
Meteorological modelling on the ICL Distributed

Array Processor and other parallel computers

Glenn Derek Carver

Ph.D.

University of Edinburgh

1990

Declaration

I hereby declare that this thesis has been written and composed by myself and

that the work herein is my own unless otherwise stated.

2

Abstract

Parallel computers are being increasingly used for meteorological
modelling. It is therefore important to establish which types of parallel
computer architectures are suitable for meteorological models and whether
existing modelling techniques can be used efficiently.

A study of meteorological modelling techniques on the ICL Distributed
Array Processor (DAP) is described. This computer has 1-bit processing
elements, connected as a 64x64 array, that execute the same instructions at
the same time. It is programmed in DAP FORTRAN, a version of FORTRAN that
supports parallel data objects. The architecture of this computer requires a
different approach to algorithm design from conventional computers.

Studies by other authors on applying gridpoint models to the DAP were
reviewed. These studies concluded that global gridpoint models can make
efficient use of the DAP, although the choice of finite difference grid is
important because it affects the number of processors used. A regular
latitude-longitude grid with Fourier filtering on polar latitudes appeared the

best choice.

In a spectral meteorological model, the Legendre transforms account for
most of the CPU time. Therefore, prior to the implementation of a barotropic
spectral model on the DAP, efficient parallel Legendre transform algorithms
were derived. The performance of these algorithms was dependent on the
way the data were mapped onto the processor array. The best algorithms
resulted from the data mappings that made the most efficient use of memory.
The spectral model based on these algorithms was not as efficient as an
equivalent gridpoint model, mainly because of the different storage
requirements for the spectral, Fourier and gridpoint representations of the

variables.

A two-dimensional finite element mesoscale model was implemented on
the DAP to contrast the algorithms used for the gridpoint and spectral models.
The finite element model was found to make efficient use of the processors
and storage, if the equations were written to result in tridiagonal matrix
equations. It was concluded that the finite element method is better suited to
the DAP than the spectral method, although each is applied to different types
of meteorological modelling problems.

The algorithms used for meteorological modelling on other parallel
computers were reviewed. In particular, the sophisticated techniques used to
multiprocess a spectral forecast model on the 4 processor CRAY X-MP were

described.

In all the models studied, there was more parallelism available than could
be exploited on the DAP. However, the lack of a fast data transfer facility, a
limited processor memory and the array size constraints of DAP FORTRAN
made the DAPs at Edinburgh University unsuitable for meteorological
modelling problems in general. These objections do not apply to the latest
generation DAP so this architecture was concluded to be suitable for gridpoint,
spectral and finite element models.

3

TABLE OF CONTENTS

Declaration 	 2
Abstract 	 3

1 Introduction 	 10

2 Parallel computers, languages and algorithms 	 13

2.1 Introduction 13
2.2 Classification of parallel computers 13
2.3 Description of some current and future parallel computers 14

2.3.1 Pipelined computers 15
2.3.1.1 Cray 15
2.3.1.2 ETA 16
2.3.1.3 IBM 17
2.3.1.4 Japanese supercomputers 17

2.3.2 Array computers 18
2.3.2.1 Goodyear Aerospace Corporation 18
2.3.2.2 Thinking Machines 18
2.3.2.3 Floating Point Systems 19
2.3.2.4 Edinburgh Concurrent Supercomputer 20

2.4 The ICL DAP 20
2.4.1 Architecture 20
2.4.2 Storage and processing modes 22
2.4.3 Programming and performance 23
2.4.4 Next generations 24

2.5 Programming languages for parallel computers 26
2.5.1 Introduction 26
2.5.2 Data management 26
2.5.3 Models of parallelism 27

2.5.3.1 Data parallelism 27
2.5.3.2 Process parallelism 28

2.5.4 Communication and synchronization 29
2.5.5 Parallelism from sequential languages 30
2.5.6 Extensions to existing languages 31

2.5.6.1 DAP FORTRAN 32
2.5.7 Parallel languages 34

2.6 Parallel programming and algorithms 38
2.6.1 Measuring computer performance 38
2.6.2 SIMD programming 41

2.6.2.1 Data mapping 41
2.6.2.2 Data routing 43
2.6.2.3 Performance 43

2.6.3 MIMD programming 46
2.6.3.1 Amdahl's law 46
2.6.3.2 Granularity and overheads 48
2.6.3.3 Scheduling 49
2.6.3.4 MIMD bugs 50

2.6.4 Some algorithms for the DAP 51
2.6.4.1 Cascade-sum 51
2.6.4.2 Fast Fourier Transform 53
2.6.4.3 Tridiagonal systems 54

2.6.5 Notation 57

4

3 Meteorological modelling techniques 	 59

3.1 Introduction 59
3.2 Time differencing 59

3.2.1 Explicit schemes 59
3.2.2 Implicit schemes 61

3.2.2.1 Semi-implicit scheme 61
3.2.3 Semi-Lagrangian scheme 62
3.2.4 Time filtering 63

3.3 Finite difference methods 63
3.3.1 Choice of grid for modelling on the sphere 63

3.3.1.1 Map projections 64
3.3.1.2 Spherical geodesic grids 64
3.3.1.3 Latitude-longitude grids 65
3.3.1.4 The pole problem 65

3.3.2 Finite difference approximations of spatial derivatives 66
3.3.2.1 Higher order schemes 67

3.3.3 Staggered grids 68
3.4 Galerkin techniques: Spectral method 68

3.4.1 Introduction 68
3.4.2 General method 70
3.4.3 Some properties of the spectral method 74
3.4.4 Basis functions 75
3.4.5 Truncation 78
3.4.6 The transform method 80

3.4.6.1 Optimization of the transforms 83
3.5 Galerkin techniques: Finite element method 84

3.5.1 Introduction 84
3.5.2 General method 85
3.5.3 Some properties of the finite element method 86
3.5.4 Basis functions 87
3.5.5 Approximation of some simple terms 89

3.5.5.1 First derivative 89
3.5.5.2 Approximation of products 92
3.5.5.3 Approximation of advective terms 96

3.5.6 Stability and phase properties 99
3.5.7 Boundary conditions 101

3.5.7.1 Homogeneous conditions 101
3.5.7.2 Inhomogeneous conditions 102

3.5.8 Initial conditions 105

4 Meteorological modelling on the ICL DAP 	 108

4.1 Introduction 	 108
4.2 Studies using the Meteorological Office operational suite 	108
4.3 A study using finite difference and spectral models 	 113

4.3.1 Mapping grids to the DAP 	 113
4.3.2 Finite difference models 	 113
4.3.3 Spectral model 	 118

4.4 Arithmetic precision and block point arithmetic 	 119
4.4.1 Precision requirements for meteorological modelling 120
4.4.2 Block point arithmetic 	 123

4.5 Discussion 	 124

5 Parallel Legendre transform algorithms 	 125

5

5.1 Introduction 125
5.2 Data mapping 125

5.2.1 Real spectral coefficients 125
5.2.2 Imaginary spectral coefficients 128
5.2.3 Legendre polynomials 130

5.3 Inverse Legendre transform 136
5.3.1 Algorithms 136

5.3.1.1 Latitude vertical 137
5.3.1.2 m vertical 138
5.3.1.3 n vertical 140

5.3.2 Choice of mappings 142
5.4 Direct Legendre transform 144

5.4.1 Algorithms 145
5.4.1.1 Latitude vertical 145
5.4.1.2 m vertical 147
5.4.1.3 n vertical 148

5.4.2 Choice of mappings 150
5.5 Inclusion of symmetry 156

5.5.1 Storage of spectral data 158
5.5.2 Inverse Legendre transform 162
5.5.3 Direct Legendre transform 166

5.6 Summary 173

6 A barotropic spectral model on the ICI DAP 	 175

6.1 Introduction 175
6.2 Description of the model 175

6.2.1 Spectral equations 175
6.2.2 Calculation of nonlinear terms 178
6.2.3 Inclusion of diffusion 180
6.2.4 Time differencing 180
6.2.5 Computational procedure 182

6.3 Preliminary discussion on implementing the model on the DAP 183
6.3.1 Introduction 183
6.3.2 Data mapping 183

6.3.2.1 Spectral coefficients 183
6.3.2.2 Fourier and gridpoint data mappings 183

6.3.3 Constraints on model formulation 184
6.3.3.1 Architectural constraints 184
6.3.3.2 Restrictions on model resolution 185

6.4 Fast Fourier transforms 188
6.4.1 Computational transforms 188
6.4.2 Complex transform 189
6.4.3 Implementation 190

6.5 Implementation of the model 192
6.5.1 Available parallelism 192
6.5.2 Calculation of the velocity components 193
6.5.3 Spectral space calculations 194
6.5.4 Model output 195
6.5.5 Programming environment 196

6.6 Storage requirements and performance 196
6.6.1 Storage requirements 196
6.6.2 Performance 198

6.6.2.1 Performance of the transforms 202
6.6.2.2 Parallel processing performance 203

N.

6.7 Legendre transforms at different resolutions 205
6.7.1 Comparison with serial routines 207

6.8 Model results 209
6.8.1 Initial conditions 209
6.8.2 Rossby wave results 210

6.8.2.1 Rossby wavenumber 4 211
6.8.2.2 Rossby wavenumber 8 211

6.9 Conclusions 218

7 A mesoscale finite element model on the ICL DAP 	 220

7.1 Introduction 220
7.2 Description of the model 221

7.2.1 Equations 221
7.2.2 Finite difference formulation 222
7.2.3 Boundary conditions 223
7.2.4 Initial conditions 224

7.3 Formulation of the DAP model 225
7.3.1 Model domain 225
7.3.2 Method of solution 226

7.3.2.1 Choice of elements 226
7.3.2.2 Choice of grid 226
7.3.2.3 Approximation of variables 227

7.3.3 Calculation of velocities 227
7.3.3.1 Streamfunction 227
7.3.3.2 Velocities 231

7.3.4 Advection terms 232
7.3.5 Diffusion terms 232
7.3.6 Time scheme 235
7.3.7 Initial conditions 236

7.4 Formulation of the boundary conditions 237
7.4.1 Lateral boundaries 237
7.4.2 Top and bottom boundaries 239

7.5 Model equations 242
7.5.1 Vorticity 242
7.5.2 Potential temperature 243

7.5.3 Jet velocity 244

7.6 Implementation on the DAP 245

7.6.1 Introduction 245

7.6.2 Data mapping 246

7.6.3 Model output 248

7.6.4 Boundary conditions 248

7.7 Efficient calculation of finite element matrices 248

7.7.1 Derivative terms 248

7.7.2 Product terms 249

7.7.2.1 Irregular grid 249

7.7.2.2 Semi-irregular grid 250
7.7.2.3 Further improvements 253

7.7.3 Diffusion terms 256
7.7.3.1 Calculation of the eddy diffusivity 256
7.7.3.2 Semi-irregular grid 257

7.8 Efficient solution of the finite element equations 260
7.8.1 DAP library subroutines 261
7.8.2 Conjugate gradient algorithm 262

7.8.2.1 Preconditioning 263

7.8.2.2 Cyclic reduction preconditioner 263
7.8.2.3 rn-step Jacobi precoriditioner 264
7.8.2.4 Combined preconditioner 267

7.9 Storage requirements and performance 270
7.9.1 Storage requirements 272
7.9.2 Model timings 272
7.9.3 Performance 279
7.9.4 Parallel processing performance 282

7.10 Model results 284
7.10.1 Surface jet case 284
7.10.2 Mid-tropospheric jet case 289

7.11 Discussion and conclusions 291

8 Meteorological algorithms on other parallel computers 	 297

8.1 Introduction 297
8.2 A finite difference meteorological benchmark 297
8.3 Legendre transforms 301

8.3.1 Use as a benchmark 301
8.3.2 Algorithms 301

8.4 Parallel implementation of spectral models 304
8.4.1 Multiprocessing 305
8.4.2 Data management and communication 305
8.4.3 Processor arrays 309

8.5 The ECMWF MIMD spectral model 310
8.5.1 Overview 311

8.5.1.1 Structure 311
8.5.1.2 Data and I/O 311

8.5.2 Static scheduling schemes 313
8.5.2.1 Original approach 313
8.5.2.2 Enhanced approach 316

8.5.3 Dynamic scheduling 316
8.5.4 Dynamic I/O scheme 320

8.5.4.1 Requirements 320
8.5.4.2 Design and implementation 321

8.6 The Meteorological Office MIMD finite difference model 323

9 Conclusions 	 325

Acknowledgements 	 330

Appendix A Code examples from the spectral model 	 331

Appendix A.l Inverse Legendre transform algorithms 	 331
Appendix A.11 Direct Legendre transform algorithms 	 332
Appendix A.11l Symmetric Legendre transform algorithms 	 333

Appendix B Accuracy of the finite element scheme for the diffusion term
336

Appendix C Calculation of finite element matrices 	 338

Appendix C.l Product term on an irregular grid 	 338
Appendix C.11 Product term on a semi-irregular grid 	 341
Appendix C.11l Further improvements 	 342

Appendix D Published Paper
	

344

References 	 351

CHAPTER 1

INTRODUCTION

With the development of the first electronic computer came the first

successful numerical weather forecast at 500mb by Charney et al. (1950) using

a barotropic model. Developments in numerical weather prediction led to the

use of quasi-geostroPhiC models followed by primitive equation models in the

late 1960s. Currently, models with a sophisticated representation of physical

processes are used for daily medium range global forecasts, requiring typically

a total of 10 12 operations on 10 6 gridpoints for a 10 day forecast. By the

1990s, Bengtsson (1988) estimates that 10 14 operations will be required by

such models.

These advances in forecasting closely followed the rapid development in

computer technology; roughly a ten-fold increase in computing speed every

five years (Hockney and Jesshope. 1981). This increase is the result of

improvements in hardware performance and the introduction of parallelism at

all levels of computer architecture.

Two broad classes of parallel computer can be identified. The first is the

pipelined computer of which the CYBER 205 and the CRAY 1 are examples.

The second is the processor array architecture consisting of many

interconnected processors. The ICL Distributed Array Processor (DAP) is an

example of this class, having 1-bit processors, connected as a 64
2 array.

Whilst the speed of each processor is slow, the performance of the array as a

whole can be tens of millions of floating point operations per second (Mflops).

Up to now, meteorological models have been run on the pipelined class of

computer. In the short term, this will continue because these machines offer

the best performance and the code of these models has a long development

time. However, in the long term, other architectural types may offer the best

performance. It is therefore essential to gain experience and expertise in

developing numerical weather prediction models on alternative parallel

computers.

The motivation for any study of meteorological modelling on parallel

computers is to establish whether existing modelling techniques can be used

efficiently, to develop new algorithms for such techniques and to develop any

10

new techniques required for specific architectures. What is more, the facilities

offered by parallel computer systems need to be reviewed: what programming

languages are available, what programming environment and tools are

provided, what peripheral devices are available and whether input/output

facilities are sufficient. From such a study it should be possible to list the

requirements of future computer systems for meteorological models, identify

drawbacks of different architectures and discuss trade-offs from a

meteorological viewpoint.

In this thesis, the application of numerical weather prediction to the ICL

DAP is studied. To obtain the best performance, the processor array

architecture of this machine requires a different approach to algorithm design.

Furthermore, the programming language for the DAP is a parallel version of

FORTRAN. Unlike the original DAPs, the current generation is built in VLSI and

their physical size allows them to be used as add-on processors to

workstations. Whilst these machines do not match the fastest pipelined

computers available at present, arrays of 256 2 would give a performance of

the order of several Gflops (10 floating point operations per second). A study

of the suitability of this type of computer is therefore relevant to operational

forecasting requirements. It could also be argued that research models that do

not fully utilize the potential of a supercomputer would more suited to a local

workstation with a DAP attached.

This thesis will demonstrate the feasibility of using processor arrays for

meteorological modelling based on the implementation and performance study

of two models, using the latest numerical methods, on the ICL DAP.

Experience gained from this study should not be applicable solely to the DAP

but also to other massively parallel computers. Comparison with the

techniques used to implement models on other architectures might indicate

the types of computer most suited to meteorological modelling. Guidelines

could be put forward for the design of models on future parallel computers

which have their origins in the computer architectures of the present.

The rest of this thesis is organized as follows. Chapter 2 reviews parallel

computers, languages and algorithms. Chapter 3 reviews the various

meteorological modelling techniques in use. Chapter 4 gives a general

introduction to applying meteorological modelling to the DAP by reviewing

past work. In chapter 5, new parallel algorithms for the Legendre transforms

11

are developed for the implementation of a barotrOpic spectral model on the

DAP, described in chapter 6. Chapter 7 describes the implementation of a

mesoscale finite element model on the DAP. Chapter 8 discusses the

techniques used for meteorological modelling on other parallel architectures.

Finally, chapter 9 presents conclusions and discusses the overall findings of

this work.

12

CHAPTER 2

PARALLEL COMPUTERS, LANGUAGES AND ALGORITHMS

2.1. Introduction

In this chapter the ICL DAP is described, together with a brief description

of some other parallel computers. It is important to review parallel computer

architectures likely to be commercially available in the near future, to be abie

to comment on the architectures most suited to meteorological modelling and

to anticipate future processing speeds. A discussion of programming

languages for parallel computers is also presented. Finally, some of the

considerations and problems involved in writing algorithms for parallel

computers are described. Some well known algorithms for the ICL DAP, used

in the meteorological models described in this thesis, are presented as

examples.

2.2. Classification of parallel computers

The architecture of early computers is described as serial and referred to

as the von Neumann organization. Flynn (1972) has classified this type of

computer as asingle instruction stream/single data stream (SISD) computer.

Parallelism can be introduced into computer architecture in several

principal ways. From Hockney and Jesshope (1981), these are:

Pipelining - overlapping of separate operations in an

assembly line fashion to improve the performance of an

arithmetic or control unit.

Functional - providing several independent units for

performing different functions, such as logic or addition, to

operate simultaneously on different data.

Array - providing an array of identical processing elements

operating simultaneously under the same instructions on

different data.

Multiprocessing - the provision of several processors, each

obeying its own 	instructions, with a facility for

13

interprocessor communication.

The idea of pipelining applies to basic operations, such as the steps in a

floating point addition. If two or more pipes are present in a machine, different

operations may be 'chained' to give an improved performance. For example,

suppose a computer contained a multiplication pipe and an addition pipe. If a

vector multiply instruction was followed by a vector add, chaining allows the

addition pipe to take the results emerging from the multiplication pipe, without

waiting for the first vector instruction to complete.

A pipelined vector computer is usually classified as a SISD computer

(Hockney, 1977), although Flynn (1972) preferred to classify this type of

architecture as single instruction stream/multiple data stream (SIMD). However,

the term SIMD has become associated with arrays of processors working in

lockstep (i.e. a common instruction stream) and is usually used to distinguish

such array processors from pipelined computers. The classification of

computers as multiple instruction stream/multiple data stream (MIMD)

machines follows Flynn's (1972) definition and is used to refer to all forms of

multiprocessors, where each processor obeys its own instructions.

This classification scheme, however, is very general. Shore (1973) and

Hockey and Jesshope (1981) both describe more detailed classification

schemes based on architectural configuration, rather than how the machine

relates its instructions to the data being processed. However, these

comprehensive schemes have not come into general use.

2.3. Description of some current and future parallel computers

There are now many parallel computers commercially available, with more

used for research in universities. In this section, a brief overview is given of

some parallel computers, most of which have been used for meteorological

modelling.

14

2.3.1. Pipelined computers

2.3.1.1. Cray

The CRAY-1, first delivered in 1976, was the first commercially successful

pipelined vector supercomputer. The CRAY X-MP is a multiprocessor

upgrading of the CRAY-1 architecture, available with 1, 2 or 4 processors and

central memory sizes of 2, 4, 8 or 16Mwords. A Solid-state Storage Device

(SSD) is also available with memory sizes from 32 to 512Mwords. The SSD

functions as a secondary memory and can be accessed using normal FORTRAN

I/O statements. As the SSD is a nonrotating memory device, transfer rates are

typically 2000Mbytes per second, 200 times faster than transfers from disk.

The clock period of the CRAY X-MP processor is 9.5nsecs. The peak speed

of one processor is 21OMflops, so the peak performance of the 4 processor

system is about 0.8Gflops.

The central memory is divided into 16 banks which are shared between the

processors. As each processor has three computational ports, memory bank

conflicts can arise. Larson (1988) describes some programming techniques to

avoid memory contention.

The CRAY X-MP operating system allows multiple jobs to be executing

simultaneously and programs to utilize several processors. Support for

multiprocessing in programs is provided by the multitasking (or macrotasking)

FORTRAN subroutine library and the microtasking FORTRAN compiler directives.

As task creation overheads are relatively large, macrotasking is applied at the

subroutine level, whereas the small overheads for microtasking mean it is

applied at the loop level.

The CRAY Y-MP, due to be commercially available in late 1989, is an

upgraded CRAY X-MP with 8 processors. Its peak performance is about

5Gflops.

The CRAY-2 is available with 2 or 4 processors. The combined peak

performance of 4 processors is 1.8GfIops. The clock period is 4.1nsecs. Each

processor is pipelined with separate functional units for integer, scalar and

floating point arithmetic and eight 64 element vector registers.

15

The CRAY-2 has a large directly addressable shared memory of up to

256Mwords, arranged in 128 banks. In addition, each processor has a local

memory of 16kwords used to temporarily hold scalar operands or vector

segments during computation. The CRAY-2 offers the same parallel processing

facilities as the CRAY X-MP.

The CRAY-3, due to be available in 1990, is an implementation of the

CRAY-2 in gallium arsenide semiconductor technology. The machine is

expected to have 8 or 16 processors and the performance of each is expected

to be about lGflops.

2.3.1.2. ETA

The Engineering Technology Associates (ETA) company was founded in

1983, as an offshoot to the Control Data Corporation (CDC), with the aim of

developing a lOGflops supercomputer commonly known as the ETA-10. The

ETA-10 can support up to 8 processors where each processor is based on the

CDC CYBER 205 architecture. Each processor contains two vector pipelines

but, unlike the CRAY machines, has no vector registers, fetching and saving

vectors directly from memory instead. The two vector pipelines can operate

concurrently with the scalar unit.

An unusual feature of the ETA-10 is that the processors are immersed in

liquid nitrogen and cooled to a temperature of 77K. This enables the clock

period to be reduced. The 8 processor ETA-10 is rated at 4.5Gflops for 64-bit

and gGflops for 32-bit floating pcint arithmetic, with a 7nsecs clock period.

The ETA-10 is different from the CRAY computers as it has a hierarchical

memory. Each processor is connected to its own 32Mbytes of local memory

which in turn is connected to a shared memory of 256Mbytes to 2Gbytes in

size. The shared memory is also connected to the I/O processors. The

ETA-10 is a virtual memory machine, unlike the CRAY computers.

The parallel programming environment for the ETA-10 provides three types

of approaches. The first is the use of compiler directives, the second is the

provision of a multitasking library and the third, unique to ETA, is the provision

of a FORTRAN-like language, used in a top-down design approach, which

contains all the parallel constructs. This top layer then calls the FORTRAN

subroutines to execute the computation. The memory hierarchy is reflected in

16

the complexity of the compiler directives and the multitasking library. Snelling

(1988) reports that the ETA multitasking library has a total of 61 subroutines

requiring a total of 187 parameters, compared to 16 subroutines and 22

parameters for the CRAY multitasking library.

2.3.1.3. IBM

The IBM corporation offer the IBM 3090/200 (2 processors) and the IBM

3090/400 (4 processors) with an optional vector facility for each processor.

Each vector facility has two pipelined arithmetic units connected to 16 vector

registers, each of which contains 128 32-bit elements. The peak performance

of the 3090/400 is 430MfIopS. The processors access a shared memory of

64Mbytes (model 200) or 128Mbytes (model 400), expandable to three times

these sizes.

Macrotasking is available through a FORTRAN multitasking library. This is

relatively simple, compared to that of CRAY, with 4 subroutines requiring a

total of 5 parameters. No microtasking facilities are available.

2.3.1.4. Japanese supercomputers

The three largest Japanese computer manufacturers have been making

pipelined supercomputers since the late 1970s. The current generation of

supercomputers have only a single processor but have peak performances

comparable to the CRAY and ETA machines.

Fujitsu have produced the 250MfIops VP-100, 500Mflops VP-200 and the

lGflops VP-400. The machines have multiple vector units and a clock period

of 7.5nsecs. They also contain a memory of 256Mbytes.

Hitachi have produced the 315Mflops S-810/10 and the 630Mflops

S-810/20. This also has multiple vector units with a 14nsecs clock period. The

S-810/20 may include 1Gbyte of solid state storage.

NEC make the 570Mflops SX-1 and the 1.3Gflops SX-2. Again, each

machine has multiple vector units with a clock period of 6nsecs. The faster

machine may include a 2Gbytes solid state storage device to go with

256Mbytes of main memory.

The next generation of Japanese supercomputers will be multiprocessors.

17

NEC recently announced the SX-3, due for release in the mid 1990s, which is a

four processor machine capable of 22Gflops. Fujitsu are designing an •8

processor machine for the 1990s.

2.3.2. Array computers

Computers in this class include the SIMD type such as the DAP (described

in detail in the next section) and the MIMD type such as the FPS T-series. The

memory for these systems may be shared between processors through an

interconnecting switching network or distributed local to each processor, with

processors connected by a network or switch. Hockney (1985) discusses

these architectural types in more detail.

2.3.2.1. Goodyear Aerospace Corporation

The Goodyear Aerospace Corporation delivered the SIMO Massively Parallel

Processor (MPP) to the NASA Goddard Space Flight Centre in 1983. It consists

of 1-bit processing elements (PEs) connected in a 128x128 mesh. Each PE has

connections to its four nearest neighbours and has 1kbyte of memory. The

machine was constructed in VLSI chips. The clock period is lOOnsecs.

The MPP is designed principally for satellite picture processing but has also

been used for fluid dynamics problems (Gallapoulos, 1984). The floating point

performance of the machine is enhanced by the i,iclusion of a programmable

shift register to give 200Mflops for 32-bit floating point multiplication.

Input and output on the MPP is accomplished by shifting data across the

columns of the PE array, either from a separate host computer or an input

interface. The MPP has only a global broadcast capability, unlike the DAP

which has row and column broadcast capability. The MPP is programmed in a

parallel version of Pascal.

2.3.2.2. Thinking Machines

The Connection Machine CM-1 built by Thinking Machines Incorporated has

65536 1-bit processors and is 'a SIMD machine. The recently introduced CM-2

adds 2048 Weitek floating point processors to give a peak performance of

32Gflops. Sixteen bit-serial processors are fabricated on a single chip and

each processor has 8kbytes of local memory, so the machine contains

18

512Mbytes of memory as a whole. No code is stored in the local memory, the

CM is used by a host computer to execute the parallel sections of a program;

all serial code is executed on the host. Every two chips (32 1-bit processors)

share a Weitek floating point unit.

Communication between processors on the same chip is achieved through

a Benes network (Hockney and Jesshope, 1981) whilst the chips themselves

are connected as a hypercube. In a hypercube, if all the processors are

numbered 0 to n, processor i is connected to all processors j, such that the

binary representations of i and j differ by 1 bit. See Hockney and Jesstiope

(1981) for more details. The hardware also supports communications on a

two-dimensional grid, like the DAP, which is quicker than the general

communication on the hypercube.

The Connection Machine can be programmed in parallel versions of

FORTRAN, C and LISP. A useful feature of the CM is that the system supports

virtual processors in that it can be programmed as if it has more processors

than it actually has. Each processor simulates virtual processors by dividing

its memory space into equal parts and sequentially serving the virtual

processors. This feature is typically used to assign a virtual processor to each

gridpoint in a numerical solution.

2.3.2.3. Floating Point Systems

The Floating Point Systems MIMD T-series is another distributed memory

machine based on a hypercube network. Each node of the hypercube consists

of an INMOS 1400 transputer, 1Mbyte of memory and a Weitek floating point

vector unit. The T400 transputer contains a 32-bit integer processor, 2Kbytes

of RAM and four bi-directional serial communication ports, all on one chip in

VLSI. The transputer acts as a controller to the vector unit and also performs

integer arithmetic in parallel. The vector unit has pipelined functional units

and vector registers. The peak performance of each node is 12Mflops. The

largest possible T-series configuration would have 16384 nodes with a peak

processing speed of 192Gflops. The computer can be programmed in OCCAM,

FORTRAN or C.

19

2.3.2.4. Edinburgh Concurrent Supercomputer

When the ICL 2900 mainframe service at Edinburgh University was closed

down, a replacement for the ICL DAPs was sought. This led to the Edinburgh

Concurrent Supercomputer (ECS) project. The ECS is a MIMD machine

consisting of T800 transputers as nodes on an electronically configurable

network. The T800 transputer has a 32-bit floating point unit as well as an

integer unit and 4Kbytes of memory instead of 2Kbytes on the T400. Each

node on the ECS also has 4Mbytes of external memory. Each transputer has a

peak performance of 0.8Mflops, although this can only be sustained if the data

is stored in the internal memory.

The ECS is hosted by a microVAX with three 0.8Gbyte disks. It can be

programmed in FORTRAN, C, OCCAM, or a mixture. At present, the largest

single-user-resource offered on the ECS is 259 nodes, which would give a

peak performance of approximately 200Mflops.

2.4. The ICI DAP

The design of the International Computers Limited (ICL) Distributed Array

Processor (DAP) (Reddaway, 1973) was begun in 1972 and the first production

machine was delivered in 1980, to Queen Mary College in London. The first

DAP for Edinburgh University was delivered in 1982 and a second DAP

delivered in 1983. The integration of the DAPs into the dual ICL 2976

mainframe service running the Edinburgh Multi-Access System (EMAS)

operating system is described by Brown (1986) and Stephens and Yarwood

(1986).

2.4.1. Architecture

The DAP is a SIMD computer comprising a 64x64 array of 1-bit processing

elements. Each PE is connected to its four nearest neighbours and has its

own 4Kbits of memory, expandable to 1161(bits (see Fig. 1). Each DAP at

Edinburgh University had a memory size of 2Mbytes. The cycle time of the

DAP is 200nsecs.

Unlike most supercomputers, the DAP was built from modest technology at

low levels of integration. The simple nature of the bit processors meant the

hardware was cheap and quick to develop and manufacture. The drawback

20

MCU Single controller

PE array

Random Access
Memory (RAM)

Figure 1. Schematic illustration of the DAP showing processor connections and

processor memory. From Ettinger (1987).

21

was the physical size of the machine.

The decoding and issuing of instructions is performed by the Master

Control Unit (MCU). The code for the DAP and the program's data are both

stored in the processor memory. The MCU contains eight 64-bit registers

which are connected to row and column highways leading to each processor.

Thus register data can be broadcast to all the array, or to all rows or all

columns.

The DAP forms an integral part of the host mainframe ICL 2900. It can

provide memory in the conventional way, for example if the host system is

being heavily used, or it can be instructed to execute autonomously. The DAP

interface to the 2900 mainframe is provided by the DAP access controller and

the column highway. Therefore, data transfer between the host and the DAP

takes place 1 row of 64 bits at a time, requiring 1 cycle per access.

Each PE contains an activity register which is used to determine whether

store operations are obeyed or not. Therefore the writing of data back to

memory can be controlled for each individual PE, by the user, in the DAP

program.

Flanders et al. (1977) and HockneV and Jesshope (1981) give more details

on the architecture of the DAP.

2.4.2. Storage and processing modes

There are three formats in which data can be held in the DAP store. The

first, known as FORTRAN storage mode, is the way the host stores data in the

DAP memory (ICL, 1979). Two 32-bit words are held in a row of a DAP store

plane. Before it can be used, the DAP program must reformat this data, into

either the horizontal or vertical storage format.

The horizontal storage format is similar to FORTRAN storage mode except

that each word is held one per row, right justified. This mode leads to vector

processing where 64 numbers are stored on one plane and processed in

parallel.

In the vertical storage format, words are held vertically in the store of each

PE. This gives matrix processing in which 4096 numbers are processed in

22

parallel, but the arithmetic in this case is bit serial. Arithmetic operations take

longer in vertical mode than in horizontal mode but the factor is less than 64

so that optimum processing is achieved in vertical mode.

2.4.3. Programming and performance

The DAP is programmed in DAP FORTRAN, which is based on FORTRAN77

but includes extensions to support vector and matrix processing. The language

is described in a later section.

A program to use the DAP consists of a FORTRAN part that runs on the

host and a DAP FORTRAN part that is called from the host part of the

program. Brown (1986) describes the procedure for the preparation and

running of DAP programs at Edinburgh University in more detail.

DAP FORTRAN does not support the FORTRAN READ and WRITE statements

and all communication of data is made via COMMON blocks shared between the

DAP and the host. The lack of DAP FORTRAN I/O statements means that

debugging DAP FORTRAN programs becomes difficult.

As the DAP consists of 1-bit processing elements, basic arithmetic

operations have to be built up in software. For the matrix processing mode,

there is a strong dependency of performance on word length. DAP FORTRAN

will allow floating point variables to be declared as 3 to 8 bytes in length,

integers 1 to 8 bytes. For integer arithmetic, performance varies linearly with

word length for addition and as the square of the word length for

multiplication. The overheads of exponent and mantissa manipulation mean the

same is not true for floating point addition and multiplication. However, for a

typical mix of addition and multiplication floating point operations show a

linear trend with word length. There are obvious gains in performance to be

made if block floating point arithmetic is used. In block floating point

arithmetic, a single exponent is used for a data array. The largest value in the

array determines the scale factor and exponent for the entire array. However,

operations are still done in fixed point arithmetic as all values share the same

exponent. If overflow occurs, the exponent increases and the entire array is

shifted 1 bit.

For 32-bit floating point numbers in matrix mode, addition takes place at

25Mflops and multiplication at 14Mflops. Bit level algorithms can be used for

23

operations such as computing the sum, logarithm or square root of the 4096

values in the PE array. The relative performances of these operations to basic

arithmetic operations is often very different to that found on conventional

architectures. For example, the DAP FORTRAN version of the MAX function

achieves a processing rate of 60Mflops whilst changing the sign of 4096

vertically stored numbers can be done at 10Gflops (Flanders et al. 1977).

2.4.4. Next generations

The second generation DAP, produced in 1986 and called the mil-DAP, was

a 32x32 PE array in LSI. The clock cycle was 145nsecs and the machine had

2Mbytes of memory. It was hosted by an ICL Perq workstation and was

mainly intended for signal processing.

The Active Memory Technology (AMT) company was set up in October

1986, as a spin off from ICL, to develop and market the DAP technology. They

have produced the third generation DAP, the AMT DAP 500 and 600 series

implemented in VLSI. The first machine, a DAP 510, was delivered in late 1987.

The third generation DAP has many improvements over the first generation,

both in terms, of hardware and software. One significant difference is that

they are add-on processors to a SUN or VAX computer, rather than forming an

integral part of a mainframe computer. They can either provide high

performance for a workstation environment or act as a mainframe service.

The 500 series comprises a 32x32 array of PEs with either a 6MHz

(167nsecs; model 506) or 10MHz (lOOnsecs; model 510) clock. The 600 series

is a 64x64 array.

The PE array is controlled from the Master Control Unit as before, except

that the DAP program code is now held in a separate code memory attached

to the MCU. This has a minimum size of 0.5Mbytes and can be expanded to

2Mbytes. The minimum size for the PE memory is 321(bits expandable up to

iMbit, giving a maximum total memory of 128Mbytes for the 500 series or

5 12Mbytes for the 600 series.

A Host Connection Unit is responsible for all communication to the host.

It contains a 32-bit microprocessor with various interfaces and connects to

the MCU.

r

24

The PE in this generation is exactly the same as in the original DAP.

However, an additional bit-plane exists between the processors and their

memory to act as a fast data transfer channel between memory and peripheral

devices, such as a high resolution colour display. Data can be transferred at a

rate of 70Mbytes/sec utilizing just 6% of the processor cycles during the

transfer. This facility, coupled with the DAP's ability to use short word

lengths, makes it well suited to graphics and image processing applications.

The DAP 510 has a maximum floating point performance, on 32-bit words,

of 60Mflops. This is 2.5 times faster than the 64x64 ICL DAP. The DAP 610

would therefore be rated at 240Mflops, nearly 10 times faster than the first

generation DAP; the difference in clock period accounting for a factor of 2. A

DAP 710 (2 or 128x128) would have a peak performance of about lGflops, 5

times faster than the MPP which also has a 128x128 array and a lOOnsec

clock.

The programming environment has also been improved. The AMT DAP can

be programmed in FORTRAN-PLUS (DAP FORTRAN renamed) and the DAP

assembly language APAL. DAP programs are developed on the host as before.

Any run-time errors, such as divide by zero, are detected by the DAP which

informs the user on the host and automatically enters an interactive

debugging mode. The user can then request the value of variables by name.

Alternatively, a dump can be made and saved for later analysis. When in this

debugging mode, the user can resume or abandon the run at any time.

AMT recently announced (AMT, 1989) their intention to develop

FORTRAN-PLUS (enhanced) and FORTRAN 8X compilers. The main new feature

of FORTRAN-PLUS (enhanced) is the lack of size constraints for matrix and

vector type variables. In FORTRAN-PLUS (or DAP FORTRAN) these types are

constrained to the size of the PE array. The FORTRAN 8X language is

attractive to AMT as it includes similar array processing statements to DAP

FORTRAN. As it will also need to support all FORTRAN 77 instructions, this

makes the DAP potentially available to more users.

In reaching conclusions about the suitability of the DAP to meteorological

modelling, it is obviously important to take account of the facilities provided

by this latest generation of the DAP.

25

2.5. Programming languages for parallel computers

2.5.1. Introduction

Every programming language is based on the type of computer system

that the computer program is to run on. The sequential von Neumann

architecture has therefore influenced the design of programs since the 1950s.

With the development of parallel computers (SIMO and MIMD) the need arose

for languages to reflect the new hardware, either by extracting parallelism

from existing sequential programs (e.g. vectorization, parallel processing

subroutine libraries, refined languages), by extending languages to include

parallel constructs (e.g. DAP FORTRAN) or by designing new parallel languages

(e.g. OCCAM). A great deal of work has been done in these areas and they

are discussed in more detail in subsequent sections and by Jesshope (1987).

Hockney and Jesshope (1981) introduce the principle of the conservation of

parallelism. This states that the degree of parallelism should not decrease

from the algorithm development stage, through the programming stage to the

code executing on the machine. This is desirable because it is much easier to

translate from a parallel to a serial approach, rather than from a sequential to

parallel approach which would require a detailed program analysis.

Unfortunately, the compilers of pipelined vector computers violate this

principle, in that intervention by the programmer is often required to achieve

the desired performance. However, this method has been successful because

of the long development time and the cost of large FORTRAN programs. It also

allows programs to be ported between different computers, something that is

generally not possible for the extended or new parallel languages without

rewriting the code.

2.5.2. Data management

The extraction of parallelism from a program is the application of the

Parallelizatiofl Principle (Klappholz et a!, 1987) by the compiler. Put simply, this

is the analysis of the program's pattern of data access, as code sections can

be performed in parallel if they do not write to the same area of memory.

Thus the parallelization of code is intimately related to the access of data.

Data management is probably the most critical aspect of parallel

processing. A multiprocessor system may support a shared memory directly

OW

connected to the processors (e.g. CRAY X-MP), or connected via a switching

network. The memory may be distributed, where each processor has direct

connection to its own local memory (e.g. ICL DAP), or a memory hierarchy may

exist. In the same way, a programmer may require that data is to be shared

between all processors or is private to a processor. There may also be a need

for semi-private data, which is to be shared between groups of processors.

The availability of these data classes within a language will be strongly

influenced by the intended architecture and have an effect on the design of

the algorithms. Data security is also an issue, since unrepeatable results

(known as races) can occur from improper use of shared data.

2.5.3. Models of parallelism

There are two ways in which parallelism can be exploited in applications.

The first is 'data parallelism' where an operation or sequence of operations is

applied simultaneously to a set of data values. This is SIMD mode. The

second is known as 'process parallelism', where multiple operations, or

multiple operation sequences, are applied simultaneously to the same or

different data. Languages for SIMD computers need only support data

parallelism, whereas both may be supported for MIMD computers. The

requirements and features of languages that support these models of

parallelism are described at length by Hockney and Jesshope (1981) and

Jesshope (1987) and are summarized below.

2.5.3.1. Data parallelism

In a sequential language, operations on an array are applied on an array

element basis within a loop. When these operations are independent of the

data, parallel processing can be applied. Thus, it is natural to use the array as

a basic parallel construct. The most general approach is where an array of

any number of dimensions can be treated as a distinct object. Any reference

to the array then refers to all the elements in the array. This approach has

been adopted for the forthcoming FORTRAN 8X standard (Reid and Wilson,

1986).

Many languages, essentially those for processor arrays, have compromised

this general approach and restricted the number of dimensions over which the

array can be considered as a parallel object. Any further dimensions must be

27

indexed. DAP FORTRAN (ICL, 1979) uses this approach, where the first or first

two dimensions only may be referenced in parallel and these dimensions are

constrained to the size of the processor array. This has the disadvantage that

the language becomes machine and array size dependent, making programs

nonportable.

Indexing parallel data objects can be thought of as a rank reducing

operation (Hockney and Jesshope, 1981). Thus, a two-dimensional matrix could

be indexed as a vector or a scalar. More generally, it becomes necessary to

specify regions of the array which are to be manipulated and updated. DAP

FORTRAN provides good examples of these facilities and is discussed later.

2.5.3.2. Process parallelism

Process parallelism in programming languages has arisen from the need to

exploit MIMD multiprocessor computers and concurrency in algorithms.

Support for concurrent processes in a language can be provided by allowing

process creation during execution or by assuming all processes to be active at

the start of the program and remain so for its lifetime.

Process creation during program execution uses the fork/join approach.

The CRAY multitasking library provides a TSKSTART routine to create a new

process (or task) and a TSKWAIT routine which causes a process to wait until

the specified process terminates. The PAR construct in OCCAM, placed around

statements, uses the fork/join approach but can be applied to a piece of work

of a shorter time duration than on the CRAY because of the smaller process

creation overheads.

Process parallelism is an MIMD mode of operation in which the task of

algorithm design is inherently more complex than for SIMD mode or the use of

data parallelism. What is more, an MIMD algorithm will be harder to debug

since new types of errors, not possible in SIMO (or SISD) programming, can

occur. These are described in more detail in a later section. As discussed by

Jesshope (1987), this additional complexity requires expressive programming

languages with simple but powerful abstract constructs with which to exploit

the concurrency in the algorithms.

28

2.5.4. Communication and synchronization

Communication and synchronization overheads are among the main

reasons why the speed-up of a program on N processors is not N SIMD

machines are simpler than MIMD machines in this respect as no

synchronization is required.

