62 research outputs found

    Efficient direct convolution using long SIMD instructions

    Get PDF
    This paper demonstrates that state-of-the-art proposals to compute convolutions on architectures with CPUs supporting SIMD instructions deliver poor performance for long SIMD lengths due to frequent cache conflict misses. We first discuss how to adapt the state-of-the-art SIMD direct convolution to architectures using long SIMD instructions and analyze the implications of increasing the SIMD length on the algorithm formulation. Next, we propose two new algorithmic approaches: the Bounded Direct Convolution (BDC), which adapts the amount of computation exposed to mitigate cache misses, and the Multi-Block Direct Convolution (MBDC), which redefines the activation memory layout to improve the memory access pattern. We evaluate BDC, MBDC, the state-of-the-art technique, and a proprietary library on an architecture featuring CPUs with 16,384-bit SIMD registers using ResNet convolutions. Our results show that BDC and MBDC achieve respective speed-ups of 1.44× and 1.28× compared to the state-of-the-art technique for ResNet-101, and 1.83× and 1.63× compared to the proprietary library.This work receives EuroHPC-JU funding under grant no. 101034126, with support from the Horizon2020 program. Adrià Armejach is a Serra Hunter Fellow and has been partially supported by the Grant IJCI-2017-33945 funded by MCIN/AEI/10.13039/501100011033. Marc Casas has been par-tially supported by the Grant RYC-2017-23269 funded by MCIN/AEI/10.13039/501100011033 and ESF Investing in your future. This work is supported by the Spanish Ministry of Science and Technology through the PID2019-107255GB project and the Generalitat de Catalunya (contract 2017-SGR-1414).Peer ReviewedPostprint (author's final draft

    A RECONFIGURABLE AND EXTENSIBLE EXPLORATION PLATFORM FOR FUTURE HETEROGENEOUS SYSTEMS

    Get PDF
    Accelerator-based -or heterogeneous- computing has become increasingly important in a variety of scenarios, ranging from High-Performance Computing (HPC) to embedded systems. While most solutions use sometimes custom-made components, most of today’s systems rely on commodity highend CPUs and/or GPU devices, which deliver adequate performance while ensuring programmability, productivity, and application portability. Unfortunately, pure general-purpose hardware is affected by inherently limited power-efficiency, that is, low GFLOPS-per-Watt, now considered as a primary metric. The many-core model and architectural customization can play here a key role, as they enable unprecedented levels of power-efficiency compared to CPUs/GPUs. However, such paradigms are still immature and deeper exploration is indispensable. This dissertation investigates customizability and proposes novel solutions for heterogeneous architectures, focusing on mechanisms related to coherence and network-on-chip (NoC). First, the work presents a non-coherent scratchpad memory with a configurable bank remapping system to reduce bank conflicts. The experimental results show the benefits of both using a customizable hardware bank remapping function and non-coherent memories for some types of algorithms. Next, we demonstrate how a distributed synchronization master better suits many-cores than standard centralized solutions. This solution, inspired by the directory-based coherence mechanism, supports concurrent synchronizations without relying on memory transactions. The results collected for different NoC sizes provided indications about the area overheads incurred by our solution and demonstrated the benefits of using a dedicated hardware synchronization support. Finally, this dissertation proposes an advanced coherence subsystem, based on the sparse directory approach, with a selective coherence maintenance system which allows coherence to be deactivated for blocks that do not require it. Experimental results show that the use of a hybrid coherent and non-coherent architectural mechanism along with an extended coherence protocol can enhance performance. The above results were all collected by means of a modular and customizable heterogeneous many-core system developed to support the exploration of power-efficient high-performance computing architectures. The system is based on a NoC and a customizable GPU-like accelerator core, as well as a reconfigurable coherence subsystem, ensuring application-specific configuration capabilities. All the explored solutions were evaluated on this real heterogeneous system, which comes along with the above methodological results as part of the contribution in this dissertation. In fact, as a key benefit, the experimental platform enables users to integrate novel hardware/software solutions on a full-system scale, whereas existing platforms do not always support a comprehensive heterogeneous architecture exploration

