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A bstract

Real time image understanding and image generation require very large 
amounts of computing power. A possible way to meet these requirements is 
to make use of the power available from parallel computing systems. 
However parallel machines exhibit performance which is highly dependent 
on the algorithms being executed. Both im age understanding and image 
generation involve the use of a wide variety of algorithms. A parallel 
machine suited to some of these algorithms m ay be unsuited to others.

This thesis describes a novel heterogeneous parallel architecture optimised 
for image based applications. It achieves its performance by combining two 
different forms of parallel architecture, namely fine grain SIMD and course 
grain MIMD, into a single architecture. In this w ay it is possible to match the 
m ost appropriate computing resource to each  algorithm in a given 
application.

As important as the architecture itself is a m ethod for programming it. This 
thesis describes a novel multi-paradigm programming language based on 
C++, which allows programs which make u se of both control and data 
parallelism to be expressed in a single coherent framework, based on object 
oriented programming.

To demonstrate the utility of both the architecture and the programming 
system, two applications, one from the field of im age understanding the other 
image generation are examined. These applications combine some novel 
algorithms with other novel implementation approaches to provide the most 
effective mapping onto this architecture.
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Chapter One: Introduction

Chapter 1 

Introduction

1.1 Background

W hile conventional computer architectures have achieved  great 
improvements in performance up to now, there are still a number o f  areas 

where these sequential computers cannot provide sufficient processing 
power to meet the requirements of the application. Notable am ongst these 
are real time image analysis and image generation, which have applications 

in robotics, defence, industrial inspection, design and simulation to  name 
but a few.

While there are systems in use that can attempt some of these tasks, they are 
generally rather limited, often using specialised hardware which can only 

perform a restricted set of operations, which cannot be altered to  meet 
changing requirements [Abram 85][Glassner 85].

Over the past six years the VLSI Group at the University of Warwick's 

Computer Science Department have been working on the design o f a more 
general system based on a fully programmable massively parallel 
architecture which is sufficiently powerful to perform a wide variety of 

image based tasks in real time, and which is not restricted to a sm all set of 
algorithms.

The key to this design has been the development of an architecture which, 

while retaining complete programmability, is optimised to the class of 

algorithms that are typically found in image based applications. This

I



Chapter One: Introduction

optimisation has been based on a study of the structure of im age based 
applications, in particular image understanding and image generation.

1.1.1 Im age  Understanding

An image understanding system takes an image as input, perform s some 

processing on that image, and produces some form of high-level description 
of the contents of the image as output. To do this it would typically proceed 

in a number of stages, at each one refining the data into a more abstract form.

Initially low-level or iconic processing is performed, which includes such 

operations as edge detection and filtering. This produces a modified image as 
output, which forms the input to the next stage of processing, w hich is 
typically segmentation.

Segmentation involves subdividing the image into regions of interest which 
are associated with objects or parts of objects in the image. The exact method 
used will depend on the types of regions which are to be extracted. Typical 
systems use regions with uniform grey levels or textures, lines o r  other 
geometric shapes or comers.

Once the image has been segmented into regions of interest, information 
about each of the regions is extracted. Typically this information might 

include grey level, variance, length and end points of a line, or the angle of a 
corner. This process, known as feature extraction, performs an abstraction 

from the iconic image data to a more numeric representation which is passed 
on to the final stage of processing.

The last stage is the numeric to symbolic model based processing which takes 

the extracted data and uses it to form hypotheses about the scene represented 
by the image. This may involve using a priori knowledge of the possible 

contents of the scene to identify the relevant features and then m atch them 
with hypothesised objects. This matching process provides data on  the

2
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position and orientation of the objects in the image.

Once a hypothesised model has been generated, the system can then perform 
purely symbolic high level reasoning based on the interrelationship of these 

hypothesised objects. This reasoning will typically form part o f  the wider 
system in which the image analysis system is being used, such as  a robotic 
control system, and will allow the overall system to make decisions based on 
the visual input to the system.

1.1.2 Im age  Generation

Image generation is essentially the reverse process of image analysis. Instead 
of starting with an image and producing a model of the contents of the 
image, the system starts with a model and produces an image o f that model. 

As with image analysis systems, image generation systems proceed in a 
number of stages.

The first step in processing typically consists of viewing transformations, 
where the model is transformed into the coordinate system of the viewer. 
This may involve different transformations for different objects in  the scene, 

if the relationship between the various objects is not fixed. W orking out 
these relationships may be a complex problem in itself if, for exam ple, the 

different objects were aircraft in a flight simulator.

In the next stage the illumination of the objects is calculated based on their 
positions with respect to a set of light sources. Most systems w ill perform 

some clipping at this stage, where objects out of view are rem oved from 
further calculations.

Next the objects are decomposed into their constituent parts, usually planar 

polygonal patches, which are then projected onto the two dimensional 
screen coordinate system. Further clipping is carried out to rem ove parts of 

objects which fall outside the boundaries of the screen, and surfaces which 
are obscured by other objects may be removed. Finally the pixels which

3
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represent the 2D polygonal patches are evaluated, and each s e t  to the 

appropriate intensity level. This stage may attempt anti-aliasing, and 
smoothing and may also be responsible for hidden surface elimination.

1.2 Architectural Solution

The key point of similarity between both these image based applications, is 
that they both consist of a number of stages of processing, which perform 

different types of processing on different types of data. These ran g e from 
globally uniform processing on regular arrays of integer data, to  complex 

model based symbolic reasoning on complex structures of sym bolic or 
floating point data.

The highly heterogeneous nature of these problems makes them particularly 
difficult to solve on any existing parallel architecture b ecau se  the 
performance of parallel architectures is highly dependent on the structure of 

the algorithms used. Typically an architecture which performs w ell on a 
globally uniform problem would perform poorly on a highly irregular 
problem, and vice versa.

To overcome this problem the VLSI Architecture Group has developed an 
architecture which combines a massively parallel fine grain SIMD array with 

a coarse grain MIMD array, to provide a wide spread of parallel computing 
capabilities which can be matched to the different aspects of the chosen 
applications.

The design of this architecture has posed a number of interesting problems 

beyond its actual hardware construction. Most notable of these is how  such a 

heterogeneous machine can be programmed, and how algorithms can be 
mapped in a coherent way onto such an architecture.

4
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1.3 Thesis Outline

In this thesis this architecture will be described in detail, along with a novel 

programming system which has been developed to allow the machine to be 

program m ed in a uniform  and consistent way. Finally, how two 
applications, one from the field of image understanding the other from the 
field of image generation can be mapped onto this architecture using the 
proposed programming system will be discussed.

Chapter 2 - contains a review of existing parallel architectures, and discusses 
the suitability of a number of existing approaches to the different aspects of 

image based applications. It then goes on to discuss how a multi-paradigm 
approach can provide an appropriate solution to such problems.

C ha pter 3 - contains a detailed description of the Warwick Pyramid 
Machine, a dual paradigm heterogeneous parallel architecture for image 
based applications.

Chapter 4 - contains a review of programming languages and techniques 
for existing parallel architectures.

Chapter 5 - contains a description of a novel dual paradigm programming 

model based on parallel object oriented programming. This model is 
discussed in general without reference to a particular implementation. Its 

appropriateness for use with multi-paradigm parallel architectures is also 
discussed.

Chapter 6 - contains a detailed description of Pyramid C++ a dual paradigm 

object oriented parallel programming language based on C++ for the 
Warwick Pyramid Machine. The implementation of this language on the 

Warwick Pyramid Machine is also discussed in detail.

Chapter 7 - contains two case studies, one in image analysis, the other in 
image generation. The mapping of these problems onto the Warwick

5
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Pyramid Machine using Pyramid C++ is discussed.

Chapter 8 - contains a general discussion of the points raised in the rest of 
the thesis.

6
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Chapter 2

Parallel Architectures

2.1 Introduction

Image based applications such as image analysis and image generation 
require very large amounts of computing power if they are to achieve the 
real time performance required by areas such as robotics, interactive design 

and simulation. This level of computing power is beyond that currently 
available from conventional sequential machines, and this situation is likely 

to continue since sequential architectures are inherently limited in 
performance.

If the trends in computer technology are examined (figure 2.1) [Ruechardt 87], 

it can be seen that over the past twenty years the number of transistors that 
can be fitted onto a single chip of silicon has increased by a factor of roughly 
two every eighteen months representing a total increase of four orders of 

magnitude in this period. On the other hand the clock speed of these chips 
has only increased by two orders of magnitude in the same period.

This difference stems from the different ways in which these two quantities 
scale with the minimum feature size (that is the size of smallest element that 

can be 'drawn' onto the silicon). Clock speed scales roughly linearly with 
reducing feature size, whereas total devices per chip scales as the square of 

linear feature size. Thus it can be expected that this trend will continue 
assuming no dramatic shift to alternative technologies [Nickel 87].

7
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Figure 2.1: Trends in VLSI Technology [Ruechardt 87]

In a sequential machine, often referred to as a von Neumann machine after 
the mathematician Jon von Neumann, the processor performs an operation 
on one piece of data at a time. Each operation takes a number of clock cycles 
to perform, the exact number is dependent on the specific architecture, but 

for any given sequential architecture the total number of operations per 
second will be proportional to its clock speed.

Thus the performance of purely sequential designs scales roughly with the 
best clock speed currently available. As seen from the figure 2.1, clock speeds 

are increasing quite slowly when compared to the increase in the number of 
devices that can be fabricated on an integrated circuit. This fact is reflected in 
a correspondingly slow increase in the performance of sequential systems.

The one operation at a time limitation of these architectures is often referred 
to as the von Neumann bottleneck. To overcome this limitation computer 

architects have looked towards parallel processing techniques as a way of 

achieving increased performance. These techniques make use of a number of 
processors working together rather than a single fast processor and can
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therefore take advantage of the very rapidly increasing number of available 
devices. Parallel architectures can perform several operations at one time, 
and can therefore overcome the von Neumann bottleneck.

2.2 Parallel Architecture Classifications

At its simplest, the idea behind parallel computing is that a very powerful 

computer may be built by making use of a large number of cooperating 

processors. The computational power of each individual processor is not the 
primary concern, as the overall computational power results from the 
combination of the power of the individual processors.

Computational power is taken to be  the number of arithmetic operations, 
typically on 32 bit integers, a system  can perform each second. Thus if a 

single processor can perform M operations per second, then N processors 
taken together should be able to perform NM operations per second. In 
practice however this ideal figure is not generally achievable, because it is not 
always possible to arrange for all processors in a machine to be performing 

useful computations all of the tim e, and this reduces the computational 
efficiency of the system.

Computational efficiency can be defined as the proportion of the peak 
computational power (NM) that a system achieves. Peak efficiency can only 
be achieved if all processors are performing useful computations all of the 

time. The computational efficiency of a system is proportional to the number 
of processors that are active, that is performing useful computations, at any 
instant. This proportion may vary considerably during a computation, and 
will depend both on the architecture o f the system, and the algorithm being 
per formed.

There are a number of reasons for parallel systems not reaching peak 
efficiency. The most fundamental o f  these is insufficient opportunity for 

parallelism in the algorithm being executed to keep all processors busy. 
Fortunately there are many applications which have ample opportunity for

9
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parallelism to keep even the largest parallel machines fully utilised, 

particularly in the image analysis and im age generation fields.

Another important reason for loss of efficiency is delays caused by processors 

communicating with other processors. Communication takes a finite time, 
and during this time any computation w hich depends on the result of the 
communication cannot proceed. This m ay result in processors remaining 

idle for a time while a communication is taking place, and during this time 
they are not performing useful computations. Typically the more processors 

there are in a system the more difficult it will be to keep all of them fully 

utilised at all times.

Another aspect of efficiency is resource efficiency, that is the number of 
operations per second that can be performed for a given amount of hardware 
resources. The main component of the hardware resources is the number of 

transistors used by a design. For a given implementation technology, the 
number of transistors will be proportional to silicon area used, and thus 

number of integrated circuits. The o th er main component of hardware 
resources are interconnections, these include the number of pins on an 

integrated circuit package, and therefore the size of the package. This in turn 
affects the complexity and size of the circuit board required, and also the 

number of connections between circuit boards. All these interrelated factors 
affect the physical size, power requirements and ultimately the cost of the 

system.

Many parallel architectures have been proposed which attempt to balance 

peak computational power, computational efficiency and resource efficiency 

to produce a viable parallel machine. All share the same basic principle of 
including multiple processors each of w hich is capable of performing one 
operation on one item of data at a time such that together they can perform 

many operations on multiple items of data in parallel.

There are a number of different architectures which each have certain 

advantages and disadvantages in particu lar problem areas. These

10
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architectures can be classified by three main criteria, their memory structure, 

that is whether they use shared or distributed memory, their control 
structure, whether they support multiple instruction streams with multiple 
data streams (MIMD) or a single instruction stream  with multiple data 
streams (SIMD), and their communications structure, how the processors are 

connected together.

M IM D
Shared Memory

Bus Sequent Balance [Sequent 86]
Encore Multimax [Gehringer 88]

Multi-Stage Switch NYU Ultracomputer [Gottleib 83]

Distributed Shared Memory
Multi-stage Switch BBN Butterfly [Brooks 85]

IBM RP3 [Pfister 87]

Distributed Memory
Switched Meiko Surface [Chesney 87]

SuperNode [Refenes 90]
Mesh AT&T Pixel Machine [Potmesil 89]
HyperCube Intel iPSC/2 [Intel 87]

NCUBE [NCUBE 88]
DOOM [Annot 90]
FPS T Series [FPS87]

SIM D
Distributed Memory

Mesh MPP [Batcher 80]
BLITZEN [Davis 88]
CAAPP [Foster 83]
Pixel Planes [Fuchs 85]
DisArray [Page 83]
DAP [AMT 88]
CUP4 [Fountain 87]
RPAII [O'Gorman 89]

HyperCube Connection Machine [Hillis 85]
Other WASP [Lea 86]

Table 2.1: Classification o f Representative Parallel Machines

Table 2.1 shows a sample of representative parallel machines classified 
according to memory structure, control structure and communications 
structure. Pipelined architectures are not considered as parallel architectures 
in this discussion, since they do not in general involve multiple functional
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units, rather they use parallelism within a single functional unit. In the 
following sections these architectural structures will be described in more 
detail, and the various design tradeoffs associated w ith them will be 
discussed.

2.2.1 Memory Structure

As mentioned above all parallel architectures include m ultiple processors 

each of which can perform one operation at a time. Ideally each of these 
processors would have its own path to memory, such that all processors 
could access any piece of data anywhere in memory in the same amount of 
time.

This idealised model is similar to the P-RAM model [Gibbons 88] used by the 

theoretical community. In practice however it is not a feasible arrangement, 
because as the number of processors increases the am ount of hardware 

resources required to implement it becomes uneconomic.

2.2.1.1 Ideal Shared Memory Machine

To implement an ideal shared memory machine, there must be a separate 
path from every processor to memory, so that there is no contention for 
memory paths, and thus no delays which might affect computational 

efficiency. The memory must be able to provide simultaneous access for 
every path. This involves the use of memory devices with one port for every 
processor.

A memory port is the channel through which data is accessed from a 

memory device. If more than one access is required to a memory device at 
one time, then each access must use a separate port. Typical memory devices 
support just one port, although some may support perhaps as many as six 

ports, allowing up to six accesses at a time. To support simultaneous access by 
all the processors in a large parallel machine which might have a thousand
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processors, would require a memory with a thousand ports.

Each port into a memory device requires its own set of input/output pins. A 
one thousand port memory would require at least one thousand pins, which 

is well beyond the current state of the art. Within the memory device each 
port requires access to every cell within the memory array. This means there 
must be separate data busses to every memory cell for every port. As the 
number of ports is increased the amount of silicon area taken up with wires 
will at some point overtake that used for memory cells. These factors make 

the construction of memories with very large numbers of ports uneconomic, 
and this makes the idealised shared memory machine impractical.

Hillis [Hillis 85] argues that it is unreasonable to expect that such an idealised 

system could ever be constructed, since it ignores the fundamental laws of 

physics, in that it assumes information can travel in unit time from any 
point to any other, regardless of the size of the system. He argues that any 

useful model must take these fundamental truths into account.

The shared memory model is however conceptually elegant and simple, and 

many existing designs do provide such a model. In the absence of memory 
devices with very large numbers of ports designers have developed 

compromise solutions which attempt to balance hardware resources and 
computational efficiency. These solutions can be divided into three 

categories, shared memory, distributed shared memory and distributed 

memory systems.

2.2.1.2 Shared Memory

Shared memory systems are an attempt to implement a model as close as 
possible to the ideal shared memory machine, where all processors can 

simultaneously access any parts of memory with equal latency, but without 
the use of memory devices with very large numbers of ports. Figure 2.2 

shows a typical shared memory system. It consists of a number of processors, 
connected to a number of separate memory banks by a memory switching
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network.

The switching network is responsible for routing memory requests from 

each processor to the appropriate memory bank, so that each processor has 
access to all of memory. In this diagram the number of memory banks equals 
the number of processors, but this is not necessarily the case.

Figure 2.2: Shared Memory System

In such a system each memory bank can typically support one access at a 
time. Thus if all the processors access a different memory bank all will be able 
to perform their accesses simultaneously. However if two processors attempt 
to access the same bank, the two accesses will be performed sequentially. This 
introduces a delay, which will reduce the computational efficiency of the 

system compared to an ideail shared memory system.

A number of problems are encountered when very large shared memory 
systems are constructed. Most important of these is that the size of the 
switching network becomes very large as the number of processors increases. 
If the designer uses a very fast network the hardware resources used to 
implement it can dominate the system cost for large systems.

The highest performance switching network is the crossbar switch (described 
in section 2.2.2.2) which can provide a separate path from every memory 

bank to every processor. This network requires hardware resources which 

scale as the square of the number of processors. Since the hardware resources
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used to implement the processors themselves scale linearly, it can be seen 

that for a large number of processors the resources used to implement the 
memory switch will dominate the system cost.

If a less resource intensive but slower network is used, it will increase the 

delays introduced by the communication system, which will in turn reduce 
the computational efficiency of the system. Whatever network is used it will 

inevitably introduce some delay into each memory access and this can reduce 
the sequential instruction rate of each processor and thus reduce the peak 

computational power of the system. This becomes increasingly true as the 

number of processors, and the size of switch and/or the contention for the 

limited available switch bandwidth increases.

Because of these factors shared memory systems of this kind are generally 
limited to a relatively small number of processors. Typical commercially 

available systems of this type use less than fifty processors.

2.2.1.3 Distributed Shared Memory

The key to allowing more processors to be used in shared memory systems is 
to reduce the bandwidth requirement of the interconnection network, and 
thus allow slower networks, which use fewer resources, to be used. The key 

to achieving this is the observation that access to memory is not random, but 

structured.

Processors spend much of their time accessing relatively few memory 
locations, which are often close together, a phenomenon known as locality of 

reference. A rule of thumb is that programs spend 90%  of their time 

accessing 10% of their memory, known as the 90/10 rule [HenPat 90].

If the commonly accessed code and data for each processor was stored locally 
to that processor then it would spend most of its time accessing its local 

memory. By allowing the processor to access its local memory directly 

without needing to go through the memory switch, most accesses would be
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speeded up and thus the overall throughput increased. This is the essence of 
the distributed shared memory architecture.

Figure 23 : Distributed Shared Memory

A distributed shared memory system is shown in figure 2.3. Each processor is 

connected to its local memory, so that it can access data stored within it 

without the overhead of going through the memory switch. However the 
memory switch is still provided to handle memory references which fall 
outside the processor's local memory. When this happens the memory 
switch routes the access to one of the other memory banks, which is one of 
the other processor's local memory.

These systems scale better than the pure shared memory systems, because the 
memory switch is not required to be as fast. This allows the use of switching 

networks which do not require as much hardware resources to implement. 
Even with these slower memory switches the average memory access time 
does not necessarily increase dramatically, so long as most memory accesses 
are performed on local memory.

The main problem with these architectures it that the time to access different 
parts of memory becomes unequal, since accessing local data is much faster 

than non-local data. This makes the correct distribution o f data very 
important, in order to ensure that most of the data used by each processor 
resides in its local memory.
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The distribution of code and data may be performed by sophisticated system 

software which dynamically migrates segments of code and data to processors 
which require them. Alternatively complex caching hardware can be 

provided which performs the same function. Most commonly however it is 
the job of the programmer to ensure the programs are divided up 
appropriately amongst the different processors.

The necessity for programmers to distinguish between local and non local 
memory goes against the basic principle of the idealised shared memory 

machine. However, as noted by Hillis [Hillis 85], it is probably an inevitable 
feature of any large real machine.

2.2.1.4 Distributed Memory

Moving to larger numbers of processors, the requirement to reduce the 
communications bandwidth required by each processor becomes even more 

important, if the amount of resources given over to communications is not 
to dominate the system cost.

Figure 2.4: Distributed Memory

The necessary reduction in communication bandwidth can be achieved by 

moving to a distributed memory system, such as shown in figure 2.4. In 
these systems each processor is connected only to its local memory, there is 

no hardware support for non local memory accesses. Instead processors
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cooperate on problems by passing messages over a separate processor 
interconnection network.

The key to distributed memory systems is the assum ption that the 
application programmer can pre-distribute programs in such a way that very 

little communication will be required between processors. Assuming this is 
the case, the interconnection network can afford to be relatively slow, since it 

does not have to support memory accesses, and thus does not have to offer 
the low latency this implies.

The m essage passing approach provides the potential to hide the long 

intercommunications latencies by scheduling another process while the 
communication is taking place. The Transputer [Shepard 87] for example 

makes use of so called parallel slackness or excess parallelism, by running 
more than one process on each processor. Ideally there will always be at least 

one process ready to run, while others are waiting for communications.

The assumption of distributability restricts the classes of applications that can 
be successfully mapped onto distributed memory machines. However for 

applications which do map, distributed memory machines are very resource 
efficient architectures, even for systems with relatively small numbers of 

processors, since they require less resources to be used for interconnection.

Distributed memory systems can scale very readily, because the resources 
needed by  their communications networks tend not to increase as quickly as 
higher performance networks. This makes such systems ideal for massively 

parallel applications where hundreds or even thousands of processors are to 
be connected together.

The disadvantage of such systems is the necessity for total distribution of data 
and code onto each processor, because of the very slow access to non-local 
data. This places a particularly heavy burden on the programmer whose 
responsibility it is to perform the necessary distribution. This has given 

distributed systems a reputation for being highly specialised and difficult to
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program. Despite this however, the scalability of distributed memory systems 

has resulted in them constituting the bulk of existing parallel architectures.

2.2.2 Interconnection Schemes

All parallel architectures require some form of interconnection mechanism, 

either to route data from memory to processors, in the case o f the shared 
memory systems, or to route data from processor to processor in the case of 

the distributed memory systems. A wide variety of designs have been used to 

im plem ent these networks, each exhibiting different perform ance 
characteristics and resource requirements.

There are three main characteristics associated with these communications 
networks: throughput, latency and complexity. The throughput refers to the 
maximum rate that data can be passed through the network. Latency refers to 
the time that each packet of data takes to complete its journey from source to 

destination. The complexity of the network is the amount of resources 
required to implement it, and perhaps more importantly how those 
resources increase as the size of the machine increases.

Initially it might appear the throughput and latency are simply two ways of 
measuring the same thing, since if each piece of data is delivered more 

quickly, the total amount of data delivered in any given time must also be 
higher. However most systems transfer many pieces o f information 

simultaneously with each one spending some time in transit.

The maximum throughput T in packets per second is given by

T *  PT / L

Where L is latency in seconds per packet of data, and PT is the maximum 

number of packets in transit at any instant.
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An ideal system will maximise throughput while minimising latency, but in 

practice many systems will trade throughput for latency or vice versa. The 
network used in a given system will depend on the relative importance of 
these parameters for that system.

Shared memory systems place the highest burden on the network system 
because it is used for all memory references. This means that the network 
needs to be capable of transferring data at a rate comparable to the total data 
transfer rate of all the processors combined. Also since the processor will 

usually be suspended waiting for each memory reference, the network must 
have a latency comparable to a single processor memory cycle, otherwise 

processors will lie idle, and reduce the computational efficiency of the 
system.

Distributed shared memory systems reduce the total required throughput of 

the network, since not all memory references go through the network. 
However they retain a requirement for fairly low latency, as while non local 

memory accesses are performed the processor will usually be idle.

Fully distributed systems place least burden on the interconnection network, 
since they remove the need to support memory references at all, using 
software controlled data passing instead. In particular distributed systems can 

tolerate quite high latency, by utilising excess parallelism  to hide 
communication delays. However because distributed systems tend to make 
use of large numbers of processors, the total throughput of the network must 
be high, and must scale with the number of processors attached.

2.2.2.1 Bus Based Systems

The sim plest and most common interconnection scheme is the bus. This 

consists of a set of shared lines that connect all the devices together as shown 
in figure 2.5. Bus systems have very low minimum latency, since data can be 

transferred directly from source to destination without going through any 
interm ediate stages. They are also very straightforward to construct,
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requiring very few resources, which grow linearly with the number of 
devices connected. This low complexity allows the construction of extremely 
high speed busses, using relatively few resources, which can sometimes 
outperform theoretically superior systems.

However busses ultimately have a fixed, even if potentially quite large, total 
throughput. As the number of processors increases, and the total network 

traffic approaches the available throughput, contention for the bus becomes 
an increasing problem, which in turn increases the average communication 

latency.

The very low  minimum latency of busses makes them ideal for shared 
memory systems, where latency is particularly critical. However their fixed 

total throughput means that the number of processors that can be supported 
is relatively low. Typical currently available commercial systems use up to 
thirty processors.

2.2.2.2 Connection Networks

One way to increase throughput over the bus is to move to a system that can 
perform more than one transfer at one time. This requires the network be 

made up of many isolated sections, each of which are capable of transferring 
data independently of the others. These sections must then be interconnected 
either statically or dynamically to allow data to flow from one section to 

another, and so move from source to destination.

Figure 2 5  Bus Interconnection
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Directly Connected  Networks

The simplest class of such networks are the directly connected networks. In 
these each node is permanently connected to a subset of other nodes. These 

nodes are in turn connected to other nodes such that all nodes are connected 
either directly or indirectly.

There are a number of possible topologies that can be used in this class of 
networks, and som e of the most common of these are shown in figure 2.6. 

There are two principal classifications used for directly connected networks, 
namely their order and their diameter. The order of a network refers to the 

number of nodes that each node is directly connected to. The diameter of a 
network is the maximum distance, measured in nodes, between any two 
nodes.

The networks can be broken down into two main sub-categories, fixed order 
networks, that scale  by increasing their diameter, and variable order 
networks which scale by increasing their order (usually accompanied by an 
increase in diameter). The most common form of variable order networks 
are hypercubes, whose order is equal to their number of dimensions.

Different topologies may be used to optimise the complexity and latency of 
the network. Latency is approximately proportional to the average number of 
stages that the data must pass through en route from source to destination, 
which in turn is related to the network's diameter.

For example a sixty four node system might be arranged as an eight by eight 
mesh or a six dimensional hypercube. The diameter of the mesh is fifteen, 

whereas the diameter of the hypercube is only six. Thus the latency of data 
transfers for the hypercube will be significantly less than for the mesh. 

However the hypercube contains 196 wires compared to the mesh's 112 
wires, so the hypercube will require more interconnection resources to 
construct.
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Figure 2.6: Directly Connected Networks

Each node of the hypercube must be directly connected to six other nodes, 
whereas each node of the mesh need only be connected to four others. More 

importantly if the number of nodes in the hypercube is to be increased, the 

number of connections to all the other nodes must be increased, since the 
order o f the network must be increased. Increasing the number of 
connections made from a node can be awkward, since it involves altering 
the existing nodes. Avoiding this usually involves the use of designs which 
have a fixed maximum order, and thus a fixed maximum number of 
processors.

A m esh can be constructed easily in two dim ensions, making it 
straightforward to lay out as an integrated circuit or printed circuit board. The 

hypercube does not lend itself to easy implementation in two dimensions 
and this may add to the construction complexity.
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All the directly connected networks have a total throughput, which scales 
with the number of nodes, 0 (n ) in the case of the mesh and CXn log(n)) in 
the case of the hypercube. This makes them ideal candidates for massively 
parallel distributed memory systems which can tolerate their relatively long 
latency. Constructional complexity varies from very low in the case of the 
mesh to moderate in the case of the hypercube, but even these are used in 

existing systems to connect many thousands of processors.

Switching Networks

The final class of interconnection schemes attempts to produce a 
compromise between the low latency of the bus with the scalability and high 
throughput of the nearest neighbour systems. These are switching networks, 

which consist of single and multi-stage switches.

Single Stage Switching Networks - A fully connected single stage switch 

also known as a crossbar switch can directly connect any of a number of 
inputs to any of a number of outputs. Once connected data can flow 
unhindered from source to destination, making them ideal switch networks. 
Crossbars can provide throughput that scales linearly with the number of 

processors, however they have 0 (n 2) complexity and are therefore expensive 

to build for large numbers of inputs.

Multi-Stage Switching Networks -  can be designed in many different 
configurations [Feng 81], a typical example being the butterfly network shown 
in figure 2.7. In such networks data is routed from source to destination 

through a fixed number of intermediate stages, each of which consists of a 

number of crossbar switches.

The network in figure 2.7 consists of three stages each of which contains four 
switches. Each switch is a two by two crossbar, which can connect either of its 
two inputs to either of its two outputs. At each stage a packet of data can be 

routed to one of two possible destinations. By using multiple stages the 
number of possible destinations is increased, in this case by a factor of two at
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each stage. Thus after three stages a total of eight (23) destinations may be 
selected.
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Figure 2.7: Butterfly Interconnection Network

Data is routed through the butterfly network using the data's destination 
address. Using the destination 101 as an example, and starting from any start 
point on the left, the path through the intermediate switches is given by the 
bits of the destination address, starting with the most significant bit. Thus the 

first switch selects its 1 output, the second its 0 output, and the third its 1 

output. In this way the data will always arrive at node 101 no matter which 
node it started at.

Multi-stage switching networks can potentially provide latencies which are 
almost as low as a bus, but with best case throughput which scales linearly 

with the number of processors. This, combined with resources which scale 
less quickly than the crossbar switch ( CXn log(n)) in the case of the Butterfly) 

makes them ideally suited to large shared memory machines. However they 
do suffer from contention if two packets both require routing along the same 

connection which can reduce their throughput compared to the more 
resource intensive crossbar switch.
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2.2.3 Control Structure

The other principal classification for parallel architectures regards the 
distribution of control amongst the processing elements. This classification is 
due to Flynn [Flynn 66] who categorised all architectures into one of four 
groups.

These are shown below

Single Instruction Single Data (SISD)

Single Instruction Multiple Data (SIMD)
Multiple Instruction Single Data (MISD)

Multiple Instruction Multiple Data (MIMD)

These classifications are divided into two parts, the first is concerned with 
the number of instruction streams, the other with the number of data 

streams. In a conventional von Neumann architecture the processor fetches 
one instruction at a time, providing a single instruction stream. Each 
instruction may perform an operation on one piece of data, providing one 
data stream. Thus a conventional sequential architecture would be classified 
as an SISD or single instruction single data.

All parallel architectures perform many operations at once, on many pieces 
of data, thus they all provide multiple data streams. However they may or 

may not allow multiple instruction streams. This provides two alternative 
approaches to building parallel systems, namely SIMD and MIMD.

2.2.3.1 SIMD Machines

Single instruction multiple data (SIMD) machines fetch one instruction at a 

time, in the same way as a conventional sequential architecture, but each 

instruction can operate on many pieces of data simultaneously. This is 
achieved by the provision of multiple arithmetic and logical units, each of
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which has its own path to memory, allowing them all to simultaneously 

perform an operation on a piece of data stored in their local memory.

Figure 2.8: Single Instruction Multiple Data (SIMD)

Figure 2.8 shows a simplified diagram o f a distributed memory SIMD 

machine. The Sequencer is responsible for fetching instructions from the 
instruction memory, where the user program resides. When the sequencer 

has read an instruction it is broadcast to all of the ALU's, which all perform 
the appropriate operation on their own local data.

The sequencer also generates the address of the data within the ALU's local 
memory that is to be operated upon. In this way all the ALU’s operate on the 
same location within their own memory. This can be thought of as operating 
on an array o f data where one element of the array resides within each of the 
ALU's local memory, and these machines are often referred to as array 

processors .

2.2.3.2 M IMD Machines

Multiple instruction m ultiple data architectures provide a separate 

instruction stream for each data stream. This arrangement is shown in figure 
2.9. In this system each sequencer and ALU is grouped together to form what 

is essentially a conventional sequential processor. The sequencer reads the 
instructions from a combined program and data memory, and then instructs
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its local ALU to perform the appropriate operation. Again the sequencer is 
responsible for generating the address of the data to be operated upon.

Figure 2.9: Multiple Instruction Multiple Data (M1MD)

An MIMD machine can be thought of as a collection of sequential machines, 
and they are often referred to as multi-computers. The important distinction 
is of course that they are connected together using one of the communication 

techniques described in the previous sections. In this way they can cooperate 
on the solution to a single problem.

2.2.3.3 Granularity

SIMD architectures have a significant resource efficiency advantage over 
MIMD architectures, in other words for a given amount of hardware 

resources an SIMD architecture can achieve more operations per second than 
an MIMD architecture. This is because each processor in an SIMD machine 

does not need its own sequencer and the resources that this requires. This 
means that more resources can be allocated to implement arithmetic units, 
rather than control logic.

In addition to allowing more resources to be used for arithmetic units, SIMD 

architectures also allow the arithmetic units to be more resource efficient. It 
would be inefficient to have a processor whose arithmetic unit was much 
smaller than the control logic associated with it. In an MIMD architecture
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each processor m ust contain logic which im plem ents its instruction 
sequencer. Because of this it is generally inefficient to use MIMD processors 
with very small arithmetic units. SIMD architectures do not require logic to 
implement an instruction sequencer for each processor, which makes very 
fine grain architectures viable.

The finest grain processors are one bit or bit serial processors, and this is the 

type used by most SIMD architectures. Fine grain processors are arguably 
more efficient than coarser grain ones because their arithmetic units can be 
fully utilised on a wider mix of operations. If for example each processor 
were equipped with a floating point arithmetic unit, it would lie idle for all 
operations that did not involve floating point operations. The silicon area 
used by the floating point unit would therefore not be being used effectively. 

By comparison the arithmetic unit of a bit serial processor will be used on 
every arithmetic operation.

Another advantage o f bit serial processors is that their arithmetic units do 

not suffer from the carry propagation delays associated with multi-bit 
designs. This allows single bit arithmetic units to operate at higher clock 
frequencies than multibit designs. The combination of these factors has led to 
the suggestion that single bit designs are inherently more efficient than other 
configurations [Hillis 85][Jesshope 89].