Communication between processes can be via an interconnecting network

(e.g. a transputer based architecture), a communications buffer (e.g. the

ETA-b) or by a shared variable in a global memory (e.g. CRAY X-MP). For a

network system, messages or data can be passed directly between processes

(direct-send systems) or left with a global entity for later collection by the

relevant process (mailbox systems). The level at which communication is

supported in a language varies. Since communication is generally an overhead

(except in cases where the cost can be completely masked by concurrent

processing), parallel MIMO algorithms should ideally contain a minimum of

interprocessor communication coupled with a fast and efficient communication

network.

Unless each process is independent, some means of synchronization will

be required to ensure the correct behaviour of the program. There are two

basic types of synchronization; data and control oriented.

Data oriented synchronization is used to synchronize the updating of

variables which are shared between processes. Variables must have an

associated status to indicate whether they are full or empty. The

programming language described by Jordan (1987), 'The Force', supports this

form of synchronization.

One control oriented synchronization concept is that of the barrier

(Axelrod, 1986). A barrier defines a point in the control flow of an algorithm

or program at which all processes must arrive before any are allowed to

proceed further. A barrier is expensive in terms of communication since each

process must communicate with every other process. Additionally, since all

processes must wait at the barrier until the last arrives, the effects of

fluctuations in process execution time or imperfect load balancing are

maximized. However, one advantage of the barrier is that it can be

implemented such that each process does not need to explicitly perform any

communication (this can be hidden at a lower system level), so that programs

can be independent of the number of processes (Jordan, 1987). The fork/join

approach to process control also provides a means of synchronization as

mentioned previously.

Control oriented synchronization also uses the concept of a critical region.

A critical region is a protected section of sequential code through which only

one process is allowed to progress at any time. If any other processes reach

this critical region whilst another process is executing it, they wait until that

process has completed. This mutually exclusive condition is usually used for

writing to shared memory locations. The LOCKS in the CRAY multitasking

library (CRAY, 1986) are a facility for defining critical regions.

The concepts of communication and synchronization are unified in the

paper by Hoare (1978), where simple input and output commands are

introduced for communication between processes. If one process expects

input from another, it will wait until the second process is ready to send.

Likewise, a process will wait to send data until the receiving process is ready.

Thus processes can be made to synchronize by communicating. This simple

approach can be extended to the barrier concept. These ideas have since

been incorporated into-the OCCAM and ADA programming languages.

2.5.5. Parallelism from sequential languages

The pipelined vector class of computers use vectorizing compilers to

generate parallel machine instructions from sequential code. This method is

attractive because standard FORTRAN can generally be used, although for the

best performance the programmer usually has to adopt a suitable

programming style. The compiler will analyse DO loops, generally the

innermost loop, substituting vector instructions. More intelligent compilers

will analyse nested loops and can reorder them to remove a data dependency

in an inner loop (Hockney and Jesshope, 1981).

In a loop, conditional statements and sequential data dependencies can

inhibit vectorization. Conditional statements can often be vectorized by using

a masking technique. Those loops with conditional statements that cannot be

vectorized can usually be replaced with a vector function (e.g. the CRAY vector

merge functions).

Facilities for FORTRAN programs to make use of multiple processors have

30

been provided in the form of compiler directives and subroutine libraries.

Compiler directives take the form of a normal FORTRAN comment line with a

special string of characters, including the directive, which the compiler

recognizes. Compiler directives are advantageous since they do not require

modifications to executable FORTRAN statements. Parallel processing

subroutine libraries are provided by the major supercomputer manufacturers

CRAY, ETA and IBM. These vary greatly in the facilities offered, as discussed

in the survey by Snelling and Hoffmann (1988). All use the fork/join concept

of process control discussed above. The libraries all reflect the underlying

architecture and are therefore machine dependent.

The refined language methodology (Klappholz et al. 1987) offers an

evolutionary approach to the problem of moving programs from SISD to MIMD

machines. A range - f tools is provided to support the programmer in

developing parallel programs based on a refined sequential language (i.e.

FORTRAN or C). Klappholz et al. (1987) describe the software tool Prefine,

which analyses the pattern of data access within subroutines and between

subroutines. The analysis of this tool can be combined with a sequential

program in standard FORTRAN or C, which the compiler then exploits by using

the parallelization principle to translate specifications of data access rights

into parallel processes. The additional data access information enables a

larger degree of parallelism to be detected. Furthermore, runtime error

checking code can use the same information to prevent races. In essence,

Prefine performs the translation from standard FORTRAN or C to the refined

version of the language. The refined version is an extension of the original

with added syntax for definition of data access rights. The refined languages

are therefore still sequential languages, but provide an evolutionary step for

moving large sequential programs to a safe parallel form, free from the errors

associated with MIMO programs.

2.5.6. Extensions to existing languages

Language extensions for parallel processing use either data parallelism or

process parallelism, occasionally both. Languages for SIMD computers use the

data parallelism approach by incorporating parallel data objects into their

syntax and providing facilities for manipulating these objects. Extensions for

use with MIMD machines have generally supported process parallelism through

the use of preprocessors or macros (Leasure, 1988) to hide machine

31

dependent instructions.

Extended languages to support data parallelism include; Actus II (a Pascal

based language for the DAP, described by Perrott et 8/. 1987), DAP FORTRAN

(described in more detail below) and FORTRAN 8X (Reid and Wilson, 1986).

Both Actus II and FORTRAN 8X support the declaration of arrays as parallel

objects with unconstrained rank (or number of parallel dimensions) and range

(length of each dimension) unlike DAP FORTRAN which is more restrictive. All

the languages have been extended so that functions and subroutines can be

passed and can return parallel data objects. Actus II provides indexing facilities

and operations for data alignment. FORTRAN 8X is expected to include

powerful indexing facilities similar to DAP FORTRAN. For example, the

statement, WHERE(A.GT.0) B = B/A performs the division on elements in B

where the corresponding elements in A are nonzero (A and B are parallel data

arrays). In DAP FORTRAN, this would be written as B(A.GT.0) = B/A. One

important advantage with parallel data constructs is that the program becomes

more concise and easier to read as, for example, loops over individual array

elements are no longer needed.

The Force programming language (Jordan, 1987) is an example of a

portable, parallel programming language based on FORTRAN, incorporating

process control primitives which are translated to machine dependent

statements using a macro preprocessor. The language is portable because the

parallel instructions embody simple process parallelism constructs which are

machine independent. Shared and private data are supported as well as data

and control synchronization concepts. The Force has been implemented on a

variety of computers (e.g. the CRAY-2), but can only be applied to shared

memory multiprocessors.

2.5.6.1. DAP FORTRAN

As an example of an extended language supporting data parallelism and as

the language is used for the work presented in this thesis, a brief review of

DAP FORTRAN (ICL, 1979) is given here.

In DAP FORTRAN, arrays are declared in the usual way. For example,

DIMENSION VECTO, MAT(,), MAT3(,,3)

32

defines VECT to be a vector of 64 elements, stored in horizontal format, with

MAT a matrix of 64x64 elements, stored in the vertical format. Both are parallel

data objects. Arrays or sets of vectors and matrices can be defined in the

usual way; MAT3 is an array of 64x64x3 elements.

Operations on vectors and matrices take place on all elements

simultaneously. For example, the FORTRAN code below,

DO 1 J = 1, 64
DO 1 I = 1, 64

1 M1(I,J) = Ml(I,J) + M2(I,J)

could be replaced in DAP FORTRAN, by,

Ml = Ml + M2

Indexing the constrained (parallel) dimensions can be performed with

integer, integer vector or logical indices, on the left and right hand side of

assignment statements. For example, MAT(,3) would select a vector equal to

the third column of the matrix. If IV() is an integer vector, whose elements

all lie in the range 1 to 64, MAT(IV,) selects a vector containing MAT(IV(I),I)

in element I. If LV() and LM(,) are a logical vector and logical matrix

respectively, MAT(,LV) selects a column and MAT(LM) selects a scalar when

used on the RHS of an assignment statement or in a procedure call. The

logical vector and matrix must have only one element TRUE. When this

indexing is used on the LHS of an assignment statement, this restriction does

not apply. For example, MAT(LM) = would cause updating of the matrix

elements only where the correspondin' element of LM was TRUE. This

powerful facility is known as masking. Any valid logical expression can be

substituted in place of the logical matrix, as shown in the previous section. As

logical data objects occupy one bit plane, logical operations are fast and have

a negligible overhead in the indexing operations.

The movement of data between processors is done using functions. Planar

and cyclic boundary conditions can be specified at the edges of the PE array.

When planar conditions are specified, zeros are shifted in to replace boundary

values. With cyclic conditions, data shifted off one edge of the array appear at

33

the opposite edge. For example, SHNP(MAT,3) would shift the matrix 3 PEs

north (SHift-North-Planar) with planar boundary conditions. Data can also be

shifted south, east and west across the array using similar functions.

Functions to shift vectors also exist. The execution times for the shift

functions are given in Table 1.

Other functions are provided to transform data in matrices. The TRAN

function performs a matrix transpose, whilst REVC and REVR reverse the

column and row ordering of the matrices. There are other DAP FORTRAN

functions for logical operations, reduction operations and type conversion

functions, the timings of some of which are presented in Table 2.

Most of the standard FORTRAN functions are included in DAP FORTRAN and

extended to support data in vector and matrix mode. Timings of some of

these functions together with the CPU times for basic arithmetic operations on

the DAP are given in Table 3.

Matrices may also be treated as 'long vectors' in DAP FORTRAN, where the

vector is formed by conceptually concatenating successive columns of the

matrix. For certain applications, a long vector mapping of data onto the PE

array is advantageous. A number of functions are available in DAP FORTRAN

for long vector operations (e.g. shift functions).

2.5.7. Parallel languages

Several new languages have been designed which support process

parallelism. Two examples are ADA and OCCAM, both described in Jesshope

(1987).

ADA was designed in the mid-1970s for the U.S. Department of Defence. It

supports process parallelism but not data parallelism. Processes can be

created dynamically i.e. process control uses the fork/join concept. Processes

communicate with each other by passing parameters. This also provides a

synchronization mechanism in that if a process calls another it will wait until

the called process is ready to receive the call.

OCCAM is a lower-level language in that it has a direct correspondence

between hardware (the transputer) and code. Communication is via channels,

with input and output statements representing primitive processes i.e. a single

34

Number of places (n) 	1 2 	4 	8 	16 	32

Matrix shift 32 48 72

Vector shift 8 8 8

120 232

ffl~ :

Table 1.

DAP routing operation times in psecs for M = SHEC(M,n) and

V = SHLC(V,n). From Fishbourne (1980).

35

Operation Time (jisec)

Matrix x scalar. 120-296 (136-224)

Vector x scalar. 64 (80)

Matrix x vector (expanded by rows). 304 (328)

Summation of all elements of a matrix. 464 (488)

Summation along each row to give a column vector. 352 (368)

Expansion of a vector to a matrix by rows. 32 (32)

Reverse column ordering of matrix. 232 (232)

Transpose matrix. 216 (216)

Logical .OR. of all elements of a logical matrix. 2.25 (3.25)

Generate logical matrix with alternate S columns .TRUE. 3.8 (4.1)

Logical .OR. of two logical matrices. 2.1 (2.5)

Z=M*S

z=v*s
Z = M*MATR(V)

S=SUM(M)

V = SUMC(M)

Z = MATR(V)

Z = REVC(M)

Z = TRAN(M)

(A)

	 LS = ANY(LM)
0, 	

LM = ALTC(S)

LM = LM .OR. LM2

Table 2.

DAP times for mixed mode operations and functions. All times are in p.secs for 32-bit floating point arithmetic and logical

operations where appropriate. The times in brackets are with all the run-time checks performed. From Fishbourne (1980).

Operation I 	Matrix Mode 	Vector Mode 	Scalar Mode

Z = X + Y 152 (176) 64 (80) 24 (40)

Z = X * Y 272 (296) 64 (80) 40 (48)

Z=X/Y 376 (408) 136(146) 80(88)

z = x ** 2 152 (160) 152 (160) 96 (104)

Z=Y 16(16) 8(8) 8(8)

Z = LOG(X) 312 (328) 376 (384) 376 (384)

Z = SIN(X) 856 (872) 920 (928) 920 (928)

Z = COS(X) 848 (864) 920 (928) 912 (920)

Z=ABS(X) 24(24) 16(16) 8(8)

Z = SQRT(X) 192 (208) 272 (280) 256 (264)

Table 3.

DAP times for basic arithmetic operations and standard functions. All times

are in tsecs for 32-bit floating point numbers. The times in brackets are with

all run-time checks carried Out. Matrix mode processing uses 4096 numbers,

vector mode 64 numbers and scalar mode 1 number. From Fishboume (1980).

37

statement in OCCAM is a process. Synchronization is similar to ADA, as

communication between two processes cannot proceed until they are both

ready. Parallelism is introduced into OCCAM by the PAR statement, as

described previously. Execution proceeds after the PAR statement only when

every process within that PAR block has finished, thus providing another

method of synchronization.

OCCAM can only be used for distributed memory systems since it does not

provide for shared memory. ADA can be applied to both shared and

distributed memory systems but is more suited to the former. In ADA, there is

no language syntax available to specify which processes should be assigned

to individual processors on a distributed system, unlike OCCAM.

2.6. Parallel programming and algorithms

2.6.1. Measuring computer performance

The most frequently used measure of a computer's performance is the

peak floating point operation rate in millions of floating point operations per

second (Mflops). Such figures are misleading on any computer but especially

parallel compUters because they do not take into account; finite vector length,

memory latency, bank conflicts, multitasking overheads and so on. It is often

necessary to qualify a Mflops rate by stating what floating point operation is

being considered. For example, the rate at which floating point addition and

multiplication are performed on the DAP differs by a factor of 1.7.

To obtain a measure of the likely performance of an application on a

computer, benchmarks are often used. The kernel method of benchmarking

involves extracting the core routines, responsible for a large proportion of the

execution time, from a program and timing the execution of these routines.

This method does not provide an accurate performance figure for the

application as it is not based on a statistical collection of instructions.

However, the kernel can be altered to suit the target architecture and provides

a good indication of the likely performance.

There are several well known kernel benchmarks. The UNPACK benchmark

(Dongarra, 1985) is based on the Basic Linear Algebra Subprograms (BLAS) and

solves a dense system of linear equations. The benchmark is therefore

38

application specific. The more general Livermore Loops benchmark (Feo, 1988)

represents the type of computational kernels typically found in large scale

scientific computing. The kernels range from operations such as the

calculation of an inner product and matrix multiplication, to searching and

storing algorithms typical of Monte Carlo methods. The kernels are all

extracts from production programs run at the Lawrence Livermore national

laboratory and there are 24 loops in all. The loops contain code fragments

that range from sequential to completely vectorizable and are also suited to

parallel processing.

Hackney and Jesshope (1981) introduce two parameters, n, and re,, which

are used to characterize the performance of a computer, serial or parallel.

These parameters are related to the time taken for an arithmetic operation, 4

on a vector of length n, by the equation,

t = (n + n) / r 	 (2.6.1)
2

The r, parameter is the maximum or asymptotic performance of the computer

i.e. the maximum rate of computation in units of equivalent scalar operations

performed per second, for a vector of infinite length. This gives an indication

of the performance for long vectors and is a characteristic of the computer

technology used. It is also a function of the type of operation under

consideration. For pipelined computers it varies with dyadic, triadic,

register-to-register and memory-to-memory operations. For a DAP it varies

with addition or multiplication operations, floating point and integer arithmetic

and the precision used.

The n parameter is known as the half-performance length as it is the

vector length, n, required to achieve half the maximum performance. This

parameter is a measure of the amount of parallelism in the computer

architecture. It varies from 0 for a serial computer, to infinity for an infinite

array of processors. For a pipelined machine, this parameter is proportional to

the vector start up time and is typically of the order.of 100. For an array

processor, such as the DAP, Hackney and Jesshope (1981) consider two cases.

If the vector length is less than the number of processors, the array appears

as an infinite array and the half-performance length is infinity. The time for

the operation on the vector is just the time for one parallel operation. If n is

more than the number of processors, N, the half-performance length is given

39

by N12.' Like the parameter r, n j also depends on the precise operation

being considered.

The half-performance length is used by Hockney and Jesshope (1981) as a

measure of the relative performance of different algorithms on the same

computer. The ratio 'V = ni/n represents how parallel the computer appears

to the algorithm. For example, if v is zero or small a sequential algorithm is

appropriate, whereas if v is large a highly parallel algorithm is appropriate.

For the DAP, the half-performance length, serves to emphasize the highly

parallel nature of the architecture. The use of ni and r therefore merely state

the obvious, that execution time depends on the number of parallel operations.

This method of algorithm performance analysis therefore has little use for

processor array applications.

The parameter si was introduced by Hockney and Snelling (1984) in order

to assess the synchronization overheaG in MIMD computers. If t is the time

for a piece of work between synchronization points, the timing equation

analogous to Eq.(2.6.1) is,

t - (s + si) / r0, 	
(2.6.2)

where s is the total number of floating point operations during this piece of

work. The parameter Sj, expresses the overhead in terms of how many

floating point operations could have been performed in the time taken for

synchronization. When s is equal to si, half the time is spent on useful

arithmetic, the other on synchronization. This parameter therefore indicates

whether the work under consideration is of sufficient duration for efficient

multiprocessing. Hockney (1988) measured this parameter for a CRAY X-MP/2

(2 processors) and obtained a value in the range 2000-6000fIoP , depending

on the synchronization method used. For the DAP, s is zero.

Benchmarkiflg can omit some important issues, such as the I/O

requirements of the program or whether bottlenecks occur with the full

program. The full program may not fit entirely in memory so the effect of

disks and so on is unaccounted for. However, benchmarks are useful because

of their simplicity. They are economical to test on several architectures and

serve to indicate which computers should be investigated further in a

procurement process. Meteorological benchmarks are discussed in chapter 8.

40

2.6.2. SIMD programming

In this and the following section, some of the issues in programming

parallel computers are discussed. This section is concerned with SIMD

computers, more specifically processor arrays, which present different issues

to MIMD computers.

2.62.1. Data mapping

The SIMO processor array computer is often considered a specialized

machine whereas the pipelined MIMD computer is thought of as a general

purpose computer (Suarez, 1988). The reason for this is that the application

must contain arrays with at least as many elements as the number of

processors. However, this level of parallelism is generally easy to achieve

with atmospheric models and MIMD progra;1miflg is more complex, as will be

seen in the next section.

The most important issue in programming SIMO processor arrays is the

mapping of data i.e. the placement of array elements to processors. This is

because it not only affects the efficiency of the program, since as many

processors as possible should be kept doing useful work, but also because it

affects the parallel algorithms used. On a processor array, there is a much

stronger relationship between the storage mapping and the algorithm than in

pipelined or sequential machines.

The need to exploit all the processors constrains the problem size, for

efficiency reasons. For example, grids in meteorological models should ideally

be multiples of the array size. Also, meteorologists find it useful to vary the

resolution of models in order to test their behaviour. This would require good

support from the software environment on the computer.

Mapping data arrays larger than the DAP can be done in two ways. The

first is to divide the domain into sections or 'sheets', where each sheet is the

same size as the DAP array as shown in Fig. 2. The sheets are then stored

successively in the PE memory. This arrangement has a disadvantage, in that

the boundary processors in each sheet have to be treated separately if they

require access to the data in neighbouring gridpoints in another sheet. The

other method is to assign neighbouring gridpointS to each processor. This is

known as a 'crinkled' mapping and illustrated in Fig. 3. In this mapping, each

41

DAP

Figure 2. Sheet mapping of arrays onto the DAP.

DAP

\ 	\ \ \

\ 	\ \ \

\ 	\

\ \ \ 	\

\ \ \ 	\

\ \ 	\

Figure 3. Crinkled mapping of arrays onto the DAP.

42

PE can access data from neighbouring points either in its own memory or that

of a neighbour from processors nearby. The routing required for this

approach is less than for sheet mapping and additional boundary calculations

do not arise. The mapping of irregularly shaped grids to the DAP depends on

the precise problem and cannot be discussed generally. Some examples of

mappings of nonrectangular arrays in finite difference and spectral models are

given in chapters 4 and 5 respectively.

2.6.2.2. Data routing

The routing or movement of data between PEs during a program can be

regarded as an overhead to the parallel approach. The size of this overhead

depends on the amount of routing required and the ratio of the cost of routing

to that of the arithmetic. On the DAP, routing a matrix by one PE costs about

a tenth of a 32-bit floating point operation. Other transformations, such as a

matrix transpose, are more expensive. The routing overhead therefore also

depends on the type of routing. The relatively low cost of routing on the DAP

generally leads to acceptable routing overheads. However, for block point or

integer arithmetic, the relative cost of routing increases and may become

significant (Hockney and Jesshope, 1981).

2.6.2.3. Performance

To indicate the performance of parallel computers, a speedup ratio is often

used. This is the ratio of the time on a single processor of a computer to that

on all the processors. For processor arrays, speedup ratios are somewhat

meaningless, since they cannot be sensibly used in SISD mode, unlike MIMD

machines. A more meaningful performance measure is the average number of

processors kept busy during the program. To define this efficiency, E, the

total time of a program, T, is divided into time slices, t, where the number of

processors doing useful work in each time slice stays constant at mp. The

efficiency can then be defined as,

E
=

(t/fl(m/n) 	 (2.6.3)

where n, is the number of processors actually used at the 	stage and P is

the total number of time slices.

43

Consider a simple example where each gridpoint takes a time t to

compute where,

ti = 'MAX if i< rN
	

(2.6.4)

;=JtMAX if i>rN

where N is the number of gridpoints so that a fraction, r, of the gridpoints

take - the maximum time, tM, to be computed. The time, T1 ,

for a serial version is then the sum of the times for the individual points,

= tMAxNI 1+ r(1 - 1) 1 	 (2.6.5)

The time, Ts, for the SIMD implementation is tM/u if the number of processors

is also N The efficiency for the SIMD case applied to this example, using

Eq.(2.6.3), is calculated with p = 2, n = Nfor p = 1 and 2, as,

E = I + (1-j)r 	 (2.6.6)

The performance of an application on a SIMD computer is degraded by

operations which do not involve all the available processors, as expressed by

Eq.(2.6.6). The suitability of an application to a processor array architecture

therefore depends on the fraction of the total work that uses all the available

processors. One example is the conditional operations found in convective

parametrizations; processors only do useful work if the air at that gridpoint is

saturated.

In Eq.(2.6.6), f represents the fraction of the total time spent executing fully

parallel operations and r represents the fraction of the array actually doing

useful work during the remaining time. By plotting curves for constant values

of E against f and r, as shown in Fig. 4, it is possible to gauge the effect of

operations with idle processors.

Fig. 4 shows that as f tends to unity, when most of the time is spent using

all processors, there is a negligible effect of r on the overall efficiency of the

program. Even with half the time spent using half the number of processors,

the overall efficiency, E, is still 75%.

The degradation in SIMO efficiency arising from the convective

44

0.2 	0.4 	0.6 	0.8 	1.0
Fraction oP array used (r)

- 0.6

0
L
0

0.4
E

0.2

1.0

0.8

95

Figure 4. Variation of overall efficiency, E, of a program with a fraction, f, of the work

fully parallel and a fraction, r, of the processors doing useful work for the

remaining time of the program.

45

parametrizatiOflS can be estimated by suitable choices for I and r. Reddaway et

al. (1976) used the values f = 0.75 and r = 0.15 for their study of the estimated

DAP performance for the Meteorological Office's forecast model. The

conditional operations are very inefficient but because they only make up a

small part of the total number of operations, the overall efficiency, from

Eq.(2.6.6), is still acceptable at 79%. The degradation of performance for

models containing conditional operations, involving only a part of the PE array,

does not appear to make them unsuitable for implementation on SIMD

computers, as might at first be anticipated.

2.6.3. MIMD programming

2.6.3.1. Amdahl's law

Now suppose the above example is implemented on a MIMD computer with

p processors. Assuming p < N each processor is assigned several gridpoints.

The ideal case is when each processor takes a time T1 /p. However, since

portions of work are only available as combinations of the individual

components ftMJ(and in general it will not be possible to find a

combination that gives each processor work of a duration T1 1p. Instead the

work is shared between processors such that each one computes for a time

duration of (T1 -cz)/p, where ci is chosen so that this work is a combination of

the basic portions of work available and is constant for each processor.

However, one processor must also compute the remaining gridpoints, the time

for which is given by ci. The time for the MIMD implementation, TM, the

maximum processing time of any processor, is therefore given by,

TM = [(T1 - ci) /] + a 	 (2.6.7)

If the speedup ratio for the MIMD implementation, SM, is defined as the ratio

of the time for the uniprocessOr, serial version to that of the MIMD version,

using Eq.(2.6.5) gives,

SM = p / (1 - B + Bp)
	

(2.6.8)

where the expression a = $ T1 has been substituted and the parameter B

represents the fraction of the serial time that is computed sequentially in the

MIMD implementation. Eq.(2.6.8) is known as Amdahl's law (Amdahl, 1967) and

is represented in Fig. 5 for several values of p. The curves show that

46

a-
U)

a
3

-D
a)
a)

(n

HU

Mus

0.20.2

0.2 	0.4 	0.6 	0.8 	1.0
Fnoc ion sequent al

P=2

P =32

P =4

Figure 5. Amdahl's law for several values of p, the number of processors. Speedup
is shown as the fraction of the number of processors.

47

significant speedups are not possible unless significant portions of the

program can be multiprocessed. This effect becomes more noticeable with an

increasing number of processors. Another feature is that, for a fixed

percentage of sequential time, the speedup does not increase as fast as the

number of processors. As p approaches infinity, so the speedup SM in

Eq.(2.6.8) converges to 8. For a large number of processors, the execution

(wall-clock) time becomes dominated by the sequential part of the program.

However, considering the example of the previous section, when p = N,

processing can proceed in the SIMD mode where the speedup behaves as in

Fig. 4 and the effect of processing that takes place on just some of the

processors, is less marked than for the MIMO case. This would suggest

massive parallelism is the best approach for these kind of problems, rather

than a computer with a few processors.

2.6.3.2. Granularity and overheads

On a MIMD computer, the grain of an algorithm is the time taken to

execute a segment of work between two synchronization points. Granularity is

sometimes also measured in terms of floating point operations. The

granularity of an algorithm can determine the best architecture or the best

multiprocessing method to use (e.g. CRAY macrotasking or microtasking), as

the cost of overheads will limit the smallest grain size that can be profitably

exploited. The sj. parameter, described previously, limits the grain size in

terms of the overhead from synchronization.

Overheads also arise from the finite time for communication between

processors. This is often the main overhead for distributed memory,

multiprocessor systems especially when communication cannot be overlapped

with computation.

Memory bandwidth and memory latency also contribute to overheads, not

just in multiprocessing. The memory bandwidth of a machine can lead to bank

conflicts if the processors require more memory references than the memory

banks can service. Memory latency is the time taken for memory access. As

computer systems are built with larger memories, the latency can become

significant. This is especially true of --ystems where processors are connected

to memory via a network of some kind. On vector machines, latency is not

48

important so long as it is small compared to the length of the vector registers

(Hsiung, 1988).

The effects of overheads on the speedup of an application on a parallel

computer can be modelled in a similar way to Amdahl's law and a similar

curve results. For a given overhead, it is possible to determine the potential

speedup for a particular grain size (Larson, 1988).

On a SIMD machine, synchronization and process control overheads do not

occur. Furthermore, on the DAP, bank conflicts cannot occur and memory

latency is negligible.

2.6.3.3. Scheduling

Two commonly used techniques for scheduling work on MIMD computers

are static and dynamic scheduling. Perhaps the most commonly used

approach is static scheduling, where work is assigned to a processor before

runtime. This can be used when the work in a loop is to be multiprocessed

and the CPU time is approximately the same for each loop iteration. A subset

of the iterations is assigned explicitly to each process. This simple method

has the advantage that the work schedule is under the control of the

programmer.

However, if the time duration of each iteration of the loop varies, it is

possible for the processor workload to be uneven leading to a loss of

performance through Amdahl's law. In these circumstances a dynamic or self

scheduling approach is best. This technique maintains a list or a counter to

indicate the loop iterations to be done. Each process accesses and updates

the list to get its next piece of work. Those processes that have iterations of

a short time duration access the list more often to get more work, so that

some processes may process more iterations than others. Whilst this method

is more flexible and achieves a better overall performance with iterations

assigned to processors at runtime, it has several disadvantages. If the time

duration of an iteration is data dependent, the work schedule for processes is

indeterminate and may result in indeterminate or irreproducible results. Also

the work schedule is no longer controlled by the programmer and more

complex control logic is required. An example of dynamic scheduling applied

to a spectral meteorological model is presented in chapter 8.

49

The dynamic scheduling technique also incurs an overhead from having to

protect the list or counter whilst being updated. This is a critical region as

only one process must be allowed access to the list at any one time. If the

average granularity of the iterations is large compared to this overhead, the

iterations may be allocated one at a time. If the average is small compared to

the time for the overhead, the iterations should be allocated in blocks.

2.63.4. MIMD bugs

Programming MIMD computers is undoubtedly more complex and requires

more development time than for SIMD computers. Furthermore, entirely new

types of bugs can arise which do not occur in programming SIMD or SISD

computers. Snelling (1988c) and Snelling and Hoffmann (1988) have divided

these new problems into five classes. These are the stampede effect,

bystander effect, deadlock effect, irreproducibilitv effect and the Heisenberg

effect.

The stampede effect occurs when a process, for whatever reason,

encounters an error. The other processes continue to execute for a time and

'stampede' over the evidence, leaving little or no information for debugging.

This effect cannot occur on distributed memory computers.

The bystander effect (bystanders are assumed innocent) occurs when one

process corrupts another's data. Although the failed process is the obvious

place to start debugging, the problem is actually with another process. This

type of error can occur in a distributed memory system although it is less

likely than in a shared memory system.

Deadlock is perhaps the simplest problem in multiprocessing. It occurs

when all processes are awaiting input from another process. Therefore, all the

processes have stopped at or near the code that caused the problem, making

the problem easy to identify.

The irreproducibility effect is a result of the nondetermiflistic nature of

parallel processing. For example, a program may begin to fail because of a

change in the timing of processes relative to one other, perhaps because a

critical region of code has not been identified. The problem may be especially

hard to track down if the program does not always fail. Another example is

when a global quantity is accumulated from contributions from processes.

The value of this quantity can be different on different runs if the processes

add their contributions in a different order, because of the finite precision of

numbers on a computer. Whilst these differences are small, typically the same

magnitude as those arising from using a different compiler, they make the

testing of new code virtually impossible.

Lastly, the Heisenberg effect occurs when debugging is in progress.

Additional diagnostic code is often used to help in finding bugs. However, it

can happen that when this extra code is used it perturbs the execution

environment (i.e. alters the timing of processes relative to each other) such

that the problem never occurs or manifests itself in a completely different

form.

The occurrence of these effects or the degree to which they occur

depends on the architecture of the computer and the multiprocessing

environment. This is discussed further in Snelling and Hoffmann (1988).

2.6.4. Some algorithms for the DAP

In this section, some parallel algorithms for the DAP are presented. These

algorithms are used in the following chapters. Hockney and Jesshope (1981)

describe some additional parallel algorithms for the DAP.

2.6.4.1. Cascade-sum

An important example of the tree-height reduction technique is the

cascade-sum algorithm for the evaluation of,

S
=

Zj 	 (2.6.9)

In a serial approach this would require N-i additions. However, by evaluating,

some of these in parallel, the sum can be performed in 1092N stages, as

illustrated in Fig. 6. On the DAP, this would be done by first assigning all N

elements to processors. The first stage would involve shifting the data -by one

PE and adding it to unshifted data to form the sum of adjacent pairs. The next

stage uses a shift of two PEs. In general, at the
jth stage a shift of 21 PEs is

required (Hockney and Jesshope, 1981).

Figure 6. Parallel evaluation of the sum of 8 numbers.

52

However, it is possible to exploit additional parallelism at the bit level on

computers with 1-bit processors such as the DAP. For example, if N

processors are available, only half are actually used at the first stage. It is

therefore possible to share the addition operations between pairs of

processors; one calculating the least significant part, the other the most

significant part. The addition would then take half the time. Similarly, at the

next stage, the additions can be shared between 4 processors and so on. This

technique, combined with block point arithmetic, is used in the DAP FORTRAN

intrinsic function SUM which returns the scalar sum of a matrix or vector

(Flanders et a!, 1977). To evaluate the sum of a matrix requires the equivalent

of three matrix additions, illustrating the flexibility of the bit serial processors.

2.6.4.2. Fast Fourier Transform

The Fast Fourier Transform (FFT) is a well known algorithm and its

implementation on the DAP has already been described by Jesshope (1980)

and Hockney and Jesshope (1981) among others. A brief description of the

DAP algorithm is given here as FFTs are used in global gridpoint models (for

filtering) and spectral models.

A complex Fourier transform on N points is written as,

N-i

z(k) = 	x(j)w 	 (2.6.10)

j=O

where k = 0,1 N-1 and

2 WN - eiTi/N

It is assumed that N=2M i.e. a radix-2 transform. The FFT algorithm is

derived by writing z(j) as two sequences,

x0 (j) = z(2j), 	j=0,...(N/2)-1

z1 (j) = z(2j+1),

which, when substituted into Eq.(2.6.10), give the recurrence relations,

53

z(k) = z(k) + wz 1 (k)
	

(2.6.11)

z(N+k) = zD (k) - wz 1 (k)

where k = 0 N-l. Thus, the original transform has been reduced to the

calculation of two transforms over half the original length. This process is

repeated M times until N 1-point transforms have to be calculated and the

transform of a point is the point itself. The FFT algorithm consists therefore

Of $092N recurrence relations of the form Eq.(2.6.11). The flowchart in Fig. 7

illustrates the algorithm by showing the movement of data and the multipliers,

that are applied at each stage.

If this procedure is applied to the DAP, Fig. 7 also illustrates the routing

requirements of the algorithm. In long vector mode, the DAP could be used to

calculate a 4096 point transform. In matrix mode, 64 FFTs of 64 points each

could be calculated. Although there are a significant number of routing

operations required by the algorithm, because arithmetic is relatively slow, the

routing only accounts for 10-20% of the overall cost (Flanders et al. 1977).

Hockney and Jesshope (1981) describe the DAP algorithm in more detail.

Essentially, at each stage a complex multiplication and addition are required

which have a parallelism of N, so that the available parallelism is constant

throughout the procedure. The number of operations required is O(Nlo92N).

The data are transformed into bit reversed order i.e. the 4th point (0100) is

transformed to the 2nd point (0010), as shown in Fig. 7. Depending upon the

application, this may need to be ordered correctly by further routing (Flanders,

1982), or additional temporary storage and routing during the transform can be

used to leave the data in normal order.

2.6.4.3. Tridiagonal systems

Tridiagonal systems are an important class of linear algebraic equations

and occur frequently in meteorological modelling. However, solution

techniques based on Gaussian elimination are unsuitable for a processor array

as they are sequential algorithms. Instead parallel versions of the cyclic

reduction and Jacobi algorithms are preferred.

The implementation of the parallel cyclic reduction algorithm on the DAP is

described by Whiteway (1979). Consider 3 consecutive equations of a

54

0 0 	 w 0
W

_________ 	 a.- . Z0
•Ir• xO . 	'I- . 	 •

W 0
	

W 4
__/\/ _______ 	 0'- i•

4 	 2
1\\ / / / ____ w

r• 	Z 2 x •

	

2\y\/ W 	 W

6//\
V z6.

\ \ \A1 4 	 1 2
W

Z 1

///\w\ x •

	

5
 0 	/ 0 	 .

0
 z

6 	 3

V. 	 _

W
_________ 	 r • Z 3

/4 	 76>< 7

7 /
 z 7

Figure 7. flowchart illustrating the 4 stages for a FF1' algorithm on 8 points.
The mu1tip1iers,W applied at each stage are also shown.

55

tridiagonal matrix equation of length N, AX =

a1-1-2 + -1 + 	 = y1_1

ai + X + CZ11 	
= yi

a141 z + x141 + c.1 +2 	=

The term 	can be eliminated from (b) by subtracting a1 times (a).

Similarly, c,x 41 can be eliminated from (b) by subtracting c times (c). Doing

this and dividing by the main diagonal gives,

+ zi + c1X2 = yi (1)

so that the off-diagonals are now twice the distance from the main diagonal.

Repeating the process gives the general equation at step j as,

alx_k + 2 + CJXI+k
= y) 	 (2.6.12)

where k = 2. As soon as i-k or i-k are outside the range 1 to N, the term can

be considered zero. After 1092N steps, all such terms are eliminated and only

the main diagonal remains. On the DAP, the algorithm can be applied to all Zi

in parallel. Planar boundary conditions are used so that terms shifted in

outside the range 1 to N are zero. As for tl' 3 FFT, the DAP may be used to

solve a system with N = 4096 or 64 systems each of length 64. Whilst this

direct method always completes in 1092N steps, it is sometimes possible to

halt the procedure without loss of accuracy if the matrix is sufficiently

diagonally dominant (Hockney and Jesshope, 1981). This is because the

diagonal dominance increases at each successive stage. If at any stage in the

reduction, the inverse of the diagonal dominance exceeds the arithmetic

precision, the procedure can be stopped.

However, this method is not fully efficient on the DAP, because as the

algorithm proceeds fewer PEs are performing useful work. At the last stage

the off-diagonals are only half their original length. An alternative solution

procedure is the iterative Jacobi method (Golub and Van Loan, 1983). For this

method, the tridiagonal matrix, A is split into strictly lower and upper

triangular matrices, L and jj respectively. The Jacobi iteration step is then.

56

(k +1) = 	- 	+ 	
(2.6.13)

It is possible to show that this iteration converges only if the tridiagonal

matrix, A, is diagonally dominant (Bowgen, 1981a). The application of

Eq.(2.6.13) to the DAP is straightforward and can be done efficiently.

The convergence rate of the Jacobi method depends on the diagonal

dominance of the system. Since the cyclic reduction algorithm increases the

diagonal dominance, Bowgen (1981a) developed a hybrid algorithm which uses

one pass of this method to improve the convergence rate of the Jacobi

scheme. This adds an overhead due to the more expensive step of the cyclic

reduction algorithm and because routing in the Jacobi iteration has to increase

as the diagonals are further apart. The optimum number of passes of the

cyclic reduction algorithm depends on the initial diagonal dominance of the

equations.

The cyclic reduction algorithm and the hybrid Jacobi solver (with one pass

of the cyclic reduction algorithm) are used in subroutines in the DAP FORTRAN

subroutine library (supplied originally by Queen Mary College and now by AMT)

for the solution of tridiagonal equations. Several versions are available,

including the solution of 64 systems of length 64 each.

2.6.5. Notation

With data arrays mapped into parallel data objects in DAP FORTRAN, it is

useful to have a notation to express the way in which the data are mapped. A

simple notation used by the author is of the form,

	

(1, j, k) 	{ 1, m, n) 	 (2.6.14)

where L m and n can all be functions of i, j and k This mapping expression is

interpreted to mean the value at the coordinate (tj,A) is stored at the PE in the

th row, MIh column and the nth matrix, assuming that the data are stored as a

matrix array.

DAP FORTRAN routing functions can therefore be presented in terms of

their translation on the mapping expression Eq.(2.6.14). For example, the ThAN,

REVC and REVR functions perform the following translations,

57

TRAN{z,j}(j,i)

REvC{ i, j } = { i, 65-j } 	 (2.6.15)

REVR{ i, j) = { 654, j }

The shift functions have analogous expressions.

This notation was found to be useful, not only in representing the way data

was stored on the DAP, but also in determining the routing between two

mappings. It is similar to the low-level, bit oriented notation developed by

Flanders (1982) for expressing data mappings and determining routing

operations in the DAP assembly language. APAL.

58

CHAPTER 3

METEOROLOGICAL MODELLING TECHNIQUES

3.1. Introduction

Before discussing the implementation of meteorological models on parallel

computers, particularly the ICL DAP, it is necessary to have an understanding

of the techniques that are used to solve the governing equations. In this

chapter, the methods used to approximate temporal and spatial terms are

reviewed.

Time differencing methods are reviewed first. The finite difference method

is then reviewed to illustrate the potential areas of difficulty in implementing a

model on a parallel computer and also to enable a complete understanding of

the contents of chapter 4. Then, the spectral and finite element methods of

the Galerkin approach are reviewed, as they are used in the models developed

and described in this thesis.

3.2. Time differencing -

Many methods of integrating the time dependent equations that occur in

meteorology have been proposed. These methods have been reviewed by

Haltiner and Williams (1980) and Mesinger and Arakawa (1976) and are

summarized below. The choice of time scheme is not influenced by the

computer architecture in use, since the parallelism is associated with the

spatial dimensions. However, storage requirements may be a consideration.

3.2.1. Explicit schemes

The most commonly used explicit scheme is the leapfrog scheme defined

by,

dF/dt = (F(t+At) - F(t-At)) / 2tt
	

(3.2.1)

It is a neutral scheme and simple to use. However, it has several

disadvantages, in common with all other three time level schemes. First, a

computational mode is present in the solution, which tends to amplify for

nonlinear problems resulting in a separation of the solution on odd and even

time levels. A time filter or the occasional use of a scheme with good

59

damping properties, such as the Euler-backward or Matsuno scheme (Matsuno,

1966), can be used to control this mode. Second, two initial fields are

required to start the integration. Last, it is generally true that models using

three time levels require more memory or I/O than those requiring two. Also,

the leapfrog scheme is unstable when applied to friction terms. Another

method, usually the forward scheme in gridpoint models or an implicit method

in spectral models, has to be used.

Another explicit scheme that has received much attention is the

Lax-WendrOff scheme (Haltiner and Williams, 1980). This is a two-step

scheme that has good selective damping properties. It uses two time levels,

avoiding the disadvantages of the leapfrog scheme. Gadd (1978a, 1980) added

a simple modification to significantly reduce the phase speed errors. The

resulting scheme has fourth order accurate phase speeds but a second order

accurate truncation error. Carpenter (1981) and Collins (1983) developed

variants of the scheme with third and fourth order accurate truncation error,

respectively.

It is well known that the maximum allowable timestep for an explicit time

scheme is restricted by the Courant-FriedrichsLeWY (CFL) condition. In

primitive equation models, the timestep is restricted by the speed of the

gravity wave modes. Several techniques have been used to overcome this

restriction so that the timestep is limited only by the more significant but

slower moving meteorological waves. One method involves treating those

terms responsible for the generation of gravity waves implicitly, the so called

semi-implicit method discussed in the next section. Another efficient method

is known as the splitting technique, pioneered by Marchuk (1974). In this

approach the horizontal advection terms are integrated separately from the

gravity wave terms, using a timestep limited only by the windspeed. The

gravity wave terms are integrated using a smaller timestep. Different time

integration schemes can be used for these advective and adjustment stages.

