

UWS Academic Portal

Reducing communication cost of encrypted data search with compressed Bloom
filters
Umer, Muhammad ; Azim, Tahir; Pervez, Zeeshan

Published in:
16th International Symposium on Network Computing and Applications (NCA), 2017 IEEE

DOI:
10.1109/NCA.2017.8171329

Published: 11/12/2017

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Umer, M., Azim, T., & Pervez, Z. (2017). Reducing communication cost of encrypted data search with
compressed Bloom filters. In 16th International Symposium on Network Computing and Applications (NCA),
2017 IEEE (Vol. 16, pp. 1-4). IEEE. https://doi.org/10.1109/NCA.2017.8171329

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 17 Sep 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository and Portal - University of the West of Scotland

https://core.ac.uk/display/227578187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/NCA.2017.8171329
https://uws.pure.elsevier.com/en/publications/76cccd08-cea5-471e-8bfc-163cd016a90f

Reducing Communication Cost of Encrypted Data
Search with Compressed Bloom Filters

Muhammad Umer
NUST-SEECS

Islamabad, Pakistan
13msitmumer@seecs.edu.pk

Tahir Azim
École Polytechnique Fédérale de Lausanne

Lausanne, Switzerland
tahir.azim@epfl.ch

Zeeshan Pervez
University of the West of Scotland

Paisley, Scotland PA1 2BE
zeeshan.pervez@uws.ac.uk

Abstract—Consumer data, such as documents and photos, are
increasingly being stored in the cloud. To ensure confidentiality,
the data is encrypted before being outsourced. However, this
makes it difficult to search the encrypted data directly. Recent
approaches to enable searching of this encrypted data have relied
on trapdoors, locally stored indexes, and homomorphic encryp-
tion. However, data communication cost for these techniques is
very high and they limit search capabilities either to a small set
of pre-defined trapdoors or only allow exact keyword matching.

This paper addresses the problem of high communication cost
of bloom-filter based privacy-preserving search for measuring
similarity between the search query and the encrypted data. We
propose a novel compression algorithm which avoids the need to
send the entire encrypted bloom filter index back to the client.
This reduces the cost of communicating results to the client by
over 95%. Using sliding window bloom filters and homomorphic
encryption also enables our system to search over encrypted
data using keywords that only partially match the originally
stored words. We demonstrate the viability of our system by
implementing it on Google Cloud, and our results show that the
cost of partially matching search queries on encrypted data scales
linearly with the total number of keywords stored on the server.

I. INTRODUCTION

Cloud computing enables its subscribers to use computing
services over the Internet and provides tailored computing
resources on-demand. Subscribers of cloud storage often out-
source their data on public cloud servers to ensure that it is
highly available and reliable. As the amount of data stored on
the cloud has increased dramatically, the security of this data
has become an important concern. Recent cases have included
users’ private photos, videos and credit card numbers getting
stolen from compromised cloud servers.

The straightforward way to achieve data protection and
confidentiality is to place data on the cloud after encrypting
it using public key encryption. This solves the confidentiality
and privacy problem, but encryption hides information within
the data and searching becomes difficult. The user has to
download all of the data from cloud storage and search it
after decrypting it locally. This is obviously an expensive
proposition. Therefore we need a mechanism that allows a
user to search over encrypted data without revealing private
information and without downloading excessive data.

Existing approaches for searching over encrypted data often
rely on “trapdoors” [1]–[3]. Trapdoors enable a user to search

the encrypted data for a small set of pre-defined keywords.
These approaches restrict the searching capability of a user to
a limited number of trapdoors defined during data encryption.
More recent work has focused on homomorphic encryption [4]
as a solution to this problem. However, to ensure privacy from
the cloud service provider (CSP), all the evaluated results are
returned from the cloud server in encrypted form without any
compression. This causes high communication cost but allows
searching for exact keyword matches over the encrypted data.