However it is a complex trade off. In a uni-processor architecture the 

resource efficiency of the processor is relatively unimportant, since silicon 
area used to implement the processor cannot, in general, be more effectively 
used elsewhere to improve the performance of the system. In the case of a 

parallel architecture however any silicon area used to improve the 
performance of an individual processor could have been used to implement 
more processors. It therefore only makes sense to improve the performance 
of the individual processor in a parallel design where the performance 

increase provided outweighs the disadvantage of having fewer processors.
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The optimal solution for any particular architecture will depend on the 

application for which the architecture is intended. The higher the proportion 
of long word length or floating point operations that are expected the more 

likely it is that support for multibit operations w ill yield the best 
performance. Also if the total amount of potential parallelism is limited, it 

may not be possible to achieve improved performance from increasing the 
number of processors, so again coarser grain processors may produce the best 

performance.

So far single bit processors have dominated the SIMD field being used in the 
CLIP, DAP, MPP and Connection Machine. However recent trends suggest 
that multi-bit ALU’s may become more popular in future, with the CUP7a 

[Fountain 88] Connection Machine 2 [TMC 89] and the AMT DAP/C8 [AMT 

90] all featuring multi-bit ALU designs.

2.2.3.4 Communication

Communication overheads have a large impact on the overall performance 
of a parallel system, and become increasingly important the more processors 

there are in the system. SIMD architectures have a clear advantage in this 
respect because they do not have to synchronise when communicating. For 
two processors in an MIMD machine to communicate, they must cooperate, 
such that each send operation performed by one processor is matched by an 

equivalent receive operation by the other. For this to take place the two 
processors must synchronise so that both are in the required state.

Synchronisation can be achieved using a mechanism such as a rendezvous, 
which involves the first processor to reach the point at which a 
communication is to occur signalling its readiness to communicate, and then 
waiting for a signal from the other processor. When the second processor 

reaches the appropriate state, where it is also ready to communication, it 
signals its readiness and both are then allowed to proceed with the transfer.
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This synchronisation process takes time, which adds to the overall 

communications delay, and so potentially affects the overall performance of 
the system. By comparison all processors in an SIMD system are controlled 

centrally by the sequencer, so that all processors are guaranteed to be in the 
same state at the same time. Thus when communication is required it can be 
performed without any need for synchronisation.

A restriction associated with many SIMD machines, particularly fine grain 
ones, is the limited number of efficiently supported communications 

patterns. This is caused partly by the sim ple directly connected 
interconnection networks they generally use, and partly by the requirement 

to perform the same operation on all processors. The combination of these 
factors makes it very difficult to efficiently implement algorithms which 

require complex non-local communications patterns.

The main exception to this rule is the Connection Machine a fine grain 
SIMD machine which does allow arbitrary routing from one processor to any 
other. This increases the class of algorithms that can be efficiently processed 
significantly. Unfortunately the routing process is quite slow, and this can 
offset the efficiency advantage usually afforded to SIMD systems by not 

needing to synchronise.

2.2.3.5 Local Autonomy

The principal disadvantage of SIMD architectures is that they only operate 
efficiently for algorithms which process all their data identically. If an 
algorithm operates differently on different pieces of data the performance of 
the machine drops dramatically. In general the only way to implement 

algorithms that are not globally uniform on an SIMD machine is to disable 
certain processors so that they remain idle while a set of operations is being 

performed by the other processors. This clearly has a direct impact on the 
computational efficiency of the system.
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Disabling processors works satisfactorily if there are a small number of 

alternatives, but becomes progressively less efficient as the number of 

alternatives increases. At the extreme where an algorithm wishes to perform 
a different operation on every pixel the performance of the whole system 
drops to that of a sequential machine.

Some SIMD architectures such as the Connection Machine [Hillis 85] do 
allow a certain degree of local autonomy for each processor. This autonomy 
allows each processor to modify the globally broadcast instruction in certain 

ways to allow the processors to operate partially independently. In the 
Connection Machine the aspects of the instruction which can be altered are 

the address on which the instruction is to be performed, and the source of 
any non local data used in the operation. In general though most SIMD 
architectures do not allow this level of autonomy.

MIMD machines by comparison allow each processor to operate completely 
independently of all the others. This local autonomy means they can support 
algorithms which perform a different operation on each piece of data just as 
efficiently as one which operates identically on all pieces of data.

In summary SIMD machines are potentially highly efficient and scalable, but 
tend to only operate efficiently on a restricted class of algorithms. MIMD 
architectures are rather less efficient but can operate effectively on a wider 
variety of algorithms.

2.3 Existing Parallel Architectures

In this section a number of existing parallel architectures will be described. 
These architectures use all of the architectural features described above, and 

serve to illustrate the advantages and disadvantages of each of the various 
architectural features that have been outlined above.
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2.3.1 MIMD Systems

There are a large number of existing MIMD architectures. The reason for the 
proliferation of such machines is most probably due to their ease of 

construction, which results from them being able to take advantage of 
existing microprocessor technology.

This use of existing components has allowed the designers of these machines 
to avoid the considerable expense and difficulty associated with the 

development of custom VLSI experienced by the designers of SIMD 
machines [Fountain 87]. It also allows the machines to take advantage of the 
vast investment in mainstream microprocessor technology.

The IPSC/2 for example has been upgraded from the Intel 80386 to use the 

new Intel i860 RISC processor, which provides almost an order of magnitude 

improvement in performance. It is unlikely that any of the relatively 
specialised producers of SIMD processors will have access to such up to date 
technology. For example the newest AMT DAP processor contains about 
50,000 transistors compared to the i860's 1.2 million.

2.3.1.1 Shared Memory Systems

Sequent Balance - [Sequent 86] allows up to 30 National Semiconductor 

32032 processors to share up to 32 Mbytes of central memory as shown in 

figure 2.10. The processors are connected to the memory system via a 
single 64 Mbytes per second bus.
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1-15 Dud 32032 1-14 2MBytes Shared I/O Adapter Card
Processor Cards Memory Cards (Multibus)

Figure 2.10: Sequent Balance : A Shared Memory System

Enco ro  M u ltim a x  -  [Gehringer 88] uses up to twenty National 

Semiconductor 32332 processors, which access up to 128 Mbytes o f  central 
shared memory via a single 100 Mbytes per second bus.

Both the Balance and the Encore are general purpose multi-user UNIX 

machines oriented towards supporting many users. Their shared memory 

arrangement allows them to easily schedule multiple tasks between the pool 
of processors.

Both machines use a bus to provide the low latency access required to the 
central shared memory. However as discussed previously the use of a bus 

restricts the maximum number of processors that can reasonably be 
accommodated to around thirty.

2.3.1.2 Distributed Shared Memory Systems

BBN Butterfly -  [ Brooks 85] allows up to 256 nodes to be connected together. 

Each node consists of a Motorola 68020 processor, up to 4 Mbytes of local
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memory, and a memory control unit.

The memory control unit is responsible for handling non local memory 

references. Whenever the processor accesses a location in memory the 
memory controller checks to see if that location falls within the bounds of 

local memory. If so the request can be satisfied immediately from local 
memory. Otherwise the controller sends a request to the appropriate 
processor/memory node for the data.

The BBN uses an eight stage butterfly network to route requests and data 
between nodes. A local memory access requires about 500ns to complete, 
while a non local access takes around 5ps.

IBM RP3 -  [Pfister 87] can support up to 512 nodes, each of which consists of 

a 32 bit proprietary RISC processor and up to 8 Mbytes of memory. Each 

node contains a memory manager that handles non-local memory 
accesses.

The nodes are connected by an Omega network [Feng 81] . Local memory 

references take lOOnS while non-local references around 500ns. The total 
memory connection network throughput is approximately 12.8 Gigabytes 
per second.

The distributed shared memory machines, as expected, allow significantly 
more processors to be supported than the pure shared memory system. This 

however is only achieved by using resource intensive multi-stage switching 
networks, that are required to provide the necessary bandwidth requirements 
of the large number of processors. Thus while these machines are more 

scalable than pure shared memory systems, they are large and expensive 
systems.
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2.3.1.3 Distributed Memory Systems

SuperNode -  [Refenes 90] is built up of modules, each of which contains 16 
Transputers with 256 Kbytes of local memory, expandable to 4 Mbytes. 
Each Transputer provides four 20 Mbit/s serial links for communication. 

Within each module these are connected through a full 16 x 16 crossbar 
switch which allows any link to be connected to any other link, all 
communicating at 20 Mbit/s.

Up to 64 of these modules can then be connected together via a second 
level switch, giving a maximum of 1024 processors, with a total of 4 
GBytes of memory.

Melko Com puting Surface -  [Chesney 87] is built from an arbitrary number 
of boards known as elements. These elements can be one of a number of 

different types. Compute elements consist of four Transputers each with 
256 Kbytes of memory, expandable to 4 Mbytes. The display elements 
contain a single Transputer, with up to 1.5 Mbytes of display memory, 
allowing 500,000 24 bit pixels. Other elements include application specific 
elements, and host interface elements.

Inter-processor communications are provided by an expandable single 
level switch. There is no fixed maximum number of processors, and 

systems of up to 1000 processors have been constructed, although a few 

hundred is more common. O f particular interest is that the system 

provides a separate pixel bus to connect display elements, this allows very 

high speed image output, and allows real time image generation to be 
performed.

FPS T-Serles -  [FPS 87] is built up of modules, with eight processors per 

module, and up to 16 Mbytes of memory per processor. The processor 

used is a Transputer with an additional floating point vector processing 

unit.
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Interprocessor communication is provided by an order 14 hypercube 

network, which allows up to 16000 of the modules to be connected 
together giving a theoretical limit of 128000 processors and 4 TeraBytes of 
memory.

Phillips D O O M  - [Annot 90] is a message passing architecture optimised for 

the support of object oriented programming. It consists of up to 256 nodes, 
where each node consists of a 68020 with floating point co-processor and a 
memory management unit. Each node can contain up to 4 Mbytes of local 
memory. The communication network is an order eight hypercube, based 

on Inmos links, and thus sharing the Transputer's 20 Mbit/s speed.

Intel IPSC/2 -  iPSC/2 [Intel 87] consists of up to 128 nodes. Each node consists 
of an Intel 80386 processor, and up to 16 Mbytes of memory. The nodes are 

connected by an order seven hypercube. The interconnections are 
implemented using Ethernet technology and operate at 10 Mbit/s.

NCUBE - [NCUBE 88] contains up to 1024 nodes, each of which consists of a 

single custom VLSI processor chip, and up to 512 Kbytes of memory. The 
compact design allows up to 64 processors to be fitted on a single circuit 

board. The processors are interconnected via an 8 Mbits/s order ten 
hypercube network.

ATAT Pixel M achine  - [Potsemil 89] is divided into two halves, processing 
nodes and display nodes. All nodes contain an AT&T DSP32 processor, a 

RISC like 32 bit microprocessor optimised for digital signal processing 

tasks by the inclusion of fast multiply accumulate hardware, and 4 Kbytes 
of memory.

The display nodes contain 512 Kbytes of video memory, which forms part 

of a distributed frame buffer, providing high speed image output similar 
to the Meiko Computing Surface.
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The distributed memory systems can support many more processors than the 

shared memory systems described previously, although in the case of iPSC/2 
and the DOOM they do not actually do so. Both these machines as well as the 
NCUBE and the T-Series are hypercube machines, and therefore have a fixed 

maximum number of processors. The SuperNode also has a fixed sized 
communication network, but other machines use scalable interconnection 
networks, which do not suffer from the same problem.

All the MIMD machines described are coarse grain designs using 

conventional microprocessor technology.

2.3.2 SIMD Machines

There are a number of SIMD architectures in existence, all of which are 
distributed memory designs, and all of which adopt radically different design 

options than the MIMD machines described above.

CLIP4 -  [Fountain 87] or Cellular Logic Image Processor is a 96 x 96 square 

array of bit serial processors, each with 32 bits of local memory. The 
processors are connected by an eight connected mesh.

DAP -  [AMT 88] or Distributed Array Processor consists of a 32 x 32 array of 

simple bit serial processors connected in a four connected mesh. The 
processors are connected to external memory, which is typically 32 Kbits 

per processor.

MPP  - [Batcher 80] or Massively Parallel Processor consists of a 128 x 128 
array of bit serial processors connected by a four connected array. Each 

processor is connected to up to 1 Kbits of local memory.

C AAPP - [Foster 83] or Content Addressable Array Pixel Processor is a very 

large 512 x 512 array of bit serial processors. A block diagram for the 

processors, (which is fairly typical of this type of machine) is shown in 
Figure 2.11. Each processor has 32 bits of local memory.
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From Neighbours

Figure 2.11: Simplified Block Diagram ofCAAPP Processor

A key feature of the CAAPP is its associative capability. This allows 
individual processors to set flags in their memory, as the result of global 
tests. These flags can then be tested globally using a some/none line, 
which indicates the presence or absence of responders.

DIsArray  - [Page 83] is a 16 x 16 bit-serial array, optimised for the raster 

operations used in many graphics applications, such as windowing 
systems. Each processor is associated with 16 Kbits of local memory, which 

also forms part of the video refresh buffer. This allows the results of 
computations to be displayed immediately, without need to transfer the 

results to a separate video buffer.

Connection M achine -  [Hillis 85] is a large 128 x 128 bit serial machine. 

Each processor has 4 Kbits of local memory. The processors are connected 

in two ways, both in a straightforward four connected mesh, and also by a 
sophisticated message passing network which takes the form of an order 

12 hypercube.
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This m essage passing network, which allow s any processor to 
communicate directly with any other, combined with sophisticated 

programming tools makes the Connection Machine far more suitable as a 
general purpose computing machine than other SIMD array machines 
which are highly optimised for image processing.

These SIMD architectures are in many ways of very similar construction, 
with the partial exception of the Connection Machine. All are massively 

parallel fine grain machines, using bit serial processors. All are distributed 
memory machines, and all (except the Connection Machine) use a two 
dimensional directly connected mesh interconnection topology.

Whereas the MIMD machines were mostly aimed at fairly general purpose 

computations, most o f the SIMD machines are heavily oriented towards 
image processing or graphics applications. Most use very simple nearest 

neighbour directly connected communications networks, which are highly 
oriented to the localised pixel operations found in low level image 
processing algorithms.

2.4 An Architecture Optimised for 

Im age  Based Applications

A key element involved in determining the correct design for a parallel 

architecture, must be its intended application area. As mentioned in the 
introduction the areas of image understanding and image generation are 

particularly demanding applications, since they exhibit a wide variety of 

different data and algorithm structures. With this in mind an architecture is 
proposed which is optimised for exactly these types of applications.
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2.4.1 Architectural Features

2.4.1.1 Memory Organisation

Any machine that is intended to perform real time image analysis or 
generation will have to provide a very large amount of computational 

power. Such power is not only well beyond that currently available from 
sequential machines, it is even beyond that achievable by current parallel 

machines. Clearly then the maximum possible performance is going to be 
crucial, which implies the use of massive parallelism.

M assive parallelism im plies the use of a fully distributed memory 

architecture. Such a system allows a relatively simple interconnection 
network to be used, while still allowing systems with very large numbers of 
processors to be constructed economically.

Distributed memory systems do however rely on all applications being 
broken down into autonomous modules which can operate with little 
interaction with other modules which reside on other processors. This 
requires that a suitable software strategy be used which encourages 

programmers to arrange their code into modules which require as little 
communication with other modules as possible.

2.4.1.2 Communication Network

A suitable communications system for such a machine would be a fixed 
order directly connected network. These provide communication that scales 
linearly with an increasing number of processors, and equally importantly 
require resources that also scale linearly with the number of processors, in 

other words they have a fixed overhead per processor. Also given the two 

dimensional orthogonal image data to be processed, a square two 
dimensional mesh would seem appropriate.
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2A. 1.3 Control Structure

A fundamental dichotomy is the choice between an SIMD and an MIMD 

architecture. While SIMD architectures are potentially more efficient than 

MIMD ones, this is only true for algorithms that map effectively onto SIMD 
machines. Thus the choice of SIMD or MIMD will depend on the exact 

algorithms that are needed for the given problem. As mentioned previously 
image based applications involve a wide variety of algorithms, from globally 

uniform image operations to highly complex and irregular high level model 
based symbolic operations.

Low level image operations appear to be an ideal match for SIMD 

architectures since they exhibit all the qualities necessary for efficient 

solution on an SIMD machine. They operate on homogeneous arrays of data 
(images), and most of the operations they perform, such as convolutions, 
thresholding etc. are globally uniform. Also most of the communications 
performed are highly local and regular.

In addition most low level image operations use mainly short integer data, 
making them ideal for implementation on fine grain SIMD machines, 
arguably the most efficient configuration for this class of machine.

By comparison high level model based operations do not exhibit any of the 
characteristics associated with efficient SIMD implementation. They operate 

on model data, which will often be represented as floating point numbers or 
symbolic relationships, which may have a complex and irregular structure. 

The algorithms used also tend to be more complex, and perform less regular 
operations on their data. This would strongly suggest the use of an MIMD 
architecture for the higher level model based processing.

An optimal solution would therefore appear to be a dual paradigm machine, 

which consisted of both an SIMD array which performs low level image 

operations, and an MIMD array which performs the high level model based 

operations. Based on the arguments put forward above, it would be
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appropriate to make both arrays distributed memory systems with a fixed 

order directly connected communications network in a two-dimensional 
mesh configuration.

2.4.2 Existing Multi-Paradigm Architectures

A number o f architectures have been proposed which roughly conform to 
the arrangement described above. The principal examples of these are the 

University of Massachusetts Image Understanding Architecture, the Oxford 
DisPuter, the Purdue PASM and the University of North Carolina 

Pixel-Planes 5 architecture. Other machines have been proposed, such as 
Uhr's 2 layered array/net [Uhr 81] but the examples chosen represent those 

that have had significant detailed design work carried out on them, or have 
actually been implemented.

2.4.2.1 IUA (Im age Understanding Architecture)

The IUA [Weems 89] shown in Figure 2.12 consists of three layers of 
processor arrays, two of which are MIMD and one of which is SIMD. The 
bottom layer is a 512 x 512 array of bit-serial SIMD processors known as 

CAAPP (Content Addressable Array Parallel Processor), in a four connected 
two dimensional mesh. Above this is a 64 x 64 array of TMS320C25 digital 

signal processing devices called ICAP (Intermediate Communications 
Associative Processor), which are configured as an MIMD array. The CAAPP 

and ICAP layers communicate via 1 GByte of dual ported memory, which 
consists of groups of 256 KBytes shared between one ICAP chip and 64 
CAAPPs.

Control for the CAAPP array is provided by a separate ACU (Array Control 

Unit) which consists of two parts, a 68020 macro-controller, and a custom 
micro-controller. CAAPP programs are targeted for the 68020 processor, 

which perform s micro-procedure calls to the micro-controller which 

performs the actual instruction issue for the CAAPP array at a 10 MHz rate.
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Figure 2.12: Image Understanding Architecture

The top layer of the machine consists of 64 Motorola 68020 processors known 
as the SPA (Symbolic Processor Array). These are arranged as a shared 

memory MIMD array. The single block of 512 MBytes of shared memory is 
both globally shared by the SPA and also locally accessible by the ICAPs. Each 

ICAP has access to a single 128 KBytes segment of the ISSM (ICAP / SPA 
Shared Memory). This segment is accessible by the ICAP via an I/O port, 

rather than being mapped into the memory space of the processor, so it is not 
strictly shared by the ICAP.

The IUA is intended to tackle demanding real time image analysis problems, 

and is based on the functional partitioning outlined in the previous section. 

Thus the CAAPP array is intended to perform low level image processing 

tasks. The ICAP's are intended to extract numeric data from the results 
produced by the low level processing, and perform intermediate level 

processing on that data. The result of this processing would then be sent to 
the SPA which would perform high level model based processing.
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2.4.2.2 The Disputer

The Disputer [Page 87] consists of two parts, a 5x6 MIMD array and a 16x16 

SIMD array. The MIMD array is implemented using Inmos Transputers. 
Communications is via a full crossbar switch allowing arbitrary topologies to 

be constructed dynam ically. The SIMD array is a bit serial design 
implemented from MSI and bit-slice components. It is arranged as a four 

connected 2D mesh. Control for the SIMD array is provided by a separate 
array controller consisting of a T800 Transputer and an AMD bit-slice 
processor.

The intended application of the Disputer is real time graphics, and it includes 
a facility to allow selected contents of the SIMD array memory to be 

continually displayed on a monitor, which effectively eliminates the need 
for any explicit I/O facilities. Similarly to the IUA, the Disputer performs 

high level model based functions, such as transformation and projection on 
the MIMD array, and low level pixel based operation such as scan conversion 
on the SIMD array.

2.4.2.3 Pixel Planes 5

Pixel Planes 5 [Fuchs 89] is similar in many ways to the Disputer, it too 
contains two parts, an MIMD array and an SIMD array. The MIMD array is 

responsible for high level processing while the SIMD array performs low 
level pixel based processing. However in the Pixel Planes device the SIMD 

array is a more special purpose device optimised for implementing polygon 
rendering algorithms.

To achieve this a conventional square SIMD bit serial array is augmented by 

two adder trees, one connected to each edge of the array. These trees can 
calculate all the values of Ax, where A is an arbitrary constant and x is the 

coordinate of the row (or column) of each pixel. Each pixel is connected to 
row and column busses, along which the values from the adder trees are
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passed. Each pixel then sums the values being sent along the busses, such 

that each pixel calculates the expression Ax + By + C. In this way a line can be 
drawn in the image plane by calculating the coefficients A,B and C for the 

line, evaluating Ax + By + C on all the processors, and then setting the pixels 
of all the processors whose result was zero to on.

The Pixel Planes 5 design incorporates a number of these 128x128 SIMD 

arrays, which are assigned to patches of the image. In addition to this is an 
array of MIMD processors, which communicate with the SIMD patches via a 

high speed ring. This ring allows any o f the MIMD processors to 
communicate with any of the SIMD patches. This is particularly important in 

the graphics applications that the machine is intended for, where polygons 
processed by the high level processors must be passed on to the appropriate 
SIMD patch for scan converting. Because the mapping of polygons to patches 

will vary over time, it is not possible to pre-distribute the polygons in such a 

way as to avoid the need for global communication, and the ring network 
allows this to be performed efficiently.

24.2.4 PASM

PASM [Siegel 81] takes a radically different approach to the other machines 

mentioned here. Rather than use separate SIMD and MIMD arrays, it uses a 
single reconfigurable array, which can operate as either an SIMD or an MIMD 
array, or a collection of SIMD arrays.

This is achieved using a hierarchical approach where an array of controllers 

are each connected to a small array of conventional processors in this case 
Motorola 68010s, each with their own local memory. In SIMD mode the 
68010s take their instruction stream from their designated controller, so that 

each patch of 68010s proceeds in exact instruction level lockstep. In MIMD 
mode each of the 68010's is allowed to fetch its own instruction stream from 
its local memory allowing fully autonomous behaviour.

The PASM architecture provides an interesting contrast to the multi-layered
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machines such as the IUA, but it does not provide the features outlined for 

an optimised image based architecture. It does not capitalise on the enhanced 
efficiency possible from fine grain SIMD systems, all its processors are 
conventional sequential microprocessors as normally found in an MIMD 
system. When operating as an SIMD machine the local control on each 
microprocessor is left unused.

Inter-processor communications are carried out using an asynchronous 

message passing scheme, so no advantage is taken of the higher efficiency 
possible with synchronous SIMD communications.

The principal advantage of the PASM is the potential flexibility it provides by 
allowing mixed MIMD and SIMD problems to be implemented, however no 

programming system is provided which supports this style of problem.
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Chapter 3

The Warwick Pyramid Machine

3.1 Introduction

The Warwick Pyramid Machine (WPM) is an architecture optimised for 

image based applications based on the ideas introduced in the previous 

chapter. It incorporates both an SIMD array for low level iconic processing 
and an MIMD array for high level model based processing. The machine can 

be thought of as a pyramid of processors, with a large fine grain SIMD array at 
its base, a smaller coarser grain MIMD array above it, and a conventional 
sequential machine at the apex providing the user interface. This is shown in 

Figure 3.1.

Figure 3.1: The Warwick Pyramid Machine

The aim of the design is to match each stage in the image analysis and image 

generation process to the most appropriate processor type. In this way it is
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hoped that the machine should be able to provide an efficient platform for 

most image based applications, allowing demanding applications to be 
performed in real-time while minimising the use of hardware resources.

Thus the architecture provides a massively parallel 128x128 fine grain 
bit-serial distributed memory SIMD array, connected by a two dimensional 

order two mesh, to perform low level iconic processing. This array is ideally 

suited to the globally uniform integer operations typical of low level iconic 
processing.

The SIMD array is connected by multiple high bandwidth paths to an array of 

coarse grain distributed memory MIMD processors which perform model 
based symbolic processing. These processors are more suited to the 

heterogeneous floating point intensive operations associated with the high 
level processing.

The connections between the two arrays provide not only data transfer from 

low to high level arrays, essential for the iconic to numeric processing, but 
also provide a control path from the high to the low level array. Each control 
path is associated with a 16x16 patch of the SIMD array. This arrangement 
allows local autonomy for each patch of the iconic array.

The WPM has been designed to make use of industry standard components, 
to avoid the requirement to develop custom VLSI components. This has 

allowed a fully functional prototype machine to be constructed and tested. 

This chapter describes the design and implementation o f this prototype 
machine in detail.

3.2 Design

The building block of the WPM is a cluster. Each cluster can be thought of as 
an independent SIMD machine, several of which are connected together to 

form a complete pyramid machine. Any number of clusters may be 
connected together in any arrangement, allowing arbitrary sized rectangular

49



Chapter Three: The Warwick Pyramid Machine

or square arrays to be constructed as appropriate for any application.

A cluster consists of a small SIMD sub-array which performs low level 
operations, a bit-slice controller which generates the instruction stream for 

the iconic processors and passes data from the iconic to symbolic processor, 
and, a single symbolic processor (Figure 3.2).

Each cluster is responsible for a single patch of the image being processed. 
Ideally the image patch will be the same size as the SIMD sub-array, in which 

case there will one SIMD processor for each pixel in the image. Larger images 
can still be processed however, by allocating more than one pixel to each 
processor.

3.2.1.1 Symbolic Processor

The symbolic processor is responsible for high level feature and model based 

processing. It is also acts as the coordinator for the cluster, being responsible 
for initiating any processing that occurs on the other layers, and coordinating

3.2.1 Clusters

Cluster Controller «*-

Figure 3.2 A Cluster of the WPM
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communication between neighbouring clusters. Typically the user's 
application program will run on the symbolic processors, and call pre-written 

library routines which run on the cluster controller and SIMD array. More 
details of this system are given in subsequent sections.

3.2.1.2 Controller

The controller provides an interface between the symbolic processor and the 

SIMD array. This interface is required because the symbolic processor is not 
capable of providing instructions directly to the SIMD array at the required 
rate. The SIMD array requires an externally supplied instruction stream at a 

rate of one instruction per clock cycle, 100ns in this case. The symbolic 

processor cannot generate instructions at this rate in software, so the cluster 
controller is necessary to perform this function.

The cluster controller receives high level commands from the symbolic 
processor, which are broken down into a sequence of low level SIMD array 
instructions which carry out the requested operation. These low level 
instructions are supplied to the SIMD array at the full clock rate. Because 
these higher level operations take many clock cycles to complete the 

symbolic processor has time to prepare the next operation before the array 
has completed the previous one. Using this technique the SIMD array can be 

kept almost fully utilised.

As well as providing the instruction stream for the SIMD array, the 
controller is also responsible for communicating symbolic data extracted 

from the array to the symbolic processor. The SIMD array provides facilities 
for extracting image data based on an associative response mechanism.

3.2.1.3 Iconic Layer

The iconic layer of each cluster acts as a conventional SIMD array, with all of 

the processing elements executing a single instruction stream generated by 

the controller. Non global operations are supported by the use of an activity
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flag which can be used to disable a given subset of the processors within a 

patch.

The processors of the SIMD iconic layer are connected to their four nearest 
neighbours, both within each cluster and from cluster to neighbouring 

cluster.

Associative Response

The array also provides a set of associative facilities which allow  the 

programmer to test each pixel in the image for a logical condition. Those 
pixels which satisfy the condition are flagged as responders. The associative 

hardware provides facilities for the programmer to test for the presence or 
absence of responders, via a some/none line, or count the number of 

responders using a count network. The SIMD array hardware also allows the 
programmer to determine the coordinates of the responders, and read the 

image data from those coordinates using the array's edge register.

3.2. 1.4 Cluster Interconnection

Adjacent clusters are connected at three levels, the SIMD array level, the 

controller level and the symbolic level. They can be connected in two 
different modes, cluster mode and array mode. In cluster mode each cluster 
operates independently, and can communicate with adjacent clusters only at 
the symbolic level. The boundaries of the iconic patch are wrapped round to 
form a torus, so that any shift operations cause the patch data to wrap round 
from east to west and north to south. Array mode allows communication at 

both the symbolic and iconic level. In this mode the edges of each SIMD 

patch are connected to the edge of the adjacent patch, and the boundaries of 
the whole array are wrapped round to form a conventional large SIMD array.

The cluster controllers are also connected together to allow them to 

synchronise. This is necessary because the SIMD processors, which they 

control, must be synchronised to allow them to communicate with adjacent

Chapter Three: The Warwick Pyramid Machine
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clusters. Since the SIMD processors are locked to the instructions provided by 
the controller the controllers themselves must be synchronised.

This is achieved using a hardware semaphore between adjacent cluster 

controllers, on which the controllers perform wait operations. The first 
controller to perform a wait operation is suspended until the other controller 
also performs a wait, at which point both are allowed to proceed.

When two clusters wish to communicate, the sending controller, first moves 

a row of array data to its communication outputs, and then performs a wait 
operation on the semaphore. The receiving cluster first performs a wait on 

the semaphore, and then reads the data from its array inputs.

The flexible software controlled synchronisation of clusters allows many 

different configurations to be used. If all the clusters synchronise, then the 
whole iconic array acts as a single conventional SIMD array. Alternatively 

several subsets of the clusters may synchronise, forming a collection of 
SIMD arrays. This can be done dynamically under software control and 
allows the machine to match itself to the current structure of the data.

3.2.2 Multiple-SIMD Operation

A particularly important aspect of the architecture is its Multi-SIMD 
organisation, where the SIMD array is divided into independently 

controllable clusters. Other machines such as the IUA and the Disputer 
which combine MIMD and SIMD parallelism but which do not provide this 

Multi-SIMD organisation suffer from two problems which the Multi-SIMD 
approach overcomes.

For any combined MIMD/SIMD machine to work effectively it must be able 

to pass data between its two halves quickly, which implies a high bandwidth 
connection. In other MIMD/SIMD machines the single SIMD array 

controller becomes a bottleneck for communication with the MIMD array. 

The WPM's Multi-SIMD design uses multiple controllers allowing a far
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greater vertical bandwidth than would otherwise be possible. This approach 

also scales more readily since the number of controllers increases as the size 

of the array increases.

Controller Multiple Controllers

SIM D  Architecture Multlple-SIMD Architecture
Single 128 x 128 Array M any 16 X 16 Arrays

Figure 3 3 : SIMD vs Multi-SIMD

The other advantage of a Multi-SIMD design is increased local autonomy. In 
a conventional SIMD machine if the processing is concentrated in a small 
area of the image the rest of the array has to lie idle. If the 128 x 128 array of 
processors were rendering a 10x10 pixel polygon, then less than 1% of the 
processors in the array would be used, the others would be idle. Put another 

way the array would be operating at only 1% of peak performance.

With a Multi-SIMD design it is possible for each cluster to work on a 
different area of the image independently of all the others. Taking the 

previous example, each cluster would be able to independently render a 

different polygon. This would give up to a factor of 64 (the number of 
clusters) improvement in performance. In chapter seven this application is 

explored in more detail.

3.3 Implementation

The VLSI Architecture group has produced a working prototype of the 
Pyramid Machine. This prototype has been constructed using existing VLSI
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components which have been integrated into a system level design which 

provides the desired functionality. It should be stressed however that this 
prototype does not represent an optimal implementation of the Pyramid 

Architecture, and developments are underway to employ improved 
technology in subsequent implementations.

The current prototype uses a SUN workstation as the host and a Transputer 

as the symbolic processor. The SIMD array is implemented using AMT DAP 
chips, while the cluster controller is a custom built bit-slice design. A full 
description of the current implementation is given below.

3.3.1 Host Machine

The host machine used in our current prototype is a SUN 3/280. This 
machine contains a VME based Transputer interface card which 
communicates with the symbolic processor array via Inmos links.

The job of the host machine is to provide the user interface for the software 

development tools and the applications software. To this end a library has 
been written using the X Windows graphics system, which allows 

applications programs running on the WPM to display graphics and provide 
a user friendly interface. This and other software which runs on the SUN is 

written in C and should be able to run on any suitable UNIX workstation, 
which can accept a Transputer interface card.

3.3.2 Symbolic Processor

The processor used for the symbolic layer is the INMOS T800 Transputer. 
This processor was chosen because it is specifically designed to support 

distributed memory MIMD multiprocessing. Each Transputer contains a 

powerful 32 bit integer and floating point processor, 4 KBytes of fast static 
memory, and four DMA driven 20 M bit/s serial links used for 

inter-processor com m unications. It also contains a m icro-coded
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multi-tasking system which supports many time shared processes using fast 

context switching, and high speed inter-process communications.

The inter-process communication mechanism is based on channels, which 
are a communications and synchronisation primitive derived from the 
communications model used in Hoare's CSP programming system [Hoare 
82]. Channels provide a unidirectional point to point communication 

mechanism with synchronisation based on the rendezvous principle. When 
a process writes to a channel it is suspended until the receiving process reads 

from the channel. Conversely, if a process reads from a channel it will be 
suspended until some data is written into the channel by another process.

Channels can exist either between two processes running on the same 

Transputer, in which case they are implemented by in core copies, or 
between processes running on adjacent Transputers, in which case they are 

implemented using the DMA driven links. The Transputer instruction set 
includes a number of special communications instructions which handle 

channel communications. These instructions, which are implemented in 
micro-code, select the appropriate type of communication, either in core or 

via links, and perform all the necessary synchronisation and scheduling 
completely transparently. In this way the same piece of code can perform 

communications without regard to the location of the destination.

The combination of the capability to run multiple processes on each 

Transputer, and the ability for these processes to communicate transparently, 
regardless of whether they are on the same processor or not, in principle 

allows programs to be written which are largely independent of the number 

of processors on which they are run. For example if a program were designed 

to run on ten Transputers, with one process per processor, it would run 
equally well on five with two processes per processor. The processes would 
not be aware of any change, and would not even have to be recompiled.