This split explicit scheme is used operationally by the U.K. Meteorological

Office (Gadd, 1978b, 1980). A forward-backward scheme (Mesinger and

Arakawa, 1976) is used for the adjustment stage whilst the modified

Lax-WendrOff scheme of Gadd (1978a) is used for the advective terms. One

advantage of the scheme is that the memory requirements of the model are

reduced, as only one time level of data needs to be stored (Cullen, 1983).

60

3.2.2. Implicit schemes

Implicit time integration methods, such as the trapezoidal (or

Crank-Nicolson) scheme, are usually unconditionally stable and the timestep is

chosen on the basis of accuracy requirements. The principal difficulty is that

the solution of a large system of simultaneous equations is required at each

step. In general, nonlinear equations lead to complicated systems that can

only be solved by iterative methods. Efficient techniques have been developed

to solve these systems. The splitting method of Marchuk (1974) or the

alternating-direction-implicit method (ADI) (Gustafsson, 1971) have been

successfully used by reducing the dimensionality of the problem and solving

sets of equations in only one spatial dimension.

3.22.1. Semi-implicit scheme

Perhaps the most commonly used method for extendin: the CFL limit is

the semi-implicit scheme, first used by Robert (1969) in a spectral model. In

this method, only linear terms generating gravity waves are treated implicitly.

A Helmholtz or Poisson equation has to be solved each timestep, but this

added computational cost is offset by a timestep up to six times greater than

that for a fully explicit scheme.

In spectral models on a sphere, the semi-implicit scheme is particularly

efficient since, as shown later, the basis functions are eigenfunctionS of the

Poisson operator. Daley (1980) estimated the additional overhead for a

spectral model using a semi-implicit scheme to be 3%. For a gridpoint model

this figure might be as large as 50% (Robert et al, 1972). The semi-implicit

scheme has also been successfully implemented in a finite element model by

Staniforth and Mitchell (1977), although a Helmholtz equation still has to be

solved.

Despite its obvious advantages, the semi-implicit method has several

drawbacks. First, the formulation of the scheme in baroclinic models is not

entirely straightforward. Second, Simmons et al. (1978) have shown that

under certain conditions, the scheme is unstable whatever the choice of

timestep. Last, the scheme achieves its stability by slowing down the fastest

gravity wave modes, resulting in a poorer representation of the geostrophic

adjustment process. This also allows the possibility of interactions with the

Rossby waves although there is no documented evidence of this so far.

61

3.2.3. Semi-Lagrangian scheme

A method that has recently been the subject of much research is the

semi-Lagrangian scheme. It was first used by Sawyer (1963) based on a

trajectory method proposed by Wiin-Nielson (1959). The scheme achieves

long timesteps by treating the advective terms in a Lagrangian sense. That is,

at each time level, the properties of each gridpoint are determined by

calculating a back trajectory of the fluid parcel at that point over the last time

interval.

Robert (1981, 1982) combined a semi-Lagrangian treatment of advection

with the semi-implicit scheme in a finite difference shallow-water model.

Robert et at (1985) extended the approach to a multi-level model. They found

that the timestep could be further increased by a factor of six over that for a

semi-implicit scheme alone. Bates and McDonald (1982) and Bates (1984)

combined the scheme with the split explicit and AOl integration techniques.

Staniforth and Temperton (1986) applied the semi-Lagrangian semi-implicit

approach to the variable resolution finite element model of Staniforth and

Mitchell (1978). They found that the combined scheme could again be used

successfully with timesteps greater by a factor of six.

Although the semi-Lagrangian semi-implicit scheme has been implemented

successfully in baroclinic finite difference and barotropic finite element models,

only recently has the method been implemented in a spectral model. Ritchie

(1987) made a preliminary study of advection on a Gaussian grid using a

semi-Lagrangian scheme before applying the method to a spectral

shallow-water model on the sphere (Ritchie, 1988). It was found necessary to

reformulate the spectral model to use wind components as the prognostic

variables, rather than the more usual vorticity and divergence formulation, to

be consistent with the semi-Lagrangian approach. Ritchie (1988) found that,

like finite difference and finite element implementations, the semi-Lagrangian

semi-implicit scheme gave acceptable results using a timestep greater by a

factor of six than that for an Eulerian semi-implicit version.

Another advantage of the semi-Lagrangian approach is that the scale

dependent phase speed errors are less than in an Eulerian approach. This led

Ritchie (1985) to use the method just for the moisture equation in the

baroclinic model of Staniforth and Daley (1979). One technical difficulty with

62

the scheme however, is that field values on neighbouring latitudes must be

available. Spectral models are usually designed to process one latitude at a

time to reduce core storage (Baede et al. 1979).

3.2.4. lime filtering

The computational mode associated with three level time integration

schemes is undesirable. Although frequent use of another scheme with

selective damping properties is one way of reducing the effect of this mode,

the preferred and more flexible approach is to use a time filter. The Asselin

(1972) filter, originally developed by Robert (1966), is generally used and takes

the form,

F(t) = F(t) + u[F(t-At) - 2F(t) + F(t+At) 1 	 (3.2.2)

The filter parameter, v, must be less than 0.5 and an overbar represents a

filtered value. Asselin (1972) found that the filter is a strong damper of the

computational mode and of two grid length noise in explicit, semi-implicit and

implicit time schemes. Since the filter is linear, it can be applied in spectral,

Fourier and gridpoint space.

Schlesinger at al. (1983), Sakellarides (1984) and Deque and Cariolle (1986)

have made more detailed studies of the effects of the Asselin filter. In

particular the last two references show the filter can destabilize a numerical

solution when damping terms are present in the equations and a timestep

close to the CFL limit is selected.

3.3. Finite difference methods

3.3.1. Choice of grid for modelling on the sphere

A major aspect in the design of a model to forecast for all or part of the

globe is the choice of grid. There has been much literature in Vie past on this

subject and the main approaches are reviewed here. A good review is given

by Williamson (1979).

63

3.3.1.1. Map projections

Map projections represent the surface of the sphere on a plane in some

way. However, such projections cannot retain all the properties of the sphere.

A conformal projection preserves the angle between intersecting lines of

latitude and longitude. Commonly used conformal mappings are the polar

stereographic and Mercator projections. It is not possible to define a

conformal mapping that represents the entire globe on a finite plane and so

conformal mappings are often used for limited area modelling (e.g. Staniforth

and Mitchell, 1977). However, by overlapping projections it is possible to

cover the entire globe (e.g. Phillips, 1959; Stoker and Isaacson, 1975).

One type of nonconformal projection is the equal area grid, where the area

in each grid square is approximately constant. Kurihara (1965) developed an

equal area grid in which the number of gridpoints decreased as the poles were

approached and the latitudes were at equally spaced intervals. However, the

gridpoints no longer lined up in the north-south direction and the finite

difference schemes were derived by considering fluxes across grid boxes

(Bryan, 1966). Holloway and Manabe (1971), Dey (1969), Sankar-Rao and

Umscheid (1969) and Grimmer and Shaw (1967) have all tested the Kurihara

grid and found there is insufficient resolution in polar regions, resulting in

serious errors.

Sadourney (1975a) used a cylindrical equal area grid where every latitude

has the same number of points. The latitudinal spacing was varied to achieve

the equal area. He tested the grid using Rossby-Haurwitz waves as used by

Phillips (1959) and achieved reasonably accurate results. However, the

poleward increase in spacing between latitudes allows the possibility of the

refraction of poleward propagating waves.

3.3.1.2. Spherical geodesic grids

The spherical geodesic grid was developed (Williamson, 1968; Sadourney et

al., 1968) to provide a homogeneous spherical grid, where not only are the

grid areas equal but they are also of the same shape. The finest resolution

grid with these properties is an icosahedron constructed within a sphere,

consisting of 20 equilateral triangular faces with 12 vertices connected by

great circles. Each vertex therefore has 5 nearest neighbours. This grid,

64

however, does not provide sufficient resolution and so the two conditions

above must be relaxed slightly. Each of the major triangles is subdivided into

smaller triangles. Each vertex of these smaller triangles has 6 nearest

neighbours.

Williamson (1970) found that the slight irregularity of the grid gave only

first order accuracy. A 2 0 degree resolution grid was required so that

truncation errors did not dominate in divergence calculations. Williamson

(1971) developed nonconserving second order schemes to overcome this

problem. Although this type of grid has not been used much by

meteorologists, it appears to be a natural choice for a finite element model

based on triangular elements (Cullen, 1974b).

The spherical geodesic grid has several computational disadvantages. The

indexing of the gridpoints is complex and more storage space is required than

for an equivalent latitude-longitude grid. The complex indexing together with

the number of nearest neighbours being either 5 or 6 would present

difficulties in implementing this type of grid on a parallel computer based on

an array of processors connected in a regular mesh.

3.3.1.3. Latitude-longitude grids

The easiest grid to use for equations written in polar spherical coordinates

is one in which the gridpoints are at regularly spaced intervals of latitude and

longitude. A difficulty, however, is that the wind components are undefined at

the poles. Modifications to the differencing scheme are therefore necessary at

or near the poles. From a programming point of view, it is easiest not to use

pole gridpoints but to place the nearest latitude half the latitudinal spacing

from the poles. No special section of code is then needed and finite

differences can be applied by using the gridpoints opposite, across the pole.

3.3.1.4. The pole problem

If the spacing between gridpoints decreases as the poles are approached,

the CFL limit requires a small and impractical timestep for stability. This is a

problem for the latitude-longitude grid and it has been overcome in several

ways.

Grimmer and Shaw (1967) and Corby et al. (1972) allowed the timestep to

65

decrease as the poles were approached in the integration. Although the results

were satisfactory and the scheme stable, Grimmer and Shaw (1967) pointed

out that over half of the computing time was spent on integrating the

northernmost rows, about 2% of the hemisphere.

Another approach is to use a coarser grid near the pole. The Kurihara grid

is one example. Washington and Kasahara (1970) used a similar grid but with

more points around the poles than the Kurihara grid, to get better resolution in

the polar regions. A slightly different approach was adopted by Gates and

Riegel (1962) who integrated at each point on a regular latitude-longitude grid,

but as the poles were approached the longitudinal differences were taken over

larger intervals which were multiples of the basic longitudinal spacing. Their

results were not as accurate as those obtained on a Kurihara type grid.

One method of ensuring stability on a latitude-longitude grid is to apply

some form of filtering in the polar regions to remove the short wavelengths.

Umscheid and Sankar-Rao (1971) tested the smoothing algorithm used in the

Mintz-Arakawa general circulation model (Gates et a!, 1971). They found that

although it was a strong damper of short waves it also damped the longer

waves. They also tested a longitudinal Fourier filter, where the amplitudes of

the waves above a certain cutoff frequency were set to zero. This frequency

was a function of latitude and the filter was only applied to polar latitudes.

The results showed this technique could be used successfully, without loss of

accuracy in the large scale flow. Further studies by Holloway at al. (1973),

Williamson and Browning (1973) and Umscheid and Bannon (1977) confirmed

this. In the ECMWF gridpoint forecast model, Burridge and Haseler (1977)

reduced the amplitude of the short waves rather than eliminating them

entirely. Temperton (1977) showed that this reduced the effect on the

unfiltered model modes.

3.3.2. Finite difference approximations of spatial derivatives

Centred differencing is commonly used in finite difference models to

approximate spatial derivatives. For example, the approximation,

ax
	

(+ - tiil) / 2tx 	 (3.3.1)

is straightforward and second order accurate. One sided differences are

66

sometimes used and are known as upstream or downstream differences

depending on the direction of the advecting flow field (Mesinger and Arakawa,

1976). Unlike the centred scheme, they are only first order accurate and have

a wavelength dependent damping. They have occasionally been used in

meteorology since they use less gridpoints and therefore have a smaller

domain of influence (e.g. Miller and Thorpe, 1981).

33.2.1. Higher order schemes

Although computationally efficient to use, centred differences have poor

phase properties (Mesinger and Arakawa, 1976). Both the accuracy and the

phase behaviour can be improved by using more points. An explicit fourth

order difference approximation to the first derivative would be,

	

= 4(u1 ., 1 - 	-) - (u 2 - u1-2) 	 (3.3.2)

ax 	6Ax 	 12A

This scheme requires more computation and cannot be applied at the

boundaries of the solution domain. Another problem arises when Eq.(3.3.2) is

used with an implicit time differencing scheme, such that a Helmholtz type

equation has to be solved. The coefficient matrix that has to be inverted is

then pentadiagonal and therefore computationally more expensive to solve.

It is possible to derive fourth order accurate schemes without using more

points than for the second order scheme Eq.(3.3.1). The price is to make these

schemes, known as compact differencing schemes, implicit (Navon and

Riphagen, 1979; Haltiner and Williams, 1980; Chang and Shirer, 1985). The

method would approximate the first derivative by,

aw1 _ 1 + bw, + cw+1 = du11 + eu1 + ftL11 	 (3.3.3)

where,

3u 	 (3.3.4)
(-). = w.

The values of the 	coefficients in 	Eq.(3.3.3) 	are determined by requiring the

scheme to be accurate up to and including fourth order expressions for v.

The resulting scheme for this example 	is the same as the finite element

approximation with 	regular spacing. 	However, the approximations obtained

from compact differencing and finite elements are 	usually totally 	different.

67

Chang and Shirer (1985) compared finite element and compact difference

schemes for geostrophic adjustment and vorticity advection problems. They

found the finite element method to be superior for the adjustment problem.

Although compact differences gave the best results in the advection problem

they noted that the finite element results could have been improved.

3.33. Staggered grids

When solving the equations used for meteorological modelling, it is

uneconomical and unnecessary to store all the variables at every gridpoint.

Savings in storage space can be achieved if a staggered grid is used, in which

the variables are held at alternate points. Staggered schemes can also reduce

the problem of solution separation that occurs with leapfrog time differencing

on an unstaggered grid. Also, noise can be generated in the pressure field if

an unstaggered grid is used.

Arakawa and Lamb (1977) discussed five different arrangements of the

dependent variables using linearized shallow-water equations. They found that

the simulation of the geostrophic adjustment process is highly dependent on

the form of the staggering used. The best scheme has since become known

as the Arakawa 'C' grid, although the 'B' grid analysed by Arakawa and Lamb

(1977) can also exhibit similar properties. Both grids are shown in Fig. 8.

Hattiner and Williams (1980) and Mesinger and Arakawa (1976) both review the

Eliassen grid (also shown in Fig. 8) which was proposed for a baroclinic

primitive equation model. This scheme is staggered in both space and time

and has excellent geostrophic adjustment properties as the arrangement of

variables at each timestep is optimal for the principal terms.

3.4. Galerkin techniques: Spectral method

3.4.1. Introduction

The use of spectral methods in atmospheric models was first proposed by

Blinova (1942) in the USSR, who advocated using a linearized model based on

spherical harmonics for long-range forecasting. In 1954, Silberman's use of the

method was the first of several theoretical studies. The method was found to

have useful properties but was costly in storage and computation, as the

interaction coefficient method was used to compute the nonlinear terms. It

68

4, 	w u 	w
• 	S 4,

• 	S
V 	(I)

U 	 v 4, 	v
• 	S S 	S
V 	 U U

4, 	w u 	w
• 	S • 	S

4, v 	4,
Odd time steps

4, 	V

U

U W
• 	•
V 	4,
4, 	V
• 	•

U

Even time steps

4, 4, U
• • • 	•

V • S

t
C

Arakawa grids

4,

u,v .

Eliassen grids

Figure 8.

was concluded that only low-resolution spectral models were feasible.

Orszag (1970) and Eliasen at at (1970) independently developed the

transform method, for integrating the nonlinear terms, removing the storage

problem and substantially reducing the computation required. Higher

resolution models became feasible and subsequent research has been devoted

to developing multi-level spectral models, particularly for forecasting. At

current resolutions, spectral models appear to be superior to gridpoint models

for the same computing resources (Jarraud and Girard, 1983).

This section gives a general overview of the spectral method. More

detailed descriptions are given by Bourke at al. (1977), Machenhauer (1979) and

Jarraud and Simmons (1983).

3.4.2. General method

The basis of the spectral method is to expand the variables in the

equations as a series. To do this, it is convenient to regard the variables as

functions in a complex, infinitely-dimensional function space or 'Hilbert space'.

H (Courant and Hilbert, 1953). This space can be defined by a complete set of

linearly-independent basis functions defined on a fundamental domain, so that

any function in H may be expanded as a linear combination of these basis

functions (Mandl, 1957). The set of basis functions can be regarded as

forming a coordinate system spanning the Hubert space H

The equations used in numerical weather prediction can be written

generally as,

(3.4.1)

where F is a function of space and time and represents any prognostic

variable and A represents the corresponding spatial operator, generally a

combination of linear and nonlinear terms.

In expanding F, it is assumed that a suitable set of orthonormal basis

functions, , are known. For example, on a sphere, spherical harmonics form

such a set, whereas on a plane, double Fourier series would be appropriate. It

will also be assumed that the boundary conditions of the domain can be

satisfied by a proper choice of any finite dimensional set of basis functions. F

70

may therefore be written as,

F=J c4i
	 (3.4.2)

where the c, for n = 1 to , are functions of time only and the 	are

functions of space only. As the basis functions are orthonormal, the

coefficients can be determined by,

(F,) = 	
F 	dt 	for 	= Ito 	 (3.4.3)

Jr

By taking the scalar product of both sides of Eq.(3.4.1) with the basis

functions, the evolution equations for the time dependent coefficients can be

obtained by.

dc/dt = (A(F),) = JA(F) dt 	for n=1 to 	 (3.4.4)

It is computationally impossible to deal with an infinite number of basis

functions. Instead F must be approximated by a linear combination of basis

functions that span a finite dimensional subspace of H, denoted by H' So, F is

approximated by,

N

F = 	 F = F 	 (3.4.5)

n1

The best approximation to F in a least squares sense, is the projection of F

onto the finite dimensional space H' (Machenhauer, 1979). Hence d is set

equal to c for n1 to N.

Eq.(3.4.1) must now be solved using F rather than F. However, since a

truncated representation of F is used, F' will not in general satisfy Eq.(3.4.1)

e.g. if nonlinear terms are present in the operator A. A residual R which is a

function of F', can be defined by,

71

R(F) = }' - A(F) 	 (3.4.6)

To ensure that F satisfies the equation Eq.(3.4.I) as accurately as possible,

it is desirable to minimize the residual R(F) averaged over the fundamental

domain, by some criteria. The norm N(R) of the residual,

N(R) = (R(F'),R(F')) = (3F'/at - A(F'),aF'/t - A(F')) 	 (3.4.7)

can be minimized. The function obtained by. A acting on F, A(F), may be

expanded as a linear combination of the basis functions,

CO

A(F) = 	an (CJ) C
21 ... C N)'Pn 	

(3.4.8)

n1

where the coefficients a n are functions of c 1 for i = 1 to N This resulting

function can be separated into two parts,

A(F) = A, (F) + A 2 (F) 	 (3.4.9)

CO 	 N

A l = 	 A2 =
nN+1 	 n1

Substituting this into Eq.(3.4.7), expanding the product and using Eq.(3.4.5) and

Eq.(3.4.9) gives,

N

(R,R) = 	- ct fl (c l ,cZ ,...cN)1 2 + 	 (3.4.10)
dt

n1 	 nN+1

The first term of the above equation involves coefficients of the projection

of A(F) onto H', whilst the second, which may arise from nonlinear

interactions, involves the projection of A(F) onto the complement of H'. If

the second term is ignored (assuming it is small), as it would otherwise result

in a complicated system of equations, Eq.(3.4.10) is minimized if,

72

dt
= a(c1 ,c2,...cN) 	for n=1 to N 	 (3.4.11)

That is, Eq.(3.4.11) gives N first order ordinary differential equations which can

be solved for c(t), for n = 1 to N, subject to certain boundary conditions. If

the set of coefficients {c,.1} are known at a particular time, standard

differencing techniques can be used for the time derivative in Eq.(3.4.11) to

calculate the {c} at a later time.

The coefficients a n are given by,

	

= (A(F'),ip) 	for n=1 to N 	 (3.4.12)

So, Eq.(3.4.1 1) becomes,

dc/dt =f A (F') 	dt 	for n=1 to N 	 (3.4.13)

Comparison with Eq.(3.4.4) shows that Eq.(3.4.13) may be obtained by taking

the scalar product of the truncated equation with the basis functions IP,, for

n = 1 to N If the residual is expanded as a linear combination of basis

functions, from Eq.(3.4.1 1) it is easy to see that the projection of R(F) onto If

vanishes and R(F) only exists in the complement of H.

The initial conditions, F0 , will not, in general, be represented exactly using

the truncated set of basis functions and so a best fit using a minimization of

the norm IV(17'o - F) is usually made i.e.

N

F = 	co i, 	F = F0 	 (3.4.14)

n=1

where,

c° = (F04) 	for n = 1 to N 	 (3.4.15)

73

3.4.3. Some properties of the spectral method

Since interactions between the components spanning If and components

spanning the complement of If are excluded, in theory the approximate

solution F' is calculated with no aliasing errors. In practice however, in

meteorological models, the nonlinear terms in A of Eq.(3.4.1) are calculated by

transform methods using a grid with sufficient resolution to ensure alias free

calculation of the quadratic terms only (Hoskins and Simmons, 1975).

However, the aliasing caused by triple product terms is generally negligible,

although some effects can sometimes be observed (Jarraud and Simmons,

1983). The lack of aliasing errors, means that nonlinear instability, as described

by Phillips (1959), cannot occur. In addition, no phase errors will be

introduced by the linear terms of A since these are represented exactly. A

cause of computational dispersion is thereby eliminated (Machenhauer, 1979).

The neglect of interactions between members of if and members of the

complement of if is an important source of error in spectral models.

Although the projection of the residual R(F') on if vanishes (i.e. the error in

satisfying the equation is orthogonal to the basis functions that span H'),

neglect of interactions involving components outside H' causes errors in the

components of the basis functions spanning If (Haltiner and Williams, 1980).

Since R(F') is orthogonal to the basis functions that span if, it will also be

orthogonal to any function in H'. In particular,

(R,F') = $ R(F)F* dt = 0 	for n=1 to N 	 (3.4.16)

I

which is important as it expresses the conservation properties of the

technique. It can be shown (Machenhauer, 1979) that the spectral method

conserves the first and second moments of F, subject to time differencing

errors. For example, in a model with vorticity as a prognostic variable,

vorticity and squared vorticity would both be conserved. For shallow-water

and primitive equation models however, energy is not exactly conserved as it

is a triple product. However, in practice, as the nonlinear terms are calculated

accurately with the spectral method, energy is nearly conserved (Bourke, 1972).

74

3.4.4. Basis functions

The choice of basis functions depends on the geometry of the problem to

be solved. For global or hemispheric problems, spherical harmonics are the

natural choice. An important property of spherical harmonics is that they are

eigenfunctions of some of the operators that typically occur in the operator A

of Eq.(3.4.1), simplifying the equation. No pole problem occurs as the

harmonics satisfy the boundary conditions; if continuous variables are used no

discontinuities at the poles are encountered. Hence the use of vorticity and

divergence as prognostic variables.. Spherical harmonics are also useful as

they converge rapidly for sufficiently smooth functions. Therefore spectral

models need fewer degrees of freedom compared to equivalent grid point

models, to achieve comparable results.

Spherical harmonics are defined by,

Ymn(XU) = P 	iMX m, n
(3.4.17)

where X is the longitude, p is sin8 for e as latitude and the Pm, , are the

associated Legendre functions of the first kind of order m and degree n. Here,

m is the zonal wavenumber and n is known as the total wavenumber or the

two dimensional index (Jarraud and Simmons, 1983). Also, n— ImI is the number

of zeros between the poles and n—ImI+1 can be considered as a

pseudo-latitudinal wavenumber (Doron et al. 1974).

There are many definitions of the Pm,n
because of the freedom of choice

of the normalization constant. Following Jarraud and Simmons (1983), a

suitable definition is,

	

'm (i.') = [(
2n+11 1 mU 	(1p2)lmI12 ir11-II 	

2 - 1) 	 3.4.18

	

(n+ml)! 	2n ni 	n+ImI(1.L 	 ()

which gives,

=
	 (3.4.19)

The spherical harmonics are eigenfunctions of the two-dimensional

Laplacian on a sphere,

75

V2 y 	
= ..n(n + 1) y
	 (3.4.20)

m,n 	a2 	m,n

where a is the radius of the sphere. This holds only when a is a constant,

which is not generally true for meteorological models. For example, in a sigma

coordinate model a will not be constant along a coordinate surface. However,

this approximation is a good one (except possibly in mountainous regions) and

consistent with others used in the derivation of the primitive equations.

Spherical harmonics are also eigenfunctions of the zonal derivative,

= imY 	 (3.4.21) ax

Following the general method outlined in the previous section, the scalar

product on the sphere is defined by,

fi f 2TT

iifg*dXdj (f,g) = 	T I
ti_i 	o

(3.4.22)

The constant outside the integral may be chosen freely and only changes the

length or norm of the function. Eq.(3.4.22) implies that,

(i "2IT

	

1 I 	
'm,n'rn',n dXdi = 	mm'nn' 	 (3.4.23) (YmnYm•n) 	I

,_itJ a

Thus the infinite set 	 n=-G} form an orthonormal set of

complex valued basis functions defined on the sphere. Any function, F, may

therefore be expanded as,

Fmn(t)Ymn(AL) 	 . 	 (3.4.24)

m- n=-co

with the coefficients Fmn given by,

	

f 1 	21T
1 J F(X,t)Y 	dXdp 	for all m,n (3.4.25) Fmn (t) = (FYmn) = 	 ,ii

1 	0

76

The property Eq.(3.4.19) implies that,

Km,n= Yrn 	
(3.4.26)

and,

F_mn(t) = Fm* ,n(t) 	
(3.4.27)

This means that the model only needs to deal explicitly with the Fmn for m>O.

The values of Fmn for m<O can be obtained by taking the complex conjugate

of the values of Fmn for positive in.. This halves the storage requirements of

the model variables.

Another property that arises from the definition Eq.(3.4.18) is that,

= 0 	if Imi > n 	 (3.4.28)

This can be used to write Eq.(3.4.24) as,

0. Fmn(t)Ymn(X1I) 	 (3.4.29)

M=-CO nImI

From Eq.(3.4.18) it can also be shown that,

Pmn(••11) = (1)n4imlpmn() 	 (3.4.30)

That is, the Legendre functions are antisymmetric about the equator when

n+m is odd and symmetric when n+Itnl is even. This property can be used to

reduce the computations necessary for the Legendre transforms as described

later.

Recurrence relations are used to compute the values of the Pm,n and also

dPmn /dI•L as the Ym,n
are not eigenfunctions of the meridional derivative.

They are (Hobson, 1931),

Cmn+iPmn+i(P) = 11 Pm,n - Cm,nPmn.i
	 (3.4.31)

m+l.m+l = [((
2m+3)/(2m+2))(1-112) J

il/2p
m,m
	 (3.4.32)

77

2 	dP
(ii - 1)m.n = 	m,n+1"m,n+1 - (n±1)CmnPm n1 	 (3.4.33)

- m2
C m , n = (TIT -

(3.4.34)

A more stable formula for high resolution is used at ECMWF (Jarraud and

Simmons, 1983).

3.4.5. Truncation

A truncated set of basis functions must be used to solve the equations.

As the variables are real-valued functions, from Eq.(3.4.27), m must satisfy

-M<_m<_M However, there is no restriction on the limit of the index n. So, the

truncated set gives the approximation F' to F as,

MN(m)

F'=E E FmnYmn 	 (3.4.35)

m-M nImI

As m and n increase they correspond to features with decreasing

horizontal scales. By careful choice of the limits M and N(m) it is therefore

possible to select the desired scales and features to be represented. This is

somewhat analogous to choosing the size of the grid spacings in finite

difference models.

The two most common truncations used are known as triangular and

rhomboidal truncation. These are best illustrated by their form in the complex,

spectral plane and shown in Fig. 9. For triangular truncation,

N=M 	 (3.4.36)

whilst for rhomboidal truncation,

N=K+M, n=K+ImI 	 (3.4.37)

A property of the triangular truncation is that it is isotropic (Jarraud and

Simmons, 1983). That is, it is invariant under rotation about an arbitrary axis

through the centre of the sphere, so that the resolution is uniform on the

sphere and the truncated field is the same whatever the position of the pole.

78

x

x

x x x

x x x x

x x x x

x x x

x

x

x

x

x

X 	X —

n

x

x

x

x

x

n

ji1

10

Triangular truncation

jI

M

Rhomboidal truncation

Figure 9. Illustration of triangular and rhomboidal spectral truncation.

79

Therefore, for triangular truncation, all components with a horizontal scale

smaller than that represented are consistently neglected.

On the other hand, rhomboidal truncation is only invariant under rotation

about the Earth's axis, so that there is uniform resolution in the east-west

direction but varying resolution in the north-south direction. With the same

number of degrees of freedom as triangular truncation, the rhomboidal

truncation gives increased resolution at high latitudes to the medium part of

the spectrum (not just in the meridional direction) at the expense of lower

longitudinal resolution at low latitudes. Rhomboidal truncation can be thought

of as being analogous to a regular latitude-longitude grid whereas triangular

truncation resembles a latitude-longitude grid with a decreasing number of

points on a latitude circle approaching the pole.

Early spectral models employed the rhomboidal truncation, as Ellsaesser

(1966) showed that for coarse resolutions this truncation could maximize the

variance retained for the kinetic energy at 500mb. Later, however, Baer (1972)

made a more detailed analysis of the kinetic energy from two winter months

at several levels and his results favoured the triangular truncation.

Comparisons of the results from models using rhomboidal and triangular

truncation have been made (e.g. Simmons and Hoskins, 1975; Daley and

Bourassa, 1978; Jarraud and Simmons, 1983). The results were generally

similar, with triangular truncation better at high levels.

From a computational point of view, triangular truncation offers several

advantages over rhomboidal truncation. Since shorter waves are represented

with rhomboidal truncation, the timestep must be smaller. Also, the Gaussian

grid on which the nonlinear terms are calculated is larger by about 20%.

These two considerations lead to an increase in computer time of about 25%

for the rhomboidal truncation.

3.4.6. The transform method

Whilst linear terms can be computed in spectral space, the approach for

nonlinear terms is not so straightforward. Early spectral models used the

method of Silberman (1954), known as the interaction coefficient method. This

involves substituting the spectral expansions directly into the equations and

evaluating the extensive summations. Although selection rules (Baer and

RM

Platzmann, 1961) can be used to reduce the number of computations, this is

still of the order of N 5 where N is the truncation wavenumber (Orszag, 1970).

Computer storage requirements are also large and become prohibitive as

resolution increases.

A further problem was that the effects of physical parametrizations could

not be included. As a consequence, only low resolution spectral models were

possible until the transform method was developed independently by Orszag

(1970) and Eliassen et al. (1970). In this approach, the nonlinear products are

formed by transforming the required variables to gridpoint space, computing

the products locally at each point and then transforming back to spectral

space. The number of operations using this technique is proportional to N 3

(Orszag, 1970), a substantial reduction compared to the interaction coefficient

method. Additionally, a substantial saving in storage space is achieved.

The transform method can be demonstrated by rewriting Eq.(3.4.25) as, f 1/ f 21

F n = 	
Fe 	d), m.n d 	 (3.4.38)

2 	27f
1 c

That is, a Fourier transform,

f
27r

Fm (P,t) =
	

F(A,ii,t) e mX dX 	 (3.4.39)
2ir

0

to give the Fourier coefficients at each latitude, followed by a direct Legendre

transform,

Fmn(t) =
1 	

Fm (P,t)Pmn (I.L) di.i
	

(3.4.40)

to give the spectral coefficients. The inverse spectral transform Eq.(3.4.24) can

be separated in the same way into inverse Legendre and Fourier transforms.

Considering the longitudinal integral first (the Fourier transform), this can

be computed exactly by the trapezoidal quadrature formula if a sufficient

number of points are chosen (Machenhauer and Rasmussen, 1972). The

81

integral becomes,

Fm(11jt) =
	1(t) exp{-imA1} 	 (3.4.41)

I

using a regular set of points, A, in the east-west direction. These are given

by,

A 1 =:211i/I 	for i=Otol-1
	

(3.4.42)

which is exact for I-1>N, where Nis the maximum wavenumber of the series

to be summed (Machenhauer, 1979). The integrand of Eq.(3.4.41) is the

product of three trigonometric functions, as F1 represents the result of

calculating the nonlinear terms (the product of two functions) each with a

maximum zonal wavenumber M. The result is therefore exact if I satisfies,

1> 3M+ 1 (3.4.43)

(Orszag, 1971). In practice, the number of points, I, is chosen to allow the use

of the Fast Fourier Transform (FFT) algorithm (Cooley and Tukey, 1965).

The latitudinal integral Eq.(3.4.40) is computed using the Gaussian

quadrature formula (Eliasen et a!, 1970),

J

Fmn =•- E 	Fm (i1jt) rn.n(j)
j=1

(3.4.44)

which is exact for an integrand that is a polynomial in ji of degree < 2J-1.

The Vj are the zeros of P 	that is,

PO'j Old = 0 	 for J = 1 to J 	 (3.4.45)

which is the condition used to determine the Gaussian latitudes, 1i, of the

grid. They can be approximated by the zeros of Bessel functions (Abramowitz

and Stegun, 1965) and then iterated using a Newton-RaphSOfl procedure until

the desired accuracy is achieved. The Gaussian coefficients or weights, g, are

determined by,

82

2(1 - 4)(2J - 1) 	 (3.4.46)
= 1JP01()I2

using the normalized values of the mfl
given in Eq.(3.4.18)

Substituting the spectral expansions for the variables into the product of

two functions (the calculation at each gridpoint), shows that the integrand of

Eq.(3.4.40) is a polynomial in .i of degree 3M for triangular truncation and

2M+3K for rhomboidal truncation. Therefore the number of latitudes, J, must

satisfy,

J> (3M+ 1)/ 2 	 (3.4.47)

and,

J > (2M + 3K + 1)/ 2 	 (3.4.48)

for triangular and rhomboidal truncation respectively.

Unfortunately, there is no fast algorithm analogous to the FFT for the

Legendre transform, although optimization is possible as described below. It

is not surprising therefore that the Legendre transforms account for a

significant fraction of the total computational cost of any spectral model.

The grid on which the nonlinear products are calculated is regular in the

east-west direction but irregular in the north-south direction. However, the

irregularity decreases with increasing resolution. A major advantage of the

transform method over the interaction coefficient method is that the use of a

grid in physical space allows the effects of the physical processes to be

included.

3.4.6.1. Optimization of the transforms

The Legendre transforms may be optimized by using the property

Eq.(3.4.30), that the Legendre functions are either symmetric or antisymmetric

about the equator, to halve the number of necessary computations

(Machenhauer, 1979; Jarraud and Simmons, 1983).

Optimization of the FFT is also possible. Since the spectral coefficients are

conjugate-symmetric from Eq.(3.4.27), the transform of real data of length N

can be done using a complex transform of length N12 by treating the even

11*1

values as the real part and the odd values as the imaginary part (Hockney and

Jesshope, 1981; Orszag, 1971). Also, it is possible to improve the FFT

algorithm if I can be factorized into mutually prime numbers (Temperton,

1983).

3.5. Galerkin techniques: Finite element method

3.5.1. Introduction

Although the use of the finite element method in engineering had become

standard by the early 1970s (e.g. Zienkiewicz, 1971), the first meteorological

applications of the method were only just beginning to appear in the literature

(e.g. Wang et a!, 1972; Cullen, 1973). Finite element barotropic models were

developed by Cullen (1974b) and Staniforth and Mitchell (1977). The global

model of Cullen (1974b) used triangular elements mapped onto a icosahedron.

A baroclinic model was developed by Staniforth and Daley (1979). Boundary

layer finite element models have also been developed independently by

Malihot and Benoit (1982) and Chang at a/. (1982). The finite element

technique has also been successfully used for the vertical discretization in

sigma coordinate primitive equation models, particularly those incorporating a

spectral representation in the horizontal. Work on the Canadian spectral and

finite element models using finite elements in the vertical has been performed

by Staniforth and Daley (1977), Cote et al. (1983) and Beland and Beaudoin

(1985). More recent work on the inclusion of finite elements in the vertical for

the ECMWF spectral forecast model has been done by Burridge et al. (1986)

and Steppler (1986). Whilst at current model resolutions the finite element

method is not superior to the spectral technique for global models (Cullen,

1974b), it is being increasingly used by research workers developing

mesoscale and limited area models, as demonstrated by the list of active

mesoscale research groups in Pielke (1984).

In this section, the general approach of the method is described along with

a discussion of its properties and the treatment of boundary conditions. Most

of this review is a summary of the papers by Cullen, Staniforth and of selected

text books.

84

3.5.2. General method

The finite element method is usually introduced using variational principles

(e.g. Strang and Fix, 1973). However, the Galerkin method is more suited to

time dependent problems and does not rely on finding a variational form of

the problem.

Like the spectral method, the finite element method is best described in

terms of Hubert spaces and their norms. The admissible functions to a Hilbert

space must have finite energy,

N(f)=5f 2 dt <
	 (3.5.1)

where MI) is the norm. The space of functions satisfying Eq.(3.5.1) is denoted

by 110. The superscript denotes how many derivatives of f are required to

have finite energy.

The Galerkin finite element method proceeds as for the spectral method.

The general form of meteorological equations, Eq.(3.4.1), is written as,

= A(F) 	 (3.5.2)

where w=Ff9L This is multiplied by some test function, v, in some test

space, V. and integrated over the domain to give,

(w,v) = (A,v)
	

(3.5.3)

This must hold for each function v in V.

If V is H 0, the equation is said to hold in a strong sense. The solution

must therefore lie in the space
jjm where 2m is the order of the operator A

and e denotes that the full boundary conditions must be satisfied. However,

by choosing a test space V=H 5, this permits (by integration by parts) 8 of the

derivatives in A to be shifted from F to v. The solution therefore need only

be sought in g2ms

As 8 increases and only 2in-s derivatives of F need have finite energy (by

shifting s of them to v) to qualify for the solution space, the only boundary

conditions which can be applied directly are those of order less than 2m-a

This is an important point in the finite element method. Those boundary

41

conditions of order less than 2m-s are known as the essential conditions in

that the test functions v must satisfy them. Those conditions of order greater

than or equal to 2m-s are known as natural boundary conditions as the

Galerkin problem can be formulated so that the test functions v automatically

satisfy them.

When m=s, the test space is the same as the solution space (the Ritz case),

as is usual for meteorological applications using the finite element method.

The solution space is then denoted by IJ where the E denotes that only the

essential boundary conditions need to be satisfied. The test functions, v, must

lie in the solution space IJ.

The Galerkin method is a discretization of the continuous equation

Eq.(3.5.3). The Ritz case is used, where the functions, 4, n1 to N, form a set

for the space B' Any function in IPE be expanded as,

N

	

I = 	 (3.5.4)

n1

where the qn are the expansion coefficients.

Since the test functions v in Eq.(3.5.3) can also be written as Eq.(3.5.4) it is

sufficient to use 	in Eq.(3.5.3),

	

N 	 N

4m) = (A(Fct), 4m) 	for m=1 to N 	 (3.5.5)

	

n1 	 n1

Eq.(3.5.5) can then be solved by a suitable choice of basis functions. Unlike

the spectral method, the basis functions usually employed in the finite element

method are not orthogonal, although they are nearly so.

3.5.3. Some properties of the finite element method

Papers by Cullen (1973, 1974a, 1974b) illustrate that finite element models

can achieve better results than finite difference models of second order that

use four times the number of gridpoints. Aliasing is eliminated in finite

element models, although not in the sense of the spectral method. Instead

short wave interactions are heavily damped (Cullen, 1973). Also, phase

propagation is accurate and nonlinearities are handled well. The finite element

technique, as a Galerkin method, has good conservation properties, depending

on the problem.

One advantage over spectral methods is that the finite element method

can be applied to irregular domains and have irregular spacing with little

additional effort. Grids that vary with time are also possible. An advantage

over finite difference techniques is that boundary conditions can be

incorporated in a more mathematically consistent way. Also, the finite element

method, implies the form of the field between nodes from the basis functions

used. In the finite difference method nothing is known about the shape of the

field between gridpoints, which therefore leads to aliasing.

The disadvantages of the finite element method are that first the resulting

scheme is more difficult to program; large systems of linear equations have to

be solved. Noise can also be a problem with finite element models (Cullen,

1976) and O'ie . cA when all the variables are carried at each

nodal point (Haltiner and Williams, 1980). However, in the barotropic model of

Staniforth and Mitchell (1977), the vorticity and divergence equations were

used as in spectral models. This was found to reduce the noise problem

considerably. Williams and Zienkiewicz (1981) have shown that using different

basis functions for the height and velocity variables can also give good

results.

3.5.4. Basis functions

The key difference between the spectral and finite element methods is that

the basis functions used in the former are defined over the whole domain

whereas for the latter they are nonzero only over a small, local area. It is this

local nature of the basis functions that gives the finite element method its

flexibility in solving problems with irregular geometry.

The domain is first divided into a mesh of nodal points. The placement of

nodal points depends on the choice of basis functions; triangular elements

would require the region to be divided into triangular regions. For general

problems, this will require some approximation of the boundary (Strang and

Fix, 1973). However, at any point in the region the mesh can be refined to

give a higher resolution (Stariiforth and Mitchell, 1978). The choice of the type

of basis function depends on the desired accuracy of the solution and on the

87

geometry of the problem itself.

The simplest basis function is the one-dimensional Chapeau function. It is

defined by,

4n = 0

= (z-2_ 1)/(z-x_ 1)

= (z +1 -z)/(z 1 _x)

for x K 	and z >

for Zn_i ~ Z(

for z~ r (3.5.6)

and is 1 only at xn and zero elsewhere. This is an interpolatory basis function

since for an expansion,

N

tz(z) = 	tLn4n(Z) 	 (3.5.7)

n0

then,

u(x) = U0 	 (3.5.8)

Thus, unlike the spectral method, the expansion coefficients u,, are the field

values at the nodal points x. This is not true for higher order elements.

The simplest basis function in two dimensions is the rectangular bilinear

piecewise basis function. It is the product of two one-dimensional Chapeau

functions i.e.

e(x,y) = 4(x)(y) 	 (3.5.9)

where p = p(ij). This is also an interpolatory basis function.