    Solving Hyperbolic PDEs using Accelerator Architectures

    Get PDF
    Accelerator architectures are used to accelerate the simulation of nonlinear hyperbolic PDEs. Three different architectures, a multicore CPU using threading, IBM’s Cell Processor, and Nvidia’s Tesla GPUs are investigated. Speed-ups of between 40-75× relative to a single CPU core in single precision are obtained using the Cell processor and the GPU. The three implementations are extended to parallel computing clusters by making use of the Message Passing Interface (MPI). The resulting hybrid-parallel code is investigated for performance and scalability on both a GPU and Cell computing cluster

    On Efficient GPGPU Computing for Integrated Heterogeneous CPU-GPU Microprocessors

    Get PDF
    Heterogeneous microprocessors which integrate a CPU and GPU on a single chip provide low-overhead CPU-GPU communication and permit sharing of on-chip resources that a traditional discrete GPU would not have direct access to. These features allow for the optimization of codes that heretofore would be suitable only for multi-core CPUs or discrete GPUs to be run on a heterogeneous CPU-GPU microprocessor efficiently and in some cases- with increased performance. This thesis discusses previously published work on exploiting nested MIMD-SIMD Parallelization for Heterogeneous microprocessors. We examined loop structures in which one or more regular data parallel loops are nested within a parallel outer loop that can contain irregular code (e.g., with control divergence). By scheduling outer loops on the multicore CPU part of the microprocessor, each thread launches dynamic, independent instances of the inner loop onto the GPU, boosting GPU utilization while simultaneously parallelizing the outer loop. The second portion of the thesis proposal explores heterogeneous producer-consumer data-sharing between the CPU and GPU on the microprocessor. One advantage of tight integration -- the sharing of the on-chip cache system -- could improve the impact that memory accesses have on performance and power. Producer-consumer data sharing commonly occurs between the CPU and GPU portions of programs, but large kernel sizes whose data footprint far exceeds that of a typical CPU cache, cause shared data to be evicted before it is reused. We propose Pipelined CPU-GPU Scheduling for Caches, a locality transformation for producer-consumer relationships between CPUs and GPUs. By intelligently scheduling the execution of the producer and consumer in a software pipeline, evictions can be avoided, saving DRAM accesses, power, and performance. To keep the cached data on chip, we allow the producer to run ahead of the consumer by a certain amount of loop iterations or threads. Choosing this "run-ahead distance" becomes the main constraint in the scheduling of work in this software pipeline, and we provide a method of statically predicting it. We assert that with intelligent scheduling and the hardware and software mechanisms to support it, more workloads can be gainfully executed on integrated heterogeneous CPU-GPU microprocessors than previously assumed

    A unified programming system for a multi-paradigm parallel architecture

    Get PDF
    Real time image understanding and image generation require very large amounts of computing power. A possible way to meet these requirements is to make use of the power available from parallel computing systems. However parallel machines exhibit performance which is highly dependent on the algorithms being executed. Both image understanding and image generation involve the use of a wide variety of algorithms. A parallel machine suited to some of these algorithms may be unsuited to others. This thesis describes a novel heterogeneous parallel architecture optimised for image based applications. It achieves its performance by combining two different forms of parallel architecture, namely fine grain SIMD and course grain MIMD, into a single architecture. In this way it is possible to match the most appropriate computing resource to each algorithm in a given application. As important as the architecture itself is a method for programming it. This thesis describes a novel multi-paradigm programming language based on C++, which allows programs which make use of both control and data parallelism to be expressed in a single coherent framework, based on object oriented programming. To demonstrate the utility of both the architecture and the programming system, two applications, one from the field of image understanding the other image generation are examined. These applications combine some novel algorithms with other novel implementation approaches to provide the most effective mapping onto this architecture

