
Efficient Direct Convolution Using
Long SIMD Instructions

Alexandre de Limas Santana

Barcelona Supercomputing Center

Barcelona, Catalunya, Spain

Universitat Politècnica de Catalunya

Barcelona, Catalunya, Spain

alexandre.delimassantana@bsc.es

Adrià Armejach

Barcelona Supercomputing Center

Barcelona, Catalunya, Spain

Universitat Politècnica de Catalunya

Barcelona, Catalunya, Spain

adria.armejach@bsc.es

Marc Casas

Barcelona Supercomputing Center

Barcelona, Catalunya, Spain

Universitat Politècnica de Catalunya

Barcelona, Catalunya, Spain

marc.casas@bsc.es

Abstract
This paper demonstrates that state-of-the-art proposals to

compute convolutions on architectures with CPUs support-

ing SIMD instructions deliver poor performance for long

SIMD lengths due to frequent cache conflict misses. We first

discuss how to adapt the state-of-the-art SIMD direct con-

volution to architectures using long SIMD instructions and

analyze the implications of increasing the SIMD length on

the algorithm formulation. Next, we propose two new algo-

rithmic approaches: the Bounded Direct Convolution (BDC),
which adapts the amount of computation exposed to miti-

gate cache misses, and the Multi-Block Direct Convolution
(MBDC), which redefines the activation memory layout to im-

prove the memory access pattern. We evaluate BDC, MBDC,
the state-of-the-art technique, and a proprietary library on

an architecture featuring CPUs with 16,384-bit SIMD regis-

ters using ResNet convolutions. Our results show that BDC
and MBDC achieve respective speed-ups of 1.44× and 1.28×
compared to the state-of-the-art technique for ResNet-101,

and 1.83× and 1.63× compared to the proprietary library.

CCS Concepts: • Theory of computation → Design and
analysis of algorithms; • Computer systems organiza-
tion→ Single instruction, multiple data.

Keywords: high-performance convolutions, software opti-

mization, SIMD architectures, vector architectures

1 Introduction
Convolution kernels are fundamental building blocks of

Deep Neural Networks (DNNs). Their highly parallel nature

makes them a very appealing option for parallel architec-

tures exploiting Single Instruction Multiple Data (SIMD) par-

allelism. Processors equipped with CPUs supporting SIMD

instructions have become critical components of parallel ar-

chitectures applied on modern supercomputers [24], which

has motivated numerous research efforts focused on acceler-

ating convolutions on architectures featuring SIMD instruc-

tions [8, 10, 31]. While this body of work has focused on

SIMD instructions operating on 512-bit registers, there is

a trend toward SIMD architectures implementing registers

larger than 512 bits. Emerging Instruction Set Architectures

(ISAs) like the ARM Scalable Vector Extension (SVE) [26] or

the RISC V "V" vector extension [6], which support SIMD in-

structions operating on very large registers, and commercial

products featuring 2KB registers like the SX-Aurora proces-

sor [30], confirm this trend towards CPUs supporting SIMD

instructions operating on large registers.

This paper demonstrates that state-of-the-art approaches

to compute convolutions on CPUs supporting SIMD instruc-

tions [10] deliver poor performance when operating on long

SIMD architectures. We show that the poor performance

originates from unnecessary associations of the architec-

ture SIMD length to optimization variables, causing large

memory footprints and memory access patterns with poor

locality and cache conflict misses [13].
We propose two novel algorithms to efficiently run convo-

lution workloads on long SIMD architectures and overcome

the two main issues of state-of-the-art approaches. The first

algorithm, the Bounded Direct Convolution (BDC), prevents
memory access patterns from triggering a large number of

cache misses by throttling down the register blocking opti-

mization while still exposing enough computation to avoid

stalling the floating-point functional units. The second algo-

rithm, the Multi-Block Direct Convolution (MBDC), redefines
the tensor’s memory layout in favor of regular memory ac-

cess patterns, eliminating the possibility of cache conflict

misses entirely. We use a code generation engine, either

a Just-In-Time (JIT) assembler or a collection of statically-

tuned routines, to generate code for BDC or MBDC tailored to

the needs of each convolution workload and architecture.

This paper makes the following contributions:

• Demonstrates that state-of-the-art approaches to run

convolution workloads on SIMD architectures suffer

from poor performance in the context of long SIMD

architectures.

• Proposes the Bounded Direct Convolution (BDC) algo-
rithm, which judiciously limits the amount of com-

putation exposed to the hardware in order to reduce

data cache conflict misses without stalling functional

units.

• Proposes the Multi-Block Direct Convolution (MBDC)
algorithm, which improves thememory access pattern

by redefining the tensor memory layout.

The final publication is available at ACM via http://dx.doi.org/10.1145/3572848.3577435

https://orcid.org/0000-0002-3203-3662
https://orcid.org/0000-0003-2869-668X
https://orcid.org/0000-0003-4564-2093

Alexandre de Limas Santana, Adrià Armejach, and Marc Casas

• Evaluates the performance of BDC, MBDC and the state-
of-the-art approach on the SX-Aurora [30] proces-

sor, an architecture featuring CPUs with 16,384-bit

SIMD registers. Our analysis includes the convolu-

tion algorithms in vednn [22], a highly-tuned vendor-

proprietary library. Our results indicate that BDC and

MBDC achieve respective speed-ups of 1.44× and 1.28×
against the state-of-the-art, and of 1.83× and 1.63×
with respect to vednn on ResNet-101 workloads.

2 The Convolution Primitive
The 2-dimensional convolution, widely used on computer

vision models [11, 25, 28], is a function over three rank-4

tensor operands: two tensors describe the source (𝑆) and

destination (𝐷) activations, and a final tensor (𝑊) represents

the filter weights. Activation tensors (𝑆 and 𝐷) dimensions

represent: the minibatch size (𝑁), the number of input or

output feature maps (𝐼𝐶 and 𝑂𝐶), the activations height

(𝐼𝐻 and 𝑂𝐻) and width (𝐼𝑊 and 𝑂𝑊). The weights tensor

contains both input (𝐼𝐶) and output (𝑂𝐶) feature maps and

the perception field height (𝐾𝐻) and width (𝐾𝑊) dimensions.

Throughout this paper, we describe these tensor shapes using

tuples, following the state-of-the-art convention [1, 15]. We

represent 𝑆 and 𝐷 as (𝑁, 𝐼𝐶, 𝐼𝐻, 𝐼𝑊) and (𝑁,𝑂𝐶,𝑂𝐻,𝑂𝑊)
respectively, and the𝑊 tensor as (𝑂𝐶, 𝐼𝐶, 𝐾𝐻, 𝐾𝑊).

The𝑊 tensor slides over the 𝑆 tensor during the forward

convolution, creating a series of 3-dimensional intersections

of shape (𝐼𝐶, 𝐾𝐻, 𝐾𝑊) over their shared dimensions. Each

intersection generates one output element computed by the

summation of element-wise multiplications within the inter-

sected area. This routine sweeps the 𝑆 tensor spatial domain

and then repeats across different 𝑂𝐶 indices and images

within the minibatch, ultimately composing the 𝐷 tensor

data. Additional convolution arguments, stride (𝐶𝑠𝑡𝑟) and
padding (𝐶𝑝𝑎𝑑), govern how to move the𝑊 tensor across the

𝑆 spatial space by either skipping activations or considering

zero-padding at the edges of the spatial domain.

Training a DNN model requires two other passes: back-

ward data and backward weights. The𝑊 tensor slides across

the 𝐷 tensor during the backward data direction and com-

putes the partial derivatives concerning the 𝑆 tensor operands.

The backward data outputs a new tensor 𝑆𝑑𝑖 𝑓 𝑓 , with the same

shape as 𝑆 , and propagates it back to the previous model

layer where it is called 𝐷𝑑𝑖 𝑓 𝑓 , the output tensor gradients.

During the backward weights pass, the algorithm convolves

the 𝐷𝑑𝑖 𝑓 𝑓 and 𝑆 tensors to compute the weight gradients, or

𝑊𝑑𝑖 𝑓 𝑓 , that are applied to the𝑊 tensor to adjust the weights.

Although the different directions alter the tensor roles, the

changes do not profoundly affect the way computations are

carried out. Indeed, the algorithm shares the same structure

and optimizations across all directions, with a few exceptions

involving large filters and non-unit strides [10], which are

not standard on computer vision workloads.

Algorithm 1 The Naive Convolution

Input: 𝑆 ,𝑊 , 𝐶𝑠𝑡𝑟 , 𝐶𝑝𝑎𝑑

Output: 𝐷
1: for 𝑛 = 0, 𝑁 do
2: for 𝑜𝑐 = 0,𝑂𝐶 do
3: for 𝑖𝑐 = 0, 𝐼𝐶 do
4: for 𝑜ℎ = 0,𝑂𝐻 do
5: for 𝑜𝑤 = 0,𝑂𝑊 do
6: for 𝑘ℎ = 0, 𝐾𝐻 do
7: ih = oh * 𝐶𝑠𝑡𝑟 + kh - 𝐶𝑝𝑎𝑑

8: for 𝑘𝑤 = 0, 𝐾𝑊 do
9: iw = ow * 𝐶𝑠𝑡𝑟 + kw - 𝐶𝑝𝑎𝑑

10: 𝐷[n,oc,oh,ow] += 𝑆[n,ic,ih,iw] *𝑊 [oc,ic,kh,kw]

Algorithm 1 shows a simple 2-dimensional forward con-

volution, highlighting seven nested loops that wrap a single

Fused Multiply and Accumulate (FMA) operation. The loops

and the underlying tensor memory layout may change, but

the output remains the same, provided the computation of

memory offsets is kept consistent. The backward weights

and backward data directions use a similar loop structure

and differ in which tensor is the output, i.e., 𝑆 during the

backward data pass and𝑊 during the backward weights.

2.1 The High-Performance Convolution
Each convolution output element is independent, fitting the

SIMD parallel execution model. The forward, backward data,

and backward weights directions contain 𝑁 ·𝑂𝐶 ·𝑂𝐻 ·𝑂𝑊 ,

𝑁 · 𝐼𝐶 · 𝐼𝐻 · 𝐼𝑊 and 𝑂𝐶 · 𝐼𝐶 · 𝐾𝐻 · 𝐾𝑊 independent out-

put elements respectively, defining the convolution as highly

parallel. Indeed, efficient convolution algorithms rely primar-

ily on correctly mapping parallel resources to convolution

loops and strategies to increase data reuse at the various

memory levels [4, 27]. The convolution can be transformed

into GEMM [2, 5, 29] and FFT [19] problems and solved with

highly-optimized math kernel libraries. Other techniques to

accelerate convolutions involve the use of quantization and

reduced precision data-types [3, 17], which reduce the tensor

memory footprint at the cost of model accuracy.