In this paper, we present a system for performing searches
on encrypted data in the cloud. We propose a novel compres-
sion technique which allows us to avoid sending the entire
encrypted index back to the client. This reduces the cost
of communicating search results back to the client by over
95% resulting in faster response times and less budgeting cost
to the owner. Besides exact keyword matching, our system
also supports similarity-based searching: finding documents
with partially matching keywords. Homomorphic encryption
enables private search capability, while sliding window bloom
filters enable searching for partially matching keywords.

II. RELATED WORK

Although cloud service providers (CSP) allow data to
be encrypted for security purposes, encryption leads to two
problems. First, searching for keywords within data encrypted
using popular encryption algorithms is not possible. Second, if
you provide the CSP the decryption keys, you cannot prevent
the CSP from accessing the confidential data. Recent work
has focused on solving these problems using a variety of
techniques, which we broadly classify into two categories.

Using Trapdoor Encryption. Song et al. [1] propose a
symmetric key based searchable scheme for encrypted data.
Each keyword in the document is encrypted independently
using trapdoors. Their approach proposes ways to search
encrypted data using both an encrypted index as well as
searching the original data itself. Goh et al. [2] propose
encrypted search using bloom filters. They generate trapdoors
against all the keywords in a file and add them to a bloom filter
stored in the cloud. To search, a user computes the trapdoor for
a keyword and sends it to the cloud server. The cloud server
checks the trapdoor in the bloom filter, and if it exists, returns
the corresponding file identifier. Boneh et al [3] present one
of the earliest public key based encrypted search algorithm,978-1-5386-1465-5/17$31.00 c©2017 IEEE

enabling authorized users having the private key to search in
the index. Yu et al. [5] use Hierarchical Predicate Encryption
(HPE) for encrypted search. All of the above schemes support
only exact keyword matches and rely on pre-defined trapdoors.

Pal et al. [6] propose an encrypted search scheme using
bloom filters and use soundex coding to search similar words.
Kuzu et al. [7] carry out similarity-based encrypted search
using locality sensitive hashing for similarity score calcula-
tion. In general, none of these works attempt to reduce the
communication cost of returning results to the client.

Using Homomorphic Encryption. Homomorphic encryp-
tion allows computations to be carried out on ciphertext,
thus generating an encrypted result, which when decrypted,
matches the result of operations performed on the plaintext.
An example of homomorphic encryption is the Pascal Paillier
cryptosystem [8], which provides two useful properties: (i)
the product of two ciphertexts will decrypt to the sum of
their corresponding plaintexts and (ii) a ciphertext raised to
a constant k will decrypt to the product of the corresponding
plaintext and the constant.

Pervez et al. [9] propose an encrypted data search scheme
using an inverted index and homomorphic encryption [4]. They
use homomorphic encryption to provide end-to-end privacy.
Only authorized users can execute queries using their personal
proxy re-encryption keys in order to manipulate the index, so
a lot of computation is done due to index transformations.
They use a trusted third party to rank search results and model
queries. While this approach avoids using trapdoors, it still
supports only exact keyword matching and has high com-
munication cost. Finally, CryptDB [10] and MONOMI [11]
improve the performance of searching over encrypted data by
employing customized forms of encryption for specific kinds
of data. However, in doing so, they are vulnerable to several
kinds of information leakage but with low probability.

III. PROPOSED SYSTEM

We first discuss some of our assumptions about the system
and the threat model. We then go on to describe the index
generation and search algorithms over encrypted data.

A. System Model

Table I illustrates the notations that we use in order to
explain the details of our proposed approach. Entities involved
in the proposed system are the data owner, CSP and end user.
A data owner is an entity who wants its confidential data to
be stored in cloud storage with the capability of privacy-aware
searching. A CSP hosts public cloud storage services for its
subscribers on a pay-as-you-use model. The end user is an
entity that will perform searches on the encrypted data stored
in the cloud. The end user can submit search queries to the
CSP, which evaluates the queries and returns results back to
the user. However, during query evaluation, the CSP should
not be able to learn anything about the query, the stored data
or the matching results.

