends and will most likely
rarely exceed 100 entries. Additionally, the security requirements of
PSI are stricter than necessary for our use case: We only require that
the server does not learn about the set of the client, while PSI re-
quires that the client does not learn anything about the set of the
server, aside from the intersection with its own set. In our case, no
harm would come from the client knowing the identifiers stored on
the server - all data is encrypted and the identifiers themselves are
unlinkable. Accordingly, the overhead of using a PSI scheme is not
justified for our use case.

PRIVATE PRESENCE CHECKS Instead, we require a method for the
server to provide the client with the list of uploaded identifiers. The
intuitive solution would be for the server to send a list of all identi-
fiers to the client. However, this requires a lot of network commu-
nication, as transmitting t n-bit keys requires t * n bits of network
traffic.

Instead, we use a data structure that allows us to represent the set
of uploaded identifiers in a more compact manner: A bloom filter.
Bloom filters are described in Section 2.4. They provide a more com-
pact representation of the list of keys on the server, at the price of
having a small FPR. We use a VI-CBF (cf. Section 2.4.5) instead of a
regular bloom filter, as it offers two improvements: A lower FPR for
the same size, and the ability to remove entries without re-generating
the whole bloom filter.

As described in Section 3.1.2, the server maintains a VI-CBF of all
keys that have been uploaded to it. Upon request, it will provide this
bloom filter to clients, which can then use it to privately check for the
presence of a certain key on the server.

KEY BLOCK RETRIEVAL The full process of retrieving new data
from the server is illustrated in Figure 11. When Bob wants to check
if a new piece of data is available, he requests the current VI-CBF from
the server. He can then compute the expected identifier idag Alice
would use from the shared secrets, as defined in Section 3.4.2.
Afterwards, he queries the VI-CBF to find out if the server has any
data stored under that key: If the key is not in the VI-CBF, he can be

39

Sending the sets in
the clear (without
any privacy) would
require 2 MB

40

DESIGN

(Start)

GENERATE-ID Split into idg, ka
|\
idas idg kq
Retrieve VI-CBF GET(idq)
No idap € VI-CBF Cd

Yes

(Database g) GET(idAB) Dec(kq, cq) [€

kas CAB DELETE-ON-SERVER

Dec(kas, caAB), — (Data d)

Figure 11: Data retrieval and decryption

certain that Alice has not uploaded any data under that key. If the
VI-CBF contains ida g, Bob can send a request to the server to retrieve
the associated data.

(rllca) = GeT(idaB)

DATA BLOCK RETRIEVAL Assuming the VI-CBF did not return a
false positive on the query, Bob will have received c g from the server.
He can now decrypt it using kap, reconstructing the 1Iv from the
current value of ctrap and the random component r.

(ida Il ka) = Dec(kaB,caB, IV = (ctrag || 1))

Since both id4 and kg have a fixed length that is known to Bob, he
can separate identifier and key and use the identifier to retrieve the
encrypted data:

cq = GeT(idq)

The retrieved data is then decrypted using kq:
d = Dec(kg,cq)

The decrypted data can be inserted into Bob’s local database and dis-
played to him. After the data has been successfully retrieved and de-

3.6 SHARING PROCESS

crypted, cap is deleted from the server (see Section 3.6.4) and ctrap
incremented.

DECRYPTION FAILURE HANDLING A decryption failure can have
a number of different reasons. The data could have been damaged on
the server, in which case the authentication check of the AE algorithm
would fail. It could also have been maliciously tampered with, which
would also result in an authentication failure. Finally, although un-
likely, a collision may have occured, and the data may be destined for
someone else, in which case we cannot decrypt it as we do not have
the key. These three cases are indistinguishable for the client.

There is no straightforward solution to this problem. In case of an
identifier collision, our friend may upload data under that identifier
at a later date, or she may have already tried and failed to upload
data and used the next identifier. If the data was damaged or tam-
pered with, it is unlikely that we will receive an undamaged copy by
querying the server again.

We solve this problem by ignoring the block and moving on to
the next identifier. If the problem was indeed a collision, this means
that we may miss one share by our friend. If the data was damaged
or tampered with, we will also have missed one message. However,
the alternative (attempting to retrieve the data again at a later point)
would allow an adversary to directly influence our behaviour, making
it easier to re-identify us later or perform other attacks. Additionally,
there is no guarantee that we would ever receive a non-broken copy
of the data. Thus, simply ignoring the identifier and moving on is the
best decision in the majority of cases.

FALSE POSITIVE HANDLING With a certain probability (depend-
ing on the number of entries and the parameters of the VI-CBF), Bob
will have received a false positive from the VI-CBF. In this case, the
server returns an error. In order to avoid sending further false posi-
tive queries, Bob will now locally remember the state of the relevant
counters and, when checking a new VI-CBF, only send a new query if
at least one of the counters has changed and the key has still plausi-
bly been inserted into the CBF (i.e. querying the bloom filter for the
key still returns true).

There remains a very small chance that this will result in a situation
where a newly inserted key would not be detected: If a query for the
key has returned a false positive once, another key has been removed
from the bloom filter which decremented all relevant counters by the
amount the correct key would increment them, and the correct key
was inserted afterwards.

This would result in a bloom filter with the same counter values,
thereby triggering the false positive cache. While this situation is ex-
tremely unlikely, it could be worked around by periodically (e.g. once

41

42

AES-GCM in
particular becomes
insecure when
re-using key and IV

Although we are
discussing research
studies here, the
same techniques can
be used for any
similar scenario in
other use cases.

DESIGN

every day or every week) resending GET-queries which are assumed
to be a false positive, compromising unlinkability for availability.

3.6.4 Data Deletion

In order to reduce the number of entries in the VI-CBF and the storage
load on the server, entries should be deleted from the server when
they are no longer needed. Deletion requests are authenticated by
providing a preimage of the identifier that should be deleted, as de-
scribed in Section 3.4.3.

TOKEN AUTHENTICATION When the server receives a DELETE(x)
command, it computes i = h(x) and checks its local database if it
has stored a key-value-pair with the identifier i. If the identifier is
found, it removes the key-value-pair and also removes i from the
VI-CBF. Finally, it returns a success message. If no identifier i is found,
an error is returned.

By veritying if the identifier is actually present in the database,
we avoid potentially removing keys from the VI-CBF that have never
been inserted. Thereby, we also avoid the problem of potential false
negatives described by Guo et al. [57] and ensure that our VI-CBF will
never give false negatives.

DELETION VS. REVOCATION Simply deleting the key-value-pair
may lead to problems if the deletion happens before the recipient
retrieved the data. In this case, the recipient would not have seen
that the identifier idag had been used, and would not increment
ctrap, while Alice would use the incremented counter for her next
share. This would lead to a desynchronization, with Bob waiting for
an identifier that Alice will never use again.

On the other hand, re-using the same identifier for the next piece of
shared data could also lead to problems. Depending on the encryp-
tion algorithm, re-using the same key and counter could open up the
client to certain cryptoanalytic attacks, and should be avoided. Even
if these problems could be avoided, it would introduce complexity to
the protocol, which should be avoided if possible.

To solve this problem, Alice can upload a placeholder value in place
of the deleted key-value-pair. This indicates to Bob that the identifier
has been used, but the data deleted, thereby avoiding the desynchro-
nization of their counters. The placeholder can then be retrieved and
deleted by Bob when he next retrieves data from the server.

3.7 RESEARCH FUNCTIONALITY

A special case of sharing is the case of sharing data with researchers.
While we are concerned with the privacy of our users, there may

3.7 RESEARCH FUNCTIONALITY

be legitimate interests of researchers, who could use the data to aid
their work. Restricting them from accessing the data could impede
progress in scientific research.

CURRENT SITUATION In the current commercial centralized server
model, research on the data is trivial: The data can be retrieved from
the server and given to a researcher. However, while not always
legally required, study participation should be a voluntary and in-
formed action by the subjects (informed consent), and not something
decided for all users by the executives of a company. Additionally,
there may be privacy concerns when providing data to researchers,
meaning that we will have to anonymize or at least pseudonymize
the data.

In our system, the server is unable to provide researchers with the
unencrypted health data of the users. In order to preserve the ability
of researchers to use that data, a special component is added to the
system. This component manages research study requests and allows
clients to opt-in to (i.e. voluntarily join) studies.

3.7.1 Creation and Registration

In order to register a study, a researcher first has to create a study
proposal. This proposal serves to inform interested users about the
goals of the study, the data that is required, how the data will be used,
and other information, as required. It also contains a link to a website
with further information on the study, which must be protected using
TLS with a valid certificate. As university websites almost always offer
an HTTPS-protected version, this should not be a problem.

The researcher will also generate a unique keypair for a supported
asymmetric cipher (e.g. the Rivest, Shamir, Adleman (RSA) cryptosys-
tem or a secure Elliptic Curve Cryptography (ECC) system) and the
public data of a key exchange algorithm (e.g. DH or ECDH, with se-
cure parameters) and appends them to the study request. The private
key and private parameters to the key exchanged are securely stored
by the researcher on their own device.

The study request will also include a random identifier from a dif-
ferent identifier namespace (i.e. if regular identifier generation uses
SHA-256 (32 byte), the studies could use a 128-bit identifier). This
special identifer will later be used by clients to submit their study
registration.

REQUEST AUTHENTICATION Finally, the researcher is required to
put a cryptographic hash of the public key into a well-known loca-
tion relative to the TLS-protected study URL. If this proves impossi-
ble (e.g. because the university website does not offer that option),
other systems (e.g. a <meta> HTML tag) can be used instead. The

43

Data protection
legislation may add
additional
requirements.

In practice, the
study proposal will
be generated using a
special tool built for
this purpose

Alternatively, the
open Let’s Encrypt
CA can provide
certificates

44

The authenticity of
the data is derived
from the
authenticity of the
TLS certificate.

DESIGN

used method is indicated in the final study request. The final study
proposal is signed using the private key and sent to the server in a
study-register message.

The server, upon receiving the message, will check for the pres-
ence of the public key hash at the expected location and verify that
it matches the hash of the public key contained in the request. It
will also verify that the URL is TLS-protected with a trusted certifi-
cate, and check if the chosen random identifier is available. Finally,
it will verify the signature on the request using the public key. If
every verification succeeds, the study requests is added to the list of
available studies and the random identifier is registered to that study.
Otherwise, an error is returned to the researcher.

3.7.2 Retrieval and Participation

Clients will occasionally check for the presence of new study propos-
als, if configured to do so. Once a new study proposal is detected
and has been retrieved from the server, the client will check if the
requested data is available (if the study required blood pressure data
but the client is not connected to a blood pressure sensor, it cannot
participate in the study). If the requested data is available, the study
can be presented to the user.

JOINING A sTUDY The user will read the information about the
study and decide if she is willing to join it. If she decides to join, the
client will retrieve the researcher’s public key hash using the method
indicated in the study request, verify that the connection to the URL
was secured with a valid TLS certificate, verify that the retrieved hash
matches the hash of the public key included in the request, and finally
verify the signature over the request. If the verifications succeed, the
request data is assumed to be authentic (i.e. has not been modified
by the server or other adversaries).

The client will also perform the second half of the key exchange
protocol specified in the request and receive a shared secret s, which
can then be expanded into two keys and two counters, as described
in Section 3.5.1. Keys, counters, and the researcher’s public key are
saved into the secure local database of the client. The public data of
the key exchange is added to the study-join message.

The study-join message is encrypted with the public key of the
researcher using a hybrid encryption scheme and uploaded to the
server using the identifier specified in the study. The special study
identifiers work differently from the regular key-value-pair storage:
Instead of storing only one value, they can store a list of values, to
which new study-join requests are appended.

3.7 RESEARCH FUNCTIONALITY

JOIN HANDLING The researcher can retrieve the study-join mes-
sage from the server, authenticating the request using their private
key. After retrieving the message, she can perform her half of the key
exchange using the public data included in the request, derive keys
and counters, and securely save them to her local database.

Note that the study-join message is not explicitly authenticated. This
means that an adversary could theoretically replace it with her own.
However, this would only mean that the researcher would never re-
ceive data from the participant who sent the message, as she is not
in possession of the keys and counters it derived. Thus, modifying
the message would be equivalent to dropping it from the perspective
of the researcher. The attacker also gains nothing from providing her
own data, as this would be equivalent to joining the study herself,
which she could have done either way.

UPLOADING AND RETRIEVING STUDY DATA Study data is up-
loaded and retrieved in the same way regular data is uploaded. Refer
to Section 3.6.2 and Section 3.6.3, respectively, for the details. The
client may be configured to automatically upload study data without
user interaction as soon as it becomes available.

As the derived symmetric keys are (with overwhelming probabil-
ity) unique, they serve as a pseudonym for study participants. Thus,
multiple pieces of data from the same participant can be linked, while
not providing any clue as to the real identity of the participant. While
this seems to violate the unlinkability property, this is desired in the
case of medical studies: Different samples from the same subject often
need to be linkable to provide useful information for the researcher.

SENDING MESSAGES TO STUDY PARTICIPANTS Occasionally, a re-
searcher may want to contact one or all study participants to provide
updates on the study or ask for further information. These messages
can be treated like normal data in the system and can be sent and
received using the normal mechanisms described in the previous sec-
tion. Replies to these messages by the clients can also be treated the
same way.

3.7.3 Termination

In order to end a study and remove it from the list of available studies,
a special study-remove message is sent to the server. The message is
signed with the same private key that was used to sign the original
study request, thus authenticating the request. Once a study has been
ended, it is no longer possible to join it. The server may choose to
retain it in an archive of ended studies.

If a study is removed from the server, clients will no longer display
it in the list of avaialble studies. If the client had already joined the

45

study-join messages
can only be retrieved
by the authenticated
researcher.

46

DESIGN

study, its status changes from active to archived, and no new data will
be submitted.

This concludes the research functionality. Before we begin imple-
menting and evaluating the system, we will take a brief look at a
possible alternate, simplified protocol.

38 PROTOCOL VARIANTS

The protocol, as specified in this chapter, introduces some complexity
in order to be able to efficiently share arbitrary data. In particular,
for each share operation, the indirect sharing and retrieving process
(described in Section 3.6.2 and Section 3.6.3, respectively) creates one
key-value-pair on the server that will never be removed - the data block
containing the actual encrypted data, uploaded under the identifier
id,.

By not encrypting the shared data directly for each recipient, the
system is capable of efficiently sharing larger pieces of data with a
large number of recipients. The full data only has to be encrypted
once, with all other encryption operations only encrypting the key
and identifier, which have a constant and small size. However, fitness
data like GPS tracks, heart rates, and step counts, usually has a fairly
small size. Thus, the additional computational overhead incurred by
encrypting the same data multiple times is in many cases negligible.

On the other hand, directly encrypting the data for all recipients
and uploading it under idag does not result in permanent load on
the server, as the recipient will delete the data from the server as
soon as it was retrieved. This significantly reduces the number of
key-value-pairs stored on the server, thus decreasing the size of the
VI-CBF and thereby reducing the overhead incurred by transferring it
to clients.

In this case, the share procedure would work like this: Alice would
take her piece of data d and encrypt it for Bob, using the same IV
construct as in Section 3.6.2

cap = Enc(kag, d)
She would then derive the identifier and upload the data:

idag =h(h(kag Il ctras))

STORE(idAB, CAB)

When retrieving data, Bob will directly access the data saved under
ida, without needing to send a second GeT for the second identifier.
However, if Alice wants to share larger pieces of data with a larger
number of people, this will significantly increase the upload time and
storage load on the server.

We specify two variants of the protocol:

3.9 SUMMARY

1. Protocol 1 (P1) is the protocol as previously described, using
indirect sharing.

2. Protocol 2 (P2) is an alternative protocol, encrypting the data
directly for each recipient.

It would also be possible to specify a third protocol that dynamically
chooses between the two options, depending on the size of the data
and the number of recipients. However, for the purpose of this thesis,
we will limit ourselves to these two options.

3.9 SUMMARY

In this chapter, we have specified and motivated the design goals of
our system. We have introduced an unlinkable identifier scheme, and
proven a number of its important properties. Finally, we specified
the processes for sharing and receiving data, and for creating and
participating in research studies in the system. This concludes the
design chapter. Next, we will take a closer look at how the system is
implemented in our proof of concept.

47

[=

IMPLEMENTATION

In order to evaluate the feasibility of the system, we implemented a
proof of concept. It implements only a subset of the system - due to
time constraints, the advanced features of the friendship revocation
(cf. Section 3.5.2), and messages from researchers to study partici-
pants (cf. Section 3.7) have not been implemented. For the same
reason, the connections to the server are not run through the Tor net-
work.

In this chapter, we will discuss the proof of concept implementa-
tion. We start off with a brief overview over the Android operating
system, followed by a discussion of our strategy for securely storing
the shared secrets. Afterwards, we will briefly discuss how sensor
data is collected. We will then take a deeper look at the implementa-
tion of the different parts of the sharing system: The server, the friend
discovery, the sharing process, and the research functionality. Finally,
we will discuss a simulator we developed for the evaluation, which
will be the topic of the next chapter.

4.1 THE ANDROID OPERATING SYSTEM

Our proof of concept application was developed for the Android plat-
form. In this section, we will give a brief overview about the security
model used by the Android operating system. We will also dicuss
the available cryptographic libraries, communication channels and
Sensors.

4.1.1 Security Model

The security model of Android consists of two parts: The permissions,
and the sandboxing system.” Both are integrated into and enforced
by the operating system.

The permission system forces developers to declare which critical
functions of the device they want to use. They include access to the in-
ternet, the built-in camera, microphone, and storage, and many other
functions. Up to the release of Android 6, the user was presented
with a list of permissions requested by the app, and had the option
to cancel the installation. However, the process was all or nothing, it
was not possible to reject specific permissions.

See https://developer.android.com/guide/topics/security/permissions.html,
last visited March 23rd, 2016

49

https://developer.android.com/guide/topics/security/permissions.html

50

Our proof of concept
still uses the old
permission system

IMPLEMENTATION

With Android 6, the permission model was changed to runtime
permissions: When the app wants to use a protected function for the
first time, the user is asked if this is acceptable, and has the option
to reject the request. Apps should be engineered to handle rejections
of non-critical functions and work with a reduced set of functions in
that case.

The sandboxing system provides another layer of security: Each
application is run in its own sandbox, without access to the data of
other applications. This is enforced by both the operating system and
the underlying kernel.

4.1.2 Cryptographic Libraries

Android has built-in support for cryptographic functions. The imple-
mentation is based on the Open Source BouncyCastle library,* using
the standard Java Cryptography Architecture (JCA) Application Pro-
gramming Interfaces (APIs).

However, the version of BouncyCastle shipped with Android does
not offer the lightweight API offered by the standard BouncyCastle,
which provides a more convenient and compact syntax for crypto-
graphic operations. Additionally, the library is only updated with
system updates, so many devices are running an outdated version of
the library, thus lacking the latest features.3

To ensure that the latest version of the library is available, we need
to include the SpongyCastle library* in the application. SpongyCastle
is a fork of BouncyCastle which is made compatible with Android
and has been renamed to prevent namespace conflicts with the prein-
stalled version. As the library is compiled into the Android app itself,
the developer has full control over the used version and available
features.

The drawback of this solution is that each application needs to ship
its own copy of SpongyCastle, leading to multiple redundant versions
of the library being saved on the user’s device.

4.1.3 Communication Channels

Android devices typically have at least three dedicated communica-
tion channels built-in. They can connect to wireless networks using
their WiFi chips, they have a mobile network connection for telephony
and internet access, and they also have a Bluetooth chip for medium-
to short-range connections. Many also have a Near-Field Communica-
tion (NFC) chip that allows communication over very short distances.

See https://www.bouncycastle.org, last visited January 17th, 2016
See https://code.google.com/p/android/issues/detail?id=3280, last visited Jan-
uary 17th, 2016

4 See https://rtyley.github.io/spongycastle, last visited January 17th, 2016

https://www.bouncycastle.org
https://code.google.com/p/android/issues/detail?id=3280
https://rtyley.github.io/spongycastle

4.2 SECURE LOCAL STORAGE

There are also other, less obvious communication channels. Opti-
cal communication could be facilitated using the screen and built-in
camera, and the speakers and microphone can also be used to com-
municate between devices. The latter is used both in both benign
and malicious applications: Google’s Nearby Messages API> uses it to
communicate very short pieces of data between devices, but advertis-
ers also use it to track which phones are in the vicinity of specially-
crafted advertisements.®

4.1.4 Sensors

The available sensors and their quality differ on different phone types.
Some sensors are built into every Android device (e.g. the accelerom-
eter that determines how the device is moved by the user). Others
may only be available on some specific phones (e.g. fingerprint or
pulse sensors).

These sensors can be supplemented with specialized devices (e.g.
smartwatches, fitness armbands, ...) that connect to the phone using
a wireless communication channel, usually Bluetooth. The additional
sensors may be made available to every application, or require a pro-
prietary companion app.

Android offers APIs to determine which sensors are available, and
to gain access to their readings. These values can then be used and
saved by the application. Google also offers a special set of functions
for fitness data under the name Google Fit.7

While most of its features require integration with the proprietary
Google Fit service, the Google Fit Sensors API can be used without
submitting data to Google Fit. However, it still requires the propri-
etary Google Play Services to be installed, which keeps the API from
running on devices without the Google Apps package. While almost
all phone vendors ship their phones with this package, some alterna-
tive Android systems like CyanogenMod ship without it due to licens-
ing constraints.?

4.2 SECURE LOCAL STORAGE

Android offers four different kinds of local storage:

* The preferences store, where user preferences can be stored in a
key-value-store (stored as an XML file).

5 See https://developers.google.com/nearby/messages/overview, last visited
March 23rd, 2016
6 See http://arstechnica.com/tech-policy/2015/11/

beware-of-ads-that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/,

last visited March 23rd, 2016
7 See https://developers.google.com/fit/, last visited March 10th, 2016
8 See https://wiki.cyanogenmod.org/w/Google_Apps, last visited March 23rd, 2016

51

https://developers.google.com/nearby/messages/overview
http://arstechnica.com/tech-policy/2015/11/beware-of-ads-that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/
http://arstechnica.com/tech-policy/2015/11/beware-of-ads-that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/
https://developers.google.com/fit/
https://wiki.cyanogenmod.org/w/Google_Apps

52

The security
properties of
SQLCipher are
evaluated in
Section 5.1

IMPLEMENTATION

¢ Storage in one or more file-based SQLite databases
e Private file storage (accessible only to the application)
* Public file storage (accessible to everyone on the device)

The first three options are stored in the application directory and
protected using Androids Sandboxing model, which prevents other
applications from accessing the files. However, if a device is rooted
or contains a software vulnerability that allows privilege escalation,
these restrictions can no longer be enforced by the system, and any
application with root privileges can access these files. Additionally, if
the device has developer features enabled, an attacker can read out
the application directory via the Android Debugging Bridge (ADB).

As the SQLite database contains security-critical information like
cryptographic keys, it follows that it should be protected against at-
tackers gaining access to the file in which the database is stored. The
same is true for any file-based caches or other forms of file-based
storage containing sensitive information.