2.2 The SIMD Direct Convolution Algorithm
The direct algorithm formulation for convolutions acceler-

ates computations by using optimizations like cache blocking

and loop reordering. Previous works propose highly effi-

cient convolution algorithms for CPUs equipped with SIMD

ISAs [8, 10, 31], reporting up to 90% of the theoretical peak

performance on AVX512 processors for some ResNet [11]

layers. These proposals formulate the SIMD direct convolution
algorithm, avoiding the memory overhead of im2col transfor-
mations required by FFT- and GEMM-based solutions [5, 19].

Despite minor differences, all SIMD direct convolution vari-

ants apply a standard set of optimizations driven by analyt-

ical architecture models [12, 18]. These models guide the

Efficient Direct Convolution Using Long SIMD Instructions

Table 1. Architecture analytical model applied to SIMD cpus.

Assuming 32-bit float datatypes.

Architecture 𝑁𝑣𝑙𝑒𝑛 𝑁𝑓𝑚𝑎 𝐿𝑓𝑚𝑎 E
Intel Skylake 16 2 5 160

NEC SX-Aurora 512 3 8 12288

definition of optimization variables like the register blocking

factor. Modern numeric kernel libraries such as oneDNN [15]

and VEDNN [22] incorporate implementations of the SIMD

direct convolution algorithm, supporting software tools like

Tensorflow [1], Caffe [16], and PyTorch [23]. We later show,

in Section 5, that unnecessary associations of the maximum

SIMD length to optimization variables undermine the per-

formance of this technique on architectures featuring CPUs

with long SIMD registers.

3 Architecture Analytical Model
Wemotivate our algorithmic design choices using the analyt-

ical SIMDmachine model employed to guide optimization ef-

forts on high-performance GEMM [18] and convolution [31]

kernels. This model considers the following hardware fea-

tures of SIMD architectures:

SIMD Registers: SIMD instructions consume and pro-

duce data from/to SIMD registers, each with a SIMD length

of 𝑁𝑣𝑙𝑒𝑛 elements. A total of 𝑁𝑣𝑟𝑒𝑔𝑠 logical vector registers

are addressable by SIMD instructions.

FMA Units: These units support SIMD Fused Multiply-

Add (FMA) instructions with a latency of 𝐿𝑓𝑚𝑎 cycles. The

hardware schedules SIMD FMA instructions to the 𝑁𝑓𝑚𝑎

independent FMA processing units. It is possible to pipeline

each FMA unit fully by issuing instructions every cycle.

SIMD architectures achieve the theoretical peak perfor-

mance when fully subscribing all 𝑁𝑓𝑚𝑎 vector FMA units.

Sustaining this performance requires exposing several in-

dependent computations (E) to the architecture. Formula 1

expresses the relationship between the model architecture

variables to avoid register dependency stalls and fully benefit

from the CPUs’ deep SIMD pipelines.

E ≥ 𝑁𝑣𝑙𝑒𝑛 · 𝑁𝑓𝑚𝑎 · 𝐿𝑓𝑚𝑎 (1)

Table 1 displays the values of the 𝑁𝑣𝑙𝑒𝑛 , 𝑁𝑓𝑚𝑎 , 𝐿𝑓𝑚𝑎 and E
parameters for the SX-Aurora [30] and the Intel Skylake [9]

architectures. As this Table indicates, long SIMD architec-

tures, like the SX-Aurora, require parallel algorithms to ex-

pose a significantly larger number of independent FMA com-

putations E compared to 512-bit architectures like the Intel

Skylake. This difference originates not only from the larger

vector length (𝑁𝑣𝑙𝑒𝑛), but also from the increased number

of FMA units (𝑁𝑓𝑚𝑎) and FMA latency (𝐿𝑓𝑚𝑎).

4 The Direct Convolution on Long SIMD
Architectures

This section describes how to apply state-of-the-art tech-

niques [8, 10, 31] to formulate the direct convolution on

long SIMD architectures. We use this formulation in Sec-

tion 5 to reveal shortcomings that manifest on long SIMD

architectures. Our proposals, presented in Section 6, improve

this formulation by adapting certain algorithmic aspects to

longer SIMD lengths. Unless otherwise stated, we discuss

the convolution concerning the forward data direction in

this Section, providing due comments whenever required.

Section 8 evaluates all directions demonstrating that our

contributions benefit all of them.

4.1 Using SIMD Instructions and Register Blocking
Using SIMD instructions allows the CPU to exploit data-

level parallelism, which corresponds to the 𝑁𝑣𝑙𝑒𝑛 contribu-

tion of Formula 1. The register blocking optimization sub-

scribes all FMA units with independent computations to

prevent CPU stalls due to data dependencies between in-

structions. Variables 𝐿𝑓𝑚𝑎 and 𝑁𝑓𝑚𝑎 of Formula 1 account

for the number and the latency of SIMD FMA units. We use

SIMD instructions to run the computations across the feature

map dimensions (𝑂𝐶), following current practice [8, 10, 31].

We apply register blocking to the output tensor spatial di-

mensions (𝑂𝑊 and 𝑂𝐻) by factors 𝑅𝐵𝑤 and 𝑅𝐵ℎ . Since

E = 𝑅𝐵𝑤 · 𝑅𝐵ℎ · 𝑁𝑣𝑙𝑒𝑛 and according to Formula 1, the

blocking factors must fulfill Formula 2 under the constraint

𝑅𝐵𝑤 · 𝑅𝐵ℎ < 𝑁𝑣𝑟𝑒𝑔𝑠 , creating 𝑅𝐵𝑤 · 𝑅𝐵ℎ independent accu-

mulation chains of 𝑁𝑣𝑙𝑒𝑛 elements.

𝑅𝐵𝑤 · 𝑅𝐵ℎ ≥ 𝑁𝑓𝑚𝑎 · 𝐿𝑓𝑚𝑎 (2)

For the backward data propagation, the output tensor is

𝑆𝑑𝑖 𝑓 𝑓 , and we use SIMD instructions in the loop over the

𝐼𝐶 dimension and apply register blocking to the 𝐼𝑊 and 𝐼𝐻

dimensions. During the backward weights pass, the output

tensor is𝑊𝑑𝑖 𝑓 𝑓 , and we select the largest feature map direc-

tion (𝐼𝐶 or 𝑂𝐶) to vectorize, as both are available. We apply

register blocking to the smaller feature map dimension, using

a single register blocking factor (𝑅𝐵𝑐).

4.2 Tensor Memory Layout
State-of-the-art convolution implementations [15] use a ten-

sor memory layout that enables the movement of partial

sums to/from registers via unit-stride SIMD load/store in-

structions. Figure 1 depicts this memory layout, applied to

activation tensors by using black arrows to indicate unit

stride accesses. The memory layout is constructed by block-

ing the 𝐼𝐶 and 𝑂𝐶 feature map dimensions by the factors

𝐼𝐶𝑏 and 𝑂𝐶𝑏 , both set to 𝑁𝑣𝑙𝑒𝑛 , and pulling the blocks to the

innermost dimension in memory. The following tuples rep-

resent the memory layouts we consider for tensors 𝑆 , 𝐷 , and

𝑊 , from outer- to inner-most dimension order: (𝑁 , 𝐼𝐶/𝐼𝐶𝑏 ,

Alexandre de Limas Santana, Adrià Armejach, and Marc Casas

Width

I0,0 I0,1 I0,2 I0,3 … I0,w-1

Ih-1,0 Ih-1,1 Ih-1,2 … Ih-1,w-1

…
I1,0 I1,1 I1,2 I1,3 … I1,w-1I0,0 I0,1 I0,2 I0,3 … I0,w-1

Ih-1,0 Ih-1,1 Ih-1,2 … Ih-1,w-1

…
I1,0 I1,1 I1,2 I1,3 … I1,w-1I0,0 I0,1 I0,2 I0,3 … I0,w-1

Ih-1,0 Ih-1,1 Ih-1,2 … Ih-1,w-1

…
I1,0 I1,1 I1,2 I1,3 … I1,w-1I0,0 I0,1 I0,2 I0,3 … I0,w-1

Ih-1,0 Ih-1,1 Ih-1,2 … Ih-1,w-1

…

I1,0 I1,1 I1,2 I1,3 … I1,w-1

Feature
Maps

Height

Nvlen

Figure 1. The high-performance activation tensor memory

layout used in the SIMD direct convolution. The arrows

denote the data elements in contiguous memory positions.

Notice that the feature map block interleaves the data for

adjacent spatial points.

𝑂𝐻 , 𝑂𝑊 , 𝐼𝐶𝑏), (𝑁 , 𝑂𝐶/𝑂𝐶𝑏 , 𝑂𝐻 , 𝑂𝑊 , 𝑂𝐶𝑏) and (𝑂𝐶/𝑂𝐶𝑏 ,
𝐼𝐶/𝐼𝐶𝑏 , 𝐾𝐻 , 𝐾𝑊 , 𝐼𝐶𝑏 , 𝑂𝐶𝑏).

Unprecedented conditions like 𝑂𝐶 < 𝑁𝑣𝑙𝑒𝑛 < 𝐼𝐶 or 𝐼𝐶 <

𝑁𝑣𝑙𝑒𝑛 < 𝑂𝐶 occur on long SIMD architectures. Typical SIMD

architectures typically handle these scenarios using strip

mining or zero-padding the smallest operand. However, ISAs

supporting long SIMD instructions [6, 26, 30] can handle such

cases by dynamically reducing the SIMD length 𝑁𝑣𝑙𝑒𝑛 . To ex-

ploit this feature, we use independent and dynamic blocking

factors 𝐼𝐶𝑏 =𝑚𝑖𝑛(𝐼𝐶, 𝑁𝑣𝑙𝑒𝑛), and 𝑂𝐶𝑏 =𝑚𝑖𝑛(𝑂𝐶, 𝑁𝑣𝑙𝑒𝑛), to
𝑆 and 𝐷 tensors, avoiding padding and strip mining entirely.