TABLE I
NOTATIONS USED IN MATHEMATICAL AND DESCRIPTIVE DETAILS

Notation Description
F Confidential file that needs to be outsourced
Kω List of keywords in a data file F
fω Frequency of a keyword kω
Eh , Dh Homomorphic encryption and decryption functions
ES , DS Symmetric encryption and decryption functions
σpk , σsk Homomorphic encryption public and private keys
Rq Compressed resultant term after bloom filter matching
Mq Uncompressed resultant term after bloom filter matching
BFi i’th encrypted bit of bloom filter BF
Ob Number of 1 bits in a bloom filter

I Index file containing encrypted bloom filter for each
keyword, frequency and number of 1s as index entries

B. Threat Model

The data owner and end user are considered trusted entities
while CSP is considered as an untrusted entity because it is
maintained by an arbitrary third party. Data communication
between the end user and CSP should be considered as
untrusted as all requests are routed via the open Internet.
The CSP hosts the encrypted data file (F) and the encrypted
index (I). As they are encrypted, the CSP cannot learn any
information regarding F and I. Query evaluation is done by
CSP homomorphically: that is, the CSP performs evaluation
over encrypted text of I and encrypted user query, so it is
neither able to learn anything about the matched results, nor
can it relate any subsequent queries from other users. We
ignore the key exchange mechanism between the data owner
and the end users, assuming that it happens using secure out-
of-band channels.

C. Index Generation

The data owner generates an encrypted index on the client
side to facilitate subsequent searches. The system generates
the index by creating a sliding window bloom filter which is
then encrypted using Pascal Paillier homomorphic encryption.

The sliding window bloom filter (SWBF) is a special type
of bloom filter for which a window size is defined, and based
on that window size, a keyword is sliced and mapped to the
bloom filter. For example, suppose we have a word “cloud”
and a window size of 2. The word will then be sliced into
“cl”, “lo”, “ou”, and “ud” and each of these slices will be
independently mapped to the bloom filter. This filter enables
us to achieve a partial matching even if the requested keyword
does not match completely.

Algorithm 1 describes the indexing procedure. For each file
to be uploaded to the server, a separate index file is generated.
The index file contains one index entry per keyword. To
generate the index file, a sliding window bloom filter is
updated for each keyword and the number of 1 bits in the
bloom filter are noted. Each bit of the bloom filter is then
encrypted using the Pascal Paillier algorithm, and written to
the index entry along with frequency and number of 1 bits.
At the end of this process, each index entry Ii in an index

Algorithm 1: Index Creation
Input: A collection of text files C = 〈F1,F2, . . . ,Fn〉
Output: Index files I = 〈I1, I2, . . . , In〉 for each file

∈C
1 foreach Fi ∈ C do
2 Kω ← extractAllKeywords(Fi);
3 ∀kωj ∈ Kω;
4 while kωj ∈ Kω do
5 SWBF ← createSWBF (kωj);
6 fj ← getKeywordFrequency(kωj);
7 Ob ← getOnes(BF j);
8 ∀bfk ∈ SWBF ;
9 while bfk ∈ SWBF do

10 BFk ← Eh(σpk, bfk);
11 IndexEntry ← IndexEntry,BFk;
12 bfk ← getNextBit(SWBF);

13 IndexEntry ← IndexEntry, fj ,Ob;
14 Ij ← writeToIndexFile(IndexEntry);
15 I ← I, Ij ;
16 kωj ← getNextKeyword(K);

17 return I;

file I has the structure: Ii = [BF i, fω,Ob], where Ob is the
number of 1’s in BF i and BF i = BF1,BF2, . . . ,BFn.

Once the encrypted index file has been generated, it is
uploaded to the cloud along with the data files. The data files
are encrypted using a symmetric encryption algorithm, as they
will not be used during the search process.

D. Search Process

To start the search process, the user first generates a query
through a similar process as index creation. Each of the user’s
specified keywords are used to generate sliding window bloom
filters, whose bits are then encrypted on the end user’s machine
using the public key σpk of the Pascal Paillier algorithm. After
encryption, the query (comprising the encrypted bloom filters)
is sent to the cloud for terms matching.