In our implementation, the SQLite database is protected using the
SQLCipher library.? SQLCipher adds a transparent encryption layer
to the Android database APIs, encrypting the database and relevant
temporary files. All data, including collected fitness data and data
shared by friends, is saved in the encrypted database.

The encryption key is derived from a passphrase. In the proof of
concept implementation, this passphrase is set to a constant value in
the source code. This allows us to test all aspects of the application
without having to enter a passphrase on every test run. However, it is
unsafe for productive use and should be replaced with a passphrase
provided by the user. The resulting keys can then be cached until
the application is explicitly locked or the device rebooted to avoid
inconveniencing the user.

4.3 COLLECTING SENSOR DATA

The proof of concept implementation is only capable of performing
GPS tracking. This tracking is explicitly started and stopped by the
user (cf. Figure 12a). While the tracking is running, the system contin-
ually monitors the position of the user and plots her path on a map,
using features provided by the Google Play Services APL™ It also cal-
culates an average speed and the travelled distance (cf. Figure 12b).
This feature is mostly intended to perform GPS tracking of jogging
or cycling routes. After a track has been recorded, the used mode of
transportation (running or cycling) and a short name can be entered

See https://www.zetetic.net/sqlcipher, last visited December 7th, 2015
See https://developers.google.com/android/guides/overview, last visited March
15th, 2016

https://www.zetetic.net/sqlcipher
https://developers.google.com/android/guides/overview

4.3 COLLECTING SENSOR DATA

O30 o.d@1213 % 9 * i © 4 @ 12118

Distance Current Time Speed Distance Current Time Speed
om 00:03 0.00 km/h 747 m 04:40 9.57 km/h
(- ®
TU Darmstadt ‘ : @
S2/06
<

hs
O)

Hogl

Finish
Technische
Universitat Darmstadt -~

Maschinenhaus

™ Kantplatz

swabe
agda\er\e“

W

3
%
%
%
%
—

(a) Starting a run (b) Status after the run is finished

Q% © 4 B 12118 < 0 © Yl @ 12:18

< Denul

Distance Current Time Speed Test run

747m 04:40 9.57 km/h 10/04/2016 12:13 K 747m

Test ml)

Technische
Universitét Darmstadt

Aktivspielplatz
lerrngarten

Google

(c) Saving the GPS track (d) Inspecting the saved track

Figure 12: Recording and saving a GPS track

53

54

11
12

13

IMPLEMENTATION

to save the track (cf. Figure 12c). Alternatively, the user can choose
to discard the data. Collected routes can be inspected in the ,exer-
cise history” window (cf. Figure 12d). From there, they can also be
deleted, renamed, or shared with friends.

The application is also capable of tracking the number of steps the
user takes per day using a dedicated pedometer built into the device,
if available. However, due to time constraints during the implemen-
tation phase, the data is not exposed in the User Interface (UI) and
cannot be shared with friends.

4.4 SERVER

The server is written in the Python™ programming language, which

offers convenient high-level functionality for server applications, thereby

reducing the amount of work needed to implement the server. There
are also a large number of open source libraries that provide addi-
tional functionality.

The server offers a Transmission Control Protocol (TCP) socket pro-
tected with Transport Layer Security (TLS) using a valid certificate
issued by a Certification Authority (CA) for clients to connect to. The
data is encoded and decoded for transmission using the Protocol
Buffers library,"> which offers consistent data encoding and serial-
ization functionality over different programming languages with low
overhead. Data is stored in an SQLite database as a key-value-pair,
mapping the identifier to the encrypted data. Support for crypto-
graphic operations is supplied by the PyCrypto library."3

4.4.1 VI-CBF

The protocol requires a Variable-Increment Counting Bloom Filter
(VI-CBF) to protect the privacy of users and reduce the amount of
queries that need to be sent to the server. The server maintains a
VI-CBF and sends it to clients, which will use it to determine if they
need to send a query to the server or not. This means that both the
server and the client need a VI-CBF implementation, and these imple-
mentations need to be compatible.

As the Android client is written in Java and the Server is written in
Python, two separate implementations were needed. Neither Java nor
Python had an existing open source VI-CBF implementation, forcing
us to write our own.

As previously discussed, the VI-CBF uses two sets of k different hash
functions each. The first set is used to determine the slot in the bloom

See https://python.org, last visited January 16th, 2016

See https://developers.google.com/protocol-buffers/, last visited March 15th,
2016

See https://www.dlitz.net/software/pycrypto/, last visited March 15th, 2016

https://python.org
https://developers.google.com/protocol-buffers/
https://www.dlitz.net/software/pycrypto/

14

4.5 FRIEND DISCOVERY

filter, and the second is used to determine the increment value. These
functions were implemented using SHA1 as a base hash function h.
When inserting the value x, we calculate h(x || n). The result is inter-
preted as a number and the remainder modulo the number of slots,
m, indicates the slot that should be incremented in the nth step.

The nth increment is determined similarily, using h(—n|[x) to de-
rive a number. We take the remainder modulo L (as defined in Sec-
tion 2.4.5), and add L to the result to obtain a value v € Dy We
then increment the previously-calculated slot by v. This process is
repeated for each of the k hash functions, resulting in the k pairs of
slots and increments required by the VI-CBF.

As the VI-CBF is transmitted very often, achieving a space-efficient
serialization format was key to improve the overall efficiency of the
protocol. The serialization algorithm is described in the Appendix,
Section A.1.

4.5 FRIEND DISCOVERY

In order to allow any sharing of data, cryptographic keys have to be
established between the two parties. This process is embedded into
the process for adding new friends. To add a new friend, both users
currently have to be in physical proximity.

The users will establish a connection between their devices, and
a key agreement protocol will be executed over this connection to
generate a shared secret. This secret will be transformed into the
correct format for the protocol by using a Key Derivation Function
(KDF). Finally, the result will be verified by checking the fingerprints
of the established key material. Each of these steps will be discussed
in detail in this sections.

The process is designed to be modular, so it is possible to switch out
any implementation with a functionally identical component using
different algorithms without breaking the process. That way, other
communication channels or protocols can be added.

4.5.1 Connection Establishment

The initial connection can technically be established using any tech-
nology capable of transmitting data between two devices: WiFi, Blue-
tooth, NFC, even optical channels like the scanning of Quick Response
(QR) Codes. For the proof of concept implementation, we chose the
Google Nearby Connections APL.*4 The API offers a high level of ab-
straction for establishing connections between devices in the same
wireless network, using multicast for device discovery.

See https://developers.google.com/nearby/connections/overview, last visited
December 7th, 2015

55

https://developers.google.com/nearby/connections/overview

56

IMPLEMENTATION

00 OL@

Select your Friend's Device
LGE Nexus 5

(a) List of nearby friends to connect to

$ i @ 4 @ 15:14

< Denul

F i ¥ 4 15:14

Connection Request

Do you want to connect to LGE
Nexus 5?

NO CONNECT

(b) Incoming connection request from

friend

$ i @ 4 @ 15:14

< Denul

Your new Friend

Enter a name for your new friend:

Alice

Your new Friend

Enter a name for your new friend:

Alicel

To make sure everything went well, please scan the code
displayed on your friends device, and let your friend scan

EyEE

[=]

Security Level:

SCAN SKIP

To make sure everything went well, please scan the code
displayed on your friends device, and let your friend scan

EAEE

[=]

Security Level:

SCAN FINISH

(c) Unverified friend information

(d) Verified friend information (after

scan of QR code)

Figure 13: Friend connection establishment, key exchange and -verification
in proof of concept implementation

4.5 FRIEND DISCOVERY

Once two devices have discovered each other (cf. Figure 13a), they
can establish a connection. The connection has to be initiated by
one user (the initiator), and confirmed by the other (cf. Figure 13b).
Once the connection has been established, messages of up to 4 KB
can be transmitted. The API guarantees reliable, in-order delivery of
messages.

The channel is completely open and unprotected, and the identities
of the devices are not verified. Thus, a Man-in-the-Middle (MitM)
attack is possible if the attacker has control over the used network.
However, we will show that this does not impact the security of the
scheme.

4.5.2 Key Agreement

Once a connection has been established, a Key Agreement protocol
is executed. Due to the modular nature of the system, any key agree-
ment protocol could be used. Performance and compatibility consid-
eration led us to choose an Elliptic Curve Diffie-Hellman (ECDH) Key
Agreement using Curve2s5519 [13] as the underlying elliptic curve.
Curve25519 is resistant to all known attacks on other elliptic curves,'>
and not covered by any known patents.’® It is also computationally
more efficient than regular Diffie-Hellman.

Diffie-Hellman key agreement protocols result in a shared secret s
between both parties. However, s does not have the correct format for
our scheme, as it does not have enough bits to be split into the two
keys and two counters required by the protocol while maintaining
sufficient key lengths. Thus, we need to securely derive the required
secrets from the shared secret s.

4.5.3 Key Derivation

In order to expand s into the four shared secret values kag, kga,
ctrap and ctrga (see Section 3.5.1), a Key-Based Key Derivation
Function (KBKDF) is used. Again, the implementation makes it easy
to switch out the used KBKDF. For the proof of concept implemen-
tation, the HMAC-Based Extract-and-Expand Key Derivation Func-
tion (HKDF) [67] is used.

HKDF is widely used in protocols like the Internet Key Exchange,
Version 2 (IKEvz) and considered secure. It uses a two-phase process:
In the extract-phase, the entropy of the input value (in our case the
shared secret s) is concentrated into a strong, but potentially shorter
cryptographic key. The second phase, expand, uses this key to derive
cryptographic keys of the desired length (in our case, 4 values of 256
bit each).

15 See https://safecurves.cr.yp.to/, last visited December 7th, 2015
16 See https://cr.yp.to/ecdh/patents.html, last visited December 7th, 2015

https://safecurves.cr.yp.to/
https://cr.yp.to/ecdh/patents.html

58

IMPLEMENTATION

After these values have been derived, they have to be mapped to
kas, kBa, ctrap and ctrga. As the secrets are directional, it is impor-
tant that both devices know which secrets to use when. To achieve
this, the initiator (the device that initiated the connection) is defined
to be device A, and the other device is device B. Now, the values can
be consistently mapped to the keys and counters on both devices.

However, at this point, the authenticity of the values cannot be
guaranteed. A MitM attacker could have intercepted the key exchange
and performed her own key agreements with both parties, intending
to transparently decrypt, re-encrypt and relay all future communi-
cation and thus gaining access to the data. In order to prevent this
attack, the keys have to be validated.

4.5.4 Verification

To verify the validity of the keys, a channel that is not under the
control of the attacker must be used. As previously stated, the con-
nection using Google Nearby requires both devices to be connected
to the same (possibly hostile) wireless network. This implies physical
proximity of the devices, as the range of typical wireless networks is
comparatively low.

As the devices themselves are assumed to be trusted, we can lever-
age the physical proximity to use an optical channel for key valida-
tion. Each device will compute a fingerprint over the derived keys
by computing h(kag || kga || ctrap || ctrga) using a cryptographic
hash function like SHA-256. The resulting hash will be represented
as a QR Code and displayed on the screen of both devices (cf. Fig-
ure 13c). The users can now use the built-in camera of their device to
scan the QR code of their partner, at which point the fingerprints are
compared.

The device will show a security level for each friend, represented
as three colored dots.

* Unwverified keys that have been established using an untrusted
channel like the open internet are represented using one red dot.
This is currently not used, as no such channel has been imple-
mented yet.

* Unverified keys that have been established using a somewhat
trustworthy channel (like a local wireless network, which is at
least likely to not be compromised) are represented with two
orange dots (cf. Figure 13c).

¢ Keys that have been successfully verified using a secure verifica-
tion system like a QR code are shown with three green dots (cf.
Figure 13d).

4.6 SHARING PROCESS

* Keys that have been actively validated, but whose fingerprints
did not match (i.e. they failed validation) are displayed with
three red warning signs. These keys are considered compro-
mised. The user is strongly encouraged to repeat validation (to
rule out a validation error) or delete the keys and repeat the key
exchange, potentially using a different channel.

While this is strongly discouraged, the verification can be skipped
during the initial key establishment. In that case, it can be performed
later by selecting the unverified friend from the list of friends and
scanning their QR code from their profile page.

Once the keys have been validated (or the validation explicitly
skipped), the new friend and the related keys are saved to the local
database.

4.6 SHARING PROCESS

Once data has been collected and at least one friend added, it be-
comes possible to share data. The general protocol for sharing data is
described in Section 3.6. This section will describe how the protocol
was implemented for the proof of concept. A high-level overview is
shown in Figure 14.

4.6.1 Data Encryption and Storage

Data storage, as described in Section 3.6.2, is a two-stage process.
To share data, the user navigates to the piece of data that should
be shared. In the proof of concept, this has only been implemented
for GPS traces. Once the data has been selected, it can be shared
with friends by tapping the share button. The sharing interface (cf.
Figure 15) supports three granularity levels:

1. Fine: The full GPS trace including dates and GPS coordinates.

2. Coarse: Only information about the distance, time and duration
of the run, without GPS coordinates

3. Very coarse: Identical to coarse in the case of GPS traces, but
can offer a third alternative for other data types that may be
implemented in the future

DATA BLOCK GENERATION Once the granularity has been selected,
the data is serialized into a Protocol Buffer message, which is in turn
wrapped in a wrapper message. The message is then serialized into
binary data.

The resulting bytes are encrypted with a random key k4 using the
Advanced Encryption Standard (AES) in Galois/Counter Mode (GCM),

59

The wrapper
message is necessary
to indicate the type
of serialized data for
deserialization

60 IMPLEMENTATION

Alice (Android) Server (Python) Bob (Android)

WiFi + Camera

Est. secrets Est. secrets

(ECDH + HKDF) (ECDH + HKDF)
Collect data
(SQLCipher)
Derive identifiers
(SHA-256)
Encrypt data
(AES-GCM)
TCP + TLS Store ciphertext Derive identifiers
(SQLite) (SHA-256)
Retr. ciphertext TCP + TLS
(SQLite)
TCP + TLS Decrypt data
(AES-GCM)
Save data
(SQLCipher)

Figure 14: High-level overview of the implementation of the sharing proto-
col

which provides not only confidentiality, but also integrity and authen-
ticity with the same key. The encrypted data is then uploaded under
the identifier idg, which is derived by hashing a random, 256-bit
nonce 1 using SHA-256. 1 is stored in the local database of the client
and serves as a revocation token in case the data has to be removed
from the server.

KEY BLOCK GENERATION In the second stage, the identifier idgq

and key kq are encrypted separately for all recipients of the data. For

each recipient B, the client derives the identifier idag as described

in Section 3.4.2 and encrypts the information using AES-GCM with

AES-GCM uses the the shared 256-bit key. AES-GCM requires an Initialization Vector (Iv),
IV to derive a which must only be used once with the same key. To achieve this,

keystream for o (lient selects a random, 128 bit value 11y, and appends it to the
encryption and

authentication. A
reuse would, at the
very least, disclose

the XOR of the two
plaintexts.

4.6 SHARING PROCESS

F i © W4 @ 15:16

Select a friend:

Full location and time data

A brief description.

Alice

CANCEL

Figure 15: Selecting recipient(s), description and granularity for data shar-
ing

current value of the counter, ctrag. The combined value is then used
as the Iv.

This ensures that the IV is always unique, even if the client can
somehow be tricked into re-using the same counter value under the
same key. It also ensures that the ciphertext is linked to the current
counter value, thereby ensuring that the server cannot replace the
ciphertext stored under a certain identifier with another ciphertext
encrypted under the same key (e.g. a copy of an earlier ciphertext),
as the decryption would fail due to an IV mismatch.

The random IV component, rry, is prepended to the ciphertext,
and the result is uploaded under the identifier idag. The client will
also remember which value ctrag had when the data was shared,
so that it can derive the revocation token revap later, if necessary.
Afterwards, ctrap is incremented and the updated value saved in
the local database.

4.6.2 Data Retrieval and Decryption

The data retrieval process currently has to be triggered manually by
the user. Once the refresh button has been tapped, the client will es-
tablish a connection to the server and retrieve the VI-CBF the server
maintains. It will then derive the expected next identifier for each

61

62

IMPLEMENTATION

friend, and query the VI-CBF for them, maintaining a list of all identi-
fiers matched by the VI-CBF.

KEY BLOCK RETRIEVAL For each matched identifier, the client will
send a GET request to the server. Assuming the VI-CBF did not return
a false positive, the server will reply with r1y || cap as generated in
the previous section. The client can now reassemble the complete Iv
using r1v and ctrag. Using the reassembled IV and the key kag,
cap can be decrypted and split into id4q and k4. As we are using AES-
GCM, the successful decryption also serves to authenticate the data,
and confirm that it was not tampered with by the server. Thus, idq
and kg4 can be trusted to be authentic and correct.

DATA BLOCK RETRIEVAL Inasecond step, the client can now send
a GET request for idq, to which the server will respond by delivering
cq. This, in turn, can be decrypted using kg4 (thereby also authen-
ticating its integrity and authenticity). The resulting bytes can be
deserialized into a Protocol Buffer wrapper message, containing the
data message with the shared GPS track.

After the decryption was successful and the data saved into the
local database, the client will send a deletion request to remove cap
from the server. This serves to ,clean up” the now unnecessary data
from the server, thereby reducing the load on the VI-CBF and server
storage space.

FALSE POSITIVE HANDLING The proof of concept does not have
specific code to handle false positives in the VI-CBF. If the download
of a block fails, it will be re-queried on the next update request. This
violates unlinkability, as described in Section 3.6.3. In a full imple-
mentation, the client should be able to handle this case by remember-
ing the state of the relevant fields of the VI-CBF and only re-query the
server if at least one of these fields has changed since the false pos-
itive occured. This method has been described in Section 3.6.3, but
was not implemented due to time constraints.

4.6.3 Data Deletion

As defined in Section 3.6.4, the deletion procedure differs depend-
ing on who performs the deletion. In both cases, the client sends a
DELETE message with the correct authenticator (revas when deleting
idag, ¥ when deleting idq4, as defined in Section 3.6.4). The server
will authenticate the revocation token by checking if it hashes to the
correct identifier, and, if correct, delete the data and send a confirma-
tion message.

If the recipient performed the deletion, the process is finished at
this point. If the sender performed the deletion (e.g. because she has

17
18

19

4.7 RESEARCH FUNCTIONALITY

changed her mind and no longer wants to share the data), she has
to upload a placeholder value under the same identifier (the reasons
have been outlined in Section 3.6.4). This happens through a regular
STORE message, storing the magic byte 0x42 under the identifier that
has just been deleted.

The placeholder value indicates to the recipient that data has been
deleted and that she should continue with the next identifier. The im-
plementation will not give any visible indication about this deletion
to the recipient.

4.7 RESEARCH FUNCTIONALITY

The research functions need dedicated functionality in the client and
server, and also required writing a dedicated client that allows re-
searchers to manage their studies and retrieve the results. The re-
search client was written in Java, using BouncyCastle'7 and the JCA to
provide the required cryptographic functions. All interactions with
the research client happen using a text-based UI.

Many of the functions required by the research client were adapted
from the Android client, as there are only minor differences between
the two platforms. The database backend had to be re-implemented
using SQLite-]DBC,™8 as the old implementation was Android-specific.

As there is no version of SQLCipher for regular Java, the database
is currently saved without encryption. An implementation for real-
world use should add a layer of encryption to ensure the confidential-
ity of participant data and cryptographic keys.

In the following sections, we will discuss the processes for creating
and registering studies, retrieving and joining them with the Android
client, uploading, retrieving and exporting study data, and terminat-
ing studies.

4.7.1 Study Creation and Registration

The creation of new studies follows the process outlined in Section 3.7.1.
Figure 16a shows part of the study creation workflow in the client.

STUDY CREATION The information required to create a new study
is modelled after the informed consent sheet of the Office for the Pro-
tection of Research Subjects (OPRS) of the University of Southern Cal-
ifornia (USC)," which includes questions about the use of the data,
how it will be protected, and potential conflicts of interests of the
researchers. The form aims to give research subjects enough infor-

See https://www.bouncycastle.org/, last visited March 13th, 2016

See https://github.com/xerial/sqlite- jdbc, last visited March 13th, 2016

See https://oprs.usc.edu/files/2013/04/Informed-Consent-Booklet-4.4.13.
pdf, last visited March 13th, 2016

63

The differences
include logging,
database access, and
some aspects of the
cryptography APIs

https://www.bouncycastle.org/
https://github.com/xerial/sqlite-jdbc
https://oprs.usc.edu/files/2013/04/Informed-Consent-Booklet-4.4.13.pdf
https://oprs.usc.edu/files/2013/04/Informed-Consent-Booklet-4.4.13.pdf

64

With n registered
studies, the
probability of a
collision is n/2128

IMPLEMENTATION

Welcome to the Denul Research Client. Please choose what you want to do:
(1) New research request
(2) View active research data
(3) Settings
(4) Imprint
(5) Quit
Please select an option: I

A1l questions are modelled after the medical study information sheet of the
0ffice for the Protection of Research Subjects of the University of Sourthern
California (USC), which can be found at

hitp./foprs. usc. edu/files/2813/84/Informed-Consent-Booklet-4. 4. 13. pdf

Please refer to that document to learn more about the indiwidual questions.

Mame of your institution: TU Darmstadf

Title of study: Demo Study

Web page of study - must be reachable via HTTPS: https:/ /| EEEEIEGEEE
Please give a short description of the study:

(Finish your input with an empty line)

This study 15 used to test the research functionality of the Thesis app.

Please explain the purpose of your study:
(Finish your input with an empty line)
To test the research functionality of the Thesis app.

Please explain the procedures of this study - what data will be collected. and why:
(Finish your input with an empty line)
We will collect some data to check 1f data collection works properly. The data will

(a) Creating a study in the client

3 © W4 @13:48

< Denul

Demo Study
Institution: TU Darmstadt
Description:
This study is used to test the research
functionality of the Thesis app.
Purpose:
To test the research functionality of the
Thesis app

Join Study?

You will automatically upload the "Owner”: 1,
Procedures: data requested by the study once it Start": 1460548139496,
We will collect some data to check if data is collected. You can leave the study "End": 1460548157975, .
collection works properly. The data will be atany time. “Timezone': "Europe/Berlin”,
deleted afterwards. "Mode of Transportation”: "running”,
. “Distance”: 1.5100333,
Benefits: “Path®: |
Knowing if the research functionality works { ’
Risks: "Latitude”: 49,8
None ‘Longitude”: 8.6
Conflicts of interest: "Timestamp”: 1.460548139496E12
None. %
Confidentiality of data: " atitude": 49.§] ,
None “Longitude”: &.6 A
Participation: N "Timestamp”: 1.460548157975E12
1
¥
(b) Inspecting a study (c) Joining a study (d) Inspecting the data

Figure 16: Study creation, join, and data inspection

mation to make an informed decision about their participation in the
study. Our client also requires the researcher to enter a TLS-protected
URL containing further information about the study.