4.3 Loop Order and Multithreading
We apply state-of-the-art optimizations [8, 10, 31] to priori-

tize the cache reuse of the𝑊 tensor. We place the loops over

the weights spatial dimensions and input feature map block

(𝑖 .𝑒 ., 𝐾𝐻 , 𝐾𝑊 , and 𝐼𝐶𝑏) inside the loop nest surrounding the

vector instructions. The loops over the blocked output spa-

tial domain (𝑖 .𝑒 ., 𝑂𝑊 /𝑅𝐵𝑤 and 𝑂𝐻/𝑅𝐵ℎ) are next, followed
by the blocked feature map loops (𝑖 .𝑒 ., 𝐼𝐶/𝐼𝐶𝑏 and𝑂𝐶/𝑂𝐶𝑏).
The last loop iterates over the minibatch elements and can

be executed in parallel, where each compute unit processes a

subset of images while sharing the weights tensor data from

the Last Level Cache (LLC).

We consider different parallelization strategies from the

state-of-the-art to parallelize the computations during the

backward weights direction [8, 10]. We execute the loop over

the smallest feature map dimension in parallel during the

backward weights propagation. For instance, when 𝑂𝐶 >

𝐼𝐶 , the 𝑂𝐶 loop is vectorized, and the 𝐼𝐶 loop receives the

register blocking optimization and executes in parallel.

Algorithm 2 The direct convolution algorithm for long

SIMD architectures

Input: Source Activation Tensor (𝑆), Weights Tensor (𝑊)

Output: Destination Activation Tensor (𝐷)

Architectural variables: 𝑁𝑣𝑙𝑒𝑛 , 𝑁𝑣𝑟𝑒𝑔𝑠

1: 𝑂𝐶𝑏 =𝑚𝑖𝑛(𝑂𝐶, 𝑁𝑣𝑙𝑒𝑛)
2: 𝐼𝐶𝑏 =𝑚𝑖𝑛(𝐼𝐶, 𝑁𝑣𝑙𝑒𝑛)
3: 𝑅𝐵𝑤 =𝑚𝑖𝑛(𝑁𝑣𝑟𝑒𝑔𝑠 − 1,𝑂𝑊)
4: 𝑅𝐵ℎ =𝑚𝑎𝑥 ((𝑁𝑣𝑟𝑒𝑔𝑠 − (1 + 𝑅𝐵𝑤))/𝑂𝐻, 1)
5: 𝑣𝑙 =𝑚𝑖𝑛(𝑂𝐶, 𝑁𝑣𝑙𝑒𝑛) ⊲ SIMD Length

6: for 𝑛 = 0, 𝑁 do
7: for 𝑜𝑐 = 0,𝑂𝐶/𝑂𝐶𝑏 do
8: for 𝑖𝑐 = 0, 𝐼𝐶/𝐼𝐶𝑏 do
9: for 𝑜ℎ = 0,𝑂𝐻/𝑅𝐵ℎ do
10: for 𝑜𝑤 = 0,𝑂𝑊 /𝑅𝐵𝑤 do
11: for (ℎ,𝑤) = (0 : 𝑅𝐵ℎ, 0 : 𝑅𝐵𝑤) do ⊲ Unrolled

12: 𝑣𝑜ℎ,𝑤 = 𝑣𝑙𝑜𝑎𝑑 (𝐷 [𝑛] [𝑜𝑐] [𝑜ℎ + ℎ] [𝑜𝑤 +𝑤] [0], 𝑣𝑙)
13: for (𝑘ℎ, 𝑘𝑤, 𝑖𝑐𝑖) = (0 : 𝐾𝐻, 0 : 𝐾𝑊 , 0 : 𝐼𝐶𝑏) do
14: 𝑣𝑤 = 𝑣𝑙𝑜𝑎𝑑 (𝑊 [𝑜𝑐] [𝑖𝑐] [𝑘ℎ] [𝑘𝑤] [𝑖𝑐𝑖]] [0], 𝑣𝑙)
15: for (ℎ,𝑤) = (0 : 𝑅𝐵ℎ, 0 : 𝑅𝐵𝑤) do ⊲ Unrolled

16: 𝑣𝑖ℎ,𝑤 = 𝑆 [𝑛] [𝑖𝑐] [𝑜ℎ + 𝑘ℎ +ℎ] [𝑜𝑤 + 𝑘𝑤 +𝑤] [𝑖𝑐𝑖]
17: 𝑣𝑜ℎ,𝑤 = 𝑣 𝑓𝑚𝑎(𝑣𝑜ℎ,𝑤, 𝑣𝑖ℎ,𝑤, 𝑣𝑤, 𝑣𝑙)
18: for (ℎ,𝑤) = (0 : 𝑅𝐵ℎ, 0 : 𝑅𝐵𝑤) do ⊲ Unrolled

19: 𝑣𝑠𝑡𝑜𝑟𝑒 (𝑣𝑜ℎ,𝑤, 𝐷 [𝑛] [𝑜𝑐] [𝑜ℎ + ℎ] [𝑜𝑤 +𝑤] [0], 𝑣𝑙)

4.4 The Direct Convolution Algorithm for Long
SIMD Architectures

We show the algorithm to compute the forward direct con-

volution on long SIMD architectures in Algorithm 2. We set

the dynamic cache blocking factors in Lines 1-2. Lines 3-4

drive register blocking as Section 4.1 describes. Next, line

5 sets the working SIMD length for all SIMD instructions.

The following code lines specify (i) the scheduling loops,

which appear in Lines 6-10; and (ii) the micro-kernel, en-

compassing Lines 11-19. The scheduling loops organize the

order of sub-convolutions, while the micro-kernel refers to

the compute-intensive region. The latter segment features

fully-unrolled loops in Lines 11, 15, and 18, which are gener-

ally produced by Just-In-Time (JIT) assemblers [8, 10], or an

ensemble of static compilation techniques and hand-tuned

code segments [14, 32].

The innermost convolution loops (Line 13) contain a vec-

tor load to the shared𝑊 operand (Line 14) and a series of

scalar loads (Line 16) and SIMD FMA instructions (Line 17).

We use a SIMD FMA with one scalar multiplicand (𝑣𝑖ℎ,𝑤)
in Line 17, which is supported by all major emerging vec-

tor ISAs like RISC-V V [6], ARM SVE [26], and NEC SX-

Aurora [30]. In this FMA operation, the CPU implicitly broad-

casts the scalar element to form a temporary vector operand

without using a dedicated vector register.

Efficient Direct Convolution Using Long SIMD Instructions

56x56, 64 28x28, 128 14x14, 256 7x7, 512
ResNet 3x3 Convolutions

101

102

103

104

M
em

or
y

fo
ot

pr
in

t (
KB

)

512 bits
1024 bits

2048 bits
16384 bits

Figure 2. Memory footprint of the SIMD direct convolution

algorithm micro-kernel region considering 3x3 convolutions

on architectures with different vector lengths.

5 Shortcomings of the Direct Convolution
5.1 Large Micro-Kernel Memory Footprint
The memory footprint of the convolution micro-kernel is

driven by the 𝐷 ,𝑊 , and 𝑆 sub-tensors. The𝑊 sub-tensor,

accessed in Line 14 of Algorithm 2, is reused multiple times

since it is applied to all spatial output points (𝑖 .𝑒 ., loops in

Lines 9 and 10). Therefore, it should be kept in the cache hier-

archy until the next iteration of the loop at Line 8. Constrain-

ing the memory footprint of the convolution micro-kernel

region to the Last Level Cache (LLC) size is enough to ful-

fill this criterion and avoid the proliferation of unnecessary

off-chip memory accesses in Line 14.

The micro-kernel region loads𝑂𝐶𝑏 · 𝐼𝐶𝑏 ·𝐾𝐻 ·𝐾𝑊 weight

elements, 𝐼𝐶𝑏 ·𝑚𝑖𝑛(𝑅𝐵ℎ + 𝐾𝐻, 𝐼𝐻) ·𝑚𝑖𝑛(𝑅𝐵𝑤 + 𝐾𝑊 , 𝐼𝑊)
source tensor elements, and moves𝑂𝐶𝑏 ·𝑅𝐵ℎ ·𝑅𝐵𝑤 elements

to/from the destination tensor. Since the parameters 𝐼𝐶𝑏 and

𝑂𝐶𝑏 are both associated with 𝑁𝑣𝑙𝑒𝑛 , as we explain in Sec-

tion 4.2, an increase in the architectural vector length brings

a quadratic growth on the weights sub-tensor size. This is-

sue mainly affects convolutions with large filters, where the

number of iterations in the 𝐾𝐻 and 𝐾𝑊 loops further inten-

sifies the problem. Figure 2 depicts the memory footprint of

3x3 convolutions found in VGG [25] and ResNet [11] models,

where the memory footprints can reach up to 9 megabytes

on architectures with 16384-bit vectors. The x-axis describes

convolution layers in terms of the activation spatial size and

the number of feature map channels.

5.2 Memory Access Pattern Displays High Cache
Miss Rates

The activation memory layout, described in Section 4.2, and

register block optimizations define a scalar memory access

pattern that leads to frequent L1 data cache conflict misses on

CPUs supporting long SIMD instructions. Figure 3 illustrates

this memory access pattern across the 𝑆 tensor during the

forward pass. Black arrows indicate the dynamic order of

accesses with a stride of 𝑁𝑣𝑙𝑒𝑛 , matching the feature map

blocking factor. This pattern also manifests in the 𝐷 tensor

during the backward data and weights directions.

When using long SIMD instructions, a series of memory

accesses with stride equal to the SIMD length (𝑁𝑣𝑙𝑒𝑛), visit

only a fraction of the cache sets before the accumulated offset

loops around the cache addressing space. The relationship

between the 𝑁𝑣𝑙𝑒𝑛 and the cache line size (𝑁𝑐𝑙𝑖𝑛𝑒), typically

following 𝑁𝑣𝑙𝑒𝑛 = 2
𝑛 · 𝑁𝑐𝑙𝑖𝑛𝑒 and 𝑛 ≥ 0, results in visits to

the same sequence of cache sets, independently of the cache

associativity. If a series of such accesses are large enough to

loop around the total cache size, the first cache lines might

be evicted before they can be reused when accessed on the

following convolution loops.