In practice however this ideal is seldom realised because of the fixed topology 

inherent in the channel system. A channel is a static entity connecting one
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process to one other process. Thus a program written using channels must 

also have a Axed communications topology. Since only one channel can be 
associated with each link, this fixed topology must map on to the topology of 

the hardware used. This causes severe portability problems since programs 
will in general only run on a machine with the same topology as the one for 

which they were written, and it is this that prevents programs from being 
mapped to different machines.

Thus although the channels implemented by the Transputer provide an 

excellent primitive communications and synchronisation mechanism it is 
often desirable to provide a layer of abstraction built on top of channels, 

which is topology independent. A number of system s have been 
implemented which do this such as Helios [Perihelion 89], and a similar 

system has been developed for the Pyramid Machine, details of which are 
given in chapter six.

North Link

Figure 3.4 : Symbolic Processor Array

From a hardware perspective the Transputer is particularly suited to 

constructing coarse grain MIMD arrays, where any hardware required to 

implement each processing node must be replicated many times. The
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Transputer includes an on chip memory controller, which allows it to be 

connected directly to a dynamic RAM array using no other chips except 
buffering. This dramatically reduces the chip count for a complete system.

The Inmos links used by the Transputer provide a convenient way of 

connecting multiple Transputers together. Again no extra interface chips are 
required except for buffers, and since the links are serial they require only 

four wires to provide bidirectional communications at 20 MBits/s. This 
greatly eases the problem of wiring a large array.

By utilising the Transputer it has been possible to construct a fully working 

MIMD array using surprisingly little hardware, and making use of extensive 

existing software support. The Transputer array which has been constructed 
is shown in figure 3.4. It consists of an eight by eight array of Transputers 

connected in a four connected mesh with one of the Transputer's links 
connected to each of its four neighbours.

Each node of the array consists of a Transputer connected to 1 Megabyte of 
dynamic RAM and 4 Kbytes of dual port static RAM which is shared between 

the Transputer and the cluster controller. The dynamic RAM is used to store 
all the code and data for the Transputer, while the dual ported RAM is used 
to communicate with the cluster controller. This communication is in the 

form of commands sent to the cluster controller and symbolic data received 
from it.

It should be noted that although a full eight by eight array of Transputers has 
been constructed, only two are currently equipped with dual ported memory, 
since only two cluster controllers have been constructed.

3.3.3 Cluster Controller

The cluster controller lies at the heart of the Pyramid Machine, and it is the 

most complex part of the design. Its function is to provide the instruction 
stream for the SIMD array at the full clock rate, which in the current design is
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10 MHz, or one instruction per 100ns. Each SIMD instruction consists of an 

opcode, which specifies the operation to be performed, and an address, which 
determines which memory location the operation is to be applied to.

If the controller is to achieve one instruction per cycle, it must not only be 
able to generate opcodes at one per cycle it must also calculate the operand 
address during the same cycle. A typical piece of code, such as a multi-bit add 

operation, would require three different addresses to be calculated, one for 
each source operand and one for the destination operand. Each of these 
addresses would need to be incremented once for each iteration of the main 

loop.

Figure 3 5 : Cluster Controller

In addition to address calculations, the multi-bit add routine must also keep 

track of its loop counter. This will require at least one arithmetic operation 
per loop to increment or decrement the counter, plus another to test the 

value against a predetermined limit. This test will then be used to perform a 
conditional branch. If the SIMD array is to be kept fully occupied all these
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operations must be performed without reducing the rate of instruction 
generation.

To achieve this a custom bit-slice design has been used, a block diagram of 
which is shown in figure 3.5. The main components are a sequencer (AMD 
29331) which fetches the micro-code instructions, a scalar ALU (AMD 29116) 
which performs address calculations, 16K x 64 bits of microcode memory, 4K 
Bytes of dual ported RAM used to communicate with the symbolic processor, 
and a central data bus which links the various components together.

In operation the cluster controller acts in a similar way to a conventional 

scalar processor. The sequencer generates the address of the next 
micro-instruction, which is fetched and latched in the instruction latch. The 

micro-instruction consists of a number of fields which specify the operation 
of the various functional units in the controller. The format of the 
micro-code word is shown below.

I“«-----------------------------------------  64015
DAP 29116 29331 Bus Immediate

Instruction Operation Operation Control Operand

Figure 3.6: Micro-code word

The micro-code word is fully horizontal, that is every instruction contains 

one field for each of the functional units in the controller. This allows one 
operation to be performed by each unit every cycle. In addition every 

instruction includes a field which contains an SIMD array instruction. This 
field is sent directly to the SIMD array and provides the opcode, but not the 
operand address for the array instruction.
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The purpose of this wide micro-code word is to achieve the design aim of 

generating the SIMD instruction stream including operand addresses at the 
full clock rate. By providing an instruction for all of the functional units 

every cycle, address calculations and loop operations can be overlapped with 
instruction generation. To see how this overlapping is performed it is 

necessary to understand the operation of each of the functional units that are 
controlled by the microcode.

3.3.3.1 Sequencer

The sequencer is responsible for generating the address of the next 

micro-code instruction. The device used is the AMD 29331 the internal 
structure of which is shown in figure 3.7.

It consists of four main parts, the program counter, the stack, the loop 

counter and an address multiplexer. The output of the multiplexer is used as 

the address of the next m icro-code word. In normal operation the 
multiplexer will select the current value of the program counter plus one as 
input and this value will be fed both to the micro-code memory and back to 
the program counter which will therefore be incremented.

AMD 29331 AMD 29116

Program
Counter

Output Input 
Address Data I/O

Figure 3.7: Bit Slice Sequencer and ALU

61



Chapter Three: The Warwick Pyramid Machine

The multiplexer may alternatively select the next address to be provided by 
the direct address input. This comes from the controller bus, and the value 

on it will depend on the bus control micro-code held, but will usually be the 
immediate operand field. This has the effect of branching to the address 
specified by the immediate operand. Branching operations may be performed 

conditionally based on the condition flags that are generated by the ALU.

The final alternative is that the address be supplied by the on chip stack. This 
stack is used to perform subroutine calls. When the sequencer performs a 

subroutine call the current program counter address is pushed onto the stack. 
When a return operation is performed the address is popped back off the 

stack and used as the next instruction address.

The stack can also be used in conjunction with the loop counter to perform 

variable iteration loops. To start a loop a value is loaded into the loop 
counter using the direct input lines from the controller bus. When the loop 

is entered the current program counter address is pushed onto the stack. At 
the end of the loop the counter is decremented, and if not zero the loop 
address is read from the stack and used as the next instruction address. If zero 
the address is popped off the stack and execution continues.

This looping facility is particularly useful since it allows the loop counter 
incrementing and testing to be overlapped with the array instruction 
generation. This allows the controller to generate instructions at the full 

clock rate throughout the execution of a loop.

3.3.3.2 Scalar ALU

The ALU’s principal purpose is for address generation, although it can also 
be used to perform general scalar operations if required. The ALU used is the 

AMD 29116 shown in figure 3.7. The main parts of the device are the 16 bit 
arithmetic and logic unit itself, the 32 register register-file and the 

accumulator.
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The ALU has three inputs, one from the register file one from the 

accumulator and one from the D register which hold values inputted from 
the controller bus. The ALU can perform a variety of arithmetic and logical 

operations on either one or two of its inputs, and write the result to a 
specified destination. Each arithmetic operation generates a number of 

condition flags which are passed to the sequencer to be used in conditional 
branch operations.

An important aspect of its behaviour is that it allows a result to be sent both 
to its output (which is connected to the controller bus) and to a register. This 

feature is useful for address generation, since it allows an address to be read 
from a register, supplied to the bus and incremented and stored back into the 
register in a single cycle.

3.3.3.3 Central Bus

The central data bus connects all the parts of the controller together. All 
devices connected to the bus are given an address. The devices include all the 
bit slice units as well as a number of simple control registers. The bus control 
logic allows any one of the devices to put data onto the bus, and allows that 
data to be written to one of the devices. It is not necessary to specifically 
write to the ALU or sequencer as these can read the value that is currently on 
the bus.

The registers on the bus are as follows:-

Register
Immediate operand
Sequencer
ALU
Dual Port RAM Address 
Dual Port RAM data 
Edge Register 
Row/Column address 
DAP memory plane address 
Count
Cluster mode control

Source Destination
yes -
yes implicit
yes implicit
■ yes
yes yes
yes yes
* yes
- yes
yes -
• yes
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The cluster mode control determines whether the DAP operates in array 

mode, where the communication lines are fed to the neighbouring clusters, 

or cluster mode where the lines are wrapped round to form a torus within 
each cluster.

The Edge register, row/column address, DAP memory plane address and 
count registers are discussed in detail in the following section describing the 
SIMD iconic layer.

3.3.4 Iconic Array

The iconic processor array lies at the base of the cluster. It consists of a 16x16 

bit serial SIM D array implemented using AMT Distributed Array Processor 
(DAP) chips. The DAP chip integrates 64 bit serial processors onto a single 

device arranged as an 8x8 four connected grid. Four such DAP chips are 

required to implement one of the 16x16 SIMD patches associated with each 
cluster. The basic structure of one DAP chip with its memory is shown in 
figure 3.8.

All operations performed by the DAP operate over a complete 16x16 array of 
memory, so it is helpful to consider the DAP memory and registers as planes. 

The DAP chip itself contains a processor element (PE) array and three register 

planes A, C and Q. Memory for the array is external to the chip, and consists 
of 32K planes o f fast static memory, a total of 1 MegaByte of memory per 
cluster. The DAP chip provides a full 64 bit wide memory bus (one bit per 

processor) to interface to this external memory, allowing a complete plane to 
be accessed in a single cycle.

Each processor in the array is connected to each of its four neighbours which 
allows planes to be shifted horizontally and vertically within the array. The 

edges of the array may either be connected to the neighbouring array, as used 

in array mode, or wrapped round to meet the opposite side of the same array, 
to form a torus, as used in cluster mode.
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In addition to this every processor is connected to two busses, one row line 
and one column line. These busses run vertically and horizontally across the 
array, and connect to two edge registers. These registers are mapped into the 
register space o f the cluster controller, and can be used in two modes. In the 

first mode they can be used to allow a complete row or column of data to be 
read from the array, under control of the Row Select address register. This 

address specifies which row or column is presented to the row or column 

busses.

Figure 3.8: AMT DAP SIMD Array

Alternatively the row and column lines can be used to AND together all the 

values placed on them and present the result to the edge registers. This mode 
has a number o f uses for extracting data from the array. It can be used to 

implement a some/none associative response over the whole array, by 
arranging for any responders to present a zero value on the row lines, and 

non responders to  present a one. The cluster controller can then read the
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edge register, which will contain all ones if there are no responders and some 
other value if there are responders.

It can also be used to determine the position of a particular responder, by 
reading both the row  and column edge register, and determining the 

intersection of the two zero bit positions. Thus if, for example, the responder 

were in cell (3,4) then bit 3 of the row register and bit 4 of the column register 
would be zero.

3.3.4.1 Processing Element

Each cluster also includes a mechanism in hardware for counting the 

number of responders in only a couple of clock cycles. This is achieved using 
a fast adder tree which is connected to the memory bus of the DAP chips, 

allowing it to count the number of active bits in any memory access. This 
count facility has been shown to be extrem ely useful for implementing 

associative algorithms such as calculating a histogram [Kerbyson 91].

A simplified block diagram of the processing element used in the DAP chip 
is shown in figure 3.9. The principal components are a one bit full adder, 

which performs all the arithmetic operations, three single bit registers used 
to store intermediate values, and two multiplexers which select the source 

and destination for the operands of each operation.

The programmer's model of the DAP PE does not lend itself to easy 
explanation. Its design dates back to the ICL DAP developed in 1972 when it 

was constructed from small scale TTL logic [Parkinson 90]. The design was 
optimised to require as few TTL packages as possible, and as a result the 

elegance of the programmer's model was relatively low priority. The current 
DAP which is implemented as a gate array retains the same PE design in 

order to maintain compatibility with the installed software base, particularly 
the various compilers that were developed for the ICL DAP.
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Figure 3.9: DAP PE functional diagram.

The ALU of the PE is provided by a single bit full adder, which has three 
fixed inputs, one from the input multiplexer, one from the Q register and 
one from the C register. The two outputs of the adder are also fixed. The sum 

output goes to the Q register and the output multiplexer while the carry 
output goes to the C register and is also broadcast to all four of the PE's 
neighbours.

The A register has a dual function, it can either be used as a simple 

accumulator, whereby new values can either be ANDed with the value 

already stored in it, or simply stored directly in it, or it can act as an activity 
control register, allowing the programmer to perform writes and additions to 
memory which are conditional on the value in the A register. This is the 

only facility provided to allow PE's to act in any way autonomously.

Although the connectivity o f the PE is fixed, the programmer can specify 
which registers are written to in each instruction, and can generally specify 

that either the value stored in a register, or zero be used as the output for 

each register. It is also possible for the programmer to optionally invert the 
value provided by the input multiplexer. Unfortunately this level of control 

is not available in all combinations, since the instruction encoding causes 
certain clashes, but it does work in most cases.
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The input and output multiplexers determine the routing of data through 

the PE. The input multiplexer determines one of the input operands, which 
can be either the Q or A register, one of the neighbouring PE's, the currently 
addressed external memory plane or the value zero. The output multiplexer 

determines what value is written to external memory. This can be one of 
either the A register, the input multiplexer's output, or the sum output of 
the full adder.

These multiplexers are not completely under the control of the programmer. 
Instead a fixed number of predetermined combinations of input and output 

multiplexer settings is provided. There are fourteen of these 'instruction 
groups' as they are referred to, using the terminology of the APAL language, 

AMT's assembler. These groups are shown below.

Group Description

0 Memory to register
1 XOR of memory with bit of 

edge register to PE
2 Memory to edge register
3 Edge register to PE
4 Zero to PE
5 Bit of edge register to PE
6 Edge register to memory
7 Edge register to PE
8 Q to PE/store/edge register
9 A to PE/store/edge register
10 Conditional add to store
11 Conditional write to store
12 Shift Q to nearest neighbour
13 Ripple add (in any direction)

Input
Multiplexer

memory

memory
memory
column
zero
zero
row
row
Q
A
memory
zero
neighbour
neighbour

Output
Multiplexer

input mux 

input mux 

input mux

Q
input mux 
input mux 
input mux

All the instructions for the DAP are provided by the cluster controller at a 
rate of one instruction per clock cycle. Each instruction consists of an opcode, 

which specifies the instruction group and register operation described above 
and an address, which specifies the memory plane the operation acts on 

where appropriate. Only a single address is required since the DAP can only 
read or write one memory plane in any given cycle. Because of this all
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instructions that require two memory references (those in groups 2,10 and 

11) require two clock cycles to execute. All other instructions can be 
performed in a single cycle.

3.3.5 Cluster Controller Programming Model

There are four programmable devices of interest, the ALU, the sequencer, the 
control bus and the DAP. Each of these has its own field in the microcode 

word, so that each can perform one operation in each cycle. In addition to 
this there is an optional immediate operand which can be supplied for use by 
any instruction.

To program these devices an assembler called CLASS (CLuster ASSembler) 
has been developed, which provides direct access to each field of the 

microcode word. Like the microcode each CLASS instruction has five fields 
one for each device plus an immediate operand. Within each field CLASS 

uses the manufacturers recommended opcodes, so that the DAP field is 
essentially the same as the APAL language, while the AMD parts use opcodes 
described in each devices user manual. The control bus uses a bespoke 
instruction format.

This approach allows very efficient programming of the cluster controller, 

and allows us to make use of existing documentation, but it does lead to a 
somewhat opaque instruction format. As an example take the following 
CLASS code.

DJMP_S; INC SORR RIO; SQ; PEADDR-ALU

The DJMP_S is a sequencer instruction which decrements the loop count 
and jumps to the address on the stack if it is not zero. The INC SORR RIO is 
an ALU instruction which increments register 10. SQ is a DAP instruction 

which assigns the Q plane to the store plane specified by the current PE 

memory address. This is set by the final field PEADDR=ALU, which sets the 
PE memory address to be the value output by the ALU, which is the result of
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the increment operation performed in the ALU held.

To examine this more closely a more full example will be presented , but 
instead of using the actual CLASS mnemonics which are somewhat obscure 
pseudocode notation will be used. This pseudocode uses a Pascal like 

notation where registers of the various devices are denoted by a three letter 
code for the device (ALU, SEQ or DAP) followed by the name of the register 

which corresponds to the descriptions given above.

The following example is an eight bit addition:

// Set up the addresses of the two sources and the 
// destination In ALU registers. Values are minus one 
// because they are pre-lncremented In loop

A L U ALU_R1 “  soureel - 1
A L U ALU_R2 - source2 - 1
A L U ALU_R3 -  destination - 1

D A P
/ /  Clear carry flag ready for addition 
DAP_C -  0

S E Q
/ /  Set up loop return address and counter

SEQ_push(here + 1) ;  SEQ_count -  number_of_bits

A L U

/ /  START OF MAIN LOOP 
/ /  Increment first source address 
ALU_R1 - ALU_R1 +  1

B U S
/ /  Use source address as address in DAP memory 
PE_address - ALU_R1

D A P
/ /  Load source data Into DAP Q register 
DAP_Q *  memory [PE_address ]

A L U
B U S

/ /  Increment second source address and set as 
// address for DAP 
ALU_R2 - ALU_R2 +  1 
PE_address ”  ALU_R2

D A P
/ /  Perform addition with carry putting result Into Q 
DAP Q -  DAP_Q +  DAP_C + memory [PE_address]

A L U
B U S

/ /  Increment destination and use as DAP address 
ALU R3 - ALU R3 + 1 
PE_address - ALU_R3

D A P
/ /  Store result Into destination 
memory[PE_address] — DAP_Q
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// Decrement loop counter 
// If non zero repeat main loop 

SKQ SEQ_count - SEQ_count - 1
if SEQ_count !■ 0 then goto SEQ_pop()

In the routine shown above the instructions are organised into groups 
(between pairs of horizontal lines), such that each group performs at most 
one operation on each of the functional units. Each instruction is preceded by 
a code which specifies the functional unit it applies to, thus within each 

group all the codes are different.

Each group represents a single cluster controller microcode word, and 

executes in a single cycle. Notice in particular that the main loop formed by 
the last three group>s contains a DAP operation in every group, so that the 

DAP is kept fully supplied with instructions at one per cycle, even though 

three operand addresses and one loop counter are calculated for each 
iteration of the loop. This was one o f the principal design aims, and it has 
been achieved very satisfactorily.

As can be seen from this example there is significant interaction between the 
various fields of each instruction. Managing this interaction is the job of the 
programmer, which can considerably complicate the programming task. This 

is particularly true for the numerous sp>ecial cases such as being able to 
supply an immediate operand to the ALU and use the outputted value on 
the bus in the same instruction, or having to repeat PE instructions for 
operations that take multiple cycles, or having to wait three cycles before 
edge register data is ready and so on.

U sing CLASS the applications programmer must be fully aware of this 

complexity, and this reduces the programmers efficiency considerably. To 
overcome this a software strategy based on the use of a high level language 

has been devised, whereby only a simple set of primitive routines needs to be 
written in CLASS. Once this is done the applications programmer will not be 

required to use CLASS at all, although the option will always exist for those 

applications which require optimal performance.
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3.4 Conclusions

T h e Warwick Pyramid Machine is designed to provide an architecture 
optimised for image based applications. This is achieved through the use of a 
heterogeneous multi-paradigm arrangement where a variety of parallel 

processing resources are made available to allow each of the varied types of 
algorithms associated with this class of application to be mapped on to the 

type of processor most appropriate for it.

The main components of the machine are a massively parallel fine grain 
SIM D array matched to low level iconic processing, and a coarse grain MIMD 

array  matched to high level model based processing. O f particular 
importance is the manner in which these two arrays are interconnected, and 

the manner in which control is distributed.

The machine is built up from independent clusters, where each cluster 
consists of a small section of the SIM D array, a controller and a single 
processor from the MIMD array. This arrangement allows each SIMD patch 
to be provided an independent instruction stream, and provides an 

independent path for data to be passed from SIMD to MIMD arrays.

T h e multiparadigm approach has been taken by a number of other 

architectures, most notably the IUA, the Disputer and the Pixel Planes 5 
machines. All these are based on the sam e basic premise of matching fine 
grain SIMD arrays to pixel level processing and coarse grain MIMD arrays to 

model based processing. However a number of fundamental differences exist 

in the various approaches that have been taken.

M ost notably the Multi-SIMD arrangement of the WPM contrasts with both 

the Disputer and the IUA, both of which rely on a single global array 

controller for their SIMD arrays, (although the IUA does provide multiple 

communications paths). This restricts the class of efficiently implementable 
algorithms to those which operate uniformly over the whole image. Also in
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the case of the Disputer the single communication path forms a serious 

potential bottleneck, although in the current very small implementation this 
is probably acceptable.

The WPM by comparison can efficiently implement algorithms which 
exhibit a high degree of local autonomy. Examples of such algorithms 
include recognition systems, such as described by Francis [Francis 90] and 

im age generation systems such as described in chapter seven. Either of these 
typical example applications would be difficult to implement efficiently on a 
non Multi-SIMD architectures.

The Pixel Planes 5 architecture does provide for Multi-SIMD operation, 
w hich it uses to implement an image generation scheme similar to that 

outlined in chapter seven. However the Pixel Planes architecture is highly 
optimised for a very specific class of image generation systems and lacks 
su p p o rt for m ore general algorithm s, such  as inter processor 
communications at the SIMD level, provision for associative response, and 
com m unication from the SIMD to the M IM D array. However it is 
nonetheless interesting to note that such a highly optimised architecture 
should include Multi-SIMD operation, and this seems to confirm that such 
an arrangement is very desirable for a number of real applications.

Possibly as important as the architecture is its chosen implementation. The 

WPM is based on industry standard components, namely the Transputer, the 

AMT DAP and AMD bitslice components. This has allowed a working scaled 
down prototype of the machine to be successfully constructed and tested. 

Apart from the WPM only the Disputer, also based on industry standard 
com ponents, has actually been implemented to the point of having a 
working prototype.

Chapter Three: The Warwick Pyramid Machine
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Chapter 4

Programming Parallel Architectures

4.1 Introduction

One o f the most important challenges for the designers of parallel systems, 

has been finding effective ways of program m ing them. Conventional 
programming languages are usually inherently sequential in nature, which 

reflects the sequential architectures on which they are intended to run. In a 
sequential language a programmer expresses an algorithm as a sequential 

series of operations, with each operation being completed before the next 
begins such that one operation is being performed at any one time. Parallel 
architectures, on the other hand, allow several operations to be carried out at 
the sam e time. To take advantage of this there m ust be some way of 
determining which operations may be performed in parallel and which may 
not.

There are essentially two approaches to this problem, one is to make use of 

im plicit parallelism, the other to allow explicit parallelism. Systems based 
on im plicit parallelism use languages which do not contain any mechanism 
to d irectly  express parallelism. These system s are often based on 

conventional sequential languages, most com m only Fortran, and 

sophisticated compiler technology which can determine which operations 
may be performed in parallel while preserving the semantics of the original 
program.

Exp licit parallel programming systems are based on new or extended

\\
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programming languages which allow the programmer to directly express 

which operations are to be performed in parallel.

4.2 Implicit Parallelism

System s based on im plicit parallelism attem pt to extract parallelism 
intrinsically present in an algorithm. Even if an algorithm is expressed in a 
sequential language it is often possible to analyse the dependencies within 

the program and work out which operations must be performed in sequence, 

and which can be performed in parallel. Im plicit parallel systems are 
generally based on either an existing conventional sequential language, or on 

a pure functional language.

4.2.1 Parallelising Sequential Programs

T h e use of an existing sequential language has a number of advantages. 

Firstly it allows so called dusty deck programs to take advantage of parallel 
hardware. Dusty deck, is a reference to punched cards, and refers to existing 
programs, which are to be run without modification. It also removes the 
necessity for programmers already fam iliar with an existing sequential 

language to learn a new one. This is particularly important for those 
programmers whose principal job is not actually programming.

T h e most common language used for this purpose is Fortran, which is 

currently the most popular language used for scientific and engineering 
w ork, where parallel architectures have found most application up to now. 

A ll current super-computers provide versions of Fortran which can make 
use of vector parallelism. Super-computers such as the Cray and Alliant etc 

implement vector instructions which perform an operation on a vector (or 

array) of numbers in parallel and provide Fortran compilers which can 

generate these vector instructions in place of the inner loops of array 

routines.
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For exam ple consider the following coder- 

do 10 i-1,100
A(i) - B(i) + C(i)

10 continue

This loop adds together two arrays and places the result in a third array. On a 
conventional architecture this would be implemented as a sequence of one 
hundred loops each of which would add one element of each array together 

and place the result in an element of the third array. However it is dear that 
the calculations performed in each iteration of the loop are completely 

independent of the calculations in the previous loop, and so it would be 

possible to calculate all the one hundred additions in parallel.

A vectorising Fortran compiler would replace this loop with a single vector 

instruction, which adds two vectors of length one hundred together and 

places the result in a third. This is quite straightforward in this very simple 

case, b u t in practice programs are rather more complex than this, and 
com pilers need to be very sophisticated to be able to determine which loops 

can and cannot be vectorised. Consider the following simple example.

do 10 i-1,100
A(i+1) - A(i) + B(i)

10 continue

In this example the result of one iteration of the loop does depend on the 

result o f  the previous iteration, because the value A(i) in the loop is the 
value A(i+1) from the previous loop. This means it is not possible for the 

com piler to use a vector instruction in place of the loop, and so no use can be 
made o f  the parallel hardware of the machine.

So called  vectorising compilers are extrem ely popular, and form the 

foundation for the vast majority of scientific supercomputing. They are 

how ever currently limited to vector processors, and comparatively little 

progress has been made in automatic parallelisation of programs for other
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architectures such as distributed memory MIMD systems.

Even on vector machines a state of the art parallelising compiler can only 
generate parallel code for certain specific cases, as illustrated above, which 

in v olv e  inner loops that operate on array data w ith no inter loop 
dependencies. Code of this kind is however very common in certain 

scientific applications, and it is in exactly these areas where supercomputers 
have found much application.

In m any more complex programs the ability of the compilers to extract 

p o ssib le  parallelism from the programs becom es lim ited. It is not 

uncommon for current vectorising compilers to be almost totally unable to 

vectorise normal scientific applications [HenPat 90]. This is often not because 
the programs do not contain any parallelism, but because the compiler is 

unable to extract what parallelism there is [Kuck 74].

C om pilers are unable to extract parallelism when a program does not 

conform  to the structure that the compiler is expecting. This may be because 
the algorithm used is not data parallel, that is it does not perform the same 
operation on many pieces of data, and therefore cannot use the vector 

operations of vector machines. Alternatively it may be because the 
algorithm , although data parallel, is expressed in a manner too complex for 

the compiler to recognise and thus vectorise.

In the latter case reorganisation of the program will often allow a version to 
be produced which is simple enough for the compiler to vectorise, but in the 
form er case it will be necessary to rewrite the program completely using a 
com pletely different algorithm which achieves the same overall result, but 

which is suitable for vectorisation.

Unfortunately the fact that programs have to be rewritten rather defeats one 

of the main advantages of the parallelising compiler approach, namely that 
existing sequential programs written without parallelism in mind could take 

advantage of parallel hardware without modification.
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It was also assumed that programmers already familiar with the sequential 

language used would not need to be retrained, but this is also not true. The 
task of designing an algorithm which can be parallelised, is equivalent to 
designing a parallel algorithm, since in both cases it is necessary to organise 
the com putation such that multiple operations can proceed in parallel. 

Therefore it will still be necessary for the programmers to be fully conversant 
with parallel algorithm design. In addition the programmer must be able to 

express the parallel algorithm in a sequential language, taking into account 
any peculiarities in the particular compiler used.

The approach outlined above is exactly the reverse of that originally 

intended. Instead of the com piler taking a sequential program and 

converting it into a parallel one, the programmer takes a parallel program 

and converts it to a sequential one. This causes a number of problems due to 
the sem antic gap it introduces. The semantic gap is the difference between 
the algorithm  as understood by the programmer and the realisation of the 

algorithm in the form of code. If the language the algorithm is expressed in 
does not allow  the concepts that the programmer was working with to be 
directly expressed, then there is said to be a semantic gap.

For exam ple to take advantage of a vector machine a programmer may 

deliberately design an algorithm so that all the calculations on a particular 
array could proceed in parallel. If this were coded in a sequential language 

there w ould be no way of expressing that the operation should proceed in 
parallel, it would be the task of the compiler to determine that a vector 

instruction could be used. Subsequent programmers reading the sequential 
version o f the algorithm would be given no clues as to the motivation 
behind this particular formulation of the problem, particularly if they were 

not fam iliar with the peculiarities of the machine and compiler for which 

the program was written.

This leads on to another problem, namely that to be able to express the 
algorithm in  a sequential form the programmer must be aware of the
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limitations o f the particular compiler which is to be used. There is no 
guarantee that one compiler will be able to parallelise the same code as 

another. This clearly has implications for portability of code, as although in 
general a program will still work on another machine it may not take full 
advantage of the available hardware.

Automatic parallelising compilers are a useful tool for users who have a 
large quantity of existing code which it is not feasible to rewrite and which 

falls into the general data parallel form. However as a general solution to the 
parallel programming problem they seem to be rather limited. They lack the 
expressiveness necessary to allow the programmer to capture the meaning of 
the algorithm being used.

4.2.2 Parallelising Functional Programs

The main difficulty associated with parallelising sequential programs is 
deducing the interdependency which determ ines which parts can be 
performed in parallel. All conventional sequential languages are based on 

the assumption that each statement in the program is completed before the 

next begins. A parallelising compiler needs to perform multiple statements 

in parallel, and therefore must break this underlying assumption. To do this 
while m aintaining the correct semantics of the program, the compiler must 
determine w hether each statement is in any way dependent on preceding 

statements, and ensure that if it is, those statements are completed before the 
next begins.

As discussed in the previous section determining interdependency is a 

difficult problem, and while it has been partially solved for certain cases, it 
remains problematic. An alternative approach is to make use of languages 

which do not contain any assumed sequentiality. The most likely candidate 
for this are the pure functional or declarative programming languages. These 

are not parallel languages, but they are also not sequential in the sense that 
they do not express algorithms as a sequence of statements where each is 
performed one after another.
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A  program in a pure functional language consists of a number of function 

definitions. Each function definition consists of a single expression, as 
opposed to a sequence of expressions as would be the case in a sequential 

language. An expression consists of a single function invocation whose 
arguments may be other function invocations or constants.

To illustrate this, an example functional program which sums the values 

stored in a tree is given below. The program consists of a single recursive 
function, which takes a node as its argument. If the node is an atom, that is a 

leaf node of the tree, it will return the value stored in it, otherwise it will 
return the sum of the two branches, whose values are determined by a 

recursive call to the sum function.

An important point to note is the difference between an if statement as used 
in a conventional language, and the functional if statement. In a 

conventional sequential language an if statement conditionally executes one 
of the two alternative code segments, whereas in the functional case it 
evaluates one o f the two alternative functions, and returns the result.

sum(n)
{

1

In a conventional language a function may have side effects, which means it 

may alter the global state of the program. Also the value returned by a 
function m ay be  dependent on the state of the program. This 

interdependence of functions via the global state of the program, means that 
function evaluation must occur in strict sequential order to ensure the

if (is_atom(n) ) {
n.value ;

1
else {

add(sum(n.left),sum(n.right))
>
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correct functioning of the program.

Functional languages do not have global state, and do not allow side effects. 
A function will always return the same result, if called with the same 

parameters, no matter where or when in a program it is called. This property 

is known as referential transparency, and it guarantees that functions are 

only dependent on the values of their parameters. This in turn implies that 
functions may be evaluated in any order provided that their parameters are 

calculated first (even this restriction may be relaxed in the case of lazy 
functional languages).

Knowing that functions are only dependent on their parameters allows us to 
construct a dependency graph for a program, which has a simple tree 

structure. The nodes o f the graph represent the operations to be performed, 
while the arcs represent dependencies. In this case each node will represent a 
function invocation, while each arc will represent one parameter. This graph 

is constructed by a process of repeated reduction. A reduction step involves 

replacing a function invocation with the corresponding function definition, 
with the actual parameters substituted for the formal parameters.

For example if we have two function definitions

add(a,b) - a + b

mult ( a ,b) -  a  *  b

and an expression

a - add(m u lt( 2 , 3 ) ,  m u lt( 4 ,5 ) )

one reduction step gives

a - add( 2 * 3 ,  4 * 5 )
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another gives

a -  <2 * 3 > + <4 * 5) 

which represented as a graph is

/ \

/ \  / \
2 3 4 5

The form of the graph is a binary tree, so the two subgraphs associated with 

each node are disjoint, that is they have no interdependency, and can 
therefore be calculated in any order, or indeed at the same time. In this 

simple example above, the two multiplications may be calculated in parallel.

Taking the more complex example given earlier which summed the values 

in a tree, the addition on the line marked -> takes two parameters, which can 
be evaluated in parallel. The parameters are calculated as recursive calls to 

the same functions which calculate the sum of the values in the two subtrees 
of the current node. This bifurcation leads to a Odog n) solution instead of 

the sequential O(n) solution.

Thus it is possible to extract parallelism from a functional program by taking 

advantage o f its property o f referential transparency. This makes 

parallelisation more straightforward than for the conventional sequential 
case, where the compiler must attempt to keep track of interdependencies. 

Typical of this approach is the GEC parallel functional language project 

undertaken as part of ESPRIT project 415 [Bum s 1989] which is attempting to 

produce compilers for lazy functional languages such as Miranda and Orwell.

Unfortunately functional languages have found only limited application,
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and are only used extensively by a relatively sm all community, which 
consists mostly of academics. The only significant exception to this is LISP, 

the oldest functional language. However modern versions of LISP no longer 
conform to a pure functional model, and do n o t guarantees referential 
transparency, making it no easier to parallelise than a conventional 

sequential language. Thus it appears that the very things that make 

functional languages relatively easy to parallelise, also prevents them from 
being accepted as viable general purpose languages.

4.3 Explicit Parallel Languages

Explicit parallel languages allow  the program m er to directly express 
parallelism using special language constructs. This approach has several 

advantages over parallelising compilers, not least o f which is its relative 
simplicity. Parallelising compilers must analyse programs, looking for any 

interdependencies and are very  sophisticated pieces of software. By 
comparison a compiler for an explicit parallel language simply has to 
translate the chosen parallel constructs into parallel code.

However the main advantage o f explicit parallel languages is their efficiency 
which derives from two aspects o f their design. First the parallel constructs 

used in such languages are tailored towards the specific machine on which 
they are to be used, so as to allow the compiler to m ap them efficiently onto 

the underlying architecture. M ore subtly because the parallel constructs are 

visible to programmers, they are likely to attempt to find suitable algorithms 

which can take advantage of those constructs. Thus since the constructs are 
chosen because of their compatibility with the chosen machine, an algorithm 

chosen because it matches those constructs will in general be a good match to 
the architecture itself.