During the creation of the study, the researcher is also asked which
data exactly she is interested in, and with which granularity. In the
proof of concept, only GPS tracks are supported, but the system can
be extended to cover additional data types. The system supports
choosing more than one type of data per study.

The client needs to choose a queue identifier that will be used by
study participants to upload their initial study-join message. This
identifier is chosen by generating 16 random bytes. While this does
not ensure uniqueness, the probability of colliding with another study

4.7 RESEARCH FUNCTIONALITY

is negligible, as there will only be a small number of active studies at
any given time.

Over the course of the study creation, an RSA keypair and an ECDH
key exchange using Curve25519 are generated. The RSA keypair is
used to sign the study, and will later be used by participants to verify
the authenticity of the study and encrypt their initial study-join mes-
sage. The ECDH keypair will be used to generate the shared secrets as
described in Section 4.5.2.

The RSA public key needs to be authenticated in order to establish
a chain of trust between the researcher and the client verifying the
study. Otherwise, a malicious server could replace parts of the study
request and sign it with a new public key. The software offers three
different methods to provide authentication data about the public
key:

1. File-based authentication: The researcher uploads a file contain-
ing a hash of the public key to a location relative to the informa-
tional URL provided earlier.

2. Meta-tag-based authentication: If adding a file to that location is
not possible, the researcher can also add a HTML <meta>-tag to
the information site containing the hash of the public key.

3. DNGS-based authentication: Finally, the researcher can add a TXT
record containing the hash to the Domain Name System (DNS)
data of the domain.

In the first two cases, the authentication ensures that the researcher
can change the contents of the website she has provided. The trust
in the authenticity of the hash comes from the CA system used to
authenticate HTTPS connections.

The third case provides a weaker trust, as DNS records are almost
never authenticated and could thus easily be spoofed by an active
attacker with access to the connections of the client performing the
verification. However, while weak, the guarantees it provides are
better than having no authentication at all, as they at least require an
active attacker that can modify DNS responses to the client.

The client will verify that the authentication data has been correctly
provided using the selected method before signing the finished study
request using RSA with PKCS#1 (cf. RFC 3447 [65]). The final, signed
study request is then registered with the server.

STUDY REGISTRATION The completed, signed study request is up-
loaded to the server in a special Study-Create message. Before per-
forming any other actions, the server will verify the signature on the
study request to make sure it has been transmitted correctly. Note
that the server will not verify the authenticity of the public key. As

65

66

IMPLEMENTATION

the server is not trusted either way, there is no benefit from perform-
ing this verification, and we would like to keep the server as lean as
possible to increase performance and reduce the attack surface.

After verifying the signature, the server will check if the chosen
queue identifier is available. If the queue identifier was not available,
the researcher will receive an error message. If it is available, the
study will be saved to the database and the queue identifier assigned
to it, and the researcher will receive a confirmation.

4.7.2 Study Retrieval and Participation

Once a study has been successfully registered with the server, it will
offer the study to all users of the system.

STUDY RETRIEVAL At the moment, users have to explicitly request
a list of studies from the server by going to the study list and tapping
the refresh button. The app will then connect to the server and re-
trieve the list of active studies, which will then be compared to the
local copy of the list. Any changes, like new studies becoming avail-
able or old studies ending, will be added to the database.

The user will then be presented with the updated list of stud-
ies, and will be able to get further information by selecting one of
them. The details of the study will display the data entered by the
researcher, including the requested data and granularity (cf. Fig-
ure 16b).

JOINING A sTUDY If the user chooses to join a study (cf. Fig-
ure 16c), the app will automatically verify the authenticity of the
public key and check the signature. If the authenticity of the key
cannot be confirmed, a warning will be shown, with the option to
proceed anyway. However, if the signature verification fails, the user
will be unable to proceed.

Once all verifications have taken place, the app will extract the
public ECDH key from the study request and generate its own keypair
to perform the key exchange. The key exchange and -expansion are
performed as described in Section 4.5.3, with the researcher counting
as the initiator.

Afterwards, the app will add its own public key to a study-join
message, which will be encrypted using RSA-OAEP with SHA256
(cf. RFC 3447 [65]) and the public RSA key of the researcher, and up-
loaded with a normal STORE command to the queue identifier specified
by the study request.

RETRIEVING JOIN MESSAGES Queue identifiers work differently
from regular identifiers: They use a different number of bits (128 in-
stead of 256), making them distinguishable to the server. They are

4.7 RESEARCH FUNCTIONALITY

also no simple key-value-pairs, but instead function as queues hold-
ing multiple entries until they are retrieved. The queues are linked to
a specific study and the research client has to authenticate itself.

In the proof of concept, this authentication is achieved by signing
the request for the data saved in that queue. This method is suscepti-
ble to a replay attack and should be replaced with a secure authentica-
tion protocol for a system intended for production use.

Once the new messages have been retrieved, they can be decrypted
and any included key exchanges completed to derive the shared se-
crets required by the normal sharing protocol. All retrieved messages
are automatically deleted from the server.

4.7.3 Study Data Management

Once a client has joined a study; it starts automatically providing data
to it. Whenever a piece of data requested by a study is collected, it
is automatically shared with the researcher. This automatic approach
reduces the friction of participating in a study.

DATA STORAGE AND RETRIEVAL Sharing data with a researcher
uses the same mechanisms as sharing it with regular friends. The
process is described in Section 4.6.1 and 4.6.2.

DATA INSPECTION The researcher will save all received data into
her local database. There, she is also able to inspect the data, which
will be displayed in a JSON-like format (cf. Figure 16d). The proof of
concept does not offer a function to save the data to a file, but could
easily be extended to provide this functionality, enabling analysis of
the data using external tools.

4.7.4 Study Termination

After a study is finished, it no longer makes sense to offer it to users
and collect data. Instead, the researcher can delete the study from
the server using a signed deletion request. The server will verify the
signature and delete the study.

Upon the next refresh of the study list, the study will no longer
be displayed to users unless they are already participating in it. At
the moment, the application will not do anything to indicate the end
of a study to participating users and they will keep sharing data to
it. This is a limitation of the proof of concept implementation due
to time constraints. An implementation meant for productive use
should inform the user and stop sharing data with the study.

67

68

Social network
usually also have the
small-world”
property, but this
does not influence
the simulation.

20
21
22

23

IMPLEMENTATION

4.8 PROTOCOL SIMULATOR

In order to evaluate the performance of the system in a large deploy-
ment, we needed a simulator to model the evolution of a population
of users, their relations, and their sharing behaviour. This allows us
insight into how the different parts of the system perform over time
and with different user counts. It also allows us to simulate large de-
ployments and longer timeframes, which would be impossible with
a real-world field trial.

The simulator was written in the Python®*® programming language,
using the SimPy*' simulation framework. The performance was in-
creased by using an optimized version of python called pypy.?> The
resulting data was evaluated using python scripts and the numpy?3
scientific computing library.

We decided to use SimPy instead of another simulation system like
NetLogo [117] or LUNES [33] because those are either written in pro-
gramming languages we are not familiar with, or require a graphical
user interface, which would prevent us from running the simulation
on servers without a screen.

The simulator is first initialized with a starting population of users.
Afterwards, the population is evolved in steps, during which new
users may join the system, old users may leave it, and active users
may share data with their friends. The individual steps are discussed
in the following paragraphs.

4.8.1 Initial Population Generation

Previous work (e.g. Li et al. [74], Mislove et al. [84], and Ma et al.
[77]) has shown that the degrees (i.e. number of friends) of users in
social networks usually follows a power law [103]. This means that a
large number of users have a small number of friends, while a small
number of users have a large number of friends (see Figure 17 for an
example distribution).

Networks that exhibit this behaviour are called scale-free networks
[73]. These networks can be generated using the preferential attachment
algorithm proposed by Barabési et al. [3] (originally discovered under
the name cumulative advantage by Derek de Solla Price [94]).

In this algorithm, new nodes (i.e. users) that are being added to
the graph (i.e. joining the system) are bidirectionally connected to a
constant number of other nodes (i.e. their friends). The other nodes
are chosen from the existing population depending on their existing
degree d, with higher degrees corresponding to a higher probabil-

See https://python.org, last visited January 16th, 2016

See https://simpy.readthedocs.org, last visited January 16th, 2016
See http://pypy.org/ last visited March 13th, 2016

See http://www.numpy.org/, last visited March 13th, 2016

https://python.org
https://simpy.readthedocs.org
http://pypy.org/
http://www.numpy.org/

4.8 PROTOCOL SIMULATOR

Degree Distribution of a Scale-Free Network
100000 T

T
u =100 000 Users

10000

1000

100

Number of Users

0.1

100 1000

Degree

Figure 17: Example degree distribution in a scale-free network with 100 000
nodes, on a log-log scale

ity of the node being chosen. This leads to nodes with high degrees
gaining even more connections, while nodes with low degrees are un-
likely to significantly increase their degree, resulting in many nodes
with a low degree, and few nodes with a high degree (i.e. a scale-free
network).

The simulator is initialized with a scale-free network containing a
predefined number u of users, generated using the preferential attach-
ment algorithm. The resulting network is then used as the starting
point for the simulation.

4.8.2 Network Evolution

The simulation proceeds in steps, where each step represents one day
in the real world. On each day, some existing users will leave the
system, and new users will join it, thereby simulating the normal
churn any service experiences.

USER ARRIVAL The simulator assumes that the user base of the
service is growing over time, as this is common for popular services.
Thus, each step, it will add a random number of new users, between
1 and 5 percent of the initial user count. This results in a growth
representing a new service that is quickly gaining new users and
rapidly expanding its user base, which is the goal of every company
and usually the point at which any scaling problems of their systems
are discovered.

69

70

IMPLEMENTATION

Median Degree Distribution over Time (100K initial Users)

100000 [T
Step 0 ——
. Step 50
Step 100 ——
1 -
0000 I Step 150 ——
Step 200

1000 [

100 |

Number of Users

0.1

Degree

Figure 18: Development of the friend degree distribution over time (100 000
initial users)

The new users are added using an adapted version of the preferen-
tial attachment algorithm discussed in the previous section: They will
choose a user uniformly at random from the current population of ac-
tive users and check the number of friends this user has. Afterwards,
they will select the same number of friends for themselves, using
the weighted random selection from the preferential attachment algo-
rithm. This way, new users need not necessarily start with only one
or two friends, as people are often drawn to a new service because a
large number of their friends use it.

USER DEPARTURE However, fast-growing companies, especially so-
cial networks, also often find users registering for a service, trying it
out for a while, and then stopping to use it. This is a normal process
for many companies and needs to be included in the model.

Each simulation timestep, each user has a probability of 1 percent
to stop using the service. Users that stop using the service are re-
moved from the list of candidates for the preferential attachment al-
gorithm. This approximates the normal process of users stopping to
use a service.

In reality, users are a lot more likely to leave a service shortly af-
ter joining it, and less likely to leave it if they have a large number of
friends using it. However, this algorithm provides a sufficient approx-
imation of the process, as we are not interested in individual users,
but rather the behaviour of the system as a whole.

4.8 PROTOCOL SIMULATOR
Median Number of Active Users over Time (100K initial Users)
700 k T T T
Active and Inactive Users
Active Users

600k [Inactive Users E

500 k i
24
b
2 400 k R
°
k3
€ 300k i
=)
=z

200 k i

100 k i

0 1 1 1
0 50 100 150 200
Step

Figure 19: Development of the user count over time (100 000 initial users)

NETWORK DEVELOPMENT The resulting degree distribution at five
different simulation timesteps is shown in Figure 18. The graph
shows that over time, the system slowly deviates from the expected
power-law distribution as new users are added and old ones leave
the system. However, it remains within the variances shown by other
social networks (as measured by Mislove et al. [84]).

Finally, Figure 19 shows the development of the number of active
and inactive users over time. The number of active users shows signs
of converging towards a stable value, while the number of inactive
users slowly converges towards a linear growth.

This behaviour is expected, as we are adding a more-or-less con-
stant number of users per round to the system, while the number of
leaving users is linked to the number of active users and therefore
grows as more users are added. This intuitively leads to the number
of active users converging towards an equilibrium between new users
being added and old ones removed. And since the number of users
leaving the system is linked to the active user count, it will also con-
verge towards a more-or-less constant value as the active user count
converges.

4.8.3 Sharing Behaviour

During each step, each active user will, with a certain probability,
share a piece of data with all of her friends. The probability is deter-
mined based on how long it has been since the last share operation.

71

72

IMPLEMENTATION

Share Distribution over Time
0.25 T T T T

0.2

0.15

0.1

Fraction of Users

0.05

Step

Figure 20: Probability distribution of sharing data n steps after last share

For each active user, a threshold t is computed based on the number
n of steps since the last time this user shared data:

t=01+0.T%n

Afterwards, a random value r between o and 1 is chosen and com-
pared to the threshold. If r < t, the user performs a share operation.
Otherwise, the user does not share any data in this step.

The formula has been designed to ensure users are sharing data
at most every step, and at least every 9 steps, with the majority of
users sharing every second or third simulation step (cf. Figure 20).
This serves to represents both frequent users (who use the system
every day) and occasional users (that only log in once a week). While
this does not cover all real-world use cases, it should represent the
majority of users and thus give us a representative idea of how the
system reacts to a large number of active users.

Data is always shared with all friends of the user. The simulator
assumes that users leaving the system will not notify their friends.
Thus, their friends will continue to share data with them, which will
never be retrieved from the server. This is the worst-case assumption,
as it puts additional load on the server and adds permanent entries
to the VI-CBF distributed by the server, increasing its size.

STATISTICS COLLECTION The simulator will run for a set number
of steps, collecting statistics about the system every 10 steps. These
statistics include the number of active and inactive users, the num-
ber of friends each user has, the number of shares currently on the
server, and other statistics. These statistics can then be aggregated

4.8 PROTOCOL SIMULATOR

over a large number of runs to determine the range of possible val-
ues over time, using normal statistical measures like mean, 1st and
3rd quartiles, and the minimum and maximum values. This process
is sped up by running multiple simulations at the same time, using
the Python multiprocessing feature, allowing us to parallelize the work
over all available CPU cores.

4.8.4 VI-CBF Parameter Approximation

An interesting measure of the system performance is the size of the
VI-CBF that has to be transmitted to each user on each connection. The
size depends on the parameters of the VI-CBF: The number of counters
m, the number of hash functions k, the number of entries n, and the
base L of the D sequences that are used (cf. Section 2.4.5). In order
to give a best-case estimation of the size of the bloom filter, we need
to approximate the ideal parameters for a given number of entries to
achieve a certain False-Positive-Rate (FPR).

Rottenstreich et al. show the FPR of a VI-CBF to be defined by the
following formula (Source: [98, Eq. 4]):

nk nk—1
FPR—<1—<1—]> —L_1*<“k>*1*<1—1>
m L 1 m m
(L4 k) (1) (1™ ®
S () (2 ()

They also show that a value of L = 4 achieves the best FPR. As the
number of bloom filter entries n is given from the simulator, this
leaves us with two parameters that influence the FPR: The number of
counters m, and the number of hash functions k. As increasing the
number of counters increases the size of the bloom filter, we would

like to find the smallest value for m that can achieve the desired FPR
for n entries.

APPROXIMATING IDEAL PARAMETERS For practical values of n,
this solution can be solved using a brute force approach: We start out
with a certain value of m and a fixed n and L, and calculate the
FPR for a number of different values of k. If none of them are close
enough to the desired FPR, the number of counters m is increased by
a set amount (e.g. 1000), and the process is repeated until a solution
within the acceptable deviation from the desired FPR is found. Once
the solution is found, the values for m and k are returned and the
process terminates.

For values of n of up to 100000000, this process terminates within
a few seconds. If even larger values should be computed, the pro-
cess could be optimized by changing the step size depending on the

73

74

IMPLEMENTATION

distance from the desired FPR, thereby reducing the number of steps
required to find the solution.

DERIVING VI-CBF SIZE Once the optimal parameters have been
approximated, a VI-CBF with these parameters can be created and n
different entries added to it. It can then be serialized to determine the
expected size of the bloom filter, thereby estimating the overhead its
transmission introduces into the system. This technique will be used
to estimate the overhead of the system with different parameters.

4.9 SUMMARY

In this chapter, we gave an overview over the algorithms and libraries
used in our proof of concept implementation. We discussed the dif-
ferent security features of the Android OS and our application, and
we presented the simulator we designed for the evaluation. This con-
cludes our discussion of the implementation. We will now move on
to the evaluation of our system.

EVALUATION

In this chapter, we will evaluate the system design and proof of con-
cept implementation. First, we will discuss the security of the local
storage system used in the proof of concept. Afterwards, we will
take another look at the security of the identifier generation scheme,
and discuss some remaining open issues of the scheme. Next, we
will discuss the security of the remote storage protocol against the
adversaries discussed in our adversary model. We conclude with an
investigation of the computational and networking performance of
the system.

5.1 SECURITY OF LOCAL STORAGE

Each user’s device holds not only the health and fitness data itself,
but also a number of cryptographic secrets that need to be protected.
While we assume the user’s device to be trusted in our adversary
model (cf. Section 3.2), it is always better to provide as much protec-
tion as practical for critical data. Additionally, in the real world, some
adversaries (e.g. malware) may be able to access files and databases,
but cannot easily compromise encryption functions.

The proof-of-concept implementation stores data and secrets in an
SQLite database protected with SQLCipher." SQLCipher is widely
used by companies, government agencies and open source projects,
including NASA, Samsung, SAP, and the Guardian Project.?

A full security analysis of SQLCipher is outside the scope of this
thesis, but in the following paragraphs, we will provide a brief overview
over how SQLCipher provides the security goals of confidentiality,
integrity and authenticity. All information is taken from the official
documentation and design documents.3

5.1.1 Confidentiality

SQLCipher uses the Advanced Encryption Standard (AES) in the
Cipher-Block Chaining (CBC) mode of operation with 256-bit keys.
The keys are derived from a user-provided passphrase using the
Password-Based Key Derivation Function 2 (PBKDF2) (cf. RFC 2898
[66]) with a random salt specific to the database. This ensures that

1 See https://www.zetetic.net/sqlcipher, last visited December 7th, 2015
2 See https://www.zetetic.net/sqlcipher/about/, last visited December 7th, 2015
3 See https://www.zetetic.net/sqlcipher/design/, last visited December 7th, 2015

75

https://www.zetetic.net/sqlcipher
https://www.zetetic.net/sqlcipher/about/
https://www.zetetic.net/sqlcipher/design/

76

EVALUATION

even if two databases are encrypted using the same passphrase, they
will use different encryption keys.

The SQLite database is organized in individual pages of 1024 bytes,
which are encrypted separately and with individual Initialization Vec-
tors (Ivs). SQLCipher also encrypts temporary files like journals. This
ensures that no confidential information is leaked during database
transactions.

5.1.2 Integrity and Authenticity

Integrity and authenticity are provided using a Hash-Based Message
Authentication Code (HMAC) with SHA-1 as the underlying hash
function. The Message Authentication Code (MAC) is written on each
page write and checked on each page read, and uses a key derived
from the encryption key using a 2-round PBKDF2 with a salt derived
from the random database salt. This ensures that both accidental (in-
tegrity) and malicious (authenticity) manipulations of the page file
are detected.

5.1.3 Conclusion

The algorithms used by SQLCipher are, as far as we know, secure.
While SHA-1 is being phased out in favor of SHA-2 due to concerns
about its collision resistance (cf. Wang et al. [114]), HMAC using
SHA-1 is still secure as HMAC does not require its hash function to
be collision-resistant (cf. Bellare [10]).

To the best of our knowledge, there has not been any security au-
dit of the SQLCipher codebase. The cryptography functions are pro-
vided by OpenSSL’'s widely used libcrypto library, which is subject to
scrutiny by many users. However, we use SQLCipher in the under-
standing that in practice, there is no such thing as perfect security.

5.2 SECURITY OF IDENTIFIERS

The identifier generation scheme we are using (cf. Section 3.4) is
critical to some of our security goals, especially unlinkability. While
we have already offered proofs for some of its properties, others have
not yet been examined.

In this section, we will analyze our implementation choice of using
SHA-256 in place of the random oracle. We will also examine some
other properties of the system, try to identify open issues, and pro-
vide some ideas on how to solve any remaining issues of the system.

5.2 SECURITY OF IDENTIFIERS

5.2.1 Implementation Choices

The use of SHA-256 in place of the random oracle seems counterintu-
itive, as SHA-256 is using the Merkle-Damgard construction [31, 83],
which is vulnerable to a length-extension attack (cf. Tsudik [113]),
making it unsuitable for use as a random oracle. However, we argue
that this does not influence the suitability of SHA-256 for use in our
scheme, for two reasons.

Firstly, we do not require our identifiers to be completely indistin-
guishable from random data, we only require them to be unlinkable.
For the reasons outlined in Section 3.4.4, the length extension attack
does not help an adversary to link our data.

Secondly, while there is no formal proof that SHA-256 generates
random-looking, unlinkable data, no attack is known that would al-
low an adversary to link these inputs (i.e. break correlated-input secu-
rity [55]). Such an attack could also potentially impact other systems
like hash-based Pseudo-Random Generators (PRGs) (e.g. Hash-DRBG
[4]), which improves the chances of such a weakness being found by
researchers if it exists.

While this does not give us absolute certainty about the security of
the scheme, it offers a solid foundation for trust.

5.2.2 Open Issues

While we have shown the system to fulfill the most critical security
properties, there are still some additional properties that would be
beneficial, but are not provided by the current design. In this section,
we will discuss some of these properties.

5.2.2.1 Post-Compromise Security

Post-Compromise security was first formally defined by Cohn-Gordon
et al. [26]. Informally, they define a system to provide Post-Compromise
Security (PCS) if the system can still provide a security guarantee to
a sender after the secrets of the recipient have been compromised (cf.
[26, Def. 1] for the full informal definition).

PROPERTIES OF PCS In the case of our identifier system, the most
important properties this includes are forward secrecy (also named
backtracking resistance by the National Institute of Standards and Tech-
nology (NIST)) and prediction resistance. NIST defines these terms for
Deterministic Random Bit Generators (DRBGs), a form of PRGs, in Spe-
cial Publication 800-90A [4].

* A DRBG is backtracking-resistant (forward-secret) if an adversary
gaining access to the secret state at time T cannot use it to dis-

77

Proofs of this nature
for actual algorithms
are very uncommon

SP 800-90A is now
(in)famous for the
backdoored
Dual_EC_DRBG

78 EVALUATION

tinguish previously-unknown outputs of the DRBG generated at
time t < T from true random bitstrings. (cf. [4, pp. 24])

* A DRBG is prediction-resistant if compromise of the secret state at
time T does not allow the adversary to distinguish outputs of
the DRBG at times t > T from true random bitstrings. (cf. [4, pp.

25])

Informally, backtracking resistance means that an adversary cannot use
the secret state of the generator to reconstruct old values, while pre-
diction resistance means it cannot use it to predict future values.

These definitions can be translated to our identifier scheme in the
following way:

* The scheme is backtracking-resistant (forward-secret) if compro-
mise of kag and ctrap at time T does not allow the adversary
to calculate any identifiers generated at time t < T.