Formula 3 specifies an inequality that indicates when

cache conflict misses appear in the direct convolution. The

formula depends on (i) the L1 cache size (𝐿1𝑠𝑖𝑧𝑒); (ii) the dis-

tance between spatial points, constituting the convolution

stride parameter (𝐶𝑠𝑡𝑟) and the activation tensor feature map

blocking factor (𝐴𝑏); and (iii) the number of spatial points

visited before reusing previously accessed cache lines (de-

fined by the register blocking optimization as 𝑅𝐵ℎ · 𝑅𝐵𝑤).
The activation tensor feature map blocking factor 𝐴𝑏 is ei-

ther 𝐼𝐶𝑏 or 𝑂𝐶𝑏 depending on which tensor the algorithm

accesses with scalar instructions.

𝐿1𝑠𝑖𝑧𝑒 < 𝐴𝑏 · 𝑅𝐵ℎ · 𝑅𝐵𝑤 ·𝐶𝑠𝑡𝑟 (3)

An architecture featuring 32KB L1 caches and 16384-bit

wide vector registers like SX-Aurora [30] requires a com-

bined register blocking factor (𝑅𝐵ℎ ·𝑅𝐵𝑤) of 24 to avoid data
dependency stalls, according to Formula 2 and Table 1 data.

Assuming a convolution where 𝐶𝑠𝑡𝑟 is 1, and 𝐴𝑏 is 16384

(𝑁𝑣𝑙𝑒𝑛), it is impossible to meet the inequalities of Formu-

las 2 and 3 simultaneously due to the unsolvable inequality

(16 > 𝑅𝐵ℎ ·𝑅𝐵𝑤 and 24 < 𝑅𝐵ℎ ·𝑅𝐵𝑤). Conflict misses severely

undermine the effectiveness of the optimizations described

in Sections 4.1 and 4.2, making it impossible to saturate the

computation, either because the register file is underused,

generating pipeline dependency stalls, or because the SIMD

lanes starve waiting on data dependencies from L1. Our eval-

uation on Section 8 validates this phenomenon in SX-Aurora.

6 Efficient Direct Convolution Using Long
SIMD Instructions

This Section describes our algorithmic solutions to efficiently

run the direct convolution operation using long SIMD in-

structions. Section 6.1 describes a method to dynamically re-

duce the memory footprint of the convolution micro-kernel

and workaround the issue discussed in Section 5.1. Sec-

tions 6.2 and 6.3 introduce two proposals to reduce the

number of cache conflict misses by judiciously limiting the

amount of computation exposed to the SIMD units, and ad-

justments to the activations tensor memory layout, respec-

tively.

Alexandre de Limas Santana, Adrià Armejach, and Marc Casas

0,0,Nvlen 0,1,Nvlen 0,2,Nvlen 0,3,Nvlen 0,4,Nvlen 0,5,Nvlen 0,6,Nvlen

0,0,2 0,1,2 0,2,2 0,3,2 0,4,2 0,5,2 0,6,2

0,0,1 0,1,1 0,2,1 0,3,1 0,4,1 0,5,1 0,6,1

0,0,0 0,1,0 0,2,0 0,3,0 0,4,0 0,5,0 0,6,0

…

Feature Map
Block

(ICb = Nvlen)

1,0,Nvlen 1,1,Nvlen 1,2,Nvlen 1,3,Nvlen 1,4,Nvlen 1,5,Nvlen 1,6,Nvlen

1,0,2 1,1,2 1,2,2 1,3,2 1,4,2 1,5,2 1,6,2

1,0,1 1,1,1 1,2,1 1,3,1 1,4,1 1,5,1 1,6,1

1,0,0 1,1,0 1,2,0 1,3,0 1,4,0 1,5,0 1,6,0

…

stride = ICb = Nvlen = 2n * Ncline

Register Block Width
(RBw = 7)Register Block Height

(RBh = 2)

First Access

Figure 3. Example of the SIMD direct convolution memory

access pattern on the 𝑆 tensor during the forward pass. This

access pattern stresses a small number of cache sets when us-

ing long SIMD instructions, which results in conflict misses.

6.1 Dynamically Adapting the Micro-Kernel
Memory Footprint

We propose a method to automatically adapt the convolution

microkernel’s memory footprint tomany SIMD architectures,

including those with long vectors. Our method combines

two strategies: loop reordering and loop resizing, implemented

into a dynamic auto-tuning algorithm.

Loop Reordering: the simplest way to reduce the memory

footprint of convolutions is tomove the loops over theweight

spatial domain (𝐾𝐻 and 𝐾𝑊) from the micro-kernel to the

sub-convolution scheduling region. However, this technique

does not apply to 1x1 convolutions and decreases the 𝑆 tensor

L1 cache reuse on regular convolutions, requiring additional

passes over the 𝑆 tensor activations.

Loop Resizing: another strategy is to reduce the number

of iterations of the micro-kernel loop over the input fea-

ture map block (last loop iterator in Line 13 of Algorithm 2).

This loop has its number of iterations unnecessarily tied to

the vector length through the 𝐼𝐶𝑏 variable. Reducing the

number of iterations of this loop from 𝐼𝐶𝑏 to 𝑁𝑐𝑙𝑖𝑛𝑒 reduces

the memory footprint by the same rate while still access-

ing all data brought to the L1 cache. We reflect this change

on the weights tensor memory format as well, where we

decouple the𝑊 tensor 𝐼𝐶 dimension blocking factor from

𝐼𝐶𝑏 and associate it to 𝑁𝑐𝑙𝑖𝑛𝑒 , altering the𝑊 tensor tuple

representation from (𝑂𝐶/𝑂𝐶𝑏, 𝐼𝐶/𝐼𝐶𝑏, 𝐾𝐻, 𝐾𝑊 , 𝐼𝐶𝑏,𝑂𝐶𝑏)
to (𝑂𝐶/𝑂𝐶𝑏, 𝐼𝐶/𝑁𝑐𝑙𝑖𝑛𝑒 , 𝐾𝐻, 𝐾𝑊 , 𝑁𝑐𝑙𝑖𝑛𝑒 ,𝑂𝐶𝑏).

We apply the aforementioned strategies via an algorithm

that prioritizes loop resizing over loop reordering. The algo-
rithm finds the largest𝑊 sub-tensor size that fits into the

cache, using the tensor sizes and the following architectural

parameters as input: (i) the vector length (𝑁𝑣𝑙𝑒𝑛), (ii) the

cache line size (𝑁𝑐𝑙𝑖𝑛𝑒), and (iii) the LLC storage capacity

(𝐿𝐿𝐶𝑠𝑖𝑧𝑒). The algorithm generates the blocking factors 𝑘ℎ𝑖 ,

𝑘𝑤𝑖 , and 𝑖𝑐𝑖 for the three loops at Line 13 in Algorithm 2,

Algorithm 3 The Auto-tuning Algorithm

Input: 𝐼𝐻, 𝐼𝑊 ,𝑂𝐻,𝑂𝑊 ,𝐾𝐻,𝐾𝑊 , 𝐼𝐶,𝑂𝐶

Architectural variables: 𝑁𝑣𝑙𝑒𝑛, 𝑁𝑐𝑙𝑖𝑛𝑒 , 𝐿𝐿𝐶𝑠𝑖𝑧𝑒

Output: 𝑘ℎ𝑖 , 𝑘𝑤𝑖 , 𝑖𝑐𝑖

1: 𝑘ℎ𝑖 = 𝐾𝐻

2: 𝑘𝑤𝑖 = 𝐾𝑊

3: 𝑖𝑐𝑖 = 𝐼𝐶

4: 𝑂𝐶𝑏 =𝑚𝑖𝑛(𝑂𝐶, 𝑁𝑣𝑙𝑒𝑛)
5: 𝑛𝑖ℎ =𝑚𝑖𝑛(𝐼𝐻, 𝑅𝐵ℎ + 𝑘ℎ𝑖 − 1)
6: 𝑛𝑖𝑤 =𝑚𝑖𝑛(𝐼𝑊 , 𝑅𝐵𝑤 + 𝑘𝑤𝑖 − 1)
7: 𝑊𝑚𝑒𝑚 = 𝑂𝐶𝑏 · 𝑖𝑐𝑖 · 𝑘ℎ𝑖 · 𝑘𝑤𝑖

8: 𝐷𝑚𝑒𝑚 = 𝑂𝐶𝑏 · 𝑅𝐵ℎ · 𝑅𝐵𝑤
9: 𝑆𝑚𝑒𝑚 = 𝑖𝑐𝑖 · 𝑛𝑖ℎ · 𝑛𝑖𝑤
10: while𝑊𝑚𝑒𝑚 +𝑂𝑚𝑒𝑚 + 𝐼𝑚𝑒𝑚 > 𝐿𝐿𝐶𝑠𝑖𝑧𝑒 do
11: if 𝑖𝑐𝑖 > 2 ∗ 𝑁𝑐𝑙𝑖𝑛𝑒 then
12: 𝑖𝑐𝑖 = 𝑖𝑐𝑖/2
13: else if 𝑘ℎ𝑖 > 1 then
14: 𝑘ℎ𝑖 = 1

15: 𝑖𝑐𝑖 = 𝐼𝐶

16: 𝑛𝑖ℎ =𝑚𝑖𝑛(𝐼𝐻, 𝑅𝐵ℎ)
17: else if 𝑘𝑤𝑖 > 1 then
18: 𝑘𝑤𝑖 = 1

19: 𝑖𝑐𝑖 = 𝐼𝐶

20: 𝑛𝑖𝑤 =𝑚𝑖𝑛(𝐼𝑊 , 𝑅𝐵𝑤)
21: 𝑊𝑚𝑒𝑚 = 𝑂𝐶𝑏 · 𝑖𝑐𝑖 · 𝑘ℎ𝑖 · 𝑘𝑤𝑖

22: 𝐷𝑚𝑒𝑚 = 𝑂𝐶𝑏 · 𝑅𝐵ℎ · 𝑅𝐵𝑤
23: 𝑆𝑚𝑒𝑚 = 𝑖𝑐𝑖 · 𝑛𝑖ℎ · 𝑛𝑖𝑤

return (𝑘ℎ𝑖 , 𝑘𝑤𝑖 , 𝑖𝑐𝑖)

deciding their size at runtime based on the convolution prob-

lem and the target architecture.