Any function u(Z,y) can be expanded as,

M

u(r,y) = 	tze(z,y) 	 (3.5.10)

P=O

but from Eq.(3.5.9), this can be written as,

N N

u(Z,y) 	 ts,4,(x)4j(y) 	 (3.5.11)

=0 j=0

As the solution space is a product of one-dimensional spaces, the finite

element matrices resulting from the approximation of the linear operators in

Eq.(3.5.2) may also be decomposed into the product of one-dimensional

matrices. This results in reduced computation. This property of the bilinear

elements has been used by Staniforth and co-workers in developing their

barotropic and baroclinic models (Staniforth, 1987).

3.5.5. Approximation of some simple terms

In this section, the finite element method is illustrated for some simple

terms which form the components for solving meteorological problems and

will be used for the model developed in chapter 7. In particular, the treatment

of the nonlinear advective terms is described, where the precise approach is

important. The one-dimensional examples discussed below are a summary of

the review by Cullen (1979).

3.5.5.1. First derivative

Consider the equation,

W = 	 (3.5.12)

over the interval x=O to x where x=E 1 Lz1. Following the Galerkin procedure,

the variables w and u are expanded as,

W = u =
	 (3.5.13)

Substituting into Eq.(3.5.12) and taking the scalar product gives,

dx = 	

X

u

	

dx
i=O 	fo 	1=0 	fo for all j (3.5.14)

If the integrals are written as matrix elements,

M.

=
$ 4j4 dx, 	P-ii =

$
4j d 1 /dz dx 	 (3.5.15)

then Eq.(3.5.14) can be written as,

M.

rL L 	 (3.5.16)

where u and w are vectors containing the nodal values. Mis the so-called

mass matrix (Strang and Fix, 1973) and both Mand P are often referred to in

the literature as Galerkin or projection operators (Burridge et al. 1986).

The integrals in Eq.(3.5.15) are evaluated by substituting for •,. using

Eq.(3.5.6). Since the 4 n are locally defined, only neighbouring elements

interact. Thus, although the basis functions are not orthogonal they are nearly

so and the evaluation of the integrals is straightforward.

To evaluate j, the derivative of the basis functions is required, which is,

(1/A_ 1 	for

d/dx = , 	- 1/ 	for 	 (3.5.17)

\ 0 	 elsewhere

This leads to,

Px,, j _1 = - 1/2, 	Pxjj+1 = 1/2, 	Px 11 = 0 	 (3.5.18)

together with,

= Az-1 / 6, 	M. +1 = Az 1 . / 6 	 (3.5.19)

M, = (Ax +) / 3

so the resulting scheme for a node j is,

+ .(2 -i + A) + 	= 1 (uj+i - 	 (3.5.20)

The solution of Eq.(3.5.16) is given by,

w=t -1 	
(3.5.21)

Since the mass matrix is positive definite it is invertible and Eq.(3.5.21) can be

solved. Both matrices (as with all matrices resulting from the use of

one-dimensional linear basis functions) are tridiagonal. Higher order basis

functions and problems in more than one dimension lead to higher bandwidth

matrices.

Eq.(3.5.21) is implicit and therefore the solution at each node must be

MI

obtained simultaneously. The additional cost to solving Eq.(3.5.21), when

compared with an explicit finite difference scheme, is offset by its superior

accuracy. With an irregular spacing, as above, the solution is first order

accurate. For regular spacing the usual truncation error analysis shows the

method to be fourth order accurate (Cullen. 1976). This high accuracy is a

case of superconvergence, where the accuracy of the solution at the nodes is

of a higher accuracy than at non-nodal points (Strang and Fix, 1973; de Boor,

1974). For free boundary nodes (free meaning no boundary conditions are

imposed) the accuracy is only first order. The boundary nodes are therefore

likely to be a source of error. This can be improved by including more nodes

in the equation for the solution of the boundary node as in the procedure

given in the appendix to Betand and Beaudoin (1985). However, the modified

mass matrix is then no longer tridiagonal. The approach of Beland and

Beaudoin (1985), similar to the approach used in compact differencing, can

also be used to obtain a scheme for the first derivative that is fourth order

accurate with irregular spacing and the resulting matrices are tridiagonal.

For the two dimensional problem, Eq.(3.5.12) is solved over a domain z0 to

x, z0 to z. The variables are expanded as in Eq.(3.5.13) but using the bilinear

basis functions defined in Eq.(3.5.9). Applying the Galerkin proceaure gives,

P=O 	f
Cqp dzdz = 	 u f eq 3 ep /a x dxdz for all q 	 (3.5.22)

D 	
P=O 	

D

By introducing the matrices,

Mqp
= 	

e 	dxdz
fD

q p 	
(3.5.23)

PXqp = 5 eqaepIzdxdz

D

Eq.(3.5.22) can be written in matrix form as before,

	

fi?= x u 	
(3.5.24)

except w and u are vectors holding all the nodes in the two-dimensional

domain in some particular nodal ordering (e.g. along successive horizontal

91

levels). The mass matrix in Eq.(3.5.23) is block tridiagonal where each block is

itself tridiagonal.

Staniforth and Mitchell (1977) describe how the use of the bilinear basis

function enables Eq.(3.5.22) to also be solved as a set of one-dimensional

problems. To see this, for the LHS of Eq.(3.5.22) substitute for the bilinear

basis using Eq.(3.5.9) and separate the integrals to give,

P 	 I 	K

WP fD CqCp dxdz 	 dx fo Ik dz 	 (3.5.25)

 j
	k 	 o

Following the same procedure for the RHS and using matrix notation,

Eq.(3.5.22) becomes,

N(u)T 	
(3.5.26)

where, N is the mass matrix for the vertical only, Mis the horizontal mass

matrix andis the projection matrix defined in Eq.(3.5.15). The variables w

and u are now represented by matrices rather than vectors. The approach of

Staniforth and Mitchell (1977) is to first solve Mw and then j.. However, as

pointed out by Staniforth (1987), multiplying Eq.(3.5.26) by Y 1 reduces it to,

(3.5.27)

Thus the computation of the derivative becomes less expensive as not only is

the RHS simpler but only tridiagonal systems need to be solved. This

simplification could not be done if the e p were not the product of

one-dimensional basis functions or if the domain was not rectangular.

3.5.5.2. Approximation of products

Now consider the simplest nonlinear equation in one dimension,

W = uv
	 (3.5.28)

Following the Galerkin procedure, the resulting finite element equation is,

	

N 	 N

	

wi fo
kX

=0 	 i=0 fxMjE 	k
j=0 	0

for all k 	 (3.5.29)

92

Evaluation of these integrals gives,

f dx = (A-1 + A) / 4

	

k-1 	dz = 	k-1k dz = Azk_ / 12
	

(3.5.30)

J k+1k dz =
$

•+1k dz = 	/ 12

which, substituting into Eq.(3.5.29) gives the following equation for a node k

1k1A 2k_1 +j?k(LZ_1 +A)+j k+lAxk = 1 [A2k(u+uk+1)(vk+vk+1)+ 	(3.5.31)

6 	3 	 6 	12

2 ukvk(xk_, +&X0 +A Zk_1 (uk+uk_1)(vk+vk_1)1

It is possible to write this in matrix form by introducing the projection

matrix . (Cote et a!,, 1983) where,

	

f x
PukJ = 	44i dx 	 (3.5.32)

1=0

so that Eq.(3.5.29) can be written as,

(3.5.33)

where Mis the mass matrix defined in Eq.(3.5.15). The solution to Eq.(3.5.33)

again requires the solution to a set of simultaneous equations.

Cullen (1976) has analysed the error associated with this scheme and

shown it to be fourth order accurate. Using the basic operations of

differentiation and multiplication it is possible to have a fourth order accurate

finite element model. An example of this is the barotropic model of Staniforth

and Mitchell (1977).

Also important is the scheme's treatment of short wave interactions. This

can be examined by substituting Fourier modes of the form,

= exp{ikx}, 	v = exp{ilz 0 }, 	 w = K(k,1) exp{i(k+1)x) 	(3.5.34)

into Eq.(3.5.31). Solving for K(k)) gives,

K(k,1) = (3 + cosk + cosl + cos(k±1)) / (4 + 2cos(k+1)) 	 (3.5.35)

This function is plotted in Fig. 10 for k=1 and k21i/X where A is the

wavelength, assuming a constant spacing. From this figure it can be seen that

those short wave interactions that would result in aliasing are heavily damped

(although not shown, this is also true when I44. With the possibility of aliasing

greatly reduced, nonlinear instability as described by Phillips (1959) is less

likely to occur. Cullen (1973) found this to be the case in practice.

Although the Galerkin formulation reduces aliasing, it has been found that

Eq.(3.5.28) can be computed by,

=Un Vn
(3.5.36)

when either u or v is a smoothly varying function (Staniforth and Mitchell,

1977). This point collocation approach is still fourth order accurate but is

much cheaper to compute.

For the product of two functions in two dimensions the procedure is

identical to that used for the first derivative. Again, the equation may be

solved using one dimensional matrices. The finite element approximation

becomes,

MWwT)T= F
	

(3.5.37)

where £ represents the matrix resulting from the computation of the RHS to

the Galerkin equation of Eq.(3.5.28) in two dimensions. The elements of £ are

given by,

= 1ZtZ1 	
+ P4 + 	+ 	,j +

	
(3.5.38)

Pi,j + 	+ 	+ Pi,j+4 + Pi++,+4 I

where,

94

1.40

1.20

1.00

0.80

a-
E 0.60

M

0.40

0.20

0.00
2 	4 	6 	8 	10 	12 	14 	16 	18 	20
Wavelengl-h as a mulHple of' grid spacing

Figure 10. Galerkin scheme for w = uv (for waves of equal wavelength.)

P.,,14 4 = U1,1+4 Vj,14 4
	 (3.5.39)

= (ui,j + tz1141) / 2

and equal spacing in both directions is assumed for clarity. The procedure to

solve Eq.(3.5.37) is therefore to first solve,

AT — M'F 	 (3.5.40)

and then solve,

= 	A 	 (3.5.41)

3.5.5.3. Approximation of advective terms

The finite element approximation of the one-dimensional advective term,

W
= uv/3x (3.5.42)

is now considered. In finite difference approximations, care must be taken to

ensure that the scheme does not lead to nonlinear instability.

The procedure is as before, the variables are approximated and the scalar

product with the basis functions is taken over the domain. The resulting

scheme for a node i is (Cullen, 1979),

+ 4w1 + w4.1] = 	+ u 1)(v, - v 1 _ 1) + 	 (3.5.43)

1 	2 (u, 41 +u)(v141 - Vj)]

where regular spacing is assumed.

The analysis of Cullen (1979) shows that this scheme has a leading

truncation error term of Ax 4/40. However, using the basic operations of

differentiation and multiplication it is possible to compute Eq.(3.5.42) using an

alternate approach, as described in Cullen (1974a). First compute s-- 9v/3x so

that s is fitted to a piecewise linear function. Then compute the product wus

using the finite element scheme for products. Since these individual

operations are fourth order accurate, the combined scheme gives the solution

at the nodes to fourth order accuracy. This split or two stage scheme has

been shown by Cullen (1974a) to have a leading error term of AX 4/240 so that

it is more accurate than the single stage scheme above. However, it is no

longer a conservative scheme. Even so, when the two stage scheme was

used in the model of Staniforth and Mitchell (1977) the total energy and mass

of the barotropic model were conserved to a few percent over a run of 50

days.

The accuracy of both schemes can be illustrated by substituting Fourier

modes of the form given by Eq.(3.5.34), assuming regular unit spacing. For

Eq.(3.5.43),

K(k,t) -- i(sin(k+1) + 2sint - sink) 	 (3.5.44)
 2 + cos(k+1)

whilst the response of the two stage scheme is,

3sink 3 + cosk + cost + cos(k+1) 	 (3545) K(k,1) 	
2+cosk 	4 ± 2cos(k±1)

By comparison, the response of the second order finite difference

approximation,

w
1 	

[(U. + u._ 1)(v, - Vi -1) + (u. + u+1 	-) 1 	 (3.5.46)

is,

K(k,1) = i(sint - sink + sin(k+1)) / 2
	

(3.5.47)

Fig. 11 shows a comparison of Eq.(3.5.44), Eq.(3.5.45) and Eq.(3.5.47) plotted for

k=L Both the finite element schemes are superior to the finite difference

scheme. The two stage scheme is the most accurate at a wavelength of 4Az

but appears to be slightly less accurate for wavelengths between 5tx and

The extension to two dimensions for the single step scheme is

straightforward and follows the procedure for the approximation of a product

in two dimensions. For the two stage scheme, the approach is a combination

of the two dimensional schemes used for the first derivative and product.

97

-0.60
2 	4 	6 	8 	10
Wavelength as a multiple oF

-0.40

-0.20

I-nt 11% 	 I • • i ;
1.60

1 . 40

1.20

1.00

0.80
0

E 0.60

0.40
E
cr

0.20

12 	14 	16
grid spacing

Figure 11. Comparison of Galerkin schemes and a finite difference scheme for a

non-linear advection term.

3.5.6. Stability and phase properties

To examine the stability criterion of the finite element method consider the

one dimensional advection equation,

au/at = Ca u/az 	 (3.5.48)

where c is a constant. Following the procedure in Haltiner and Williams (1980),

assume a solution of the form,

U = X"e ° 	 (3.5.49)

where A'1 represents an amplification factor at time level n and A=X'11 iA".

The Galerkin scheme for Eq.(3.5.48) is given by Eq.(3.5.20) so,

	

+ 4&, + 	= 	[u"~
- 	 (3.5.50)

The time derivative is approximated using the leapfrog time scheme.

Substituting Eq.(3.5.49) into Eq.(3.5.50) and requiring that A be bounded for

all n gives,

At < 	
0.57Ax

- c/3 	c 	 (3.5.51)

The fourth order accurate finite difference scheme,

au/ax = f 8(u..1 - u1 _ 1) - (u12 - u1_2) J / 12Az 	 (3.5.52)

by comparison requires a timestep of,

At < 	
- 0.75Az

- 4c - c (3.5.53)

for stability. The finite element approximation is more restrictive. This has led

to the use of implicit, semi-implicit and semi-Lagrangian time integration

schemes for finite element models.

To study the phase properties of the scheme, a solution of the form,

u = exp(i(kz + at))
	

(3.5.54)

(Cullen, 1973), is substituted into Eq.(3.5.50) and Eq.(3.5.52) and a solved for.

Fig. 12 shows the behaviour of the phase velocity, where the ratio of a to the

IM

0.00
2 	 4 	 6
Wavelength as a mul t I pie

1.20

-D
a)
a)

1.00

U)
3
L

0.80
0
1

CD
a)
a-
CS)

CD
(5)
0

0.40

(3-

0

0.20

8 	 10
oF grid spacing

Figure 12. Comparison of the phase properties of finite element and finite difference

schemes.

100

true phase velocity 21Tc/X is plotted against wavelength. Also shown is the

phase behaviour of a second order finite difference approximation to

Eq.(3.5.48). A timestep that is 75% of the maximum allowable for each scheme

is assumed in each case to illustrate the behaviour for a timestep close to

that used in practice.

Fig. 12 shows that the finite element scheme is more accurate; even 3tx

waves are propagated at almost the correct phase speed. However, it can

also be seen that, like the fourth order finite difference scheme, the short

waves have a leading phase error. Nevertheless, the phase speeds of the

waves in the finite element method are very accurate, a property noted by

early literature on the use of the technique for meteorology (Cullen, 1973,

1974a; Staniforth and Mitchell, 1977). The penalty in the timestep is therefore

due to the superior treatment of the shortest waves.

3.5.7. Boundary conditions

The incorporation of boundary conditions into a finite element problem is

perhaps more mathematically consistent than in finite difference methods.

The subject is not discussed to any length in meteorological literature on finite

element applications. Therefore this section discusses some of the theory and

finer points to the inclusion of boundary conditions.

3.5.7.1. Homogeneous conditions

To illustrate the application of boundary conditions the equation,

d2 u
d xZf

(3.5.55)

is to be solved over a region x=O to X. Since this is a second order equation,

the second derivative of the solution, u, must have finite energy. That is, u

must reside in the il space.

Following Strang and Fix (1973), Eq.(3.5.55) is solved subject to the

boundary conditions,

U (0) = 0 	
(3.5.56)

du(X)/dx = 0

101

The solution must now reside in the space 14, where the subscript denotes

that Eq.(3.5.56) is satisfied.

Applying the Galerkin method to Eq.(3.5.55) and integrating the LHS by

parts gives, f x
du dx + I ciz 	for i=1 to N

-x

dxdx 	 4ij. =

f
f4I

 o 	0

where the basis functions, , can reside in H1 , as the order of the equation

has been reduced. This implies that 4 j may be piecewise linear functions.

The integrated term at x=X vanishes since du(X)/dzO from the boundary

condition Eq.(3.5.56). Since the 4 j belong to the homogeneous space H',

(0)=0 for all i and the integrated term at z=0 also vanishes. The resulting

equation is then solved in the usual way by approximating u and f where the

basis 4 j are defined on N nodes for z=itz and 1=1 to N There are thus N

unknowns for the Nil nodes as the solution at z=0 is known.

The essential condition is satisfied by the finite element expansion for u.

This is not true of the natural condition but the Galerkin equation to be solved

ensures that u satisfies it. This is the classic finite element problem as

discussed by Strang and Fix (1973) and Mitchell and Wait (1977).

3.5.7.2. lnhomogeneous conditions

Consider the solution to Eq.(3.5.55) but with the condition,

u(0) = g
	 (3.5.58)

This is an essential inhomogeneous condition and must therefore be satisfied

by the solution in the space 14.

The functions in 14 are not linearly independent as it is possible to write,

(u1 + u2)I0 = 2g
	 (3.5.59)

That is, the sum of two such functions does not satisfy Eq.(3.5.58). However,

the function obtained as the difference of two such functions,

102

	

V = U1 - U2
	 (3.5.60)

must belong to the homogeneous space H, such that v(0)0. This

homogeneous space was the solution space in the previous section.

If the same procedure as in the homogeneous case is followed, Eq.(3.5.55)

is multiplied by a basis 4 j and integrated over the domain. The integrated

term at z=X vanishes as before. However, for the term at z=0, since nothing is

known of the derivative at that point and the basis 4 j can be freely chosen, it

is necessary to insist that $(0)=O for all I as in the homogeneous case. This

is an important point to understand in the finite element method. That is,

whilst the solution must reside in the 14 space, the test and basis functions

must reside in the homogeneous space M. This is true for homogeneous and

inhomogeneous boundary conditions (Strang and Fix, 1973; Conner and

Brebbia, 1976). The inhomogeneous essential boundary condition does not

alter the Galerkin equation for Eq.(3.5.55) in any way.

Now consider the approximation of u. As before, u is expanded in terms of

the basis 4 j that span the homogeneous space 1]1 To satisfy Eq.(3.5.58), the

function 4 O is introduced. So,

	

+ 	u141 	 (3.5.61)

where 4 0(0)=1 at z=O. The function 00 need not be of the same form as the 4j

but is usually taken to be so. Burridge et al. (1986) give examples of different

boundary elements for the vertical discretization of primitive equation models.

However, although of the same form, this function is treated differently from

all other 4. The Galerkin equation must not be minimized with respect to 4.

In other words, there are N+1 nodes, the value at one is fixed and so N

equations for the remaining nodes must be obtained.

Consider the inhomogeneous Cauchy condition,

dz
	 (3.5.62)

This condition need not be satisfied by the approximation to u but it does

require a modification to the Galerkin equation so that it is a natural boundary

condition for the problem. The procedure is exactly as above, resulting in the

103

Galerkin equation Eq.(3.5.57). As before, the integrated term disappears at z0

but at z=X Eq.(3.5.62) is used so that the equation becomes,

f fo

x
du 	dx - 	- c*u,) = f dx 	for 1=1 to N 	 (3.5.63) dx dx

0

where 6jN is used since •(X)=1 only when i=N and u(x)=uN, as the piecewise

linear basis is used. The condition Eq.(3.5.62) modifies the LHS and the RHS of

the resulting matrix equation whereas the essential inhomogeneous condition

above, Eq.(3.5.58), will only modify the RHS: However, they are only local

changes, involving modifications to the equations of the boundary nodes.

Nevertheless, since the equations are solved simultaneously the boundary

value can affect any interior node on the first timestep. This is in contrast to

the explicit finite difference method, where the effect of the boundaries

propagates into the interior of the domain as the integration in time

progresses. This therefore suggests that it is more important in finite element

models to have accurate boundary conditions.

In practice however, it is possible to ignore the boundary conditions until

after the projection matrices have been assembled. This is because of the

local nature of the changes that need to be made. Thus, u would be written

as,

U,4
	

(3.5.64)

The Galerkin equation is then solved for 1=0 to N The essential and natural

conditions can then be introduced in the same way, by modifying the

appropriate equation. For example, the equation for the node 1=0 without any

boundary condition is,

(U - u) / A z = J0 	 (3.5.65)

which is replaced by,

U0 = g 	 (3.5.66)

in the matrix equation. The natural condition is imposed in the same way.

This is slightly inefficient for the solution of the system, as the known values

104

could be moved to the RHS. However, as pointed out by Conner and Brebbia

(1976), this often presents technical difficulties as the program has to

renumber rows and columns in the matrices.

3.5.8. Initial conditions

In providing the initial conditions for a finite element model given a

continuous function u, the problem is to determine the best way to

approximate the function and obtain the finite element expansion coefficients.

For linear elements, since the basis function is interpolatory (from Eq.(3.5.8)),

one way of determining the expansion coefficients is simply to take the value

of u at each of the nodes. The approximation error can be shown to be O(z)

(Cullen, 1979).

A better approach is to use the Galerkin method. If u is approximated by,

U = tt' = 	u1 4
	 (3.5.67)

then multiplying the residual u-u' by the basis function and integrating over

the domain gives,

N

1=1 _st
u1 J 	jj clz - 	u ciz 	for j=l to N 	 (3.5.68)

The LHS leads to the mass matrix as before whilst the RHS integral has to be

numerically evaluated using some form of quadrature, the most common and

efficient of which is Gaussian quadrature (Krylov, 1962). Duller and Paddon

(1984) give a parallel implementation of this for a finite element program On

the ICL DAP.

Following Cullen (1976), the effect of this procedure can be seen by

assuming that,

u =e{e}
	

(3.5.69)

and that the expansion coefficients can be written as,

105

= a(k)exp{ikz1} 	 (3.5.70)

Substituting into Eq.(3.5.68) and solving for a gives,

12 1 - cos(kx)) 	 (3.5.71) a(k) 	
k 2 z (4 + 2cos(kAz))

This is plotted in Fig. 13 against wavelength expressed as a multiple of the

grid spacing. It can be seen that projecting the data onto the nodes using a

Galerkin procedure virtually eliminates all waves of length less than 2tz i.e.

those that would be misrepresented on the grid.

106

1.40

1.20

-o
ID 1.00
0
a)

0.80
0.

CL-

0.60

0.40
0
E

CE

0.20

0.00
0 	2 	4 	6 	8 	10 	12 	14
Wavelengt-h as a multiple oF grid spacing

Figure 13. Response of the finite element projection Operator.

107

CHAPTER 4

METEOROLOGICAL MODELLING ON THE ICL DAP

4.1. Introduction

This chapter reviews the previous meteorological modelling studies on the

ICL DAP. The processor array has a natural analogue to the finite difference

method and this formed the basis for the initial studies on using the DAP for

meteorological modelling, reviewed in the next two sections. As the spectral

method is preferred for global modelling, it is important to try to apply it to

the DAP. The first study of this method on the DAP is described in section 3.

The finite element method has already been shown by other authors (e.g. Lai

and Liddell, 1987a) to be suited to the DAP for engineering problems. No

meteorological studies using this technique have been conducted on the DAP

to the author's knowledge.

4.2. Studies using the Meteorological Office operational suite

Hunt (1974a,b) and Reddaway (1976) studied the application of the DAP to

the operational suite in use by the U.K. Meteorological Office at that time. As

the machine was not yet built, these studies were estimates of the DAP

execution time based on operation counts from the code listings.

Hunt (1974a) considered the implementation of the initialization program

that prepared a balanced initial state for the general circulation forecast model.

The input to the program was height and humidity, mapped to a rectangular

three dimensional grid. The wind field, height and humidity (adjusted to be

convectively stable) were output from the program. The grid had 66x50 points

with 10 vertical levels. The study assumed a 64x64 DAP so that each PE

processed one column.

Hunt (1974a) found that much of the original FORTRAN code could be

directly expressed in parallel form, the remainder consisting of conditional

operations and the calculation of boundary values. The conditional operations

occurred in the adjustment for convective instability and the height field was

adjusted so that the balance equation for the streamfunctiOn was elliptic.

Adjustments were made with logical masks to ensure the correct PEs were

updated. Although inefficient, these calculations formed only a small part of

the total number of operations.

108

About 65% of the arithmetic operations were spent solving Poisson

equations. A parallel version of the serial solution procedure was shown to be

inefficient and Hunt (1974a) discussed other methods but made no estimate of

the likely improvements in performance.

The overall efficiency of the DAP program expressed as the percentage of

PEs doing useful work was estimated as 50%. For 32-bit floating point

precision, the estimated performance was about 6 times that of the program

running on the IBM 360/195 used by the Meteorological Office at that time.

Hunt (1974a) noted that some parts of the. program appeared suitable for

calculation using block point arithmetic. Assuming the entire program was

coded using block point arithmetic, the estimated performance on the DAP

would be 18 times that on the IBM. The initialization program fitted entirely

into the 2Mbyte DAP store.

If a larger grid was used, it would have been processed in sections on the

DAP. On the other hand; if the array size was a multiple of the grid size (e.g.

a 128x128 DAP), Hunt (1974a) described how several levels could be processed

in parallel for some but not all parts of the program, depending on the

relationship between levels. First, in some calculations, each level was

processed independently. Second, some calculations used values at adjacent

levels or, last, a progressive calculation was made in which the results at one

level influenced values at successive levels. The second case could be

implemented in parallel if the data was mapped to the PE array to allow the

communication required. The latter case could not be implemented in parallel

and alternative algorithms would be needed.

Hunt (1974b) studied the implementation of the Meteorological Office 11

level general circulation model on the DAP. The grid of this model had 90

latitudes with a varying number of gridpoints around each latitude. In the

rows nearest the equator there were 180 points. In other rows, the number of

points was chosen to make the spacing in terms of distance approximately

equal to that at the equator. However, close to the poles, the spacing was

reduced to give a minimum of 16 points per row. This grid arrangement

meant that each point had two neighbours in the same row, one or two in the

adjacent row nearer the equator and one, two or occasionally three in the row

nearer the pole.

109

Hunt (1974b) discussed various methods of mapping this grid onto the PE

array. Each PE was assigned one vertical column and each latitude row

corresponded to part of a row of PEs. In the northern hemisphere,

consecutive PEs were assigned starting from the west edge of the PE array. In

the southern hemisphere they were assigned from the east edge, as depicted

in Fig. 14a. At 60 °N and 60 0S, the poleward latitudes were then wrapped

around onto the grid of 180x60 PEs as shown in Fig. 14b. Within this

rectangle 96% of the PEs were being utilized. Assuming a 128x128 DAP, the

grid could be stored by using two rows of PEs for each row of the 180x60

array. Another method considered was, starting from Fig. 14a, the grid was

displaced at the equator and wrapped around in the east-west direction

interchanging hemispheres, as shown in Fig. 14c. Utilization of PEs was 90%

in this case.

For a number of horizontal gridpoints greater than the number of PEs, Hunt

(1974b) showed it was possible for each PE to store two columns of

gridpoints. One method was for each PE to store two adjacent columns from

neighbouring rows, so that on successive processing steps odd and even rows

were advanced alternately. Another method split the rows into two sections

corresponding to east and west hemispheres. If the PE array size was a

multiple of the grid size, as for the initialization program, Hunt (1974b) found

that parts of the physics section of the model prevented several levels from

being processed simultaneously.

As the grid was irregular, the finite difference equations were formulated in

terms of fluxes (Corby et al. 1977). The serial method for solving the finite

difference equations was found by Hunt (1974b) to be readily expressed in

parallel form. Some logical masks were used during the routing operations to

ensure correct positioning of fluxes, especially across the Greenwich meridian.

At the two rows nearest the poles, the timestep was halved to ensure

stability and the calculations were made twice. Hunt (1974b) discussed some

methods to reduce the inevitable loss of efficiency in the use of the PE array

that this introduced. A different treatment of polar latitudes, such as Fourier

filtering, might be more appropriate for the DAP.

As for the initialization program; the convection subroutines introduced an

inefficiency because some PEs, particularly around the polar regions, were idle

110

North Pole

- 	 - 60° N

90 	 Equator
PEs

OF
180 PEs

(a) Preliminary step in
mapping the grid of
the Meteorological
Office general
circulation model to
the DAP. - South Pole

60
PEs

- —60° N

- - Equator

- - 60° S

Gridpoints north and
south of 60 ° N and S
are wrapped around
onto a 180x60 array
of PEs.

No-
180 PEs

Alternatively,
displace PEs in
southern
hemisphere in (a)
and wrap around in
east-west direction.

Redrawn from
Hunt (1974b).

Figure 14.

111

during these calculations. The analysis of the code by Hunt (1974b), showed

that about 16% of the total operations were conditional. Assuming an

arbitrarily small number of PE5 did useful work during the conditional

operations, the minimum percentage of PE utilization for the model was given

as 74%. An upper limit of 89% was obtained by Hunt (1974b) by assuming all

conditional operations fully utilized the PE array. Both these figures assumed

the same number of gridpoints as processors and therefore need to be

weighted by the ratio of the number of gridpoints to processors given above.

A realistic estimate of the overall efficiency might be 75%, higher if the grid

was expanded to use all the PEs. Hunt (1974b) also estimated the amount of

routing required during each timestep. This routing occurred solely in the

dynamics calculations and represented about 2.5% of the total estimated CPU

time per model step.

The possibility of using block point arithmetic or a reduced precision

representation of numbers was suggested by Hunt (1974b). A method was

suggested where variables at one time-level are held in 32-bit precision,

whereas values at the previous step are held as differences at reduced

precision. Although this reduces storage requirements, extra operations would

be required for this approach so it is not obvious that the CPU time would be

reduced. No other details were given of where reduced precision or block

point representation could be used.

Hunt (1974b) concluded that the general circulation model was suited to

the DAP, especially when the grid was chosen to match the number of

processors. A 128x128 DAP was estimated to give a factor of 10 speedup

over the performance of programs on the IBM 360/195.

Reddaway et at (1976) conducted a study of the application of the

Meteorological Office's operational suite of programs on the ICL DAP,

comprised of programs for; data extraction from a database, data analysis,

initialization, forecast and output. The model considered was the hemispheric

octagon model on a polar stereographic projection. This model mapped onto

the PE array in a straightforward manner. Reddaway et at (1976) used the

estimates of Hunt (1974a,b) for the initialization and forecast model to obtain

an estimate of the performance for the complete suite of programs. Overall a

factor of 13 over the throughput of the IBM 360/195 was estimated for a

64x64 DAP. However, this relied on the assumption that block point

112

representation could be used for the initialization and forecast model

programs. If 32-bit floating point values were used the factor would be about

5.

4.3. A study using finite difference and spectral models

The unfinished Ph.D. thesis of Fishbourne (1980) contains a description of

the application of finite difference and spectral meteorological models to the

ICL DAP. As far as the author is aware, this is the only other study of

meteorological modelling on the DAP. An incomplete copy of Fishbourne's

thesis was obtained during this study at Edinburgh University and the main

findings of his work are presented here.

4.3.1. Mapping grids to the DAP

Fishbourne (1980) studied the problem of mapping global finite difference

grids onto the processor array. He considered the equal-area type of grid, as

used by the Meteorological Office and described in the study of Hunt (1974b),

unsuitable for a DAP implementation. This is because of the unused PEs and

the nonuniform nature of the finite difference schemes, resulting in a loss of

efficiency. Fishbourne (1980) favoured the latitude-longitude grid as it maps

directly to the DAP and the finite difference equations take the same form

throughout the region, making them well suited to parallel processing. The

only drawback is the smoothing or filtering required near the poles for

stability, which must not present a large overhead for efficiency reasons.

4.3.2. Finite difference models

Fishbourne (1980) developed several finite difference global models for the

64x64 DAP at Queen Mary College in London, two shallow-water equation

models and a dry multi-level primitive equation model. The first

shallow-water model was based on the description of the general circulation

model of Arakawa and Lamb (1977), which used the equations in flux form.

The second shallow-water model was based on that of Sadourney (1975a)

written in spherical coordinates. This was similar to the first model but with

the equations in advective form and with a different treatment of the

equations at the poles.

The models used a regular latitude-longitude grid with 64 latitudes and 64

113

points around each latitude. The variables were held on an Arakawa 'C' grid.

Points around a latitude were mapped along rows of the PE array and the

meridians along columns. Height was defined at the poles but not velocity.

The distribution of variables on the grid and the PE array is illustrated in Fig.

15. Since the wind components were not defined at the poles there were

some unused elements in these matrices. There was also a redundancy in the

use of processors to store the value of the height at the poles. However,

these slight inefficiencies in the use of the PE array allowed the full parallelism

of the finite difference calculations to be exploited.

To facilitate the difference calculations in the north-south direction near

the poles, planar conditions for the respective edges of the PE array were

used. This removed the need for any masks and allowed the polar operations

to be done in parallel with those on the rest of the grid. Cyclic boundary

conditions were used in the east-west direction to remove the need for any

special code to compute the values at these edges.

The use of a regular latitude-longitude grid in both models ensured that

the form of the equations was the same at each gridpoint, except at the polar

gridpoints. Fishbourne (1980) noted there were two types of calculations for

these. For the first type, the equations formed a subset of those required for

the rest of the grid. Logical masks were used to prevent writing of the

unrequired results for the polar points, adding a negligible overhead, so that

all points were computed simultaneously. In the second type, the equations at

the poles and those for the rest of the grid did not share any common

operations e.g. the continuity equation takes a completely different form at the

poles. As latitudes were stored on rows of the PE array, this type were

computed in vector mode, which was more efficient than masked matrix

operations.

Fishbourne (1980) applied a Fourier filter to latitudes greater than 45 0N and

450S. This meant filtering was applied to three variables with 32 rows each.

Fishbourne (1980) chose to implement this filtering using a complex FFT on

each row of the PE array. Two of the variables were used as real and

imaginary coefficients for the FFT for the 16 northern and 16 southern rows,

whilst the third variable was routed from these rows to the 32 unused rows

about the equator for the FFT and then routed back afterwards. The CPU time

for this routing was small compared to the time for the transform. The

114

North Pole 	 h__- (51 	h
90° N 	 I 	I 	I 	I 	I

	

I 	I 	i 	I 	I
LV _1 LV

_ 	

N

Processing

	

______ I 	 I I 	 I

element 	 L - I L - I

\ h U h u

	

u Thul 	h 	u

• V V

U __ li-u U

U h u h u

V 	 V

South Pole 	 h
90°S 	 I

Figure 15. Arrangement of variables for the global shallow-water model of
Fishbourne (1980). Values contained within a processing element
are shown for some processors. The circled values of the velocities
at the poles are not used and are set to zero.

115

filtering therefore made full use of the PE array, except that the imaginary

coefficients for the 32 rows about the equator was zero as there were only -3

variables.

For a grid larger than the DAP array, Fishbourne (1980) favoured the

crinkled mapping over the sheet mapping for several reasons. It allows the

cyclic boundary conditions in the east-west direction to be used. As some

points are held in the same PE, the routing for difference or averaging

calculations is reduced. However, the amount of code has to be increased as,

for the 128x64 grid considered by Fishbourne (1980), the relative position of

the east-west neighbours in the PE memories is different between alternate

grid points.

Fishbourne (1980) measured the DAP CPU time per timestep of the flux

model to be 62msecs and the advective model to be 48msecs. The latter was

faster because of the simpler finite difference calculations. Fishbourne (1980)

does not give the model's performance rates but from the operation counts

presented in his thesis, these can be calculated as 11.5Mflops and 10.2Mflops

for the flux and advective models respectively. These are overestimates as

Fishbourne (1980) does not give the percentage of PEs performing useful work

during the calculations.

The Fourier filtering accounted for about 46% and 58% of the CPU time for

the flux and advective models respectively. This was not a reflection of the

inefficiency of the FFT algorithm, but resulted from the ratio of the number of

arithmetic operations in the FFT to that in the rest of the model. This large

overhead led Fishbourne (1980) to speculate that a nonuniform grid (such as

that used in Hunt, 1974b) might give a better performance, although the

inevitable mapping problems and extra routing required for the finite

differences might offset any advantage. Fishbourne (1980) noted that the time

for the FFT could be decreased by about 10% by leaving the transformed data

in bit reversed order, since this data is then transformed back to gridpoint

space directly after the amplitudes are modified. Fishbourne (1980) also

pointed out that for a multi-level model, the relative cost of the filtering would

be much less.

About 10% of the total CPU time per step for both models was spent

computing the operations specific to the poles in vector mode. Fishbourne

116

(1980) regarded this as a small overhead. A timestep of 5 minutes was used

for both models.

The shallow-water model in flux form was extended by Fishbourne (1980)

to a dry, multi-level sigma coordinate model. The same 64x64

latitude-longitude Arakawa 'C' grid was used. This increased the number of

potential processes in the spatial dimensions to a maximum of NLEVx4096,

where NLEV is the number of levels. This number of processes was not

possible throughout the whole procedure, however, as the calculations at the

top and bottom levels differed from those at other levels. However they

generally formed a subset and masked operations allowed all the levels to be

processed simultaneously. In addition to the spatial parallelism, the

temperature and humidity (not used by Fishbourne) calculations are largely

SIMD, offering a factor of two in the number of available processes. The

parallelism available in a SIMD sense therefore varied throughout the

processing steps but was greater than could be exploited by the DAP.

The model was implemented on the DAP by processing the layers

sequentially; the most natural way to deal with more potential processes than

available processors. The number of vertical levels was varied from 3 to 8 to

compare the performance of the model. The Fourier filtering was applied to

latitudes greater than 60 °N and 600S, ten rows in each hemisphere, so that a

complex transform was used to filter 6 variables. The full PE array was used

for filtering by routing data from the polar latitudes in place of the unfiltered

rows, as for the shallow-water models. The model required that 3NLEV+1 sets

of derivatives were also filtered. The time for the Fourier transforms was

reduced by removing the routing required to convert the data from bit

reversed to normal ordering. Fishbourne (1980) obtained a 20% decrease in

execution time for the FFTs when this was done.

In examining the performance of the model, Fishbourne (1980) showed that

the execution time of those routines that depended on NLEV varied almost

linearly. The proportion of the model CPU time spent executing in matrix mode

was 83%, the proportion in vector mode was 7.5% and scalar mode operations

accounted for 2%. The remaining proportion of the time, 7.5%, was spent

routing and broadcasting data, most of this was in the FFTs. The

computations in the polar regions accounted for nearly all of the time spent in

vector mode. The FFTs in this model accounted for some 25% of the

117

execution time. This is a smaller fraction than before because of the

increased finite difference calculations, an optimized FFT routine and the

application of filtering to fewer latitudes.

Fishbourne (1980) found that with 3 levels one timestep required 176msecs,

whilst with 8 levels the time was 449msecs. These times are 2.8 and 7.2

times the CPU time for the shallow-water model. The size of the DAP

memory prevented the model from being run with greater than 8 levels. If

humidity had been included, only a 6 level model would have been possible.

Fishbourne (1980) gives a performance rate of 18Mflops for the model, with

14Mflops for the finite difference calculations only, excluding Fourier filtering,

vector and scalar mode operations. These rates are greater than those for the

shallow-water models and the overall rate is 67% of the DAP peak

performance for 32-bit floating point addition or 93% of the performance

attained with an equal number of matrix additions and multiplications

(19.3Mflops). These show that the model is well suited to the DAP.

This model's storage requirements and performance could have been

improved. For example, Fishbourne (1980) noted that some repeated

calculations could be avoided by using temporary storage. He did not discuss

the use of lower precision or block point arithmetic.

4.3.3. Spectral model

To compare with the finite difference models, Fishbourne (1980)

implemented the global spectral shallow-water model described by Hoskins

(1973) on the DAP. Only a brief review of the main points of this work is

given here 'as more detailed comments are made in the next chapter. The

DAP FORTRAN code for Fishbourne's spectral model was made available to the

author at Edinburgh University but did not compile and was not run on the

Edinburgh University DAPs.

Fishbourne (1980) chose a triangular truncation at wavenumber 42 for the

model. In analysing the potential parallelism available, he commented that this

varied significantly during each timestep, more so than for the gridpoint

model. The available parallelism of each variable varied between gridpoint,

Fourier and spectral space. Additional parallelism existed from the same

operations on different variables. However, at some stages, the total number

118

of available processes was less than the available processors. For example, in

calculating the spectral coefficients of the wind components, the procedure

was parallel in all the real and imaginary components of the two fields, giving

a total of 2(M+1)(M+2) processes where M is the truncation wavenumber.

With M=42, this is less than 4096, the number of available processors.

However, at other points, such as the spectral transforms, there were more

potential processes than processors. Careful consideration of the data layout

on the PE array was thus required for an efficient implementation.

The storage requirements of the Legendrepolynomials and their derivatives

was recognized as considerable by Fishbourne (1980), who chose to pack the

polynomials and compute the derivatives every timestep. This resulted in a

significant overhead to the Legendre transforms. More details are given in the

next chapter.

The model was found to take 1.38msecs per timestep. When compared

with the gridpoint shallow-water models on an equivalent grid, this is about a

factor of 10 greater. This is also 3 times the cost of the 8 layer primitive

equation model on the 64x64 grid. This implementation by Fishbourne (1980)

is clearly not competitive.

The spectral transforms accounted for 99.2% of the CPU time with the

Legendre transforms alone accounting for 82.7%. The routing was found to

account for 11.6% of the CPU time per timestep. Fishbourne (1980) does not

give a performance figure in Mflops for this model.

The storage requirements of the model were such that Fishbourne (1980)

calculated that a maximum of 3 layers would be possible for a 3 dimensional

primitive equation model, without the need for external storage. Of the

memory used by the program, 35% was for the storage of the Legendre

polynomial values.

4.4. Arithmetic precision and block point arithmetic

Although the execution time of programs on the DAP can be decreased by

using lower precision and block point arithmetic, none of the above references

studied the effect of these changes on the CPU time and on the model results.

It must be demonstrated that lower precision and block point arithmetic do

not adversely affect the meteorological results for any model. This would

119

require a detailed study and would probably be model dependent. Hence, such

a study was not done for the models described in the following chapters.