The parallel constructs in common use can be subdivided into a number of 

categories. These are data parallel and control parallel. Control parallel 
constructs can be subdivided into shared memory and distributed memory, 

while data parallel constructs can be divided into fixed topology and variable
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topology. It is interesting to note that these classifications are essentially the 
same as the architecture classifications used in chapter two, which supports 

the assertion made above that explicit parallel languages are targeted at 
specific machines.

4.3.1 Control Parallel Languages

Control parallel systems use a number of independent but cooperating 
processes to perform a computation. This style of computation is associated 
with MIMD architectures where each process or thread is situated on a 

different processor. In order to  express control parallelism a language 
requires three essential constructs. Firstly a mechanism to create threads, 

secondly a mechanism for the threads to communicate, and finally a 
mechanism for threads to synchronise.

Synchronisation refers to the ability of one thread to wait for an event caused 
by the execution of a different thread. In general threads must synchronise in 
order for them to interact, such as communicating, or coordinating access to 

shared data (on shared memory systems these are often the same thing).

For example in a producer consum er problem, the producer is a thread 

which wishes to communicate a sequence of data values to the consumer. 
For this to function correctly, the producer must produce data at the correct 

rate for the consumer to consume it. To do this the producer must wait for 

the consumer to consume each data item before it produces another, and 

conversely the consumer must w ait until the producer has produced a data 
item before it attempts to consume it.

As well as communication, threads may need to interact when accessing 

shared data values. A simple exam ple is where a shared variable is being 

used to store a simple numeric value. If two threads wish to increment the 

shared value simultaneously the access must be sequentialised to avoid an 
incorrect result. This is because the increment operation will generally 
involve the thread first reading the value in the variable, then incrementing
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it and then writing the new value back. If both threads read the value 
simultaneously, and then both increment it and write it back, the final value 

will only have been incremented once rather than twice. Synchronisation is 
required to ensure that only one thread attempts to increment the variable at 

a time.

Reference is often made to parallel programming models. An example of 
such a model is CSP or communicating sequential processes proposed by 
Hoare [Hoare 78]. Many languages are based on this model, such as, Hoare's 

own languages CSP, OCCAM [Shepard 87] and Logical Systems C [Mock 86]. 
All these languages contain the same set o f constructs for process creation, 
synchronisation and communication. There are a number of other models, 

each of which is used in a number of languages.

However there are also many constructs which are not associated with a 
particular model, and these may be m ixed and matched with other such 
primitives to provide a set of constructs for a parallel language. These 

constructs are often found in existing languages which have been extended 
to allow concurrency control. An example o f this is Logical Systems C for the 

Transputer, which is a version of the C language which has been extended 

with a variety of concurrency constructs, including message passing, 
semaphores, guarded selections, fork/join, and shared variables.

In the context of such a muddled situation it is difficult to arrange an 

overview of these different systems satisfactorily. The following section 
presents the most common constructs broadly grouped into programming 

models. The relevant languages which make use of those constructs and 
models are also presented. The review is divided into two parts, the first of 
which deals with constructs associated w ith shared memory systems, and the 

second with constructs associated with distributed memory systems.

4.3.1.1 Shared Memory Constructs

Many multiprocessor machines use a shared memory architecture, and these
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are often programmed in existing languages modified to allow access to the 
m ultiple processors. These extensions a re  often fairly low  level. 
Communication is usually via shared variables, which require no additional 

support, since all threads share a single address space. Threads are typically 
created directly using either spawn or fork primitives, and synchronisation is 
usually by either semaphores, critical regions or monitors.

Process creation

Spawn - creates a new thread of control, which executes a specified piece of 
code. Spawn often allows parameters to be passed to the newly created 
thread.

Fork - creates two identical threads of control which both continue execution 
after the fork statement, and share the sam e code and data. The fork 

operation returns a value which is different for the original thread and the 
newly created thread. In this way the two threads can diverge.

Parallel Statements - statically associate particular statements with different 

threads. The total number of threads is fixed for a particular program, 
although it may change at different points in the program.

Synchronisation

Semaphores - make use of an atomic shared variable which is initially set 
to either zero or one. When two threads wish to synchronise they perform 

wait and signal operations on the semaphore. The wait operation checks the 
value of the semaphore. If it is one or greater then the operation decrements 

the value and continues. If it is zero the operation waits and the thread is 
blocked. The signal operation increments the semaphore and allows one 
waiting thread to continue.

Critical Regions - are regions of code which allow only a single thread to 

enter at one time. Typically critical regions are  used to serialise access to
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shared data to guarantee its integrity.

Monitors -  are collections of routines which are used to access shared data. 

Threads can only access shared data via these routines. The routines then 
carry out the necessary synchronisation to ensure that the data's integrity 

remains intact.

4.3.1.2 Distributed Memory Constructs

Distributed memory systems consist of a number of processors each with its 
own local memory. They are connected via some form of interconnection 

network which allows the processors to com m unicate. Most of the 
programming systems for these machines use combined communication 

and synchronisation primitives, rather than separate ones.

Communication and Synchronisation

R em ote Procedure Calls (R.P.C.'S) - are m odelled on conventional 
procedure calls, using familiar syntax, and similar semantics. R.P.C.'s are a 

two directional fully synchronous construct. When a calling thread executes 
an R.P.C. it is blocked, and remains blocked until the remote procedure 

finishes execution and returns a value.

At the receiver a new thread is created to service the procedure. This 

potentially creates multiple threads within the procedure, which means that 
an additional synchronisation mechanism must be included to ensure safe 

access to shared data within the procedure. When the remote procedure is 
complete the thread terminates, and control is passed back to the calling 

thread which can then proceed

Message Passing - refers to a mechanism which transfers a packet of data 

from one thread to another. Message passing m ay be synchronous or 

asynchronous, and either fixed topology or routed.
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Synchronous message passing requires the sending thread to wait until the 
receiving thread accepts the message, at which point both continue. 

Asynchronous message passing allows the sender of the m essage to continue 
as soon as the message is sent.

A synchronous message passing is potentially m ore efficient than 

synchronous, since it avoids the sender having to needlessly wait for its 
message to be delivered. However to implement this, th e  programming 
language must buffer the messages which are waiting to be  delivered. Given 
that buffers must be finite, there may come a point a t which no more 

messages can be sent until the receiver has accepted one. This creates a 
dependence which is not consistent with the asynchronous model, and may 
lead to the program unexpectedly deadlocking.

Fixed topology systems are based on point to point message passing channels 

along which messages are sent. Each channel can connect tw o predetermined 
threads, which are usually fixed for the duration of the program. Routed 

systems allow any thread to send a message to any oth er thread, the 
destination for each message is determined dynamically at run time.

Rendezvous  - is a two way communication mechanism used principally in 
Ada, but also in Concurrent C and Concurrent C++ [Gehani 88]. A 

rendezvous is initiated by a calling thread, or task as it is called in Ada, by 
executing a rendezvous call statement. The syntax of the rendezvous call 

statement is similar to a procedure call, with a name for the rendezvous, and 
multiple typed arguments. The name and argument list m ust match the 

corresponding ones in the called task's rendezvous accept statement. Each 
task has a definition part, which states the name and argument lists of all the 

rendezvous calls the task may accept. Within the body of the task, the code 
may then select which rendezvous calls to accept at any instant.

When a rendezvous call is made the calling task is blocked. When the call is 

accepted by the called task a block of code associated with the call is executed. 
This block of code may read the input parameters passed b y  the caller, and
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may write to the output parameters of the caller. In this manner a two way 
communication is set up. Once the rendezvous is complete both tasks may 

continue execution in parallel.

Linda - actually encompasses a complete parallel programming m odel rather 
than just a communication and synchronisation mechanism, but since the 
principal feature of Linda is its communication model, it will be  dealt with 

here.

Linda [Ahuja 86] uses a shared tuple space, which threads read from and 

write to, in order to communicate. A tuple is an ordered collection of atoms, 
where each atom is a single value of a particular type. Threads m ay write any 

number of tuples into the tuple space without blocking. A thread reads a 
tuple by specifying a template, which is a tuple of the same order as the tuple 

to be matched.

Each atom of the match tuple may either specify a specific value, or a type. If 
it specifies a type then it matches any atom with that type. If it  specifies a 
value then it will only match an atom with the same value. The template 
will match all tuples in the tuple space whose corresponding atom s match 

those in the template.

For example if the tuple space contains the tuple ("fred", 2, b), i.e. a tuple 

containing a string, an integer and a character, then possible templates that 

will match it include, ("fred",int, b), (string, 2, b), (string, in t, ch ar) and 

("fred", 2, b).

If when a thread attempts to read a tuple, no match is present in  the tuple 

space, the thread blocks, until a matching tuple is written to the space by 
another thread. Thus the tuple space may be thought of as a high level 
shared memory system, which enforces synchronisation on data accesses, 

although it has been shown that Linda can be implemented on hardware 

which does not itself have a shared memory architecture.
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The Linda programming and communications model has been incorporated 
into a number of existing programming languages including C and Pascal as 
well as in the language Linda itself.

4.3.1.3 Shared vs Distributed Memory

The above summary of programming constructs is given roughly in 
increasing order of sophistication. In general the later ones may be  regarded 

as higher level constructs, which are more complex to implement but are 
generally easier for the programmer to use. In particular there is an 
important distinction between the shared memory with synchronisation 
model and the private memory with communications model.

With a shared memory system even the simplest statement such as A = A + 

1 can behave unexpectedly without the proper synchronisation ( if two 

threads simultaneously read the value of A then increment it and write it 
back A will be incremented once not twice as one would expect). Worse still 

the statement will typically perform as expected most of the tim e, and only 
fail in the rare case when two threads access A simultaneously. This non 
deterministic behaviour makes debugging extremely difficult.

By comparison the private memory systems, where each thread has its own 
local data (Occam, Ada, Linda etc.), are simple to program in, because as each 

thread has its own local data the synchronisation problem discussed above 

can never arise. Also these languages support communications systems that 

include the necessary synchronisation to perform in the expected fashion. 

With these systems although the implementer may have to deal with the 
complex issue of synchronisation, the applications programmer will not 
have to. This tends to concentrate the difficult multi-threaded code into a 
small number of system routines, rather than being spread out amongst the 

application code, which improves maintainability.
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4.3.2 Data Parallel Languages

Data parallel constructs are generally based on special parallel collection data 

types. These data types vary from language to language, but they all allow 
operations to be performed in parallel on all items of data in the collection at 

once. As with the control parallel constructs, data parallel constructs are 
usually chosen to match the architectures on which they are to be run. 

Existing SIMD architectures can broadly be divided into two categories, those 
which have a fixed topology, generally a square array, and those which allow 
a reconfigurable topology. Similarly the data parallel languages support 
either fixed array data types or more general collections.

4.3.2.1 Fixed Topology Constructs

The class of machines referred to as parallel array processors, have been 

mentioned in chapter two. Typical of these are the AMT DAP, the UCL CLIP4 

and the MPP. All these machines allow a square array of data to be 
manipulated in parallel using special array operations, so that for example, a 

single addition operation may add all the corresponding elements o f two 
arrays together, in parallel, to produce a third array. The languages used on 

these architectures provide equivalent array data types and a set o f array 
operations which act on these data types in parallel.

ICL DAP FORTRAN-PLUS -  provides two special data types, the vector and the 
matrix [AMT 88]. Vectors are one dimensional arrays, and matrices are two 

dimensional. Each element of the vector or matrix is mapped to a single 
processor in the processor array. This is based on the assumption that the 

matrix is the same size or smaller than the processor array. If the matrix is 
larger than the processor array then multiple elements of the matrix will be 

mapped to a single array processor (this is only supported on later versions of 
the DAP FORTRAN compiler).

Once a variable has been declared to be of a matrix or vector data type, then
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any arithmetic operation on that variable is interpreted as an array operation 
and is performed in parallel over the whole matrix. In addition to basic 

arithmetic operations, an extensive library of predefined routines is supplied 
to perform common operations, principally for image processing operations, 
but also for more general scientific applications.

Given below is a sim ple FORTRAN-PLUS program segment w hich 
illustrates these points.

1 i n t e g e r  A ( 6 4 , 6 4 ) , B ( 6 4 , 6 4 ) , C ( 6 4 , 6 4 )

2  A ( C . G T . t h r e s h  ) -  A + B

3  C -  S o b e l 8 ( A )

Line 1 declares three variables A,B,C as matrices of size 64 by 64 elements (the 

indices may be omitted in some versions of FORTRAN-PLUS). Line 2 adds 
the matrix B to the matrix A conditionally on matrix C, so that only the 
elements in matrix A which correspond to the elements in matrix C which 

have a value greater than the chosen threshold will be assigned a new value. 
Line 3 calls a built in function which performs a Sobel edge detection on 

matrix A. This assumes that matrix A is being used to represent an image of 
64 by 64 pixels.

Im ago Processing C  - is an extension to the C language developed as part 
of the CLIP program [Reynolds 81]. IPC provides facilities equivalent to those 

of DAP FORTRAN, by providing an image data type from within the C 
language. Data for the image data types are stored in the CLIP'S array 

memory, and operations performed on these images are performed in 
parallel by the array.

A comprehensive set of library routines are supplied with the system which 

perform common image processing functions such as convolution and edge 
detection as well as image input and output. In addition a run time system is
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provided which handles allocation of memory within the CLIP'S array 
memory, thus freeing the programmer from these tasks.

A p p ly  -  [Harney 87] takes a slightly different approach to the other data 
parallel languages. In Apply programs are written from the point of view of 
one pixel of an image. A program consists of a single procedure which is 
applied to all the pixels in an image potentially in parallel.

Conceptually the procedure is executed once for each pixel in an image, and 
the value of the current pixel is passed as a scalar parameter to the procedure. 

Within the procedure the code appears like an ordinary scalar program, the 
Apply system being responsible for performing the routine on all of the 

pixels in the image. In Apply arrays represent a section of the image whose 

origin is the current pixel. This allows the procedure access to its immediate 
neighbours, and potentially any other pixel, depending on the size of the 
array.

As an example the routine replaces every pixel (x,y) by the average of the 
pixels (x,y),(x+l,y),(x,y+l ),(x+l ,y+ l).

procedure average(image : in array (0..1, 0..1) of byte, 
result : out byte ) 

is
begin

result (image(0,0) + image(0,1) +
image(1,0)+image(1,1))/4;

end average.

Notice that the result is declared as a scalar quantity, but actually refers to an 

entire image. This provides a simple and elegant way of dealing with arrays, 
and is straightforward to compile onto a variety of SIMD hardware.
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4.3.2.2 Variable Topology Languages

Cm USP - [Hillis 85] is the language used by Thinking Machine's Connection 
Machine. This is a conventional SIMD architecture, but rather than 
arranging the processors in a fixed square grid, they are interconnected using 

a dynamic routing system, which can route messages from any processor to 
any other processor. Physically the communication network is a hypercube, 

but the inclusion o f a hardware routing mechanism allow s the 
programming model of the machine to assume that every processor is 

connected directly to every other.

To take advantage of the architecture CmLISP has been developed, which 
allows the manipulation of arbitrarily complex parallel data structures. These 

data structures, known as xectors, are modelled on the LISP list construct, 
and use a mechanism similar to the LISP apply operation to process them in 

parallel. This corresponds to the conventional fixed topology SIMD arrays 
and array operations. In addition to this xectors may also be manipulated 
using a construct known as £  (Beta) reduction, a mechanism which allows 
xectors to be transformed and combined with other xectors. This is the 
mechanism which gives the programmer access to the arbitrary connectivity 
of the Connection Machine.

In CmLISP a xector is a list of mappings: each mapping takes a single LISP 
atom and maps it to another. In any xector there is at most one mapping for 
any given atom, although many atoms may map to the same atom. Thus the 

mapping specified by the xector is mathematically a function. A special case 
of the xector is equivalent to a conventional array, where the xector maps a 

set of natural numbers to a set of arbitrary atoms, thus the xector can be 
thought of as a more general version of an array.

For example

{ sky —» blue grass —» green tomato —♦ red }
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is a xector which maps various objects onto their colours. The objects can be 
thought of as the indices for the xector. The more familiar array formulation 
would be

(1  blue 2 —> green 3 —» red J or just [ blue green red ]

which is an array of the colours with indices 1, 2 and 3. There are various 

operations for accessing the individual elements of the xector, such as XREF 
which returns the mapping for a given index, and XSET which sets the 
mapping for given atom.

Operations on xectors may be performed using the a  notation, which creates 
a xector of functions. When the xector of functions is applied to one or more 
xectors, all the functions are performed in parallel.

For example

(< x + [2 3 4 ] [4 5 6 ]>  = » [6 8 1 0 ]

adds the corresponding elements in the two array xectors together in parallel. 

Corresponding elements must have the same index, any indices which are 
not found in both input xectors are ignored.

Xectors and a  notation give essentially the same functionality found in 

languages such as DAP FORTRAN-PLUS, that is data parallel operations on 
arrays of data. However CmLISP includes one more feature which makes it 
unique, namely beta reduction.

Beta (fi) reduction gives the programmer access to the Connection Machine’s 

routing system. In its most general form fi reduction takes a combining 

operation and two xectors (generally array style xectors). The reduction 
process involves taking the values specified in the first xector and 
constructing a new xector which contains those values, stored at indices
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specified by the second xector. If two values map to the same index then the 
combining operation is used to calculate the value stored at that location.

For example

( f i + [ 2 3 4 ] l X Y Y ] ) = * [ X —» 2 Y —>7]

here the fi reduction is using addition as the combining operation. It takes 
each value in the first array and maps it into the result xector using the 

corresponding index in the second. So the value 2 is stored at index X. Both 
the other values are to be stored at index Y, so the combining operation is 

used to add then together leaving the sum in the result.

CmLISP is an extremely powerful and expressive language which allows full 
access to the Connection Machine's architecture. Unfortunately it would be 

very difficult to implement on anything other than a Connection Machine, 
since it relies on the routing system which is almost unique to the 

Connection Machine amongst existing SIMD architectures.

4.4 Conclusions

Users who have a specific requirement to use existing sequential software on 

a parallel machine, may find parallelising compiler technology an 

appropriate choice. For all other users it is clear that the most effective way of 
programming a parallel machine is using an explicit parallel programming 

language. Pure functional languages, while they provide an interesting 

alternative, suffer from a general lack of acceptance which means it is 
unlikely they will ever be a serious challenge to conventional languages.

O f the explicit parallel programming approaches it is clear that there is much 

merit in using the highest level programming model possible. In particular 
the notion of separate processes with local data which communicate by 

message passing seems to offer a number of advantages, in terms of ease of
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programming and debugging, over shared memory models.

It is also very important that the programming model chosen maps well 

onto the architecture being used. This is essential if efficient parallel 

programs are to be produced because of the great differences in approach 
taken by different parallel architectures. Implementing a shared memory 

programming language on a distributed memory machine, for example, 
would produce a very inefficient result.
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Chapter 5

A  Dual Paradigm 
Programming Model

5.1 Introduction

All the languages and techniques mentioned in the previous chapter were 
oriented towards either data or control parallel architectures, reflecting the 

architectures on which there were intended to be used. The Warwick 
Pyramid Machine is a multi-paradigm architecture which combines both 
data and control parallelism, and therefore none of the existing languages is 
suitable, since none address this multi-paradigm model.

One solution to this dilemma is to make use of two languages, one which 

supports data parallel constructs, and one which supports control parallel 
constructs. This is the solution chosen by a number of existing projects, such 
as the IUA which uses Forth for SIMD programming and LISP for its MIMD 

programming, PASM where it is proposed that MIMD programming be 

performed in Ada or CSP while SIMD programming be performed in 
assembly language.

Initially the Pyramid Machine project was to adopt this solution, using 
Transputer C and a low level data parallel language, Cluster Programming 

Language, which was designed, but never implemented.

However while this approach works it is not an elegant solution to the 

problem, and causes a number of difficulties. A principal criticism is that 
such an approach does not provide a means of expressing algorithms which
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make use of both control and data parallelism in a single uniform way, 
making programs more obscure and requiring programmers to become 

familiar with two programming systems rather than one. Also it does not 
provide a solution to expressing interactions between the two parts of the 

machine. To be acceptable to potential users and applications programmers it 
was considered that a single language should be developed that could be used 
to program all parts of the machine.

The chosen solution is to make use of a single programming model which is 
expressive enough to encompass both control and data parallelism. This 

model is based on object oriented programming which provides 
methodology for structuring programs based on the data that they 

manipulate. This model, which has been popular for some time in 

sequential programming systems, can be used to express all the parallelism 
required in our application without almost no alteration. This has allowed 
an existing object oriented programming language to be used almost 
unchanged.

A dual paradigm programming language based on object oriented 
programming called Pyramid C++ has been developed which, as its name 

suggests, is based on the popular C++ programming language, an object 
oriented extension to C.

In this and the following chapter the design and implementation of this 

language will be described in detail. However before dealing with the 
specifics of Pyramid C++ itself, object oriented programming as applied to 

sequential programming will discussed. The extensions necessary to support 
both control parallel programming and data parallel programming will then 

be discussed, with reference to related work on parallel versions of the object 
oriented model.
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Object oriented programming is a design methodology intended to address 
the problems associated with large software systems. These problems come 
about because of the explosive increase in complexity of modern software 

projects. While the performance of hardware systems have progressed at an 
ever increasing rate, software systems have struggled to keep up. The 

problems encountered in generating new software at a sufficient rate to keep 
up with changing demands, and then maintaining the ever increasing body 

of existing software, are of such magnitude they have given rise to 
predictions of a so called software crisis [Meyer 88].

5.2.1 Structured Programming

Over many years software engineers developed improved methods of 

softw are construction based on structured programming, modular design 

and abstract data types. These design techniques have done much to improve 
the situation as far as improving the reliability and maintainability of 

software, and has to a certain extent helped in the creation of new software, 
by making the software easier to understand.

Structured programming encompasses a number of techniques which are 
aimed at making programs easier to write and maintain. Central to these 
ideas is modular design. This involves dividing a program into modules 

such that there is as little interaction as possible between modules. To 

achieve this programs are divided up into modules based on their 
requirements to share information. This introduces the idea of coupling 
between different parts of a program. Coupling is a measure of the amount of 
common data shared by two parts of a program. If two parts of a program 
often require access to the same piece of data then they are said to be strongly 

coupled. Conversely if they seldom require access to the same data they are 
loosely coupled. Modular design attempts to produce strong coupling within 

a module, known as cohesion, and weak coupling between modules.
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The principal motivation for this design approach is to allow programs to be 

altered without introducing unwanted side effects. Modular design aids this 
by isolating each module from the rest of the program, such that changes 

made to one module should not affect other parts of the program. This 
however relies on the overall structure of the program remaining the same, 
so that the chosen module structure does not have to be altered. It is 

therefore very important to ensure that the initial choice of module 

decomposition is likely to remain stable over the lifetime of the program.

There is strong evidence to suggest that the structure of programs designed 
around the data that they manipulate are more stable than those designed 

around the functions that they perform [Meyer 88]. Taking as an example an 

image processing package, or a word processor, the aspect which characterises 

them is the data on which they operate, i.e. images or text. The exact 
functions that may be provided by such packages will probably vary greatly, 
but the structure of the data that they manipulate will be much more 
consistent.

5.2.2 Abstract Data Types

A successful modular structure should be based on the data that a program 
manipulates, which should also provide the necessary strong internal and 
weak external coupling. To this end the concept of abstract data types was 

introduced. An abstract data type is a programmer defined data structure, 
together with a set of routines which manipulate it. A typical example of this 
might be a data base, where the structure of the data and the operations to 
search and manipulate it would be grouped together in a single module.

Languages such as Ada and Modula 2 have specific support for the concept of 

abstract data types. Both provide facilities to define modules which contain 
data structures and the routines that act on those structures. These modules 
are divided into two parts, a definition part, and an implementation part.
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The definition part will typically contain the definitions for the data 
structures manipulated by the module, and the operations provided by the 

module to manipulate the data, while the implementation part contains the 
code that actually implements the operations. In this way it is possible to 
design other modules which interact with a particular module by referring 
only to the definition part of the module. If the system is designed and built 

in this way it should be possible to change any module's implementation, 

without affecting the functioning of other modules provided that the new 
implementation conforms to the existing definition.

5.3.3 Reusable Software Construction

Despite the progress made by the use of structured programming ideas, 

researchers at Xerox and elsewhere were concerned that these ideas needed to 
be extended still further to avoid the software crisis. In particular it was 

noticed that the same or very similar code was written over and over again 
for each new software project. For example routines to store and search data 
bases, or sort data, appear in many programs. Hardware engineers can call 
upon libraries of integrated circuits which perform common functions, and 

so seldom have to reimplement such functions from scratch. What seemed 

to be required was what has been referred to as a software IC [Cox 86].

The conventional approach to reusable software is the use of libraries which 
provide commonly used functions, which can be called from the user 
program. However it was found that in many cases these functions were not 

used, instead programmers would rewrite them from scratch. The reason for 

this was found to be that library routines were too specific, and lacked the 
generality to work in a case other than the one for which they were intended. 

For example a sort routine, might sort integers, but the same sort routine 

would be incapable of sorting employee records. The proposed solution to 
this problem was object oriented programming.
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5.2.3.1 Message Passing

Object oriented programming extends the concept of abstract data types to 
include the concept of message passing. In object oriented programming 
modules are replaced by objects. An object contains both data and the 

operations that act on that data. The data within an object is private to that 
object, so that the only access other objects have to the data is via the 

operations defined by the object.

Objects communicate by message passing. A message is a request for the 

object to perform one of its operations. The crucial aspect of message passing 
is that the object will interpret the message according to the type of object it 
is. For example a print message will be implemented differently by an integer 

object than by an employee object. This behaviour is known as 
polymorphism or dynamic binding.

This behaviour is essential to software reusability. Earlier the example of a 
sort routine was given. Using normal software construction techniques the 
sort routine will need to be rewritten to handle a different data type. Using 

object oriented programming the sort routine will sort any collection of 

objects provided they implement messages which compare two objects. This 

comparison m ay be implemented differently for every type of object, but the 
appropriate implementation will be chosen dynamically at run time so that 

the code behaves as expected.

The first object oriented language was Simula [Dahl 66], a language intended 
for simulation, which used interacting modules to represent objects in the 

real world, hence the term object oriented. While many of the facilities we 
now associate with object oriented languages first appeared in Simula, it was 

Smalltalk [Goldberg 83] that is generally regarded as the parent of object 
oriented languages. Smalltalk is a pure object oriented language in the sense 

that all data in the language is represented as objects.
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5.2.3.2 Classes

Objects in Sm alltalk, and other object oriented languages, are grouped 
according to their class. A class is a complete specification for all objects of 
that class. A class definition contains the specification of the data that the 
objects will contain, the definitions of the operations that are available on 

the objects, and the actual implementations of those operations.

An example class definition for an employee class in C++ is given below.

class employee{ // Name of class
date date_of_birth; // specification of data 
string name; 

public:
get_age(); // Definition of operations
get_name();

) ;

employee::get_age () // Implementation of operation
{

return (today - date_of_birth)
>

As can be seen the employee object contains two data items, a name and a 
date of birth. Each employee object understands two messages, one to get the 
name of the em ployee, the other to get the age (a real definition would 

obviously include many others). Each message is associated with a function 
or method, such that when the object receives a message one of its methods 

is called.

An object of the employee class can be created by declaring a variable of that

type-

employee example;

This creates an object example of class employee. A message can then be sent
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to the object

exam ple. g e t_ a g e ( ) ;

This sends the message g e t_ a g e  to the object exam ple. Notice that the object 
does not actually store the age of the employee, only the date of birth, it 
calculates the age by subtracting todays date. It would be possible to change 
the implementation so that it really did store the age, without affecting any 

other part of the program, provided the object still behaved the same way 

when sent the same messages.

5.2.3.3 Inheritance

Most object oriented languages allow classes to be defined as extensions to 
existing classes. This is known as inheritance. For example a class of circle 

objects might be defined as a sub-class of a shape class. This implies that all 
circle objects are extensions of shape objects. Thus all messages understood by 

shape  objects are also understood by circ le  objects, although the actual 
implementation of the operations associated with each message might be 

different. For example if  the operation display  is defined for shapes then it 

will be defined for circles  as well, although its implementation will most 

probably be completely different.

In addition to those methods inherited from the shape class the circle class 
may also define new operations which are only valid for circles, such as 

setting the radius of the circle.

Inheritance has two principal uses. Firstly, if a new class is required that is 
similar but not identical to an existing class, it allows programmers to extend 

the existing class rather than having to reimplement it from scratch. 
Secondly it allows routines to be written which make use of common 

behaviour of classes which share a common super-class.

For example in the previous example, if a routine were written which
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processed shapes, it would also be able to process circles , and any other object 
which was derived from the shape class. Both these uses greatly enhance the 
reusability of software written in this way.

In Smalltalk all objects are derived, directly or indirectly, from a single class 
called Object. A section of the class hierarchy for Smalltalk is shown in 

figure 5.1. Notice how the classes form a tree where all children of a 
particular node are derived from  that class. Thus all children of the class 

node M ag n itu d e  will understand the messages implemented by the 

M agnitude class. This class implements a comparison method to compare 

two objects of class M agnitude, so that a sort routine could be written. Once 
this was done any object of one of the classes derived from Magnitude, such 
as Date and Number could also be sorted.

Object

Date Number Sequenceable Bag 
Collection

Float Fraction

Set

I
Dictionary

Figure 5.1: Section o f Class tree for Smalltalk.

Not all object oriented languages work this way, C++ for example allows 
classes to be defined which are not derived from any other class, and thus 
does not have a predefined class structure in the way Smalltalk does, but it 

still allow inheritance for user defined classes.

There are now a number of object oriented languages, many of them 

extensions of existing languages, such as Objective C [Cox 86] and C++ 

[Stroustrup 86] as well as pure object oriented languages such as Smalltalk 
[Goldberg 83] and Eiffel [Meyer 88]. These languages are rapidly gaining in 

popularity, and many modem compilers for non object oriented languages,
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such as Think C and Turbo Pascal are providing object oriented features. 
This popularity is a powerful argum ent in favour o f the use of object 

oriented techniques regardless of its suitability for parallel programming.

5.3 Control Parallel

Object Oriented Programm ing

Conventional sequential object oriented languages have found much favour 

recently for building large systems du e to their excellent modularity and 
resulting understandability, m aintainability and reusability. One of the 
principal aims of the object oriented approach is to divide up a problem into 

small independent units, which contain both data and the operations which 
can be performed on that data.

To take advantage of a distributed memory MIMD processor architecture, a 
problem must be divided up so that each part can be executed on a different 

processor. Since in general most M IM D processor machines have a much 
higher bandwidth to local data than non-local data, it is important to keep as 

much data as possible local to each processor. This implies that each part of 

the program should be as independent as possible, and should ideally require 
only limited communication with other parts of the program.

As can be seen the two problems share a common goal, namely dividing a 
problem into independent units. Thus it may be appropriate to consider 

object oriented programming as a candidate for use as a control parallel 

programming model. It is particularly encouraging that the method has 

gained popularity, not because of its applicability to parallel processing, but 
because of its ability to construct large reliable systems. It is often suggested 
that parallel programming is difficult, principally because dividing programs 

into separate parts is considered to be  awkward, yet it appears that 

programmers have evolved techniques for doing this quite independently of 
the needs of parallel programming.
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In an object oriented language programs are divided up into collections of 
independent interacting objects. In a control parallel language programs are 

divided into multiple independent processes, each  of which executes on a 
separate processor. An attractive way of m erging these two concepts is to 
assign a separate process to each object, and then assign each object to a 
separate processor.

5.3.1 Actors

In a conventional sequential object oriented language a single thread of 
control passes between communicating objects. W hen one object 'sends a 

message' to another object, control is passed to the target object. When the 
operation associated with the message has completed, control is returned to 

the sender. In the proposed parallel object oriented model a separate thread 
of control is associated with each object. When an object sends a message to 

another object, the receiving object accepts the message and then 
independently executes the operation associated with that message. This 
model is known as the autonomous object or actor model.

It is interesting to note that sequential object oriented languages such as 
Smalltalk, use the term message passing to refer to the inter object 

communications, even though in reality it is implemented by what is 
essentially a procedure call mechanism. This terminology encourages the 

view that the objects are autonomous and independent even though in 
reality they are entirely passive entities. This gives further backing to the 

notion that programmers actually prefer to think o f objects as independent 
even when not dealing with parallel systems.

A number of languages have been proposed w hich adopt the autonomous 

object or actor based approach. Amongst the languages are POOL [America 86] 
a conventional imperative language developed at Phillips for use with their 

DOOM (Distributed Object Oriented M achine) architecture, Concurrent 
Smalltalk [Yokote 86a] a concurrent extension to the Smalltalk 80, Act3 [Agha 

86] a pure functional object oriented language, ACT++ [Kafura 90] an
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extension to C++ to support actors, SINA [Berge 89] an experimental 
imperative language and ABCL/1 a LISP like object oriented language.

The term actor was originally coined by Hewitt [Hewitt 77] to refer to a very 
specific functional model as used in Act3. However the term has since come 
to encompass a more general autonomous object system  as used in most of 
the languages listed above. In this thesis the term actor will be used in its 

more general sense.

In the actor model, as in the conventional object oriented model, each actor 
consists of some local data and a number of methods which operate on the 

data. In addition to this there is a routine called the object controller which 
reads incoming messages from a system maintained queue, stores incoming 

messages until they can be processed, and determines which method should 

be called. It also controls which messages can be accepted by the actor at any 
given time. Associated with each actor, is a process or thread which executes 
the object controller routine and the m ethods. This is shown 
diagrammatically in figure 5.2.

Figure 5.2: An autonomous Object or Actor
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In this model each actor processes one message at a time. When there are no 
messages to process the actor lies idle waiting for one to arrive, and if a 
m essage arrives while another is being processed it is sim ply queued 

awaiting the currently executing method to complete.

This approach has the advantage that since only a single thread of control is 
active within the object at any given time, and because the object oriented 

model guarantees that only the object's methods can directly access its local 
data, there is no requirement for synchronisation to ensure correct access to 

the data. This makes the approach simple to understand and thus languages 

which use it are relatively easy to program in.

This is similar to the monitor approach to synchronisation, except that in 

this case the organisation of the data into private blocks which are only 
accessible by a small set of routines derives from the object oriented 

approach, rather than being a separate concept.

5.3.1.1 Controlling Message Acceptance

The job of the object controller in the actor model is to control the acceptance 

of messages by the object. The default behaviour is simply to accept the next 
message at the front of the queue, but it is also possible to select certain 
messages to be accepted and others not to be. Messages which are not accepted 

rem ain on the queue until the controller is told to accept them. These 
waiting messages do not block the message queue, so that other messages 

which arrive can still be received by the actor.