Algorithm 3 displays this procedure. The method initially

assumes the highest possible loop values over the weights

sub-tensor in the convolution micro-kernel region (Lines

1-3). The memory footprints for the𝑊 , 𝑆 , and 𝐷 tensors

are computed first at Lines 4-9 and later compared against

the LLC size at Line 10. The routine applies the loop resiz-
ing strategy in Lines 11-12, reducing the 𝐼𝐶 loop size unless

this reduction would cause it to be smaller than the cache

line size. The loop reorder fallback strategy happens at Lines

13-16 and 17-20 by setting the 𝐾𝐻 and 𝐾𝑊 loop iteration

counts to 1. After these arrangements, the routine recom-

putes the memory footprint of the micro-kernel (Lines 21-23)

and begins another iteration at Line 10.

Algorithm 3 fits into multicore systems with shared caches

by multiplying the activation tensors’ memory footprint by

the number of threads at Lines 8, 9, 22, and 23.

6.2 The Bounded Direct Convolution
The Bounded Direct Convolution (BDC) algorithm mitigates

cache conflict misses with a less aggressive lower limit for

the 𝑅𝐵𝑤 and 𝑅𝐵ℎ optimization variables and employs the

Efficient Direct Convolution Using Long SIMD Instructions

method we describe in Section 6.1 to adapt the micro-kernel

memory footprint to the cache hierarchy storage.

We relax the inequality of Formula 2 based on the obser-

vation that architectures with CPUs supporting long SIMD

instructions are load/store machines, thus requiring scalar

code for loading the FMA scalar operand and updating the

memory offsets for future scalar loads. These scalar instruc-

tions are placed between SIMD FMA instructions and create

some distance between dependent SIMD FMAs. We also use

Formula 3 to set an upper limit to the register blocking fac-

tors, preventing the memory access pattern from generating

cache conflict misses. We combine these two approaches to

formulate a value range for the 𝑅𝐵ℎ and 𝑅𝐵𝑤 optimization

variables, described in Formula 4, that avoids data depen-

dency stalls and cache conflict misses.

𝑁𝑓𝑚𝑎 · 𝐿𝑓𝑚𝑎/𝐵𝑠𝑒𝑞 ≤ 𝑅𝐵ℎ · 𝑅𝐵𝑤 < 𝐿1𝑠𝑖𝑧𝑒/𝐶𝑠𝑡𝑟 (4)

Formula 4 introduces a new variable 𝐵𝑠𝑒𝑞 , which is the

minimum distance in terms of instructions between sub-

sequent SIMD FMAs within the direct convolution micro-

kernel region. Empirical observations indicate that compilers

targeting the RISC-V "V" [6] and SX-Aurora [30] ISAs use

two scalar instructions in between vector FMA instructions:

(i) a scalar load to bring the value to the register and (ii) an

addition to update the 𝑆 tensor memory pointer. Therefore,

in this case, the 𝐵𝑠𝑒𝑞 distance is three, as a subsequent SIMD

FMA is three instructions ahead. In SX-Aurora, setting 𝐵𝑠𝑒𝑞
to three allows the register blocking factors to be as low as

8, in contrast to the previous minimum value of 24.

6.3 The Multi-Block Direct Convolution
The Multi-Block Direct Convolution (MBDC) algorithm rede-

fines the blocking factor that characterizes the tensor mem-

ory layout, improving the memory access pattern of the con-

volution micro-kernel and reducing cache conflict misses.

The 𝑆 tensor memory access pattern, described in Sec-

tion 5.2, does not cause conflict misses when 𝑁𝑣𝑙𝑒𝑛 = 𝑁𝑐𝑙𝑖𝑛𝑒

because both 𝐼𝐶𝑏 and 𝑂𝐶𝑏 also become equal to 𝑁𝑐𝑙𝑖𝑛𝑒 , i.e.,
the stride between accesses to the 𝑆 tensor in this scenario is

just one cache line, meaning that all cache sets are stressed

equally. Based on this observation, we propose to block 𝑆 and

𝐷 tensors by 𝑁𝑐𝑙𝑖𝑛𝑒 , instead of 𝑁𝑣𝑙𝑒𝑛 . This change disassoci-

ates the architectural vector length from the optimization

variables 𝐼𝐶𝑏 and 𝑂𝐶𝑏 to improve the 𝑆 tensor scalar access

pattern locality.

Our proposal to reduce𝑂𝐶𝑏 and 𝐼𝐶𝑏 , from 𝑁𝑣𝑙𝑒𝑛 to 𝑁𝑐𝑙𝑖𝑛𝑒 ,

divides the feature map dimensions into smaller blocks scat-

tered through the activation tensor memory layout. With

the innermost dimension being smaller than 𝑁𝑣𝑙𝑒𝑛 , it is im-

practical to move an entire vector register worth of feature

map data regarding one spatial point, using unit-stride vec-

tor load/stores (i.e., Lines 12 and 19 in Algorithm 2). There-

fore, we support our proposed memory layout using coarse

Algorithm 4 MBDC (𝐶𝑠𝑡𝑟=1, 𝐶𝑝𝑎𝑑=0)

Input: Source Activations 𝑆 , Weights Tensor𝑊

Output: Output Activations 𝑂
Architectural variables: 𝑁𝑣𝑙𝑒𝑛, 𝑁𝑣𝑟𝑒𝑔, 𝑁𝑐𝑙𝑖𝑛𝑒

Optimization variables: 𝑘ℎ𝑖 , 𝑘𝑤𝑖 , 𝑖𝑐𝑖

1: 𝑂𝐶𝑏 = 𝑐𝑙𝑖𝑛𝑒

2: 𝐼𝐶𝑏 = 𝑐𝑙𝑖𝑛𝑒

3: 𝑅𝐵𝑤 =𝑚𝑖𝑛(𝑁𝑣𝑟𝑒𝑔𝑠 ,𝑂𝑊)
4: 𝑅𝐵ℎ =𝑚𝑎𝑥 ((𝑁𝑣𝑟𝑒𝑔𝑠 − 𝑅𝐵𝑤)/𝑂𝐻, 1)
5: 𝑣𝑖𝑑 =𝑚𝑎𝑘𝑒_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 (𝑂𝐻,𝑂𝑊 , 𝑁𝑐𝑙𝑖𝑛𝑒)
6: 𝑣𝑙 =𝑚𝑖𝑛(𝑂𝐶, 𝑁𝑣𝑙𝑒𝑛) ⊲ Vector Length

7: for 𝑛 = 0, 𝑁 do
8: for 𝑜𝑐 = 0,𝑂𝐶/𝑂𝐶𝑏 do
9: for 𝑖𝑐 = 0, 𝐼𝐶/𝑖𝑐𝑖 do
10: for 𝑜ℎ = 0,𝑂𝐻/𝑅𝐵ℎ do
11: for 𝑜𝑤 = 0,𝑂𝑊 /𝑅𝐵𝑤 do
12: for 𝑘ℎ𝑏 = 0, 𝐾𝐻/𝑘ℎ𝑖 do
13: for 𝑘𝑤𝑏 = 0, 𝐾𝑊 /𝑘𝑤𝑖 do
14: for (ℎ,𝑤) = (0 : 𝑅𝐵ℎ, 0 : 𝑅𝐵𝑤) do ⊲ Unrolled

15: 𝑣𝑜ℎ,𝑤 = 𝑣𝑔𝑎𝑡ℎ𝑒𝑟 (𝐷 [𝑛] [𝑜𝑐] [𝑜ℎ + ℎ] [𝑜𝑤 +
𝑤] [0], 𝑣𝑖𝑑, 𝑣𝑙)

16: for (𝑘ℎ, 𝑘𝑤, 𝑖) = (0 : 𝑘ℎ𝑖 , 0 : 𝑘𝑤𝑖 , 0 : 𝑖𝑐𝑖) do
17: 𝑣𝑤 = 𝑣𝑙𝑜𝑎𝑑 (𝑊 [𝑜𝑐] [𝑖/𝐼𝐶𝑏] [𝑘ℎ] [𝑘𝑤] [𝑖%𝐼𝐶𝑏] [0], 𝑣𝑙)
18: for (ℎ,𝑤) = (0 : 𝑅𝐵ℎ, 0 : 𝑅𝐵𝑤) do ⊲ Unrolled

19: 𝑣𝑖ℎ,𝑤 = 𝑆 [𝑛] [𝑖𝑐𝑏] [𝑜ℎ𝑏+𝑘ℎ+ℎ] [𝑜𝑤𝑏+𝑘𝑤+𝑤] [𝑖]
20: 𝑣𝑜ℎ,𝑤 = 𝑣 𝑓𝑚𝑎(𝑣𝑜ℎ,𝑤, 𝑣𝑖ℎ,𝑤, 𝑣𝑤, 𝑣𝑙)
21: for (ℎ,𝑤) = (0 : 𝑅𝐵ℎ, 0 : 𝑅𝐵𝑤) do ⊲ Unrolled

22: 𝑣𝑠𝑐𝑎𝑡𝑡𝑒𝑟 (𝑣𝑜ℎ,𝑤, 𝐷 [𝑛] [𝑜𝑐] [𝑜ℎ + ℎ] [𝑜𝑤 +
𝑤] [0], 𝑣𝑖𝑑, 𝑣𝑙)

granularity gather/scatter instructions when accessing the

activation tensors with SIMD instructions on Lines 12 and

19 in Algorithm 2.

Algorithm 4 depicts MBDC. The values of 𝑘ℎ𝑖 , 𝑘𝑤𝑖 , and 𝑖𝑐𝑖
are determined by the dynamic method we describe in Sec-

tion 6.1. The gather/scatter operations in Lines 15 and 22

replace the vector load/stores involving the 𝐷 tensor of Al-

gorithm 2. Indices are computed at Line 5 and defined in

Equation 5 for 32-bit elements. The feature map blocks with

size 𝑁𝑐𝑙𝑖𝑛𝑒 form a sub-tensor of size 𝑂𝐻 ·𝑂𝑊 · 𝑁𝑐𝑙𝑖𝑛𝑒 , lead-

ing to a distance between blocks of 𝑖/(𝑁𝑐𝑙𝑖𝑛𝑒/4) ·𝑂𝐻 ·𝑂𝑊
bytes for 32-bit elements. We make note of the number of

iterations for the loops in Lines 9 and 16 which exploit the

micro-kernel compute granularity dynamically determined

by the auto-tuner.