¢ The scheme is prediction-resistant if compromise of kap and
ctrap at time T does not allow the adversary to calculate any
identifiers generated at time t > T.

It is clear that the system does not fulfill either of those properties,
as kap is constant and ctrap changes in a predictable way:

* The adversary can backtrack (calculate old identifiers) by decre-
menting ctrap and calculating the identifier as normal (cf. Equa-
tion 1/Section 3.4.2).

* The adversary can predict the next identifiers by incrementing
ctrap and calculating the identifier as normal.

PROVIDING PCs The intuitive solution would be the use of a forward-
secret key ratchet (a cryptographic key management scheme) like OTR
[21], its asynchronous successor Axolot! [79], or the ratchet used in the
encrypted Voice over IP (VoIP) standard ZRTP [118].
A good explanation All three have in common that they do not use a single key, but
and comparison of — continually modify (,ratchet”) the key with every message, deleting
OTR and Ax‘.ﬂo[tl i;’ old keys that are no longer required. The new keys are derived in
groeniize a one-way operation that is impractical to reverse, leading to back-
tracking resistance/forward secrecy. Additionally, the new keys are
derived using information included in sent and received messages,
which makes it impossible to predict the next key until the message
has been sent (prediction resistance).
Finally, well-designed ratchets can provide a third property called
Future secrecy future secrecy by Marlinspike et al. [79]. While forward secrecy means
usually requires at that the attacker cannot ,go back in time” to decrypt old messages
least 0”; mess”get after compromising key material, future secrecy means that the ratchet
ObEZCU:; %; 1:;8 can actually restore secrecy to a previously-compromised session un-
adversary ~ der certain circumstances (a property of PCS).

5.2 SECURITY OF IDENTIFIERS

ISSUES OF RATCHETS Adding a ratchet to our protocol could pro-
vide these properties to our identifier scheme. It would also offer the
same properties for the actual data encryption, as it uses the same
keys as the identifier derivation. However, it would also introduce
additional complexities that would need to be taken into account. For
example, message revocation (deletion of a message by the sender be-
fore the recipient received it) could remove information critical to the
ratchet, leading to a desynchronization.

CONCLUSION In conclusion, providing PCS to our protocol is possi-
ble, but introduces a number of additional problems. These problems
can be solved with a properly-specified protocol, however, the addi-
tional complexity this introduces is out of scope for this thesis and is
left for future work.

5.2.2.2 Multi-Device Support

So far, we have only discussed the case when Alice and Bob have ex-
actly one device each. However, with the rising popularity of tablets
and other secondary smart devices, more and more users own more
than one device. With an account-based system (without unlinkabil-
ity), it is comparatively easy to keep two devices by the same user
synchronized. However, as we are not using accounts, synchroniza-
tion between multiple devices is a non-trivial task.

In our case, we would need to either find a way to reliably, but
privately, synchronize all keys and counters between devices. Alter-
natively, we could derive shared secrets for each pair of devices and
combine them all under one unified friend in the application, sharing
data to all devices of the friend if data is shared with that friend.

SYNCHRONIZING SECRETS Synchronizing the critical values intro-
duces a large number of potential edge cases. Care would have to be
taken to ensure that the values are always in sync when new share
operations occur. Additionally, this would prevent us from deleting
data from the server after retrieving it, as the retrieving device would
not know if the other device(s) of the user have retrieved the data yet.
This would put additional load on the server.

DERIVING MULTIPLE SECRETS Deriving multiple shared secrets
could lead to a large number of edge cases and trust issues. The
trivial solution would be to perform all key exchanges between all
devices manually. However, this would be inconvenient to the users,
as this would require n? key exchanges for two users with n devices
each. A more convenient solution would be preferable.

DELEGATED KEY EXCHANGE It would be possible to delegate the
key exchanges to one device. Assume Alice has two devices A; and

79

Building a desktop-
or web-based version
would involve
similar problems

8o

This idea is inspired
by Signal, see [8o]

The hashes would
have to be separate,
as the second hash
does not match
between the two
devices

The proposal would
also have to receive a
full security
evaluation

EVALUATION

Aj. A7 would have to pre-generate and cache a number of Elliptic
Curve Diffie-Hellman (ECDH) keypairs and transmit the public keys
to A; in a secure manner. A, would do likewise and transmit to Aj.

When A; performs a key exchange with Bob’s device B1, it would
provide not only its own ECDH public key, but also one of the keys
A, sent to it. Likewise, B1 would provide any additional public keys
for secondary devices B;. The verification would then compute the
hash over the secrets derived between A7 and B>, and also include a
second hash over all received public keys.

If the verification is successful, a Man-in-the-Middle (MitM) can be
ruled out and the received public keys are assumed to be authentic.
As Aj has received public keys for all other devices of Bob as well,
it can also derive shared secrets with them. The public keys can
also be delivered to A, (over a secure, authenticated channel, and
with an indicator which of A;’s public keys was sent to the other
party), which can perform its own key exchanges and key derivation
to compute shared secrets with By and B,. As Aj is trusted and
the channel authenticated, A, can be sure that the received keys are
authentic.

ISSUES OF DELEGATED KEY EXCHANGES This proposal would pro-
vide a better user experience, but would still have a number of edge
cases. For example, what happens if Bob sells B, and picks up a
new device, B3? A new key exchange would somehow have to be
performed between B3 and all devices of all friends of Bob. The addi-
tional data uploaded to the server by sharing all data with multiple
devices would also further increase the overhead of the protocol.

CONCLUSION In conclusion, while some ideas exist on how to han-
dle the case of users with multiple devices, none of them is easy to
implement, and they all require carefully specified protocols that rule
out any edge cases. As such, it is out of scope for this thesis and left
for future work.

5.2.2.3 Backup Re-Synchronization

Another issue concerns backups. Many users perform automated
backups of the apps on their devices, using tools like Titanium Backup.
These backup tools make a snapshot of the current state of the app,
including all of its data, and can later restore the application to that
state.

BACKUP DESYNCHRONIZATION This poses a problem in our case,
as it can lead to a desynchronization between Alice and Bob. The
actions leading to this desynchronization are shown in Table 1. After
step 3, the data shared by Alice is no longer on the server. After step
4, Bob no longer knows that the data ever existed, and will never

5.2 SECURITY OF IDENTIFIERS

| Action Statea Statep

1 | B performs backup | kag,ctras kaB,Ctrap

2 | A shares data kag,ctragp +1 | kag,ctrag

3 | B retrieves data kag,ctragp +1 | kag,ctrag + 1
4 | B restores backup kag,ctrag +1 | kag,ctrag

5 | A shares data kag,ctrap +2 | kag,ctrag

Table 1: Sequence of events leading to desynchronization

increment ctrap to a value where he will find data shared by Alice,
as he will wait for the identifier idag = h(h(kag || ctrag)), while
Alice will never reuse ctrap and instead use ctrap + 1 and upwards.

RESYNCHRONIZATION The best way to ensure that backups will
resynchronize would be to never delete any data from the server.
However, this would put a large additional load on the server and,
specifically, the Variable-Increment Counting Bloom Filter (VI-CBF).
We will see in Section 5.5 why this would not be a good idea.

The second intuitive solution would be to occasionally increment
ctrap by a few additional steps to check if we find any valid data at
higher identifiers. However, we would need to set an upper bound
by how many steps we want to increment at most, and this threshold
would inevitably be tuned incorrectly for some users. Additionally,
there is no guarantee that Alice will even have sent any shares that we
can find this way - maybe Alice has not shared any new data since
we restored our backup.

Finally, we could introduce a method to keep track of the current
value of our ctrap using the server. However, care would need to
be taken to store it in a manner that would be both predictable to us
(even after restoring an outdated backup) and still not provide the
server with a way of linking our sessions when we update it.

coNcLUsION The problem of resynchronizing after restoring a
backup has no trivial solution and would require extensions to the
protocol. The problem would also be even worse if we were to
use a key ratchet, as proposed in Section 5.2.2.1. In this case, even
kap would change, which would prevent any re-synchronization that
could be achieved by resynchronizing the counter.

Solving this problem in a secure and scalable manner is out of
scope for this thesis and is left for future work.

81

82

The effects of
allowing an active
adversary are
discussed in
Section 6.1.1

The susceptability of
hash functions to the
birthday paradox
was evaluated by
Bellare et al. [7]

EVALUATION

5.3 SECURITY OF REMOTE STORAGE

After showing the security of the indentifier scheme, we are now go-
ing to analyze the security of the remote storage system. We will
consider each of the adversaries specified in Section 3.2 in turn, ana-
lyzing potential attacks and how the system defends against them.

5.3.1 Honest-but-Curious Server

The most obvious potential adversary would be the central server
that is used for data storage. In our adversary model, we limit the
server to the honest-but-curious-model, which forces the server to fol-
low the protocol correctly, but lets it try to infer as much information
as possible from the protocol flow.

This type of adversary can attempt a number of attacks on different
security goals. We are now going to give an overview of these attacks
and show what the adversary can and cannot achieve.

DATA CONFIDENTIALITY The server can attempt to read the data
uploaded to it. However, the data is encrypted using strong cryp-
tography, which the server is incapable of breaking (according to our
adversary model). Without the cryptographic keys, the server is inca-
pable of gaining access to the encrypted data and can only determine
general information, like an upper bound on the size of the plaintext.

NETWORK-LAYER LINKABILITY The adversary can attempt to link
users on the network layer by checking the IPs from which they con-
nect to it. However, we have specified in our adversary model that
the protocol must be run over an anonymized connection (e.g. using
Tor [41]), which will hide the true IP of the user. The adversary will
only see the IP of the exit node of the anonymizer, which does not help
it to link the user.

PROTOCOL-LAYER LINKABILITY - IDENTIFIERS The adversary
can attempt to link users based on their protocol interactions. While
the identifiers themselves are unlinkable (i.e. it is impossible to de-
termine that idag and id/, 5 are related if they were generated with
different values of ctrag), they are also unique - a collision between
two identifiers is highly unlikely if we are using a cryptographic hash
function, even taking into account the birthday paradox.
Disregarding data block identifiers, which may be accessed by dif-
ferent people, this implies that identifiers can serve to re-identify a
user if she requests the same identifier twice. We introduced the
VI-CBF in Section 3.6.3 to prevent this attack. As a user will only re-
quest the same identifier twice iff she encountered a false positive
when querying the VI-CBF, it follows that the probability of being able

5.3 SECURITY OF REMOTE STORAGE

to use an identifier to re-identify a user is related to the False-Positive
Rate (FPR) of the VI-CBF.

This ¥rR is a system parameter that can be changed in order to find
a tradeoff between the privacy provided by the VI-CBF and the over-
head its size introduces (which will be evaluated in Section 5.5). It
should be chosen in a way that makes this type of linkability unlikely
to succeed in a large portion of cases.

PROTOCOL-LAYER LINKABILITY - BLOCK ACCEss The server
can attempt to link uploads by the same user. Assume Alice is sharing
data with Bob and Carol. According to the protocol, she will create
one data block, c4, and two key blocks, cas and ca c. These blocks will
be uploaded under id4, idag and idac, respectively.

If we use the network connection efficiently, we will upload all
three items using the same connection. This allows the server to
determine that they are being sent by the same person. Additionally,
it can make an educated guess that one of them will be a data block
and the two others key blocks, as we will typically only share one
piece of data at a time. This guess can be confirmed by tracking
how the blocks are accessed: Blocks that are accessed once and then
deleted are most likely key blocks, as this is how they are typically
used. Blocks that are accessed more than once, each time directly after
an access to a (suspected) key block, and never deleted, are probably
data blocks. This also allows the server to determine with how many
people a data block was shared by counting the number of key blocks
uploaded with it.

The intuitive counter would be to perform each upload and query
over its own connection. However, this approach has several prob-
lems: Firstly, unless the server is constantly receiving a large number
of messages in very short timeframes, it will be able to connect the
uploads based on their time. Secondly, the server could still identify
which of the uploads are key blocks and which are data blocks based
on the access patterns. Finally, establishing network connections over
an anonymizer like Tor requires some time (sometimes up to multiple
seconds), so this approach would impact the performance perceived
by the user.

An efficient solution for this problem has not yet been found. In-
tuitively, this does not significantly impact the privacy of users, as
their sessions are still unlinkable - the server may know that someone
shared data with two friends, but not who was involved. However, it
could serve as a precondition for other attacks, one of which we will
discuss next.

LINKABILITY - METADATA The server can combine multiple
sources of metadata to at least make guesses about the identities of
users. For example, from the previous attack, the server can know

83

Note that, while the
server determines
this parameter,
clients could set
acceptability
thresholds and
refuse higher values

84

While their
evaluation applies to
Mix networks, it
could be adapted for
our case

EVALUATION

with how many users people share data. It can also log at which
times these shares occured, and when they were accessed. All of this
data can be aggregated and searched for patterns.

For example, if Alice goes jogging for one hour every friday at 5 pm
and shares the data with Bob and Carol afterwards, the server will see
a share on each friday at around 6 pm, shared with two other users. If
Bob and Carol usually check their phones at 8 pm, they will retrieve
the data at 8 pm, which can also be detected by the server. This could
allow the server to determine with a high probability that two sets
of blocks (the ones from last week and this week, for example) are
related.

The exact performance of this attack depends on the number of
users of the system, and on how many users have the same habits as
Alice, Bob and Carol. The more they fit into the general behaviour of
users, the better their anonymity, as their anonymity set (cf. Chaum
[23]) is larger.

Quantifying the practical danger of this attack is not trivial. Franz
et al. [51] propose using entropy as a metric for unlinkability against
an attacker with context information. Similarily, Diaz et al. [38] pro-
pose metrics to determine the anonymity offered in Mix network
where individuals with known social connections communicate. Due
to time constraints, we leave an analysis using these methodologies
for future work.

Past experience (e.g. De Montjoye et al. [35] for credit card data,
Narayanan et al. [85] for movie preferences, Krumme et al. [70] for
consumer visitation patterns) has shown that this could be a promis-
ing avenue to attack the system, and one that is very hard to defend
against. To the best of our knowledge, the problem of efficient meta-
data obfuscation remains unsolved for this scenario.

A related problem is the ability of adversaries to infer lower and
upper bounds on the size of the plaintext from the ciphertext. This
may allow the server to infer the type of data that was shared. For
example, a GPS track will be measurably larger than a step counter
value. This problem could be reduced by using a length hiding strat-
egy (e.g. Tezcan et al. [110]). However, if the plaintexts have a suffi-
ciently different length, length hiding may introduce a large overhead:
step counter values would have to receive several kilobytes or even
megabytes of padding to be indistinguishable from long GPS tracks.

sTUDY PRIVACY The server can trivially determine how many peo-
ple have joined a study, as study-join messages are distinguishable
from regular messages because they are saved in special queues. How-
ever, the server cannot determine who has joined a study (due to
network-layer anonymity), or how much data individual participants
are contributing (as that data is sent using the regular data sharing

5.3 SECURITY OF REMOTE STORAGE

strategy, which makes study submissions indistinguishable from nor-
mal data sharing).

Data related to studies with a large number of participants may still
be detected, as these would result in a large number of requests from
the researcher when downloading new data. Such large amounts of
queries are unlikely to come from regular users, as typical users do
not have thousands or tens of thousands of friends. This is, again, an
issue of metadata that we cannot easily prevent. However, this does
not give the server any information about which participant sent the
data.

CONCLUSION An honest-but-curious server can attempt to break
the privacy of its users using hard-to-conceal metadata. However, it is
not capable of determining the identity of individual users, even when
linking their sessions, as this identity is still protected by network-
layer anonymity. It is also incapable of reading the contents of the
shared data. This shows that, even with the reduced privacy under a
metadata-based attack, the system still provides better privacy guar-
antees than current commercial services.

5.3.2 Malicious User

The privacy of a user may be threatened not only by the server, but
also by other users. Examples of potential privacy threats include
stalkers, curious employers, and criminals looking for blackmail ma-
terial. This problem is exacerbated by the anonymity afforded to
users - while anonymity provides privacy to legitimate users, it also
protects the identity of misbehaving users and prevents their exclu-
sion from the system. Thus, we need to ensure adequate protection
against malicious users.

UPLOADING ARBITRARY DATA In our adversary model, malicious
users are allowed to deviate from the protocol. This means that they
can store arbitrary information on the server. A malicious user can
use this to upload a large amount of data, spread over many iden-
tifiers. The server would have to increase the size of the VI-CBF to
achieve the same FrRr as before, thereby increasing the overhead expe-
rienced by all users.

Additionally, the adversary could use the storage of the server to
store arbitrary data and make it available to others. This could be
used to distribute (potentially illegal) content anonymously, as long
as the identifier(s) can be anonymously distributed to the recipients.

Due to the lack of an account system, misbehaving users cannot be
detected or excluded. The attack could be made more expensive, if
not prevented, by using rate limiting or a proof-of-work system, which
would require users to solve a computational puzzle before being

85

86

EVALUATION

allowed to upload data. However, the practicality (cf. Laurie et al.
[72]) and cost (cf. Becker et al. [6]) of proof-of-work systems is in
question. Additionally, the impact on regular users would have to
be taken into account: While we want to prevent the adversary from
overloading the server with data, legitimate users, even those sharing
data with many friends, should not be significantly impacted.

A potential solution may be an anonymous authentication system
with privacy-preserving revocation like PEREA by Tsang et al. [112],
or its successor PERM by Au et al. [1] which added privacy-preserving
reputation tracking. While this would introduce additional complex-
ity into the protocol, it could be used to exclude misbehaving users
without compromising the privacy of users. However, the practical
impact on the performance of the system would need to be evaluated.

ENUMERATING STORED DATA A malicious client would also be
able to request any piece of data from the server. The main difficulty
here would be to determine which identifiers are actually available on
the server. The client could use the VI-CBF to locally check if an identi-
fier is available on the server without communicating with the server
for each identifier. This would increase the performance compared to
querying the server, but still requires multiple hash computations for
each query, thereby slowing the adversary.

Additionally, the adversary could not use any technique more ef-
ficient than exhaustive search of the identifier space, which has 2256
entries, as no efficient way to invert the VI-CBF (i.e. find out which
items have been saved into it) exists. Finally, the usefulness of down-
loading the data is questionable, as it is encrypted and the identifiers
unlinkable. Much as the server, the user would have no efficient way
to gain access to the data.

UPLOADING FORGED DATA Another version of uploading arbi-
trary data is uploading forged data that generally conforms to the
protocol. Examples include sending forged GPS tracks to their friends,
or even submitting incorrect data to researchers to skew their results.

These problems aren’t specific to our system, but a general prob-
lem: How can you ensure that data you receive hasn’t been tampered
with if the person generating and sending you the data is the adver-
sary? The literature proposes using existing infrastructure like wire-
less access points to certify GPS tracks (cf. Pham et al. [91]), but there
is no general solution applicable to all types of data. This problem
has to be solved through vigilance, with users and researchers alike
trying to spot any implausible data.

DELETING DATA An adversary may try to delete other people’s
data from the server. However, this requires knowledge of the revoca-
tion token, which cannot be efficiently obtained without knowing the

5.3 SECURITY OF REMOTE STORAGE

secrets used to generate it (cf. Section 3.4.3). Thus, the adversary is
again reduced to an exhaustive search of the revocation token space,
which is identical to the identifier space as they use the same hash
function.

Of course, the adversary is assisted by economies of scale: If she
is not intent on deleting (i.e. inverting) a specific (or even all) iden-
tifier(s), but only wants to delete any one identifier, she has a higher
chance of finding a valid revocation token due to the larger number of
targets. The computations required for this are highly parallelizable
and could be distributed across a network of compromised comput-
ers. However, the computational cost would still be massive.

DETERMINING RECIPIENTS Finally, our adversary may in fact be
friends with one of its victims. An example could be a jealous spouse
who wants to know who else their partner is sharing data with. In this
case, the adversary knows the identifier and key of the data block the
other recipients will access, but has no way of determining who else
has accessed this data. Thus, the complete list of recipients remains
private, even to the recipients themselves.

5.3.3 Malicious Researcher

As we are offering users the possibility of submitting data to re-
searchers in the understanding that their identity will be protected,
we need to ensure that malicious researchers cannot identify partic-
ipants in their studies. To some extent, distinguishing between ma-
licious users and -researchers is unnecessary, as anyone can submit
studies to the server. However, we assume that our malicious re-
searcher is actually a legitimate researcher at some respected institu-
tion and may be running legitimate studies, but try to deanonymize
participants.

In addition to any actions a regular malicious user could take, a
malicious researcher can use any research-related functionality. This
also means that any attack mentioned in Section 5.3.2 applies here as
well, and will not be listed again.

REGISTERING STUDIES A malicious researcher can start studies
that have nothing to do with their academic interest, but are used
purely to satisfy their personal curiosity or for other gains. They may
even submit studies that contain advertisements in order to serve
those ads to people looking through the list of available studies. In
this, they are no different to a malicious user, which could do the
same.

As we are using an open, automated submission system for studies,
this cannot really be prevented. We could switch to a system where
studies are manually reviewed before being made available to users.

87

The case of colluding
adversaries is
discussed in

Section 6.1.2

88

EVALUATION

This could filter out any obviously bogus studies. It would place
more control in the hands of the server operator(s), however, as the
operators control the server, they have full control over the studies
they serve either way. Other than that, user education and -vigilance
are the only way to defend against such studies.

IDENTIFICATION OF PARTICIPANTS Researchers have one advan-
tage over normal users when it comes to identifying users: Upon
joining a study, the user’s device will communicate with a web page
specified by and under the control of the researcher who created the
study, in order to retrieve the data required to verify the study (cf.
Section 3.7.2). The time of this access could be correlated with the
time of new participants joining the study to determine which partic-
ipant accessed the website from which IP.

The only method to prevent this would be to perform all connec-
tions required for the authentication through the same anonymizer
we are already using for connections with the server. This would
hide the IPs of participants from the adversary, making the attack
useless.

5.3.4 Conclusion

Our evaluation has shown that, while some attacks exist, there are no
promising attacks on the anonymity. The confidentiality of the data
is secured, and so is the authenticity.

We have identified two attack vectors on the unlinkability, and have
shown that they are general problems without a known (efficient) so-
lution. The same is true for attacks on the availability and trustwor-
thiness of data, which are notoriously hard to prevent.

Overall, our solution provides stronger privacy guarantees than
current commercial solutions. However, the strongest privacy guar-
antees are useless if the system is no longer efficient enough for pro-
ductive use. This is why we will evaluate the performance of our
system next.

5.4 COMPUTATIONAL PERFORMANCE

After showing the security of the system, we also need to consider its
computational cost. Most of the system (e.g. collecting sensor data,
saving it to the disk, serializing and deserializing it for sharing, ...)
can be assumed to be efficient. Thus, we will only analyze crypto-
graphic operations like en- or decryption and hash calculations.

5.4 COMPUTATIONAL PERFORMANCE

5.4.1 Cryptographic Operations

An important part of the computational performance of a system is
the number and size of cryptographic operations. Depending on the
used algorithms, the computational time required for cryptographic
operations may be significant. Fortunately, we are frequently using
hash operations and symmetric cryptography, which are both very
fast (at least compared to asymmetric cryptography, which we need
to use only rarely).