These ideas are illustrated in the classic bounded buffer problem. Here an 

object receives requests to read from or write to a finite sized buffer. The 
implementation is quite straightforward except for the two cases of a full and 

empty buffer. If a read request is received when the buffer is empty (or a write 

when it is full), the object cannot process the message. It also cannot simply 

wait for the buffer to become non-empty, because while it is active no other
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messages can be received by the actor.

One solution is for the object to abort and return an error, but then the 
sender will presumably simply have to try again, creating a polling situation, 

which is generally undesirable since it consumes unnecessary processor time. 
W hat is required is a mechanism for suspending the process which 

performed the read or write operation and then restarting it at a later stage 
when it can be performed.

This is achieved by use of the conditional acceptance in the following way.

object buffer 
data

buffer
methods

read() :returns integer; 
write(integer a);

end;

initialise( ) 
{

• >
b )

controller.accept(read); 
controller.block(write);

1

r e a d  ( )

{
c  ) 
d>

if (this is last entry in buffer ) { 
controller.block (read);

• ) controller.accept(write); 
return(buffer entry);

write(a) 
{
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f ) put a in buffer;
if (buffer full)(

q) controller.block(write);
)

h ) controller.accept(read);
)

As can be seen the read methods check to see if the buffer is empty (c) and 
blocks the acceptance of further read messages (d) (by sending a message to 
the object controller). It then accepts write messages (e), on the assumption 

that the buffer cannot now be full since at least one entry has been read out 
(of course the controller may already be accepting write messages). The write 

method performs the reverse operation. It puts the value passed to it in the 
buffer (0 , and then checks to see if the buffer is now full. If so it disables the 
acceptance of further write operations (g). It then enables read operations to 

account for situations where the reads were disabled due to the buffer being 

empty. The in itialise  method causes the object to accept reads (a) but not 

writes (b ) , since the buffer is initially empty.

The above example is similar to the approach used in SIN A were control of 

the acceptable messages is distributed amongst the methods as required. In 
POOL however a special routine known as the object body is used to group 
this control into one place. Act3 incorporates the acceptance handling in its 

replacement behaviour definitions, which has a similar effect of centralising 
the acceptance control. It is not clear that this approach provides any 

advantage over the approach used by SINA, but it does cause a significant 
problem when inheritance is introduced, since it becomes unclear which 

acceptance control routine or definition should be used in the derived class 
[Kafura 90]. Neither POOL or Act3 provide inheritance, which reduces their 

capabilities from an object oriented point of view.

5.3.2 Introducing Multiple Threads

With the model described so far each actor has its own thread of control that 

remains idle until it receives a message, at which point it becomes active
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while it processes the message, and then returns to the idle state. W hile the 
receiver is active processing the message the sender of the message is blocked 

waiting for the receiver to return a value.

If the program initially has one active thread then, given these semantics, 
only one thread will ever be active at any one time in the program. This is 

effectively the same as having only one thread, as in a conventional 
sequential program. Clearly if parallelism is to be achieved more than one 

thread must be active at one time. There are essentially two ways to achieve 

this

Chapter Five: A Dual Paradigm Programming Model

• allow explicit creation of multiple or additional active threads
• use modified message passing semantics to create parallel 

threads

Taking the first approach there are a number of ways in which new threads 

could be created. Probably the most straightforward is to assign a startup 
routine to each actor, so that when a new actor is created this routine is 
executed as an independent thread. This is the approach taken by POOL.

An alternative is to allow an actor to perform an operation similar to a fork, 
whereby the object creates two copies of itself each with its own thread which 

can then execute in parallel. The two copies do not share their data, so there 
is still only one thread of control per actor and no synchronisation is 

required. This approach is taken by SINA and Act3, and is called detach in 
SIN A, and a replacement in Act3 and ACT++.

There are slight differences in the two implementations of this technique. In 
SINA the detach operation produces an exact copy, whereas in Act3 the 
replacement actor may be one of a set of other actors, (although in practice it 

is often the same one). Also whereas in SINA the original thread processes 
the next message to arrive, while the child continues to process the current 

message, in Act3 the child processes the next message while the original 
thread continues to process the current message.
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The principal alternative to explicit thread creation, namely altering the 

message passing semantics, can be achieved in two different ways

• Allow the sender to continue without waiting for a reply
• Allow the receiver to continue after having sent a reply

The first option is called asynchronous message passing. Both POOL, 

Concurrent Smalltalk and Concurrent C++ provide this type of message 
passing by use of explicit syntactic constructs, while all message passing in the 

Actor based systems Act3 and ACT++ is asynchronous.

Asynchronous message passing works well where there is no value returned 

by the receiver. However if a value is required the sender would still have to 
wait for the invoked method to complete.To overcome this limitation the 
concept of a deferred result is introduced.

A process which wishes to send an asynchronous message but requires a 
return value, creates a return mailbox, and specifies it as the return address 
for the message. Once the message is sent, the sender may proceed in parallel 

with the receiver. When the receiver is ready to produce a value it writes it 
into the return mailbox. Then, at some later stage when the sender has 

finished its other processing and requires the value it can read it from the 
mailbox. If the sender reads the value before it has been written by the 

receiver, the sender is blocked until a value is written. Both Concurrent 
Smalltalk and ACT++ provide a deferred result mechanism using a return 

mailbox construct known as a CBox.

The second of these two methods, whereby the receiving object having 
returned a value may continue execution is supported by Concurrent 

Smalltalk and ACT++. Note however that it may not process any further 

messages until it has completed executing.
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5.3.3 Discussion

The actor or autonomous object model has a number of appealing features. 

The object oriented system provides a guarantee of encapsulation so that 
code can only access data local to its object, and can only communicate with 
other objects using explicit message passing. This provides a convenient and 

secure unit for distribution over a collection of distributed memory 
processors, with the assurance that the non local memory accesses will never 
be required.

Also, because of the restriction to processing one message at a time combined 

with the guarantee of private data, all code can be guaranteed to be single 
threaded, and requires no additional synchronisation primitives. This 

provides a greatly simplified programming model, which produces programs 
which are easier to understand and hence likely to be less prone to 
programming errors.

Finally because it is based on a conventional object oriented programming 
model it should mean that programmers find it straightforward to learn. It is 

particularly interesting to notice how little change is required to allow object 
oriented programming techniques to be applied to parallel programming. It 

would appear that the two systems are actually very closely related, and so 
form an ideal partnership.

For completeness it should be noted that a number of parallel object oriented 
languages have been proposed that do not use the active object model. These 

languages provide separate m echanisms for processes, rather than 
combining them with the idea of objects. Because these languages do not use 

the single thread per object model they require an additional synchronisation 

mechanism. Examples of such languages are Concurrent C++ [Gehani 88] 
which uses Ada style rendezvous communications, Smalltalk 80 [Goldberg 

83] which uses fork and semaphores and PRESTO [Bershad 88] and Emerald 
[Jul 88] which use spawn and monitors.
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While these languages may have some merit they lack the simplicity and 
elegance of the active object approach, and fail to capitalise on the natural 
symbiosis that is achieved by the actor model. They also require the 

programmer to become familiar with low level synchronisation primitives, 

which are inherently more difficult to use than the implicit sequentialisation 
provided by the actors model.

5.4 Data Parallel

Object Oriented Programming

In most existing data parallel languages such as DAP FORTRAN-PLUS and 
CmLISP special parallel data types are provided which allow access to the 

underlying architecture of the machines. These data types contain collections 

of data items typically arranged in a square array, or in some cases a more 

general connected graph. Each data item in the collection is mapped onto one 
processor of the processor array, such that when an operation is performed 

on the collection as a whole, it can be performed in parallel on all the 
elements.

This model maps very well onto the majority of SIMD architectures and is 
simple and straightforward to understand and use. It also provides the 

programmer with constructs which accurately reflect the capabilities of the 
machine, encouraging the development o f algorithms appropriate to the 
architecture, a point which is particularly important for most SIMD 
machines.

5.4.1 Internally Parallel Objects

Objects in an object oriented languages behave in exactly the same way as 
these collection data types. Each object will in general contain a number of 

data items, and when a message is sent to an object it can operate on all those 

data items in a single operation. In all existing object oriented languages 
these operations are performed sequentially, but it is possible to envisage a
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language where they would be performed in parallel. The object oriented 
model guarantees that the implementation of the operations provided by 

objects are hidden from other objects, so the complexity of a parallel 
im plem entation could be completely hidden from the application 
programmer.

The object oriented approach is not limited to providing only parallel array 
objects, but could also provide a number of different parallel classes to coexist 

within the same language. For example it would be possible to provide both 
a set of classes equivalent to the DAP style square array classes and another 

similar to the Connection Machine's xectors within the same language.

Existing data parallel languages based on conventional languages must 
include extensions to these languages to allow primitive operations on 
composite data types. In a conventional version of FORTRAN or C the 
operation of adding two arrays together is meaningless and would produce 

an error from the compiler. In such languages operations such as addition 
and subtraction are built into the languages and cannot be redefined, or 
applied to data types other than those intended by the language definition.

By comparison addition in an object oriented language is interpreted as 
sending a message to an object which requests it to perform the addition 

operation. The exact implementation o f the addition operation is 

determined by the object to which the addition message is sent. Thus 

alternative object classes such as parallel arrays or even parallel graphs can be 
provided, and assuming they implement a method corresponding to an 

addition message, they can be added in the same way as any other object.

It is possible to provide functions which perform low level arithmetic 
operations on parallel data types in languages such as C or Fortran, but these 

cannot be invoked using the conventional arithm etic syntax but must 
instead use an alternative, more verbose and usually more obscure syntax 

which can make complex expressions rather impenetrable.
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For example

R -  ((A+B)*(C/D)+ (E-F)*G) 

might become something like

p_assign (&R,  p_add (p_mult (p_add(A,B) ,p_div(C,D)), 
p_mult(p_sub(E, F),G)))

Such a system has the additional disadvantage that it is inconsistent when 

compared to non parallel expressions, so the fact that a parallel 
implementation is in use is constantly visible to the programmer. In the 

object oriented case this fact is essentially invisible to the programmer, who 
is free to program in a familiar style. This is particularly important for end 
user programmers who it is hoped should not have to be aware of the low 
level details of the implementation.

5.4.1.1 Use of Existing Object Oriented Languages

It is important to stress that unlike languages such as DAP-FORTRAN it is 
not necessary to extend the syntax or indeed the basic semantics of an object 

oriented language to support these operations it is sim ply necessary to 
provide the appropriate implementations for the parallel classes.

One possible implementation approach for such classes is for the compiler to 

support a set of built in primitive parallel classes, which map directly onto 
the underlying machine. From these other, more complex, classes could then 

be built up. This however requires that a modified compiler be produced for 
the chosen language.

An alternative approach is for the compiler to provide direct access to the 

machine instructions of the chosen architecture, a facility already present in a 
number of languages. The primitive data parallel classes can then be 

implemented using these low level operations to access the machine's
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parallel instructions. This approach has the advantage that in many cases no 
alteration is required to the host language. Also it should be stressed that the 
object oriented model ensures that the implementation of the parallel classes 
is hidden from the programmer, so both implementations will look identical 
to the programmer.

Because the parallel classes are definable from within the existing framework 

of the object oriented model, it is straightforward to provide alternative 

implementations for them depending on the architecture on which the 

system is implemented. This opens up the possibility of providing a portable 

data parallel language, where the data parallel constructs provided by the 
language could be mapped at run time to those of the machine on which the 
program is run.

Take for example a system which supported both fixed topology arrays, and 
variable topology xectors. On a DAP or CLIP the array classes could be 

implemented directly by the architectural features of the machine, while the 
xector classes could either be implemented sequentially or in parallel by 
providing a mechanism for simulating the arbitrary topologies. On a 

Connection Machine all the classes could be implemented directly in parallel 
by the machine.

Another possibility is to provide sequential implementations for the parallel 
classes, which allows software written for a parallel machine to be executed 
on a sequential one, or perhaps more usefully it allows software to be 

developed on a sequential machine for subsequent execution on a parallel 
one.

5.5 A  Unified Control and Data Parallel 

Program m ing Model

In the previous sections some techniques for using object oriented 

programming to express control parallelism were described. Also it was
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shown how the object oriented model could be extended to express data 
parallelism. These techniques taken in isolation provide a viable approach to 

programming an architecture such as the Warwick Pyramid Machine which 

consists of both MIMD and SIMD parts.

However the real power of the object oriented approach is realised when 

these techniques are taken together. This provides a framework for a 
powerful unified approach to parallel programming, which allows problems 

to be expressed in their most natural form. This power derives from the use 

of the same concept to express both control and data parallelism, namely 

objects.

Objects are used both to model independent processors and to model parallel 
arrays. Due to the unified representation, parallel arrays are actually arrays of 

objects. Those objects can themselves be autonomous processes, or indeed 

other parallel arrays. Any com bination is possible because to the 

programming system all these different concepts are simply objects.

This flexibility allows the model to capture not only both MIMD and SIMD 
aspects of the WPM but equally importantly the Multi-SIMD capability 

provided by the architecture.

The WPM consists of an array of clusters, where each cluster is an 
autonomous SIMD array tightly coupled to one processor of an MIMD array. 
These clusters can function either independently in a full Multi-SIMD 

arrangement to or can synchronise with neighbouring clusters to provide 

larger SIMD arrays, ultimately achieving full SIMD operation when all 

clusters are synchronised.

5.5.1 Autonomous Parallel Arrays

In the object oriented model Multi-SIMD behaviour may be captured using 

autonomous parallel array objects. These are objects which combine both of 

the attributes described in the previous sections, namely an independent
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thread of control and operations which operate in parallel over their data. In 
essence these objects are abstract representations of the hardware clusters, 

and their operations correspond to those which are implemented directly by 

the clusters.

These autonomous parallel array objects may then be linked together by 
making them the elements of a global parallel array object. Depending on the 

application it may be desirable to use a single global array object, which 

provides full SIMD behaviour, or use multiple autonomous arrays to allow 
partial Multi-SIMD and partial SIMD behaviour. The arrangement used is 

completely under the control of the programmer, and may be altered 
throughout the execution of the program to match the changing needs of the 

algorithms.

This model is not restricted to the WPM however, it should be equally 
applicable to other multi-paradigm architectures such as the IUA and 

Disputer. Perhaps more interestingly it should also be applicable to 
conventional single paradigm SIMD and MIMD machines, which although 
not capable of implementing all its facilities equally efficiently, can generally 
provide all the necessary facilities in some way. This provides the possibility 

of writing portable parallel programs, which should prove to be a very useful 

facility.

5.6 Conclusions

The dual paradigm programming model described above provides the first 

single solution to the problem of programming a dual paradigm parallel 

machine. The few other attempts to provide a solution to this problem 
involve the use of two separate languages, one which supports data parallel 
constructs, the other which supports control parallel constructs. This is not a 

satisfactory solution since it does not allow algorithms which use both 
control and data parallelism to be expressed within a single framework.
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The use of object oriented techniques has allowed a single coherent dual 
paradigm model to be developed which, as will be shown in the next chapter, 

can be mapped onto existing object oriented languages. This approach is the 
first to provide a mechanism for expressing algorithms which combine 
control and data parallelism. By doing so it also allows the programmer to 

access to the Multi-SIMD capabilities of the WPM, which provides an 

efficient mechanism for the solution of many typical image analysis and 
image generation problems.

The object oriented approach is particular advantageous because it has 

already been accepted by the software engineering community as a powerful 

mechanism for allowing highly complex systems to be designed and 

maintained. This has the dual advantage that many software engineers are 

already familiar with the concepts involved, and also that it suggests that it is 

an appropriate choice for implementing the complex parallel systems found 
in applications such as real time image analysis.
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Chapter 6

Pyramid C++

6.1 Introduction

In the previous chapter a model for dual paradigm parallel programming 

based on object oriented techniques was described. A programming language, 
called Pyramid C++ has been implemented which is based on these ideas. 

This language is targeted specifically at the Warwick Pyramid Machine, 

directly supporting all the concepts implemented by this architecture, 
however it is hoped that many of the concepts introduced in this language 

are applicable both to other object oriented languages and also to other 

architectures.

Pyramid C++ as its name suggests is based on C++, an object oriented 
extension to the C language. One of the principal design objectives has been 
to ensure that the new language is as similar as possible to the conventional 
language on which it is based. The principal motivation for this design 

decision was to allow programmers already familiar with C++ to move to 
the new language with as little effort as possible. It was noted that the 

majority of commercial parallel systems are programmed in extensions to 
existing sequential languages rather than totally new parallel languages. It 

was therefore felt that maintaining as much compatibility as possible with 
C++ would improve the likelihood of the language being adopted.

There was another important aspect to this approach however, namely to 

demonstrate that the object oriented paradigm as it stands is sufficient to 
support all the parallel programming constructs required to express both 

control and data parallelism, with little extension. The fact that this has been
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achieved with a high degree of success suggests that this original assertion 
has a high degree of validity .

In this chapter the Pyramid C++ language will be described in some detail, 
with emphasis on the extensions that have been made, principally to the 

semantics of the language to support dual paradigm parallelism. Following 

this the implementation of both the language translator and the run time 

environment, which plays a particularly important role in this system will 
be described. First however it seems appropriate to briefly describe the C++ 
language on which Pyramid C++ is based.

6.2 Sequential C++

C++ is an object oriented language designed by Bjarne Stroustrup 
[Stroustrup 86] at Bell Labs. It is based on the language C which was also 

designed at Bell Labs by Dennis Ritchie. C is a block structured procedural 

language, which is aimed at low level systems programming applications. It 
was originally written as part of the UNIX project, and UNIX itself, along 
with most UNIX applications programs, is written almost entirely in C.

C combines many of the features associated with structured programming 
languages such as Pascal including user defined data types, recursion and 
strong typing, with lower level facilities such as bit manipulation and access 

to machine addresses, a combination which makes it ideally suitable to 
complex systems programming projects such as operating systems.

C++ introduces a number of extensions to C which allow it to support object 

oriented programming. These include all the facilities normally associated 

with an object oriented language such as classes, inheritance, polymorphism 
and operator overloading. However unlike pure object oriented languages 

such as Smalltalk where all data is represented as objects, C++ is very much a 
conventional language with object oriented extensions.

The rationale behind extending C rather than developing a new totally object
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oriented language is that it allows the large number of programmers already 

familiar with C to learn the new language relatively easily. This is a very 
similar rationale to that behind extending C++ rather that developing a new 
parallel language. It is interesting to note that C++ has rapidly become the 

dominant object oriented language, which seems to suggest that these 

arguments have some merit.

Classes in C++ are templates, defining the pattern for all subsequent 
instantiations of objects of that class. This makes them essentially the same 
as user defined types and indeed the same syntax is used to declare them. 

This contrasts with Smalltalk where classes are regarded as objects which 

create instances of themselves.

A class definition in C++ contains a list of variables which are to be used to 
store the object's data and a list of functions which are the operations which 

will act on the data. Only the functions defined in the class (called member 
functions) may access the data of the object, so the data is only accessible to 

other objects via the operations defined for the object. This ensures the 
encapsulation which is so important for the use of object oriented languages 

for programming distributed arrays.

A class may be derived from another class using the inheritance mechanism. 

This implies that the new class, called the subclass, contains all the data and 
all the operations of the existing class, called the super class, plus any new 

data and new operations defined by the subclass. Data in the superclass may 
either be made accessible to the subclass or protected from it at the 

programmers discretion.

The subclass may redefine any of the functions defined in the superclass, 

provided those functions are declared as virtual functions in the superclass. 

Virtual functions provide the mechanism by which C++ implements 
polymorphism allowing a number of alternative function implementations 
to be associated with a single virtual function. Where a class has a number of 

subclasses, each of which defines different versions of the same virtual
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function, the compiler will ensure that, at run time, when the virtual 
function is called on a member of one the subclasses, the function 
implementation defined by that subclass will be called.

For non virtual functions the compiler can determine the address of the 
member function to call at compile time (early binding). For virtual 

functions however the exact address cannot be determined until run time, 
since the class of the object that the function is to be applied to cannot be 
known until run time. This is known as late binding. Virtual functions are 

implemented using a per class function table which contains the addresses of 
the virtual functions defined for that class. Each object contains a pointer to 

the virtual function table for its class. Thus when a virtual function is called, 
the address of the function to be called can be determined by indexing into 

the virtual function table. This achieves dynamic binding at a cost of only a 
single level of indirection.

It should be noted that while C++ supports object oriented programming, it 
also still supports all the existing C constructs, and while this upward 
compatibility has undoubtedly been instrumental in its popularity, it does 

have a negative aspect. Programs written in C++ vary considerably in style, 
from almost procedural to almost completely object oriented. This can make 

C++ programs rather hard to read and understand. All the parallel 
extensions made in Pyramid C++ are based on the object oriented model, and 
it is hoped this will encourage a more consistent object oriented approach.

6.3 Language  Description

Pyramid C++ is an exact superset o f C++, any C++ program is a valid 
Pyramid C++ program. An important goal of the design of Pyramid C++ has 
been to minimise the changes to the syntax of the existing C++ language. The 

intention was that all the support for parallelism would be provided by the 
existing object oriented facilities of the language, so no additional constructs 

would be necessary. In practice minor extensions have been necessary, but 
these mostly concern the semantics of the object oriented constructs rather
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than the syntax.

6.3.1 Support for Control Parallelism

The support for control parallelism is based on the active object or actor 
model discussed in the previous chapter. In keeping with the aim of 

maintaining compatibility with sequential C++ this support has been closely 

integrated into the existing C++ object oriented mechanism. This contrasts 
with the approach taken by both ACT++ and Concurrent C++ where the 

parallel constructs are separate and incompatible with the existing C++ 

mechanisms.

6.3.1.1 Actors

An actor is an autonomous object with its own thread of control. Actors 

communicate by sending messages which instruct the recipient to perform 
one of its methods. An actor becomes active whenever a message is received, 
and performs the method specified by the message. When there is no 
message to process, the actor becomes idle and waits for another to arrive. If 

a message arrives while another is being processed it is queued until the 
current method has completed. Queued messages are serviced in a first in 

first out order.

The strictly one at a time message processing permits only a single thread 

w ithin each actor at any one time, and thus provides automatic 
sequentialisation of accesses to the actor's data. This, combined with a 

guarantee of data privacy provided by the object oriented model, means that 
no synchronisation mechanisms are required to ensure correct access to local 
data, which greatly simplifies the task of the programmer.

Actors are defined using the same syntax as other objects in C++, except that 

before the keyword c l a s s  in the class definition, the keyword a c to r  is used. 
An example of an actor definition is given below.
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actor class example{
int data_iteml; // definitions of data items
char data_item2; 

public:
int opl(int arg); // definitions of operations
void operation2(); // known as methods or member

) // functions

Like a conventional object an actor has a number of data items, which are 

private to it, and a number of public member functions or methods, which 
perform operations on that data. This guaranteed privacy of data is the key to 
allowing the system to automatically distribute actors over an array of 
processors.

An actor may only directly access its own data, so if it wishes to access the 

data of another actor it must do so via the operations defined on that actor. 
Because of this the system has only to ensure that the local data defined for 
an actor resides on the same processor to guarantee that no non local 
memory accesses will occur. This is crucial for distributed memory systems 
which do not support non local memory accesses.

In fact in conventional C++, objects of the same class are allowed to access 

each others private data. This allows certain operations to be performed 
more efficiently, but is not consistent with the generally accepted object 
oriented model, and is not allowed in languages such as Smalltalk. This 
facility has been necessarily removed for actors, which are never allowed to 

access other actors private data even if they are of the same class to ensure 
that non local memory accesses do not occur.

Actor Creation

Actors may be created in two ways, namely by declaring a variable of an actor 
class, or by explicitly calling the new operator on an actor class. In either case 

the run time system automatically places the actor on a processor which it
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determines, and returns the address of the actor. This address, which 

includes the number of the processor on which the actor resides, is either 
returned directly, in the explicit case, or bound by the system to the declared 

variable as appropriate. This address is used by the run time system to route 
any subsequent messages to the appropriate processor.

Thus actors may communicate with each other using these addresses, in the 

form of references to other actors, without regard to their physical position. 
In this way programs are always independent of any particular topology or 
any particular size of array, which makes them highly portable. This 

contrasts with languages such as Occam where the topology is fixed, and 

programs must be modified if the topology or number of processors is 
altered.

The code to declare an actor of the example class given below.

example eg_actor; //declare an actor of class example

Alternatively an actor can be created explicitly

example *eg_actor - new example;

In this case the operator new is applied to the actor class which returns the 

address of the newly created actor. This is then assigned to the eg_actor 
variable which is declared as a pointer to an example actor, signified by the * 

before the variable name.

All classes in Pyramid C++, including actor classes, may specify a special 
method responsible for initialisation, called a constructor. This method is 
called automatically by the runtime system whenever an object of the class is 

created, either explicitly or by declaration. In the case of an actor the 

constructor will be executed by the newly created actor's thread, and can 

therefore proceed independently of the thread in which the actor was created. 

This provides the first mechanism by which multiple threads may be created
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in Pyramid C++.

M essage  Passing

All objects in C++ communicate by calling one of the set of defined member 
functions of another object. This process is often referred to as message 
passing, even though for normal passive objects it is actually implemented 

as a simple function call. Thus when a 'message' is sent to a passive object 
control passes to the appropriate method, the operation is performed, and 
control passes back to the caller, possibly returning a result.

For actors however calling a member function is implemented using 
message passing which is capable of passing messages between any two 

objects, regardless of whether they are on the same processor or different 

processors.

The message passing system used is based on semi-synchronous message 
passing. When a message is sent to an actor the sender is suspended while 
the message is delivered. As soon as the message arrives at the receiver, the 
sender may continue execution, assuming no return result is required. The 

object in receipt of the message then proceeds independently and in parallel 
with the sender. This semi-synchronous approach is taken to resolve the 

conflict between synchronous and asynchronous message passing.

With pure synchronous message passing the sender must wait until the 
method associated with the message has been completed, and thus no use is 

made of the potential parallelism that could result if no return value is 

required. The asynchronous alternative, where the sender is allowed to 

proceed as soon as the message is sent, gets round this problem, but 
introduces an implementation problem.

For pure asynchronous message passing to be implemented, messages must 
be able to be sent even if the intended recipient is busy. This requires that 

messages in transit must be buffered. Since in a real implementation buffers
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will be finite, it is possible that these buffers may fill up. If this happens, 

objects attempting to send messages will be blocked until a sufficient number 
of messages are accepted by other objects to allow more messages to be 

buffered. This introduces an unexpected dependency between the actor 
attempting to send a message and the actors that the messages currently 

filling the buffers are intended for.

These dependencies will not have been apparent to the programmer who is 
presented with a pure asynchronous programming model. Also these 
dependencies will generally be non deterministic in nature, depending on 
the momentary state of the message passing system. Such parasitic 

dependencies can easily lead to deadlock and other problems, and present a 

real implementation challenge for asynchronous systems.

The semi-synchronous model guarantees a finite use of buffers, since only 
one outgoing message can be pending from each actor, but still allows the 

operations to be processed independently thus exploiting any potential 
parallelism. This provides the second mechanism by which independent 
threads may be created.

The syntax for sending a message to an actor is identical to the conventional 

C++ syntax used to call a member function in a passive object.

eg_actor.opl(arg); // send a message to the actor
// to invoke operation 1

The code to send a message to the actor e x a m p le  defined previously is 

shown above.

Returning Results

In its most basic form when the semi-synchronous message passing scheme 
is applied to a method which returns a result, the sender will be suspended 

until the return value is received. This system therefore only leads to the
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creation of parallel threads when there is no value returned, so that the 

sender is not required to wait until the message is processed. To overcome 
this limitation two mechanisms are provided to decouple the sender and 

receiver and so introduce the possibility of parallelism. These mechanisms 
are based on a deferred value return mechanism and non terminating value 
returning.

If the called method returns a result, which the sender does not require 

immediately, it is possible for the sender to defer receipt of the return value 
until a later stage using the deferral mechanism. This is similar to the CBox 

mechanism used in Concurrent Smalltalk. When a message is sent to a 

deferred method, the sender immediately receives a Pledge as a return 
value. At some later stage the sender can evaluate the Pledge, at which 

point the value from the called method will be returned. If the called 
method has not yet returned a value the sender will be suspended until one 
is received.

This example shows a deferred result being used

int result; // Final result
Pledge deferred_result; // Promise of result

In addition to this when a called method returns a result, it does not 

necessarily have to term inate, but instead may continue execution 
independently of the sender and terminate at some later stage. This is 
achieved by the use of the reply construct which sends a reply to a specified 

actor, generally the sender, which does not cause the method to terminate in 
the way that the conventional return construct does.

/ / t o  come

deferred_result-actor.method();
/* other code */
result «  deferred_result;

// get promise 
// do something else 
// get result
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For example

actor : :method()
(

/* do some processing */
sender.reply(result);// Send return value 
/* do some more processing */

>

The combination of non terminating reply and deferred methods, allows 
complete control over inter actor communication. They allow sending 

messages to be completely decoupled from receiving replies. Thus the 
programmer is free to choose whether one or two way communication is 

required. If two way communication is needed, the programmer can decide 

both at which point in the called method the reply should be sent, and also at 

which point in the caller the result should be received.

Passing Parameters in M essages

Certain necessary restrictions are associated with message passing, which 
involve the types of parameters that can be passed to an actor method. If the 

parameters are primitive data types, user defined data types or passive 

objects, they must be passed by value, or in other words pointers may not be 
passed. This restriction is necessary since the destination actor may reside on 
a different processor from the sender. If this is the case any pointers passed as 
parameters will be meaningless on the other processor, which does not have 

access to the memory referred to by the pointer.

The exception to this rule is for actors, which must always be passed by 
reference if used as a parameter in a message. This restriction is introduced 
because passing actors by value is considered too complex and expensive. To 

implement value actor passing, would require copying all data associated 

with the actor to the destination processor, and then creating a new thread 
for that actor on the new processor. If this facility were provided it would 

restrict actors from being able to use pointers internally, since these pointers
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would not be able to be passed between processors. Most object oriented 

languages pass all objects by reference, so this behaviour is quite common in 
this environment.

To allow actors to be passed by reference, pointers to actors are implemented 

differently from ordinary pointers, in that they contain a unique network 
wide address, which points to a specific actor on a specific processor. In this 

way these pointers are still valid when passed from one processor to another, 

and thus may be used as parameters in messages.

Controlling M essage  A ccep tan ce

Associated with each actor is an object controller. This controller is 
responsible for dispatching the operations requested by incoming messages. 

An actor can alter the behaviour of the controller by use of special calls. 
These calls allow the actor to block some messages while accepting others. 

There are two ceills available to the actor, one blocks an operation the other 
accepts an operation.

To block the acceptance of a particular message the method would call the 

block method in the controller-

controller .block (method_name);

Once blocked the message can be re-enabled using the accept call

controller.accept(method_name);

When an operation is blocked, any incoming messages that request that 

operation are queued until it is unblocked. In the meantime messages 
requesting other operations are still accepted. The use of this facility is 

illustrated in the example given in the previous chapter to implement a 

bounded buffer.
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6.3.1.2 Coding Example

To illustrate the above points an example program is given below. This 
program implements a sieve of Erastothenes, an algorithm used to generate 

prime numbers. The program creates a linked list of processes, each of which 
stores a prime number. Candidate prime numbers are passed along the list, 

and at each stage are tested for divisibility with the prime number stored at 
that stage. If the number reaches the final stage it must be prime, and so it is 

outputted and stored ready to test subsequent numbers.

actor class sievei 
int prime;

sieve *next;

public:
sieve ();

test (int candidate);

1;

sieve::sieve()
<

prime - 0;
1

//process class definition
//variable to store prime 

//number
//pointer to next stage in 
//list

//constructor, for 
//initialisation 
//operation to test candidate 
//prime

//constructor

sieve::test(int c) //implementation of test
operation
{

if(prime -- 0) { //this is the last stage so p
//must be prime

print("%d",p); //print it
prime - p; //store it
next “ new sieve; //create the next stage

1

else if((p % prime)!-0) { //test p for divisibility

W
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-> next->test(p) ;

>
>

main ()

{
int i;
sieve *head;

//against the stored prime 
//if not divisible pass onto 
//next stage

//main routine, execution 
//starts here

head - new sieve; 
for(i-0; i<100; i++) {

-> head->test(i);

//create first stage in list 
//iterate over 100 candidate 
//primes
//pass each one to head of 
//list

An important point to notice about the above example is that the program 
appears very much like a sequential C++ program. Indeed simply by 
removing the keyword actor on the first line it would compile and run 

correctly using a conventional C++ compiler, although obviously it would 

make no use of parallelism. This emphasises the small degree of the changes 
to the syntax of the language necessary to support control parallelism.

The operation of the program is presented diagrammatically below.

(
M ain  

V____

Figure 6.1: Sieve in operation

136



Chapter Six: Pyramid C + +

The main routine continually increments a counter which holds the 

candidate primes and passes each on to the first sieve in the list. In this 
example the next candidate prime is five. The candidate is sent to each sieve 

stage in turn, and at each stage is tested for divisibility against the prime 

number stored at that stage. If the number is divisible by the prime it is not 
itself prime and is rejected. If it is not divisible, then it is passed to the next 

stage.

In this example five is not divisible by two or three, and so continues to the 
final stage. The final stage is identified by storing a zero. If a number reaches 

the final stage it must be prime, so it is printed, and stored to be used to test 

subsequent candidates. At this point the last stage creates a new stage which 

is initialised to zero.

As mentioned above this algorithm will work equally well as a sequential or 

a parallel program. In the parallel version however all the sieve stages can 
operate simultaneously. Thus instead of a single potential prime number 
passing along the sieve, a continual stream of potential primes moves along. 

In this way many potential primes can be tested in parallel, and therefore the 
throughput of the program will be increased several fold.

The parallelism in the above example is introduced because o f the modified 

message passing semantics. Since when a message is passed to the sieve 
object (on the lines marked by ->), no result is required, the sender is free to 

continue execution immediately after the message has been sent. Thus as 
soon as the candidate prime has been passed to the next stage, the current 

stage is ready to process another prime. In this way the whole sieve can 

operate in parallel.

An important point to notice is that the number of active threads in this 

example increases throughout the life of the program. This facility to 

dynamically create threads contrasts with languages such as Occam where the 

number of threads is fixed at compile time.
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6.3.2 Support for

Data Parallel Programming

In addition to providing control parallel constructs, Pyramid C++ includes 
data parallel support based on the object oriented techniques described in the 

previous chapter. This support is provided by in built parallel collection 

classes which provide a number o f operations which are performed in 
parallel over all the data items in the collection. In keeping with the chosen 

application areas of image analysis and generation, these collection classes 
are organised as two dimensional arrays, generically called Images. This 

arrangement also corresponds with the SIMD array hardware provided by 

the Warwick Pyramid Machine.