However, this section reviews some previous work done on the effect of

precision on model results.

4.4.1. Precision requirements for meteorological modelling

The experiments of Williamson and Washington (1974) used the NCAR

global circulation model (Kasahara and Washington, 1971) on a CDC 6600

computer. They examined the importance of precision in short term forecasts

and climate simulations using 48, 24 and 21-bit mantissa arithmetic.

They used a 48-bit forecast to derive the global root-mean-square (rms)

errors in wind and temperature for the 24 and 21-bit forecasts and found that

there was a rapid error growth in the first 12 hours of approximately one

order of magnitude every hour. After a day, the growth rate decreased and

became comparable to the growth rate from observational errors. They

concluded that since the rapid error growth dominated the accumulation of

round-off error and typical observational errors are greater than round-off

errors, lower precision arithmetic did not significantly affect the result for

short range forecasts. However, they noted that the rapid error growth was

caused by the latent heating term as, when this was set to zero, the rapid

growth did not occur.

For long-term forecasts over 80 days they compared the results of

integrations using 48 and 24-bit mantissa arithmetic. Again, although they

found minor differences, they concluded that 24-bit mantissa arithmetic does

not significantly change the results as there seemed to be no tendency for

round-off error to dominate.

The reply of Kurihara and TuleVa (1974) to the work of Williamson and

Washington (1974) described differences in the results of a hurricane

simulation model when run with 27-bit mantissa arithmetic on a UNIVAC 1108

computer and 24-bit mantissa arithmetic on an IBM 360 machine. With the

higher precision the conservation of mass was perfect, however, with the

lower precision a small but systematic decrease was noted. They also found

that the heat budget of the model became inconsistent as more energy was

lost through round-off error than added to the system.

120

They made several recommendations to correct the problems associated

with low precision. In particular, the use of double precision with a 'rounding

up or down' formula when a small term, comparable to or slightly larger than

the round-off error, is added to a large term. Also the moist processes should

be calculated in double precision.

Searle and Davies (1975) ran a four level model on an Atlas computer

(40-bit mantissa) and on an IBM 360, in single (24-bit mantissa) and double

precision (56-bit mantissa), to compare the effect of mantissa length. Using a

timestep of 30 minutes they found that after 30 days, significant differences

occurred in the eddy kinetic energy between the two runs on the IBM machine.

The run on the Atlas machine showed noticeable differences to both. runs on

the IBM machine after 15 days. They suggested that tiny differences in the

initial eddies became significant when the model eddies were amplified to near

peak values.

The work of Baede et at (1976) examined the effect of precision in more

detail. They described two experiments; one using the adiabatic baroclinic

spectral model of Hoskins and Simmons (1975), the other using the GFDL

general circulation gr.idpoint model described by Miyakoda (1973). Both

models were run on an IBM 360, in single and double precision and a 48-bit

mantissa CDC 6600.

The spectral model was run for 8 days with a triangular truncation at wave

number 21, for timesteps of 30 and 90 minutes, using a semi-implicit time

integration scheme. Comparing the amplitudes and phases of the dependent

variables in all runs they found no differences when the values were printed to

4 significant figures. Mass was formally conserved in the model and when the

change in the total mass was studied, it was almost identical between runs.

This agreement showed that time truncation errors rather than round-off

errors dominated the nonconservation of mass, although for Kurihara and

Tuleya (1974) round-off error seemed to be the cause of the problem.

In studying the energy conservation they found no difference between the

CDC run and the double precision IBM run. However, the single precision run

on the IBM showed a large deviation of several orders of magnitude from the

previously calculated values. On closer examination they found that this large

change could be attributed to a change in a single bit. Baede et at (1976)

121

concluded that 24 bit mantissa arithmetic was sufficient for dynamics

purposes as at least four figure accuracy could be obtained during an 8 day

integration.

For their second experiment, the GFDL model was integrated over 10 days.

Most of the dynamics and physics, apart from the moist processes, was

carried out in single precision, although at many points in the OFOL code

double precision arithmetic was used following the recommendations of

Kurihara and Tuleya (1974). In running the model on the IBM computer, the

original model was used with the moist processes in double precision, but on

the CDC 6600 these processes were calculated using single precision (48-bit

mantissa).

The results of Baede et at (1976) paralleled those of Williamson and

Washington (1974), as the global vertically integrated rms errors of wind and

temperature showed the same initial rapid error growth. However, they also

found that the errors were much greater over the tropics and equatorial

regions. They concluded that the wind and temperature discrepancies

originated in the equatorial regions and propagated into the mid-latitudes.

The errors also showed a pronounced vertical structure.

The initial growth of discrepancies was attributed to the moist convective

adjustment (MCA) scheme as, after only a few hours, local discrepancies of

several degrees were observed in the tropics, at first near the ground but later

in the mid-troposphere. This agreed with the conclusion of Williamson and

Washington (1974). On further investigation they found that it was not the

calculation of the MCA that was strongly computer dependent but instead the

process that determined whether MCA occurred. However, as the decision

making was performed in single precision on the CDC and double precision on

the IBM computer, the length of the mantissas were comparable in both runs.

Therefore Baede et at (1976) suggested that compiler differences played a

role. They concluded by stating that the precise nature of the problem was

not clear but the MCA part of the code required double precision arithmetic

and very careful coding.

From this review, it can be concluded that the dynamics calculations for

the models presented in the following chapters can be coded using 32-bit

precision. It is not clear, however, if the word length can be reduced still

122

further. The limit is the numerical inaccuracy introduced by the spatial and

temporal truncation errors, as there should be enough precision to avoid

round-off error (and its growth) exceeding the truncation error. The error in

observations could also be used as a limit. As model resolutions increase and

timesteps decrease correspondingly (ignoring advances in time integration

techniques), the differences or increments in the model equations for each

timestep become smaller. Therefore, the future trend might be for an increase

in the arithmetic precision used for meteorological models.

For spectral models, the effect of the arithmetic precision on the Legendre

transforms would be a concern. At high wavenumbers and close to the poles,

the Legendre polynomials tend to zero. Therefore, high precision might be

needed to allow for these small contributions. Alternatively, an algorithm that

starts the summation from the high wavenumbers to accumulate these small

contributions first might be suitable for use with a lower precision.

For the physics part of the models, it could be argued on the one hand

that the required precision should be based on the accuracy of the

approximations made in each parametrization scheme. On the other hand, the

conditional part of the convective parametrization would seem to require as

large a word length as possible. However, the reviewed studies may not be

relevant to current convective parametrization schemes.

It would seem, therefore, that there is scope for employing reduced

precision in meteorological models, although not for all parts of the program.

As mentioned in chapter 2, the CPU time for calculations depends linearly on

the precision.

4.4.2. Block point arithmetic

The use of block point arithmetic instead of floating point arithmetic for

meteorological applications was suggested by Hunt (1974a,b). In block point

arithmetic, a common exponent is held for each value on the PE array; hence

it is best suited to fields without a large variation in their maximum and

minimum values (e.g. water vapour).

Block point arithmetic is not available in DAP FORTRAN. However, it can

be simulated using integer arithmetic. Tests using a one-dimensional linear

advection equation model showed that integer arithmetic required

123

approximately a third less CPU time than the equivalent floating point

precision.

4.5. Discussion

The previous studies of finite difference models reviewed in this chapter

showed them to be suited to the DAP as they are efficient with low overheads

(routing, nonmatrix mode operations). The appropriate choice of grid for global

models on the DAP is not entirely clear. For a regular latitude-longitude grid,

the overhead caused by the need for FFTs may offset the added complexity of

finite difference operations on an equal-area type grid and the inefficiency

caused by mapping this grid to the DAP. For example, Hunt (1974b) estimated

the routing overhead to be 2.5%, whereas Fishbourne (1980) measured it as

7.5%.

In comparison, the spectral model of Fishbourne (1980) was expensive and

had greater storage requirements. Any improvement to the spectral model

would need to be made to the Legendre transforms since these accounted for

83% of the processing time. The following chapter describes improved

parallel algorithms for these transforms.

124

CHAPTER 5

PARALLEL LEGENDRE TRANSFORM ALGORITHMS

5.1. Introduction

In this chapter, parallel algorithms for the inverse and direct Legendre

transforms are developed prior to the implementation of a spectral

shallow-water model on the DAP described in the next chapter. These

transforms accounted for 83% of the CPU time of the spectral model of

Fishbourne (1980). Efficient algorithms are therefore essential for an efficient

implementation of the model. Furthermore, the Legendre transforms have to

use the nonrectangular data structure of the spectral coefficients which is

likely to inhibit their efficiency. To simplify the derivation of the algorithms,

transforms that do not use the symmetry property Eq.(3.4.30) are first derived.

5.2. Data mapping

Before the algorithms are developed, methods for mapping the spectral

data on the DAP must be considered, as the algorithm is dependent on the

data storage format. The optimum algorithm will be the one which takes the

least time to execute. It need not have the least storage requirements

although this is also an important issue. Methods for mapping the two most

commonly used truncations, triangular and rhomboidal, onto the DAP array are

described.

5.2.1. Real spectral coefficients

The spectral coefficients require the least amount of space of the three

representations of a variable (gridpoint, Fourier and spectral). For a single level

model, at resolutions practical for the DAP, the space used by the spectral

coefficients is not critical. However, it should be noted that in spectral

models, the spectral coefficients must be held complete in store. For high

resolution, multi-level spectral models (e.g. Baede et a!, 1979) where latitude

rows can only be processed and held in memory one at a time, the space

used by the spectral coefficients is therefore important.

The earliest spectral models used a rhomboidal truncation and the spectral

coefficients could be conveniently stored in two dimensional arrays since for

each tn, the number of coefficients over all n is constant. When triangular

125

truncation became more popular, one dimensional arrays or vectors were used

to hold the spectral coefficients.

The spectral coefficients were traditionally stored column-wise in these

one dimensional arrays but Baede et 8/. (1979) found this arrangement

inhibited vectorization of the Legendre transforms. This problem was overcome

by storing the coefficients in a diagonal-wise manner (Fig. 16). A similar

approach could be used for storage of spectral coefficients on the DAP.

Considering only the real parts such a mapping would be,

(m,n)(m+1,n-m+1) 	 (5.2.1)

using the notation introduced in chapter 2. Diagonals are stored down columns

of the DAP matrix.

If the DAP processor array is used in 'long-vector' format, where columns

of the array are assumed to be concatenated (ICL, 1979), the spectral

coefficients can be stored in the DAP analogous to the use of one dimensional

arrays on serial or vector machines using either column-wise or diagonal -wise

arrangements. This makes efficient use of storage. For a triangular truncation

M, the number of real and imaginary spectral coefficients to be stored for

each variable is given by,

NT = (M+1)(M+2)
	 (5.2.2)

For example, for M=42, two variables could be held completely in one DAP

matrix, each occupying 46%. An equivalent rhomboidal truncation would have

the same number of degrees of freedom and therefore occupy the same

amount of space.

This mapping generally results in a column of the processor array

containing coefficients for several values of m (column-wise storage) or

diagonals (diagonal-wise storage) for both rhomboidal and triangular

truncations. This means that the (m,n)th coefficient will be stored at different

locations on the PE array for different resolutions, implying that the transform

algorithms will apply only to a particular resolution. They will also be

inefficient as they involve summations over .i and n and the required

coefficients may exist on different rows or columns of the processor array.

Despite the storage efficiency of this mapping, it would seem unsuitable for

126

n

11 15 18 20 21
x x x x

10 14 17 19
x x x x
9 13 16
x x x

8 12
x
7
x

(a) Column-wise storage for triangular truncation.

n

1 	20 18 15 11 6
x x x x

9 	17 14 10 5
x x x x

6 	13 9 4
x x x

L2 	8 3
x
2
x

(b) Diagonal-wise storage for triangular truncation.

Figure 16. The number of each spectral coefficient
indicates its storage position in a
one-dimensional array.

m

127

use with the transforms.

Perhaps the most obvious mapping is to store the spectral coefficients as

they appear in spectral space. Spectral coefficients triangularly truncated

could fit into the upper or lower triangular part of the PE array (assuming for

now a sufficiently low resolution). This mapping could be written as,

(m,n)-(m+1,n+1} 	 (5.2.3)

Unlike the long-vector format, wavenumber m increases solely with the row

index and n increases with the column index. This has the advantage that

indexing the array is straightforward. Increasing the resolution involves simply

adding another column without disturbing the existing spectral coefficients.

For rhomboidal truncation, the coefficients would be more efficiently stored

if transformed slightly from their representation in spectral space. This

mapping is identical to the one that might be used for serial or vector

machines and is given by Eq.(5.2.1). Although indexing is slightly more

complex than for triangular truncation, increases in resolution would be

similarly straightforward.

Two methods exist for storing arrays larger than the DAP processor array.

These are the sheet and crinkle methods described in chapter 2. Either can be

used in mapping the spectral cofficients for a high resolution.

For the :rinkled mapping, storing the coefficients of the summation index

(total wavenumber or latitude) in a single processor or among neighbouring

processors would give efficient transforms. For a sheet mapping, the spectral

coefficients could be divided to make full use of the available space, for

example by dividing the coefficients in half about a specified zonal

wavenumber.

5.2.2. Imaginary spectral coefficients

So far only the storage arrangement of the real part has been considered.

Perhaps the simplest approach for storing the imaginary part is to use the

same mapping as the real part, requiring the use of a separate matrix.

However, this is inefficient; half or less of the matrix would hold data. The

advantage would be that selection of coefficients for the Legendre transforms

128

is straightforward as the mapping of the real and imaginary coefficients is the

same. The spectral model of Fishbourne (1980) used this approach.

By storing the imaginary coefficients in the same matrix as the real

coefficients not only are the storage requirements for the spectral coefficients

halved, but so is the time taken for any computation in spectral space. While

this is expected to be a small percentage of the total CPU time per timestep,

it would be more beneficial with the use of a semi-implicit time scheme.

The disadvantage of storing the imaginary coefficients in the same matrix

is that routing operations will be needed to reformat them for the Legendre

transforms. To see how costly this would be, assume that the mapping used

for the imaginary part is a transpose operation of the real part. Using the

time of 216psecs given in chapter 2 for the TRAN function, the overhead per

timestep per variable will be 0.432msecs, assuming TRAN is called once for

each of the inverse and direct Legendre transforms. By comparison, the gain

from the reduction of operations in spectral space (diffusion, time differencing

and filtering) will be approximately 1.85msecs. It is therefore advantageous in

CPU time and storage space to store real and imaginary coefficients in the

same matrix, for resolutions at which this is possible.

To minimize the routing to reformat the imaginary coefficients, some of

the DAP FORTRAN intrinsic functions can be used. One possible mapping of

the imaginary parts uses the REVC and REVR functions, which reverse the

columns and rows of a matrix respectively (Eq.(2.6.15)). Applying these

operations to the mapping for the real coefficients of,

Real: (m,n)-{m+1,n+2}
	

(5.2.4)

which is obtained from Eq.(5.2.3) with the leading diagonal left free, gives a

mapping for the imaginary coefficients of,

Imag: (m,n).{64-m,63-n}
	

(5.2.5)

Another possibility would be to transpose the real coefficients using the TRAN

function (Eq.(2.6.15)), to give an imaginary coefficients' mapping of,

129

lmag: (m, n) 	(n + 2, m + 1) 	 (5.2.6)

The shift functions together with REVC and REVR can be used to obtain

further possibilities. Suppose each column of the real coefficients is shifted

n+1 places north cyclically and the rows reversed. The resulting mapping

would be,

Imag: (m, n)+{64+ m- n,63- n} 	 (5.2.7)

It occupies the same array space as Eq.(5.2.5) but the m and n axes are

orientated differently. Alternatively, the rows of the real coefficients could be

shifted and then reversed. This cannot be applied to the rhomboidal

truncation. The mappings, Eq.(5.2.5), Eq.(5.2.6) and Eq.(5.2.7) are shown

schematically in Fig. 17.

The orientation of the axes of the imaginary coefficients is different in each

mapping and to the real coefficients. This may be influential on the efficiency

of the Legendre transforms in the way the coefficients are selected from the

matrix. Although the functions used above have similar execution times and

therefore the differences in CPU time of various algorithms may not vary

much, it is not clear if this is the case for the complete model. Therefore,

several versions of the Legendre transform algorithms are developed in this

chapter, corresponding to each of the mappings discussed above.

5.2.3. Legendre polynomials

It is a computational advantage to store the Legendre polynomials and

their derivatives. In this section, the mapping of these values within the DAP

store is considered.

The polynomial values require a three dimensional array unlike the

coefficients for the Fourier transform and the space required to store them is

considerable. One method of storing the polynomials would be that used for

the spectral coefficients, where the data for each latitude would be held in a

separate matrix. The mapping expression would be,

130

(c)

OPM

'IN
ml N Real

Imaginary\f

_

yIN
m 	Real

Imaginary

n

Fiji

Figure 17. Illustration of possible mappings of imaginary spectral
coefficients. (a) REVC and REVR, (b) TRAN, (c) SHIFT
and REVC.

131

Pmn: (m,n,i1)-(m+1,n+2,j) 	 (5.2.8)

where j=l to J and J is the number of latitudes. The third index, j, on the RHS

refers to the matrix number with positive increasing down in the DAP store.

This arrangement only utilizes 23% of the total space occupied by the

polynomials. By also storing the derivatives in the array, 46% of the total area

could be used. Whilst this is not efficient use of store, a more serious

problem is that as many matrices as latitudes are required. For example, at

T42, half the available DAP memory (2048 planes) would be used, assuming

32-bit precision and the symmetry property was not used.

Fishbourne (1980) overcame this problem by packing the polynomials SO

that each matrix held all the values for three latitudes. He obtained the

derivatives by the recursion formula Eq.(3.4.33) at each timestep. This method

introduces an overhead in routing the polynomials to the correct format and in

calculating the derivatives. It has the advantage, however, that the values can

be unpacked into a different format for the inverse and direct Legendre

transforms. The number of planes required at T42 with packing is 704, with

69% of the array in use. The unpacking overheads are undesirable since the

performance of the model will depend strongly on the performance of the

Legendre transforms. An alternative storage arrangement is therefore required

that does not introduce any overheads and improves on the storage efficiency

and reduces the number of planes required.

Since the Legendre polynomials occupy a three dimensional area of

storage, it is possible to store them such that either the n or m axis lies

vertically in the store. In either case, the number of matrices required is M+1,

1376 planes at T42, rather than J. Although twice as much store as

Fishbourne's packing approach, it is a third less storage than when latitude is

mapped down the store, with 34% of the space used to hold the polynomials.

No unpacking is required and the derivatives do not have to be calculated

each step, since they may also be stored in the same area increasing the use

of space to 68%. If the derivatives were also stored in Fishbourne's model, the

total number of planes needed would become 1408.

If m is mapped down the store, the Legendre values can be stored as,

132

Pmn : (m,n,i)+{j,n+2,m+1} 	 (5.2.9)

The derivatives may be stored as,

dQmn /dp: (m, n, p)-s' {j, M- n+ 1, M- m + 1 	 (5.2.10)

This arrangement is illustrated schematically in Fig. 18.

If n is mapped vertically down the store, one possible mapping could be,

Pmn : 	 (m, n, p) - (m + 1, 5, n + 1) 	 (5.2.11)

d Qm, n /dp: 	(m, n, p) - { 64 - m, 5, M + 1 - n)

This is shown in Fig. 19.

Within these different approaches there are several ways in which to map

the Legendre polynomials. The options are: (i) whether to map m or n up or

down the DAP store, (ii) how to orientate the other axes, (iii) where to position

the origin and (iv) how to map the derivatives. Much of the discussion in

mapping the real and imaginary parts of the spectral coefficients is relevant to

mapping the Legendre values. Mappings need to be selected in such a way as

to reduce any routing in selection of rows or columns of values during the

Legendre transforms. If m or n is mapped such that it increases vertically

down the store a simple mapping expression results (Eq.(5.2.9) or Eq.(5.2.11)).

That is, indexing matrices of polynomials involves one integer scalar addition.

For the derivatives, the mapping expression is more expensive. Selection of a

matrix now involves an addition and a subtraction. Thus the amount of

computation involved in selecting components of the array is directly related

to the complexity of the mapping expression. Therefore, by comparing

mapping expressions between spectral coefficients and Legendre values it is

possible to determine the amount of routing required.

The mapping expression of the derivatives could be simplified by storing

them with their m axis increasing down the store whilst the n axis of the

polynomials increases down the store,

Pmn : 	(m, n, lij) - { m + 1, j, n + 1 } 	 (5.2.12)

dQmn/dp: 	(m,n,p)+{n+2,j,m+1}

133

94 N

E

Figure 18. Schematic illustration of one possible storage format for the
Legendre polynomials and their modified derivatives when
the m axis of the polynomials is mapped vertically.

134

P
m4
 9 i

m,n

/1

Figure 19. Schematic illustration of one possible storage format for the
Legendre polynomials and their modified derivatives when
the n axis of the polynomials is mapped vertically.

135

analogous to the transpose mapping of the imaginary spectral coefficients. It

is possible to devise another mapping analogous to Eq.(5.2.7).

It is not possible to completely determine the optimum data mapping for

the Legendre values until the transform algorithms are considered. However,

from the above discussion the algorithms must use a mapping of the Legendre

values such that wavenumbers n or in are vertical in the DAP store. It will also

be beneficial to store the derivatives in the same array space as the

polynomials. Another aspect is the data mapping expected by the FFTs.

Whilst these are performed independently of latitude, the FFT algorithm will

expect m to be mapped regularly on either rows or columns.

5.3. Inverse Legendre transform

In this section, the parallel algorithms for the inverse Legendre transform

are developed. The symmetry property of the Legendre polynomials is not

used. The inverse transform to be required in the spectral model of chapter 6

is given by,

M

Pm (Pjt) = 	F m, n (t)rn.n(j) 	for m=O to M 	 (5.3.1)

nlmI

and is the simpler of the two Legendre transforms. It consists of two steps,

multiplying the spectral coefficients by the Legendre polynomials and then for

each m and i summing over n-

The algorithms for the three storage arrangements of the Legendre

polynomials are introduced first. Then the most efficient is examined in more

detail, to be able to decide on the best precise mappings for the real,

imaginary and Legendre coefficients.

5.3.1. Algorithms

In this section, only a general mapping of the spectral coefficients or

Legendre polynomials is assumed. Any extra routing needed when the precise

mappings are subsequently decided, is assumed to have a negligible effect on

the execution time of the algorithms presented here. This is reasonable as

arithmetic operations are more costly than routing operations.

136

5.3.1.1. Latitude vertical

Although the type of mapping exampled by Eq.(5.2.8) where V is vertical in

the DAP store was deemed to be unsatisfactory, the algorithm arising from

this arrangement is described to enable comparison with later algorithms since

it is essentially the method used by Fishbourne (1980). For either the real or

imaginary coefficients, the algorithm is, for each latitude,

Multiply the spectral coefficients by the Legendre

polynomials. This is done in matrix mode and is parallel in

m and n.

Sum along rows (or columns, depending on the data

mapping) of processors to give a vector result.

The real and imaginary coefficients are transformed sequentially. Some routing

is required before the loop to format the imaginary coefficients correctly.

Step 2 implies the m and n axes must be parallel to rows or columns and

long-vector storage cannot be used. The estimated time for each pass is

therefore,

T = 544 + 704 = 1248 psec. 	
(5.3.2)

As real and imaginary coefficients are stored in the same matrix, the

opportunity to multiply the spectral coefficients by the polynomials in parallel

exists, removing a multiplication on each pass, as noted by Fishbourne (1980).

However, the summation along n must be done separately for the real and

imaginary parts, whatever the mapping. As the polynomials and their

derivatives must be stored in the same array, some routing and an addition

become necessary to create the working polynomial arrays at each pass.

Using the timings given in chapter 2, the total time (ignoring assignments and

masking) per pass for this method is,

T = 152 + 272 + 704 + r

= 1128 + r jsecs 	
(5.3.3)

where r represents the time taken for the routing operation. For this method

to be faster, r < 120.isecs. None of the imaginary part mappings discussed

137

earlier used routing operations which took this time or less to execute (see

function timings given in chapter 2). Transforming the real and imaginary

parts sequentially is therefore better.

An estimated execution time, based on the DAP FORTRAN code in Appendix

A. is given in Table 4. Fishbourne (1980) gives an estimated CPU time of

89.28msecs and a measured CPU time of 96.63msecs for his inverse Legendre

transform routine. The overhead incurred by unpacking the polynomials can

be calculated to be between 8% and 17% by comparing Fishbourne's timings

to that in Table 4. The higher figure is derived from the measured CPU time,

the lower from the estimate given by Fishbourne. This overhead therefore

makes a significant contribution to , the execution time of the algorithm.

However, if the available memory was such that the Legendre polynomials had

to be packed, this overhead would be unavoidable.

The efficiency of an algorithm can be defined using Eq.(2.6.3). Only the

operations in the loop over latitude are considered. The first step, the

multiplication by the Legendre polynomials, has m1 -(M+1)(M+2) and

t1 =272isecs. For the second step, the summation, only M+l rows will be in

use, so m2=64(M+1). Substituting into Eq.(2.6.3) for T42 gives an efficiency of

E=0.48 or 48%. It is assumed that the DAP FORTRAN summation function uses

100% of the processors. This is not strictly true as the columns contain

different amounts of spectral coefficients to be summed. However, the

algorithm used by this function (see chapter 2) spreads the work across more

processors than those that contain data initially, so this assumption should not

significantly affect the calculated efficiency. The inverse Legendre transform

has 2NLAT(M+1) 2 floating point operations, where NLAT is the number of

latitudes. Using the estimated time from Table 4, an estimated performance

rate, at T42, of 2.9Mflops is obtained.

5.3.1.2. m vertical

Suppose the Legendre polynomial mapping, Eq.(5.2.9), is used, in which the

m axis lies vertically in the store. The algorithm becomes, for each zonal

waven umber,

1. Select a vector of spectral coefficients for all n. Broadcast

and multiply to the Legendre polynomials.

138

Pm,n 	 Loop 	 Estimated
mapping 	 length 	time (msecs)

Latitude 	 64 	 82.45

vertical

m 	 43 	 58.23

vertical

n 	 43 	 41.71

vertical

Table 4.

Estimated execution times for three inverse Legendre transform algorithms

derived from different mappings of the Legendre polynomials.

139

2. Sum along processors (rows or columns) to give a vector

result over latitudes.

The algorithm is now sequential in m and parallel in n and latitude. The real

and imaginary parts are treated sequentially.

Although each pass through the loop includes a broadcast of data,

compared to Fishbourne's (1980) algorithm (latitude vertical) the loop length is

now only 43 instead of 64. As the broadcast function is inexpensive, this

method should be faster than the previous one. The estimated time in Table 4

shows the algorithm takes 29% less time than Fishbourne's. This gives an

estimated performance rate of 4.1Mflops.

The algorithm still suffers from inefficient use of the array. At best, when

m=0, 67% of the array is in use. At worst, when m-- M, only 1.5% or 1 row or

column is doing useful work. Whilst each row or column represents a latitude,

the number of PEs holding useful data along the n axis varies between 1 and

43, so that, as for the latitude vertical algorithm the summation involves more

processors than necessary. To compute the efficiency, the broadcast,

multiplication and summation operations in each pass are considered. As the

number of processors performing useful work changes with m, there are 3x43

timeslices for Eq.(2.6.3), giving an overall efficiency of 0.70. The decrease in

execution time and improvement in the performance rate is consistent with an

increase in the efficiency.

5.3.1.3. nvertical

The final mapping discussed for the Legendre polynomials was when the n

axis was mapped vertically. The algorithm becomes, for each wavenumber n,

Select a vector of spectral coefficients for all in.

Broadcast to all latitudes and multiply by the Legendre

polynomials.

Add product to the partial sum of products computed on

previous pass.

This is parallel in latitude and m but sequential in it The summation function

140

SUrdc or SUMR is now replaced by a computationally cheaper matrix addition.

As before, real and imaginary parts are transformed sequentially. The

estimated timing in Table 4 confirms the superiority of this algorithm. The

estimated performance rate is 5.7Mflops for this algorithm, almost twice the

performance rate of the latitude vertical algorithm.

To compute the efficiency, the broadcast, multiplication and addition

operations are considered for each wavenumber n. Using Eq.(2.6.3) gives

&0.34. This is less than the efficiencies for the m vertical and latitude vertical

algorithms because the DAP FORTRAN function to sum across rows or

columns, which is efficient in its use of processors, is no longer used. If all

the processors were doing useful work during the loop, the performance rate

would be 17Mflops. Thus 34% of the potential performance is achieved,

consistent with the calculated efficiency.

The overall efficiency is only a third of the available processors. This is

mainly due to the decreasing length of the selected vector as n decreases, an

inefficiency common to all of the algorithms discussed. To improve this and

keep a constant vector length it is necessary to pack the spectral coefficients

and the Legendre polynomials. A simple method is where the spectral data

are separated into two halves about n=n' to give a rectangle. The loop length

is halved as the coefficients for two values of n are stored in the same

column. However, it is possible to show that no overall decrease in execution

time occurs because of the additional work required in the loop to unpack the

coefficients. A rhomboidal truncation, mapped as Eq.(5.2.1) would give a

rectangular data structure without the need for packing. Minor optimizations

of the code are possible e.g. some gain may be made by making use of vector

operations rather than matrix ones when n is 0 or 1, since only one or two

rows respectively are in use. A much greater improvement would result if this

algorithm was coded in assembler, to use the spare processors during the

arithmetic operations. For example, at n=31, half the PE array is unused so

each processor could process 16 bits of each word, halving the computation

time at this stage. At n=15, each processor would be assigned 8 bits of each

word and so on.

141

5.3.2. Choice of mappings

Having determined the most efficient algorithm, the next step is to select

the precise mappings for the real and imaginary spectral coefficients and the

Legendre polynomials. The key point to the algorithm as far as the real

coefficients are concerned is that a vector of coefficients over all m for each n

is selected. All these coefficients must lie completely in a row or column to

ensure efficient selection. Thus, a mapping using long-vector format or

packing would be unsuitable. Furthermore, although not as important, to

simplify the selection of a vector during the loop and avoid any unnecessary

integer scalar arithmetic or initial routing, the n axis should increase with

either the row or column index. For the m axis, its mapping should be such as

to avoid any routing before the inverse FFT. The algorithm used for the FFT

(see chapters 2 and 6) expects the m axis to increase with the row or column

index and that m=O maps to the first row. The mapping that satisfies these

criteria is given by Eq.(5.2.4).

Some of the above points also apply to the Legendre polynomials. The m

axis must be mapped across rows or columns as for the real coefficients. To

avoid any integer scalar arithmetic during array indexing, the n axis should

increase down the store with the values for n0 as the first matrix. Although

calculations are independent of latitude, it seems preferable to map latitude

regularly across the colLnns of the DAP array. A suitable mapping of the

Legendre polynomials is therefore given by Eq.(5.2.1 1).

The imaginary coefficients must be assigned to a work matrix before the

loop, such that selection of a vector for each n gives a mapping for the m axis

the same as for the polynomials. So, when each vector is selected, the m axis

should be mapped as,

(m) - (m + 1) 	
(5.3.4)

Indexing in the loop is simpler if the n axis increases with rows or columns.

Only Eq.(5.2.6), the imaginary coefficients' mapping given by use of the TRAN

function achieves this. Transforming the imaginary parts would therefore

involve no routing at all before the loop, merely masked assignment to a work

array. Inside the loop a row vector is selected and broadcast rather than a

column vector as for the real coefficients. Unfortunately, this method was not

considered until after access to the DAPs at Edinburgh University was no

142

longer possible. The original approach routed the imaginary coefficients to the

same mapping as the real coefficients.

Two other possible mappings of the imaginary coefficients were

considered. The first used the DAP functions that reversed rows and columns,

Eq.(5.2.5) i.e. the m and n axes are both reversed. Using the estimate of Table

4 and replacing the routing operation time by the time for the combined REVC

and REVR operation gives an estimate of 41.98msecs. This code was timed to

the nearest second over 10000 repetitions and executed in 52.5msecs. Thus

the possible error is 0.1msecs. The overhead from high level language

manipulations is therefore 25% and consistent with the 20% overhead found

by Hockney and Jesshope (1981) for DO loops performing matrix operations.

The time for a transform using the imaginary coefficients' mapping Eq.(5.2.6)

would be 52.Ômsecs, by subtracting the cost of the REVC and REVR functions.

The penalty for using Eq.(5.2.5) instead of Eq.(5.2.6) is therefore negligible at

1% of the CPU time.

The other mapping used the matrix shift functions instead of the reversal

functions to give Eq.(5.2.7). Since the m axis increases with the row index only

shifts are required to align the m0 coefficients with the first row. Due to the

uncertainty in the time for the shift operation, an estimate of the routine is not

given. The measured time was 51.9msecs, again with a possible error of

0.lmsec.

To conclude, it has been shown that by mapping the imaginary parts by a

TRAN function no initial routing is needed. However, other possible mappings

in which routing is necessary cause a negligible increase in the execution time

of the transform. It seems therefore that the imaginary parts mapping can be

freely chosen. However, the effect of the mapping options on the direct

Legendre transform should be considered before deciding on the precise

mapping. Fishbourne (1980) gives a CPU time of 96.63msecs for his inverse

Legendre transform. The n vertical algorithm is therefore faster by a factor of

1.9.

143

5.4. Direct Legendre transform

The algorithms for the direct Legendre transform are now derived. The

same approach as for the inverse transform is used. The algorithms arising

from the three Legendre polynomial mappings are discussed generally and the

most efficient is then examined in more detail. Any subsequently necessary

routing is assumed to be negligible compared to the difference in execution

times of the algorithms. The mapping that gave the most efficient algorithm

for the inverse transform may not give the most efficient direct transform.

The direct Legendre transform, to be required by the model is of the form,

J

Fm , n = 	h.(l.Lj){BmdQmn/dP - iAmPmn) 	
(5.4.1)

j=1

where,

= g / [2(1 - 	
(5.4.2)

and,

dQmn (1j) 	2
) -
dPmn(ij) 	 (5.4.3)

dp 	 J d4

Since the derivatives are stored in the same array as the polynomials, the

possibility exists of computing the two products and their summations in

parallel. That is, writing Eq.(5.4.1) as,

	

J 	 J

Fmn = 	hBm dQmn /dP - 	i/ZAmPmn

	

j=1 	 j=1

(5.4.4)

algorithms should be developed that compute these two terms in parallel and

then as the final step evaluate the difference to form the spectral coefficients.

144

5.4.1. Algorithms

5.4.1.1. Latitude vertical

First, consider the case where the polynomials are mapped with latitude

increasing down the store. Since the final result is spectral coefficients, it will

be beneficial to map the polynomials for each latitude exactly as the real

coefficients. Likewise, the derivatives values are best mapped as the

imaginary coefficients.

Using this storage arrangement the algorithm is,

Multiply the modified Gaussian weights to the Fourier

coefficients.

For each latitude: Select a vector of wavenumbers to be

multiplied by the polynomials and broadcast to a work

matrix.

Select a vector of wavenumbers to be multiplied by the

derivatives and broadcast (using masking) to the same

work matrix. Routing will be required to position the

Fourier coefficients.

Multiply the work matrix by the Legendre data. This is

parallel in n, m and the two products. End of latitude loop.

Compute difference, using routing, to give spectral

coefficients.

The transform of the imaginary parts is done after the real parts and is as

above, except step (5) is a summation.

By treating the products in parallel, one addition and multiplication in

matrix mode are avoided. The overhead in forming the Fourier matrix is slight

as it involves matrix assignments.

An estimate of the time for the algorithm is given in Table 5, based on the

code given in Appendix A. The number of floating point operations required for

this transform is given by 4NLAT(M+1)(M+3)-(M+1)(M+2) which, for M=42, gives

145

Pm,n 	 Loop 	 Estimated
mapping 	 length 	time (msecs)

Latitude 	 64 	 97.54
vertical

m 	 43 	 83.58
vertical

n 	 43 	 57.78
vertical

Table 5.

Estimated execution times for three direct Legendre transform algorithms

derived from different mappings of the Legendre polynomials.

146

an estimated performance rate of 5Mflops. The execution time is only 18%

more than that of the inverse transform routine with the same Legendre data

mapping. This is because the two products involving the polynomials and their

derivatives are computed in parallel. If the products were computed

sequentially, the extra operations would give an estimate of 153.86msecs, an

increase of 58% on the parallel version.

To calculate the efficiency using Eq.(2.6.3), only the operations in the loop

are considered. This gives L=0.37. This efficiency is greater than for the

inverse Legendre transform, because the derivatives are involved.

5.4.1.2. m vertical

Consider the algorithm when the Legendre polynomials are mapped with m

down the store. The procedure becomes,

Multiply the modified Gaussian weights to all the Fourier

coefficients.

For each in Select a vector for m over all latitudes from

A m .

Broadcast only to the processing elements in the work

matrix that are multiplied by the polynomials.

Select vector for rn from Bm

Broadcast to the processing elements in the work matrix

that are multiplied by the Legendre polynomial derivatives.

Multiply the work matrix by the array containing the

polynomials and derivatives. This is parallel in n, p and the

products involving the polynomials and derivatives.

Sum along each latitude to give a vector result of the two

required products. End of loop.

Route the products and compute difference to give the

final spectral coefficients.

147

Like the previous algorithm, the imaginary coefficients are transformed

sequentially. The amount of work within each pass - of the loop has increased

but the loop length has decreased. The timing estimate in Table 5 shows a

decrease in time by 14% from the latitude vertical algorithm. This is almost

half the decrease achieved in the inverse transform between these mappings.

The estimated performance rate of this algorithm is 6Mflops.

To compute the efficiency of this algorithm, the routing, broadcast,

multiplication and summation operations are taken into account. During the

multiplication and addition stages, 68.8% of the processors are performing

useful work. Unlike the inverse transform case, this is constant throughout the

loop. The only operation in which the number of usefully active processors

varies with the wavenumber m is the routing for the Fourier coefficients.

Using Eq.(2.6.3) gives E=0.59. This is an increase on the last algorithm and

consistent with the improved performance.

5.4.1.3. n vertical

The time for the m vertical algorithm could be improved if the

broadcasting and routing during each pass could be reduced. This can be

achieved if the n axis of the Legendre data is mapped vertically in the store.

Since the loop variable is n, the Fourier coefficients are effectively

constants during the loop and masked assignment to a work matrix can be

done outside the loop. Care must be taken, however, to ensure that the Fourier

coefficients are placed correctly. At the start of the loop over n., either the

polynomials or the derivatives will be mapped such that n=42 for one and n0

for the other. As the loop index increases, the number of occupied rows

decreases for one and increases for the other. Thus by assigning all the

Fourier coefficients to be multiplied by the Legendre data for which n=42 at

the start of the loop to the Fourier work matrix, only those Fourier coefficients

multiplied by the Legendre data for which n increases down the store, need to

be updated. The other set of Fourier coefficients can be overwritten.

Since a total of 44 rows or columns will be in use, the remaining 20 rows

can be used to store the Fourier coefficients multiplied by the Legendre values

for which n increases down the store. Thus, only after each 21 passes of the

loop does the Fourier work matrix need to be updated. One masked matrix

148

assignment is faster than 21 vector assignments. A higher resolution would

result in less unused rows or columns and therefore the Fourier work matrix

would need to be updated more often. The steps of the algorithm are,

Multiply the modified Gaussian weights to all the Fourier

coefficients.

Mask assign the correct Fourier coefficients valid up to

n20 to the Fourier work matrix.

For each n Multiply the Fourier work matrix by the

Legendre data array. This is parallel in m, p and the two

products.

Sum along the lines of latitude to give a vector containing

the two products.

If n20 or n=41, update the Fourier work matrix. End of

loop.

Route the two products and compute the sum and

difference to give the real and imaginary spectral

coefficients.

As before, the real and imaginary parts are transformed sequentially. The DAP

FORTRAN code is given in Appendix A.

The estimated time for this algorithm is given in Table 5. A reduction in

time of 31% on the previous algorithm has been achieved, resulting from less

work in the loop although the loop length is the same. The algorithm is also

40% faster than the latitude vertical algorithm. The inverse n vertical transform

algorithm was 50% faster than the inverse latitude vertical algorithm. The

estimated performance rate for this algorithm is 8.5Mfops.

Calculating the efficiency of each pass through the loop is straightforward.

The Fourier work matrix updates at n=20 and 41 are ignored as they contribute

little to the overall time. Like the previous algorithm, during the multiplication

68.8% of the array is doing useful work. The summation along latitudes takes

place on the same percentage of rows or columns so the efficiency using

149

Eq.(2.6.3) is given by D=0.69. Therefore, nearly 70% of the processor array is

doing useful work on average. It is this higher efficiency that enables the

direct transform algorithm to execute in a time close to that of the inverse

transform. In serial terms, the amount of computation for the direct transform

is over twice that for the inverse transform. As the parallel version takes only

1.4 times the estimated time of the inverse transform, this shows that extra

parallelism is available in the direct transform and it has been exploited

successfully.

The direct transform algorithm of Fishbourne (1980) also uses the n

sequential approach. However, he incurs an additional cost from unpacking

the polynomials and computing the derivatives at each timestep. The two

products are computed sequentially but the summation over latitude is done

concurrently for both products. Comparing the time given by Fishbourfle (1980)

for his direct transform to that of the n vertical algorithm above shows the

latter method to be about 3 times faster than Fishbourne's. However, the

storage required by his algorithm is half that of this one. When symmetry is

included in the Legendre transform algorithms, the storage requirement will be

halved and an additional gain in execution time will result.

5.4.2. Choice of mappings

In this section, given the most efficient algorithm, the precise data

mappings and movements are studied in detail. The relationships between the

data mappings are first examined.

The best algorithm is achieved when the n axes of the Legendre

polynomials and their derivatives are mapped down the DAP store. The first

stage of this algorithm is the multiplication of the Fourier coefficients by the

polynomial values. The Fourier coefficients are mapped as,

(m, 1.i) + { m + 1,j)
	

(5.4.5)

with real and imaginary values in separate matrices. The routing required to

position the Fourier coefficients to be multiplied by the derivatives can be

minimized if the m axis of the derivatives also increases with rows, as only

shifts are required. These could be kept to a minimum if there were no free

rows between the polynomials and the derivatives. However, it was shown in

the last section how the 20 free rows can be used to advantage in the

150

algorithm. The arguments for selecting Eq.(5.2.11) as the polynomial mapping

for the inverse Legendre transform also apply for the direct transform. A

mapping satisfying the above criteria for the derivatives is,

dQmn /dl.1 : (m, n, pi) • (64 + m - n, j, 43 - n) 	 (5.4.6)

This uses the shift functions as discussed in the section on mapping the

Legendre data. Another option would be to use the mapping of Eq.(5.2.11) for

the derivatives. A reversal of rows (REVR), rather than shifts, would be

necessary in order to map the Bm coefficients correctly. The effect on the

algorithm is discussed below.