FRIEND DISCOVERY The friend discovery process (cf. Section 3.5)
happens only rarely and thus does not have a significant impact on
the overall system performance. It uses the key agreement protocol
ECDH, using Curve25519 [13] as the underlying elliptic curve for its
efficiency and security.

ECDH key agreements are quite efficient, and their processing time
is dominated by the delay introduced by the network connection
they communicate over. The resulting shared secret is expanded into
the correct length using the HMAC-Based Extract-and-Expand Key
Derivation Function (HKDF) [67], which uses symmetric cryptography
and is also quite fast. Finally, the verification of the derived secrets
uses a hash function, which is also computationally efficient.

SENDING SHARES Sending shares (cf. Section 3.6.2) requires a
number of cryptographic operations. First, a random, symmetric 256
bit key kq and a random value r must be generated. Afterwards, the
data needs to be encrypted and authenticated using k4 and a sym-
metric cryptographic algorithm (in our case AES in Galois/Counter
Mode (GCM)). The time this requires depends on the size of the data
to be encrypted, but will be quite low for reasonably sized pieces of
data. We also need to compute the hash of r for use as the identifier
idg4. Afterwards, the encrypted data can be uploaded under that iden-
tifier, which will take one Round-Trip Time (RTT) (the time it takes to
send a message to the server and receive a reply).

After the encrypted data has been successfully uploaded, id4 and
kg need to be distributed to all recipients. For each recipient, this
requires two hash operations to derive revag and idag, one piece
of random data for the IV, and one encryption operation using kas
to encrypt the data for the recipient. After the process has finished
for all n recipients, the data can be uploaded in bulk to the server,
which takes only one RTT, regardless of the number of recipients, for
an optimal implementation.

If we instead use the alternative protocol proposed in Section 3.8,
the results change slightly: We no longer encrypt the data once and
then encrypt idgq and kq. Instead, we encrypt the data directly for
each of the n recipients and upload it under their respective iden-

89

We use ECDH
instead of regular
Diffie-Hellman
because it is faster.

A consumer-grade
CPU can compute
more than 2 million
SHA-256 hashes per
second.

AES-GCM usually
achieves >100 MB
per second of
throughput

The proof of concept
implementation
takes 1. RTT5, as it
is not optimized

90

VI-CBF performance
will be evaluated in
Section 5.4.2

EVALUATION

tifiers. For n recipients, this requires n encryption operations on
variable-length data, 2n hash operations (to derive the identifiers),
and one RTT to upload the data.

RECEIVING SHARES To retrieve a share (cf. Section 3.6.3), the client
needs to first calculate the expected identifier, idag. This requires 2
hash operations. It also needs to retrieve the VI-CBF from the server,
which takes one RTT. Afterwards, the VI-CBF can be queried for idas.

If the identifier comes up positive in the VI-CBF, the client can send a
GET request to the server to retrieve the data, leading to another RTT of
delay. Once the data was retrieved, it can be decrypted using kap and
the included 1V to receive idq and k4. The client can then retrieve id4
and delete the data saved under ida, which (in an optimal protocol
that allows sending more than one command per message) takes only
one RTT. After the encrypted data was retrieved, it can be decrypted
using kq and inserted into the local database of the client.

If n friends have shared data with the user since the last retrieval,
the commands can be combined, keeping the number of RTTs con-
stant. The other operations are all multiplied with n in this case -
n constant-sized decryptions, n dynamic-sized decryptions, and 2n
hash function evaluations.

If we use the alternative protocol instead, the client needs to derive
the identifier(s), retrieve and query the VI-CBF, and can then query the
server for each available identifier. It can bundle a deletion request
for each retrieved identifier at the same time, thereby retrieving and
deleting the data from the server in one instead of two RTTs. Finally,
the retrieved data can be decrypted and saved. This leaves us with 2n
hash function evaluations, n dynamic-sized decryptions, and 2 RTTs
for n retrieved shares.

STUDY CREATION The creation of research studies (cf. Section 3.7.1)
happens only rarely. Additionally, the time required for any crypto-
graphic operation is dwarfed by the time required by the user to fill
out the fields of the study request. Any long-running key generation
tasks can be performed in the background while the user is typing,
thereby hiding the delay they introduce. Nevertheless, we will take a
look at the operations the study creation requires.

The study requires two asymmetric key pairs: One ECDH keypair
for the bundled key exchange data, and one Rivest, Shamir, Adleman
(RSA) keypair to authenticate the study and allow encrypted study
join messages. These two keypairs are generated in the background,
so the multiple seconds of delay they introduce are not perceived by
the user. Once the keypairs have been generated, the public key is
hashed to generate the token that will later be used to authenticate
the source of the study (cf. Section 3.7.2).

5.4 COMPUTATIONAL PERFORMANCE

Once the study request has been filled out, it will be serialized and
represented as a series of bytes. These bytes will then be signed with
the private RSA key. The resulting signed study request will then be
uploaded to the server, which requires one RTT.

sTUuDY JOIN Tojoin a study (cf. Section 3.7.2), the client first needs
to retrieve the list of all available studies. This list is distributed by
the server, and retrieving it requires one RTT. When the user decides
to join a study, the first step is to authenticate the included public
key. For this purpose, the hash of the public key is compared with
the verification data that can be retrieved from the chosen verification
system (e.g. a website protected by Transport Layer Security (TLS)),
which will require at least one RTT. If the verification succeeds, it will
verify the signature on the study request using the now-authenticated
public key.

If the signature is authentic, the client will generate its own ECDH
keypair and perform an ECDH key agreement using the data included
in the study request. It expands the shared secret using HKDF. Finally,
it creates the study join message, includes its own ECDH public key,
and encrypts the message using the public RSA key provided in the
study request. The resulting data is then submitted to the server,
taking another RTT.

At this point, the client has joined the study and can start submit-
ting data. The data submission process is identical to the regular
sharing process and thus has the same performance characteristics.

The researcher who created the study will periodically retrieve new
study join messages from the server. She will decrypt them using the
studies private RSA key, extract the included ECDH public key, and
perform her own local key exchange using the data. She can then
proceed to derive the required secrets using HKDF and start receiving
shares from the new study participant using the previously-described
share retrieval process.

PRACTICAL EVALUATION SETUP To get an idea about the required
computation time of each operation, we performed a short evalua-
tion using the proof of concept implementation, written in Java (cf.
Chapter 4). For each frequently used function (generating a random
identifier idq4, encrypting a piece of data with a random key k4, gen-
erating an identifier idag for a recipient, encrypting idq and kq for
a recipient), a small test harness setting up the required inputs was
created.

The function was evaluated 10000 times with different inputs, and
the evaluation time (without the setup process) was measured using
the System.nanoTime() function. The resulting measurements were
aggregated and the median, 1st and 3rd quartiles, minimum and max-
imum calculated.

91

92 EVALUATION

Function | median Q1 Q3 min max

Generate id, 0.054 0.050 0.055 0.047 11.222
Generate idapg 0.048 0.046 0.050 0.043 7.321
Encrypt 1 KB 0.851 0.786 0.933 0.718 102.711
Encrypt 10 KB 3916 3.790 4.062 3.406 98.956
Encrypt idq || kq 0469 0.426 0.553 0.372 14.003

Table 2: Overview of processing time for operations in proof of concept im-
plementation (results in ms, 10 000 samples)

The evaluation was performed on an Android device running An-
droid 5.1.1, with a Qualcomm Snapdragon 8o1 processor (4x 2.5 GHz,

Many phones reduce Krait 400 architecture) and 3 GB RAM. The display was active during
their processor speed the test.
while the display is
inactive to save

energy RESULTS While the implementation is not optimized for speed, the

results, shown in Table 2, should serve as an idea of what process-
ing time we can expect. The large maximum values are most likely
related to the Java garbage collector running and/or the process be-
ing paused while Android was performing background tasks on the
CPU.

As expected, the bulk of the processing time appears to be spent
on encrypting the data we want to share, where it scales with the
length of the input. Generating identifiers takes, on average, about
0.05 milliseconds, which makes it negligible compared to the encryp-
tion function. But even the 4 ms spent encrypting 10 KB of data is
small compared to the expected delay introduced by sending the data
over the network, where latencies of 50 ms and more are normal.

These results show that the computational overhead of the encryp-
tion and identifier generation are unlikely to have a noticeable impact
on the user-perceived latency of the system, unless large amounts of
data are shared at once.

SUMMARY An overview of the number of required operations to
achieve certain tasks is shown in Table 3. It shows that computation-
ally expensive operations (i.e. asymmetric cryptography) are used
only rarely. The more frequently used functions, like sending and re-
ceiving shares, exclusively use faster, symmetric algorithms like AES,
where processing times are negligible compared to the delay intro-
duced by the network.

We also note that only local operations like encryption and identi-
fier generation are impacted by the number of recipients - the number
of RTTs is constant. As networking delays will make up the majority

5.4 COMPUTATIONAL PERFORMANCE

Operation | AG AC SG oSC dSC ~ H RIT

Friend Discovery 1 1 - 1 - 1 1
Sending n Shares (P1) - - 1 n 1 1+2n 2
Sending n Shares (P2) - - - - n 2n 1
Recv. n Shares (P1) - - - n n 2n 3
Recv. n Shares (P2) - - - - n 2n 2
Study Creation 2 1 - - - 1 1

Study Join 1 3 - 1 - 1 3

AG = asym. key generation, AC = asym. cryptography
SG = sym. key generation, ¢SC = sym. cryptography on const.-sized data
dSC = sym. cryptography on dynamic-sized data, H = hash operations

RIT = required RTTs (optimal implementation)

Table 3: Overview of required cryptographic operations for Protocol 1 (P1)
and 2 (P2)

of the delay in most cases, this should help increase the perceived
performance of the system for users.

An evaluation using the unoptimized proof of concept implemen-
tation showed that cryptographic operations are unlikely to be a bot-
tleneck in system performance, as the processing times are in the
single-digit milliseconds. Additional optimizations of the code could
reduce this even further, if necessary.

One critical part we have not yet evaluated is the performance of
the underlying VI-CBF. As it influences the performance of share re-
trieval operations, we will evaluate it next.

5.4.2 VI-CBF Operations

Operations on a VI-CBF have the advantage of being more-or-less
constant-time. Both inserts and queries have a strong upper bound
on the number of required operations. As in the previous evaluation,
we also wanted to get an idea about the required computation time
for each VI-CBF operation.

While the proof of concept is not optimized, it can at least provide
an upper bound on the computational time for different parameters.
Optimizations could further reduce the computational time required
for these operations.

The evaluation procedure was identical to the previous performance
evaluation: A test harness was setting up the preconditions and the

93

computation time of the operation was measured using System.nanoTime().

Each operation was repeated 10000 times and the results aggregated
into median, 1st and 3rd quartile, minimum and maximum. The eval-

94

EVALUATION

Median Performance of VI-CBF Inserts

1-4 T T T T T T T T
13} -
12 F i
11k 1
1 - .
g

09 i
08k i
07 .

k=2 ——

k=3
06y .

k=5
0%0k 20k a0k 40k 50k 60k 70k 80k _ 0k 100k

Slots

k m | median Q1 Q3 min max

2 10000 0.526 0.495 0.558 0.445 21.286

2 50000 0.534 0505 0.560 0.446 38.649

2 100000 0.524 0.487 0542 0451 77.160

3 10000 0.793 0.747 0.822 0.672 87.004

3 50000 0.799 0.762 0.841 0.675 30.238

3 100000 0.795 0.753 0.832 0.681 82.977

4 10000 1.052 0990 1.096 0.900 34.637

4 50000 1.057 0.994 1.097 0.904 112510

4 100000 1.062 1.005 1.113 0.909 140.405

5 10000 1.330 1.259 1.398 1.135 42.717

5 50000 1325 1.247 1376 1.136 50.050

5 100000 1317 1.243 1359 1.135 138.064

Figure 21: Overview of processing time for VI-CBF inserts in proof of con-
cept (Java) implementation for different hash function numbers
(k) and slot counts (m) (results in ms, 10 000 samples)

uation used the Java implementation on the same Android device as
before.

INSERTS For a VI-CBF with k hash functions, inserts require k hash
calculations to determine the slot, k hash calculations to determine
the increments, and k memory accesses to update the counters (cf.
Section 2.4.5). Assuming a reasonably sized bloom filter (i.e. all coun-
ters fit into RAM and do not require swapping to access), most of

5.4 COMPUTATIONAL PERFORMANCE

the computation time will be spent on the hash functions. This also
implies that the computation time will scale with the number of used
hash functions, while the number of used counters will only have
a negligible effect on the computational performance (as long as no
swapping is required).

Figure 21 shows the results of the practical evaluation. The data
confirms the prediction that the performance is dominated by the
number of hash functions. Even increasing the number of slots by a
factor of 10 does not significantly alter the processing time.

The results show that VI-CBF inserts are unlikely to prove a bot-
tleneck of the system, considering that the server also maintains a
file-based database where operations are orders of magnitude slower.

QUERIES For queries, we distinguish three types:

1. true positive: queries that correctly determine that the input
value has been inserted into the VI-CBF

2. false positive: queries that result in a positive reply even though
the value has not been inserted into the VI-CBF

3. true negative: queries that correctly result in a negative reply

A true positive or false positive query requires k hashes to deter-
mine the slots, k hashes to determine the increment, and k counter
comparisons. True negative queries can be answered once the first
verification fails, thus potentially saving a number of hash operations.
Thus, negative results will, on average, have lower processing times
than true or false positive results.

The practical evaluation confirms this: Figure 22 shows the results
for true positive queries, while Figure 23 shows those for false posi-
tive and true negative queries. The performance for true positives is
almost identical to the performance of inserts, thereby confirming the
role of hash functions as the major performance factor.

The results for true negatives and false positives are related to the
False-Positive-Rate (FPR) of the VI-CBF, which is in turn related to the
number of entries, hash functions, and slots the bloom filter has. False
positives take longer to process than true negatives, as they require
the full 2k hash calculations, whereas true negatives can abort the
computations earlier. With lower slot counts, the overall FPR of the
bloom filter is higher, thereby resulting in more false positives and
average computation times. As we increase the slot count, the FPR
is decreased, leading to fewer false positives and an overall lower
average processing time. We also note that the minimum processing
time is identical (within measurement tolerances) for all parameters,
showing the lower bound for the query processing time - the time it
takes to calculate the first slot and increment.

95

As before, the high
maximum values are
probably related to
scheduling or
garbage collection

In our system,
VI-CBFs will never
give false negative
results.

96 EVALUATION

ms

Median Performance of VI-CBF Queries (TP)

0.8

0.7

0.6

k=2 ——
k=3

| k=4 ——
_5

0.5

10k

20 k 30 k 40 k 50 k 60 k 70 k 80 k 90 k 100 k
Slots

k m | median Q1 Q3 min max

10000 0.531 0.502 0.560 0.451 3.066
50000 0.524 0.493 0541 0448 6.724
100000 0.527 0.494 0.550 0.450 3.041

10000 0.803 0.758 0.849 0.675 13.522
50000 0.790 0.735 0.823 0.672 4.432
100000 0.792 0.749 0.824 0.678 8.514

50000 1.045 0.977 1.083 0.901 5.116
100000 1.055 0.999 1.093 0.899 8.176

10000 1.324 1.268 1.371 1.134 4.582
50000 1318 1.246 1370 1.139 19.656
100000 1.325 1.257 1383 1.127 16.207

2
2
2
3
3
3
4 10000 1.045 0979 1.078 0.901 3.826
4
4
5
5
5

Figure 22: Overview of processing time for true-positive VI-CBF queries in

proof of concept (Java) implementation for different hash function
numbers (k) and slot counts (m) (results in ms, 10000 samples,
VI-CBF with 10000 entries)

Overall, the processing time required to perform queries, even with

larger parameters, remains negligible compared to the delay intro-
duced by retrieving the bloom filter from the server, supporting over
a thousand queries per second.

SERIALIZATION Serializing the VI-CBF for transmission to clients
is by far the most expensive operation: All counters have to be con-

5.4 COMPUTATIONAL PERFORMANCE 97

Median Performance of VI-CBF Queries (TN / FP)
1 4 T T T T T T T

k=3
ket ——
k=5 ——
g 4
%ok 2(;k 30Ik 4(;k 5(;k 6(;k 7(;k sék 9(;k 100 k
Slots
k m | median Q1 Q3 min max
2 10000 0496 0.277 0546 0.224 69.661
2 50000 0.261 0.243 0.273 0.225 57.640
2 100000 0.260 0.241 0.272 0.223 29.907
3 10000 0.733 0.512 0.800 0.225 62.010
3 50000 0.271 0.257 0.398 0.223 30.453
3 100000 0.262 0.247 0.280 0.223 30.081
4 10000 1.021 0.875 1.082 0.227 61.430
4 50000 0.270 0.255 0479 0.225 72877
4 100000 0.266 0.249 0.287 0.223 46.590
5 10000 1.298 1.190 1.354 0.227 34.520
5 50000 0.278 0.261 0.524 0.223 37.075
5 100000 0.266 0.250 0.290 0.225 152.173

Figure 23: Overview of processing time for false positive and true negative
VI-CBF queries in proof of concept (Java) implementation for dif-
ferent hash function numbers (k) and slot counts (m) (results in
ms, 10000 samples, VI-CBF with 10000 entries)

verted to 8-bit unsigned integers (if they were in a different repre- See Appendix A.1
sentation before, as is the case with the Python implementation we for the serialization
are using), appended to each other, and the result needs to be com- algorithm
pressed using a compression algorithm like DEFLATE. This means

that the processing time should scale approximately linearily with

the number of slots. However, the result can be cached until the

VI-CBF is changed, thereby reducing the practical overhead.

98 EVALUATION

Median Performance of VI-CBF Serialization (10k entries)

110 T T T T T T T T
k=2 ——

100

90

80

70

60

ms

50

40

30

20

10

0
10k 20 k 30k 40 k 50 k 60 k 70k 80k 90 k 100 k

Slots

k m | median Q1 Q3 min max

2 10000 3.561 3.543 3.582 3514 4.700
2 50000 | 44.074 43.930 44318 43.504 98.907
2 100000 | 100.088 99.896 100.437 99.625 115.614
3 10000 2,671 2.659 2,699 2.640 4.529
3 50000 | 38278 37934 38.407 37598 41.003
3 100000 | 90.517 90.377 90.766 90.120 98.996
4 10000 2369 2.341 2437 2.309 6.562
4
4
5
5
5

50000 | 33.746 33.685 33.872 33.561 48.344
100000 | 85.906 85.674 86.102 85.395 105.426
10000 2216 2.207 2231 2190 4.344
50000 | 31.158 31.079 31.298 30.257 51.238
100000 | 81.021 80.893 81.403 80.742 102.298

Figure 24: Overview of processing time to serialize a VI-CBF with 10000 en-
tries in proof of concept (Python) implementation for different
hash function numbers (k) and slot counts (m) (results in ms,
1000 samples, no compression)

As the serialization takes place on the server, which is written in
Python, we used the Python implementation of the VI-CBF for the
evaluation. The evaluation was run on a Laptop with an Intel Core
i3-3110M CPU (4x 2.4 GHz, Ivy Bridge architecture) and 8 GB RAM,
running Python 2.7.6 on an Ubuntu 14.04-based Linux operating sys-
tem.

5.4 COMPUTATIONAL PERFORMANCE

Median Compression Time for Serialized Data (10k entries)
16 T T T T T T T T
k=2 ——
k=3

ms
[e¢]
T

0
10k 20 k 30k 40 k 50 k 60 k 70k 80k 90 k 100 k

Slots

Figure 25: Median processing time required to compress serialized VI-CBF
with 10000 entries in proof of concept (Python) implementation
for different hash function numbers (k) and slot counts (m) (re-
sults in ms, 1000 samples, DEFLATE compression)

While this means that the results are not directly comparable with
the other evaluation results, they should still serve to give an idea
about the required time, and how it scales with changing parameters.
Like the other evaluations, it uses unoptimized proof-of-concept code.
The measurements did not include the compression with DEFLATE.

The results are shown in Figure 24. As expected, the processing
time scales linearily with the number of slots, ranging from around
2.2 ms for 10000 to up to 100 ms for 100 000 slots.

There are some deviations between the performance for different
numbers of hash functions. Those are related to how the system is im-
plemented: The implementation tries to save memory space by stor-
ing counters in a hashmap and leaving empty counters unset. Thus,
trying to access an empty counter will throw an exception. This ex-
ception handling introduces additional overhead during serialization,
where each counter is accessed once. A higher number of hash func-
tions will lead to more counters being set for the same number of
entries, meaning that fewer exceptions are thrown during serializa-
tion, reducing the overhead and improving performance.

If we add the compression step, the processing time is further
increased. We use the DEFLATE compression algorithm, as imple-
mented by the python zlib library, with a compression level of 6. The
additional processing time required is shown in Figure 25. The results
show that the growth of the serialization time seems to be dominated
by the slot count. This is not unexpected, as the slot count determines

99

100

EVALUATION

the length of the serialization, and more data obviously takes longer
to compress.

However, the number of hash functions also has a measureable
effect. This is likely related to the number of non-zero counters in the
serialization: Compression algorithms work best on uniform data, so
the more counters are zero, the better and faster the compression will
be. Fewer hash functions lead to fewer counters being set for the
same amount of entries, which translates to a higher compression
performance.

Regardless of the number of used hash functions, the compression
only has a small effect on the performance, compared to the time the
serialization itself requires.

SUMMARY All in all, the VI-CBF only introduces a fairly small ad-
ditional computational load on the system. The processing time re-
quired for inserts is negligible compared to the network latency and
database access times. Queries are also very efficient, allowing a
throughput of more than 1000 queries per second on the test device,
depending on the number of hash functions. The serialization re-
quires more time, but the performance could be improved through an
optimized implementation, and the results can be cached and reused
until the VI-CBF changes.

However, the computational load is only part of the overhead expe-
rienced by the system. More important for the actual performance of
the system is the networking overhead of the protocol, which we will
investigate next.

5.5 NETWORKING PERFORMANCE

Any networked protocol needs to be evaluated in terms of the over-
head it introduces. This is especially true for privacy-preserving pro-
tocols, which typically introduce additional overhead compared to a
privacy-agnostic protocol.

In our case, most parts of the protocol do not introduce significant
overhead.

* GET requests carry a fixed-length identifier

* GET responses carry the requested variable-length encrypted
data and/or a status code

* STORE requests carry a fixed-length identifier and variable-length
encrypted data

* STORE responses only carry a status code indicating success or
failure

All of this data is necessary for the operation of the protocol, and
most of it would be required no matter which protocol we are using.

5.5 NETWORKING PERFORMANCE

Additionally, sharing and receiving data can usually be done within
two or three RTTs (cf. Table 3).

The only component that may introduce significant overhead is the
VI-CBF we need to transmit to clients, which is going to be the focus
of the following evaluation.