    Data-Driven Rational Drug Design

    Get PDF
    Vast amount of experimental data in structural biology has been generated, collected and accumulated in the last few decades. This rich dataset is an invaluable mine of knowledge, from which deep insights can be obtained and practical applications can be developed. To achieve that goal, we must be able to manage such Big Data\u27\u27 in science and investigate them expertly. Molecular docking is a field that can prominently make use of the large structural biology dataset. As an important component of rational drug design, molecular docking is used to perform large-scale screening of putative associations between small organic molecules and their pharmacologically relevant protein targets. Given a small molecule (ligand), a molecular docking program simulates its interaction with the target protein, and reports the probable conformation of the protein-ligand complex, and the relative binding affinity compared against other candidate ligands. This dissertation collects my contributions in several aspects of molecular docking. My early contribution focused on developing a novel metric to quantify the structural similarity between two protein-ligand complexes. Benchmarks show that my metric addressed several issues associated with the conventional metric. Furthermore, I extended the functionality of this metric to cross different systems, effectively utilizing the data at the proteome level. After developing the novel metric, I formulated a scoring function that can extract the biological information of the complex, integrate it with the physics components, and finally enhance the performance. Through collaboration, I implemented my model into an ultra-fast, adaptive program, which can take advantage of a range of modern parallel architectures and handle the demanding data processing tasks in large scale molecular docking applications

    Theoretical and practical aspects of parallel numerical algorithms for initial value problems, with applications

    Get PDF
    Includes bibliographical references (p. 80-82).Supported by IBM Corp., and by a AEA/Dynatech faculty development fellowship. Supported by the Defense Advanced Research Projects Agency, under the Office of Naval Research. N00014-91-J-1698 Supported by a National Science Foundation. MIP-88-14612Andrew Lumsdaine

    Coordinated power management in heterogeneous processors

    Get PDF
    Coordinated Power Management in Heterogeneous Processors Indrani Paul 164 pages Directed by Dr. Sudhakar Yalamanchili With the end of Dennard scaling, the scaling of device feature size by itself no longer guarantees sustaining the performance improvement predicted by Moore’s Law. As industry moves to increasingly small feature sizes, performance scaling will become dominated by the physics of the computing environment and in particular by the transient behavior of interactions between power delivery, power management and thermal fields. Consequently, performance scaling must be improved by managing interactions between physical properties, which we refer to as processor physics, and system level performance metrics, thereby improving the overall efficiency of the system. The industry shift towards heterogeneous computing is in large part motivated by energy efficiency. While such tightly coupled systems benefit from reduced latency and improved performance, they also give rise to new management challenges due to phenomena such as physical asymmetry in thermal and power signatures between the diverse elements and functional asymmetry in performance. Power-performance tradeoffs in heterogeneous processors are determined by coupled behaviors between major components due to the i) on-die integration, ii) programming model and the iii) processor physics. Towards this end, this thesis demonstrates the needs for coordinated management of functional and physical resources of a heterogeneous system across all major compute and memory elements. It shows that the interactions among performance, power delivery and different types of coupling phenomena are not an artifact of an architecture instance, but is fundamental to the operation of many core and heterogeneous architectures. Managing such coupling effects is a central focus of this dissertation. This awareness has the potential to exert significant influence over the design of future power and performance management algorithms. The high-level contributions of this thesis are i) in-depth examination of characteristics and performance demands of emerging applications using hardware measurements and analysis from state-of-the-art heterogeneous processors and high-performance GPUs, ii) analysis of the effects of processor physics such as power and thermals on system level performance, iii) identification of a key set of run-time metrics that can be used to manage these effects, and iv) development and detailed evaluation of online coordinated power management techniques to optimize system level global metrics in heterogeneous CPU-GPU-memory processors.Ph.D
    • …
    corecore