6.3.2.1 Parallel Images

Images may be created in the same way as other objects, either statically by 
declaration, or using the C++ new operator. In either case the data for the 

image is distributed over the SIMD processor array, with one data item per 
processor. When an operation is performed on an Image, it is executed on 

all processors in the array in parallel. Thus if two images are added together 
all the corresponding pixels in the two images are added together in parallel 

to yield a third image.

Images may be declared to be any number of bit planes from one to thirty 
two. In particular one, eight, sixteen and thirty two bit deep images are 

supported as special classes called Bitlmage, Bytelmage, Wordlmage, and 
Intlmage respectively. The generic Image class allows numbers of bit planes 

between these values to be specified. Images are first class objects, that is they 

may be used in all situations where any other object may be used. Thus 

Images may be members of other objects, they can be passed as parameters to 

methods, and used in arrays.

138



Chapter Six: Pyramid C + +

T h e  Image class and its subclasses define all the basic arithmetic and logical 

operations provided on conventional integers. In addition they define a 
num ber of operations which allow data to be moved within the array. To fit 

in  with the nearest neighbour communication topology employed by the 

SIM D  array, the movement operations provided allow the image to be 
shifted in one of four directions, referred to as north, south, east and west.

A  simplified definition of the Image class is given below.

c l a s s  Im a g e !  

p u b l i c :

Im a g e ( ) ;

Im a g e s  o p e r a t o r + ( I m a g e s ) ;

Im a g e s  o p e r a t o r - ( I m a g e s ) ;

Im a g e s  o p e r a t o r * ( I m a g e s ) ;

Im a g e s  o p e r a t o r / ( I m a g e s ) ;

Im a g e s  o p e r a t o r «  ( I m a g e s ) ;

Im a g e s  o p e r a t o r »  ( I m a g e s ) ;

Im a g e s  S ( ) ;

Im a g e s  N ( )  ;

Im a g e s  E ( ) ;

Im a g e s  W ( ) ;

>

T h e full Image class definition is much larger than this and contains many 
m ore operations, but this illustrates the fundamental ones.

T o  see how this can be applied an example program is given below which 

evaluates a Sobel edge detector. This implements two simple convolutions 

b y  the 3x3 masks shown

1 0 - 1  1 2  1 
2 0 -2  0 0 0 

1 0 - 1  -1 -2 -1

T h e results of these two convolutions give the edge strengths in the vertical
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and horizontal directions, which are then squared and added to provide the 

square of the total edge magnitude. A square root is normally not performed 
due to the computational complexity of this operation.

m a i n  ( )

{
a )  B y te l m a g e  i m ( 5 1 2 , 5 1 2 ) ,  s o b e l ( 5 1 2 , 5 1 2 ) ;

B y te I m a g e  v e r t ( 5 1 2 , 5 1 2 ) ,  h o r i z ( 5 1 2 , 5 1 2 ) ;

b )  h o r i z  -  i m .N ( ) .W ( )  + i m . N ( ) * 2  + i m . N ( ) . E ( ) ;

c )  h o r i z -  i m .S O . W O  + i m . S < ) * 2  + i m . S ( ) . E ( ) ;

d )  v e r t + -  i m .S O . W O  + i m .W ( ) * 2  + i m . N ( ) . W ( ) ;

•  ) v e r t —  i m . N ( ) . E ( )  + i m . E ( ) * 2  + i m . S ( ) . E ( ) ;

t) s o b e l  -  v e r t * v e r t  + h o r i z * h o r i z ;

g) r e t u r n ( s q r t ( s o b e l ) ) ;

>

The routine starts by declaring four eight bit images each 512 by 512 pixels (a). 

The variables are declared in the same way as ordinary objects, but the data 
that they contain is actually stored in the memory of the SIMD array, not the 

Transputer running the Pyramid C++. Despite this they can be manipulated 

just like ordinary variables, their implementation being completely hidden 
from the programmer.

The routine creates two intermediate results, one using the horizontal mask 

( h o r i z ) ,  and one using the vertical mask (v e r t ) .  The intermediate results 

are calculated in two parts, first adding in the pixels corresponding to the 
positive mask values (b&d) and then subtracting the pixels corresponding to 

the negative mask values (c&e). These two values are then squared and 

added together (f). This produces the square of the vector magnitude, which 
is then square rooted and returned (g).

The expressions of the form im.N () are used to express nearest neighbour 

communications, by performing image shifts. The im . N () operation returns 
the im age im but with each pixel replaced by the pixel to the north of it
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(north is taken as the direction of decreasing y, and east as the direction of 

increasing x). This definition was chosen because the other programmers 
w ho have used the system prefer to think of the operations as they affect 
each pixel. Thus the operation im + im .N () adds every pixel to its north 
neighbour. This model is similar to that used in the Apply language.

6.3.2.2 Conditional Expressions

Conditional expressions allow a subset of pixels within an image to be 

affected by a particular operation. This is achieved using a conditional 
assignm ent operation which is sim ilar in functionality to the DAP 

FORTRAN matrix selection facility. The operation takes an image to be 
assigned to, and a boolean mask, and only those pixels in the image which 

correspond to a non-zero pixel in the mask image will be affected by the 

assignment. The mask image will often be produced as the result of a logical 
operation of another image.

For example an expression which replaces every pixel greater than a certain 
threshold value with the pixel to its north, would be written:

im age. where ( im age> th resh old ) - im ag e . N () ;

The w here construct is implemented as a member function of the base image 

class, and does not represent an extension to the C++ language, it is provided 
using the existing object oriented facilities.

6.3.3 Support for Multi-SIMD Programming

The Image classes described above provide pure SIMD operations over the 
whole bottom level o f the Pyramid Machine. The Pyramid machine also 

allows each cluster to act independently of the others, so called Multi-SIMD 
operation, which is supported by use of the C lu s te r  actor class.

A cluster is an actor which represents a physical cluster. Each cluster is
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associated with one patch o f the SIMD array. Operations on images are 

actually performed by the dusters, so that, for example, when two images are 
added together, the Image dass broadcasts a  request to all the clusters to add 

the patches in their part of the image together. A P a t c h  is the class which 
corresponds to one patch of the image stored in a  single physical duster. The 

P a t c h  class has exactly the same set of operations defined for it as the Image 
dass.

All the operations defined for images map directly onto operations on the 

SIMD array, so that pure SIM D behaviour results. However the programmer 
can define new operations for the clusters which contain data dependent 

conditional code thus allowing the dusters to operate independently.

An exam ple of this is the hierarchical Hough transform algorithm described 

in [Frands 90] . This has been implemented in Pyramid C++ and makes 

extensive use of its Multi-SIMD facilities. The hierarchical Hough transform 
p erform s locally independent Hough transform s on each patch 

independently, and then extracts the lines found in each patch to perform 
edge linking with neighbouring patches. These linked lines are then passed 
to a m odel based matching system.

To implement this it is necessary to be able to define a local Hough transform 

routine which can operate independently on each cluster. In Pyramid C++ 
this can be achieved by providing a Hough operation for the P a tc h  class. 

This operation is implemented in terms of operations on patches, whose 

operations are im plemented in parallel on the SIMD array, so the 
programmer does not need to be concerned with the low level access to array 
parallelism .

Having done this the programmer defines a global im age operation which 

performs the Hough transform over the whole image by making calls to the 

newly defined cluster operation. In this way the new operation appears to the 
application programmer just like any other SIMD image operation, although 
it is actually operating in a Multi-SIMD fashion.
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6.3.4 Discussion

Pyramid C++ provides both control and data parallel operation in a single 
object oriented framework. Control parallelism is provided by autonomous 

actors which are  distributed across multiple processors and communicate 

using m essage passing. Data parallelism  is provided to allow  the 
programmer to perform global SIMD operations using the Im a g e  class, and 

to use Multi-SIMD facilities using the C l u s t e r  and P a t c h  classes.

Multi-SIMD operations are implemented by combining the control parallel 
actor facilities w ith the data parallel array classes. In this way the two facilities 

are combined to form a single coherent programming model for the Pyramid 
Machine.

6.4 Implementation

The implementation of the Pyramid C++ system is divided into three parts, 
the preprocessor, the parallel class library and the run time system. The 

preprocessor is responsible for translating the control parallel Pyramid C++ 
constructs in to  conventional C++. The C++ code generated by the 

preprocessor m akes extensive use of the run time system to implement the 

control parallel primitives. This run tim e system is responsible for passing 

messages from Transputer to Transputer, and from the Transputer to the 
cluster controller. Finally the parallel class library contains the definitions for 

data parallel constructs, and their implementations. These implementations 
are divided into two sections, one o f which runs on the Transputer, the 
other on the cluster controller. Each of these areas will be described in detail 
below.

6.4.1 Preprocessor

As described in a previous section, the control parallel constructs provided by
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Pyramid C++ are provided by actor classes. The inclusion of these classes 
involve a number o f  semantic and some syntactic changes to the C++ 

language. These changes are implemented using a preprocessor which 
translates the various Pyramid C++ constructs into their equivalent in C++.

There are essentially tw o facilities required to implement the actor classes, 

multiple threads and message passing. Whenever an actor is created a new 

thread of control (or process) must be created, possibly on a different 
processor. Also whenever a call to a member function of an actor is made, it 

must be implemented as message passing. Creation of new threads and 
message passing are actually implemented by the run time system, but the 

preprocessor must generate code which calls the run time system at the 
appropriate points.

Stub Classes

To do this the preprocessor creates two so called 'stub' classes. The first of 

these is aliased to appear in the place of the actor class. It is responsible for the 
creation of new actors, and the sending of messages. The second of the stub 

classes is responsible fo r implementing the object controller which receives 
incoming messages and dispatches them to  the appropriate member 
function. This scheme is shown diagrammatically below.

Figure 6.2a: Conventional Object
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6.2b: Actor Implementation using Stubs

In the case of a conventional C++ passive object shown in the first diagram, 

method (or member function) calls are passed directly to the method 
implementations in the object.

If the object has been declared as an actor, all calls to its member functions are 

passed through the stub classes as shown above. This has the effect of 
replacing the conventional procedure calling mechanism with a message 
passing mechanism.

The first stub class has one method for each of the methods in the actor. 
These methods are responsible for converting the method calls into 

messages. To do this they take the parameters passed to the method and 
construct them into a packet. Then a unique method identifier is appended 
to the packet, which is then sent using the message router provided by the 
run time system to the second stub class.

The second stub object consists of two parts, the dispatcher, and a set of 

methods. The dispatcher is  executed by the thread associated with the actor. It 

performs an infinite loop, repeatedly waiting for incoming messages, and 

then dispatching them to the appropriate method. As with the first stub class 

there is one method for each of the methods in the original actor. The 

methods in this stub perform  the opposite function than those in the first.
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They take the incoming packets and extract the appropriate set o f parameters 

from them. They then call the appropriate method in the original object.

The originally defined actor object is implemented as a conventional passive 

C++ object, its autonomous behaviour being provided completely by the stub 

classes created by the preprocessor.

This can be illustrated in the following simple example. The definition of the 

actor is as follows (the method implementations will be ignored since they 

are not relevant to this explanation).

a c t o r  c l a s s  e x a m p le {

i n t  v a r i a b l e ;  // a c t o r ' s  l o c a l  d a t a  

p u b l i c :

e x a m p l e ( ) ;  / /  c o n s t r u c t o r  f o r  a c t o r

i n t  m e t h o d l (  i n t  p a r a m i ,  c h a r  p a r a m 2  ) ;  // tw o  m e th o d s

c h a r  m e th o d 2 ()  ;

1

When passed through the preprocessor this will be converted into

c l a s s  i n v i s _ e x a m p l e {  

i n t  v a r i a b l e ;  

p u b l i c :

i n v i s _ e x a m p l e ( ) ;

i n t  m e t h o d l (  i n t  p a r a m l ,  c h a r  p a r a m 2  ) ;  

c h a r  m e th o d 2  C );

)

Notice that the actor class has been replaced with a conventional C++ class. 

Also notice that the name has been changed to in v is_ e x a m p le . This is done 

to hide the new class definition from the rest of the program. All references 

to it will be diverted to the newly created stub classes.
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The first stub dass has the form shown below

c l a s s  e x a m p le !

P o r t  p o r t ;  

p u b l i c :

e x a m p l e ( ) ;

i n t  m e t h o d l ( i n t  p a r a m l ,  c h a r  p a r a m 2 ) ;  

i n t  m e t h o d 2 ( ) ;

>

Notice that the method names correspond to those in the original actor 
definition, but the data does not. This newly defined data will be used by the 

stub methods. Note that changing the data stored in the object is invisible to 
the rest of the program, because o f the object oriented model.

The method called e x a m p l e  is a special method called the constructor. It is 

called automatically by the C++ compiler whenever a new object is created. 
The constructor performs any initialisation of the object that m ay be 
required.

In this case the constructor is responsible for creating the actor. To do this it 
makes use of a number of routines in the run time system. The new 
constructor has the form shown below

e x a m p l e : : e x a m p l e ! )

!
a )  P a c k e t  p a c k e t ;  / /  v a r i a b l e  d e c l a r a t i o n s

M e m b e rP tr  mp;

b ) m p - p r o c _ e  xam p 1 e : : p _ e  x a m p  1  e ;
c )  p a c k e t « m p ;

d )  p o r t - p o r t _ m g r . c r e a t e  ( s i z e o f  < p r o c _ e x a m p l e ) , p a c k e t )  ) ;

)

The constructor first declares two variables (a), a packet which will be used to 

send a message to the other stub object, and a member pointer, which is a
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special C++ pointer which stores the address of a member function. It then 

assigns to the member pointer the address of the pseudo-constructor for the 

other stub object (b)(see below) . This pointer will be used by the run time 

system to create the second stub object. The pointer is then appended to the 
packet (c)(using the «  operator).

The last line of code (d) actually creates the remote stub, by calling the 

p o r t _ m g r . c r e a t e  routine in the run time system. This routine chooses an 
appropriate processor, and creates a new  object on it. It does this by allocating 

storage of the size given to it ( s i z e o f  ( p r o c _ e x a m p l e )  ) , and then calling 
the constructor associated with the stub class using the pointer passed to it in 

the packet. This constructor then initialises the storage.

The p o r t _ m g r  . c r e a t e  routine returns a P o r t ,  which is a  special object used 

by the run time system's message router. Ports are described more fully in 

the section on the run time system, but essentially they act as system wide 

addresses for actors. The port returned by the create routine is stored in the 
p o r t  variable declared in the stub class declaration. This value will be used 
by the other stub methods to send messages to the remote stub.

In addition to the constructor method, there are also stub methods for each 

of the original actor methods. T h ese  create packets containing their 
parameters and send them to the rem ote stub.

i n t

e x a m p l e : : m e t h o d l ( i n t  p i ,  c h a r  p 2 )

<
•  > P a c k e t  p a c k e t ;

b) M e m b e rP tr  mp;

c ) i n t  r e t v a l ;

d) R e p l y P o r t  r e p l y _ p o r t ;

•  ) p a c k e t  «  p 2 ;

p a c k e t  «  p i ;

* > p a c k e t  «  r e p l y _ p o r t ;

9 ) mp ”  p r o c _ e x a m p l e : :p _ r
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packet «  mp; 
h ) port.send(packet);
j ) reply_port.receive(packet);
k) packet »  retval; 
m) return(retval);
)

The stub method declares a packet for th e  message (a), a member pointer to 
point to the remote method to be called (b), an integer to hold the value to be 

returned by the remote method (c) and a reply port(d). Reply ports are more 
fully described in the section on the run tim e system, but like ports they act 

as network wide addresses for m essages. The reply port here is used to 
indicate the address to which the result should be sent, i.e. back to this 
routine.

The stub first appends the parameters to  the packet (e). It uses the «  
operator defined for the Packet class, w hich is provided as part of the run 

time system. It then appends the reply p ort (0 , which can be thought of as a 
return address for the result. Then it appends the address of the remote stub 
method proc_example : :p_methodl w hich will be called at the destination 

<g>-

The packet is then sent to the destination given by the port which was 

returned by the create routine (h). H aving done this it waits for a return 
value by performing a receive operation on the reply port (j). When the 

result packet is received the return value is extracted (k). This value is then 

returned to the caller (m), which will not b e  aware that the message passing 
has taken place.

The corresponding remote stub class is defined as shown below

class proc_example{
Packet packet;
MemberPtr mp;
Port port;
invis_example ‘object;

Chapter Six: Pyramid C + +
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public:
void p_example(Port p);
void p_methodl(Packets packet);
void p_method2();

>

Notice that this class also has one method for each method in the original 
class, but that these take Packets as arguments not the actual parameters. 

These routines are responsible for unpacking the packets.

The remote stub object is created autom atically by the run time system. 
When created the pseudo-constructor p_example is called with its port as an 

argument. This port is the address at w hich incoming messages will be 

received.

proc_example::p_example(Port p)
{
a)
b )  
c  ) 
d> 
• )

object - new invis_example(); 
f o r ( E V E R ) (

p »  packet; 
packet »  mp;
(*mp)(packet);

>

The pseudo-constructor first creates the ob ject actually defined by the 
programmer as the actor as a conventional passive object (a). It then executes 
an infinite loop (b) which reads packets from its port (c), extracts the address 

of the appropriate method (d) and then calls that method with the packet as 

its argument (e).

Notice that the name used in the sending stub corresponds to the receiving 

stubs equivalent method. Similarly the constructor address passed in the first 

sending stub's constructor corresp onds to the receiv in g  stub's 

pseudo-constructor.
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The receiving methods have the form shown below

proc_example::p_methodl(Packets packet)
{
•) ReplyPort reply_port;
b) int retval;
c) int pi; 

char p2;

d) packet »  reply_port;
• ) packet »  pi;

packet »  p2;
t ) retval-object->methodl<pl,p2) ;
g) packet. reset ();
h) packet «  retval;
j ) reply_port.send(packet);
>

The receiver first declares a number of variables, to  hold the reply port (a), 
the return value (b) and the parameters (c). It then extracts the reply port (d) 
and the two arguments (e) from the packet. Then it  calls the method in the 

original actor object, with the extracted parameters (0 , assigning the returned 

value into the local retval variable. It then clears the packet ready for 
reuse (g) and appends to it the return value (h). It then sends the packet 

containing the return value to the reply port (j).

This description gives an overview of the system's functionality, however it 
should be stated that this is in fact a rather simplified explanation. Certain 

details have been left out which were considered unnecessary, and would 
only complicate understanding the functioning of the system.

6.4.2 Parallel Class Library

The data parallel constructs in Pyramid C++ are provided by a pre-written
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class library. This library implements a set of classes which provide a set of 
two dimensional array structures suitable for storing images. These array 

structures have the property that operations performed on them are carried 
out in parallel over all the elements in the array. To achieve this the 

elements of the array are mapped onto processing elements in the SIMD 
array which forms the lowest level of the Pyramid Machine.

The class library allows array objects whose data is stored within the memory 
of the SIMD array to be manipulated from within C++ as if they were normal 

objects with their data stored locally. To achieve this the implementation is 
divided into two parts. The first part is a set of classes implemented in C++ 

on the Transputer, which provide an interface to a set of primitive routines 
which run on the SIMD array. These routines which form the second part 

are implemented in CLASS (CLuster ASSembler) and perform the actual 
parallel operations on the array data.

The C++ image classes can be thought of as providing a layer of abstraction 
between the programmer and the SIMD array. The intention is that the array 
objects appear to the programmer to be as similar as possible to conventional 

scalar objects such as integers. Thus they should be able to be created and 
destroyed, passed as values, and operated on in just the same way as integers.

To achieve this the C++ classes must perform two main functions. Firstly 

they must provide a mechanism to associate each image object with an 
appropriate amount of memory in the SIMD array where the image data will 
be stored. Secondly they must define a set o f operations, which when 
invoked, perform the appropriate operations on the data stored in the SIMD 
array.

6.4.2.1 Array Memory Management

With conventional objects memory allocation is performed directly by the 

compiler or run time system, but the compiler has no knowledge of the 
memory which resides within the SIMD array, and therefore the provided
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memory allocation operations used by the compiler are of no use to the array 

classes. To overcome this problem an equivalent set o f memory allocation 
routines have been implemented for use by the array classes.

These routines must allocate an appropriate am ount of array memory 

whenever an image object is created, and must conversely deallocate the 

memory whenever an image object is destroyed. C++ objects can be created 
in two ways, either implicitly by being declared, or explicitly using the new 
operator.

Similarly they can be destroyed implicitly by going out of scope, or explicitly 

by use of the delete operator. Fortunately C++ provides two special functions 

associated with each class, a constructor which is called whenever an object 
of that class is created, and a destructor which is called whenever an object of 
that class is destroyed. These routines provide the required interface to the 
memory allocation routines.

All the parallel image classes are derived from the base class Image. The 
constructor for this class, is responsible for allocating memory in the SIMD 

array to store the image data. It uses a bit mapped memory allocation scheme, 
which can allocate anything from a single bit plane to a thirty two bit deep 
image. The memory allocator returns an address, which is the address within 
the SIMD array memory where the image data is to be stored. This address is 

then stored in the C++ image object, so that w hen operations are 
subsequently performed on the object, the appropriate data can be acted 
upon. In a similar way, the destructor for the Image class is responsible for 
deallocating the memory associated with each image object.

In addition to allocating and deallocating memory, the Image class must also 

provide a mechanism for copying images. The C++ compiler often performs 
copies that are invisible to the programmer. For exam ple when values are 

passed to functions, a copy operation is performed for all value parameters. 

Similarly values returned from functions must be copied. This is in addition 

to the more obvious case of assignment. Thus in order to make image objects
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behave just like scalars these copy operations must be performed. Again C++ 

provides a convenient handle for this, called the copy constructor.

A copy constructor is a special constructor which creates a new object which 

contains the same data as another object. If a copy constructor exists for a 

class, then the C++ compiler will use it whenever it needs to copy one object 
to another. The Image class provides a copy constructor which both allocates 

a new area of array memory, and copies the values from  a specified existing 
object into that memory. Additionally the Image class provides an 
assignment operator which copies the data between two existing objects.

6.4.2.2 Image Operations

The second job of the C++ classes is to provide a set of operations, which are 

actually performed by the SIMD array. In keeping with the aim of making the 
image objects appear as much as possible like conventional scalars, the 

classes define all the usual arithmetic and logical operations that are defined 
for integers. All the defined operations make use of the operator overloading 
facilities provided by C++ to allow the usual infix operator notation to be 

used, so for example two images may be added by the expression image 1 + 
image 2.

The methods associated with each operation do not actually perform the 

operations themselves, instead they request the SIMD array to perform the 
operations on their behalf. These requests take the form of messages which 

are passed using the dual ported memory to the cluster controller. Each 

message specifies the operation to be performed, the addresses of the array 

memory on which to perform it, and the number of b it planes over which 
they should operate.

The information necessary to construct these messages is stored within the 

C++ image object. Each object contains the address o f  the SIMD array 

memory where its data is stored and the number o f  b it planes the data 
occupies. Each of the predefined methods also knows the address of the
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microcode routine which performs the operation associated with each of 
them.

To illustrate these ideas, a simplified class definition is given below

class Image{
int address; 
lnt bits; 

public:
Image(int b); 
~ Image () ;

// address of data in SIMD array 
// number of bit planes

// constructor 
// destructor

1
Images operator+(Images I); // addition operator

This example class is shown with the single operator addition, although 
other operators work in a similar way. The constructor for the class is shown 
below

Image::Image(int b)
(
a) bits-b;
b ) address-array_memory. allocate (bits);
1

The constructor is passed the number of bit planes in the image to be created 
in the parameter b, which it stores in the variable bits (a). It then allocates 

the appropriate amount of space in the SIMD array memory by calling the 

run time system routine array_memory .allocate, and stores its address (b).

Image::~Image()
{
a) array_memory->free (address,bits);
1

The corresponding destructor calls the system routine which deallocates the 
array memory associated with the image (a).
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images
Image::operator+(Images I)
<
a )  Image result(bits);
b ) cl_controller->send(ADD,address,I.address,

result.address,bits);
c )  return(result);
)

Arithmetic operators in object oriented languages are interpreted as 
messages. Thus the expression 2+2 is viewed as meaning send the message 

+2 to the object 2. Similarly the addition operator defined above adds the 

object on which the operator is invoked, to the object passed to  it in the 
message, and returns the result. This is why only one parameter is  passed to 

the add operator, the other parameter is implicitly taken to be  the object 
itself.

The method first creates a new temporary Image which will store the result 
of the addition (a). It then sends a message to the cluster controller, which 
instructs it to perform the addition (b). The message contains the address of 

the microcode add routine (the constant ADD), the address in array memory 

where the image data is stored (address), the address in array memory 

where the parameter's data is stored (I.address), the address where the 
result data (result .address) is to be stored and the number o f bits on 

which the operation is to be performed, taken to be the number o f bits in the 
object (bits).

The variable cl_controller in the above code is a special ob ject which 

performs communication with the cluster controller. The communication 
takes the form of messages such as the one in the example above, as well as a 

small number of control messages. These messages are passed to the cluster 
controller via the dual ported memory by the run time system.

On the cluster controller is a dispatcher which reads the messages from the
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dual ported memory and executes the piece of code specified in the message. 
All the code on the cluster controller is written in CLASS.

6.4.4.3 Ouster Assembler: CLASS

CLASS (CLuster ASSembler) is the microcode macro assem bler used to 

program the cluster controller and attached SIMD patch. It provides a one to 

one mapping from  assembler instructions to microcode words. Each 
assembly language operation contains separate opcodes for each of the 

functional units (described in chapter 3), the sequencer, the ALU, the bus and 
the SIMD array.

The programmer m ust take into account all the interdependency between 
these functional units, and schedule instructions so that results are always 

available before use. For example results from the edge register are delayed 

by three cycles. For more details o f the low level cluster controller 

programming see section 3.3.5 on the Cluster Controller Programming 
Model.

These kinds of complexities make it quite difficult to program in CLASS, and 

this combined with the limited amount of wide micro-code memory has 
influenced the design of the overall programming system. In the Pyramid 

C++ environment it is hoped that the applications programmer will not 

have to write any code in CLASS. The intention is that the operations 
defined on the Im age classes within C++ will provide all the necessary 

functionality. O f course if performance is paramount then the option to add 
extra operations programmed in CLASS does still exist, but it is hoped this 
will not be needed.

6.4.3 Run Time System

The automatically generated actor stub classes require a message passing 

system to provide inter-object communication. This message passing is
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provided by the run tim e system. This system allows messages to be 
automatically routed from any process on any Transputer to any process on 
any other Transputer. Such a system is essential to the implementation of 

Pyramid C++, since the language allows objects to communicate arbitrarily 
with other objects in dynamically changing patterns. This allows programs to 
be topology independent, but does necessitate that the system support 
dynamic message routing.

6.4.3.1 Router

The message routing system must satisfy a number of constraints in order to 

be compatible with the semantics defined for Pyramid C++. The most 

important of these is that it should not introduce deadlocks into the system. 
This requires that the router itself cannot deadlock, and also that the router 

does not introduce parasitic dependencies and so cause a deadlock in a 

program which would not otherwise deadlock.

D ead lock  Free Routing

Deadlock can occur in any concurrent system where a process can block 

waiting for a resource to be released by another process. In such a system it is 
possible for the situation to arise where two processes are blocked waiting for 
each other to release a resource the other requires. This situation is known as 

deadlock or deadly embrace.

There are two generally accepted ways of dealing with deadlock. The first is to 

detect when it has occurred, and intervene to stop it. The other is to prevent 
it from occurring in the first place. For deadlock to occur a cycle of 

dependencies must exist. This cycle could involve anything from a single 
process (waiting for itself) to an arbitrarily large chain of processes each 
waiting for the next with the last waiting for the first.

The prevention of deadlock therefore involves the prevention of such cycles 

forming. In systems where the topology of the dependencies can be
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determined in advance it can be possible to arrange the system statically such 

that it contains no cycles. This is done by constructing a dependency graph, 
whose nodes are processes, and whose arcs are dependencies to  other 

processes. Thus a node representing a process will have one arc to  each 
process that it can wait for. If the graph can be made acyclic then the system is 

guaranteed not to deadlock since no cyclic dependencies can occur.

In systems where this is not possible, dependencies may often be eliminated 
by the use of buffers. Taking the standard producer/consumer problem, 

which provides a good model for the message passing systems used here, the 

producer must always wait for the consumer to become ready to receive data 

before continuing. If a buffer is inserted between the two then, provided the 

buffer never becomes full, the producer will never have to wait for the 

consumer. In this w ay the dependency between the producer and the 
consumer can be eliminated (a similar result holds for the dependency from 

the consumer to the producer, but here the requirement is for the buffer not 
to become empty). Buffering has the double advantage of both avoiding 

deadlock and, in the cases where the buffers fill up, allowing easy detection of 
failure to prevent deadlock.

The router implemented by the run time system is divided into two layers, 
the first handles inter processor routing, while the second provides routing 

resolution down to the process level, and provides the port abstraction used 

by the automatically generated stub classes.

The inter-processor message passing is performed by a store and forward 

packet based router. This router is specifically designed to work with the four 
connected topology of the Transputer array. Because the topology o f the 

system is fixed, it has been possible to guarantee that the router is deadlock 

free. Figure 6.3 shows a section of the dependency graph corresponding to 
four Transputers.

Each Transputer has four bidirectional links, one connected to each o f its 

four neighbours. Each Transputer has eight processes, two associated with
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each link, one for the input half, the other for the output. The nodes in the 

diagram represent these processes.

The router has been implemented so that packets are always routed 
north/south before east/west, such that a packet is never transferred in an 

east/west direction unless it is already at the correct north/south position. 
Because of this the processes which receive messages from either the east or 

west never transm it them to the north or south, and so there is no 
dependency between them and the north/south processes

i i  i i
i i  i i

r -
,7

5-

\7
i i  i i

Figure 6 3 : Section o f dependency graph for router

This can be seen in figure 6.3. Each node represents a process, and each 

directional arc represents a dependency. Notice that the nodes associated 
with the incoming east and west links do not have arcs to either the north or 

south processes, whereas the nodes associated with the north and south links 
have arcs to both east and west as well as the other north or south link.

The omission of these critical dependencies makes this graph acyclic, i.e. 

starting at any node it is not possible follow the arcs and return to the same 
node. This acyclic nature guarantees the router to be deadlock free.

This however assumes that the inter-processor router is a closed system, 

when in fact it must communicate with the program which is passing the
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messages. The acyclic nature of the router's dependency graph assumes that 
messages that leave the system simply disappear. In reality these messages 
are delivered to the running program, which will also be sending messages 

back into the system. This immediately produces potential cycles, and these 
cannot be determined statically, since they will depend on the particular 

program. Therefore a second method is required to ensure that these 

potential cycles do not occur.

The second layer of the message router is responsible for this task. It makes 

use of buffers to decouple the inter-processor router from the user program 
so that no dependencies exist provided the buffers do not fill up. If the 

buffers should fill up, the router simply discards any incoming packets, and 
requests that the sender retransm it them. W hatever happens the 

inter-processor router is never blocked waiting for a user process.

Parasitic D ependencies

It is not enough however for the routing system itself not to deadlock, it 
must also not introduce unwanted dependencies into an otherwise deadlock 
free program. One obvious exam ple of this is the use of a finite buffer to 

implement asynchronous message passing. In this case it is possible that all 

the buffer space in the system will be exhausted, at which point a process 

wishing to send a message w ill be blocked until buffer space becom es 

available. This will occur when a process accepts a message. However this 
introduces a random dependency between the process wishing to send a 
message and the process about to accept a message. This dependency will not 

be apparent to the programmer, and could easily cause an unforeseen 

dependency cycle, and possible deadlock.

This particular problem is solved by the use of semi-synchronous message 
passing semantics, where the sender is suspended until the message is 

accepted by the receiver. This places a finite limit on the total number of 

outstanding messages, and can therefore be implemented on a real system 

with finite memory.
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Another common cause of these parasitic dependencies is the use of FIFO 
message delivery. If a processor accepts a stream of messages from a network 

in FIFO order, then if the message at the head of the queue cannot be 
delivered then neither can any message further back up the queue. 

Therefore the processes sending those messages become dependent on the 
process which is to receive the message at the head of the queue. To get 
around this problem the message router does not use FIFO buffering. Instead 
it has a buffer pool into which incoming messages are placed. Messages from 

this pool can be delivered in any order to their destinations, so avoiding any 

parasitic dependencies.

The implementation of the buffer pool poses an interesting problem, since it 

requires the ability to wait for one of a number of processes to become ready 
to receive. This process, known as select on output, is not supported by the 

Transputer. One possible solution is to pole each process in turn until one 

becomes ready, but this is inefficient since it consumes processor cycles that 

could be used elsewhere. The method chosen by this system is to assign a 
separate guardian process to each message. The job of this process is simply to 

wait until its message can be sent, and then deliver it. In this way the router 
as a whole can block simultaneously on an arbitrary number of processes. 

This implementation relies on the very low cost of generating processes on 
the Transputer, and may not be suitable for other systems

Ports

The final aspect of the routing system is that it provides an abstraction 
known as a port. A port is a many-to-one communications mechanism. 

There is at least one port associated with each process in the system. 
Associated with each port is a port address or handle. This handle specifies 

both the processor on which the port resides and the address of the port on 

that processor. The port handle is used to specify the destination of messages 

to the message passing system.
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Many processes may possess the address of a single port, and may all send 

messages to it simultaneously. It is  therefore necessary for the port to 
sequentialise the receipt of messages. If the message is delivered between 
processors, then sequential delivery is guaranteed by the message routing 
system. However if the destination port is on the same processor as the 

sending process, an alternative method is required. In this system ports are 
implemented using Transputer channels with semaphore protection.

A channel is a unidirectional message passing construct provided by the 
Transputer. It handles the transfer of the data and the scheduling to sender 

and receiver, however it is strictly a one to one mechanism. To allow 

multiple processes to send messages down a single channel, each port 

includes a semaphore. Before a process can send a message along the channel 

it must acquire the semaphore. In this way only one process can use the 

channel at once, which provides the necessary sequentialisation.

6.5 Conclusions

Pyramid C++ provides a coherent programming system for the Warwick 
Pyramid Machine. It supports both control parallel and data parallel 

programming concepts in a single unified model based on object oriented 
programming.