For the evaluation, we are using the simulator described in Sec-
tion 4.8 to approximate the behaviour of the real system, as this makes
it easier to evaluate the system with a large number of users. We are
going to evaluate the standard protocol (Protocol 1) as described in
Chapter 3. Where it differs from the standard protocol, we are also
going to evaluate the protocol variant described in Section 3.8 (Proto-
col 2).

5.5.1 Stored Key-Value-Pairs

One of the most important measures influencing how well the system
scales is the number of key-value-pairs that are currently stored on
the server. Each key-value-pair adds a new entry to the VI-CBF. This
increases its size, as while adding new keys to a bloom filter does
not directly increase its size, it increases the FPR and thus requires
the use of larger bloom filters to achieve the target FPR. This, in turn,
increases the transmission overhead experienced by clients using the
system.

DEFINITIONS In this context, we are especially interested in key-
value-pairs that reside on the server, but will never be deleted from
it. We call these pairs orphaned pairs. A key-value-pair can become
orphaned in one of two ways:

1. A Type I Orphan will be accessed, but never deleted (e.g. a data
block created by Protocol 1, cf. Section 3.6.2).

2. A Type II Orphan will never be accessed and/or deleted (e.g.
because the recipient has stopped using the system and will
never retrieve shared destined for them).

While Type I orphans can be avoided by using Protocol 2 (cf Sec-
tion 3.8), Type II orphans cannot be prevented. Additionally, Type
II orphans cannot be reliably detected by the server because they are
indistinguishable from a regular key-value-pair that has not been ac-
cessed yet, but will be in the future.

METHODOLOGY Given the importance of these records for the scal-
ing of the system, we used the simulator described in Section 4.8 to
simulate use of the system, gathering statistics about the number of
stored key-value-pairs and orphaned records.

Unless specified otherwise, the system was initialized with a net-
work of 100000 users and run for 200 timesteps, gathering statistics

101

Underlying security
protocols like TLS
may introduce
additional RTTs.

102 EVALUATION

Number of Non-Orphaned Key-Value-Pairs over Time (100K initial Users)

4M T T T T
Quartiles / Min / Max 1
3M B
2M b H-
4
S 2M¢t 14
ks
9]
Ke)
£ 2M % —
=)
i %
1™ % % % 1
500k - % % % % % 7
.=z %
0 1 1 1 1
0 50 100 150 200

Figure 26: Number of non-orphaned records at different steps of the simu-
lation (100 000 initial users, 200 steps, 1000 samples)

every 10 steps. The simulation was repeated 1000 times and the re-
sults aggregated, calculating mean, 1st and 3rd quartile, as well as
the minimum and maximum value. The raw and aggregated simu-
lation results are available on the DVD included with this thesis and
on GitHub.4

RESULTS (NON-ORPHANS) Before we discuss the issue of orphans,
we will take a brief look at how many non-orphaned key-value-pairs
are in the system at any given time. We counted the number of key-
value-pairs and subtracted the Type I and Type II orphans. The result
is equivalent to the number of key-value-pairs in a hypothetical sys-
tem using Protocol 2 (thereby eliminating Type I orphans) in which
no Type II orphans occur (e.g. because the network is static, without
any users leaving it).

The results are shown in Figure 26. They show that we can expect
the number of non-orphaned records to increase over time. This is re-
lated to two factors: The total number of active users of the system is
growing over time, leading to more users sharing data. Additionally,
the average number of friends is slowly increasing as well due to the
way new users are added (cf. Figure 18). As one key-value-pair is
required for each recipient of a share, this means that the number of
records on the server will increase.

4 See https://github.com/DenulApp/data

https://github.com/DenulApp/data

5.5 NETWORKING PERFORMANCE

Number of Non-Orphaned Key-Value-Pairs over Time (1k Users, Static Network)

900 T T T T
Quartiles / Min / Max 1

800

700

600

500

400

Number of Pairs

300

200

100

0 Il Il Il Il

0 50 100 150 200

Step

Figure 27: Number of non-orphaned records at different steps of the simu-
lation (1 000 initial users, 200 steps, 1000 samples, static network)

This theory can be validated by running the simulation with a static
network, without adding or removing any users. In this case, the
number of non-orphaned records on the server stays more-or-less con-
stant as new shares are added and old ones retrieved and removed
(cf. Figure 27 for the results of a static network with 1000 users).

Now that we know what number of non-orphaned key-value-pairs
we can expect, we will investigate the number of orphaned records
that occur during normal use of the system.

RESULTS (ORPHANS) The number of orphans is shown in Fig-
ure 28 (combined), 29 (Type I) and 30 (Type II). They show the num-
ber of Type I orphans increasing almost linearily, with a very small
upwards trend as the number of users increases. This is expected,
as Type I orphans only depend on the number of performed shares,
which increases by a more-or-less constant fraction of the number of
active users. The number of active users in turn slowly increases over
time, as shown in Section 4.8.2.

The number of Type II orphans increases exponentially, overtaking
the Type I orphans somewhere between step 60 and 7o. This is related
to the growing number of users that have stopped using the system
but keep getting data shared to them.

INFLUENCE OF USER COUNT In order to determine how the re-
sults change if we modify the number of initial users, the simulation
was repeated with 1000 initial users, leaving the other parameters un-

103

104

EVALUATION

Median Number of Orphaned Key-Value—Pairs over Time (100K initial Users)

90 M T T T
Type |

Type

80M |

Type |+l ——

70M -

60 M -

50 M -

40M |

Number of Pairs

30M |

20M

10M

0 50 100 150
Step

Figure 28: Median number of Type I and Type II orphans (100000 initial
users, 200 steps, 1000 samples, Protocol 1)

changed. The resulting data is shown in Figure 31. The results show
that the number of orphans develops in almost exactly the same way
as before, only with smaller counts. By dividing the number of initial
users by 100, we also divided the number of orphans roughly by 100.

suMMARY These results show that the development of the sys-
tem, at least in the simulation, scales approximately linearily with
the number of initial users. However, there is still a small deviation,
which can be explained by the network characteristics of a scale-free
network: A higher user count results in a higher average degree (i.e.
friend count), which in turn increases the probability of having inac-
tive friends and thereby generating Type II orphans.

The generally large number of orphans poses a problem for the
VI-CBF, which we will investigate in the following section.

5.5.2 VI-CBF Transmission Overhead

The VI-CBF has to be transmitted to every client that wants to retrieve
data, each time they connect to the server. This makes the size of the
serialized bloom filter an important metric for the overhead of the
protocol.

METHODOLOGY To determine the overhead, we used the previ-
ously generated statistics to find the number of key-value-pairs stored
on the server at each recorded simulation step. We then used the

200

5.5 NETWORKING PERFORMANCE

Number of Type | Orphans over Time (100k initial Users)
16 M T T

T
Quartiles / Min / Max
1M F % i
12M F % % i

10M %
{1
:
j

Number of Pairs

6M -

2M | . -

0 50 100 150 200

Step median Q1 Q3 min max

10 331573 326576 336432 309270 351362
50 | 2420074 2378103 2468673 2162176 2642755
100 | 5944236 5830275 6057255 5347213 6426516
150 | 10100802 9921270 10275960 9282759 10848379
200 | 14647354 14393899 14872305 13614062 15642286

Figure 29: Number of Type I orphans at different steps of the simulation
(100000 initial users, 200 steps, 1000 samples, Protocol 1)

methods described in Section 4.8.4 to approximate the ideal parame-
ters for the VI-CBF for that number of entries and a fixed FPR.

Afterwards, we created a VI-CBF with these parameters and added
the specified number of entries to it before serializing it. The serial-
ized data was then compressed using the DEFLATE algorithm with a
compression level of 6. Finally, the resulting compressed and uncom-
pressed size was determined and saved.

For some bloom filter parameters, this was not possible, as the un-
optimized VI-CBF code resulted in a high memory overhead and the
bloom filter no longer fit into the RAM of the device we used to run
the evaluation. However, the other evaluation results showed that the
ratio from uncompressed size to compressed size converged towards
a fixed value, letting us approximate the remaining values. The un-
compressed size can in turn be trivially determined by taking the
number of slots of the VI-CBF and adding 10 bytes for the serialization
headers, giving us the length of the serialized bloom filter in bytes.

105

This assumes 8-bit
counters

106

EVALUATION
Number of Type Il Orphans over Time (100k initial Users)
90 M T T T T
Quartiles / Min / Max [
80M [i
70M i
60M i

ol %% |
N

20M %
E%%
*

Number of Pairs

10M .
£
0 — - bl 1 1 1
0 50 100 150 200
Step
Step median Q1 Q3 min max

10 39052 38035 39852 37883 42648
50 | 1400087 1352324 1451325 1136583 1669229
100 | 8567589 8222667 889899%6 6899616 10179648
150 | 27900109 26838226 28970898 23282749 32489530
200 | 69201063 66822345 71918931 57862904 80395256

Figure 30: Number of Type II orphans at different steps of the simulation
(100000 initial users, 200 steps, 1000 samples, Protocol 1)

This process gives us an indication of which amount of overhead
we have to expect for certain FPRs and entry counts.

SIMULATION RESULTS (ORPHANS ONLY) The results for 100000
initial users and a target FPR of 0.01 (1%) are shown in Figure 32.
As expected, the size of the VI-CBF follows the exponential growth of
the number of orphans, quickly growing into the tens and hundreds
of megabytes, even after compression. Switching to Protocol 2 (cf.
Section 3.8) and thereby eliminating Type I orphans slightly reduces
the overall size of the VI-CBF, but does not impact the exponential
growth.

The compression reduces the uncompressed size by a more-or-less
constant factor of 0.52 +0.01. This factor was used to approximate
values after step 9o, as they could no longer be experimentally deter-
mined due to the RAM limitations of the evaluation machine.

5.5 NETWORKING PERFORMANCE

Median Number of Orphaned Key-Value—Pairs over Time (1k initial Users)

900 k T T T
Type |

Type Il

800k [

Typel + Il ——

700k -

600k [

500k |

400k [

Number of Pairs

300k [

200k -

100k

0 50 100 150
Step

Figure 31: Median number of Type I and Type II orphans (1000 initial users,
200 steps, 1000 samples, Protocol 1)

INFLUENCE OF TARGET FPR Another interesting question is the
impact of the target FPR on the size of the serialization. We repeated
our parameter and size approximation for two additional FPRs: 0.001
(0.1%) and 0.1 (10%). The results are shown in Figure 33. To ensure
readability, only the data for Protocol 1 is shown. Protocol 2 behaves
as expected from the previous results, following the trend at a small
offset caused by the elimination of Type I orphans.

The results show that decreasing the target FPR from 0.1 to 0.01
changes the compressed size by a factor of about 2.2 for the same
number of entries, while decreasing it again to 0.001 changes it by
a factor of another 1.45. The slot count shows a similar behaviour:
The first decrease in the FPR changes the slot count by a factor of
1.96, while the second decrease shows a factor of 1.47. Repeating
the simulation with 1000 initial users shows almost exactly the same
behaviour, with the small deviations explained in Section 5.5.1.

RESULTS (NO ORPHANS) To get an idea for a lower bound on
the VI-CBF size, we return to the hypothetical orphan-less system dis-
cussed in Section 5.5.1. The results are shown in Figure 34. As ex-
pected from the previous evaluation, the growth is still exponential,
but much slower, reaching only about 15 MB in round 200 for an FPR
of 0.1%.

More importantly, the system now scales directly with the number
of active users and their friends, and is no longer impacted by users
leaving the system. This represents a lower bound for the system,

200

107

108

EVALUATION

Median Size of Serialized VI-CBF over Time (100k initial Users, Orphans only)

350 T T T T T T T T T
Uncompressed (FPR=0.01 + 0.0001, Protocol 1) -------
Uncompressed (FPR=0.01 £ 0.0001, Protocol 2) ---:---- B
300 Compressed (FPR=0.01 + 0.0001, Protocol 1) —— B
Compressed (FPR=0.01 £ 0.0001, Protocol 2) —— :
250 | EEE
& 200 [E
(0]
N
» 150 |
100
50
0 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
Step
Protocol 1 Protocol 2

Step | m (x10°) u (MB) ¢ (MB) | m (x10%) u (MB) c (MB)

10 1.52 1.45 0.77 0.16 0.15 0.08
50 15.71 14.98 7.95 5.76 5.49 2.92
100 59.69 56.92 30.21 35.24 33.61 17.83

150 156.30 149.06 79.10 114.75 109.44 58.07
200 344.87 32890 174.54 284.63 27144 144.03

Figure 32: Uncompressed (u) and compressed (c) size in MB and number
of slots m of optimal VI-CBF containing only median number of
orphans (100 000 initial users, FPR = 0.01 £ 0.0001, number of hash
functions k = 5, 1000 samples, values after step 9o approximated)

using Protocol 2 to eliminate Type I orphans and assuming that Type
II orphans are prevented in another way. Achieving this performance
in practice would, however, be difficult due to the difficulties in de-
tecting and removing Type II orphans.

5.6 SUMMARY

Our evaluation has shown that the system is secure against all consid-
ered adversaries. We have discovered a number of open issues that
would have to be solved to increase the security even further and
enable advanced features like using multiple devices per user. How-
ever, none of these issues impact the security against the specified
adversaries.

5.6 SUMMARY

Median Size of Serialized VI-CBF for different FPRs over Time (100k initial Users, Orphans only)

500 T T T T T T T T T
Uncompressed (FPR=0.1 + 0.001)
450 + Uncompressed (FPR=0.01 £ 0.0001) ------- .
Uncompressed (FPR=0.001 + 0.0001) -:-:--
400 + Compressed (FPR=0.1 + 0.001) B
Compressed (FPR=0.01 + 0.0001) —— :
350 F Compressed (FPR=0.001 + 0.0001) ——]
300 | g
o K .
=3
o 250 -
N
%)
200
150 |
100 -
50
0 NPT T I 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Step

FPR= 0.1 (k = 2) FPR= 0.01 (k =5) | FPR=0.001 (k =7)
Step | m (x10%) ¢ (MB) | m (x10°) ¢ (MB) | m (x10%) c (MB)

10 0.76 0.35 1.52 0.77 2.25 1.12
50 7.86 3.63 15.71 7.95 23.23 11.50
100 2987 13.79 59.69 30.21 88.26 43.70
150 7823 36.11 156.30 79.10 23111 11442

200 172.60 79.69 344.87 174.54 509.95 25248

Figure 33: Number of slots (m) and compressed (c) size in MB of optimal
VI-CBF containing only median number of orphans for different
FPRs (100 000 initial users, Protocol 1, 1000 samples)

The performance evaluation shows that while the computational
cost of the protocol is unlikely to cause any problems, the networking
overhead introduced by the transmission of the VI-CBF is significant.
For a target FPR of 1%, the VI-CBF quickly grows to over 150 MB for
a system with 100000 initial users, and even an impractically high
FPR of 10% still results in VI-CBFs of 80 MB and upwards. The sizes
also show an exponential growth, which will make the transmission
overhead more and more prohibitive as the system ages and grows.

Switching to the alternate protocol proposed in Section 3.8 will
slow the growth, but does not change the exponential nature, as it is
caused by Type II orphans, which are not prevented by the protocol.

Even though the simulation makes pessimistic assumptions (like
users continuing to share to inactive friends indefinitely instead of
stopping when the friend leaves the system), the results are discour-
aging. Given that many potential users are using mobile networks

109

110

EVALUATION

Median Size of Serialized VI-CBF for different FPRs over Time (100k initial Users, Non—-Orphans only)

10 LIJncomprelssed (FPIél=O.1 + 0:001) I I I I I
Uncompressed (FPR=0.01 + 0.0001) ------ .
14 Uncompressed (FPR=0.001 + 0.0001) -------- 7
Compressed (FPR=0.1 + 0.001)
12 k Compressed (FPR=0.01 £ 0.0001) —— i
Compressed (FPR=0.001 + 0.0001) ——
10 i
o
=
> 8r i
S
6 -
4 -
2 -
0 0 20 4;0 6IO 8IO 1;)0 1I20 1210 1;50 1I80 200
Step
FPR= 0.1 (k = 2) FPR= 0.01 (k =5) | FPR= 0.001 (k =7)
Step | m (x10%) ¢ (MB) | m (x10°) ¢ (MB) | m (x10%) c (MB)
10 0.19 0.09 0.35 0.19 0.55 0.27
50 0.56 0.26 1.08 0.57 1.67 0.83
100 1.38 0.64 2.63 1.40 4.08 2.02
150 2.80 1.29 5.33 2.83 8.27 4.09
200 5.16 2.38 9.83 5.22 15.24 7.55

Figure 34: Number of slots (m) and compressed (c) size in MB of optimal
VI-CBF containing only median number of non-orphans for differ-
ent FPRs (100 000 initial users, 1000 samples)

with both low bandwidths and a low traffic quota, even a 50% lower
overhead than the simulation indicates would make the system im-
possible to use for them. Ideally, the overhead should be below a
megabyte per request, as the low speeds of mobile network connec-
tions would otherwise induce delays visible to the user. However, it
is clear that VI-CBFs will never offer this level of performance.

In practice, unless a way is found to eliminate Type II orphans, only
very small deployments with 3- or 4-digit user counts or more-or-less
static networks (without users leaving the system) could achieve an
acceptable overhead. Im these deployments, the number of possible
senders and recipients of a message (i.e. the anonymity set, cf. Chaum
[23]) would be naturally limited, making it easier for an adversary to
identify users through other means, such as metadata or other a priori
knowledge.

Part III

DISCUSSION AND CONCLUSIONS

After the evaluation, we discuss the effects of allowing ad-
ditional types of adversaries and name a number of open
problems that require further work to solve. Finally, we
finish with a conclusion.

DISCUSSION

In the evaluation, we have shown the strengths and weaknesses of
our proposed system. Now, we want to discuss the results further.
We discuss how the system would hold up against more powerful
adversaries. For this, we will also consider the effect of multiple
colluding attackers. Finally, we will discuss a number of avenues
for potential future work that may make the system more secure or
more efficient.

6.1 ADVERSARY MODEL

While we have shown our design to be secure against the adversary
model specified in Section 3.2, the security may not hold under dif-
ferent assumptions. In the following sections, we will discuss how
allowing an active, malicious server or collusion between adversaries
would affect the security of the system.

6.1.1 Active Adversaries

The most obvious variant of the adversary model would be to allow
the server to become an active adversary that is no longer required
to respect the protocol, but can send arbitrary messages and change
any data it has access to. This change in the adversary model opens
up a number of new attack vectors, which we will now discuss.

DENIAL OF SERVICE An active server adversary can choose to stop
serving (a portion of) clients at any time. This is an attack on the
availability and fundamentally impossible to prevent, as clients can-
not force the server to serve them data. As such, we will disregard
any attacks on availability.

DATA MODIFICATION The adversary can attempt to change any
data saved on it before delivering it to the clients. However, modify-
ing a key- or data-block will be detected, as we are using an authenti-
cated cipher that will check the integrity of the ciphertext on decryp-
tion. This means that any modification of the data will result (with
overwhelming probability) in a decryption failure, transforming this
into an attack on the availability.

Another possibility would be for the server to modify the registered
studies that it offers to the clients. Any tampering on these would be
detected by the signature over the study request, unless the server

113

Note that all other
adversaries are
already active

The case of the
server modifying the
VI-CBF will be
discussed separately

114

DISCUSSION

also switches out the public key included in the study. Switching
out the public key would, however, be detected by the public key
authentication system that would check the website of the study for
the fingerprint of the key.

The server could obviously also change the study URL, but at this
point, it becomes equivalent to the server discarding the registered
study and creating its own, copying the description. The detection
of forged studies (studies that claim to be from one institution but
aren’t) can’t be done automatically and is an issue of user education.

Finally, the server can modify the messages sent by clients attempt-
ing to join a study. As they are not authenticated and use a publically
known public key, their contents can easily be replaced by the server.
However, this is equivalent to the server discarding the old message
(which would be an attack on availability) and creating a new one.
The effect would be that one user thinks she is participating in a
study but in fact is not. However, it would not allow the server to
read the data submitted by the client.

REPLAY ATTACK An active adversary is capable of remembering
old messages and replaying them to clients. In our case, this is mostly
interesting for the results of GET requests. For our analysis, we dis-
tinguish two cases: The server is either trying to replay a key block or
a data block.

If the server is trying to replay a key block, the client will detect the
manipulation because the decryption will fail for one of two reasons.
The data will either be...

1. ..encrypted with the wrong key if the key block was not destined
for this client, or

2. ..encrypted with a different Initialization Vector (1v) if the key
block was destined for this client, but originally uploaded under
a different identifier.

The second case will fail because the Iv depends on the value of the
used ctrap, which will be different for the replayed message because
it was originally uploaded under a different identifier, generated with
a different ctrag.

If the server instead replays a data block, the decryption will fail
as that data block will (with overwhelming probability) be using a
different encryption key. Encryption keys are randomly generated
for each individual data block, making it unlikely that any two share
the same key.

Finally, the server can replay study-join messages to researchers.
This could be detected by the research client by checking if the El-
liptic Curve Diffie-Hellman (ECDH) public key contained in the mes-
sage has been used before. Failing that, the effect would be that the

6.1 ADVERSARY MODEL

researcher has a duplicate study participant in her database, which
would not have any significant adverse effect.

SEND ERROR MESSAGES The server can also claim errors where
none exist. There are a number of different variants of this we will
discuss.

Upload Error: 1f the server claims an error during the upload pro-
cess, the client will either re-encrypt the data and try the next identi-
fier (if the error claimed the identifier was already taken) or abort the
process and try again later (in case of other error messages).

In the first case, this would give the server information about two
linked identifiers that could later be used to link two queries by the
recipient. However, due to the general unlinkability of the identi-
tiers, this would not help the adversary to link any other identifiers.
It would also give the adversary two messages with the same plain-
text, but encrypted under different 1vs (in the case of a key block) or
keys (for a data block). The usefulness of this is questionable, as we
are aware of no attacks on AES in Galois/Counter Mode (GCM) that
would benefit from this.

If the client retries later, it will encrypt data under the same key
with the same value of ctrap, but the Iv will still be different with
overwhelming probability, as it also contains a random component.
This prevents any attacks on AES-GCM that are based on encrypting
data under the same key and IV more than once.

Download Error: A download error can force the client to re-request
the same identifier later. This could be used to link two sessions of a
client, but at the price of denying service to it for at least one identi-
fier. Once implemented, this would also trigger the ,dirty marking”
of the Variable-Increment Counting Bloom Filter (VI-CBF), which is
supposed to prevent sending too many queries based on a false posi-
tive in the VI-CBF (cf. Section 3.6.3). However, this could be countered
by the server introducing small changes to the relevant slots of the
bloom filter, which it can determine because it knows the identifier.

This attack is impossible to prevent. It could however potentially
be detected by tracking the behaviour of the server and warning the
user if it looks like the server is performing this attack (because in
each batch of queries, at least one fails).

DECRYPTION ORACLE In cryptography research, a decryption oracle
is a ,black box” available to the adversary, who can use it to decrypt
(parts of) arbitrary messages without knowing the key. The server
can attempt to use a legitimate user as a decryption oracle in the
following way: If the user sends its first batch of GET requests in
the session, the server can be reasonably sure that these queries are
targeting key blocks, as those need to be retrieved in order to find the
identifier of the data blocks containing the actual data.