𝑣 [𝑖] =𝑚𝑒𝑚[(𝑖/(𝑁𝑐𝑙𝑖𝑛𝑒/4) ·𝑂𝐻 ·𝑂𝑊 +𝑖%(𝑁𝑐𝑙𝑖𝑛𝑒/4)) ·4] (5)

Memory to register gather operations and register to mem-

ory scatters typically incur a significant performance cost.

Emerging SIMD ISAs reduce this cost by supporting different

kinds of gather/scatters operations combining contiguous

Alexandre de Limas Santana, Adrià Armejach, and Marc Casas

and non-contiguous memory accesses. For example, RISC-V

V1.0 [6] supports gather/scatters of element up to 128 bits

each, which can be seen as blocks of four contiguous 32-

bit words. ARM SVE [26] supports combined gather/scatter

operations that reduce the number of individual memory re-

quests by returning two consecutive elements for each index.

SX-Aurora [30] supports 2-dimensional vector load/stores,

which emulate vector gather/scatters at the granularity of

an entire 128-byte cache line. We exploit coarse-grain gath-

er/scatter operations to load/store non-contiguous blocks

of 𝑁𝑐𝑙𝑖𝑛𝑒 contiguous elements to/from SIMD registers and

reduce the number of memory requests issued by the CPU.

6.4 Summary
Table 2 depicts a summary of this section and our design

contributions, displaying the original Direct Convolution

targeting 512-bits SIMD instructions, its adaptation to long

SIMD architectures (Section 4), as well as our two new algo-

rithmic contributions: (i) BDC and (ii) MBDC. The Activation
block column depicts the values each algorithm uses for the

𝐼𝐶𝑏 and 𝑂𝐶𝑏 variables, which defines the activation tensor

memory layout. The Weight block column depicts the block-

ing factors for the weights tensor, which is also responsible

for defining the weights tensor memory layout. Schedule
grain defines the minimum number of iterations for the loop

over the 𝐼𝐶 block within the convolution micro-kernel re-

gion. The Register block column defines the value range for

the combined register blocking factors for the different algo-

rithms. This table highlights our proposal’s main points: (i)

the new register block size constraints on BDC, and (ii) the

redefinition of the activation memory layout on MBDC.

6.5 Implementation
We articulate our contributions following the oneDNN [15]

library design, where the instantiating of kernels follows a

two-step process involving: (i) the initial problem declara-

tion and (ii) the kernel execution. Algorithm 3 receives ar-

chitectural variables and convolution arguments during the

problem declaration, including the tensor shapes, and com-

putes all optimization variables. This information is codified

in a data structure and forwarded to a code generator en-

gine, either a JIT assembler or a collection of statically-tuned

functions. The code generator returns a function pointer cor-

responding to the convolutionmicro-kernel region. Later, the

convolution scheduling loops call the micro-kernel function

pointer during the kernel execution.

7 Experimental Methodology
Convolution Workloads:We consider the convolution layers

used on ResNet [11] models. Table 3 describes these layers

in terms of the convolution parameters detailed in Section 2.

Hardware Platform: We run our experimental campaign

on the NEC SX-Aurora system [30]. The SX-Aurora proces-

sor features SIMD registers with a capacity of 16,384 bits.

The SIMD processing unit employs 8-cycles deep pipelines

and operates on 64 32-bit elements per cycle. There are

three vector unit ports dedicated to computing vector fused

multiply-add instructions yielding a maximum throughput

of 64·3·2 = 384 32-bit floating-point operations per core each

cycle. The SX-Aurora system used in this work houses eight

cores running at a frequency of 1.6GHz, configuring a theo-

retical peak performance of 614 GFLOP/s per core and 4912

GFLOP/s when using all eight vector cores. Each core fea-

tures two 32KB 2-way set associative caches for instructions

and data, respectively, and a 256KB L2 cache 4-way set asso-

ciative covering both instructions and data. A 2-dimensional

mesh Network on Chip (NoC) connects the cores to a shared

16 MB LLC. The LLC 128-byte cache lines are interleaved

into 16 memory banks for parallel access when serving unit-

stride vector memory instructions and handles both scalar

and SIMD requests. The processor features a 48 GB on-chip

HBM2 RAM with a total bandwidth of 1.35 TB/s.

Convolution Algorithms: We consider the following ap-

proaches to run the convolution workloads:

1. Direct Convolution for Long SIMD architectures (DC): This
approach applies state-of-the-art optimizations [8, 10,

31] tailored to long SIMD architectures. We describe DC
in Section 4.

2. NEC Proprietary Library (vednn): This approach is based

on vednn [22], a high-performance library featuring op-

timized convolution kernels for the SX-Aurora, origi-

nally created to support TensorFlow-VE [21]. We always

use the best performing algorithm in vednn for a given

problem, which may be a direct convolution or implic-

it/explicit GEMM convolution kernels.

3. Bounded Convolution (BDC): We describe this algorithm

in Section 6.2.

4. Multi-Block Direct Convolution (MBDC): We describe this

algorithm in Section 6.3.

Software Tools: We generate the DC, BDC, and MBDC convo-

lution kernels via explicit vectorization and compiler vector

intrinsic functions of the NEC LLVM compiler v1.16 [20].

The convolution kernels extend oneDNN [15] v1.7.4 tak-

ing the form of custom convolution primitives targeting the

SX-Aurora VE [30]. We compile vednn using the NEC NCC

v3.3.1 proprietary compiler that features automatic code

transformations for performance, including loop unrolling

and automatic vectorization. We use the OpenMP [7] run-

time system to run our multithreaded workloads and fully

subscribe to the eight available cores.

8 Evaluation
Figure 4 shows the vednn, DC, BDC and MBDC convolution al-

gorithms performance (y-axis), in GFLOP/s, when subjected

Efficient Direct Convolution Using Long SIMD Instructions

Table 2. Summary of Convolution Algorithms

Algorithm Activation block Weight block (𝐼𝐶,𝑂𝐶) Schedule grain Register block (min) Register block (max)

Direct Convolution [8, 10, 31] 𝑁𝑣𝑙𝑒𝑛 (𝑁𝑣𝑙𝑒𝑛 , 𝑁𝑣𝑙𝑒𝑛) 𝑁𝑣𝑙𝑒𝑛 𝐿𝑓𝑚𝑎𝑁𝑓𝑚𝑎 𝑁𝑣𝑟𝑒𝑔𝑠

Direct Conv. Long SIMD (Sec. 4) 𝑚𝑖𝑛(𝑁𝑣𝑙𝑒𝑛,𝐶) (𝑁𝑣𝑙𝑒𝑛 ,𝑚𝑖𝑛(𝑁𝑣𝑙𝑒𝑛,𝑂𝐶)) 𝑁𝑣𝑙𝑒𝑛 𝐿𝑓𝑚𝑎𝑁𝑓𝑚𝑎 𝑁𝑣𝑟𝑒𝑔𝑠

BDC (Sec. 6.2) 𝑚𝑖𝑛(𝑁𝑣𝑙𝑒𝑛,𝐶) (𝑁𝑐𝑙𝑖𝑛𝑒 ,𝑚𝑖𝑛(𝑁𝑣𝑙𝑒𝑛,𝑂𝐶)) 𝑁𝑐𝑙𝑖𝑛𝑒 𝐿𝑓𝑚𝑎𝑁𝑓𝑚𝑎/𝐵𝑠𝑒𝑞 𝐿1𝑠𝑖𝑧𝑒/(𝐶𝑠𝑡𝑟𝑁𝑣𝑙𝑒𝑛)
MBDC (Sec. 6.3) 𝑁𝑐𝑙𝑖𝑛𝑒 (𝑁𝑐𝑙𝑖𝑛𝑒 ,𝑚𝑖𝑛(𝑁𝑣𝑙𝑒𝑛,𝑂𝐶)) 𝑁𝑐𝑙𝑖𝑛𝑒 𝐿𝑓𝑚𝑎𝑁𝑓𝑚𝑎 𝑁𝑣𝑟𝑒𝑔𝑠

982
1965
2947
3930
4912 VEDNN DC BDC MBDC

982
1965
2947
3930
4912

Pe
rfo

rm
an

ce
 (G

FL
OP

/s
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Average
(Geometric)

Convolution Layer ID

982
1965
2947
3930
4912

20%
40%
60%
80%
100%

20%
40%
60%
80%
100%

Ef
fic

ie
nc

y

20%
40%
60%
80%
100%

Figure 4. Convolution algorithms performance during the forward data (top), backwards data (middle), and backwards weights

(bottom) directions with a minibatch size of 256. These experiments run on the 8 SIMD CPUs described in Section 7.

Table 3. Convolution Layer Parameters

ID IC OC IH/IW OH/OW KH/KW 𝐶𝑠𝑡𝑟 𝐶𝑝𝑎𝑑

0 64 256 56 56 1 1 0

1 64 64 56 56 1 1 0

2 64 64 56 56 3 1 1

3 256 64 56 56 1 1 0

4 256 512 56 28 1 2 0

5 256 128 56 28 1 2 0

6 128 128 28 28 3 1 1

7 128 512 28 28 1 1 0

8 512 128 28 28 1 1 0

9 512 1024 28 14 1 2 0

10 512 256 28 14 1 2 0

11 256 256 14 14 3 1 1

12 256 1024 14 14 1 1 0

13 1024 256 14 14 1 1 0

14 1024 2048 14 7 1 2 0

15 1024 512 14 7 1 2 0

16 512 512 7 7 3 1 1

17 512 2048 7 7 1 1 0

18 2048 512 7 7 1 1 0

to the workloads in Table 3 (x-axis). The minibatch size for

this figure is 256, following ResNet settings for the Ima-

geNet challenge [11]. We evaluate other minibatch sizes in

Section 8.1. Each subplot displays results concerning one

propagation direction: (i) Forward Data (top); (ii) Backwards

Data (middle); and (iii) BackwardsWeights (bottom), referred

to as 𝑓 𝑤𝑑𝑑 , 𝑏𝑤𝑑𝑑 , and 𝑏𝑤𝑑𝑤 , respectively, throughout this

section. Each algorithm executes on all eight cores within

the system described in Section 7, and we express their effi-

ciency as the percentage of the system’s theoretical peak on

the right-hand side y-axis. The rightmost columns aggregate

the other columns’ performance using a geometric mean.

vednn algorithms rely on vectorizing computations across

the spatial domain. Figure 4 showcases vednn achieving

greater efficiencies during layers 0-13, up to 65.5% of the

peak performance on layer ID 2, compared to the rightmost

layers over 7x7 activations. vednn efficiency is also lower on

strided convolutions (i.e.𝐶𝑠𝑡𝑟 > 1), as shown by layers 4, 5, 9,

10, 14, and 15. Overall, vednn performs best on convolutions

over large tensors while accessing spatial data in unit strides.