On receiving a query, the CSP matches the incoming query
with the index entries of the files it is hosting. For a perfect
match, all of the corresponding bits of the index and query
bloom filters need to match. However, since both the query
and the index bloom filters are encrypted, simple matching
is not possible. Furthermore, encrypting the same plaintext
repeatedly results in completely different ciphertexts, which
improves privacy and security but makes matching difficult.

Fortunately, homomorphic encryption provides a way to per-
form mathematical operations over ciphertext. Since our bloom
filter entries are encrypted using Pascal Paillier homomorphic
encryption, we can just multiply their ciphertexts, which when
decrypted, yields the sum of the plaintexts [8]. The sum of the
bits will be either 0,1 or 2 after decryption. The twos in the
decrypted output then represent the matched bits and the ones
represent the unmatched bits. Then, a similarity score can be
estimated as the ratio of twos to ones in the decrypted result.

Note that decryption of this result will require users to have
the private Pascal Paillier key. Thus, only authorized users who
have received the private key from the data owner can actually
decrypt the results.

E. Compressing Search Results
Once the encrypted index entries and the query have been

multiplied together, we can simply return these products back
to the client. The client can then decrypt the products to get the
sums and compute similarity scores. While this straightforward
approach works and is used by many existing systems (for
example, by [9]), it is extremely inefficient. In particular, if
there are many documents and keywords in the cloud dataset,
this will result in a huge amount of data to be communicated
back to the user. Specifically, the product of the query and the
encrypted index entry for every keyword in the dataset will be
returned to the client. This increases both response time over
the network as well as the cost of cloud computing for the
data owner, since network usage is billed by most CSPs.

Our technique to reduce this communication cost overhead
is based on the insight that each returned index entry consists
only of 0s, 1s or 2s after decryption. We exploit this property
by defining a polynomial P such that:
P = a0 · BF1 + a1 · BF2 + a2 · BF3 + . . .+ an−1 · BFn

where a ∈ 〈3, 5, 7 · · · 〉, BF i are the Paillier sums of the
corresponding bits of an index entry and represent variables
for the polynomial P and BF i ∈ 〈0, 1, 2〉. We used a = 3 as
it yields smaller sums and less computaion.

The sum of this polynomial P is the resultant compressed
term which we return back to the client: Rq =

∑n−1
i=0 a

i ·
BF i+1. The size of this single compressed term Rq is equal
to the size of the Pascal Paillier key. This multiplication by
constants and addition is again possible because our bloom
filter entries are encrypted using Pascal Paillier homomorphic
encryption. Therefore, if after decryption, we want the product
of the plaintext with a constant, we just need to exponentiate
the ciphertext by that constant [8].

This means that irrespective of the size of the bloom filter,
we will always return a single number back to the client. The
client can then decompress it to find out the original Paillier
sums using the routine specified in Algorithm 2. In short, this
algorithm works because every BF i is at most 2 and an >
2
∑n−1

j=0 a
j . Taking logaRq repeatedly yields the position of

the next bloom filter entry that needs to be incremented.
The savings achieved using this algorithm can be evaluated

using a simple example. Suppose we use a 32-bit bloom filter
and a 64-bit Pascal Paillier key. Then for 1000 keywords,
the data owner will create an index file with 1000 entries.
The size of the index file will then be 32*64*1000/8=256KB.
On the other hand, after compression, the number returned
per keyword will just have a size equal to the size of the
Paillier key, namely 64 bits. So the total data returned will be
64*1000/8=8KB, a saving of over 95%.

IV. EVALUATION

We demonstrate the viability of our proposed scheme using
Google Cloud. We implement an indexing service, a search

Algorithm 2: Index entry decompression
Input: The compressed index sum Rq and a = 3
Output: Matched result Mq comprising a sequence of

0s, 1s and 2s
1 i← 0;
2 while Rq > 0 do
3 i← logaRq ;
4 Rq ← Rq − ai ;
5 Mq[i]←Mq[i] + 1 ;

6 return Mq;

service and a client application as standard Java services. We
deploy the search service on Google App Engine configured
as an F4 class instance with a 2.4 GHz CPU and 512 MB
of RAM. We utilize Google Blobstore for hosting index files
because it allows us to store and retrieve the complete index
files efficiently. We evaluate the results of our approach on a
dataset of 150 documents. These documents range in size from
5 MB to 100 MB, containing from 5000 to 129,000 keywords.
The keywords are chosen to be at least 8 characters in
length and Porter stemming [12] is applied to those keywords.
The client is a Lenovo Thinkpad 430 with a 2.6 GHz Intel
Core(TM) i5-332M CPU and 8 GB of RAM.