115

116

DISCUSSION

The server will now send the client encrypted data. The client will
attempt to decrypt the data using the key kap associated with the
queried identifier idag. If the decryption is successful, an authentic
data block will have the format idq || kq. The client will then send
another query, GET(idg), to the server.

The server can use this by sending arbitrary encrypted data. If the
client successfully decrypts it, the first [id4| = 256 bit of the plaintext
will be interpreted as an identifier and sent to the server as a GEt-
query. This will disclose that part of the plaintext to the server.

However, the server is extremely unlikely to succeed in this when
sending anything except the correct key block. As the used algorithm,
AES-GCM, also checks authenticity and integrity, the server would
have to be very lucky to generate a ciphertext that actually decrypts
without failure. Additionally, it cannot decrypt any other key blocks
with this method, for the reasons outlined in the paragraphs about
the replay attack.

In conclusion, while using clients as a decryption oracle is a theo-
retical attack, the practical ramifications are minimal.

FORGED VI-CBF The VI-CBF is used to determine which identifiers
are present on the server without disclosing said identifiers to the
server (cf. Section 3.6.3). However, the server controls the VI-CBF it
distributes, and could forge a bloom filter that will return true for any
query by setting all slots to a high value. This would lead to clients
always assuming their identifiers to be available on the server, so they
would be sending them every time they connect, thereby identifying
themselves.

This can be countered by letting the clients calculate the current
False-Positive-Rate (FPR) of the bloom filter they received, and reject-
ing it if the FPR is too high. This would turn the attack into an attack
on the availability, which we explicitly do not defend against.

coNcLUSION This concludes our analysis of the effects of an ac-
tive server adversary. While the power of an active adversary enables
a number of additional attacks, most of them can be defeated by a
well-designed client. However, an active server adversary can still be
dangerous if it colludes with others. This is what we will discuss
next.

6.1.2 Colluding Adversaries

So far, we have only discussed individual adversaries. However, some
additional attacks may become possible if we allow adversaries to
collude and share information. In this section, we will briefly discuss
a selection of potential new attacks in this scenario.

6.1 ADVERSARY MODEL

LINKING SESSIONS In this scenario, the (honest-but-curious) server
colludes with a malicious user or researcher to link a number of ses-
sions. The colluding user, Chuck, will provide the server with the
identifiers used by his friend Alice to share data with him. This al-
lows the server to link all sessions in which Alice is sharing data with
or receiving it from Chuck.

This attack could be improved if Chuck stores a new message for
Alice every time Alice has retrieved the last message, thereby forc-
ing Alice to indirectly identify herself by retrieving the data every
time she checks for new shares from her friends. The server would
inform Chuck and let him store a new message directly after Alice
has disconnected. Chuck could use the revocation placeholder 6x42
(cf. Section 3.6.4/4.6.3) as the stored value, as this will not give any
visible indication to Alice that any data has been retrieved. A similar
attack would be possible with a colluding researcher.

This attack cannot really be defended against, as it isn’t possible
to keep Chuck from disclosing his secrets to the server. The system
requires Alice to trust her friends not to work against her interests.

CIPHERTEXT REPLACEMENT An active, malicious server could also
collude with Chuck to change the contents of messages in the follow-
ing way: Alice shares a piece of data with both Chuck and Bob. This
requires her to upload a data block containing the encrypted data cq
and two key blocks containing idq and kq, stored under idag and
idac.

Chuck would retrieve his key block, stored under idac, and de-
crypt it to receive idg and k4. He can now retrieve and decrypt cq
to receive m = Dec(kq,cq). However, he now knows the key used
to encrypt the data and can forge a new message by encrypting any
data under kg4 to receive ¢ = Enc(kq, m’).

Alone, he cannot replace the c4 stored on the server, as he does
not know the revocation token x so that h(x) = idq. However, with
a colluding, malicious server, he can provide the new ciphertext to
the server and ask it to replace cq with c;. If Bob now retrieves his
key block and the new data block, it will decrypt to m’. Bob cannot
detect the forgery, as the data is only authenticated by kq, which is
under the control of the adversary.

This attack can be prevented with a small change in the protocol:
Instead of setting the key block to cap = Enc(kag,idq || kq), Alice
will set it to cag = Enc(kag,idq || idq || h(cq)). Even with the as-
sistance of Chuck, the server cannot change ca g, and the hash of the
message will let Bob detect if the message has been modified. The ad-
ditional overhead is negligible (one hash operation, 256 bit additional
encrypted data), and it prevents this message forgery attack.

117

This attack is
prevented by
Protocol 2, as it
shares the data
directly with each
recipient

We omit the IV
specification for
readability

118

DISCUSSION

6.2 FUTURE WORK

Over the course of this thesis, we have made a number of design deci-
sions that drastically influenced the system. These decisions include
the use of bloom filters, the decision against using Private Informa-
tion Retrieval (PIR), and (most importantly) the use of a client-server
architecture. Due to time constraints, we leave the evaluation of these
alternatives as future work and only briefly discuss them here.

6.2.1 Cuckoo Filters

Early on in the design process, we decided to use VI-CBFs in the data
retrieval process. These have turned out to be a major performance
bottleneck of the system (cf. Section 5.5). Thus, finding a more effi-
cient alternative could allow the system to scale better.

A possible replacement for VI-CBFs would be so-called cuckoo filters.
Originally proposed by Fan et al. [48], they are similar to bloom
filters, but use a technique called cuckoo hashing (cf. Pagh et al. [89])
to allocate the slots in the data structure.

Cuckoo filters work by determining two candidate slots (called
buckets in the proposal) for an item using two different hash func-
tions. Buckets can contain a fixed number b of items.

When inserting an item x, the two buckets are determined and a
fingerprint of x is inserted into one of them which still has free space.
If both buckets are full, the fingerprint is inserted into one of the
two buckets at random, evicting an old fingerprint y and inserting it
into its alternate location. If the alternate location is full, one of the
existing items is evicted. This process continues until either all items
have been successfully inserted or a maximum number of evictions
has taken place without finding a bucket with enough free space, in
which case the insertion fails.

When querying for an item x, the two potential buckets are deter-
mined. If x has been inserted into the cuckoo filter, its fingerprint
is guaranteed to be in one of its two possible buckets. This means
that a query has to check at most two buckets with b items each be-
fore either finding the fingerprint or being certain that it is not in the
cuckoo filter.

Cuckoo filters have been shown to be more space-efficient than reg-
ular bloom filters. However, there has been no direct comparison be-
tween cuckoo filters and VI-CBFs, and it is not clear if it would improve
the overhead. Determining their relative size depending on different
target false-positive-rates and numbers of inserted items could give
insight into possible ways to improve the overhead of the system.

6.2 FUTURE WORK

6.2.2 Private Information Retrieval

While designing the system, we decided against using PIR to retrieve
data from the server, citing the high computational and transmission
overhead. However, now that we have experimental results of the
overhead introduced by using a VI-CBF instead of PIR, a real compari-
son becomes possible.

Future work could attempt using a PIR scheme like XPIRe [82] or
an e-private PIR system (cf. Toledo et al. [111]) in place of the current
retrieval system and compare the real-world performance.

6.2.3 Alternative Security Goals

The scaling problems of the system are due to our method to ensure
unlinkability. If we decide that a pseudonymous system without un-
linkability is acceptable, the bloom filter could be removed from the
design, thereby removing all scaling issues. However, in this case,
pseudonymous account-based system designs would likely achieve a
better user experience for the same security.

6.2.4 Metadata Obfuscation

Hiding some of the remaining metadata, like the number of people
we are sharing data with, could further improve the privacy offered
by our system. However, the intuitive solution of uploading dum-
mies to obfuscate the number of actual data items we want to upload
would put additional strain on the system. Additionally, dummy
strategies should be carefully evaluated (e.g. using the methodology
by Oya et al. [88]), otherwise they may not provide the intended pro-
tection.

Future work could attempt to design and evaluate metadata ob-
fuscation strategies that improve the privacy of the system without
unduly impacting its performance.

6.2.5 Study Data De-Identification

Past experience (e.g. for credit card transactions [35], the Netflix

dataset [85], or the Yahoo search dataset’) has shown that pseudonymiza-

tion of data is not sufficient to ensure that the users cannot be re-
identified. Our system currently takes no extra measures to protect
the identities of users participating in a study, which would make
re-identification attacks possible.

See http://query.nytimes.com/gst/abstract.html?res=
9EOCE3DD1F3FF93AA3575BC0A9609C8B63, last visited March 24th, 2016

119

e-private PIR trades
weaker privacy for
better performance

An example where
dummies fail to
provide privacy is
shown in [59]

http://query.nytimes.com/gst/abstract.html?res=9E0CE3DD1F3FF93AA3575BC0A9609C8B63
http://query.nytimes.com/gst/abstract.html?res=9E0CE3DD1F3FF93AA3575BC0A9609C8B63

120

DISCUSSION

A body of past work on (health) data anonymization exists [44, 52,
54, 76, 78, 86, 93], but most deal with anonymization by a researcher
who wants to share her existing datasets with others. Future work
could investigate if and how additional anonymization and minimiza-
tion techniques can be used to further protect the identity of users,
even against the initial researcher, without rendering the collected
data useless.

6.2.6 Distributed/Peer-to-Peer Infrastructure

Finally, we decided to use a centralized server instead of a distributed
infrastructure, as the implementation complexity of building an effi-
cient Peer-to-Peer (P2P) system on mobile devices seemed prohibitive.
However, using a P2P data structure like a Distributed Hashtable
(DHT) to store our information could improve the privacy and perfor-
mance of our system. Alternatively, an anonymous messaging system
like Riposte [27] could be used to distribute the data.

Future work could implement a distributed variant of our system
and report the performance and privacy characteristics.

6.3 SUMMARY

This concludes the discussion of our system. We have shown areas
where more work would be necessary, both to ensure the security
and privacy of the system and to potentially improve the efficiency.
However, significant progress in the area of PIR or Private Set Inter-
section (PSI) would be necessary to reduce the overhead to a practical
level. Until such progress is made, a distributed infrastructure may
offer a more efficient solution.

CONCLUSIONS

In this thesis, we designed and evaluated a system for privacy-preserving
health and fitness data sharing. Our intent was to design a system
that does not require any Trusted Third Parties (TTPs) while ensur-
ing the maximum achievable privacy, at the cost of reduced efficiency
compared to less-private solutions.

Our design uses a centralized client-server system, with the server
acting as a key-value-store. Privacy is achieved by foregoing a user
account system in favor of a hash-based identifier system. The identi-
fiers are created based on shared secrets and unlinkable to outsiders
while being predictable to the intended recipient. The privacy is fur-
ther improved by using a bloom filter to check for the presence of
an expected identifier on the server before requesting it. Data con-
fidentiality, integrity and authenticity is ensured through symmetric
encryption in an authenticated encryption mode like Galois/Counter
Mode (GCM).

A proof of concept with limited functionality was implemented for
the Android mobile operating system. We also implemented a basic
simulator to evaluate the performance of the system in a large-scale
deployment with realistic user behaviour.

In a formal and theoretical analysis, we showed that our system
fulfills the required security and privacy properties. The computa-
tional performance was evaluated using the proof of concept imple-
mentation and found to be satisfactory. The major bottleneck of the
system is the networking performance, as the overhead of transmit-
ting the bloom filter to clients grows prohibitive in larger deploy-
ments (> 100000 users), quickly reaching tens or even hundreds of
megabytes. Much of this overhead is introduced through user churn,
which is unavoidable in a real-world deployment.

Finally, we discussed a number of open issues of the system, in-
cluding post-compromise security and potential methods to reduce
the overhead of the system. Areas for future work include compar-
ing its performance to existing methods for Private Information Re-
trieval (PIR), adding Post-Compromise Security (PCS) [26], and build-
ing an alternative, distributed (peer-to-peer) version of the system to
evaluating its privacy and security.

The results illustrate the difficulty of efficiently providing strong
privacy guarantees, especially unlinkability, in a system with a cen-
tralized server. This is a fundamental limitation of the client-server
model, and would require further advances in the area of PIR and re-
lated areas like Private Set Intersection (PSI) to overcome. Until these

121

122

CONCLUSIONS

advances are made, distributed systems may provide more efficient
solutions to these problems.

In conclusion, our system provides strong privacy guarantees in a
classical adversary model. However, the networking overhead quickly
grows prohibitive, making it unsuitable for a large-scale deployment.
Further work is required to design a practical system for data sharing
in the health context with strong privacy guarantees.

Part IV

APPENDIX

APPENDIX

A.1 VI-CBF SERIALIZATION ALGORITHM

As the Variable-Increment Counting Bloom Filter (VI-CBF) is transmit-
ted frequently, finding a space-efficient serialization format is key in
reducing the overhead it introduces. Some values always have to be
transmitted: The number of hash functions k, the number of counters
m, the base L of the D -sequence, the number of bits per counter b,
and the current number of entries in the VI-CBF (which is used to cal-
culate the current False-Positive-Rate (FPR)). All of these values are
serialized by converting them to bytes and used as a header for the
serialized data.

While the VI-CBF is in memory, only non-zero values of the VI-CBFs
counters are stored, and once a counter becomes zero, it is deleted.
This is done to reduce the memory footprint of the VI-CBF. However,
this strategy is not efficient for serialization: If we only write out the
counters with a non-zero value, we have to indicate which slot the
counter value belongs to. This adds additional bits to the serializa-
tion.

We call this the smart serialization, and the alternative, simply writ-
ing out all slot values (including zeroes), the full serialization strategy.
We can estimate the size of the smart and full serialization and dynam-
ically choose the more efficient strategy during serialization.

However, in the implementation, the serialized output will be com-
pressed using DEFLATE [36] before being transmitted. DEFLATE
compresses best if the data has a lot of redundancy, like the data
generated by the full strategy. Figure 35 shows the results of both
strategies, evaluated in an actual implementation. The size reduction
through compression is so significant that even with only a few non-
zero counters, the full serialization strategy is still more efficient.

For this reason, we chose to disregard the smart strategy and only
use the full strategy, combined with a DEFLATE compression, in the
implementation.

A.2 SOURCE CODE AND RAW DATA

The enclosed DVD contains all code and data used for the thesis. In
case you are reading the PDF of this thesis, we will also provide a
link to an online version of the files. We will now step through the
different software projects and data files. Each folder also contains a

125

126 APPENDIX

Size of Serialized VI-CBF with Smart Serialization Strategy
11000 T T T T T T T

10000

9000

8000

7000

6000

5000

Size (bytes)

4000

3000

2000

1000

Uncompressed
Compressed
Il Il

0 [| | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of entries

(a) Smart serialization size

Size of Serialized VI-CBF with Full Serialization Strategy
11000 T T T T T T T

10000

9000 E

8000 E

7000 - i

6000 E

5000 E

Size (bytes)

4000]

3000 - b

2000 - i

1000 Uncompressed
Compressed
Il Il

0 | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of entries

(b) Full serialization size

Figure 35: Comparison of serialization size with smart and full strategy, with
and without compression (10 000 slots, 3 hash functions)

README file with further information. The software was developed
under the project name Denul.

ANDROID APP The proof of concept Android application can be
found in the Android folder on the enclosed DVD, or on GitHub.?
It is written in Java and follows the standard folder structure of an

1 See https://github.com/DenulApp/app

https://github.com/DenulApp/app

A.2 SOURCE CODE AND RAW DATA

Android development project using Android Studio. A compiled ver-
sion is placed in the root of the Android folder, named Denul.apk.

SERVER The server application is required to let two instances of
the proof of concept application communicate. It can be found in the
Server directory of the DVD, or on GitHub.> Further documentation
can be found in its README file.

Note that the address of the used server is fixed to the DNS entry of
my server, denul.velcommuta.de. If you want to use your own server,
you will have to change the host variable in the following two files:
de.velcommuta.denul.util.ShareManager.java
de.velcommuta.denul.util.StudyManager. java.

RESEARCH CLIENT The research client is written in Java and can
be found in the Research folder, or on GitHub.3

PROTOCOL BUFFERS Both the server and the clients require com-
piled Protocol Buffer files for their communication. The protocol
buffer definition files can be found in the Protobuf folder, or on
GitHub.# The server, Android application, and research client al-
ready contain the compiled protocol buffer files, no further actions
are necessary. The source files are included for completeness only.

SIMULATOR The simulator is written in Python, and the source
code can be found in the Simulator folder or on GitHub.5 Further
information can be found in the README file.

vi-cBF The project required two separate VI-CBF implementations.
The python version is called pyVICBE?® while the Java version is called
libvicbf.7 Their respective source code is included in the folders of the
same name on the DVD.

EXPERIMENTAL DATA Finally, the experimental data is included in
the Data folder. The online version can be partially found on GitHub,®
while the larger files have been uploaded to Zenodo.?

The folder contains the scripts used to perform the evaluation in
the code subfolder. It also contains the script used to generate the
plots used in this thesis. Simply run the plot.py python script - if
you have GnuPlot installed, it should generate the appropriate .eps

2 See https://github.com/DenulApp/server

3 See https://github.com/DenulApp/research-client
4 See https://github.com/DenulApp/protocol

5 See https://github.com/DenulApp/simulator

6 See https://github.com/malexmave/pyVICBF

7 See https://github.com/malexmave/libvicbf

8 See https://github.com/DenulApp/data

9 See https://zenodo.org/record/49441

127

https://github.com/DenulApp/server
https://github.com/DenulApp/research-client
https://github.com/DenulApp/protocol
https://github.com/DenulApp/simulator
https://github.com/malexmave/pyVICBF
https://github.com/malexmave/libvicbf
https://github.com/DenulApp/data
https://zenodo.org/record/49441

128

APPENDIX
Component github.com/ License
Android App DenulApp/app GNU GPL v3
Server DenulApp/server GNU GPL v3
Research Client DenulApp/research-client | GNU GPL v3
Protocol Buffers DenulApp /protocol GNU GPL v3
Simulator DenulApp /simulator GNU GPL v3
Dataset DenulApp/data Public Domain
Evaluation Scripts | DenulApp/data Public Domain
VI-CBF - Python | malexmave/pyVICBF Apache License v2
VI-CBF - Java malexmave/libvicbf Apache License v2

Table 4: Software and dataset licenses

files in the output subfolder. Naturally, this does not work on the
DVD itself, as it is read-only.

LICENSE The different components are licensed under different li-
censes. Check Table 4 for details.

VERSION CONTROL The version history of the code is included in
the online repositories, using the Git version control system. In case
development of the proof of concept resumes, the versions that were
used for the evaluation have been marked with a Git fag. This ensures
that results are reproducible, even if the software is changed in the
meantime.

The tags (and most commits) are signed with my GPG key to en-
sure authenticity. The key fingerprint is 84C4 8097 A3AF 7D55 189A
77AC 169F 9624 3408 825E.

BIBLIOGRAPHY

[1] M. Auand A. Kapadia. PERM: practical reputation-based black-
listing without TTPS. Proceedings of the 2012 ACM conference on
Computer and communications security, pages 929—940, 2012.

[2] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin.
Persona: an online social network with user-defined privacy. In
ACM SIGCOMM Computer Communication Review, volume 39,

pages 135-146, 2009.

[3] A.-L. Barabasi and R. Albert. Emergence of Scaling in Random
Networks. Science, 286(5439):509-512, oct 1999.

[4] E. Barker and J. Kelsey. Recommendation for random number
generation using deterministic random bit generators (revised).
NIST Special publication, 8oo(March):90, 2007.

[5] M. A. Barrett, O. Humblet, R. A. Hiatt, and N. E. Adler. Big
Data and Disease Prevention: From Quantified Self to Quanti-
fied Communities. Big Data, 1(3):168-175, Mary Ann Liebert,
sep 2013.

[6] J. Becker, D. Breuker, T. Heide, J. Holler, H. P. Rauer, and
R. Bohme. Can we afford integrity by proof-of-work? scenarios
inspired by the bitcoin currency. In The Economics of Information
Security and Privacy, pages 135-156. Springer, 2013.

[7]1 M. Bellare and T. Kohno. Hash function balance and its impact
on birthday attacks. Lecture Notes in Computer Science, 3027:401—
418, Springer, 2004.

[8] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash func-
tions for message authentication. Advances in Cryptology -
CRYPTO’96, 1109:1-15, Springer, 1996.

[9] M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of op-
eration. Fast Software Encryption (FSE), pages 389—407, Springer,
2004.

[10] M. Bellare. New proofs for NMAC and HMAC: Security with-
out collision-resistance. In Advances in Cryptology - CRYPTO
2006, pages 602-619. Springer, 2006.

[11] M. Bellare and P. Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. Proceedings of the
1st ACM conference on Computer and communications security,
(November 1993):62-73, 1993.

129

130

BIBLIOGRAPHY

[12] M. Bellare, A. Boldyreva, and A. O. Neill. Deterministic and
Efficiently Searchable Encryption. Advances in Cryptology -
CRYPTO 2007, 4622:535-552, Springer, 2007.

[13] D.]. Bernstein. Curve25519: new Diffie-Hellman speed records.
In Public Key Cryptography-PKC 2006, pages 207-228. Springer,
2006.

[14] G. Bertoni,]J. Daemen, M. Peeters, and G. Van Assche. On the
indifferentiability of the sponge construction. In Advances in
Cryptology - EUROCRYPT 2008, pages 181-197. Springer, 2008.

[15] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak
sponge function family main document. Submission to NIST
(Round 2), 3:30, Citeseer, 2009.

[16] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy
attribute-based encryption. In Security and Privacy, 2007. SP’07.
IEEE Symposium on, pages 321-334. IEEE, 2007.

[17] M. Blaze. A cryptographic file system for UNIX. Proceedings of
the 1st ACM conference on Computer and communications security,

pages 9-16, 1993.

[18] B. H. Bloom. Space/time trade-offs in hash coding with allow-
able errors. Communications of the ACM, 13(7):422—426, 1970.

[19] D. Boneh and M. Franklin. Identity-based encryption from the
Weil pairing. In Advances in Cryptology - CRYPTO 2001, pages
213—229. Springer, 2001.

[20] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Pub-
lic Key Encryption with Keyword Search. Advances in Cryptol-
ogy - Eurocrypt 2004, pages 506522, Springet, 2004.

[21] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record commu-
nication, or, why not to use PGP. In Proceedings of the 2004 ACM
workshop on Privacy in the electronic society, pages 77-84, 2004.

[22] G. Brassard, C. Crépeau, and J. Robert. All-or-nothing disclo-
sure of secrets. Advances in Cryptology—CRYPTO’ 86, pages 234—
238, Springer, 1987.

[23] D. Chaum. The dining cryptographers problem: Unconditional
sender and recipient untraceability. Journal of Cryptology, 1(1):
65-75, Springer, 1988.

[24] D. L. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM, 24(2):84—
90, 1981.

BIBLIOGRAPHY

[25] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private
information retrieval. Journal of the ACM, 45(6):965-982, 1998.