The next stage - in the algorithm is the summation. This produces a vector

containing the two products. For any n, the first n+1 elements of this vector

hold the polynomial product values, the last 43-n elements hold the derivative

product values. Within this vector, the products will be mapped the same as

the row mapping of the polynomials and their derivatives. Furthermore, if this

vector is assigned to the
fl1th column of a work matrix, the column mapping

of the work matrix will be the vertical (matrix) mapping of the polynomials.

Using the mapping of Eq.(5.4.6) as an example this could be written as,

Pm,npr0t SUMC{m+1,j,n+1){rn+1,fl+1}

dQmn /dI.I product: suMc{ 64+m - n, j, 43 - n } = (64+m - n, 43 - n } (5.4.7)

as the suc function sums along j. Therefore, Eq.(5.4.7) expresses the change

of mapping that takes place during this stage of the algorithm.

Following the calculation of the products, they are combined to form the

spectral coefficients. This involves another change of mapping. The closer

the mapping Eq.(5.4.7) is to the spectral coefficients' mapping, the less routing

will be necessary. For example, in Eq.(5.4.7), the Legendre polynomial product

mapping needs only one shift east to be the same as the real part mapping.

Likewise, the derivative product mapping is similar to the imaginary

coefficients' mapping of Eq.(5.2.7), requiring an eastward shift of 20 places.

The key point here is that the mapping of the polynomials should be

closely related to the mapping of the real coefficients for efficiency. Similarly,

the mapping of the derivatives should be closely related to the mapping of the

151

imaginary parts. Routing is needed to map the derivative product as the real

coefficients, and the polynomials as the imaginary coefficients, to form the

real and imaginary spectral coefficients.

Having seen the relationships between the data mappings, the algorithms

resulting from the different imaginary part mappings are now examined.

Although varying the way they were mapped had a negligible impact on the

execution time of the inverse Legendre transform, this should be verified for

the direct transform. Assume that the same type of mapping is used for the

imaginary coefficients and the derivatives i.e. a mapping using the shift

functions, reversal of rows and columns or a matrix transpose.

With the mapping of Eq.(5.4.6), assignment to the Fourier work matrix for

the Bm coefficients only requires shifts and is therefore economical. However,

as n increases the row in which the m=0 coefficients reside changes.

Therefore, on each pass of the loop over n, the Bm coefficients only must be

shifted one 'place south. Masked assignment is necessary so as not to disturb

the Am coefficients. The algorithm can still make use of the 20 free rows as

described in the previous section.

The routing required when combining the products can be determined by

using the mapping expressions. Suppose that the real coefficients are to be

formed and mapped as (m+l,n+2). The derivative product is mapped as

{64+m-n443n} from Eq.(5.4.7). By knowing the change of mapping effected by

the DAP matrix functions (Eq.(2.6.15)) the necessary routing operations can be

determined. These are a cyclic shift of each row, the number of shifts

depending on n, followed by REVC and a shift west of 20 processors.

Consider the algorithm when Eq.(5.2.11) is used as the mapping of the

derivatives. Forming the Fourier work matrix becomes marginally more

expensive using REVR rather than a shift of 20 places. During the loop the

products are calculated in reverse order; the polynomial product starting from

n0 and increasing, the derivative product from n=42 and decreasing. From

the mapping expression in Eq.(5.2.11), it can be seen that the mapping of m

does not alter with n and no shift is required during the transform loop.

For this mapping, different routing operations will be required to form the

spectral coefficients. Applying the summation function SUMC to the mapping of

152

Eq.(5.2.1 1) gives,

dQmn /dll product: (in, n) • (64 - m, 43 - n) 	 (5.4.8)

This has to be routed to the real coefficients' mapping as before. First, as the

directions of the m and n axes in Eq.(5.4.8) are reversed, the functions REVC

and 1VR are applied, followed by a shift west of 20 PEs. The routing for the

polynomial product to the imaginary coefficients' mapping is obtained in a

similar way. Comparison of these routing operations to those described above

using Eq.(5.4.6) show that these are slightly computationally cheaper.

Both this method and the previous one were coded and timed. The results

are given by the first two entries in Table 6. The mapping of Eq.(5.4.6) for the

derivatives is denoted by the word SHIFT because of the use of the shift

functions to map the data correctly. Likewise for the imaginary spectral

coefficients mapping of Eq.(5.2.7). For the mapping Eq.(5.2.11) of the

derivatives and associated imaginary parts mapping of Eq.(5.2.5) the word REV

is used because of the use of the REVR and REVC functions. To time the

subroutines, each was called 10000 times and the CPU time obtained to the

nearest second. All times therefore have a possible error of 0.1msecs.

The times in Table 6 clearly show the overhead in shifting the Fourier

matrix at every loop pass. The measured times can be compared with the

estimates of Table 5. The difference in CPU times resulting from changes in

the routing are much smaller than the differences due to changes in the

mapping of the polynomials (latitude, m or n vertical), validating the

assumption made at the start of the previous section. The SHIFT algorithm is

3.5% more expensive than the REV algorithm.

Use of the TRAN function to map the imaginary coefficients gave the best

inverse transform algorithm, removing all routing. As before, the derivatives

should be mapped in such a way to give a product mapping that is as close

as possible to the imaginary part mapping. The derivatives are separated by

the 20 free rows to keep the algorithm efficient.

A derivative mapping of,

153

Imaginary
coefficients

Derivatives 	Time
mapping 	I 	(msecs)

mapping

SHIFT SHIFF 61.4

REV REV 59.3

SHIFT REV 59.7

TRANS REV 59.7

Table 6.

The CPU times for the direct Legendre transform for different data

mappings of the imaginary spectral coefficients and Legendre polynomial

derivatives. Refer to text for explanation of mappings.

154

dQmn /dp: (m, n,) - { n + 22, j, m + 1 } 	 (5.4.9)

will give a product mapping of,

dQmn /dl.L product: { n + 22, m + 1 } 	 (5.4.10)

The routing needed to transform Eq.(5.4.10) to the real part mapping is a shift

north of 20 places followed by a transpose. This is the cheapest so far.

However, from Eq.(5.4.9) the derivatives have the m axis mapped down the

store so that on each pass of the loop over n for the polynomials, a vector is

selected from the Bm Fourier coefficients and broadcast to the area of the

Fourier work matrix to be multiplied by the derivatives. This will make the

algorithm more costly. It is essentially a combination of the n vertical and rn

vertical algorithms discussed in the previous section.

The most efficient algorithm therefore results when the mapping Eq.(5.2.11)

is selected for the derivatives; other mappings introduce additional operations

into the loop. In the above discussion, the routing in the final stage of the

algorithm has been minimized by relating the mapping of the derivative

product (and hence that of the derivatives) to that of the imaginary spectral

coefficients.

Suppose that Eq.(5.2.11) is used for the derivatives but an imaginary

coefficients' mapping that is not based on the reversal of rows and columns is

used. Although the time for the direct transform will increase because of the

extra routing, the combined times of the inverse and direct transform may

decrease, because of a decrease in the inverse transform time. Using the

mapping expressions as above, it is straightforward to determine the different

routing operations necessary. Only the routing used in forming the real and

imaginary coefficients at the end of the direct transform algorithm is affected.

Table 6 shows the actual timings of two of these combined mapping

algorithms for the direct transform. The transpose mapping Eq.(5.2.6) is used

for the imaginary part in one, the shifted m axis mapping Eq.(5.2.7) the other.

The increase in CPU time of these methods over the case where both

imaginary part and derivatives are mapped using reversal of m and n axes is

seen to be small since the modifications occur outside the main loop.

The sum of the inverse and direct transform times gives 111.8msecs for

155

the REV mapping of the imaginary coefficients, 111.6msecs for the SHIFT

mapping and 111.7msecs for the TRAN mapping based on a matrix transpose

operation. For the TRAN mapping, an estimate is used, obtained by

subtracting the time for the REVC and REVR functions from the measured time

of the REV algorithm. These figures show that overall the fastest method for

the direct transform does not give the best time, the shifted m axis mapping

of the imaginary coefficients is marginally superior, a difference of 0.2% to the

execution time of the REV mapping. A REV mapping of the derivatives is

assumed in all cases.

To summarize, the precise mapping of the imaginary coefficients is not

important to the efficiency of the transforms although the mapping of the

Legendre polynomials and the derivatives is. Other aspects, such as

conceptual simplicity and conciseness of code, may affect the choice of

mapping.

5.5. Inclusion of symmetry

In this section, the modifications necessary to the data mappings and the

parallel Legendre transform algorithms to make use of the symmetry property

Eq.(3.4.30) are described. The n vertical algorithms derived in the preceding

section are used, as this mapping of the Legendre data gave the best

algorithms. The choice of mapping for the imaginary coefficients is arbitrary

and so the REV mapping is used to be consistent with the derivatives'

mapping. The amount of computation required to calculate the inverse and

direct Legendre transforms can be reduced by using the property Eq.(3.4.30).

The storage requirements for the Legendre polynomials and their derivatives

are halved.

Assume that the latitudes are numbered from the North Pole to the

equator i.e. 7=1 to J12, and that 1i represents a latitude in the southern

iemisphere. Writing Eq.(5.3.1) as,

M

Fm (1.Ij) + Fm (ILj) = E Fmn (Pmn (1 1j) + "rn,n('j)) 	
(5.5.1)

n'lmI

Fm (j) Fm (j) = 	Fmn(Pmn(Pj) - m,n(j))
n"lmI

156

and using the symmetry relation Eq.(3.4.30) it can be shown that the

symmetric (am) and antisymmetric (bm) Fourier coefficients are computed by,

M

nPmn 	for Iml+n even 	 (5.5.2)
am = :: Fm

nImI

M

6 = L FmnPmn 	for ImI+n odd

nIml

for j=1 to J12 only. The Fourier coefficients are then given by,

F(p) = am (I1j) + b(i) 	 (5.5.3)

Fm (1ij) = am (pj) - bm (lLj)

The direct Legendre transform required by the spectral model in chapter 6

is given by Eq.(5.4.1). Using Eq.(3.4.33) and Eq.(3.4.46), it can be shown that,

= g(-P), 	h(p) = h(-p) 	 (5.5.4)

and,

dQmn(_1•tj) = (_l)tmI+n1 dQ m, n (luj) 	 (5.5.5)

dp 	 dp

Rewriting Eq.(5.4.1) as,

J/2

Fmn = 	h(1.tj)[Bm(Pj) 4Qm,n(hhj) - iAm(1.tj)Pm.n(1ij)I 	 (5.5.6)
d.i

j= 1

+ Qm,n('j) - iAm (1Jj)Pmn (Pj)1 h(I.Lj)[Bm(l1j) dii

and using Eq.(3.4.30), Eq.(5.5.4) and Eq.(5.5.5), it can be shown that the direct

transform can be computed by,

I mI+n even

bm = Bm (Iij) - Bm (I•1 j)
	 (5.5.7)

157

dm = A m (Pj) + Am (1Aj)

J/2

Fmn = 	ltbmdQmn/d31 - idPl 	 (5.5.8)

i=1

and,

ImI+n odd

am = Bm (i.Lj) + Bm(1Aj) 	 (5.5.9)

C = A m (Pj) A m (I.Ij)

J/2

F 	= 	JIamdQm.n/d1 - iCmPmnl 	
(5.5.10)

j=1

5.5.1. Storage of spectral data

Using the symmetry property Eq.(3.4.30), the number of latitudes for which

values of Legendre polynomials are required is halved. For T42 this means

that half of the DAP array is then free, because latitude is mapped across

columns. One possibility would be to copy the polynomials in each half and

transform two variables simultaneously, but since there are an odd number of

prognostic variables and this does not reduce the storage required, better use

can be made of the available processors.

There are several mappings that can be formulated to make use of the

available space. The first possibility would be to separate coefficients with

odd and even rn+n, or symmetric and antisymmetric values. The symmetric

coefficients could be stored in one half of the DAP array, the antisymmetric

coefficients in the other half.

Since symmetric or antisymmetric coefficients are represented by

diagonals in the (m,n) plane, the amount of storage required will not be

reduced, as the depth of store depends on the length of the diagonals.

However, a reduction in storage can be obtained if each vertical column is

moved up by 'ii matrices. This means that diagonals of in+n odd and even are

now stored on a DAP plane. Fig. 20 illustrates the steps in remapping the data

158

Key
M.0 0 = m+n even

n 	 * = m+n odd

(a) The original Legendre polynomial mapping viewed from the side of the
DAP store.

W

S

m

The storage arrangement after separation of symmetric and antisymmetric
values to separate halves of the DAP array.

in

%--&- 9

The separated coefficients are shifted vertically up the DAP store to
achieve a reduction in storage. Diagonals now he horizontally on DAP
planes.

Figure 20. Illustration of the remapping of the Legendre polynomials for
T4 resolution in order to use the symmetry property.

159

from the original nonsymmetric mapping. The mapping expression for this

storage arrangement is,

Pmn : (
m, n, 1i) + (m + 1, j + 32, 1 + (n-m)/2) 	m+n even

	

(m, n, 1i) + (m + 1, j, (n-tn+1)/2) 	m+n odd 	(5.5.11)

Only (M+2)/2 or 22 matrices (704 planes) at T42 are now required to store the

coefficients. For odd resolutions, the storage requirement is (M+1)12 matrices.

As for the nonsymmetric storage mappings, the derivatives can be stored

in the same array. From Eq.(5.5.5), the symmetric and antisymmetric

coefficients of the derivatives can also be separated. A mapping expression

similar to Eq.(5.5.11) results except that the n axis increases up through the

DAP store.

It was shown in the previous section that for efficiency, the mappings of

the spectral coefficients should be related to the mappings of the Legendre

polynomials and their derivatives. The inverse and direct Legendre transforms

use and return a vector of spectral coefficients. In both cases, the mapping of

data in this vector should match the mapping of Legendre values. This implies

that diagonals should be stored in columns i.e.

	

Fmn real: (m, n) -1- { m + 1, n - m + 1 } 	 (5.5.12)

The imaginary coefficients would be mapped by applying the REVC and REVR

functions to Eq.(5.5.12). This mapping is identical to the mapping Eq.(5.2.1)

discussed for the rhomboidal truncation.

It is also possible to use the mapping Eq.(5.2.4) with the Legendre

transforms that use the symmetry propery, whilst keeping an efficient storage

method for the Legendre polynomials. The n axis of the Legendre values must

be kept vertical in the OAf' store.

Each column of the original spectral coefficients' mapping Eq.(5.2.4)

contains coefficients that alternate m+n odd and even, so the Legendre values

cannot be separated into m+n odd and even as before. However, if the

Legendre polynomials are separated so that values with odd and even n are

stored in each half of the OAf' array, calculations for one n odd and even

could proceed in parallel. Fig. 21 illustrates how this mapping is obtained from

160

Key
	

N
Q = m+n

)IE = m+n

(a) Shows the original Legendre polynomial mapping before symmetry.

rn—J

rn N

(b) Shows storage format after coefficients with odd and even n are
separated into each half of the DAP array.

Figure 21. illustration of the remapping of the Legendre polynomials, for
T5 resolution, in order to use the symmetry property.
Coefficients of odd and even n are separated..

161

the data mapping used for the nonsymmetriC transforms. The mapping

expression is,

Pm,n : (
m,n,1Lj)*{m+1,j+32,1+n/2} 	neven

(m, n, jj j) - (m + 1, j, 1 + n/2) 	n odd 	 (5.5.13)

Each half contains a mix of symmetric and antisymmetric coefficients unlike

Eq.(5.5.11). It will• be seen however, that because the spectral coefficients'

mapping matches that of the Legendre data in both cases, the transform

algorithms are almost the same.

To store the polynomial derivatives in the same array, the above procedure

is followed. The details of the mappings will be left until the transforms are

considered. The used fraction of the array holding the Legendre values does

not alter from that given for the nonsymmetriC case, although less total

storage is required.

5.5.2. Inverse Legendre transform

In this section the modifications necessary to the nonsymmetric inverse

Legendre transform are described. The original spectral coefficients' mapping

Eq.(5.2.4) and associated symmetric mapping of the Legendre polynomials

Eq.(5..13) are used, although the changes necessary to use the remapped

spectral coefficients Eq.(5.5.12) together with Eq.(5.5.11) are also described.

The algorithm commences as before, the real and imaginary coefficients

are separated into work matrices. This code would be the same regardless of

the spectral coefficients' mapping. The main difference is in the loop, where

the symmetric and antisymmetric products are computed in parallel. On each

pass of the loop, two vectors are selected from the spectral coefficients, one

for n odd and one for n even. These are multiplied by their respective

Legendre polynomials in each half of the DAP array. This step involves more

work than the previous algorithm as each vector must first be broadcast and

mask-assigned to the appropriate half of a work matrix.

Although the amount of data routing has increased in the loop, the loop

length is now only 22 since two values of n are computed in parallel and

therefore half the number of arithmetic operations in matrix mode are

162

required. However, after the loop, an additional step to form the Fourier

coefficients from their symmetric and antisymmetric parts is necessary

(Eq.(5.5.3)). Before describing this step, it is necessary to determine exactly

how latitude is mapped for the Fourier data in each half of the DAP array. The

example of Eq.(5.5.13) assumed j to increase with the column index for both

odd and even n, in which case, a shift of 32 processors would be required to

map one half onto the other. Alternatively, j could increase from columns

1-32 and decrease from 33-64, requiring a reversal of columns. From the

timings of DAP functions given in chapter 2, a shift of 32 processors takes the

same time as the REVC function. The symmetric mapping using REVC is

chosen for which the mapping expression is,

Pmn : (m,n,ii)+{m+1,j,1+n/2}
	

n even

(m, n, p i) 	{ m + 1, 65 - j, 1 + n/2 } 	 n odd 	(5.5.14)

After the loop, the symmetric (am) and antisymmetric (bm) Fourier

coefficients are mapped as,

am: (m,ii)-{m+1,j} 	 for meven

(m, Ili) + {m + 1, 65 - 5) 	for m odd 	 (5.5.15)

bm :
(m,i)-{m+1,65-j} 	 for meven

(m,i.i) - {m+l,j) 	 for modd

where j=1 to 32 and am and bm are those in Eq.(5.5.3). This storage format is

illustrated in Fig. 22. From Eq.(5.5.3), the bm coefficients must be negated for

the southern hemisphere before the am and bm coefficients are added together,

in parallel for both hemispheres.

The DAP FORTRAN code for this algorithm is given in Appendix A. Using

this code, an estimate of the execution time of the routine can be made. This

estimate and the measured CPU time of the routine are given in Table 7. As

before, the measured time is subject to a possible error of O.lmsecs. An

overhead of 21% applies to the estimated time, consistent with overheads

found previously. The number of floating point operations required for this

163

a0

m 	h
U i

a2

•b3

a4

b
5

b0

'1 	
m

b2

a 3

b4

a5

•

x

•

x

•

x

x

•

x

•

x 	::

•
• • •x x x

x x x • S •

41 	• • • x x x 	:

:: 	x x x • • • 	40

Key

• = am coefficients

X = bm coefficients

Figure 22. Illustration of the mapping of the symmetric (a m) and
antisymmetric(b components of the Fourier coefficients
before recombination in the inverse Legendre transform.

Transform 	Estimated 	Measured 	Overhead
time (msecs). 	time (msecs)

Inverse 	 27.13 	 32.8 ±0.1 	21%
I 	 I

Direct 	 49.2 	 58.0± 0.1 	20%
2 	 2

34.6 	 41.5

Table 7.

Estimated and measured times for the inverse and direct Legendre transforms

that use the symmetry property of the Legendre polynomials.
1

This estimate uses the the measured time of the SUM2C function.

This assumes the SUM2C function takes the same time as the SUMC function.

The measured time in this case is the estimated time plus 20% overhead.

165

transform is NLAT[(M+1)(M+6)+M(M-1)] which gives a performance rate of

3.7Mf lops.

Comparing the measured time with the 52.5msecs for the nonsymmetriC

algorithm gives a speedup ratio of 1.6 or a decrease or 37.5%. Although the

loop length has been halved, the additional cost of forming the work matrix

inside the loop and combining the symmetric and antisymmetric parts after

the loop reduce the speedup and the performance rate.

The efficiency of this algorithm can be calculated using Eq.(2.6.3) to be

0.31. Only the operations inside the loop are considered since the initial and

final operations only account for 4% of the execution time. This efficiency is

less than the nonsymmetric transform because two broadcasts are now used,

where each writes to half the PEs written to in the nonsymmetric version. This

efficiency could be increased and the performance improved by coding the

routine in the DAP assembly language to take advantage of the spare

processors as described for the nonsymmetric version.

Suppose the mappings of Eq.(5.5.12) and Eq.(5.5.11) were used. No changes

to the initial operations in the algorithm are required. Furthermore, no

changes to the code within the loop are necessary since the data are properly

positioned relative to each other. The only change necessary is to the

formation of the full Fourier coefficients from the symmetric and

antisymmetric parts after the loop, as each half of the DAP array contains

coefficients for m+n odd or even instead of n odd or even. This simplifies the

operations necessary to form the full Fourier coefficients. The difference this

makes to the algorithm timing however is negligible. A more important point

is that the algorithm can use different spectral data mappings, as long as the

spectral coefficients are mapped correctly, relative to the Legendre

polynomials. Only the final routing operations will need to be changed.

5.53. Direct Legendre transform

Following on from the inverse transform, the modifications to the direct

transform to make use of the symmetry property are described. As before, the

original spectral coefficient mapping is retained and the necessary changes to

the algorithm to use the alternative mapping are described later. The mapping

of the derivatives will also need to be altered.

166

As for the inverse transform, the direct transform algorithm will be similar

to the nonsymmetric version. As the derivatives remain stored in the same

array as the Legendre polynomials, their products can be computed in parallel.

In addition, for each product, a vector result for two values of n will be

obtained. The loop length will again be M'2 rather than M

After the multiplication by the Gaussian weights, the second step, new to

the algorithm, is to compute the symmetric and antisymmetric parts of the

Fourier coefficients using Eq.(5.5.7) and Eq.(5.5.9). Since this additional work is

outside the loop over n it represents a small increase in the total work of the

algorithm. Only the code in this step will change if the alternative data

mapping is used, since the mapping of the symmetric and antisymmetric parts

depends on the mapping of the Legendre values.

The formation of the symmetric and antisymmetric Fourier coefficients is

complicated because on each row m+n is alternately odd and even. Thus dm

and Cm
from Eq.(5.5.7) and Eq.(5.5.9) are stored alternately on each row.

Fig. 23 shows how the coefficients must be created so they are multiplied

correctly to the Legendre polynomials. The am and bm coefficients to be

multiplied to the derivatives have to be similarly created and stored. Since the

mapping of the derivatives has not been finalized yet, this will be discussed

later.

The next step is to form the Fourier work matrix, as before, to be

multiplied by the Legendre data array. If the problem of avoiding an overlap

of coefficients is ignored for the moment, the following stage is to sum along

each half row to give a vector result of each product for one odd and one

even n. These two vectors would then be stored in a product matrix as before.

Two issues arise. First, a new function is needed to sum each half of a row

separately. Unfortunately, as the Edinburgh University DAPs were to be taken

out of service soon after this symmetry work was started, an optimized

function written in the DAP assembly language (APAL) that summed each half

was not developed. Instead the function was written using two calls of SiJMC

with appropriate masking. The measured time of the new algorithm suffered

as a consequence. However, since an optimized function would take no more

time than the SUMC function, the measured time could be made more realistic

by assuming the same CPU time for the new function (sUM2C) as SUMC.

167

= 	A 0 (Jt) 	+ A 0 (-p) I 	C O = 	A0(LLJ) - 	A0 (..p.)

C
1

 = 	A1() 	- A 1 () I 	d = 	A 1 () +

d 2 = 	A2(LLJ) 	+ A2 (j) I 	c 2 = 	A 2 (LJ) - 	A2 ()

= 	A3 (tj) 	- A3 (- Lj) I 	d 3 = 	A3 (LU) + 	A3 G LUj)

= 	A4(LU) 	+ A 4 (.Lij) I C = 	A 4 (LLJ) - 	A4 ()

n even
	

MeTeral

Figure 23. Illustration of the first 5 rows of the DAP matrix showing how
the symmetric and antisymmetric Fourier coefficients are mapped
for the Legendre polynomials in the direct Legendre transform.

W E

168

The second issue is that the mapping of the product vectors has to be

determined. The polynomial product vectors are assigned to columns of the

product matrix with n increasing with the column index. In other words,

multiply the mapping of n in Eq.(5.5.14) by 2 to give,

Pmnproduct: (m,n)-*{m+1,n±2}
	

(5.5.16)

The derivatives, separated into n odd and even, are stored with n decreasing

down the store. When assigning the derivative product vectors to the matrix, rz

must decrease with the column index of the matrix. This means that the

parity of the truncation wavenumber M determines the half of the array that n

odd and n even for the derivatives map to. That is, if M is odd, derivatives

with n odd map to the west half of the array, as the first vector from this half

contains the values for n=O for the polynomials and n=M for the derivatives.

Mapping derivatives with n even to the west would have given the coefficients

for n=M-1 from the first vector, M from the second. This would be in the

wrong order when assigned to the product matrix. The opposite is true for

even M, which is the case for the model described in the next chapter. This

means the mapping of the polynomial derivatives using the symmetry property

is

dQmn /dp: 	(m, n,) - { 64 - m, j, (42-n) + 1 } 	n even

(m, n, p) - { 64 - m, 65 - j,(42-n) + 1) n odd 	(5.5.17)

and the derivative product mapping is,

dQmn /dP product: (m, n) - { 64 - m, 44 - n) 	 (5.5.18)

Whether M is odd or even, within a column on a DAP plane there must always

be a total of M+2 Legendre values.

Eq.(5.5.17) shows how the symmetric (bm) and antisymmetric (am) Fourier

coefficients that are multiplied to the derivatives have to be stored (Fig. 24).

They are calculated efficiently using routing and masking operations in a way

similar to the Cm and dm coefficients. The DAP FORTRAN code to compute the

transform is given in Appendix A. As explained above, the code is dependent

on the parity of the maximum wavenumber. This dependency will also apply

to the alternative mapping Eq.(5.5.12) discussed earlier.

169

n even

= 	B 4 (Lj) - 	B 4 (t) a = B 4 (p) + B 4 (i)

a 3 = 	B 3 (t) + 	B3(Ili) b = 	B 3 () 	- B 3 (..i)

b 2 = 	B 2 (Lj) - 	B2 (- Rj) a = 	B 2 (lU) 	+ B2 (.. l.Uj)

a 1 = 	B 1 (p) + 	B 1 (p.j) b 1 = 	B 1 (p) 	- B 1 (j.t)

b 0 = 	B0(LUJ) - 	B0(i) i 	
a = 	B0(iL) 	+ B 0 (i)

S

Figure 24. Illustration of the last 5 rows of the DAP matrix showing how
the symmetric and antisymmetric Fourier coefficients are mapped
for the Legendre derivatives in the direct Legendre transform.

E

170

The Legendre polynomials have to be stored to a resolution of M43 to

allow for the inverse transform of the velocities. This means 22 matrices are

required for storage, half that when the symmetry property was not used; 17%

of the available DAP store. Fig. 25 illustrates how the Legendre values appear

in the DAP store.

The reassignment of the Fourier work matrix, constructed from the

symmetric and antisymmetric coefficients, during the loop is now considered.

The loop length becomes 22. For 142, on the west half of the PE array, the

polynomials use the first row only of the first matrix whilst the derivatives use

the last 43 rows. On the east half however, the polynomials use the first two

rows, the derivatives the last 42 rows. Therefore, although 20 rows are free in

each half, those in the eastern half are displaced one row south relative to

those in the western half. The first loop over index n must therefore go only
as far as n19, or the 10th matrix from Eq.(5.5.14). This is one less than in the

nonsymmetric case. Similarly, the second loop can only go as far as n=39,

before the Fourier work matrix has to be altered, again one less than before.

The DAP FORTRAN for this transform is given in Appendix A. An estimate

of the execution time for this code is given in Table 7. Two values are given.

The first assumes that the summation function StJM2C takes the same time as

stmic. The second uses the measured time of the SUM2C function of 684msecs.

The measured time of the algorithm, therefore, should only be compared to

the second estimate. The overhead is found to be 20%. This algorithm

requires 2 NLAT(M+1)(M+6)-(M+1)(M+2) floating point operations, so the

measured performance is 4.5Mflops but the potential performance would be

6.3Mflops. Like the inverse transform, a decrease over the nonsymmetric

direct transform has resulted.

Comparison with Table 6 shows that the inefficient summation function

means the symmetric transform routine gives no improvement over the

nonsymmetric version. However, if the summation function took the same time

as the DAP FORTRAN function suc, an overhead of 20% would imply a

measured time of 41.5msecs. This is 30% less than the time for the

nonsymmetric algorithm. The speedup ratio would therefore be 1.43, less than

that for the inverse transform. Unlike the inverse transform, the work in the

loop over n has only slightly increased (if an efficient SUM2C function is

assumed). So the poorer speedup ratio is a result of the increased work

171

n even n odd

n

Pm, n

Figure 25. Schematic illustration of the storage format for the Legendre polynomials

and their derivatives. Reproduced from Carver (1988).

172

outside the loop contributing more to the overall time, since the time spent in

the loop has now decreased. Operations outside the loop account for about

12% of the CPU time. The efficiency of the code inside the loop is the same

as the nonsymmetric case at 0.69.

For the alternative mapping for which diagonals are stored down columns,

only the computation of the symmetric and antisymmetric coefficients has to

be changed, which becomes simpler. For example, the corresponding storage

to Fig. 23 would be dm entirely in one half and cm entirely in the other.

Similarly for am and bm • The storage of the derivatives is still subject to the

restriction that the total number of Legendre values in each column must be

M+2. The product mapping follows from the Legendre values as before.

5.6. Summary

By considering different storage arrangements of the Legendre polynomials

and their derivatives, the most efficient algorithms and mappings were

devised. In both cases, the best algorithms arose from the most efficient

mappings. Inefficiencies from the triangular nature of the data could not be

overcome by simple packing strategies, although this property allowed

derivatives and polynomials to be stored in the same array. This reduced

storage requirements and allowed the summations required for the direct

transform to be computed in parallel. For the data arrangement chosen, the

ratio of the time of the direct transform to that of the inverse transform is

1.13 for these parallel algorithms. For serial algorithms this ratio would be

greater than 2, which illustrates the success of the exploitation of the extra

parallelism available in the direct transform.

The Legendre transform algorithms developed in this chapter achieved

better performances than those of Fishbourne (1980). Although with the

nonsymmetric algorithms, the storage requirements of the Legendre data were

more than in Fishbourne's algorithms, when the symmetry property was used,

the storage requirements became the same (704 planes) and a further

improvement in performance over Fishbourne's algorithms resulted.

A detailed account was given of the effect of different mappings for the

data, within the context of the most efficient algorithm. The relationships

between the mappings of the data involved in the transform, particularly for

173

the direct case, were established. These were then used to determine

combinations of mappings of Legendre values and spectral coefficients that

would be expected to give the best performance. Therefore, the storage of

data on the DAP plays an important role, more so than on a serial machine.

174

CHAPTER 6

A SAROTROPIC SPECTRAL MODEL ON THE ICL DAP

6.1. Introduction

In this chapter the implementation of a spectral model on the ICL DAP is

discussed in detail. Since the spectral method is preferred to the finite

difference method for global models, it is important. to study the

implementation of this type of model on a processor array computer. The

algorithms used to solve the spectral equations have a large degree of

inherent parallelism but are different from those used for finite difference

models. Therefore new parallel algorithms will need to be developed. Also, as

the number of degrees of freedom of a variable is different in spectral, Fourier

and gridpoint representations, particular attention will need to be paid to the

choice of data mapping. Since the spectral method is usually only applied in

the horizontal, it is sufficient to implement a single level model on the DAP.

The shallow-water equations on a sphere are therefore used for the model.

In the next section, the model equations are formulated and the

computational procedure described. The third section presents a preliminary

discussion on what are likely to be the key issues in developing an efficient

model for the DAP. The following two sections deal with the actual

implementation of the model on the computer, followed by sections that

analyse the performance of the model and present results to show the model's

veracity. Finally, conclusions on the suitability of the DAP to spectral models

are presented.

6.2. Description of the model

6.2.1. Spectral equations

The nondimensional shallow-water equations used for the spectral model

are those of Hoskins (1973). They are,

a & 	-13 	 3

72 -i-f)U1_[(+f)VJ a'.'

3D 	1 3 	 3
Ll

= —1--[(+f)V1 - 	 - V2[$' 	(1312) 1 	(6.2.1)

2

175

.P±__[4)'Uj .—(4)'V.D
at 	1-p 2 ax 	all

To dimensionalize these equations, the radius of the Earth, a, is used as the

length scale and the reciprocal of the angular velocity, is used as the time

scale. Also, 4)' is the departure of the geopotential height of the fluid from

some mean value given by,

= gH1(a22) 	 (6.2.2)

where H is the mean height of the fluid. The velocity components U and V

are given by ucosO and tcose respectively, where e is the latitude, p = sine

and X is the longitude. The divergence is represented by D and the relative

vorticity by

Following the procedure described in chapter 3, the prognostic variables

are approximated (assuming a triangular truncation) by,

=
m-M njmI

D b(X,p,t) = 	 Dmn(t)Ymn()'P) 	 (6.2.3)

m-M nImI

m"-M nImI

The expansion coefficients are determined by Eq.(3.4.25). The " denoting an

approximation will now be dropped on the understanding that the truncated

variables are being used unless otherwise stated.

Introducing the streamfunction 	and velocity potential X the relative

vorticity and divergence can be expressed as,

= V 24', 	D = X 	 (6.2.4)

Substituting expansions for the variables into the above equations and using

Eq.(3.4.20) in nondimensional form gives the relations,

176

Pmn = m,n I [n(n+1)j

Xm,n = Dm, n / [m(n+1)]

The velocities, U and V. can be written as,

= .a ?L (1M2) '
ax 	all

= 	+ (1.42).
ax

ax 	all

(6.2.5)

(6.2.6)

Taking the scalar product of both of these equations, substituting expansions

for ip and x and using the relations Eq.(3.4.23), Eq.(3.4.33) and Eq.(6.2.5), gives

the expansion coefficients of Uand Vas,

	

U 	= 4cxmnDmn + 	Bmn+imn+i - 8m.nm.n-i 	 (6.2.7)

V = 'm,nm,n - Bmn+iDmn+ i + Bmn Dm n-i M, n

where,

	

m,n = m / [n(rz+1)I 	 (6.2.8)

B m,n = C mn / fl

and Cm,n is given by Eq.(3.4.34).

A problem with calculating the spectral coefficients Umn and Vmn is that

the series expansions must extend one degree above that of the other

variables to be consistent with their truncation, as discussed by Machenhauer

(1979) and easily seen from Eq.(6.2.7). The disadvantages of calculating the

coefficients of U and V from the coefficients of vorticity and divergence are

that more storage space is required and the truncation is not the same

throughout the model. By substituting expansions for 4 and x into Eq.(6.2.6)

and using Eq.(6.2.5), it is possible to obtain the gridpoint values of U and V

(which is the only representation of the wind used in the model) from the

spectral coefficients of and D. This approach, although more expensive

computationally, has been used in the ECMWF spectral model (Baede et a!,

177

1979) to avoid the disadvantages described above.

Following the procedure described in chapter 3, the truncated spectral

equations are obtained by substituting the expansions for the variables into

the governing equations (except for the nonlinear terms) and taking the scalar

product with the basis mn•
After integrating by parts and using the property

that Pmn(±l) = 0, the equation for the relative vorticity becomes,

I'l fo 211

m.n - - J 	(+f)V] 4 m,n -2E(+f)U]Pm.n}e1m?\ dAd.i (6.2.9)
dt 	4TT-1

	

dp

The divergence equation becomes,

1' 1 1' 211

4pm,n=_J J im dP
dt 	

(j2 [(+f)V1Pm,n + [(+f)Uj 	m,ui) e m? dXdp(6.2.10)

	

-1 	0

1 f 211

	

_____ 	 U2-+.p. V2 + n(n + 	
[2(12) 	 , n e- M

X dXd + n(n+1)'mn
411

after using Eq.(3.4.20) and the continuity equation becomes,

4'm,n - _i 	{[V]th° 	im
['L7]Pn}

e mX dXdp - Dmn (6.2.11)

I1 f02 lT

—m,o -
dt 	- 4rrJ 	 di.i 	1-.t

-1

6.2.2. Calculation of nonlinear terms

To compute the nonlinear terms in the prognostic spectral equations the

transform method is used. The method is now illustrated for the vorticity

equation.

The first stage involves the computation of the gridpoint values of vorticitv

and the wind components from their spectral coefficients. From Eq.(3.4.35), for

any variable F, these are computed by the inverse Legendre transform,

178

Fm (1.t j t) = L F(t)Pmn(1lj) 	for m=O to M 	 (6.2.12)

nIml

followed by an inverse Fourier transform,

F(X 1)p,t) = 	Fm(Pjt) exp(imX,) 	for all Iii 	 (6.2.13)

For the velocities U and V. the summation in the inverse Legendre transform

must extend to M+1.

The products [(+f) Ul ij and [(+f) V] i ,j are computed once the required

gridpoint fields have been obtained. This is a local computation as the

calculation of the product at any point involves only values at that point. Any

linear operations can be applied in gridpoint space.

To compute the vorticity tendency, a Fourier transform of the products is

performed,

f
2IT

A m (Pj) =
	

RE; + f)U}1 e m? dX 	 (6.2.14)

0

and,

f

21T2

Bm (Pj) =

	

[(E; + f) V e mt dX 	 (6.2.15)

0

followed by a direct Legendre transform,

•1 •

(B 	m.n- im
m,n =

	
m dp 	i;i2Am m,n dii 	

(6.2.16) 2f

The quadrature formulae Eq.(3.4.41) and Eq.(3.4.44) are used to compute the

integrals Eq.(6.2.14), Eq.(6.2.15) and Eq.(6.2.16). The integrals in Eq.(6.2.10) and

Eq.(6.2.11) are computed in a similar way to give the tendencies of the

divergence and the geopotential.

179

6.2.3. Inclusion of diffusion

To prevent spectral blocking (Gordon and Stern, 1974; Machenhauer, 1979),

a linear diffusion term is included to remove energy from the smallest scales.

For a variable f which may be E or D only, the diffusion term is applied as,

I = P - (- flKV2f 	 (6.2.17)

where K is a nondimensional diffusion coefficient. The term f represents the

tendency of / computed without any damping. Thus, the diffusion can be

applied as a correction to the adiabatic tendencies.

Transforming to spectral space gives,

1, f = 	- [n(n+1) 'J Kf m,n 1 m,n 	,n
(6.2.18)

where the property Eq.(3.4.20) has been used. Since a Laplacian does not have

to be solved, an implicit time scheme can be used with little added

computational cost i.e.

fm.n(tt) = 1* (t+t) / (1 ± 2tt (n(n+1))K} 	 (6.2.19)
M, n

where f represents the values of f computed from the adiabatic tendency.

The model uses a sixth order diffusion term (p= 3) to affect the long

wavelengths as little as possible. The value of the diffusion coefficient used

was 1.3x10 26 m 6 s 1 . Table 8 shows the e-folding times for several

wavenumbers using this value of K

6.2.4. Time differencing

Once the tendencies of the prognostic variables have been computed, they

are integrated forward in time using the leapfrog scheme Eq.(3.2.1). The

Asselin time filter Eq.(3.2.2) is applied to each of the prognostic variables at

each timestep to control the time-level splitting associated with the leapfrog

scheme and also to provide additional smoothing of the short wavelengths. A

weak filter parameter of v=0.005 is used.

The linear stability condition is,

180

Wavenumber, n 	I 	e-folding time (days)

8
1 7.4x10

5
5

2.2x10
3

10 4.5x10

15 431

20 80

25 22

30 7.4

35 3.0

40 1.4

42 1.0

Table 8.

The e-folding times for selected wavenumbers using a sixth order
26 6 -1

diffusion term and a diffusion coefficient of 1.3x10 m s as used

in the spectral model.

181

At < 1 / IOmaxI 	
(6.2.20)

where a m ax is the frequency of the fastest oscillating mode. This can be

determined by computing the eigenfrequeflcies of the linearized spectral

equations. As shown by Machenhauer (1979), for spectral models that are not

too severely truncated, the timestep limit is approximately given by,

At < 340 / /[M(M+1)] 	minutes 	 (6.2.21)

where M is the truncation wavenumber. For M = 42, this implies that,

At < 8 minutes.
	 (6.2.22)

Tests confirmed this limit and a timestep of 5 minutes was used for the

model.

6.2.5. Computational procedure

Assuming the values of each variable, , D and 4' are available at two time

levels t and t-At, where the t-At values are filtered, the computational

procedure for each variable (in turn) is given below.

The gridpoint values of U and V are computed from their

spectral values by an inverse Legendre transform followed

by an inverse Fourier transform. These only need be

computed once each step.

Gridpoint calculations are performed to evaluate the

nonlinear terms.

Fourier transforms of the nonlinear products are used to

obtain their Fourier coefficients.

Legendre transforms are performed to evaluate the spectral

coefficients of the nonlinear terms.

If necessary, spectral calculations for the variable are

performed to compute the spectral tendency.

The variable is integrated forward in time.

Time filtering and diffusion are applied.

182

6.3. Preliminary discussion on implementing the model on the DAP

6.3.1. Introduction

In this section some important issues in the implementation of the model

on the ICL DAP will be discussed; namely the mapping of the data on the PE

array, the choice of resolution and truncation.

Each model variable has three representations, spectral, Fourier and

gridpoint and the mapping of data to the DAP will be different in each case.

The number of degrees of freedom of each representation is also different.

This means it will not be possible to achieve maximum use of the processors

for all representations, in contrast to a gridpoint model.

This difficulty poses the problem of how to make best use of the array. A

reasonable aim might be to attain maximum efficiency, in storage and

processing, in the representation used most often. However, for the spectral

shallow-water model of Fishbourne (1980), the transform stages, during which

the representation of a variable changes, accounted for 99% of the processing

time. Therefore it would seem that the correct approach should be to

optimize the transform stages. Efficient parallel Legendre transform algorithms

were developed in the previous chapter. The model is based on the

nonsymmetric Legendre transform algorithms, although the effect of the

symmetric algorithms on the model's performance is considered.