A. Search Performance

For private term matching and data returned, our imple-
mentation confirms that our compression algorithm results in
95% less data returned to the client compared to traditional
approaches, and remains constant even when the size of the
bloom filter increases. This is shown in Figure 1.

Fig. 1. Data returned by a search query: compressed vs uncompressed results

B. Cost Estimation and Response Times

Finally, we evaluate the dollar cost that CSP will charge
to data owners for search queries with partial matching. Our
results, shown in Figure 2, demonstrate that a query searching
for a single keyword in a dataset having 500-3500 index
entries will cost only $0.000002 to $0.00002 per 1000 similar
queries. Due to the sliding window bloom filter approach, all
of the metrics increase only linearly (O(n)) with the number of
keywords on the server. This is substantially better than using
a naive algorithm for partial matching, which would result in
O(nm) time complexity for n keywords that are on average
m characters long. Crucially, privacy is preserved throughout

Fig. 2. Search Cost($) with Single Keyword Query

the search process because data is never decrypted at the cloud
or by any other untrusted system.

V. CONCLUSION

We presented a privacy-aware similarity-based searching
scheme with reduced communication cost over encrypted data
residing in an untrusted cloud domain. Using a novel com-
pression algorithm, our system avoids sending the bloom filter
based index back to the user, reducing communication costs
by over 95%. By using homomorphic encryption for index
files, a cloud service provider can not learn the contents of the
data files, the index files or the search queries. Furthermore,
it cannot discern patterns from incoming queries. Moreover,
unlike most existing techniques, our proposed system supports
similarity-based search in addition to exact matching. Finally,
by not relying on trapdoors, it allows users to formulate
arbitrary queries over encrypted data.

REFERENCES

[1] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proceedings of the IEEE Symposium on Security
and Privacy, 2000 (S&P 2000).

[2] E.-J. Goh et al., “Secure indexes.” IACR Cryptology ePrint Archive, vol.
2003, p. 216, 2003.

[3] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key
encryption with keyword search,” in Advances in Cryptology-Eurocrypt
2004. Springer, 2004, pp. 506–522.

[4] C. Gentry et al., “Fully homomorphic encryption using ideal lattices.”
in STOC, vol. 9, 2009, pp. 169–178.

[5] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and
fine-grained data access control in cloud computing,” in Infocom, 2010
proceedings IEEE. Ieee, 2010.

[6] S. K. Pal, P. Sardana, and A. Sardana, “Efficient search on encrypted data
using bloom filter,” in Computing for Sustainable Global Development,
2014 International Conference on. IEEE, 2014.

[7] M. Kuzu, M. S. Islam, and M. Kantarcioglu, “Efficient similarity search
over encrypted data,” in Data Engineering (ICDE), 2012 IEEE 28th
International Conference on. IEEE, 2012.

[8] P. Paillier, “Public key cryptosystems based on composite degree residu-
osity classes,” in 17th international conference on theory and application
of cryptographic techniques. Springer, 1999.

[9] Z. Pervez, A. A. Awan, A. M. Khattak, S. Lee, and E.-N. Huh, “Privacy-
aware searching with oblivious term matching for cloud storage,” The
Journal of Supercomputing, vol. 63, no. 2, pp. 538–560, 2013.

[10] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb:
protecting confidentiality with encrypted query processing,” in Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles. ACM, 2011.

[11] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing
analytical queries over encrypted data,” in Proceedings of the VLDB
Endowment, vol. 6, no. 5. VLDB Endowment, 2013.

[12] M. Porter, “The Porter Stemming Algorithm,” http://tartarus.org/martin/
PorterStemmer/.