The language as implemented makes very few of the extensions required to 
support parallelism visible to programmers, allowing programmers already 
familiar with C++ to become proficient in the new language very quickly. 
This was possible because it was not necessary to introduce any radically new 
concepts in to the language, instead it was possible to make use of the ideas of 

encapsulation already present in object oriented programming to express the 
required parallelism. This can be taken as a measure of the power of the 

object oriented programming model.
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6.5.1 Pyramid C++ in Context

Pyramid C++ was designed as part of the Warwick Pyramid Machine project, 

and its emphasis on support of both control and data parallel styles of 
programming reflect this fact. There are relatively few other architectures 

that support both MIMD and SIMD paradigms, and still fewer are sufficiently 
mature to have developed any particular style of programming. A number of 

the machines are programmed in two different languages, one to express 

control parallel parts of an application the other the data parallel part, others 
have no high level support for one of the two styles.

For example the IUA uses a custom dialect of Forth for programming the 

SIMD CAAPP and a dialect of LISP for its MIMD processors. PASM is 
proposed to use Ada for control parallel programming but has no high level 

language support for data parallel programming. Similarly the Disputer uses 

Occam for control parallel programming, but has no high level support for 
data parallel programming.

None of these systems provide a single coherent programming model for 

applications programmers. Proposals have been made to provide some 
support based around one of the control parallel languages such as Ada or 

Occam, by extending those languages to include array primitives. Pyramid 
C++ provides all the functionality that such an approach would give, but 

does so in a coherent way based on the single object oriented model, rather 
than the simple juxtaposition of two separate models.

In the absence of any directly comparable languages it seems worthwhile 
comparing the support provided by Pyramid C++ for parallel programming 

with a selection of both data and control parallel languages.

Control Parallel Support

The control parallel constructs are clearly related to those provided by the 
other actor based languages such as POOL, Concurrent Smalltalk and ACT++.

164



Chapter Six: Pyramid C++

A crucial design decision was the choice of C++ as the base language for the 
Pyramid C++ system and the use of the existing C++ object oriented features 
to implement them.

Languages such as POOL and SIN A are new and untried languages that have 

no existing programmer base. This seems an unnecessary hurdle for them to 

cross, since as the design of Pyramid C++ shows it is possible to provide the 

facilities that these languages provide without the recourse to totally new 
languages. A significant amount of the design and implementation time, not 

to mention the learning time for such languages is taken up on trivial 
details, such as the syntax for control structures, which surely are not valid 

topics of research when perfectly adequate languages already exist.

Systems such as Concurrent Smalltalk and Distributed Smalltalk which 

extend the Smalltalk language, while avoiding the problems of a totally new 

language, inherit the problems of their base language. Smalltalk, while a fine 
language for rapid prototype development has never proved popular for real 

applications due to its inefficiency (it is a partially interpreted language) and 
would have been a wholly unsuitable choice for the real time image analysis 
problems the WPM is aimed at.

ACT++ and Concurrent C++ have the advantage of being based on C++, an 
efficient compiled and above all popular object oriented language, but 

peculiarly fail to capitalise on their base language's facilities. Both provide 
separate and orthogonal facilities for concurrency, one based on actors the 

other rendezvous and tasking, which are not related to C++’s object oriented 
facilities. This is particularly curious in the case of ACT++ which provides an 

essentially object oriented model of concurrency, yet using its own separate 
facilities.

Pyramid C++ avoids all these problem s by allowing existing C++ 

programmers to use the new language with little extra learning, so that their 

effort can be concentrated on the real task of learning how to design parallel 

algorithms. Also note that none of the other languages has any support for
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data parallel programming, and so are not directly comparable to Pyramid 

C++.

Data Parallel Support

The data parallel support is provided by special parallel image classes. These 

classes provide functionality very similar to those found in DAP-FORTRAN, 

but unlike this language they do not require any extensions to the base 
language. All the required facilities can be provided within the framework of 

the object oriented facilities of C++.

This approach has the advantage that further data parallel classes can be 

added which provide extended functionality, without the necessity of 
redefining the language, and all the problems that that entails. Obvious 

examples of this include the xector construct used in CmLISP, which could be 
provided by adding additional parallel xector classes within the existing class 

framework.

These data parallel classes can create abstractions for the applications 

programmer just as straightforward to use as those provided by languages 

such as DAP FORTRAN where specific language extensions have been used.

For example addition can be provided with the usual infix plus operator, and 

variables can be created by simply declaring them. In languages such as I PC 

these functions must be performed using calls to library routines, so making 

the underlying implementation of the data parallel facilities more visible to 

the programmer.

The same note applies here that these data parallel languages do not support 
control parallelism, and so do not provide a suitable language choice for the 

WPM irrespective of their data parallel capabilities.
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6.5.1 Portability issues

In the process of developing the hardware and software for the Pyramid 
Machine it was found to be very useful to be able to run application 

programs on a conventional MIMD m achine, in this case an array of 
Transputers. This was achieved by providing a sequential implementation of 

the parallel image classes that would normally be implemented on the SIMD 

array. These provide exactly the sam e operations as their parallel 

counterparts, but are implemented conventionally in C++ on the 
Transputer.

The object oriented model used by the Pyramid C++ system guarantees that 

programs will perform in the same way w ith either the sequential or the 

parallel class implementations provided both conform to the same class 
definitions.

This process has now been extended to  a com pletely sequential 
implementation of the Pyramid C++ system  which uses light weight 
processes to support control parallel constructs and the same sequential 

implementations of the image classes to support the data parallel constructs. 
This sequential system runs on a conventional SUN workstation and allows 
programs to be written which make use of all the facilities of the Pyramid 

Machine, even when the prototype machine is not available.

This ability to provide alternative implementations, which make use of 

whatever parallelism is available on the host architecture provides 
interesting possibilities for the generation of portable parallel software. 
Already this system provides portability between sequential, MIMD and 

M ulti-SIM D  m achines. It should also be  possible to provide an 

implementation on a pure SIMD machine, which would implement the data 

parallel constructs in parallel, and use multi-tasking to implement the 
control parallel constructs.

This opens the way for a single programming language which could be used
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to write software for all these types of machines, and which would allow 

such software to run on any of the others. Further work would be necessary 
to ensure that efficiency is maintained between architectures, but this seems 

a promising start in that direction.
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Chapter 7

Application Study

7.1 Introduction

In this chapter two applications will be examined with reference to how they 

can be mapped onto the Warwick Pyramid Machine using the object oriented 

techniques described in previous chapters. One of these applications is from 
the field of image understanding, the other image generation. Both are 

exam ples of applications which exhibit the heterogeneous structure 

characteristic of image based applications. In both cases processing can 
broadly be divided into two parts, one which deals with image data and 
involves fairly simple and global processing, and the other which deals with 

high level model based data, and involves more complex local processing.

These applications are not contrived specific cases, but represent realistic 
problems which occur in real applications. The fact that these typical 

applications have a structure which is compatible with the heterogeneous 
pyramid architecture of the Pyramid Machine, supports the argument that 

the Pyramid Machine architecture is well matched to a fairly general class of 

image based applications.

7.2 Im age Understanding: Object Alignment

The image understanding application chosen concerns determining the 

rotational alignment of a simple geometric object from a single side on
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image. This application is fairly typical of a variety o f real time image 

understanding problems, and can be generalised for use in real applications.

The geometric objects considered are cuboids, and cuboids w ith two sloping 
faces. These shapes were chosen as they are closely analogous to a large class 
of real man-made structures such as vehicles and buildings. The techniques 
used for this application were developed in the context of a real time image 

understanding application described in [Atherton 90b]. This demonstrates 
that th e se  techniques can be generalised to p erform  alignment 
determination on real objects such as vehicles.

To build a  system which can achieve such a task it is necessary to determine 
the set o f characteristic features of the object under rotation, that is those 

visual features that change depending on the rotational alignment of the 

object. This set of features will depend on the type of object being processed, 

in this case a simple geometric shape, and the type of rotations that the object 
experiences, in this case perpendicular to the image plane.

Many im age based systems use the shape of the object as the characteristic 
feature. This approach works particularly well for rotation in the x-y plane as 
might be expected in an aerial view.

7.2.1 Shape  Based Techniques

Many tw o dimensional orientation problems can be solved by considering 
the shape o f the object being processed [Gonzalez 77]. Most of these systems 

determine the outline of the object, using some segmentation process, and 
then use this outline to obtain the orientation of the object. A number of 

techniques exist to do this, including radial projection, axis projection, 
moments and template matching.

M om onts  - If the object is fairly asymmetric then the major and minor axes 
as determined from the moments will give the orientation directly.
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Radial projection -  First the centroid of the object is found, then a graph is 
generated of the distances of the outline from the centroid versus angle of 
projection. This graph can be matched against stored versions, and the 

relative phase of the graph with the matched version will give orientation.

Axis projection -  First the major and minor axes are found, then the object is 

convolved with a line perpendicular to each of the axes in turn. The results 

are plotted on two graphs. These graphs can then be matched with stored 
versions. The orientation is given by the major and minor axes.

Tem plate m a tch in g  - This involves storing a template of the object at 

every orientation and simply matching the image against all the stored 
templates. This technique, while simple, involves large storage and is not 

scale invariant.

7.2.1.1 Limitations of Shape Based Techniques

Shape based techniques are generally good at detecting rotation in the x-y 
plane since the outline of an object will usually change under this kind of 
rotation. However if the rotation is in the x-z plane the shape o f the outline 

may not change at all under rotation, see below.

Chapter Seven: Application Study

Box viewed from side Box rotated by 45°

Figure 7.1: Rotation in x-z plane

This simple exam p le is closely analogous to the problem  under 
consideration, w here we have a side on view of an object. Clearly in these
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cases shape based approaches are not appropriate, and a more sophisticated 
approach is required. One such approach is model based understanding.

7.2.2 Model Based Techniques

A general purpose vision system takes an image and generates a model of 

the scene which is represented by that image. This extremely difficult 
problem can be greatly simplified if, as in many practical applications, a 

model of the scene can be generated in advance. If this is the case, then the 
vision problem becomes one of matching the image to a known model 
[Huttenloch 87] [deFig 87][Hourard 87b].

Models M odel
Features

CSG
Spline
B-Rep

Polyhedral

Decomposition]— —► Lines
Regions
Patches

Ï
(M a tch in g ) 

, 1 ,
Im age Im age

Range " (  Pre-Processing)^ Segmentation)-^extractjonj - ^
Tactile

Ultrasonic
Regions

Figure 72 : Model Based Processing

The process, shown in Figure 7.2, consists of two parts [Bhanu 87]. One takes 

a model of the scene/object and performs a series of transformations on it to 
produce a set of features. The other proceeds from the input image and 

processes it using conventional image processing techniques to produce a set 

of compatible features. The features from the two processes are then 

matched. Once a match has been obtained, the transformation used to 

convert the stored model into the m atching set of features gives the
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necessary information about object orientation and position.

To implement such a system many design decisions are required, such as the 
representation of the stored model, the features that are to be extracted from 
it and the image, and the matching technique that is to be used.

7.2.2.1 Model Representation

The choice of model representation will depend on the features that are to be 
generated from it. In this application those features must include the 

characteristic features of the object under rotation. Some examples of 
commonly used model representations are given in figure 7.3 and are 
described below.

C onstructive Solid G e o m e try  (C .S .G .) - This technique involves 
representing the model as a collection of geometric primitives, such as 

cylinders and cubes. Each primitive can be scaled, rotated and translated, 

and some systems allow prim itives to be subtracted. C.S.G. has the 
advantage of requiring very little storage, since each primitive can be 
represented by just a few numbers. However these models typically require 
more computation to produce a set of image features than the other methods 
described here.

Boundary Representations (B -R ep) - [Watt 89] Here only the visible 

surfaces of the object are represented rather than its substance. The two most 
common representations used for B-Rep are patches and planar polygons. 

Patches are curved surfaces defined by a mathematical function, usually a 

quadratic, e.g. a sphere or cylinder, or a bi-cubic equation, which allows 
alm ost arbitrary curves. M ore sophisticated representations include 
Non-Uniform Rational B-Splines (NURBS), which can represent an even 
richer set of curves. If less accuracy is required then curved surfaces are often 

approximated to by sets of planar polygons. This is probably the most 

common form of representation, and certainly the simplest.
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Planar Polygon M esh

Surface Patches

Generalised Cylinders

Figure 7 3  - Model Representations

B-Rep in general requires more storage than C.S.G. but requires less 
processing. Planar polygons in particular while less compact than curved 

patches require very simple processing.

Generalised Cylinders - or extrusions represent objects as the volume swept 

by a two dimensional shape moved along an axis [Bhanu 87]. The size of the 

shape may be varied as a function of its distance along the axis. This 
technique can be useful for representing many types of objects such as tubes 

and girders which are manufactured using extrusion processes.

7.2.2.2 Model Matching

Once the features have been generated from the model they must be 
matched to the corresponding features extracted from the image. This 
process typically uses a Hypothesis-Evaluation-Backtracking approach which 

involves generating a hypothesis for the transformation from model to 
image, based on certain cues in the image [Horaud 87a]. This hypothesis is
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then evaluated to generate a certainty of its correctness. If the evaluation 

fails then the process backtracks and tries a different hypothesis. Ideally the 
evaluation process will provide some information to help the system 

determine a better hypothesis.

The initial hypothesis is typically based on specific cues in the image, such as 

comers or lines or closed areas. These cues are determined in advance to be 
the most important features, whose position determines the position of the 

other features in the object. They are also chosen to be features that are 

relatively easy to extract from the image.

Once the initial hypothesis is generated other expected features can be tested 

to determine a certainty measure. This is either done by projecting other 
image features into model space and matching then against the model 

features in model space, or conversely taking other model features and 
projecting them into image space and matching in image space [Brisdon 88]. 

Matching in image space has the advantage that features that may not be 

strong enough to be extracted from the image can still be evaluated, to give a 
certainty value, even if that certainty is low. If model space matching is used, 

any weak features will be ignored.

The matching process should produce a measure of how close the current 
hypothesis is to a match, and also some indication of how to improve it. The 

system then either accepts the current hypothesis or backtracks and makes an 

improved estimate.

7.2.3 Implementation

The problem under consideration falls into the category of problems not 
solvable by shape based techniques, since it involves a side on view of the 

object. Therefore the chosen implementation uses a model based approach to 

the problem. However a key requirement of the system is to operate at very 

high speed, since it must coexist with other system components in a real 

time application. Therefore emphasis has been placed on speed over

175



generality, and the model based techniques used are very specific to this 
application.

Apart from this aspect, the implementation falls into the conventional 

pattern o f low-level processing followed by segmentation and feature 

extraction, followed by the extracted features being matched against an 

equivalent set of model features, with the model transformations giving the 
rotation alignment of the image object.

The first part of the system design centres around the choice of the 
representation for the model, the set of characteristic features, and the 

matching algorithm. As has been mentioned it is not possible to isolate each 

decision from the others since they are highly interrelated, but the most 
critical item is the choice of characteristic features, which largely determine 
the other two.

7.2.3.1 Choice of Characteristic Features

As shown in figure 7.1 it is not possible to determine rotational alignment of 
an object from the outline alone, so the system must take image features 
internal to the object into account. In the geometric shapes chosen the most 

important of these is the vertical edge formed by the nearest comer of the 
cuboid, and its position relative to the extreme edges of the object.

Taking the simple cuboid which has a known aspect ratio (figure 7.4(a)) the 

rotational alignment can be determined sim ply from the position of the 
vertical edge formed by the nearest comer, with respect to the outline of the 

whole cuboid. Thus these positions are suitable features to extract from the 

image, and they can be used to calculate the rotational alignment by 
matching them with an equivalent set of features extracted from a suitable 
model.

This measurement will however be ambiguous about 90° because the system 
has no way to differentiate between the long and short sides of the cuboid.

Chapter Seven: Application Study
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As the cuboid rotates, the apparent length of the two sides changes, and at 
certain rotations the longer edge of the cuboid will appear shorter than the 

short one. W ith no other information it is not possible to determine which 

edge is which, but this is often sufficient in certain applications.

(a ) Simple Cubo id  (b) Cubo id  with sloping faces

Figure 7.4: Affect of Rotation on Side on Image

If the problem is extended to objects which do not have parallel sides, such as 

that shown in figure 7.4(b), more precise alignment estimation is possible. 
The alignment for these shapes can again be determined from the relative 

positions of the object's edges, but in this case the slopes of those edges can 

also be used. The internal edge always slopes in the same direction as the 

visible sloping face, which gives the necessary information to discriminate 
the two visible faces.

Using this fact the angle may be determined within 180 degrees, although it 

is still ambiguous with respect to a 180 degree rotation, or in other words it is 

not possible to tell the front from the back. Nonetheless this is still a useful 

result in the chosen application, and therefore these provide a suitable set of 
characteristic features for these objects.
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7.2.3.2 Image Processing and Feature Extraction

The overall function of the feature extraction process is to determine the 
presence or absence of the internal vertical edge which corresponds to the 
nearest comer of the object. It must also determine the slope and position of 

the edge relative to the object's outline. This process proceeds in a number of 

stages.

Filtering and  Edge  Detection

The first stage in the process will generally be low pass filtering to reduce any 

excess noise which might disrupt the performance of the edge detector. This 
filtering would take the form of a global image convolution with an 

appropriate mask. However this step will only be required where noisy 
images are expected. In the images used in this study no filtering was 
necessary, but with some imagery it has proved useful.

The preprocessing stage is followed by a Sobel edge detector, which consists of 

two 3x3 convolutions, which give the vertical and horizontal edge strengths 
separately. These two values can be combined to give the strength and 

direction of the edges in the image.

Both these operations are global iconic operations which are implemented 
on the SIMD layer o f the Pyramid Machines by a series of global 

convolutions.

Detection an d  Segmentation

Following the edge detection, the system must detect the presence and 

position of the object in the image. This is achieved using a Spoke filter,
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which is a simplification of the circle Hough transform [Atherton 90b]. The 
basic operation of the Spoke filter is to project spokes out perpendicularly 
from all edge points, such that where many edge points lie in a roughly 

circular pattern, many of these spokes will intersect. Thus if the resultant 
spoke image is thresholded, the rough centroid of any roughly circular 

region will be given. In practice squares are 'roughly circular', so this 

provides a suitable technique for this application.

Segmentation, involves determining the exact outline of the object, which is 
achieved using a spoke segmenter. This projects spokes outwards from the 

centroid determined by the Spoke filter, until they cross an edge. These edge 

intersections are then used to give the overall size of the object. They can 
also be projected back onto the image, by applying a convex hull operation, to 

yield an object mask. This can be used to restrict subsequent processing to the 

interior of the object.

Feature Extraction

Having determined the position and extent of the object, it is then possible to 

extract the position of the internal vertical edge.

Simple Cuboid  - in this case feature extraction can be achieved by using an 

edge density histogram. This involves passing a vertical mask over the edge 
detected image of the object, and accumulating the values of the pixels that 

fall within the mask.

Figure 73 : Edge Histogram
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This gives a histogram that contains peaks at the positions of both the ends 
of the object and the internal edge. This histogram can then be processed 

using an algorithm such as Superspike [Beveridge 88], to determine the 
centres and number of peaks in the histogram. This is then used to directly 

calculate the rotation of the object without use of a model matching phase. 

This approach is however very sensitive to noise, and only works in ideal 

conditions. In the system that handles the more complex case of the cuboids 

with sloping faces a full model based approach is used.

Cuboid with Sloping Faces - the techniques required for the cuboid with 

sloping ends are slightly more complex, since both the position and slope of 
the internal edge are required. This is achieved using an extension of the 

edge density histogram technique, whereby three such histograms are 
extracted from the image. Each histogram represents the strength of edges at 

one of -45°, 0° or 45°, as shown in figure 7.6.

Figure 7.6: Three Oriented Edge Density Histograms

This is done in three stages, one for each histogram. The histograms are 

calculated in the same way as before, but this time the masks used are 

slanted, by either -45°, 0° or 45° as appropriate. This is further enhanced by 

testing the orientation value of each pixel, given by the Sobel operator. Only
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those pixels whose orientation lies within a set tolerance of the orientations 

being looked for i.e. 0°,45° or -45°, are accumulated into the relevant 
histogram. This approach gives greatly improved discrimination between 

edge slopes, by concentrating the energy of edges at a given slope into a small 
region of the histogram.

Figure 7.7: Extracting Orientated Histograms

The implem entation of this technique on the SIM D array involves 

collapsing the object pixels down onto the base line of the object. The base 
line is the lowest row of pixels within the object, which is determined by the 
segmenter.

The histograms are built up by repeatedly summing the row of pixels 

immediately above the baseline (for the 0° histogram, or diagonally above for 
the 45° and -45° histograms) into the histogram. At the same time the object 

pixels are all shifted down one row of pixels (and along one for the 45° and 

-45° histograms), so the subsequent summation will use the next row of 
pixels.

This is illustrated in the simplified Pyramid C++ routine shown below

histograms(
Image firesultl,&result2, &result3, 
int baseline, int height)
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<
Complexlmage temp;
BitImage mask, angle_mask;

a ) mask=(y_coord— baseline);
b) temp=*this;
c )  for(int i-0; Kheight ;i++) {
d ) temp-temp. N () ;
e) angle_mask-(temp.angle> -22)&& (temp.angle< 22);
t ) resultl.where (mask&angle_mask)+-temp.mag;

>
temp=*this;

g) for(int i-0; Kh e i g h t ; i++) {
temp-temp.N () .W () ;
angle_mask-(temp.angle> -67)&&(temp.angle< -22); 
result2.where(mask&angle_mask)+=temp.mag;

1
temp=*this;

h) for (int i-0;Kheight;i++) {
temp-temp . N () . E () ;
angle_mask-(temp.angle> 22)&&(temp.angle< 67); 
result3.where(maskiangle_mask)+-temp.mag;

>
)

This routine creates three histograms in images resultl to 3. It is passed the 

y coordinate of the bottom of the object and the height of the object 

(produced by the segmenter) . The routine first creates a mask which is set to 
true for all the pixels on the baseline (a). This uses a special global image 

called y_coord, whose pixel values are their own y coordinates. Then it 
creates a temporary copy of the current image (b) and loops over the height of 

the object (c) producing the histograms.

This involves three steps, first the temporary image is shifted down (d). 

Then a new mask is created which selects all those pixels whose angles are 

within 22 degrees of vertical (e). The last step is to sum those pixels which are 

selected by the ANDing of both masks into the current histogram(f);
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This process is repeated twice more (g,h) for -45° and 45°, the only difference 
being the angles that the mask selects and the direction the image is shifted 

in.

The histograms created by this process contain all the necessary information 

to determine the object's rotational alignment, i.e. the positions and slopes of 
all the edges. These histograms form the symbolic representation of the 
object which can be passed up to the symbolic processor for matching.

7.2.3.4 Model Representation

In a conventional model based system a model would be stored in one of the 

forms described in section 7.2.2.1 and would be processed to extract the 
desired features at run time. This allows the system to process any object 

which can be represented in the chosen form.

However in this application performance has been taken as being the 
overriding constraint, and so it was crucial to develop a technique tuned 

specifically to this application, which could make use of specific information 

about the application to produce a fast implementation. To this end a less 

general but faster technique has been adopted which is based around a 
procedural model.

A procedural model can be thought of as a program which directly generates 

a set of features, without the use of a stored model. Fractal generated 

mountains are a typical example of this technique, where a simple equation 
can directly produce a complex visual output with no need to actually store a 
model of a mountain.

In this case the procedural model consists of a set of equations which describe 

the behaviour of the edges formed by the comers of a cuboid with sloping 

faces, given a specific angular rotation. The procedural model produces the 
position of the three visible edges of the object, and their angle from the
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vertical.

These results are then passed to a synthetic histogram generator, which 

produces a set of histograms with peaks at the positions specified. The edge 
energy is divided appropriately between the three oriented histograms 
according to the angle from vertical. These values approximate to those 
which would be expected from an image of edges at the angles specified. 

These histograms can be generated at any size to match the size o f the 
histograms extracted from the image.

7.2.3.5 Feature Matching

A suitable matching process is to perform a direct correlation between the 

histograms extracted from the im age and the synthetic histograms. This 

involves pairwise multiplying the values in the real and synthetic 

histograms and then summing all the results. The most closely correlated 
histogram should correspond to the best matched orientation.

Before this is done both histograms are scaled so that the total area of both 
histograms is equal to zero, by subtracting the average histogram value from 

each histogram entry. This ensures that the total weighting of all histograms 
is equal, otherwise histograms with high background values, such as those 

produced from a noisy image, tend to produce good matches, even if the 
peaks of the histograms are not a good positional match. By choosing zero as 

the constant value, small values are scaled to negative values. This means 
that the absence of a peak where there should be one, or the presence of one 

where there should not be one counts negatively. W ithout this technique 
histograms with many spurious peaks can produce good matches.

The matching process is implemented on the symbolic processors. Since the 

rotational alignment is only required to fairly crude precision (5 degrees) and 

that the model is ambiguous about 180°, there are only thirty six possible 

angles. It is therefore quite feasible to match the extracted histograms against 
all possible angles in parallel.
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To do this a separate actor is generated for each synthetic/real histogram 

pairing. Thus three actors are generated for each candidate angle. These 

actors are automatically distributed over the available processors under 
control o f a main control actor. This actor is responsible for extracting the 

symbolic histogram data from the image, and distributing it to the matching 

actors.

The histogram data extracted from the image amounts to at most 300 bytes or 

so. This compares with 16000 bytes for the iconic image representation. This 

data reduction is typical in image understanding problems, and is reflected in 

the reduction in the number of processors in the symbolic layers of the 
Pyramid Machine architecture.

Once extracted the histogram is broadcast to all the matching actors. Each 

actor then generates its synthetic histogram at a scale to match the size of the 
histogram extracted from the image. The extracted histograms may have 

anything from around one hundred entries to as little as ten. The two 
histograms are then correlated, and results of all the correlations are sent to a 

coordinating actor which determines the closest match. This match should 
correspond to the rotational alignment of the object.

A m easure of the certainty of the match can be produced by comparing the 

best m atch with the next closest. If the two values are very different then the 
match has a high certainty, whereas if the difference is very small it has a 
lower certainty. This measure can be used to give a percentage rating for 

certainty, along with a second choice and second certainty measure.

185



Chapter Seifen: Application Study

7.2.4 Results

The algorithms described above have been implemented, and tested on a 

variety of images. Shown here are some of the results of these tests.

Figure 7.8 shows results for the simple block case. Panel (a) shows the 

original im age, panel (b) shows the corresponding edge orientation image 
produced from the Sobel operator. In this image each pixel is represented as a 
vector, which has length proportional to the edge magnitude, and direction 

perpendicular to the edge direction. Panel (c) shows the histogram extracted 
from the orientation image. Panel (d) shows the alignment estimation 

displayed diagrammatically as a plan view of the object.
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la ) Original Image

lb ) Extracted Histogram

lc) Orientation Estimate

Figure 7.10 - Alignment

2a) Original Image

2b) Extracted Histogram

2c) Orientation Estimate 

for Cuboid with Sloping Faces
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Figure 7.9 shows the more complex case of a block with sloping ends. Panel 
(a) shows the original image, panel (b) shows the oriented edge detection for 
the image. Panel (c) shows the three histograms extracted from the image, 

and panel (d) shows the best match synthetic histogram. Finally panel (e) 
shows the estimated orientation diagrammatically as a plan view.

Figure 7.10 shows similar results for two other orientations of input image. 
Here panels (la&2a) show the original image, panels (lb&2b) show the three 

histograms extracted from the image, and panels (lc&2c) show the estimated 
orientation diagrammatically as a plan view.

Object Size (pixels)

Figure 7.11- Alignment Performance against Object Width

Figure 7.11 shows the results obtained from running the alignment 

estimator on twenty sequences of seven images where the object was a 
different size in each image of a sequence. Success is defined as producing the 
correct answer to within the resolution of the system which in this case is 

22°. As can be seen the results are reasonably good down to 40 pixels or so. 

After this the results degrade sharply as the internal features become 

indistinguishable. This is to expected as the algorithms rely heavily on the 
internal features of the object in the image. Thus these algorithms should
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only be used on images where the object is sufficiently large that internal 

features are distinguishable.

Correct Alignment Estimation (%) Signal to Noise Ratio (dB)
0 30
5 30
10 30
15 60
20 60
25 80
30 80
35 90

Table 7.12 - Alignment Performance against Noise

Table 7.12 shows the results obtained from running the alignment 
estimation on ten of images with artificially added Gaussian noise. As can be 

seen the performance drops off smoothly as the noise increases, although it 
still achieves a 60% success rate at 15dB. In most cases the signal to noise ratio 

will be far better than this. If noise is a problem for a particular application 
then further image preprocessing could be used to enhance the alignment 
performance.

Timings

The overall timings for this process can be broken down into a number of 

key tasks, preprocessing, detection, segmentation, feature extraction and 

matching. The times for these operations on a typical image, estimated based 
on simulations, are given below.

Task

Preprocess ing

D etection
S egm en tation

Feature Extraction

H istogram  G eneration

M atching
TOTAL

Algorithm

Sobel

Spoke filter 
Radii Segmenter 

Edge Histogramming 

Procedural Evaluation 

Correlation

Tim e(ps)

44

82

810

1810
74

106
2926 or 2.9 ms
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As can be seen from this table processing at video rates of one frame per 

20ms should be easily achievable. In practice there may be some additional 
overhead for these figures when the system is run on a fully configured 

system, however it may be possible to offset these by more aggressive 
optimisation of the algorithm s used, since these figures are based on 

straightforward implementations of these algorithms.

7.3 Im a g e  Generation: Polygon  Rendering

Image generation can b e  thought of as the reverse process of image 
understanding, instead of starting with an image and producing a model, 

one starts with a model and produces an image. As with the image 

understanding example given above, the choice of model representation is 
an important factor. Image generation system s use very similar model 

representations to those described previously for model based image 
understanding, in particular the constructive solid geometry and boundary 
representations are particularly popular. The example used here is an 

application based on the most popular and simplest of these representations, 
the planar polygonal mesh.

There are a number o f rendering algorithm s, that is methods for 
transforming a stored m odel into an im age, in common use. Notable 

amongst these are ray tracing and radiosity which can produce startlingly 
realistic images, but are very computationally intensive and even using the 

large computational power o f a massively parallel computer cannot be 
computed at speeds even approaching real time. On conventional 

architectures these methods often have computing time measured in hours 
rather than seconds.

Because of this extreme computational requirement, most image generation 

systems use other less time consuming processing techniques. Most systems 

are based on the so called viewing pipeline described below. The viewing
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pipeline is not a single algorithm, but a collection o f algorithms which if 

performed in sequence will produce an image of a stored model. For a good 
treatment of this topic see [Watt 89] or [Foley 82]. Hardware rendering 

systems such as Clark's geometry engine [Clark 82] translate the viewing 

pipeline into a physical hardware pipeline to perform real time rendering.

7.3.1 The Viewing Pipeline

The viewing pipeline can be divided into two halves, one dealing with high 
level model based data, the other with low level image data. This fits exactly 

into the expected image based application structure, and as such maps neatly 
onto the Pyramid Machine, with the early parts of the pipeline being 

implemented on the symbolic processors, and the stages being implemented 
on the iconic processors.

Figure 7.13: The Viewing Pipeline 

7.3.1.1 Transformation

The first stage in the viewing pipeline is the transformation process which 

converts the model coordinates from model space into viewing space, as 
shown in figure 7.14.
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Figure 7.14: Projecting a Model into Image Space

The model's coordinate system has the origin mo, and the axes mx,my and 

mz. The viewer's coordinate's space has the origin vo and axes vx,vy and vz. 
The viewer's axes and origin are expressed as vectors in the model's 
coordinate system. Each vector consists o f x y and z components, so for 

example the viewer's origin vector vo consists of vox, voy and voz and so 

on.

The transformation of a point p  from model space to viewer's space is given 

by.

P 'x V X x V X y  vxz P x - V O x

P’y = vyx vyy vyz P y  -  VOy

P'z . V Z x V Z y  V ZZ . P z -v o z

The viewer's origin is first subtracted from the point, giving a vector from 

the viewer's origin to the point in model space. This vector is then 

premultiplied by the matrix formed by the axes of the viewer's coordinate 
system, expressed in model space. This gives the vector in the viewer's 

coordinate space.
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7.3.1.2 Clipping and Projection

The next stage in the pipeline is the clipping and projection process, which is 
responsible for taking the transformed model and projecting the visible parts 

of it onto an imaginary projection screen between the viewer and the model, 

known as the image plane, as shown in figure 7.15.

The first part of this process is to determine which parts of the model are 
visible to the viewer, and which are hidden, and then remove those parts 
which are hidden, a process known as clipping. This is done by intersecting 

each part of the model in turn with the clipping volume. Parts of the model 
which fall outside this volume are deemed to be invisible and are discarded. 

This process may involve dividing some polygons into a number of pieces if 
some parts of the polygon fall inside the clipping volume and other parts fall 

outside.

Yon

Figure 7.15: Perspective Projection onto the Image Plane

The clipping volume itself is formed by six planes. Four o f these planes 

correspond to the top, bottom, left and right extents of the image. These 
planes pass through the centre of projection vo and four pairs of adjacent 

comers of the image plane. The other two planes are parallel with the image 
plane and determine the maximum and minimum visible depths within 

the viewer space. These planes are known as the yon and hither planes, for
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the farthest and nearest extents respectively.

The visible parts of the model must now be projected onto the image plane. 

The viewer's coordinate system is defined such that the x and y axes are 
parallel with the x and y axes of the image plane, and the z axis passes 

through the middle of the image plane. One possible projection would be to 
simply ignore the z coordinate and take the x and y coordinates as the two 

dimensional point in the image plane. This is known as parallel projection, 
but it does not produce a very satisfactory result. Most systems use the 
perspective projection system shown in figure 7.15.

Given a point in the viewer's coordinate system at Oy,Oz (or Ox,Oz) the 
projection onto the image plane Iy,Iz is given by the intersection of a line 
drawn from the point Oy,Oz to the origin (known as the centre of projection) 

with the image plane. Since the distance from the origin to the image plane 

Iz is known this can be calculated using similar triangles.

Oy Iy 
Oz *  Iz so Iy Q z • Iz

7.3.1.3 Shading and Scan Conversion

The two dimensional polygons, now in image coordinates, must be drawn 
onto the output image, a process known as scan conversion. There are a 

number of sequential algorithms for scan conversion which will not be 
covered here. However the essential function of these algorithms is to 

determine which image pixels fall within the boundaries of each polygon, 

and to assign an appropriate value to those pixels. This value will normally 
represent the colour or intensity of the polygon. This must be determined 

from the shading and illumination model.

The intensity or brightness of each polygon can be determined from four 

factors, the surface properties of the polygon, its incidence to the 
illuminating light sources, the properties of these light sources and the
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incidence of the viewer to the polygon. The properties of the surface, such as 

its 'shininess' and colour, are stored in the model database and are generally 
static. The incidence of the polygon to the light source can be calculated given 

the position in view space of the light sources. The properties associated with 
the light sources, such as intensity, size and colour are also stored in the 
model database and are static. The incidence of the viewer to the light source 
can be calculated from the polygon's position in viewer's space, given that 

the viewer is always at the origin of the view space.