6.3.2. Data mapping

6.3.2.1. Spectral coefficients

The conclusions from the previous chapter show that the real spectral

coefficients can be mapped as Eq.(5.2.4) with the imaginary coefficients

mapped according to Eq.(5.2.5). The Legendre polynomials and their modified

derivatives are mapped according to Eq.(5.2.11).

6.3.2.2. Fourier and gndpoint data mappings

The Fourier coefficients exist as an intermediate stage between spectral

and gridpoint space. No calculations other than the transforms are done in

Fourier space. For a 142 resolution, the number of Fourier coefficients is

183

greater than the space available in one DAP matrix and two matrices are

required, the real coefficients are stored in one matrix and the imaginary

coefficients in another. The precise mapping depends not only on the

Legendre transforms but also on the FFT5. The FFT algorithm described in

chapter 2 is used, in which the coefficients are required with wavenumber m

increasing with the row index. The FFTs are performed on each latitude and

are independent of each other. Therefore the latitude mapping will be

completely determined by the Legendre transforms. The FFT will determine

the longitude mapping of gridpoint data on the PEs. The amount of space

required for the gridpoint representation of a variable is the greatest of all

three representations. At T42, two matrices are needed.

6.3.3. Constraints on model formulation

6.3.3.1. Architectural constraints

Given that the dimensions of each representation of the data are different,

it will generally be impossible to efficiently utilize the DAP array in all three

representations. This is an important difference from finite difference models

for which high efficiency is possible if all processors hold gridpoints. This is

an aspect of spectral models that would seem to make them unsuitable for a

SIMD processor array architecture.

The dimensions of the PE array impose constraints on the formulation of

the model if the data are to utilize the array as much as possible. This applies

equally to all classes of model; finite difference, spectral and finite element.

These constraints will restrict the allowable resolutions of such models. This

is discussed for the spectral model in the next section.

If the resolution is reduced, the execution time of a spectral model on the

DAP may not decrease as much as the same model on a vector machine

(multiprocessor or otherwise). This is because certain calculations would still

require the same number of operations although less of the array would be

used. It ought to be possible to use any spare processor time in a MIMD

processor array for other tasks or jobs. Thus, of the processor array

architectures, the SIMD type will impose perhaps the severest constraints on

the model formulation, as the penalty for not making optimum use of the

processors is likely to be the highest. This underlines the need for efficient

184

data mapping strategies and algorithms, justifying the time spent on these

issues.

63.32. Restrictions on model resolution

Since it is not possible for all three data representations to fully utilize the

DAP array, only one can be made to fit. The choice depends on the amount of

time spent in each space. From the work of Fishbourne (1980), most of the

execution time is spent in the Legendre transforms. This would suggest

matching the spectral coefficients to the size of the array or, as the Legendre

transforms change total wavenumber n to latitude, the number of latitudes.

Consider the spectral coefficients first. The greatest space required for the

spectral coefficients for triangular truncation is, using Eq.(5.2.2),

S = (M+1)(M+2) 	 (6.3.1)

where M is the truncation of U and V Ignoring the data mapping but

assuming real and imaginary coefficients are stored in the same matrix, write,

(M+1)(M+2) = r4096 	 (6.3.2)

where r is any positive integer. For some values of r, this gives,

M=61

M=88

= 3, 	M= 108 	 (6.3.3)

r=4, 	M= 125

where M=M -1 . Table 9 shows the percentage of the DAP array that contains

useful data in all three representations, for a resolution of T61. The real and

imaginary Fourier coefficients are held in separate matrices. The gridpoint

data is assumed mapped in a regular fashion. Using a sheet mapping for

storing all the gridpoint values uses 75% of the matrices. Using a crinkled

mapping this figure could be raised to 90% as the number of matrices

required is reduced.

If the number of latitudes is matched to the DAP array dimension then,

185

Matching spectral data to DAP an-ay (M = 61)

Spectral data - 95% 	 (1 matrix/variable)

Fourier data - 73% 	 (4 matrices/variable)

Gridpoint data - 75% 	 (6 matrices/variable)

Gridpoint data - 90% 	 (5 matrices/variable)

Matching number of latitudes (M = 42)

Spectral data - 46% 	 (1 matrix/variable)

Fourier data - 67% 	 (2 matrices/variable)

Gridpoint data - 100% 	 (2 matrices/variable)

Table 9.

The percentage use of the DAP array for two resolutions for each of the

data representations.

186

J = 864
	

(6.3.4)

where s is a positive integer. Using Eq.(3.4.47) for triangular truncation gives,

M< (s128-1)/3 	 (6.3.5)

For some values of s this gives,

81, M=42

s=2, M=85

83, M=127

Table 9 also illustrates usage of the processor array for the T42 resolution.

From the values given in the table, it would seem that matching the

spectral data gives the best aggregate efficiency over all representations.

However, as the Legendre transforms will account for most of the CPU time of

the model, it will be the data mappings in these stages that determine the

performance of the model.

The allowable resolutions will clearly be reduced or increased for larger or

smaller PE array sizes respectively. For the DAP-310 with 1024 processors,

additional resolutions such as T21 and T30 could be efficiently used. Another

opportunity would arise with multi-level models. The number of latitudes J in

Eq.(6.3.4) could be reduced by a factor of two if two levels could be processed

simultaneously.

For any model, the choice of resolution depends on the nature of the

problem and perhaps more importantly the computing facilities available.

Estimates of the DAP memory requirements and execution time showed that

only low resolution barotropic spectral models would be practical on the DAPs

at Edinburgh University, so a resolution of T42 was chosen. A triangular

truncation was selected since it is preferred in meteorology and techniques to

use it should be developed. The Legendre transform algorithms were

developed in the previous chapter for this resolution.

The choice of resolution for spectral models implemented on vector

computers also tends to be influenced by the architecture. Computers that

have vector registers, such as the CRAY series, are most efficient when vector

lengths are multiples of the number of vector registers. Another factor is that

187

the FFT algorithms used are commonly radix 2, where I must be 2, or where

the number of points is a multiple of powers of prime numbers (Temperton,

1983). This is why spectral models are commonly designed to run with

resolutions T21, T42, T63, T84 etc.

6.4. Fast Fourier transforms

6.4.1. Computational transforms

The spectral model requires inverse and direct Fourier transforms of the

form,

F(X 1 ,ji ,t) =Fa Fm(Pj ,t)exp(imX) 	 (6.4.1)

and,

Fm (11jt) = -
	

F(X 1 ,i 3 Oexp(-imX 1) 	 (6.4.2)

where X i is given by Eq.(3.4.42). However, FFT routines are written to evaluate,

Aj

 =.

aexp(2irinj/N) 	j=O 	N-1 	 (6.4.3)

To use these routines, it is necessary to extend the range of zonal

wavenumbers to - 1/2<m<(112) -1 and set the additional coefficients to zero.

Following Orszag (1971), for the inverse transform Eq.(6.4.1), define m'm+L12.

It follows that,

1-1

F(X 	,t) = (-1Fm .exP(27rim'j/ 1)
	

(6.4.4)

where m'=O I-1. Thus the inverse transform requires the creation of the

coefficients with m negative. The odd points of the resulting gridpoint field

have to be negated. For the direct transform, one method would be the

reverse of Eq.(6.4.4),

iE*.

1
I-i

'

Fm(I.Ljt) = 	
(- 1F(X 1 ,i,,t) exp(-im'X 1)

=0

(6.4.5)

such that the required coefficients for 0<m<I/ 2-1 are given by m'1/2..... 1-1.

Alternatively, Orszag (1971) notes that Eq.(6.4.2) is equivalent to the direct form

of Eq.(6.4.3),

N-i

a = -
N 	

A exp(-21r1nj/iV)
	 (6.4.6)

j=0

for m and 00 but < N12. By substituting a computational wavenumber of the

form nm+I it can be shown that the coefficients for 112<n<I are equivalent

to the coefficients for m<0.

6.4.2. Complex transform

As the model has 128 points of longitude, the FFT5 would be done by

extending the wavenumbers to m=64 and setting these new coefficients to

zero. The coefficients for m<0 would then have to be created. This is the

approach used by Fishbourne (1980). However, since the gridpoint values are

real and the Fourier coefficients therefore conjugate symmetric, the transforms

can be done as complex ones on 64 points only. This reduction is well known

and described, for example, in the appendix to Orszag (1971).

Assuming Ito be a multiple of two, define,

Bm = Fm + Fp 	+ iexp[(21Tim)/I1(Fm - Fp+m) 	for m=O,...I-1 (6.4.7)

where P-- Y2 and m refers to the computational wavenumber, dropping the

prime for convenience. The inverse transform of Bm is then given by,

= 	Bexp(21Timj/P)
	 (6.4.8)

from which it is straightforward to show that,

189

i 	2i + iF,1 	for 3=0,...P-1 	 (6.4.9)

Hence the transform of Bm fufly determines the transform of Fm• The even

points are stored as the real part of B. and the odd points as the imaginary

part i.e.

	

B = F2 - iF2+1 	 (6.4.10)

The direct transform of B uses Eq.(6.4.6). To recreate the Fm coefficients,

Eq.(6.4.7) and the conjugate symmetry relation are used to give,

F =[Bm + B_m - iexp(-2lTim/I)(B m - Bp* 	 (6.4.11)

for m=0,...P-1. A similar expression can be obtained for the coefficients for

mP...I-1.

6.4.3. Implementation

The model stores Fourier coefficients in the range tn'=L 12.....I-1. The above

equations should be written to use only those coefficients stored by the model

rather than creating the coefficients for m'0,...L'2_1.

The conjugate symmetry relation (omitting the prime again) is,

Fm = * m
	 (6.4.12)

and can be used to give the following relation for the inverse transform,

Bm = 	m + Fp 	+ iexp(27rim/I)(F m - Fp+m) 	for m=0,...I-1 (6.4.13)

from Eq.(6.4.7). Thus, all references to Fourier coefficients on the RHS are in

the range F112 to F and can use the model coefficients directly. At m0,

Eq.(6.4.13) reduces further to,

Re{ B 0) = . ke{ F }

j)g7j{ B0 I = -e{ FI
	 (6.4.14)

since Fr=F0 and F0=0 from the extension of the definition of the model

wavenumber in, and F is real as this corresponds to the mO model zonal

waven umber.

190

The calculation of Eq.(6.4.13) is straightforward. First the coefficients 1 m

have to be formed by routing. If the mapping of the computational

wavenumber indexing Fp+m is,

Fp+m : (P+m)+{m+1}
	

(6.4.15)

then to be able to add and subtract the -m coefficients, they must also be

mapped as Eq.(6.4.15). Adding P-2m to Eq.(6.4.15) gives the mapping of F...m

as,

_m: (J-m).{65-m}

before routing. A reversal of rows and a planar shift south are therefore

required to align F m and Fp+m The planar shift ensures that for m0 in

Eq.(6.4.13), there is no contribution from the 1m term. The real and imaginary

Bm coefficients can therefore each be computed by one DAP FORTRAN

statement.

For the direct transform, Eq.(6.4.11) can be used directly as long as the

sign of the odd gridpoint values is not changed i.e. the method of Orszag

(1971) is used. For m=O, using Eq.(6.4.13) it can be shown that BO=B which

gives,

F=1[B0+B+i(B0 - B)]

Using Eq.(6.4.14), this reduces to,

e { F

i',n(FP) = 0
	 (6.4.16)

The computation of Fm is done in the same way as for Bm with the same

routing. 	However, there 	is a 	nonzero contribution from the 	routed B_m

coefficient for 	m--P. Thus after routing, a vector assignment to set Fp is

necessary.

To summarize, the inverse transform is computed in three stages. The first

involves calculating the Bm coefficients and in doing so converting to the

computational wavenumber. The second stage is the FFT itself for which the

191

Cooley and Tukey (1965) algorithm is used. Finally, the values at the odd

gridpoints are negated.

Usually the final part of the Cooley-Tukey algorithm is a sorting step, as

the transform leaves the data in a bit-reversed order (see chapter 2).

However, since all the calculations in gridpoint space only involve values at

each point, the mapping of gridpoint values along each latitude is irrelevant.

All gridpoint data has to be transformed and so will use the same bit-reversed

mapping. By eliminating the sorting step on the direct and inverse transform,

a small saving in CPU time can be made. The omission of the sorting step

might not be possible for a model that has physical parametrizations in which

information is required from neighbouring gridpoints.

Since the data is in bit-reversed order along each latitude, the reverse of

the Cooley-Tukey algorithm, the Gentleman and Sande (1966) FFT, has to be

used for the direct transform. The direct transform consists of three steps;

the sign change at odd numbered gridpoints, the FFT itself and the calculation

of the Fourier coefficients as detailed above. Once the Fourier coefficients are

obtained, coefficients for m>42 are set to zero.

The values at even points are stored in one matrix, the values at odd

points in another. Changing the sign of odd values is therefore a single matrix

operation with no masking.

6.5. Implementation of the model

6.5.1. Available parallelism

In spectral space, computations can at most proceed over all real and

imaginary coefficients and all variables. Thus, calculations such as the time

stepping and diffusion have,

3(M+1)(M-f 2) = 5676 for M= 42

potential processes. The calculation of the wind components, considered in the

next section, has less inherent processes as only two variables are involved.

For the Legendre transforms, four variables could be transformed concurrently

if the PE array was large enough. as the inverse and direct Legendre

transforms are required four times per timestep. The same applies to the

192

FFTs.

For gridpoint calculations, such as the evaluation of nonlinear products,

there is again more parallelism available in the model than in the hardware.

At T42, the grid size is an exact multiple of the OAR array size so there are no

idle processors. All four gridpoint products could potentially be computed

concurrently making the available processes eight times the number of

available processors.

To conclude, although the potential parallelism depends on the

computations at each stage and the space (spectral, Fourier or gridpoint) those

computations are performed in, it is still greater than the parallelism available

from the hardware.

6.5.2. Calculation of the velocity components

The gridpoint values of U and V have to be computed to evaluate the

nonlinear terms in the tendency equations. Their spectral coefficients are

evaluated first using Eq.(6.2.7) and then transformed. Storage of U,. and Vmn

at n-- M+1 does not cause any problems since the extra coefficients are stored

in the next column in the matrix.

To illustrate the computation of the coefficients, the equation to calculate

Umn is separated into real and imaginary parts,

= am,n m D' ,n + Bmn+irnn+i - Bmnn,n-i 	
(6.5.1)

UM'

'n - Z m , n D n + 8mn+1mn+1 - Bm,nrn,n-i

where the superscripts r and i denote real and imaginary respectively.

Eq.(6.5.1) implies that B m n must be defined up to and including n=M+2.

In coding Eq.(6.5.1) in DAP FORTRAN, shift operations are used to correctly

align the data. However, because the orientation of the n axis is different for

the real and imaginary spectral coefficients, the shifts are applied in opposite

directions for the calculation of the real and imaginary coefficients of the

velocity components. Some repeated operations may be omitted by

precomputing the product with am,,. That is, set,

193

—r D' m,n - m,n m,n
(6.5.2)

El -a - 	D' m,n - m,n m.n

Substituting Emn into Eq.(6.5.1) shows how the velocities are computed in the

model.

These calculations could have been optimized further, by the additional

preliminary calculations,

= Bm,n+i, 	 = 8mn+i

yr - rr
- Fm' ,n

	r1
mn - ,m,n+1 (6.5.3)

f-yr - er
-

r-i 	_r1
"rn,n 	t i

Their real and imaginary parts have to be computed separately because the

shifts to correctly align them are done in opposing directions. Once these

variables are set, the evaluation of Umn can be done by the single equation,

U = Emn + Bm , n Fm , n + B m , n G 	 (6.5.4)

This saves an addition, subtraction and two multiplications at the expense of

some routing and assignments. The same approach can be applied to the

calculation of Vmn Overall a saving of about 1.5msecs would have been

achieved over the use of Eq.(6.5.2).

6.5.3. Spectral space calculations

The timestep calculations are completed in spectral space with the

leapfrog step, time-filtering and the application of damping. The matrices of

spectral data are then updated for the new time level.

The leapfrog step can be done in parallel over real and imaginary

coefficients since they are stored in the same matrix. The constant 2ttt is

broadcast to the tendencies. The time-filtering is done in the same Way. In

the model, the diffusion is applied to real and imaginary coefficients

simultaneously, with one matrix multiply operation.

194

6.5.4. Model output

For the periodic output of model results (known as history output), the DAP

Data eXpansion (DDX) software developed by the Edinburgh Regional

Computing Centre was used. DDX provides a facility for synchronous or

asynchronous I/O of a DAP FORTRAN COMMON block to or from EMAS disk files.

The code is efficient and does not occupy much memory in the DAP. Transfer

rates are typically 250-300Kbytes/sec, although it can vary significantly

depending on the machine load.

A difficulty with DDX is that the COMMON block must be aligned to a 4K

page boundary (recall that the DAP store also exists as host store). This can

only be determined at runtime and so a second compilation is necessary once

the appropriate offset has been found. The disk files are non-standard EMAS

files and must be handled using special DDX commands only, which can

convert them to standard EMAS files.

The prognostic spectral fields are output asynchronously at time t and frtL

The procedure is as follows.

Copy the fields into the output COMMON.

Normalize the fields.

Convert the data from DAP to host storage format.

Check that the previous write (if any) has finished.

Initiate the next asynchronous transfer.

The space required for the I/O COMMON is not substantial and can be

accommodated within the available DAP store. The estimated time for the

transfer is about 3secs, assuming a transfer rate of 250KbyteS/Sec. With

approximately 0.5 CPU seconds per timestep and output at intervals of more

than 1 hour, there was no I/O overhead. This was confirmed by comparing

the elapsed wall-clock time and the DAP CPU time of the job.

195

6.5.5. Programming environment

One important issue in the use of any fast computer is the programming

environment; how easy the programming language is to use, what support is

provided, what facilities or tools for debugging are available and so on. The

DAPs at Edinburgh University, in the author's experience, offered a reasonable

environment. Interactive use of the DAPs meant testing could be done quickly.

User support was also good. A DAP subroutine library similar to the NAG

library was provided. Submission of batch jobs was straightforward and a

minimum of job control language (JCL) was required. Most jobs consisted of

normal foreground operating system commands.

The main difficulties were encountered in the DAP FORTRAN language itself

and the relationship between the DAP and the host. Although the array syntax

of the language meant much neater and succinct code, useful FORTRAN77

constructs such as IF-THEN-ELSE were not available.

Initialization of data also required some thought. Whether data was

initialized in BLOCKDATA subprograms in the DAP or host depended on which

parts of the program the data was used and the loading sequence of the data

blocks. The transfer of data between the DAP and the host also required

some thought.

By far the biggest problem with the DAP was in debugging programs. As

DAP FORTRAN has no WRITE statement, variables' values could not be obtained

at strategic places in the code. The best method of obtaining diagnostics was

by deliberately halting the program using the DAP FORTRAN ERROR statement

(ICL, 1979). This had the same effect as a zero-divide say, and the values of all

the variables in the calling subroutine and COMMON blocks were printed out.

Debugging was generally time-consuming.

6.6. Storage requirements and performance

6.6.1. Storage requirements

The output produced by the DAP consolidator, which links the code to

produce an executable binary, can be used to produce statistics on the use of

the DAP store (Table 10). The largest requirement is for the program's COMMON

blocks. The system and system workspace both require small amounts of

196

Storage area 	Size 	Number of 	Percentage
(kbytes) 	planes occupied 	of total

Program code 94.74 190 4.6%

System 14.0 28 0.68%

Workspace 18.0 36 0.88%

Stack 740.0 1480 36.1%

User COMMON 1181.0 2362 57.7%

Total 2047.74 4096

Table 10.

Storage required for the DAP shallow-water model. Requirements shown

are for the main sections of the program, as given by the DAP consolidator

listing. Sizes are shown in kbytes and number of planes occupied.

197

memory. The remaining memory is used as stack, enough for the program's

requirement. Unfortunately, the consolidator does not produce any statistics On

the maximum stack used.

The requirements for the individual COMMON blocks can also be obtained

from consolidator output and are shown in Table 11. The largest area is for

the Legendre polynomials and their derivatives. The figures given in Table 11

are for the nonsymmetric Legendre transforms. For the symmetric versions,

the space for the Legendre values is 704 planes, giving a total user space of

1658 planes (829kbytes). The Legendre data array now accounts for 42.5% of

the total user data area instead of 60%. A significant decrease but still a large

fraction. This is an inherent problem of spectral models. There is also a large

amount of unused memory within these areas. For example, spectral space

variables and constants use only 46% of their allocated space. Similarly, the

Legendre polynomial data use 68.8%.

6.6.2. Performance

The CPU time per timestep for the shallow-water model was measured as

0.603secs. The variables are integrated sequentially so it is possible to run

the model as a nondivergent model solving just the vorticity equation. The

CPU time per timestep for the nondivergent configuration was measured as

0.305secs. The vorticity model has about half the cost of the shallow-water

model.

In Table 12, timings of the main routines called in each timestep are

presented, together with the routines that each one calls. The routines sci to

SC4 are the four scans that compute the velocities and integrate the vorticity,

divergence and geopotential respectively. The nondivergent model is obtained

by calling sci and SC2 only. These four routines call other routines than those

shown, for the calculation of gridpoint space products and to apply diffusion.

However, these other routines were not timed as they contain only a few

matrix operations and accurate estimates can be made.

The routines were timed by calling each one repeatedly within a DO loop.

The CPU time of the DAP part of the program was reported by the operating

system to the nearest whole second. Hence, each routine was called several

thousand times to decrease the error in the timing. Each timing shown has a

iII

Use
	

Size 	Planes 	Percentage
(kbytes) 	 of total

Main variables 128.0 256 10.9%

Auxiliary variables 64.0 128 5.4%
(velocity)

Work COMMON 80.0 160 6.8%

Legendre values 704.0 1408 59.8%

Matrix constants 80.0 160 6.8%

Vector constants 12.0 24 1.0%

Scalar data 0.5 1 0.04%

Logical masks 3.0 6 0.25%

Global diagnostics 10.5 21 0.89%

Output COMMON 96.0 192 8.2%

Total 1178 2356

Table 11.

Storage requirements for user data for the spectral model showing the

size in kbytes, number of planes and percentage of total.

199

Routine 	 Time per 	 Main subroutines called
name 	 call (msec)

SM. 142.0 UV, ILEG(2), WFI'(2)

SC2 155.0 ILEG, 1FFT, DFFT(2), DLEG, TSTEP, FU

SC3 133.0 DFFT, DLEG(2), TSTEP, FU

SC4 154.0 ILEG, IFFT, DFFT(2), DLEG, TSTEP

DFFT 15.4 GSFFTCOL, POSTDFFT

IFFF 14.6 PRE1FFF, CFHqCOL

POSTDFFT 3.79 NONE

PREIFFI' 3.57 NONE

GSFFTCOL 11.6 NONE

Ci. 11F1'COL 10.5 NONE

DLEG 56.7 NONE

ILEG 51.8 NONE

UV 5.94 NONE

TSTEP 0.362 NONE

FU 0.914 NONE

Table 12.

The execution times of the main subroutines of the spectral model and the main routines that each calls.

possible error of ±1 to the last digit. The cost of the DO loop is accounted for

in these timings.

The time taken for each scan is roughly the same. Although the

divergence equation involves more terms than the geopotential or vorticity

equation, the routine SC3 takes less time than SC2 (vorticity) or SC4

(geopotential) because the nonlinear products involving U and V have already

been computed by SC2 for the vorticity equation. The total time for the scans

is less than the CPU time per model step. This can be attributed to additional

computations taking place on entry and exit from the model and within the

main time loop. However, the four scans account for 97% of the CPU time per

step.

The spectral model of Fishbourne (1980) had a CPU time per step of

1.38secs, a factor of 2.3 more than the model of this chapter. This is due to

several reasons, but mainly to more expensive transform routines. As

Fishbourne did not store the real and imaginary parts of spectral variables in

the same matrix, spectral space calculations took twice as long. The fastest

version of Fishbourne's gridpoint shallow-water model took 0.05 CPU seconds

per timestep for a 64x64 grid. This can be multiplied by a factor of 2 as the

spectral model uses a 128x64 grid although, as pointed out by Jarraud and

Simmons (1984), an equivalent gridpoint model would have a slightly larger

grid than this because of the superior accuracy of the spectral technique. This

means the spectral model of this chapter takes 6 times as long as an

equivalent gridpoint model. The use of the symmetric Legendre transforms

will improve this, but it does suggest that spectral models are not as suited to

implementation on the DAP as gridpoint models.

The performance rates of the nonsymmetric inverse and direct Legendre

transforms were given in chapter 5 as 5.7Mflops and 8.5Mflops respectively.

The performance rates of the inverse and direct Fourier transforms (IFFT and

DFFT in Table 12) are 15.9Mflops and 12.3Mflops respectively. These are better

than the Legendre transforms because for most of the algorithm, all the

processors are doing useful work. As the spectral transforms account for

most of the computation in the model, an accurate performance rate for the

model will be obtained by considering these routines. This gives a rate of

8.7Mflops, demonstrating the dominance of the performance of the Legendre

transforms. This performance is 32% of the peak performance of the DAP

201

(27MfIops for 32-bit floating point addition) or 45% of the performance for an

equal number of floating point additions and multiplications. For comparison,

the shallow-water gridpoint models of Fishbourne (1980) achieved a

performance of lOMf!ops (see chapter 4).

6.6.2.1. Performance of the transforms

Table 12 shows that the spectral transforms account for 94.4% of the CPU

time per model step. In each step there are four calls each to the inverse FFT,

direct and inverse Legendre transforms and five calls to the direct FFT. The

Legendre transforms alone account for 72.0% of the CPU time. The total time

for the spectral transforms is 569.4msecs per step, with 434mSeCS for the

Legendre transforms and 135.4msecs for the FFT5.

The spectral transforms of Fishbourne's (1980) model accounted for 99.2%

of the CPU time per step, with the Legendre transforms using 82.7%. The time

for his FFTs was 218.2msecs and 1150.4msecs for the Legendre transforms.

The FFTs in Fishbourne's model are therefore 1.6 times more expensive. This

is because he used 128 point real transforms rather than 64 point complex

ones. His Legendre transforms are 2.7 times slower than the nonsymmetriC

routines developed for this model. There are a number of reasons for this.

The Legendre polynomial values for Fishbourne's model are packed and

unpacking incurs additional cost. This affects the inverse transform, for which

the performance ratio is 1.9. In the Fishbourrie model the Legendre polynomial

derivatives are calculated for the direct transform at each step. The

performance ratio for the direct transforms is 3.3. This illustrates the

efficiency of the Legendre transform algorithms used for this model. The ratio

of the Legendre transform time to that of the FFT is 3.2 for this model. This is

typical for low resolution models, the T63 ECMWF model had a ratio of 4.

Now that the model timings are available, it is possible to estimate what

the CPU time per step would be if the symmetric transforms were used.

Recall that the measured time of the inverse symmetric Legendre transform

was 32.8msecs, and the estimated attainable time for the symmetric direct

Legendre transform was 41.5msecs. This means that the total time spent

doing Legendre transforms decreases from 434msecs to 297.2mSeCS, a

reduction by a factor of 1.46. Subtracting this decrease from the measured

time of the model gives a time per step of 0.466secs. Of this, the Legendre

202

transforms take 64%, the FFTs 29% and the spectral transforms as a whole

take 93%. The ratio of the CPU time for Fishbourne's Legendre transforms

(that do not use the symmetry property) and the symmetric transforms is 3.9.

Comparing the new model CPU time to an equivalent gridpoint model now

gives a factor of 4.7.

6.6.22. Parallel processing performance

Aside from the CPU time per step and timings of individual subroutines,

the program's parallel processing performance has to be examined i.e. how

many of the processors are kept busy, what the inefficient parts of the

program are, what amount of routing is necessary. As described in chapter 2,

a useful performance measure for SIMD processor arrays is the weighted

fraction of the PE array kept doing useful work during the program as defined

by Eq.(2.6.3). This of course does not give a complete picture, a poor

algorithm may still keep all processors busy. The timings of the routines are

also important in this context. Comparisons with models on other

architectures are interesting, but because of algorithm differences are of little

value. A more relevant comparison would be between implementations on

different SIMD machines, particularly with different array sizes where the

percentage of the PE array kept busy may be less or more important.

Comparison with the spectral model of Fishbourne (1980) has been useful.

By estimating the times for the routines called within each scan that were

not timed, it is possible to calculate the percentages of the model CPU time

during which computations take place in either spectral, Fourier or gridpoint

space outside the spectral transforms, as shown in Table 13. To compute an

average efficiency for the model, Eq.(2.6.3) is used by dividing the model CPU

time per step into time slices for spectral space, Fourier space and gridpoint

space calculations and the transforms. Using Table 13 and the efficiencies for

the nonsymmetric Legendre transforms given in the previous chapter, an

average efficiency of 63.5% is obtained. In other words, during the model run,

on average two-thirds of the PE array is doing useful computation.

This percentage is strongly influenced by the efficiencies of the Legendre

and Fourier transforms. So, although a mean efficiency of 63.5% may suggest

scope for improvement, only improvements to the efficiency of the transforms

will give significant increases in this mean value.

203

Representation 	Percentage of time
per step

Gridpoint 0.74%

Fourier 0.42%

Spectral 2.2%

Table 13.

The estimated percentage of the time per step that the data

is in spectral, Fourier or gridpoint forms, excluding time

spent during the spectral transforms.

204

It is possible to determine what fraction of the model time is spent routing

and broadcasting data by noting the number of calls to the relevant DAP

FORTRAN functions (MATR, MATC, REVR, REVC and the shift functions). Using the

timings of these functions from chapter 2 the total time spent routing data is

52.77msecs per step with the nonsymmetric Legendre transforms and

58.21msecs with the symmetric transforms. If the time per step for the two

cases is 603msecs and 466msecs, routing accounts for 8.8% and 12.5% of the

total time per step respectively. Fishbourne (1980) reports a percentage of

11.6% for Ns model. Most of the routing takes place in the spectral

transforms, with roughly equal routing in the FFTs as in the Legendre

transforms. The increase in routing for the symmetric transforms is because

the symmetric and antisymmetric coefficients are treated separately.

Routing can be regarded as an overhead for a parallel implementation of

the model on the DAP. The routing overheads of this model are therefore not

excessive. They are comparable to the multitasking overheads for the ECMWF

spectral model i.e. 9% (Dent, 1988). The routing in the FFTs is 22% of the CPU

time for this routine but the routing for the inverse and direct Legendre

transforms is only 6.5% and 3.3% of the CPU time respectively, although each

routine spends roughly similar times doing routing operations.

6.7. Legendre transforms at different resolutions

Using the timing estimates and the overheads for the symmetric Legendre

transforms, it is possible to estimate the CPU time for the routines at the

resolutions, T21, T62 and T85. To make these estimates, a sheet mapping is

used for when the data array size is greater than the PE array size. Also, the

same basic algorithm is used and no attempt is made to devise new, more

efficient, algorithms.

At T21, there are 16 latitudes from the pole to the equator. If the Legendre

data are separated into odd and even n about the centre column of the DAP

array, the transforms are almost identical to those atT42. The difference is

that the loop is now half the length. The estimated T21 inverse and direct

transform times are 17.4msecs and 24.2msecs respectively. These times could

possibly be improved since in theory four values of n could be computed

simultaneously. However, more broadcasting and routing of data would be

required, so it is not obvious how much improvement, if any, would occur.

205

At T62, the spectral coefficients of the velocities would not be able to use

the same mapping as the rest of the spectral variables. The assumption is

that the real and imaginary coefficients are stored separately for U and V only

but this does not affect the time of the transforms. All the other spectral

variables however, can use the same mapping as the T42 model.

For the Legendre coefficients, 48 latitudes of data must be stored. With

odd and even n values separated as before they cannot be held together in

the same matrix and as a consequence the odd and even n computation has

to be done sequentially. This effectively doubles the code in the loop over n

for the inverse and direct transforms. The Fourier coefficients would also

need two matrices for both the real and imaginary values and therefore

additional code is required when forming the symmetric and antisymmetric

values. During the loop in the direct transform, as there are no free rows in

the Legendre data array, the Fourier work matrix has to be updated on every

pass. When all these changes to the T42 algorithms are made, the T62

inverse and direct transform estimated timings are found to be 81.Omsecs and

1 12.9msecs respectively.

At a resolution of T85, 64 latitudes need to be stored. Separating odd and

even n as before, the latitudes now use all the columns of the PE array unlike

the T62 resolution. Additional array space is required to store all the

coefficients. Partitioning the polynomials and their derivatives across four

matrices would leave 41 rows free, so that the Fourier work matrices only

have to be updated after 41 passes during the direct transform. For the

inverse transform, if n<63 the same code as the T62 case can be used in the

loop. However, once n>63, the Pm,r, occupy additional matrices and extra

code is required for the coefficients with m>63. Additional work arises at this

resolution in both transforms as the space required for the Fourier and

spectral coefficients is double the T62 case. All these modifications to the

code give an estimated time for the inverse and direct transforms of

166.Omsecs and 283.3msecs respectively. These estimates may be optimistic

as the total storage area required for the Legendre data now exceeds the total

DAP memory for the DAPs at Edinburgh University. Overheads from the I/O of

Legendre values during the transforms may increase the estimated timings.

206

6.7.1. Comparison with serial routines

Serial versions of the Legendre transforms were written in the IMP80

programming language and timed at T21, T42, T62 and T85 on the AMDAHL

470/%18 computer running the EMAS-3 operating system at Edinburgh

University. The code was optimized by the IMP compiler. Each routine was

called four times in a loop and an average of the last-three times was taken to

avoid the dynamic loading overhead when the routine was first called.

Fig. 26 is a graph showing the variation in CPU time for the AMDAHL and

DAP versions of the transforms. The serial 'ersions clearly show the cubic

variation of processor time with truncation. Between T21 and T42, the DAP

times vary linearly with M, as the same T42 code is used but the loop length

varies. Although the T42, T62 and T85 DAP times are joined by straight lines,

times for intermediate resolutions would not lie on these lines. For example,

at T43, extra space is required for the Legendre data so that the same data

mapping as for T62 would have to be used and would mean a larger increase

in time than depicted in the graphs. A more economical approach might be

feasible using a vector array. The increased slope of the line joining the T42

and T62 times shows the additional cost as the odd and even n computations

are no longer done in parallel. The increased slope between the T62 and T85

times is a consequence of the additional work required as the Legendre and

spectral data use more space.

There is a clear performance gain at the higher resolutions for the DAP.

For the inverse transform, the ratio of the DAP and serial times is 3.6 at T42

and 5.2 at T85. For the direct transform, the ratios are 5.6 and 8.8. The T21

resolution however, is too low to make effective use of the 642 PE array. The

ratios are greater for the direct transform because the products involving the

Legendre polynomials and their derivatives are computed in parallel in the DAP

versions. This is shown by the ratio of the direct transform time to that of

the inverse transform. For the serial versions the ratio is about 2.85 for all

resolutions, whilst for the DAP versions it is 1.4, except at T85 when it

becomes 1.7.

Nob

iI'I'IS']

800.0
0)
0
0)

600.0

03
E

400.0

:3
a-

200.0

40 	 60 	 80
Truncal- ion wavenumber-

Figure 26. Variation of the CPU time with the truncation wavenumber for the Legendre

transform algorithms. Solid curves represent the DAP routines, dashed

curves the serial routines. Inverse transform times are shown with a cross,

direct transform times with a circle. Taken from Carver (1988).

208

6.8. Model results

In this section, the model results are compared with the previously

published results of Doron et at (1974). They compare spectral and gridpoint

models by using Rossby-Haurwitz waves as initial conditions. The

Rossby-Haurwitz wave is an exact solution of the nondivergent barotropic

equation but not for the divergent case. Zonal wavenumber 4 is stable and

moves east at about 110 per day. However, zonal wavenumber 8 is unstable

and breaks down within 5 days. Doron et at use a rhomboidal spectral model

and present results at two resolutions. The highest of these, R31, is

comparable in resolution to the T42 model of this chapter.

6.8.1. Initial conditions

The initial streamfunction given by Doron et a/. (1974) is,

	

-
	K 	

(6.8.1)

with K as -0.8776 for both wavenumbers 4 and 8. The value of w is chosen to

give a super-rotation of 50ms 1 at the equator. The fluid depth is 8km. The

definition of used by Doron et at for their spectral model differs from

Eq.(3.4.18) in the normalization constant and to be consistent, for this model

Eq.(6.8.1) becomes,

K
= 	- 	 PcosmX 	 (6.8.2)

n(n+1) f2

To determine the initial vorticity coefficients start with the expansion,

M M

* = E L *m.n(t)Pm,n eimX 	 (6.8.3)

m-M nImI

Since,

P0,1 = /3 ji

and assuming one nonzero coefficient, Eq.(6.8.3) becomes,

'S.

i
iP = / 314P0,1 + 13mnE(m.ne)* + 4J m , n e

mX
 (6.8.4)

where the properties Eq.(3.4.19) and Eq.(3.4.27) have been used. Comparing

Eq.(6.8.4) and Eq.(6.8.2) gives,

= -w / /3 •

4'm,n) = 0 	
(6.8.5)

AC Rm,n) = -K / [2/2 n(n+i)I

Using Eq.(6.2.5) gives the initial vorticity coefficients as,

= 2w / /3

m,n = K / 2/2 = 0.31 	 (6.8.6)

The geopotential coefficients are calculated from the divergence equation

Eq.(6.2.10) by assuming the initial divergence and divergence tendency are

zero.

6.8.2. Rossby wave results

The wavenumber 4 and 8 cases described by Doron et al. (1974) were run

for the T42 model. A timestep of 5 minutes was used, whilst Doron et al. use

a semi-implicit timescheme with a timestep of 30 minutes.

Contour maps of the total geopotential (+c') are presented on a polar

stereographic projection for the northern hemisphere. Graphs of the main

spectral coefficients of vorticity are also presented. To calculate the

magnitude of the waves, following Hoskins (1973), the spectral coefficients are

written in amplitude-phase form,

Fmn = Aexp(i9mn) 	 for m0

F0 = Aexp(iO 0) 	 for m=0 	 (6.8.7)

since there is no complex conjugate coefficient for m0. This gives,

210

A = 21F1 	for m0

A = I FO,n I 	for m=O 	 (6.8.8)

For comparison with the results of Doron at aI the amplitude A is normalized

by dividing by the Earth's angular velocity. All amplitudes are multiplied by /2

so that values on the graphs may be compared to those of Doron at al-

6.8.2.1. Rossby wavenumber 4

In Fig. 27, the results from the R31 model of Doron at al. (1974) are

reproduced for a zonal wavenumber 4 together with the T42 results. The

treatment of the wave appears to be identical in both cases. A weak

north-west/south-east tilt of the troughs and ridges is evident by day 3. This

transfers momentum southwards weakening the zonal flow in mid-latitudes

and produces a closed low. The tilting of the pattern weakens until by day 7

it has disappeared. The average eastward displacement in the T42 model over

the 7 days is 11.2 0 per day.

Fig. 28, from Doron at a!, shows some of the principal spectral

components as they vary with time. In Fig. 29, the variation, of the same

spectral components for the T42 model are shown. Agreement is good but

the curves are not identical. The T42 model decreases the amplitude of the

(0,7) and (4,7) components slightly from day 6 to 7 whilst Fig. 28 does not

appear to show this.

6.8.2.2. Rossby wavenumber 8

Fig. 30 shows the results from Doron at a! for a Rossby-Haurwitz zonal

wavenumber 8 and the results from the T42 spectral model. As before, the

integrations are in good agreement. The wave moves eastward at 30 0 per day

in both models.

A tilt in the pattern again develops and persists, transferring energy from

the main wave to the zonal flow. The breakdown of the wave at day 5 in the

T42 model appears identical to the R31 model results.

The principal spectral components from Doron at at are shown in Fig. 31,

whilst those from the T42 model are shown in Fig. 32. The curves appear

identical in both cases.

211

DAY 	•3 	5 	7

Figure 27. (a) Reproduced from Doron et al. (1974) showing polar stereographic

projections of the height field at days 0, 3, 5 and 7 for a Rossby-Haurwitz

wave of zonal wavenumber 4 for the high resolution spectral model, (b) The

geopotential field for the T42 model.

(b)

212

211

1 	2 	3 	4 	5 	6 	7

.9

2IS1

•6

.5

7

2 	3 	4 	5 	6 	7

(days)

Figure 28. The variation in time of some principal spectral components of vorticity

for the wavenumber 4 integrations of Doron et al. (1974). Solid line is the

low resolution spectral model. Dotted line is the high resolution spectral

model. Dashed line is the low resolution gridpoint model. Crossed line is

the high resolution gridpoint model.

213

1.00

0.80

0)
C.-

0.60
0
0

0
L

13 0.40
CD
a-
(0

0

CD
-o
a-

0
E

0.20

'AlIt]

(4,5)

(0,7)
(4,7)

2 	 4 	 6
Time (days)

Figure 29. The variation in time of some principal spectral components of vorticity for

the zonal wavenumber 4 integration with the T42 spectral model.

Amplitudes are corrected for the different normalization of the Legendre

polynomials to that of Doron et al. (1974). Points are joined by straight

lines and circles indicate times at which output was available.

214

DAY 	3 	4_ 	5

(a)

Figure 30. (a) Reproduced from Doron et al. (1974), showing polar-stereographic

projections of the height field at days 0, 3, 4 and 5 for a Rossby-Haurwitz

wave of zonal wavenumber 8 for the high resolution spectral model, (b)

The geopotential field for the T42 spectral model.

i IA

(b)

215

ii

05

0 	1 	2 	3 	4 	5 	6 	7

(days) 	-

2I

0 	1 	2 	3 	4 	5 	6 	7

(days)

02

I .lj

0.1

0 	1 	2 	3 	4 	5 	6 	7

t) 	 V

Figure 31. The variation in time of some principal spectral components of the vorticity

in the zonal wavenumber 8 integration. Reproduced from Doron et al.
(1974). Key as for Figure 28.

216

1.00
-o
N

0

0. 80
0
C

0)
C-

cD 0.60
0
0

a
L

t; 0.40
a,
a-
(I)

0

e 0.20
0
3

-I-

S

• IXIIIL
0] 2 	 4

Time (days)

(8, 11)

(8,9)
(0,5)

Figure 32. The variation in time of some principal spectral components of vorticity for

the wavenumber 8 integration of the T42 model. Amplitudes are corrected

for different normalization of Legendre polynomials to that of Doron et al.

(1974). Circles represent times at which output was available and are joined

by straight lines.