The DC algorithm performance in SX-Aurora is subject to

two factors: (i) how much parallelism is exposed to the SIMD

units, and (ii) whether cache conflict misses manifest in the

convolution problem. DC vectorizes the computations over

one feature map dimension (i.e., 𝑂𝐶 during 𝑓 𝑤𝑑𝑑 , 𝐼𝐶 for

𝑏𝑤𝑑𝑑 , and 𝐼𝐶 or 𝑂𝐶 on 𝑏𝑤𝑑𝑤) and performs best when this

dimension is equal to or larger than𝑁𝑣𝑙𝑒𝑛 in size. Layers 7 and

12 during 𝑓 𝑤𝑑𝑑 are examples of layers where both sufficient

parallelism is exposed and no cache conflicts occur, achiev-

ing efficiencies of 88.2% and 91.6% of the theoretical peak.

In layers where cache conflicts are predicted by Formula 3

(layers 4,5,8-10,13-18 during 𝑓 𝑤𝑑𝑑 and layers 4,7,9,12,14-18

during 𝑏𝑤𝑑𝑑), DC obtains average efficiencies of 21.5% and

24.7% during the 𝑓 𝑤𝑑𝑑 and 𝑏𝑤𝑑𝑑 passes, respectively, as

opposed to 35.9% and 39.6% for layers where cache conflicts

are not predicted. DC may experience conflict misses on ev-

ery layer during the 𝑏𝑤𝑑𝑤 pass but it also vectorizes the

computations across the largest dimension, between 𝐼𝐶 and

𝑂𝐶 , to improve the SIMD hardware utilization. These traits

make the DC average efficiency during 𝑏𝑤𝑑𝑤 to be 33.0%,

higher than the 26.7% and 31% obtained for 𝑓 𝑤𝑑𝑑 and 𝑏𝑤𝑑𝑑 .

Alexandre de Limas Santana, Adrià Armejach, and Marc Casas

The BDC algorithm behaves similarly to DC but reduces the
incidence of cache conflict misses by judiciously selecting

the register block factor of the convolution inner loops. BDC
achieves similar performance regimes to DC on layers where

Formula 3 does not predict cache conflict misses. However,

BDC offers average speed-ups of 2.95× when compared to DC,
during the 𝑓 𝑤𝑑𝑑 and 𝑏𝑤𝑑𝑑 passes on layers predicted to ex-

perience cache conflict misses. BDC efficiency is higher than

DC across all layers, achieving up to 94.4% of the peak per-

formance on layer 16 during the 𝑓 𝑤𝑑𝑑 , despite using less ag-

gressive register block sizes. BDC offers a smaller benefit, 8%

on average, over DC for the 𝑏𝑤𝑑𝑤 pass because fine-tuning

the register block size is not as effective in this direction, as

we later show using hardware performance counters.

MBDC is an alternative to BDC that tackles the cache conflict
misses issue by adjusting the memory layout. As expected,

MBDC and DC have similar performance regimes on layers

without cache conflict misses. MBDC offers similar benefits

as BDC, yielding average speed-ups of 2.79× over DC during
𝑓 𝑤𝑑𝑑 and 𝑏𝑤𝑑𝑑 on layers predicted to experience cache

conflict misses. MBDC displays two different performance

regimes during 𝑏𝑤𝑑𝑤 : (i) the initial layers, IDs 0-10, with

an average efficiency of 9.7%, and (ii) the layers consisting

of convolutions over 14x14 and 7x7 activations, IDs 11-18,

with average efficiency of 57.7% of the peak performance.

MBDC outperforms DC and BDC on the second group of layers,

providing average speed-ups of 1.83× and 1.52×, respectively.
However, it fails to improve the performance of the first layer

group, yielding average slowdowns of 68.0% concerning DC.
MBDC showcases lower performance during the 𝑏𝑤𝑑𝑤 pass

because the vector gather/scatter operations are more fre-

quent and some tensor shapes cause accesses to SX-Aurora

LLC memory banks to be serialized. The SX-Aurora proces-

sor implements low latency memory-to-register operations

by interleaving LLC lines on independent memory banks so

that unit-stride vector load/stores access consecutive cache

lines in parallel. Gather/scatter operations, used in MBDC, can
also access the LLC banks in parallel when the offset between

the feature map blocks generates a bijective map between

cache lines and LLC memory banks, which happens on the

late convolutions (i.e., IDs 11-18) over smaller spatial shapes

(i.e., 14x14 and 7x7). This scenario changes on layers 0-10,

where one LLC bank serves all feature map cache blocks,

serializing the data transfer of the different cache blocks

requested by the vector gather instruction, inducing high

vector load latency.

We use the SX-Aurora hardware performance counters to

measure the Misses per Kilo Instruction (MPKI) rates of all

algorithms. Our study reveals that BDC and MBDC reduce the

MPKI, on average, by 27% and 22%, for the 𝑓 𝑤𝑑𝑑 pass, and

by 18% and 20% during the 𝑏𝑤𝑑𝑑 pass, respectively, when

compared to DC. BDC achieves a similar MPKI as DC consider-

ing the 𝑏𝑤𝑑𝑤 direction while MBDC reduces the MPKI by 8%

512 2k 8k 16k
resnet50

0.0

2.5

5.0

7.5

10.0

Sp
ee

du
p

wr
t 5

12
-b

it
DC

512 2k 8k 16k
resnet101

512 2k 8k 16k
resnet152

Maximum Vector Length (bits)

DC BDC MBDC

Figure 5. Performance of DC, BDC, and MBDC on different

maximum SIMD length settings for ResNet workloads.

in this setting. The lower MPKI rates originate from the tech-

niques to avoid cache conflict misses and serve as empirical

evidence of this problem in long SIMD architectures.

8.1 Performance Evaluation on ResNet Models
We evaluate our algorithms under the training workloads of

different ResNet models to measure our algorithm’s impact

at the network level. Indeed, the ResNet models employ the

same layers described in Table 3, but each layer appears a

different number of times on each model (e.g., layer IDs 11-13

are more frequent in the larger models).

Evaluation with different SIMD lengths: We evaluate our

algorithms on a variety of maximum SIMD length settings

by limiting the maximum vector length of the SX-Aurora

system to 512, 2048, 8196, and 16384 bits. Figure 5 showcases

the speed-ups (y-axis) of the three approaches normalized to

the state-of-the-art DC convolution with a maximum SIMD

length of 512 bits for different vector length settings (x-axis).

All three algorithms have similar performance across all

models for SIMD lengths smaller than 8192 bits. At a SIMD

length of 16384 bits, the BDC algorithm is 1.41×, 1.44×, and
1.46× faster than DC considering the ResNet-50, ResNet-101,

and ResNet-152 models respectively. Considering the same

scenario, MBDC is 1.28× and 1.26× faster than DC on ResNet-

101 and ResNet-152 models. MBDC provides no benefits for

ResNet-50 due to the relatively higher frequency of layers

that experience serial accesses to SX-Aurora LLC memory

banks during the 𝑏𝑤𝑑𝑤 pass.

Performance Evaluation Using Different Minibatch Sizes:
Figure 6 depicts the performance (y-axis) of each algorithm

considering the execution of the ResNet-101 model, on all

training directions, and under different minibatch sizes (x-

axis). The BDC algorithm delivers the best performance on

all settings, and all three strategies presented in this paper

showcase better scaling as problem size increases. vednn is
slightly faster than DC on minibatch sizes smaller than 32,

and faster than MBDC on minibatch size of 8. However, it fails

to scale as problem size increases.

Efficient Direct Convolution Using Long SIMD Instructions

8 16 32 64 128 256 512
Minibatch Size

1.00

1.25

1.50

1.75

2.00

Sp
ee

d-
up

 w
.r.

t.
DC

(m
in

ib
at

ch
 si

ze
 8

)
VEDNN DC BDC MBDC

Figure 6. ResNet-101 evaluation on different minibatch sizes.

9 Conclusions
This paper demonstrates that previous approaches to run

convolution kernels on SIMD architectures [8, 10, 31] deliver

poor performance when applied to processors employing

long SIMD instructions. The paper provides theoretical and

empirical evidence linking this poor performance primarily

to cache conflict misses, originating from the cache blocking

(i.e., blocked memory layout) and loop unrolling optimiza-

tions. It proposes two approaches, BDC and MBDC, to improve

the memory access pattern and mitigate such events. For the

ResNet-101 workload, BDC achieves 1.44× and 1.83× speed-

ups concerning our DC algorithm, based on the state-of-the-

art SIMD direct convolution, and the NEC vednn library. For
the same workload, MBDC obtains 1.28× and 1.63× speed-ups

compared to DC and vednn.

Acknowledgments
This work receives EuroHPC-JU funding under grant no.

101034126, with support from the Horizon2020 program.

Adrià Armejach is a Serra Hunter Fellow and has been par-

tially supported by the Grant IJCI-2017-33945 funded by

MCIN/AEI/10.13039/501100011033. Marc Casas has been par-

tially supported by the Grant RYC-2017-23269 funded by

MCIN/AEI/10.13039/501100011033 and ESF Investing in your

future. This work is supported by the Spanish Ministry of Sci-

ence and Technology through the PID2019-107255GB project

and the Generalitat de Catalunya (contract 2017-SGR-1414).

References
[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,

M., Ghemawat, S., Irving, G., Isard, M., et al. Tensorflow: A system

for large-scale machine learning. In 12th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 16) (2016), pp. 265–283.

[2] Anderson, A., Vasudevan, A., Keane, C., and Gregg, D. Low-

memory gemm-based convolution algorithms for deep neural net-

works. arXiv preprint arXiv:1709.03395 (2017).
[3] Bhandare, A., Sripathi, V., Karkada, D., Menon, V., Choi, S., Datta,

K., and Saletore, V. Efficient 8-bit quantization of transformer neural

machine language translation model. arXiv preprint arXiv:1906.00532
(2019).