Given these factors the intensity of a polygon may be determined by

I = Iaka + Ijfkd (L • N) + ks (R • V)"]

W h ere

Ia -  intensity of ambient light

ka = surface coefficient for ambient light

I| = intensity of incident light

kd = surface coefficient for diffuse reflection

L = light source vector

N -  surface normal

kg *  surface coefficient for specular reflection

R = reflected light vector
V = vector to viewpoint

n = surface 'shininess' coefficient

The simplest shading system assigns the same intensity value to all the 
pixels within the polygon, and is known as constant shading. In many cases 

how ever the original polygonal mesh is actually an approximation to a 
curved surface. If this is the case then constant shading will give what should 

be a smoothly curving surface a faceted appearance.

To  overcome this many systems use what is known as smooth shading, 
based on either Gourard [Gourard 71] or Phong (Phong 75] models. These
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systems assign different intensity values to every pixel in the polygon to give 
a smooth appearance. This shading is only an approximation however, since 

there is  no way for the system to know how the original surface really 
curved, it only has access to the polygonal approximation.

Gourard shading calculates the intermediate values by linearly interpolating 
the intensity values calculated at each vertex across the polygon. Phong 

shading on the other hand calculates intermediate surface normals by 

linearly interpolating the vertex normals across the polygon, and then 

recalculates the intensity of each pixel from the intensity equation given 

above. The result of this is that Gourard shaded images have a permanent 

matt appearance while Phong shaded images can accurately represent surface 
properties such as shininess.

7.3.1.4 Hidden Surface Elimination

The final stage of the rendering process is hidden surface elimination. This is 

responsible for determining which parts of the model are hidden by other 
parts o f the model which are in front of them. There are a number of 
algorithms for doing this, but they can mostly be broken down into two main 

classes, model based and image based. The model based systems attempt to 
order the polygons in the model so that those furthest away are drawn first, 
so that polygons in front of them will be drawn on top.

This is essentially a sorting process, but it is complicated considerably by the 
fact that there is in many cases no ordering that will achieve the desired 

result. This is because polygons can span a range of depths so that a polygon 
may be  in front of another which is in turn in front of another which is 
partially in front of the first. In other words the relation 'in front o f  is not 

transitive so A in front of B and B in front of C does not imply A in front of 

C. To overcome this the polygons must be divided into pieces such that the 
relation does hold, and the pieces can be sorted correctly. It is this division 

process which causes much of the complexity for model based algorithms.
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Image based systems attempt to determine the polygon that is visible from 
each pixel in  the image. The most common of these is known as the z-buffer 

algorithm. Th is involves storing the current depth of each pixel and only 

plotting values which are closer than the current depth. The depth of a pixel 
is simply the depth of the appropriate point on the polygon currently visible 

at that pixel. When a new polygon is plotted the depth of each pixel to be 

plotted is compared to the depth stored at each pixel, if  the new value is 
smaller (closer) than the current depth, the pixel is replaced with the new 
value and its depth is updated, if not the pixel is left untouched.

7.3.2 Implementation

The implementation maps the polygon Tenderer described above onto the 

Pyramid Machine. As mentioned earlier the high level model based parts are 

mapped onto the Transputer array while the low level image based parts are 
mapped onto the iconic processors. A principal design aim has been to allow 

the system to  scale effectively, so that use of a larger machine will result in 
improved performance.

One approach to mapping the rendering pipeline onto an MIMD array 

[Theoharis 87] is to use one processor for each stage in the pipe. This 

approach has two disadvantages, firstly it does not scale readily, one of the 

primary aim s, since the number of pipeline stages is fixed to the number of 
stages in the rendering process. Secondly it involves the polygon data being 
transmitted between each stage in the pipeline, which in an MIMD machine 

where com m unications involve a significant overhead causes a severe 

bottleneck. In  addition to this the pattern of communication implies that the 
processors be arranged as a pipeline, which does not correspond to the WPM 

architecture, making it an unsuitable choice.

7.3.2.1 Processor Farm

The approach taken here is to use a static 'processor farm'. This involves
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distributing the polygon database amongst the available Transputers in 

advance, such that each processor has an equal number of polygons. Since 
the processing required for each polygon is fairly constant this gives an even 

load balancing across the array.

For each new fram e the viewing parameters and lighting details are 

broadcast to all the processors. All the processors then perform the 

transformation into view space, any necessary clipping and the projection 
onto the image plane for their set of polygons. Each polygon is then sent to 

the symbolic processor which is associated with the region of the screen in 

which that polygon falls. To do this it is necessary to clip each polygon to the 
cluster boundaries. This involves polygons which span more than one 

cluster being broken into several pieces figure 7.16.

Figure 7.16: Clipping Polygons to cluster Boundaries

This arrangement allow s the system to utilise an arbitrary number of 
symbolic processors, up to one processor for every polygon. It also gives an 

essentially linear speed up as the number of symbolic processors increases.

Each symbolic processor then passes the polygons sent to it to its associated 

cluster controller w hich performs the scan conversion and hidden surface 

elimination independently of all other clusters. This is only possible because 

of the Multi-SIMD architecture of the WPM and provides an excellent match 

to this application. On a pure SIMD architecture it would only be possible to
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render one polygon at a  time, with the WPM each cluster can render 

polygons in parallel.

Pyram id C ++ Im plem entation

A  small section of the Pyramid C++ implementation code is given below 
which should serve to illustrate how the concepts described above can be 

mapped on to the Pyramid Architecture using Pyramid C++. This example 

code is shows the structure of the solution. Some code is omitted for the 

sake of clarity.

1) actor class Scan_converter{
2) void scan_convert (Patch) ; // omitted

)

3) actor class Renderer)
4 ) void put_polygon (Polygon); // omitted
5) void render (View, Light) ;

)

6) Renderer::render (View view. Light light)
{

7) for(int i-0; i<number_of_polygons; i++) {
8 ) poly-polygon [i] .transform(view).project(view) ;
9) poly-poly. shade (light);
10) list-poly. clip (view);
11) for(int j— 0;j<list.elements();j++){
12) scan_converter-list (j) .scan_converter;
13) scan_converter. scan_convert (list (j) .patch);

1
1

>

14) main()
{

15) Polygon polygon [number_of_polygons];
16) Renderer renderer [number_of_renderers];
17) Scan_converter scan_converter [num_of_scan_converters];
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18) read_polygons();
19) for(int i-0; i<number_of_polygons; i++) {
2 0) Tenderer [ j ] . put_polygon (polygon [ i ]) ;
21) j-( j+1) %number_of_renderers;
2 2 )  )

23) for (EV ER) {
24) get(view,light);
25) for (i-0; i<number_of_renderers; i++) {
26) Tenderer[i].render (view,light);

)
)

>

This code segment defines two actor classes, the first is the S c a n _ c o n v e r te r  

actor class (1) which is responsible for actually drawing the polygons on the 
screen. This class has (in this simplified example) one method which scan 

converts one polygon, which is passed to it (2). The other actor class is the 

R e n d e r e r  class (3), which is responsible for all the earlier stages in the 
viewing pipeline. This class has tw o methods, the first takes a polygon that is 

passed to it and remembers it for later use (4), the other renders all the 
polygons the render has stored for a given viewpoint and light source (5).

The code for the re n d e r method is shown (6) above. It iterates over all the 

polygons it has stored (7) and for each one performs transformation and 
projection for the given viewpoint (8). Then it shades the polygon (9) for the 

given light source. Next it clips the polygon to the cluster boundaries using a 

routine not shown here, which returns a list of patches (10), one patch for 
each cluster that the polygon overlaps.

The routine then iterates over all the patches that (11), and extracts the scan 
converter from the list (12) which was calculated by the clipping routine. 

Finally the patch is sent to the given scan_converter for scan conversion (13).

The main body of the code (14) performs the overall system control. It
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declares three arrays which store the model (15) and the Tenderers (16) and 

the scan convertors (17). The m ain routine first read in the model (18) and 
then iterates over all the polygons in  the model (19).

It sends each polygon to a Tenderer (20) and then moves on to the next 

Tenderer (21) being sure to wrap round after the last renderer is reached. In 
this way the polygons are distributed evenly between the Tenderers.

After this the routine goes in to an infinite loop (23) which reads a view 

point and a light source (24) and then sends this to all the Tenderers (26) 
which will then render their polygons. This process will repeat for 
subsequent view points and light sources.

This code represents a fairly natural implementation of this application, and 

there is little additional com plexity as a result of it being a parallel 

implementation. Indeed this program will work perfectly satisfactorily as a 
sequential C++ program, simply by deleting the actor keywords. This 

demonstrates how easily and naturally the object oriented model can be used 
to express this kind of control parallelism.

7.3.2.2 Scan Conversion

There are two existing methods for scan conversion on an SIMD array, one 

developed for the Pixel Planes architecture by Fuchs [Fuchs 89] the other 

developed for the DisArray architecture by Theoharis [Theoharis 87]. Both of 
these map well onto the SIMD layer o f the Pyramid Machine.
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Fuchs 'Algorithm

Figure 7.17: Fuchs' algorithm - one step

The Fuchs algorithm proceeds in a number of stages, taking each edge of the 

polygon to be rendered in turn. For each edge the pixel processors in the 
patch calculate the equation Ax + By + C , where x and y are the coordinates of 

the processor within the patch, and A, B and C are the coefficients of the line 
Ax + By + C = 0 which corresponds to the edge. The coefficients are calculated 
such that pixels outside the polygon return a consistent negative result. All 

the pixels with a positive result are flagged as candidates, while all the pixels 
with negative values and thus not inside the polygon are eliminated.

Figure 7.18: Polygon Formed by Intersection o f Regions
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When this process is repeated for all the edges, those pixels which are 

marked as candidates for all edges correspond to the pixels within the 
polygon. These are then marked for subsequent colouring (figure 7.18).

Pro-Stored Patches

The alternative method proposed by Theoharis is based on the use of 
precalculated patches. Theoharis noticed that the number of possible paths 

an edge can take through a single 16x16 patch is 1040. This is sufficiently 

small that it is feasible to pre-compute a complete set of masks which 

includes every possible polygon edge. Each mask consists of an edge which 

divides the mask into two parts, one part all ones the other all zeros. These 
masks are conceptually similar to the half spaces created by Fuchs algorithm. 

In the same way a number of these masks can be combined such that the 
polygon formed by the intersection of them is formed.

Figure 7.19: Scan Converting with Pre-computed Masks

A number of techniques are used to reduce the number of masks which need 
to be stored. For example it is not necessary to store both positive and 

negative versions of each mask, since inversion is extremely quick on the 
SIMD array. Also masks can be shifted vertically or horizontally very quickly 

to form other masks.

Hidden Surface Elimination

Hidden surface elimination is performed using the Z-buffer system. Each 

processor stores the current depth of the pixel at that position. When the
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interior pixels of each polygon have been determined using one of the 

methods described above, those processors associated with interior pixels 
compares the depth of the new polygon with the existing depth. Only if the 

new depth is less than the old do they take the value of the new polygon.

To determine the depth of each pixel within the polygon the processors 
evaluate the equation Ax + By + C as used in the Fuchs algorithm. However 

in this case the coefficients A,B and C  describe the plane Ax + By + C = z, 

where z is the depth of the polygon at the point x,y.

A similar technique can be used to implement Gourard shading. Here the 

coefficients are chosen to represent the plane Ax + By + C = I, where I is the 
intensity of x,y. It is even possible to extend this technique to Phong shading, 

although this involves computing the illumination equation of every pixel 
in the array.

7.3.2.3 Results

Some typical images produced by this system are shown in figure 7.20. All 

these images can be produced at TV frame rates by a fully configured pyramid 
machine. The limiting factor in this system is the high level processing 
performed by the Transputer array.
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a) Space Shuttle

c) Kline Bottle

b) Wine Glass

d) Volkswagen Beetle

e) Teapot d) TetraPyramid

Figure 7.20 - Example Output of Polygonal Mesh Renderer
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The times to render the example images using pre-computed patches, 
estimated using the Transputer based simulator, are as follows

Polygons

Tetra Pyramid 36

Space Shuttle 389

Wine Glass 360

Kline Bottle 192

VW Beetle 1018

Teapot 1184

Scan Conversion Total

Time (ms) Time (ms)

0.06 0.1

0.6 0.9

0.6 0.9
03 0.4

1.7 2.5

1.9 2.9

A single cluster can scan convert approximately 20,000 triangles per second 

using Fuchs' algorithm or roughly 40,000 triangles using pre-computed 
patches (at the expense of over 1000 bitplanes o f array memory). A full 

machine containing 64 clusters could scan convert up to 1.2 or 2.4 million 
triangles per second. This assumes that all clusters are fully active all the 

time which is optimistic, however in practice the system still achieves 
approximately 600,000 triangles per second. Based on these results the SIMD 

array can always scan convert at a rate greater than the Transputers can 
produce transformed polygons, making the Transputers the limiting factor.

Based on these results the system can be seen to render approximately 400,000 

triangles per second. This allows all the example images to be rendered at TV 

frame rates by this system.

7.4 Conclusions

The two exam ple applications described in  this chapter provide 
representative examples from the two principal application areas at which 

the WPM is targeted. Both these applications map straightforwardly onto the 

architecture and do, as hoped, exhibit a clear division into iconic and 

symbolic processing. In both cases it has been possible to make full use of the 

dual paradigm nature of the WPM to provide an implementation which
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would have proved difficult to achieve as effectively on an architecture 

which did not support the dual paradigm model.

Unfortunately it has not been possible to include direct comparisons between 
the WPM and other architectures on these tasks, because no figures are 

available for the performance of these algorithms on other architectures. 

Since the algorithms described here are not standard benchmarking 

algorithms for which independent results might be available, the only way to 
produce comparative results would be to run these algorithms on other 

architectures. This has not been possible, partly because of lack of access to 

other architectures, and partly due to lack of a portable programming 

environment across comparable architectures, which would necessitate a 
complete rewrite of all software for another architecture.

This lack of comparative performance figures for parallel architectures is a 

generic problem, and it is one which urgently needs further work. The 

principal problem is a lack of a portable way of programming parallel 

architectures of varying designs. This prevents sim ple benchmarking 
programs like those used on sequential architectures being produced for 

parallel machines.

One possible solution to the portability problem is to publish sets of 
algorithm independent tasks to be performed on an architecture such as the 

DARPA image processing benchmark [Weems 88]. However this approach 

still has problems, as the freedom to use any algorithm s, given to avoid 
unfairly favouring a particular architecture, means that it is not clear 

whether the timings produced are the result of the architecture or good or 
indeed bad algorithm design.

A realistic comparison of the performance o f th e  WPM and other 
architectures would involve a full benchmarking study being carried out. 

This is a major piece of work in its own right, and is beyond the scope of this 

thesis.
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Chapter 8 

Conclusions

8.1 Discussion

This thesis has been concerned with the design o f a complete parallel 

system aimed at real time image based applications. This has included not 
only the design of appropriate hardware but also both system and 

application software. The key motivation behind this work has been the 

desire to produce a system which can overcome the limitations of present 
parallel systems which have concentrated on either fin e grain SIMD, or 

coarse grain MIMD configurations, by combining these two models into a 
single coherent system.

8.1.1 Hardware

It has been recognised for some time that applications such as image 

analysis and image generation contain vast am ounts of intrinsic 
parallelism, and that they present a computational challenge beyond that 

which can be met by sequential methods. This has made them highly 
appropriate applications for solution by parallel means. The exact approach 
to this solution however is still very much open to debate.

The two most common approaches are based on m assively parallel fine 
grain SIMD arrays and highly parallel coarse grain M IM D arrays. Neither of 

these solutions are completely satisfactory how ever as both exhibit 

performance that is highly dependent on the exact structure of the 
algorithms used.
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The work described in this thesis is based on the observation that the 
structure of image based problems falls into a particular pattern, which 

corresponds to the transformation of the data set from an iconic 
representation to a symbolic form. The basis of the object oriented approach 

to computation is that the structure of problems tends to be determined by 
the nature of data on which operations are to be perform ed. If this 

perspective is applied to the image analysis application one can see that 
data is transformed from a highly regular iconic representation through a 

more loosely structured numeric representation to a potentially irregular 
model based structure. The image generation case is similar but reversed.

From this one would expect that the nature of computations performed on 

these different data types to also change as the data moves through these 
various stages. Notice that the exact application is not the driving factor in 

this analysis, but instead the structure of the data used. It is argued that any 

image based application will exhibit this basic structure, regardless of its 

exact function since it must support these basic data structures. These 
arguments have been used to design software systems which are stable over 
time, even under dramatic functional changes, and are the basis of object 

oriented design techniques.

In this case however these arguments have been applied to optimise 

design of the hardware architecture to a particular application. By analysing 

the data types encountered at different points in the chosen applications it 
has been possible to produce an architecture optimised for the general class 

of image based applications rather than a specific one.

As described in the preceding chapters this architecture is based on a 

combination of a fine grain SIMD array and a coarse grain M IM D array, 

which are coupled via an array of communications and control processors 

to allow high bandwidth inter array communication. This architecture 

maps exactly to the expected image application structure. SIMD arrays with 

orthogonal communication are an ideal match for regular im age data,
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while coarse grain MIMD arrays with general routed communications are 

ideal for the more complex structure of model based data, and its more 

complex interrelationships. Thus by combining these two approaches it is 
hoped that the architecture achieves a high degree of compatibility to a 

wide range of image based applications, and so combines the performance 
advantages of highly optimised special purpose hardware w ith the 

flexibility of general purpose programmable systems.

8.1.2 System Software

Such a radical approach to parallel architecture design, requires an equally 
radical approach to programming. Since the vast majority of system s are 

based on single paradigm parallel hardware, the existing software systems 
follow the same pattern. This has therefore required the development of a 

novel programming system, which is also based on the object oriented 
design approach.

The key to the object oriented approach to programming is to provide data 
types which provide appropriate metaphors for the real world objects 

which are being manipulated. In this case these objects represent abstract 
entities such as images and models, which correspond to the various 

phases of processing involved in an image based application.

Associated with each type of data structure is a particular style of processing. 

In the case of image data this tends to involve globally uniform operations 

with local communications, whereas for model data it tends to be  more 

local processing with more global communications. The objects used to 
represent the different data structures support the appropriate type of 

operations. Thus image objects support globally uniform array operations, 
w hereas model data is represented using actors which support 

autonomous local operations and arbitrary global communications.

These two styles of processing are brought together in a single language, 

Pyramid C++, which uses its object oriented facilities to provide all the
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necessary parallel programming constructs, in a single uniform model. In 

this w ay the applications programmer is largely insulated from the precise 
details o f the hardware, and is instead presented with a natural set of 

parallel programming tools which match the intended problem areas.

8.1.3 Application Software

Two specific example applications have been described which are fairly 
typical of the types of problem that can be tackled with this dual-paradigm 

approach. These demonstrate that realistic applications do indeed fit into 

the prescribed processing model and can be represented using the object 
oriented design system. They also give some preliminary guide to the kind 

of perform ance levels one can expect from this hardware arrangement, 

although it should be stressed that at this stage neither the hardware nor 

the software has been fully optimised.

It should also be pointed out that in addition to the applications given in 
this thesis other researchers have mapped other algorithms onto this 
architecture using the Pyramid C++ object oriented model, most notabley 
the hierarchical Hough based recognition system [Francis 90] which further 

substantiates the claim that this architecture matches the structure of image 

based applications.

8.2 Contribution of this Work

The w ork described in this thesis has produced a viable heterogeneous 
parallel architecture which provides an alternative to conventional 
approaches to real time image based systems. In particular this work offers 

s ign ifican t advantages over existing approaches where real tim e 

performance combined with algorithmic flexibility are crucial, and where 

the application falls into a iconic/symbolic framework.

The developm ent of a working prototype machine is particu larly
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important since it demonstrates that such an approach is feasible using 

available components.

The work has also resulted in the development of a novel programming 
language, Pyramid C++, which provides a coherent programmers model of 

an architecture which combines two conventionally separate parallel 
computational models, namely MIMD and SIMD. Pyramid C++ is the first 

programming language to address this dual paradigm programming 

model, making it an excellent language for use on the WPM.

By making use of object oriented techniques Pyramid C++ successfully 

unifies the two principal parallel programming models into the single 
unified concept of autonomous internally parallel objects. These objects 

allow not only control and data parallelism to be described in the same 
language, but as importantly it allows the two techniques to be neatly 

combined to provide solutions to heterogeneous problems such as image 
understanding and image generation. These capabilities are unique to 

Pyramid C++, and are the result of the unified approach taken.

The im plementation of a number of realistic applications using this 

applications development environment has demonstrated that this system 

provides a convenient platform for image based applications. It has also 
dem onstrated how real applications can take advantage of m ultiple 

heterogeneous computational elements to optimally support the variety of 

computational styles found in image based applications.

8.3 Im plications for Future Work

This work has been based on a specific application area, namely image 
based systems, but it seems likely that similar techniques could be applied 

to other application areas. In particular the combination of control and data 
parallel programming in a single model seems to provide a valuable 

programming tool for many systems.
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Currently the programming system used depends not on the problem to be 

solved, but on the machine architecture on which it is to be implemented. 
This seems a poor way to choose a programming style. In reality many 

problems are naturally solvable using either a data parallel or control 

parallel approach. This is independent of the proposed hardware platform, 

but is inherent in the structure of the problem to be solved.

Many real applications contain a wide variety of subproblems, each of 
which may have its own natural structure, such as the low-level image 

processing task, and high-level model matching problems found in image 

analysis applications. Thus an ideal parallel language should support both 

parallel programming styles. It then remains to map these programming 
styles onto the underlying hardware.

In the case of the Warwick Pyramid Machine this mapping is done by 

simply implementing the data parallel constructs on the SIMD array and 
the control parallel constructs on the MIMD array. This works very well 

for the im age based tasks studied, and may be satisfactory for other 
applications.

An interesting extension to this work would be to apply this dual paradigm 
programming style to other problems and study the distribution of control 

parallel and data parallel constructs in 'natural' implementations of these 

problems, that is implementations w ritten without regard to the 
underlying hardware. Such a study would provide a number of interesting 

results, such as the relative importance of control and data parallel support, 

and how these interact.

Such a study could provide a sound basis to decide whether the Pyramid 

Machine as it stands is applicable to other problem areas, or whether 

modifications are required, or indeed whether an alternative approach is 

required. W hatever the outcome though, it seems very likely that both 

control and data parallel components will be required to efficiently 

implement a dual paradigm programming model, and in turn it seems that
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such a programming m odel is the only way to allow algorithms to be 
expressed in their most natural form, which should lead to their most 
efficient hardware solution.
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Appendix A

Pyramid C++ 
Language Definition

A.l Introduction

Pyramid C++ is a superset of the C++ programming language which 
incorporates a number of features that enable it to be used to express 

control and data parallelism. These extensions have been carefully 
designed so as to involve the minimum possible changes to the syntax of 

C++ itself. To this end many of the features of the programming system 
are provided by class libraries rather than extensions to the base language.

This description of Pyramid C++ is divided into two parts, the first of 
which deals with the extensions to C++ added to Pyramid C++, the second 
of which deals with the supporting class library. Taken together these 

constitute a definition for the Pyramid C++ programming system as a 
whole.

A.2 Language Extensions

Pyramid C++ is a superset of the C++ language defined in "The C++ 

Programming Language" [Stroustrup 86]. All valid C++ programs are also 

valid Pyramid C++ programs. In addition to those language constructs 
defined in C++ Pyramid C++ defines the following others.
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A.2.1 Actors

An actor is an independent object with its own flow of control. Actors are 

instances of actor classes. An actor class is declared as follows

a c t o r  c la s s  <class_name>

The declaration is identical to that for a normal class, except for the 

inclusion of the keyword a c to r .

An actor (that is instances of an actor class) is an object which can execute 

its member functions autonomously and potentially in parallel with other 
processing. When a member function of an actor is called, the calling 
function is free to continue with its processing while the actor executes the 

called member function.

Actors and actor classes can be used in the same way as ordinary classes and 

objects except that:

• Actors may not access the member variable of another actor, even 

one of the same class

• Parameters to member functions of actors may only be passed by 

value, unless they are themselves actors in which case they must be 

passed by reference.

A.2.2 Message Passing Semantics

Actors consist of two components, a passive (normal C++) object and an 
object controller. When a member function of an actor is called a message is 

sent from the calling function to the actor's controller . The object controller 

is responsible for receiving the messages which request the execution of a 
member function and executing the appropriate member function in the

227



Appendix A: Pyrtnaid C + +  Language Definition

passive object.

Messages are sent to actors using the C++ member function calling syntax

<object> . <member_function_name>(<parameters>) 
or
<object_reference> -> <member_function_name>(<parameters>)

The m essage passing m echanism supports a number of different 

behaviours. Both the sender and receiver of the message can determine 

certain aspects of the behaviour required.

A.2.2.1 Message Sender

There are two principal alternative message passing behaviours for the 

message sender

M em ber Functions not Returning a  Value - the sender always continues 
immediately after the message is sent.

Member Functions Returning a Value -  the sender may either wait for the 

value to be returned (the default behaviour) or can continue execution and 
fetch the return value at a later stage using the deferral mechanism.

Deferred Value Returning

To defer the receipt of the returned value the caller must create an object of 
class Pledge, which will be used to access the return value at a late stage.

Pledge <pledge_object>;

This Pledge object can then be associated with the message transaction

<pledge_object>=<object> . <member_function>(<parameters>);
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Subsequently the actual return value may be read into a variable using the 
«  operator defined on the Pledge class

< retu rn _v alu e>  «  < p led g e _ o b je c t>

If at the time this statement is performed the return value has not been 

produced by the called member function, the statement will cause the caller 
to block and wait until the value is produced.

A.2.2.2 Message Receiver

The receiving actor can control its message passing behaviour in two ways. 

Each member function that returns a value can specify at what point in its 

execution the value is returned. In addition the object controller can 
determine which messages the actor will accept at any given time.

Non Terminating Value Returning

In order to maintain compatibility with C++ the conventional C++ re tu r n  

statement may be used. Alternatively a value can be returned by explicitly 

sending a message to the sender of the message being processed. In the latter 

case the object makes use of a special pseudo-object sen d er, which refers to 

the sender of the message which invoked the current member function. 
This is achieved as follows

s e n d e r . re p ly (< re tu rn _ v a lu e > )

This statement does not terminate the member function's execution as a 
conventional return statement does, allowing the function to continue 
execution after a value has been returned.

Controlling M essage  A cce p tan ce

Each member function of an actor may be enabled or disabled under control

229



Appendix A: Pyrmaid C + +  Language Definition

of the object controller. An enabled member function may be invoked by a 

message. A disabled member function cannot be invoked by a message. Any 
messages received requesting the execution of a disabled member function 

are queued. The default state is for all member functions of an actor to be 

enabled.

The object controller supports two operations, one to enable and one to 

disable a member function. These are performed by calling the controller 
pseudo-object defined for every actor. This object supports two operations 

block and accept. A member function can be disabled as follows

controller.block(<member_function>)

A member function can be enabled as follows

controller.accept(<member_function>)

When re-enabled any queued messages will be processed, in a non specified 

order.

A.3 Parallel Class Library

The data parallel programming support is provided by a parallel class 
library. This provides a number of classes which allow operations to be 

performed on collections of objects.

The class hierarchy for the parallel classes is shown below

Image
Bit Image 
ByteImage 
ShortImage 
IntImage

Patch
BitPatch
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BytePatch
ShortPatch
IntPatch

Cluster

Subclasses are shown indented under their base class.

A.3.1 Class Im age

Class Image is the most important class in the library. It provides the 
interface to all the data parallel operations. The image class allows any 

number of bits per pixel to be specified. Its subclasses Bitlmage, 
By te Image, Short Image and Intlmage are provided simply for 

convenience, to allow common image depths to be easily specified. All data 

parallel functionality is provided by the Image base class. The base classes 

will therefore not be discussed further.

A.3.1.1 Public Definition

class Image( 
public:
// housekeeping

Image(int bits);
~Image ();
Image(Images);
Images operator*(Images);

// arithmetic operations
Images operator+(Images);
Images operator-(Images);
Images operator*(Images);
Images operator/(Images);
Images operators(Images);
Images operator|(Images);
Images operator''(Images) ;
Images operatorSS(Images);
Images operator||(Images);
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Images operator*'(Images); 
Images operator<(Images) ; 
Images operator>(Images) ; 
Images operators (Images) ; 
Images operator» (Images) ; 
Images operator*»(Images) ; 
Images operator+-(Images); 
Images operator—  (Images) ; 
Images operator*-(Images); 
Images operator/-(Images); 
Images operators-(Images) ; 
Images operator|-(Images); 
Images operator''-(Images) ; 
Images operatorSS-(Images); 
Images operator||-(Images); 
Images operator''''-(Images) ; 
Images operator« (int); 
Images operator» (int);

// image shifting operations 
Images N(Images);
Images S (Images);
Images E (Images);
Images W ( Images);

)

A.3.1.2 Member Functions 

Arithmetic Operations

All arithmetic and logical operations defined on images that have standard 

definitions on integers are interpreted as performing the standard operation 
to every pixel of an image. For example

Images operator+(Images) ;

adds each pixel of the target image with the corresponding pixel in the
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parameter image and returns an image containing the resultant pixels.

Im age Shifting Operations

Four operations are provided to shift images within the image plane. These 
are:-

I m a g e S  N ( I m a g e s ) ;

Images S(Images);
Images E(Images);
Images W (Images);

The operations are N, S, E and W, for north, south, east and west. North is 

interpreted as towards decreasing y-coordinate, and West is interpreted as 
towards decreasing x-coordinate.

The North operation replaces each pixel with the pixel to its north. The 
others perform the same operation for the appropriate direction.

A.3.2 Class Patch

The Patch class provides the same functionality as the image class at the 
level of a single cluster. A Patch is a single 16x16 image which exists on a 

single cluster. Classes BitPatch, BytePatch, ShortPatch and intPatch 
are provided for convenience, to allow common image depths to be 

specified.

A.3.2.1 Public Definition

class Patch{ 
public :
// housekeeping

Patch(int bits); 
-Patch();
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P a t c h ( P a t c h s ) ;

P a t c h s  o p e r a t o r - ( P a t c h s ) ;  

// a r i t h m e t i c  o p e r a t i o n s

P a t c h s  o p e r a t o r + ( P a t c h s )  ; 

P a t c h s  o p e r a t o r - ( P a t c h s ) ; 

P a t c h s  o p e r a t o r * ( P a t c h s ) ; 

P a t c h s  o p e r a t o r / ( P a t c h s ) ; 

P a t c h s  o p e r a t o r s ( P a t c h s ) ; 

P a t c h s  o p e r a t o r  | ( P a t c h s ) ; 

P a t c h s  o p e r a t o r ^  ( P a t c h s ) ; 

P a t c h s  o p e r a t o r s s  ( P a t c h s ) ; 

P a t c h s  o p e r a t o r | | ( P a t c h s ) ; 

P a t c h s  o p e r a t o r ' ' A ( P a t c h s )  ; 

P a t c h s  o p e r a t o r <  ( P a t c h s ) ; 

P a t c h s  o p e r a t o r » ( P a t c h s ) ; 

P a t c h s  o p e r a t o r «  ( P a t c h s  ) ; 

P a t c h s  o p e r a t o r » - ( P a t c h s ) ; 

P a t c h s  o p e r a t o r — ( P a t c h s )  ; 

P a t c h s  o p e r a t o r + - ( P a t c h s ) ; 

P a t c h s  o p e r a t o r — ( P a t c h s )  ; 

P a t c h s  o p e r a t o r * - ( P a t c h s ) ;  
P a t c h s  o p e r a t o r / - ( P a t c h s ) ;  

P a t c h s  o p e r a t o r s - ( P a t c h s ) ;  

P a t c h s  o p e r a t o r | - ( P a t c h s ) ;  

P a t c h s  o p e r a t o r ' ' - ( P a t c h s  ) ; 

P a t c h s  o p e r a t o r s s - ( P a t c h s ) 

P a t c h s  o p e r a t o r | | - ( P a t c h s )  

P a t c h s  o p e r a t o r ' ' A- ( P a t c h s )  

P a t c h s  o p e r a t o r «  ( i n t )  ; 

P a t c h s  o p e r a t o r »  ( i n t  ) ;

// p a t c h  s h i f t i n g  o p e r a t i o n s  

P a t c h s  N ( P a t c h s ) ;

P a t c h s  S ( P a t c h s ) ;

P a t c h s  E ( P a t c h s ) ;

P a t c h s  W ( P a t c h s ) ;

)

A.3.2.2 Member Functions
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Arithmetic Operations

All arithmetic and logical operations defined on patches that have standard 

definitions defined on integers are interpreted as performing the standard 
operation to every pixel of an patch.

Patch Shifting Operations

Four operations are provided to shift patches within the image plane. These 
are:-

P a t c h *  N ( P a t c h * ) ;

P a t c h *  S ( P a t c h * ) ;

P a t c h *  E ( P a t c h *  ) ;

P a t c h *  W ( P a t c h * ) ;

The operations are N, S, E and W, for north, south, east and west. North is 

interpreted as towards decreasing y-coordinate, and West is interpreted as 
towards decreasing x-coordinate.

The North operation replaces each pixel with the pixel to its north. The 
others perform the same operation for the appropriate direction.

A.3.3 Class Cluster

The C l u s t e r  class provides access to the Multi-SIMD capability of the 

Warwick Pyramid Machine. One instance of class C l u s t e r  exists for each 
physical cluster of the machine. The main functionality provided by the 

C l u s t e r  object is to invoke operations on P a t c h e s .  Since the P a t c h  class is 
not an actor class, P a t c h e s  cannot support autonomous operations. The 

C l u s t e r  class is used to provide this autonomy, to simulate the behaviour 
of the real cluster.
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A.3.3.1 Public Definition

a c to r  c l a s s  C lu s t e r { 
p u b lic :

/ / c o n s t r u c t o r  

C l u s t e r  ( )  ;

/ / m e s s a g e  f o r w a r d i n g

P a t c h « ,  c a l l  ( M e m b e r P t r  m e m b e r _ f u n c t i o n , P a t c h «  p l , p 2 ) ;

1

A.3.3.2 Member Functions 

M essage  Forwarding

Message forwarding allows an operation to be performed on a P a tc h  as if it 

were an actor object.

The c a l l  member function

P a t c h «  c a l l ( M e m b e r P t r  m e m b e r _ f u n c t i o n , P a t c h «  p l , p 2 ) ;

takes a pointer to the member function to be called as a parameter. It also 

takes two patch references as parameters, the first being the patch on which 

the function is to be called, and the second being the parameter to the 

member function (which may be null if no parameter is required). It returns 

a reference to the result patch.

The C l u s t e r  class will not in general be used by the applications 

programmer, who will generally use only the Image and P atch  classes.
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