[26] K. Cohn-Gordon, C. Cremers, and L. Garratt. On Post-
Compromise Security. Cryptology ePrint Archive, Report
2016/221, 2016.

[27] H. Corrigan-Gibbs, D. Boneh, and D. Maziéres. Riposte: An
Anonymous Messaging System Handling Millions of Users.
IEEE Symposium on Security and Privacy (SP), pages 321-338,
2015.

[28] L.-A. Cutillo, R. Molva, and T. Strufe. Safebook: A Privacy Pre-
serving Online Social Network Leveraging on Real-Life Trust.
IEEE Communications Magazine, 47(12):94—101, 2009.

[29] L. A. Cutillo, R. Molva, and T. Strufe. On the Security and
Feasibility of Safebook: A Distributed Privacy-Preserving On-
line Social Network. Privacy and Identity Management for Life,
(217141):86-101, Springer, 2010.

[30] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Springer, 2002. ISBN 3540425802.

[31] I. B. Damgard. A design principle for hash functions. In Ad-
vances in Cryptology—CRYPTO’89 Proceedings, pages 416—427.
Springer, 1989.

[32] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: De-
sign of a type III anonymous remailer protocol. In Security and
Privacy, 2003. Proceedings. 2003 Symposium on, pages 2-15. IEEE,
2003.

[33] G. D’Angelo and S. Ferretti. LUNES: Agent-based simulation
of P2P systems. In Proceedings of the International Workshop on
Modeling and Simulation of Peer-to-Peer Architectures and Systems
(MOSPAS 2011). IEEE, 2011.

[34] E.De Cristofaro and G. Tsudik. Practical private set intersection
protocols with linear complexity. In Financial Cryptography and
Data Security, pages 143-159. Springer, 2010.

[35] Y.-A. de Montjoye, L. Radaelli, V. K. Singh, A. S. Pentland, Y.-
a. D. Montjoye, L. Radaelli, and V. K. Singh. Unique in the
shopping mall: On the reidentifiability of credit card metadata.
Science, 347(6221):536-539, jan 2015.

[36] P. Deutsch. DEFLATE Compressed Data Format Specification
version 1.3. RFC 1951 (Informational), May 1996.

131

132 BIBLIOGRAPHY

[37] C. Devet and I. Goldberg. The best of both worlds: Combin-
ing information-theoretic and computational pir for communi-
cation efficiency. In Privacy Enhancing Technologies, pages 63-82.
Springer, 2014.

[38] C. Diaz, C. Troncoso, and A. Serjantov. On the impact of social
network profiling on anonymity. In Privacy Enhancing Technolo-
gies, pages 44—62. Springer, 2008.

[39] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246 (Proposed Standard), August
2008.

[40] W. Diffie and M. E. Hellman. Privacy and Authentication: An
Introduction to Cryptography. Proceedings of the IEEE, 67(3):

397427, 1979.

[41] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. 2004.

[42] D. Dolev and A. C. Yao. On the security of public key protocols.
Information Theory, IEEE Transactions on, pages 198—208, 1981.

[43] C. Dong, L. Chen, and Z. Wen. When private set intersection
meets big data. In Proceedings of the 2013 ACM SIGSAC confer-
ence on Computer & communications security - CCS ‘13, number 1,
pages 789-800, 2013.

[44] B.S. Elger, J. Iavindrasana, L. Lo Iacono, H. Miiller, N. Roduit,
P. Summers, and]. Wright. Strategies for health data exchange
for secondary, cross-institutional clinical research. Computer
Methods and Programs in Biomedicine, 99(3):230—-251, Elsevier Ire-
land Ltd, 2010.

[45] T. Emnid. Datenschutz - Die Sicht der Verbraucherinnen
und Verbraucher in Deutschland. 2015. URL http://
www.vzbv.de/sites/default/files/downloads/Datenschutz_
Umfrage-Sicht-Verbraucher-Ergebnisbericht-TNS-Emnid-Oktober-2015.
pdf.

[46] L. Ertaul, A. M. Mehta, T. K. Wu, C. Dong, L. Chen, and Z. Wen.
Implementation of Oblivious Bloom Intersection in Private Set
Intersection Protocol (PSI). In Proceedings of the International Con-
ference on Security and Management (SAM), page 1, 2014.

[47] S. Even, O. Goldreich, and A. Lempel. A randomized protocol
for signing contracts. Communications of the ACM, 28(6):637-647,

1985.

[48] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher.
Cuckoo filter: Practically better than bloom. In Proceedings of

http://www.vzbv.de/sites/default/files/downloads/Datenschutz_Umfrage-Sicht-Verbraucher-Ergebnisbericht-TNS-Emnid-Oktober-2015.pdf
http://www.vzbv.de/sites/default/files/downloads/Datenschutz_Umfrage-Sicht-Verbraucher-Ergebnisbericht-TNS-Emnid-Oktober-2015.pdf
http://www.vzbv.de/sites/default/files/downloads/Datenschutz_Umfrage-Sicht-Verbraucher-Ergebnisbericht-TNS-Emnid-Oktober-2015.pdf
http://www.vzbv.de/sites/default/files/downloads/Datenschutz_Umfrage-Sicht-Verbraucher-Ergebnisbericht-TNS-Emnid-Oktober-2015.pdf

BIBLIOGRAPHY

the 10th ACM International on Conference on emerging Networking
Experiments and Technologies, pages 75-88. ACM, 2014.

[49] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache:
A scalable wide-area Web cache sharing protocol. IEEE/ACM
Transactions on Networking, 8(3):281-293, 2000.

[50] A. Fiat and M. Naor. Broadcast Encryption. Advances in Cryp-
tology — CRYPTO’ 93, LNCS, 773:480—491, Springer, 1993.

[51] M. Franz, B. Meyer, and A. Pashalidis. Attacking Unlinkability:
The Importance of Context. Privacy Enhancing Technologies, 4776:
1-16, Springer, 2007.

[52] D. Galindo and E. R. Verheul. Pseudonymized Data Sharing. In
Advanced Information and Knowledge Processing, volume 51, pages
157-179. 2010.

[53] P. Gallagher. Secure Hash Standard (SHS) FIPS PUB 180-4. Pro-
cessing, FIPS PUB 1(October), 2012.

[54] A.Gkoulalas-Divanis, G. Loukides, and J. Sun. Publishing data
from electronic health records while preserving privacy: A sur-
vey of algorithms. Journal of Biomedical Informatics, 50:4-19, El-
sevier Inc., 2014.

[55] V. Goyal, A. O’'Neill, and V. Rao. Correlated-Input Secure Hash
Functions. Theory of Cryptography, 6597:182—200, Springer, 2011.

[56] S. Guha, K. Tang, and P. Francis. NOYB: Privacy in Online
Social Networks. Proceedings of the first workshop on online social
networks, pages 49-54, ACM, 2008.

[57] D. Guo, Y. Liu, X. Li, and P. Yang. False negative problem of
counting bloom filter. IEEE Transactions on Knowledge and Data
Engineering, 22(5):651-664, 2010.

[58] A. Harvey, A. Brand, S. T. Holgate, L. V. Kristiansen,
H. Lehrach, A. Palotie, and B. Prainsack. The future of tech-
nologies for personalised medicine. New Biotechnology, 29(6):
625-633, Elsevier B.V., 2012.

[59] D. Herrmann, M. Maass, and H. Federrath. Evaluating the Se-
curity of a DNS Query Obfuscation Scheme for Private Web
Surfing. In ICT Systems Security and Privacy Protection, volume
428 of IFIP Advances in Information and Communication Technol-
0gY, pages 205-219. Springer, 2014.

[60] Y. Huang, D. Evans, and J. Katz. Private set intersection: Are
garbled circuits better than custom protocols? 19th Network
and Distributed Security Symposium (NDSS), (February):5-8, The
Internet Society, 2012.

133

134

BIBLIOGRAPHY

[61] B. A. Huberman, M. Franklin, and T. Hogg. Enhancing Privacy
and Trust in Electronic Communities. Proceedings of the 1st ACM
conference on Electronic commerce, pages 78-86, 1999.

[62] M. Humbert, E. Ayday, J.-P. Hubaux, and A. Telenti. Address-
ing the concerns of the lacks family: quantification of kin ge-
nomic privacy. Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security - CCS '13, pages 1141—
1152, 2013.

[63] R. Impagliazzo and S. Rudich. Limits on the Provable Conse-
quences of One-way Permutations. Proceedings of 21st Annual
ACM Symposium on Theory of Computing, pages 44—61, 1989.

[64] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Sufficient Conditions
for Collision-Resistant Hashing. Theory of Cryptography, LNCS-

3378, pages 445—456, 2005.

[65] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards
(PKCS) #1: RSA Cryptography Specifications Version 2.1. RFC
3447 (Informational), February 2003.

[66] B. Kaliski. PKCS #5: Password-Based Cryptography Specifica-
tion Version 2.0. RFC 2898 (Informational), September 2000.

[67] H. Krawczyk and P. Eronen. HMAC-based Extract-and-Expand
Key Derivation Function (HKDF). RFC 5869 (Informational),
May 2010.

[68] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-
Hashing for Message Authentication. RFC 2104 (Informational),
February 1997.

[69] T. Krovetz and P. Rogaway. The OCB Authenticated-Encryption
Algorithm. RFC 7253 (Informational), May 2014.

[70] C. Krumme, A. Llorente, M. Cebrian, A. Pentland, and E. Moro.
The predictability of consumer visitation patterns. Scientific Re-
ports, 3:4, Nature, apr 2013.

[71] E. Kushilevitz, R. Ostrovsky, and T. Bellcore. Replication is
not Needed: Single Database, Computationally-Private Infor-
mation Retrieval. IEEE Symposium on Foundations of Computer

Science, pages 364—373, 1997.

[72] B. Laurie and R. Clayton. Proof-of-work proves not to work.
The Third Annual Workshop on Economics and Information Security,
(May):1—9, 2004.

BIBLIOGRAPHY

[73] L. Li, D. Alderson, J. C. Doyle, and W. Willinger. Towards a
Theory of Scale-Free Graphs: Definition, Properties, and Impli-
cations. Internet Mathematics, 2(4):431-523, Taylor & Francis, jan
2005.

[74] N. Li and G. Chen. Analysis of a Location-Based Social Net-
work. Computational Science and Engineering, 2009. CSE’09. Inter-
national Conference on, 4:263-270, IEEE, 2009.

[75] Y. Lindell. Anonymous Authentication. Journal of Privacy and
Confidentiality, 2(2):35-63, Carnegie Mellon University, 2007.

[76] G.Loukides,]J. Liagouris, A. Gkoulalas-Divanis, and M. Terrovi-
tis. Disassociation for electronic health record privacy. Journal
of Biomedical Informatics, 50:46—61, Elsevier Inc., 2014.

[77] X. Ma, G. Chen, and]. Xiao. Analysis of an online health social
network. Proceedings of the 1st ACM international health informat-
ics symposium, pages 297-306, 2010.

[78] B. a. Malin and L. Sweeney. A secure protocol to distribute un-
linkable health data. AMIA Symposium, pages 485—489, Ameri-
can Medical Informatics Association, 2005.

[79] M. Marlinspike. Advanced Cryptographic Ratchet-
ing, 2013. URL https://whispersystems.org/blog/
advanced- ratcheting/.

[8o] M. Marlinspike. Forward Secrecy for Asynchronous
Messages, 2013. URL https://whispersystems.org/blog/
asynchronous-security/.

[81] D. McGrew and J. Viega. The Galois/Counter mode of opera-
tion (GCM). Submission to NIST, 2004.

[82] C. A. Melchor, J. Barrier, L. Fousse, and M.-O. Killjjian. XPIRe:
Private Information Retrieval for Everyone. Technical report,
Cryptology ePrint Archive, Report 2014/1025, 2014.

[83] R. C. Merkle. One Way Hash Functions and DES. Advances in
Cryptology - CRYPTO'89, pages 428-446, Springer, 1989.

[84] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and analysis of online social
networks. Proceedings of the 7th ACM SIGCOMM Conference on
Internet Measurement - IMC ‘07, pages 29—42, 2007.

[85] A. Narayanan and V. Shmatikov. Robust de-anonymization of
large sparse datasets. Proceedings - IEEE Symposium on Security
and Privacy, pages 111-125, 2008.

135

https://whispersystems.org/blog/advanced-ratcheting/
https://whispersystems.org/blog/advanced-ratcheting/
https://whispersystems.org/blog/asynchronous-security/
https://whispersystems.org/blog/asynchronous-security/

136

BIBLIOGRAPHY

[86]

(871

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

T. Neubauer and]. Heurix. = A methodology for the
pseudonymization of medical data. International Journal of Med-
ical Informatics, 80(3):190—204, Elsevier Ireland Ltd, 2011.

R. Ostrovsky and W. E. Skeith III. A Survey of Single-Database
PIR: Techniques and Applications. Public Key Cryptography -
PKC 2007, pages 393—411, Springer, 2007.

S. Oya, C. Troncoso, and E. Pérez-Gonzalez. Do dummies pay
off? Limits of dummy traffic protection in anonymous com-
munications. Privacy Enhancing Technologies, pages 204—223,
Springer, 2014.

R. Pagh and E. F. Rodler. Cuckoo Hashing. ESA 2001: 9th
Annual European Symposium, 2001 Proceedings, pages 121-133,
Springer Berlin Heidelberg, 2001.

A. Pfitzmann and M. Hansen. A terminology for talking about
privacy by data minimization: Anonymity, Unlinkability, Unde-
tectability, Unobservability, Pseudonymity, and Identity Man-
agement. Technical University Dresden, pages 1-98, 2009.

A. Pham, I. Bilogrevic, I. Dacosta, and].-p. H. Securerun. Se-
cureRun: Cheat-Proof and Private Summaries for Location-
Based Activities. IEEE Transactions on Mobile Computing, PP(99):
1-14, 2016.

B. Pinkas, T. Schneider, and M. Zohner. Faster Private Set Inter-
section Based on OT Extension. 23rd USENIX Security Sympo-
sium (USENIX Security 14), pages 797-812, 2014.

G. Poulis, G. Loukides, A. Gkoulalas-Divanis, and S. Ski-
adopoulos. Anonymizing data with relational and transac-
tion attributes. In Machine learning and knowledge discovery in
databases, pages 353—369. Springer, 2013.

D. d. S. Price. A general theory of bibliometric and other cu-
mulative advantage processes. Journal of the American society for
Information science, 27(5):292—306, Wiley Online Library, 1976.

K. S. Raynes-Goldie. Privacy in the age of facebook: discourse, ar-
chitecture, consequences. Phd thesis, Curtin University, 2012.

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Communi-
cations of the ACM, 21(2):120-126, feb 1978.

P. Rogaway and T. Shrimpton. Cryptographic Hash-Function
Basics: Definitions, Implications, and Separations for Preim-
age Resistance, Second-Preimage Resistance, and Collision Re-
sistance. FSE 2004: Fast Software Encryption, pages 371—388,
Springer, 2004.

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

BIBLIOGRAPHY

O. Rottenstreich, Y. Kanizo, and I. Keslassy. The Variable-
Increment Counting Bloom Filter. In IEEE INFOCOM, pages
1880-1888. IEEE, mar 2012.

S. Sankararaman, G. Obozinski, M. I. Jordan, and E. Halperin.
Genomic privacy and limits of individual detection in a pool.
Nature Genetics, 41(9):965-967, sep 2009.

P. Schartner. Random but System-Wide Unique Unlinkable Pa-
rameters. Journal of Information Security, 3(o1):1-10, Scientific
Research Publishing, 2012.

E.]J. Schwartz, D. Brumley, and J. M. Mccune. Contractual
anonymity. In In Proceedings of the 17th Annual Network and Dis-
tributed System Security Symposium. The Internet Society, 2010.

R. Shirey. Internet Security Glossary, Version 2. RFC 4949 (In-
formational), August 2007.

H. A. Simon. On a Class of Skew Distribution Functions.
Biometrika, 42(3/4):425—440, JSTOR, dec 1955.

R. Sion and B. Carbunar. On the computational practicality of
private information retrieval. Proceedings of the Network and Dis-
tributed Systems Security Symposium, The Internet Society, 2007.

J. Sun, X. Zhu, and Y. Fang. A Privacy-Preserving Scheme for
Online Social Networks with Efficient Revocation. In 2010 Pro-
ceedings IEEE INFOCOM, pages 1—9, mar 2010.

M. Swan. Emerging patient-driven health care models: An ex-
amination of health social networks, consumer personalized
medicine and quantified self-tracking. International Journal of
Environmental Research and Public Health, 6(2):492-525, Molecu-
lar Diversity Preservation International, 2009.

M. Swan. Crowdsourced Health Research Studies: An Im-
portant Emerging Complement to Clinical Trials in the Public
Health Research Ecosystem. Journal of Medical Internet Research,
14(2):46, JMIR Publications Inc., 2012.

M. Swan. Health 2050: The Realization of Personalized
Medicine through Crowdsourcing, the Quantified Self, and the
Participatory Biocitizen. Journal of personalized medicine, 2(3):93—
118, Molecular Diversity Preservation International, 2012.

M. Swan. Scaling crowdsourced health studies : the emergence
of a new form of contract research organization. Personalized
Medicine, 9(2):223—-234, Future Medicine, 2012.

137

138

BIBLIOGRAPHY

[110] C. Tezcan and S. Vaudenay. On hiding a plaintext length by
preencryption. Applied Cryptography and Network Security, 6715
LNCS:345-358, Springer, 2011.

[111] R. R. Toledo, G. Danezis, and I. Goldberg. Lower-Cost epsilon-
Private Information Retrieval. ArXiv ePrint, Report 1604.00223,
pages 1-17, apr 2016.

[112] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith. PEREA:
Towards practical TTP-free revocation in anonymous authenti-
cation. In Proceedings of the 15th ACM conference on Computer and
communications security, pages 333—344, 2008.

[113] G. Tsudik. Message authentication with one-way hash func-
tions. ACM SIGCOMM Computer Communication Review, 22(5):

20-38, 1992.
[114] X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full

SHA-1. Advances in Cryptology - CRYPTO 2005, pages 1736,
Springer, 2005.

[115] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-
MAC (CCM). REC 3610 (Informational), September 2003.

[116] J. R. Whitson. Gaming the quantified self. Surveillance and Soci-
ety, 11(1/2):163-176, Surveillance Studies Network, 2013.

[117] U. Wilensky. NetLogo, 1999. URL http://ccl.northwestern.
edu/netlogo/.

[118] P. Zimmermann, A. Johnston, and J. Callas. ZRTP: Media Path
Key Agreement for Unicast Secure RTP. RFC 6189 (Informa-
tional), April 2011.

[119] P. R. Zimmermann. The official PGP user’s guide. MIT press,
1995.

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

ERKLARUNG

Hiermit versichere ich geméafs der Allgemeinen Priifungsbestimmun-
gen der Technischen Universitdt Darmstadt (APB) §23(7), die vorlie-
gende Masterarbeit ohne Hilfe Dritter und nur mit den angegebenen
Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus
den Quellen entnommen wurden, sind als solche kenntlich gemacht
worden. Diese Arbeit hat in gleicher oder dhnlicher Form noch keiner
Priifungsbehorde vorgelegen.

Darmstadt, 15. April 2016

Max Jakob Maaf3

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	1 Introduction
	1.1 Privacy Issues in Health Tracking Services
	1.2 Contributions
	1.3 Outline

	2 Related Work
	2.1 Privacy-Preserving OSNs
	2.2 Cryptographic Hash Functions
	2.3 Authenticated Encryption
	2.4 Information Retrieval
	2.4.1 Private Information Retrieval
	2.4.2 Private Set Intersection
	2.4.3 Bloom Filters
	2.4.4 Counting Bloom Filters
	2.4.5 Variable-Increment Counting Bloom Filters

	2.5 Summary

	Contribution
	3 Design
	3.1 System Overview
	3.1.1 Design Goals
	3.1.2 Architecture
	3.1.3 Registration and Authentication

	3.2 Adversary Model
	3.3 Secure Local Storage
	3.4 Secure Unlinkable Shared Identifiers
	3.4.1 Assumptions
	3.4.2 Identifier Generation
	3.4.3 Revocation
	3.4.4 Comparison with Related Work

	3.5 Friend Discovery
	3.5.1 Friendship establishment
	3.5.2 Revocation

	3.6 Sharing Process
	3.6.1 Data Selection
	3.6.2 Data Storage
	3.6.3 Data Retrieval
	3.6.4 Data Deletion

	3.7 Research Functionality
	3.7.1 Creation and Registration
	3.7.2 Retrieval and Participation
	3.7.3 Termination

	3.8 Protocol Variants
	3.9 Summary

	4 Implementation
	4.1 The Android Operating System
	4.1.1 Security Model
	4.1.2 Cryptographic Libraries
	4.1.3 Communication Channels
	4.1.4 Sensors

	4.2 Secure Local Storage
	4.3 Collecting Sensor Data
	4.4 Server
	4.4.1 VI-CBF

	4.5 Friend Discovery
	4.5.1 Connection Establishment
	4.5.2 Key Agreement
	4.5.3 Key Derivation
	4.5.4 Verification

	4.6 Sharing Process
	4.6.1 Data Encryption and Storage
	4.6.2 Data Retrieval and Decryption
	4.6.3 Data Deletion

	4.7 Research Functionality
	4.7.1 Study Creation and Registration
	4.7.2 Study Retrieval and Participation
	4.7.3 Study Data Management
	4.7.4 Study Termination

	4.8 Protocol Simulator
	4.8.1 Initial Population Generation
	4.8.2 Network Evolution
	4.8.3 Sharing Behaviour
	4.8.4 VI-CBF Parameter Approximation

	4.9 Summary

	5 Evaluation
	5.1 Security of Local Storage
	5.1.1 Confidentiality
	5.1.2 Integrity and Authenticity
	5.1.3 Conclusion

	5.2 Security of Identifiers
	5.2.1 Implementation Choices
	5.2.2 Open Issues

	5.3 Security of Remote Storage
	5.3.1 Honest-but-Curious Server
	5.3.2 Malicious User
	5.3.3 Malicious Researcher
	5.3.4 Conclusion

	5.4 Computational Performance
	5.4.1 Cryptographic Operations
	5.4.2 VI-CBF Operations

	5.5 Networking Performance
	5.5.1 Stored Key-Value-Pairs
	5.5.2 VI-CBF Transmission Overhead

	5.6 Summary

	Discussion and Conclusions
	6 Discussion
	6.1 Adversary Model
	6.1.1 Active Adversaries
	6.1.2 Colluding Adversaries

	6.2 Future Work
	6.2.1 Cuckoo Filters
	6.2.2 Private Information Retrieval
	6.2.3 Alternative Security Goals
	6.2.4 Metadata Obfuscation
	6.2.5 Study Data De-Identification
	6.2.6 Distributed/Peer-to-Peer Infrastructure

	6.3 Summary

	7 Conclusions

	Appendix
	A Appendix
	A.1 VI-CBF Serialization Algorithm
	A.2 Source Code and Raw Data

	Bibliography
	Erklärung