[4] Chen, Y.-H., Emer, J., and Sze, V. Eyeriss: A spatial architecture for

energy-efficient dataflow for convolutional neural networks. ACM
SIGARCH Computer Architecture News 44, 3 (2016), 367–379.

[5] Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J.,

Catanzaro, B., and Shelhamer, E. cudnn: Efficient primitives for

deep learning. arXiv preprint arXiv:1410.0759 (2014).

[6] Community, R.-V. Risc-v vector extension, 2022. https://github.com/
riscv/riscv-v-spec/blob/master/v-spec.adoc.

[7] Dagum, L., and Menon, R. OpenMP: an industry standard API for

shared-memory programming. IEEE Computational Science and Engi-
neering 5, 1 (1998), 46–55.

[8] Das, D., Avancha, S., Mudigere, D., Vaidynathan, K., Sridharan,

S., Kalamkar, D., Kaul, B., and Dubey, P. Distributed deep learn-

ing using synchronous stochastic gradient descent. arXiv preprint
arXiv:1602.06709 (2016).

[9] Doweck, J., Kao, W.-F., Lu, A. K.-y., Mandelblat, J., Rahatekar,

A., Rappoport, L., Rotem, E., Yasin, A., and Yoaz, A. Inside 6th-

generation intel core: New microarchitecture code-named skylake.

IEEE Micro 37, 2 (2017), 52–62.
[10] Georganas, E., Avancha, S., Banerjee, K., Kalamkar, D., Henry,

G., Pabst, H., and Heinecke, A. Anatomy of high-performance deep

learning convolutions on simd architectures. In SC18: International
Conference for High Performance Computing, Networking, Storage and
Analysis (2018), IEEE, pp. 830–841.

[11] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for

image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2016), pp. 770–778.

[12] Heinecke, A., Henry, G., Hutchinson, M., and Pabst, H. LIBXSMM:

Accelerating small matrix multiplications by runtime code genera-

tion. In SC’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (2016), IEEE,
pp. 981–991.

[13] Hill, M. D., and Smith, A. J. Evaluating associativity in CPU caches.

IEEE Trans. Computers 38, 12 (1989), 1612–1630.
[14] Intel. Neon, 2022. https://github.com/NervanaSystems/neon.
[15] Intel. Oneapi deep neural network library, 2022. https://oneapi-src.

github.io/oneDNN/.
[16] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,

Guadarrama, S., and Darrell, T. Caffe: Convolutional architecture

for fast feature embedding. In Proceedings of the 22ndACM international
conference on Multimedia (2014), pp. 675–678.

[17] Kalamkar, D., Mudigere, D., Mellempudi, N., Das, D., Banerjee, K.,

Avancha, S., Vooturi, D. T., Jammalamadaka, N., Huang, J., Yuen,

H., et al. A study of bfloat16 for deep learning training. arXiv preprint
arXiv:1905.12322 (2019).

[18] Low, T. M., Igual, F. D., Smith, T. M., and Quintana-Orti, E. S.

Analytical modeling is enough for high-performance blis. ACM Trans-
actions on Mathematical Software (TOMS) 43, 2 (2016), 1–18.

[19] Mathieu, M., Henaff, M., and LeCun, Y. Fast training of convolu-

tional networks through ffts. arXiv preprint arXiv:1312.5851 (2013).
[20] NEC. Nec llvm compiler, 2022. https://github.com/sx-aurora-dev/llvm-

project.
[21] NEC. Tensorflow-ve, 2022. https://github.com/sx-aurora-

dev/tensorflow.
[22] NEC. Vednn, 2022. https://github.com/sx-aurora-dev/vednn.
[23] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,

Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. Pytorch: An

imperative style, high-performance deep learning library. Advances in
neural information processing systems 32 (2019), 8026–8037.

[24] Sato, M., Ishikawa, Y., Tomita, H., Kodama, Y., Odajima, T., Tsuji,

M., Yashiro, H., Aoki, M., Shida, N., Miyoshi, I., Hirai, K., Furuya,

A., Asato, A., Morita, K., and Shimizu, T. Co-Design for A64FX

Manycore Processor and "Fugaku". SC ’20, IEEE Press.

[25] Simonyan, K., and Zisserman, A. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[26] Stephens, N., Biles, S., Boettcher, M., Eapen, J., Eyole, M.,

Gabrielli, G., Horsnell, M., Magklis, G., Martinez, A., Premil-

lieu, N., et al. The ARM scalable vector extension. IEEE micro 37, 2
(2017), 26–39.

https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc
https://github.com/NervanaSystems/neon
https://oneapi-src.github.io/oneDNN/
https://oneapi-src.github.io/oneDNN/
https://github.com/sx-aurora-dev/llvm-project
https://github.com/sx-aurora-dev/llvm-project
https://github.com/sx-aurora-dev/tensorflow
https://github.com/sx-aurora-dev/tensorflow
https://github.com/sx-aurora-dev/vednn

Alexandre de Limas Santana, Adrià Armejach, and Marc Casas

[27] Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. Efficient processing of

deep neural networks: A tutorial and survey. Proceedings of the IEEE
105, 12 (2017), 2295–2329.

[28] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,

Erhan, D., Vanhoucke, V., and Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE conference on computer vision
and pattern recognition (2015), pp. 1–9.

[29] Vasudevan, A., Anderson, A., and Gregg, D. Parallel multi channel

convolution using general matrix multiplication. In 2017 IEEE 28th
international conference on application-specific systems, architectures
and processors (ASAP) (2017), IEEE, pp. 19–24.

[30] Yamada, Y., and Momose, S. Vector engine processor of NEC’s brand-

new supercomputer SX-Aurora TSUBASA. In Proceedings of A Sympo-
sium on High Performance Chips, Hot Chips (2018), vol. 30, pp. 19–21.

[31] Zhang, J., Franchetti, F., and Low, T. M. High performance zero-

memory overhead direct convolutions. In International Conference on
Machine Learning (2018), PMLR, pp. 5776–5785.

[32] Zlateski, A., Lee, K., and Seung, H. S. ZNN–A Fast and Scalable

Algorithm for Training 3D Convolutional Networks on Multi-core

and Many-Core Shared Memory Machines. In 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS) (2016), IEEE,
pp. 801–811.

A Artifact Instructions Appendix
A.1 Abstract
The artifact instructions appendix describes the procedures

to obtain and interact with our reproducibility artifact. Read-

ers may use our artifact to replicate the experiments in the

SX-Aurora processor, generate performance plots, and vali-

date our performance claims.

A.2 Description
The artifact package consists of the pre-compiled benchdnn
application, the oneDNN library targeting the SX-Aurora

VE hardware, and auxiliary scripts to facilitate interactions

with the artifact. The package includes a text guide covering

the steps to conduct correctness checks and performance

experiments regarding the convolution algorithms presented

in this work. Finally, the package contains python notebooks

that implement our performance evaluation methodology,

allowing users to inspect intermediate results that lead to

our final performance claims.

How to obtain the artifact: download the Zenodo package

at https://zenodo.org/record/7371471.

Hardware/Software Dependencies: users interested in re-

producing our experiments and collecting performance data

require access to a system with the following characteristics.

• Vector Engine: NEC SX-Aurora TSUBASA 20B

• Runtime Environment: Linux aurora4 v3.10
• Runtime Libraries: SX-Aurora OpenMP

Users interested in reproducing our performance evalua-

tion method through python notebooks require Python3.7.4,

or later and the following packages: (i) numpy 1.17.2, (ii)

pandas 1.2.0, and (iii) matplotlib 3.5.2.

Datasets: The experiments use the benchdnn benchmark

application, which automatically generates the input data

for the convolution operand tensors. We use benchdnn to

execute convolution operations with identical arguments

as the convolutional layers found in ResNet models for the

ImageNet challenge.

A.3 Experiment Workflow

The experiments have two stages: (i) correctness checks

and (ii) performance data collection. The correctness checks

take about ten minutes to complete, asserting that our convo-

lution algorithms generate correct results using a reference

implementation. The command below, issued at the package

root directory, carries out the correctness checks. The script

outputs a CSV file to the terminal, with each line represent-

ing a test case and containing a status field indicating if the

test has passed or failed.

e xpe r imen t s / v a l i d a t e . sh

The reader can start the performance data collection with

the command below, which takes about twenty minutes to

complete. The script outputs a CSV file to the terminal, and

each line represents an experiment indexed by: (i) a convo-

lution problem id, (ii) a training direction, (iii) an algorithm,

and (iv) a minibatch size. Each CSV line also contains the

performance in GFLOP/s and the execution time in millisec-

onds.

expe r imen t s / per formance . sh

A.4 Experiment Evaluation
The performance data collection stage outputs a CSV file

with performancemetrics for each proposed algorithm.More-

over, the reproducibility artifact includes a set of python

notebooks that reads the CSV files and evaluates the per-

formance of each algorithm across all problems, assisting

readers with data visualization and clustering tools.

A.5 Notes
The README file in the reproducibility artifact root folder

contains additional instructions for customizing the experi-

ments, example datasets, and detailed information about the

procedures described in this section.

	Abstract
	1 Introduction
	2 The Convolution Primitive
	2.1 The High-Performance Convolution
	2.2 The SIMD Direct Convolution Algorithm

	3 Architecture Analytical Model
	4 The Direct Convolution on Long SIMD Architectures
	4.1 Using SIMD Instructions and Register Blocking
	4.2 Tensor Memory Layout
	4.3 Loop Order and Multithreading
	4.4 The Direct Convolution Algorithm for Long SIMD Architectures

	5 Shortcomings of the Direct Convolution
	5.1 Large Micro-Kernel Memory Footprint
	5.2 Memory Access Pattern Displays High Cache Miss Rates

	6 Efficient Direct Convolution Using Long SIMD Instructions
	6.1 Dynamically Adapting the Micro-Kernel Memory Footprint
	6.2 The Bounded Direct Convolution
	6.3 The Multi-Block Direct Convolution
	6.4 Summary
	6.5 Implementation

	7 Experimental Methodology
	8 Evaluation
	8.1 Performance Evaluation on ResNet Models

	9 Conclusions
	Acknowledgments
	A Artifact Instructions Appendix
	A.1 Abstract
	A.2 Description
	A.3 Experiment Workflow
	A.4 Experiment Evaluation
	A.5 Notes