217

6.9. Conclusions

In this chapter a T42 spectral shallow-water model was designed and

implemented on the ICL DAP. As the model execution time depends mainly on

the transforms, further improvements to these routines would benefit the

model most. The Fourier transforms could be improved as the number of

gridpoints contain factors of four as described in. Hockney and Jesshope

(1981). A reduction in CPU time of 10% might result. For the Legendre

transforms, no similar optimizations exist. Only minor optimizations would be

possible since the major parts of the operations are tied to the storage format

of the Legendre data. One optimization might be the use of lower precision

arithmetic. This could perhaps be applied to all parts of the model, although it

is not clear if it would be successful or possible for the transforms,

particularly the Legendre transforms. Special summation algorithms might be

required to preserve accuracy. For example, always summing from the highest

total wavenumber to the lowest to accumulate the smallest contributions first.

The use of lower precision arithmetic would require much study. Another

optimization would involve writing the inverse Legendre transform algorithm in

the DAP assembly language APAL to exploit the available processors, as

described in chapter 5.

In concluding this chapter, the fundamental question to answer is whether

the DAP is suited to spectral models. The answer is dependent on the problem

to be implemented, for the DAPs at Edinburgh University will suit only medium

resolution models with just a few levels. High resolution models require a

large quantity of Legendre data and hence need a substantial amount of

memory and the lack of a fast I/O facility would undoubtedly reduce the

efficiency of the Legendre transforms. Only a few levels would be practical

because of memory requirements. However, the addition of more levels adds

another dimension to the number of potential processes and more efficient

transform algorithms may result. This is an obvious next step to this work.

The DAP is also suited to higher resolution models as evidenced by Fig. 26.

The resolution of the model of this chapter is the lowest that would be

worthwhile implementing on a DAP of this size, given the speedup achieved

over the serial machine and the extra effort involved in designing the

algorithms. One conclusion is that the DAP should have a higher ratio of

memory to the number of processors and a fast I/O facility to be more suited

to spectral models. The new DAP-310 satisfies both these requirements.

218

Larger array sizes on the other hand, will further restrict the choice of

resolution for efficiency reasons and be more suited to proportionally higher

resolutions.

A triangular truncation was used for this model, substituting a rhomboidal

one would require some remapping of data but the Legendre transform

algorithms would remain largely unchanged. It would - be interesting to extend

this work to consider what the best spectral truncations are for the DAP and

the type of meteorological problems they would be used to study.

Finally, the Legendre transforms pose implementation problems whatever

parallel computer is used. A comparison of techniques on different parallel

computers is presented in chapter 8.

219

CHAPTER 7

A MESOSCALE FINITE ELEMENT MODEL ON THE ICL DAP

7.1 Introduction

In this chapter the implementation of a finite element meteorological

model on the ICL DAP is described. Although the finite element technique is

used infrequently in meteorology its use is growing. Recent studies using the

finite element method for applications on the DAP have shown it to be well

suited to the array processor architecture (Lai and Liddell, 1987a).

As was shown in chapter 3, the finite element technique involves different

algorithms to those of gridpoint and spectral methods. Parallel algorithms for

the solution of finite element systems of simultaneous equations is an area of

current research. An aim of this chapter is to establish the algorithm best

suited to finite element meteorological models. An obvious requirement for a

time dependent problem is a fast algorithm. New parallel algorithms will also

be required for evaluating the finite element matrices. Like the implementation

of the spectral model, the DAP will affect the formulation of a finite element

model and another aim of this chapter will be to study the differences

between formulating the model on a serial and parallel machine.

The model had to be computationally cheap and simple to be implemented

in a short time, but also be a realistic meteorological model so that typical

problems in formulating finite element models for the DAP had to be solved.

Since the spectral method is more accurate globally, the finite element method

is usually used for limited area studies. The choice of model was the

two-dimensional dry model of Orlanski and Ross (1977), hereafter referred to

as 01177, which was used to simulate the development of a cold front.

The next section contains a description of the model and the following two

sections describe the formulation of the finite element version. The model

equations are then described followed by their implementation on the DAP.

After describing the parallel algorithms to compute and solve the finite

element matrices, an analysis of the model's storage requirements and

performance is presented. Results from the model are then compared to

those of Orlanski and Ross (1977). Finally, conclusions are presented and

discussed.

220

7.2. Description of the model

7.2.1. Equations

The mesoscale model employs the deep anelastic equations formulated by

Ogura and Phillips (1962) with a hydrostatic approximation. They are written in

Cartesian coordinates (x,y,z) with the y-coordinate running parallel to the axis

of the front. The numerical solution is assumed to be two-dimensional with

all the variables independent of y. A vorticity, , is used to represent the

velocity field in the x-z plane. The potential temperature, 9, within the frontal

system is determined by a y-velocity jet, v, initially in geostrophic balance with

the temperature gradient across the front. A large scale geostrophic wind,

U9 (4, advects the front in the x-direction, where U9 is taken to be uniform in

z A horizontal temperature gradient in the y-direction is included for

consistency with the large scale wind through the thermal wind relation. The

Coriolis parameter, f is assumed to be constant and all moist processes are

neglected.

The prognostic variables are , v and 8 and their rates of change are given

by,

a 	ae 	a 	a 	a 	a (ao 	
i_ - - - + 	KV e) + 	e) 	(7.2.1)

— -tL -
at 	3x c*0 az 	3z 0 0 ax 	ax 	ax 	az 	3z

ae 	ae 	Be 	j Do au a 	ae 	a 	ae
- = 	- W 	 V 9+ (KK e) + —(K —) 	 (7.2.2)
at 	ax 	3 	a. 	ax 	ax 	az eaz

aV 	8 	8 	 a, a 	a 	3
- = -u— - w— + f(Ug - u) + (KV e) + (Ve) 	 (7.2.3)
at 	8x 	az 	 ax 	az 	8z

The specific volume is given by,

a0 E 1 / Po = 	[1 - (gz1 c e 0)] 1 R
	

(7.2.4)

with the surface specific volume, a, independent of x and 0 0 as the surface

potential temperature at the right-hand boundary. A streamfunctiofl, 4), is

defined so that the velocities u and w, in the z and z directions respectively,

are given by,

221

= ti/cL0 , 	a1/az = - w/CZ0 	 (7.2.5)

The streamfunctiOn is obtained from,

a 	
—) (a0
a4) 	 (7.2.6)

= —

az 	az

The turbulent fluxes of momentum and heat are parametrized using an

eddy viscosity parametrization developed by Orlanski and Ross (1973) and

Orlanski et at (1974) in which the eddy diffusivity takes the form,

KeKO 	
,Ae>_o

Ce = K0[1 + , AE)< 0
e0K0v0

(7.2.7)

where AG is the local vertical gridpoint difference in potential temperature. In

the 0R77 model, the parameters are set to,

= O. 7Ke,

K = 1000,

K0 = 5m2 s 1 ,

= 0.7K 0 ,

C = 0.75.

(7.2.8)

K is included in the momentum equations so that the horizontal eddy viscosity

and heat diffusivity are 1000 times larger than their respective vertical values.

K0 represents the background diffusivity.

7.2.2. Finite difference formulation

The finite difference formulation of the original model was that of Orlanski

and Ross (1973) (based on that of Lipps, 1971). Centred space and time

differences were used but with the diffusion terms lagged by one timestep.

The variables were specified over a staggered grid with the advective terms

written as Jacobians in 4i and formulated according to Arakawa (1966) and Lilly

(1965), to minimize computational instability. The solution was time-smoothed

every 30 timesteps to suppress the mode splitting of the leapfrog scheme

used for the model.

The horizontal domain was 1500km with 76 equally spaced points giving a

resolution of Az=20km. The vertical spacing, however, was varied to give an

222

increased resolution near the ground with Aa150m at the surface, 300m at

5km and 400m at 15km, the top of the model. There were 51 points in the

vertical with a tropopause prescribed at 10km in the temperature profile.

7.2.3. Boundary conditions

The bottom boundary of the 0R77 model consists of a level surface on

which velocity slip (u and v nonzero) is permitted. The boundary condition for

0 is,

aG/az = 0 at z = 0 	 (7.2.9)

In the interior of the model, v is roughly in geostrophic balance with the

horizontal temperature gradient, so the thermal wind relation is assumed to

hold at the surface, to give,

8V 30
- 	 at z = 0 	 (7.2.10)

az 	fOo a

The cross-front circulation, represented by the streamfunction and vorticity,

requires the use of the simple boundary condition,

= 0 at z = 0 	 (7.2.11)

Since the prognostic equation for vorticity involves diffusion terms, a boundary

condition for vorticity is also required at the surface. 0R77 used the

condition,

=0 at z=0
	

(7.2.12)

The numerical domain of the model extends above the tropopause.

Although intense perturbations may affect the lower stratosphere, the large

static stability above the tropopause will weaken these perturbations.

Therefore, rigid-lid boundary conditions were used at the top boundary. That

is,

= 4(t=0)
	

(7.2.13)

and,

223

a(t) 	(t=o) 	a v(t) 	3v(t=O) 	ae(t) 	a 0 (t=O)
at the top. (7.2.14)

a 	az, 	3z

Instead of rigid or periodic boundary conditions, open boundary conditions

were used for the sides of the model to permit propagating waves to escape

from the numerical domain. Orlanski (1976) discussed open boundaries in

detail. His scheme is based on computing a phase velocity, which includes

advection and wave propagation, in the neighbourhood of each boundary point

and extrapolating to the boundary. The choice of whether a boundary point

exhibits inflow or outflow behaviour is determined by the direction of this

phase velocity, rather than the direction of the mean flow.

For any variable 4, at timestep n+1, for the boundary point b, its value is

given by,

	

1-r 	 2r
n+1 	________ _)g _______ n-i +

(- i 	
(7.2.15)

	

•b
IT _+ r 	 1+r

where 0 < r < 1 and r is given by,

__ 	 n-2 __ n 	n
- (h-i

-2
 - 'b-i) / (-i + b-1 - 2:) 	 (7.2.16)

The values of r for the 0R77 model variables are computed in the above

manner except that for vorticity at both sides and temperature at the right

side the values are fixed at 1, corresponding to an outflow velocity of AXIAL

7.2.4. Initial conditions

Orlanski and Ross (1977) considered two types of initial conditions. The

first was a surface jet only, using the following expression for the y-velocity

field v,

v(z,z) = (x/Zj)Vm(1 - tanh[8(z+(%z-x0)])
	

(7.2.17)

with z=500km, 8=50km 	and a=100. Vm is a jet intensity parameter.

Eq.(7.2.17) produces a jet 4km deep and 600km wide with a maximum velocity

at the surface.

The second type was a mid-tropospheric jet given by,

224

v(z,z) = - (Z/ZO) V {1-tanhLB(z+ctz-z)j}+ VMexp{Rj2I(z-2)2+(Y (z-))21)(7.2.18)

with z=z, z=4km, R=8//2km and y=0.03. This produces a weak surface jet as

before but with a strong jet centred at 8km height and directed in the positive

y direction.

The 8 field is initialized so that the horizontal potential temperature

gradient is in geostroptiic balance with v from the thermal wind relation. The

vertical variation of 8 is prescribed on the rightmost boundary (the warm side

of the front) with lapse rates of,

2x10 3 ° C/m 	for z < 2km

4x10 3 °CIm 	for 2km < z < 10km
	 (7.2.19)

14.5x10 3 ° C/m 	for z> 10km

with 80 (not given by 0R77) assumed to be 15 ° C, the mean sea-level

temperature at mean sea-level pressure (McIntosh and Thom, 1981).

The initial vorticity field can be set using the large scale wind U9 . From

Eq.(7.2.5) and Eq.(7.2.6) with u= U9(4,

= a(J9(z)/az 	 (7.2.20)

7.3. Formulation of the DAP model

7.3.1. Model domain

The DAP implementation of the 0R77 model has 64 points in the horizontal

and 64 in the vertical. The horizontal grid spacing is 24km to give a domain

width of 1512km. Thus, the resolution in the horizontal is less than for the

original model but the superior accuracy of the finite element method should

offset this.

For the vertical, the model may use either a constant spacing or the

stretched vertical coordinate scheme of 0R77. If a constant spacing is used,

the increment Az is 240m, giving a model top of 15.12km. With the stretched

vertical coordinate, at the ground Az=119m compared to 150m in 0R77 and

Az314m compared to 400m at the top of the model, with a model top of

14.85km. Thus, coupled with the use of the finite element method this model

225

has superior vertical resolution to the original model.

732. Method of solution

7.31.1. Choice of elements

As shown by Staniforth (1987), bilinear rectangular elements, defined by

Eq.(3.5.9) and Eq.(3.5.6), are superior to triangular or higher order elements. As

discussed in chapter 3, there are several advantages to using these elements.

First, fourth order accuracy is obtained for the solution at the nodes of a

regular grid. Second, the resulting system of equations can be solved as sets

of one-dimensional tridiagonal problems. Last, for the calculation of a simple

derivative, the two-dimensional calculation reduces to one dimension. Since

efficient and economic solvers for tridiagonal systems exist for the DAP, the

use of rectangular bilinear elements is made more attractive and are therefore

used. The model equations may be solved as a succession of derivative and

product computations in contrast to the more traditional technique where all

terms are considered together and the resulting stiffness matrix assembled

and solved.

7.3.2.2. Choice of grid

Williams (1981) showed that the elements must be staggered if the

momentum form of the shallow-water equations is used, whereas no

staggering is required for the vorticity-divergence form. If the nodal points

for the free surface height are not staggered relative to those of the velocities,

the energy in the small scales propagates in the wrong direction. Staniforth

(1987) reported that unstaggered formulations also suffer from small scale

noise. As vorticity is used in this model, an unstaggered grid is chosen in

which values of all the variables are held at each node. A node is identified

by integers i and j where z and z are given by,

z=iLx, 	i0.....63
	

(7.3.1)

and,

z

=
z1, 	j = 0 63 	 (7.3.2)

226

73.23. Approximation of variables

The approximation of the model variables with the basis functions Eq.(3.5.9)

follows directly from chapter 3. From Eq.(3.5.1 1), any model variable I can be

approximated by,

63 63

f(z,z,t) = 	J(t)a1(z)b(z) 	
(7.3.3)

i=O j=O

where a and b are the piecewise linear functions in the x and z directions

respectively. They are given by Eq.(3.5.6) except that the spacing in the x

direction is constant. The nodal values at t=O, J=O, 1=63 and j=63 for the

appropriate variables are given by the boundary conditions in the previous

section.

7.3.3. Calculation of velocities

7.3.3.1. Streamfunction

The first stage of a new timestep is to compute the streamfunction from

the vorticity, using Eq.(7.2.6). The streamfunctiOr and vorticity are expanded

according to Eq.(7.3.3). The streamfunction'S boundary conditions, Eq.(7.2.11)

and Eq.(7.2.13), are essential conditions and must be explicitly satisfied.

The finite element method can be applied in the usual way. A truncation

error analysis of the resulting scheme (assuming ct 0(z)1 for all z) shows only

first order accuracy on the irregular vertical spacing of the model (the

horizontal mass matrix cancels from the LHS and RHS as for the first

derivative case). However, Beland and Beaudoin (1985) have devised a

scheme, outside the Galerkin finite element framework, for the second order

equation,

d2 y/dx2 = I

which is fourth order accurate on an irregular grid but remains as complex as

the finite element method. Their method is applied to the streamfuflCtiOfl

equation Eq.(7.2.6).

To simplify the derivation of the scheme initially, a 0(41 for all z is

assumed so that the equation,

227

a2/9z2 =
	 (7.3.4)

is to be solved for ip. The discretized form of this equation is assumed to be,

IL
	-) - 	- 	= a 1i + b 1 + c 1+1

	 (7.3.5)

where, for convenience, /=f. The coefficients a, b, c and d are found by

requiring that Eq.(7.3.5) is exact for fourth order polynomials of IP expanded

about z, and valid in the interval z 1 , z 4 .1 . Beland and Beaudoin (1985) chose,

(z - 	m = 1, 2, 3, 4
	 (7.3.6)

which gives,

= m(m - i)(z -
	 (7.3.7)

Substituting these into Eq.(7.3.5) gives,

+ (1)mh 1 d =m(m - 1)[a(1)m_2/42 + tSm , 2 b + ch. 2 1
1-1

(7.3.8)

This must hold for m=1, 2, 3 and 4. Substituting these values of m into

Eq.(7.3.8) gives four equations that can be solved for a, b, c and ti The

coefficients are found to be,

h.
I __

12 	hh1 _ 1

b
	h.)1 	 (7.3.9) - 	[5 + 	
'- - '

12 	hh. I 	I1

C. = 	+ 	
1h.1 12 	h.

with d=1 for all i to give,

1 	1 	1
- (- + -)_1) + 	= a11 ... 1 + b 	 (7.3.10)

	

1 	+ c +1
h. 	h. i-i 	I 	I

The value of the coefficients given by Eq.(7.3.9) do not hold at the

boundaries. However, since the values of at the top and bottom of the

model are known, no derivation of the coefficients at the boundaries is

228

required (although these coefficients are given by Beland and Beaudoin, 1985).

The specific volume must now be introduced and the streamfunction

solved using Eq.(7.2.6) rather than Eq.(7.3.4). The specific volume only alters

the LHS of Eq.(7.3.10). The LHS is the same scheme that the usual Galerkin

procedure would give. Therefore, to solve Eq.(7.2.6). Eq.(7.3.10) is used but with

the LHS derived from the finite element procedure for the second derivative

term in Eq.(7.2.6).

Following the usual finite element procedure, the LHS is,

LHS ff 	—(ao --)ak bI dzdz for k 	O N, I = i,...N-1 	(7.3.11)

where x is the width and z the height of the domain. Integrating by parts

gives,

x

,
 8* dbi

	

dLHS 	 f - zdz
 dzJ o

The integrated term is zero since b1 is U at zO and z for all ! by definition.

Substituting the expansion for 1P gives,

	

LHS = - 	4)jjKfjM1çj 	 (7.3.12)

where,

Ka I a 0— —i

	

Ij 	
dz

	

j 	
dzdz

0 	
(7.3.13)

= f ak ai d x

It can be shown that the horizontal mass matrix cancels with the same

matrix on the RHS. The problem now is the evaluation of the integral for the

stiffness matrix, j. Only three values of j at I-i, I and 1+1 give a nonzero

229

contribution to this integral,

1
iCL 1

+

R 2 ci0 dz+K O

KjaF
'

= - 	a0 dz 	 (7.3.14)

zl- .I

f
2 1

x +1 =_ 2 	ci0 dz

zi

using Eq.(3.5.17). These terms can be evaluated by the two integrals,

()2 	
S

Zi+1

A l
1

 J
a0 dz, 	B 1 = - 	ci0 dz 	 (7.3.15)

h2 1
zi

These could be computed by numerical quadrature, but since a o is a known

analytical function it is more accurate to evaluate them analytically.

Substituting Eq.(7.2.4) into Eq.(7.3.15) and integrating gives,

1 Cts R
Al 	2t

h1 _ 1 8(R- c)

1osR 	
- 	1)Y 	

(7.3.16)
B 1 =[- 8(R-c)][(

where,

B = g1ce 0 , 	y = 1 - (c/R) 	 (7.3.17)

Substituting Eq.(7.3.15) into Eq.(7.3.14) and then expanding Eq.(7.3.12) gives the

LHS of Eq.(7.3.10) as,

AP,1_1 - (A + B)iP 1 + B 1P1+i = 	+ 	+ cji.j+ 1 	 (7.3.18)

where A and 	are given by Eq.(7.3.16) and a1, b3 and ej are computed from

Eq.(7.3.9). Since a0 is constant with time, all these coefficients are computed

once only at the beginning of the run and stored. Also, as Eq.(7.3.18) results

230

in tridiagonal matrices, it is as efficient as the normal Galerkin finite element

approach.

7.3.3.2. Velocities

Once the streamfunction has been computed by Eq.(7.3.18), the next step is

to compute the velocities u and w using Eq.(7.2.5). This is done by calculating,

= a/a, 	, 	= 	 (7.3.19)

followed by,

U = 	= 	 (7.3.20)

It will be seen later that ,P is required for the calculation of one of the

advective terms and so this result is stored for later use.

The procedure to calculate uP is exactly that described in chapter 3 and

the result can be written immediately using Eq.(3.5.27),

= - 	 (7.3.21)

where M is the horizontal mass matrix and £ is the projection operator for

the first derivative in the x direction. The elements of these matrices are given

by Eq.(3.5.18) and Eq.(3.5.19). In Eq.(7.3.21), it is assumed that the nodal index

in the z direction, i increases with the row index of the matrices wa and

and that the z direction nodal index, j increases with the column index of the

matrices. A similar matrix equation to Eq.(7.3.21) is used to calculate uP.

However, the solution is only first order accurate, because of the stretched

vertical coordinate. As an alternative, the procedure of Beland and Beaudoin

(1985) could have again been used to give a fourth order accurate solution to

The true velocities u and w are then calculated by using Eq.(7.3.20).

Staniforth and Mitchell (1977) successfully used point collocation to compute

products in which one function varies smoothly. Since the specific volume is a

smoothly varying function, no aliasing will occur if u and w are computed by,

231

W = 	 w1, 	 (7.3.22)

This is still fourth order accurate (Cullen, 1979).

73.4. Advection terms

The advection terms are of the form 04/az and u/3z where • is either

(a), v or 0. The product a0E is computed by point collocation as for the

velocities.

As described in chapter 3, advection terms are computed more accurately

by a two stage process (Cullen, 1979) in which the gradients are computed

first, followed by the calculation of the product. For the first stage, exactly the

same procedure as for the computation of the velocities is used so,

= ZA
	 (7.3.23)

= ZA

where N is the vertical mass matrix and 4 is the projection matrix for the z

derivative.

The second stage is the evaluation of the product with the velocities, as

described in chapter 3. The elements of the finite element product matrix are

not given by Eq.(3.5.38) as a uniform spacing in both directions was assumed

in chapter 3. The exact form will be shown later when the computation of the

finite element matrices on the DAP is considered. The products will not be

calculated to fourth order accuracy because of the stretched vertical spacing.

7.3.5. Diffusion terms

The diffusion terms must be integrated in time using either an implicit

scheme or a forward scheme, as the leapfrog method is unsuitable. Since the

eddy diffusivity coefficient ice varies with time, an implicit scheme would be

costly. Instead an explicit scheme was used with the diffusion terms lagged by

one step.

The diffusion terms take the general form,

232

3/3z(K e 341 3 x), 	aia z(K e a 4)/az) 	 (7.3.24)

where 4) represents any of the model prognostic variables and any additional

constants applied to 1e are ignored. One approach is to solve these terms in

3 stages using the basic operations of differentiation and the calculation of the

product of two functions. As the diffusion terms are evaluated using values at

t-At, the first derivatives (all except aF/az) could be stored from the previous

step and used. However, this still requires three calls to the routine that

solves the matrix equations. If the usual Galerkin procedure was applied to

each term in Eq.(7.3.24) only two calls would be needed. Over one timestep,

the extra cost would be significant as it is anticipated that the solution of the

simultaneous equations will be the major portion of the CPU time per

timestep. Furthermore the 3 stage process will not be fourth order accurate

on the nonuniform grid due to the calculation of the product. It was therefore

decided to use the usual Galerkin procedure directly.

Consider the term in 4 the Galerkin method is applied to,

1= a/3x(Kea4)/ax) 	 (7.3.25)

to give,

f
X/)Z 	

I

X

f

 Z
a

 J fab dxdz = 	 _(Ke_)tzkbl dxdz 	for all k, 1 	(7.3.26)
3x 	ax

0

When the RHS is integrated by parts, it is convenient to set the integrated

term to zero by setting the eddy diffusivity to zero at all the boundaries i.e.

= Ke(X,z) = K e (X,O) = Ke(X,Z) = o 	 (7.3.27)

After substituting expansions for f iCe and 4), the LHS becomes,

LHS = M(T)T 	 (7.3.28)

The RHS integral has not been seen before. It is,

F 1 = 	c 	Kij4)rs fo

b1 bb a 	f o

dak da
dx (7.3.29) rz 	

dxdx i 	r 	j 	S

233

where the subscript on Ke has been omitted for clarity. The integral in curly

brackets is the same as the integral in the calculation of the one-dimensional

product Eq.(3.5.29). From Eq.(3.5.31),

	

bbb, dz = 	 (7.3.30)

j S 	fo
(1/3)A2_iKii_4rI_ + (1/6)(Ltzj_ 1 + zj)1Ci,ir.i + (1/3)t2jK i.1+ 0+

where,

•r,i+4 	(r.i + 	r.I+1) 	
(7.3.31)

Calculating Eq.(7.3.29), requires evaluating the integral,

= J a Lak .r dz 	 (7.3.32)

dxdx

This is simple to evaluate since the basis functions are only locally defined.

Using Eq.(3.5.6) and Eq.(3.5.17) and evaluating the integral for the point rsl

gives,

K ,40 J 	dakda r
a. dz = (1/Az)(Kk_4.IX4k_1,I - Kk+.lX4)I) (7.3.33)

r 	

I

where mid-point values at k- and k~ are given by Eq.(7.3.31) and,

Mkj = k+1.l -

	 (7.3.34)

Applying Eq.(7.3.33) to all the terms in Eq.(7.3.30) gives the scheme for

each point as,

FkI = (1/z)((1/3)A 	(Kk_,I_AX+k_1,,_ - Kk+.I_Ax4k,I-) 	 (7.3.35)

+ (1/6)(A_ 1 + A)(Kk_4,IAX$k_1,I -

+ (1/3)(Kk_ , I ++Ax k_1 , I++ - Kk+4I+AX4k.l+) }

234

The matrix equation is then,

McrLT)T - - 	 (7.3.36)

For the derivative in z,

(K -)
(7.3.37)

g=—
az 	3z

the same procedure gives the matrix equation,

MWLT)T = -2 	
(7.3.38)

where elements of C are given by,

G1,1 = 	 + Kk,t_AZkI_1 + Kk+4.I_4tZ4)k+)(7.3'39)

(Kk_4l+zk_4,I + K çi+A z 4) IcI +

For the nonuniform grid used in this model, this scheme will only give first

order accuracy. On a uniform grid, with a constant spacing in the x and z

directions, this scheme is second order accurate (see Appendix B).

7.3.6. Time scheme

The time scheme for this model is the same as that used for the spectral

model in the last chapter. A leapfrog scheme, Eq.(3.2.1) is used once the

tendencies have been computed from the finite element equations. An Asselin

(1972) time filter of the form Eq.(3.2.2) is used to control the computational

mode of the leapfrog scheme. The first step is made using a forward or Euler

step as in the spectral model.

The timestep for a one-dimensional model was limited by, Eq.(3.5.51),

At < 0.57Az/c

With Az24km and c=300m/s (the fastest external gravity wave), At < 45

seconds. The timestep used by 0R77 was one minute. Several runs of the

DAP model were made in which the timestep was varied to test the timestep

limit. It was found that a timestep of two minutes was always unstable.

NCY

However, a timestep of one minute was stable in some runs and a timestep of

30 seconds was always stable. A comparison of results after 20 hours from

runs with timesteps of 30 and 15 seconds showed little differences. Thus, a

timestep of 30 seconds was used.

The time filter coefficient was set to 0.01, twice that used for the spectral

model. It was found that computational modes were reflected at the lateral

boundaries and a filter coefficient of this value had some success in damping

these modes. No other sensitivity tests were performed varying the time filter

parameter in the model.

7.33. Initial conditions

The jet velocity field is set initially by either Eq.(7.2.17), the surface jet

case, or by Eq.(7.2.18), the mid-tropospheric jet case. As discussed in chapter

3, these expressions can either be used directly to obtain the expansion

coefficients, as the basis functions are interpolatory, or the Galerkin procedure

can be applied (i.e. Eq.(3.5.68)) and the integrals evaluated numerically. Since

the functions of v are smooth, the former method is chosen so that the nodal

values vi,j are given by,

= v(x,z) 	 (7.3.40)

To set e, it is assumed to be in geostrophic balance with the v field

through the thermal wind relation,

(7.3.41)
ax 	gz

with,

= logO 	 (7.3.42)

The first stage is to compute =8v/z using the finite element method. The

next step is to solve,

- = fn/g 	 (7.3.43)
ax

The Galerkin procedure results in the matrix equation,

236

(fIg)M 	
(7.3.44)

The essential boundary condition is that is known at the right boundary from

Eq.(7.2.19). Inclusion of this essential condition prevents Ex from being

singular and allows Eq.(7.3.44) to be solved. Once I is known, the nodal

values of the potential temperature are computed from Eq.(7.3.42).

The nodal values of U9 are set as for v. Its vertical gradient (and hence

the vorticity) is calculated using the finite element method.

7.4. Formulation of the boundary conditions

7.4.1. Lateral boundaries

Miller and Thorpe (1981) showed that the radiation boundary condition

scheme of Orlanski (1976) is second order accurate and devised a scheme that

was fourth order accurate. Their scheme is based on calculating an improved

estimate for r. Using the present time-level, from Eq.(7.2.16), another

calculation of r is,

- 	b-i - b-i) 	b 	+ -i 	4b-i - 24_2) 	
(7.4.1) - (4 fl_l 	n+i

/
(4 fl+i 	n-i

Similarly, another estimate could be calculated by using the boundary point

itself,

n-2 n-2 	n
r2 = 4b - 4b) / (4 + 4 	- 2:) 	 (7.4.2)

Miller and Thorpe (1981) showed that the combined scheme,

= r1 + r2 - r 	
(7.4.3)

with,

n+1 	1 1 - 	2 (7.4.4)
b 	

)on-1
b +

bl

is fourth order accurate.

For a model based on finite differences, the implementation of the above

scheme is straightforward. This is not the case for the finite element model in

which the tendencies of the variables are computed using the finite element

method. The usual procedure to implement the boundary conditions would be

237

to after the equations for the boundary nodes in the finite element matrices.

However, the Orlanski scheme gives,

- r 	n+1 	n-1 	n i 	 (7 A \

at 	
- 4b 1 - 4b-1i

for the tendency of the boundary node. This cannot be solved as it refers to a

value at the next time-level. The time average is necessary in Eq.(7.4.5) to

maintain stability in the presence of physical and computational modes.

Without this average, large amplitude computational modes would be reflected

off the boundaries.

To apply the Miller-Thorpe scheme, the usual Galerkin finite element

framework is not adopted. Instead the tendencies are computed by the finite

element method, ignoring the lateral boundary conditions. When the values at

&At have been calculated, the ratios r, r1 and r2
are, computed and the lateral

boundary nodes are recomputed from Eq.(7.4.4).

It is to be expected that in using this scheme some noise will be reflected

from the boundary as a wave passes through it. This is first because the

usual finite element framework has been abandoned and the interior points are

solved simultaneously with no knowledge of the correct boundary value

(except from the previous timestep). Second, although the Miller-Thorpe

scheme is fourth order accurate, it is based on a finite difference

approximation and as described in chapter 3, the finite element method is

more accurate than fourth order finite differences.

To examine the behaviour of this scheme, a finite element model of the

one-dimensional linear advection equation,

a 	a
—+c—=o
at 	ax

(7.4.6)

was used. The velocity c is constant and hence the product with the spatial

derivative was computed by point collocation rather than using the finite

element approach. The spatial derivative is computed using the finite element

approach. The linear advection equation was also used by Sundstrom and

Elvius (1979) to study the behaviour of outflow boundary conditions for finite

differences. A Gaussian profile is advected across the domain and out

238

through the boundary.

Fig. 33 shows results from this model for two cases. The lower curve

shows the results when there are no boundary conditions applied to either end

of the domain. The top curve shows the results when the Miller-Thorpe

scheme is used. No time filtering or diffusion is applied.

Differences between the two cases are apparent. However, in both cases,

two gridlength noise is reflected off the boundary as the profile moves out of

the domain. For the Miller-Thorpe scheme, the noise is a result of the sources

of error described above. For the unconstrained solution, the noise results

from the lesser accuracy of the solution at the boundary node; the usual

truncation error analysis shows this is solved to first order accuracy only,

compared to fourth order accuracy in the interior.

The noise propagates across the domain to the LHS. For the unconstrained

solution, the short wave noise is reflected and the original profile reappears.

This was also observed by Sundstrom and Elvius (1979). The similarity of this

reflected profile to that of the initial shape indicates the accuracy of the finite

element method. For the Miller-Thorpe scheme there is also evidence of a

reflected profile. However, its amplitude, although significant, is greatly

reduced.

It would seem that the Miller-Thorpe scheme is adequate but there is a

clear need to remove or reduce the amplitude of any two gridlength noise in

the domain to avoid further reflections at the opposite boundary. The Asselin

timefilter was found to reduce the amplitude of these waves. The inclusion of

diffusion in the model also helped to dampen any noise.

7.4.2. Top and bottom boundaries

The homogeneous boundary condition for the streamfunctiOn at 20,

Eq.(7.2.11), and the inhomogeneous one at the model top, Eq.(7.2.13), are both

essential conditions and are incorporated by modifying the equations for these

points. The velocity components are computed subject to the boundary

conditions implied by the streamfunction i.e. the vertical velocity is zero at the

top and bottom of the model.

For the vorticity, the homogeneous condition Eq.(7.2.12) is an essential one

239

STEP 000
	

STEP 055

STEP 070
	 STEP 080

STEP Q9 STEP 310

Figure 33. Behaviour of a finite element model of the one-dimensional advection

equation when a Gaussian profile is advected out through the boundary.

Bottom curve is when the boundary nodes are computed free from any

boundary conditions. Top curve is when the Miller and Thorpe (1981)

radiation scheme is used as described in the text.

240

and incorporated by modifying the first row of the matrices as the tendencies

at the bottom must also be zero. Like, the other prognostic variables, to

maintain a rigid top boundary, the vertical gradient of vorticity is held the

same as its initial value. The usual method of including such inhomogefleoUS

Neumann conditions is by modifying the Galerkin equation for second order

terms; the diffusion term in this case. However, since this does not guarantee

the condition will be satisfied (see the discussion of boundary conditions in

chapter 3), it was decided to reformulate the boundary condition to ensure it

is satisfied.

Starting with the equation,

where k represents the gradient at the initial time, the finite element method

gives the following equation for the nodes at the model top,

i,M = i,M-1 + AzM _ l k 	 ()

This is the same as the usual finite difference approximatipn and is first order

accurate. A simple scheme to implement this would be the same as that used

for the lateral boundaries, where the boundary condition is ignored when the

nodes at the new time-level are calculated and the top level values

recomputed using Eq.(7.4.7).

For the velocity, v, the top boundary condition is implemented as for the

vorticity. The bottom boundary condition, Eq.(7.2.10), is enforced by using the

same method. If the vertical gradient is approximated as for the top boundary,

the condition becomes,

8
tP1 -
	

8
-) 	 (7.4.8)

fE) O 3z

Therefore, the bottom boundary is recomputed after the new time-level values

have been set.

For the potential temperature the top boundary condition is dealt with in

the same way as for the other variables. The bottom boundary condition,

Eq.(7.2.9), is a homogeneous natural condition and, as before, formulated as an

241

essential condition by writing,

O' 1 (z 	
n+1

1 ,z0) = u 	(z1 ,z) 	for all i 	 (7.4.9)

to ensure it is satisfied. At the end of each timestep, the bottom boundary

values are overwritten with those of the next level.

7.5. Model equations

7.5.1. Vorticity

Multiplying Eq.(7.2.1) by the bilinear basis functions, integrating over the

domain and substituting the expansions for the variables, yields the following

matrix equation for the vorticity tendency,

MWeLT)T =-A - + ff)T - (g/e0)'e)T1T - 70Q4 - 0.7; (7.5.1)

The matrices A and B arise from the advective terms which are computed as

described in a previous section. The matrices .4 and .Q result from the x and

z diffusion terms. The elements of these matrices are given by Eq.(7.3.35) and

Eq.(7.3.39) respectively. The subscript on the vertical mass matrix, Te'

indicates that an essential boundary condition at 2=0 for E has to be satisfied.

The procedure to solve Eq.(7.5.1) is first to compute,

1= -(4 + + 700.4 +.O.7.Q)
	

(7.5.2)

Substituting this into Eq.(7.5.1) and multiplying both sides by the inverse of the

horizontal mass matrix gives,

(lieLT)T = M 1 + f(L)T - (g1e0)M1ET 	 (7.5.3)

where the property
(4T)T = 	T has been used. The next stage is to solve,

(7.5.4)

and,

= 	
(7.5.5)

Following this, compute,

242

RT = + f(L)T 	 TT 	 (7.5.6)

so that Eq.(7.5.3) becomes,

AT .T - D 	 (7.5.7)
%

11 e A& -

The final stage is therefore to solve,

L = (1R)T 	
(7.5.8)

subject to Eq.(7.2.12). The tendency is then integrated forward in time and the

remaining boundary conditions applied.

7.5.2. Potential temperature

Since U. is constant, its vertical gradient is computed at the start of the

run and stored. As this gradient is smooth, the product with the jet velocity is

computed by point collocation,

d (z) f 0

	

A(,z 1) = v(x,z)— 	-

	

dz 	9

(7.5.9)

Applying the finite element method to Eq.(7.2.2) gives the matrix equation,

M(T)T = - - ! + M(li4T)T - 1000k - go
	 (7.5.10)

where B and C are the matrices for the advective terms, F0 and 	are the

diffusion matrices formed using the potential temperature and A is given by

Eq.(7.5.9).

The solution procedure follows from that used to solve for the vorticity

tendency. First compute,

= - 	+ Q ++ 2e) 	
(7.5.11)

to give,

T)T = M1D + (TAT)T 	 (7.5.12)

Then solve,

243

ET = M'D 	 (7.5.13)

which gives,

I- 	 •

=,+I•

Multiplying by the inverse of the vertical mass matrix,

Ifr = 	 (7.5.15)

the potential temperature tendency is given by,

..=ll+A 	 (7.5.16)

The tendency is then integrated forward in time and the boundary conditions

applied.

7.5.3. Jet velocity

The ageostrophic component of the Coriolis force in Eq.(7.2.3) is computed

by,

I(x,,z) = f[U9 (i) - u(z)) 	 (7.5.17)

Applying the finite element method to Eq.(7.2.3) gives the matrix equation,

= -A -
.fl +
	liu)T - 7OOE - O.7.Q 	 (7.5.18)

where A and B are the matrices resulting from the advection terms and £

and Z
 are the matrices arising from the diffusion terms. As before, first

compute,

- (4 + & + 700L, + O.72) 	
(7.5.19)

Multiply Eq.(7.5.18) by the inverse of the horizontal mass matrix to give,

Jr 	 (7.5.20)

which implies,

NOV 	 (7.5.21)

To get the tendency, solve,

244

Er = r-l.p 	 - 	 (7.5.22)

and then,

(.,
v

The tendency is then integrated forward in time and the boundary conditions

applied.

7.6. Implementation on the DAP

7.6.1. Introduction

Unlike the spectral method, several research groups have studied the

application of' the DAP to finite element problems in engineering. The group

at Liverpool University mainly studied the solution of two-dimensional elliptic

problems, when the number of nodes was greater than the available

processors (Wait and Martindale, 1985). The matrices were partitioned and

their solution was by preconditioned conjugate gradient methods (Wait, 1988).

The group at Hatfield Polytechnic studied the solution of steady

two-dimensional problems formulated using a least squares approach (Dixon

and Singh, 1984) and a variational approach (Dixon and Ducksbury, 1985).

They also used a conjugate gradient method (Dixon et a!, 1982) but modified

so that the global stiffness matrix did not need to be assembled. The

equations were solved on an element by element basis. As Lai and Liddell

(1987a) point out, although this saves storage space more computing is

required.

The group at the DAP Support Unit (DAPSU) reviewed existing studies (Lai

and Liddell, 1987a) and studied the solution of problems by the conjugate

gradient method (Lai and Liddell, 1987b). A parallel version of the SERC/NAG

finite element library for the DAP has since been developed at DAPSU (Lai,

1989).

The finite element model of this chapter contrasts the above work in

several ways. First, this problem is time dependent, putting more emphasis on

fast solution methods and the efficient evaluation of the finite element

matrices. Second, the adopted solution method decomposes the problem into

sets of one-dimensional equations resulting in tridiagonal matrices rather than

245

the higher bandwidth matrices of the two-dimensional problems studied in the

previously cited work. This means that the nodes of the finite element model

are more appropriately mapped as a matrix on the DAP, rather than using

vectors. Thirdly, it is not obvious that a conjugate gradient solver will be

superior to existing tridiagonal solvers. Lastly, there is no assembly of the

stiffness matrix for the RHS of the equations. Instead, each term is computed

individually. This has several benefits. The first is that a set of kernel routines

to compute spatial derivatives, products and diffusion terms can be designed

and used as the basis for a model. Second, the work for the derivative terms

is reduced by cancelling mass matrices (as seen in the previous section).

7.6.2. Data mapping

Two approaches have been used to map finite element grids onto the DAP.

Lai and Liddell (1988) and Wait and Martindale (1985) use the 'long-vector'

mode of the DAP, where elements are stored consecutively according to their

element numbering. The group at Hatfield use an 'upper-leftmost' storage

mapping in which the x and y coordinates of the nodes are mapped along the

rows and columns of the DAP matrix.

An advantage of the long-vector storage format is that it easily handles

arbitrary element shapes and irregular boundaries. Also, it permits a random

allocation of elements to processors, useful for automatic mesh generation

(Mouhas, 1987). For the model of this chapter, these issues are irrelevant. The

choice of data mapping is effectively determined by the formulation of the

finite element equations. These have been derived such that systems of

simultaneous equations are solved along levels or vertical columns. Thus, the

long-vector format is unsuitable because of the added cost of ordering the

nodes for the solver. For the derivative, product and diffusion terms, an

upper-leftmost mapping allows efficient calculation of the finite element

matrices using shift operations on the processor array. Clearly, if the

long-vector storage mode is used, the equations should be formulated using

the two-dimensional basis functions and the nodes numbered using vectors.

A straightforward mapping of,

246

(x,z) = (itx, E tz) + { i + 1 , j + 1 }
	

(7.6.1)

k=O

is therefore chosen for the model. Like the spectral model, the PE array size

will influence the size of the domain if the best performance is to be achieved.

The model domain was chosen such that there are the same number of nodes

as processors, as this was a close match to the number of points used by the

0R77 model. For grids larger than the array size both the crinkled (Wait, 1988)

and sheet (Lai, 1989) mapping strategies have been successfully used for finite

element problems. The mapping of data to the PE array is simpler than in the

spectral model, as there is no change of representation space.

A problem with modelling on the DAP is that once the program is written

the number of nodes and the resolution are fixed. Tests at higher resolutions

than the working resolution are often desirable and usually straightforward

with well coded models on serial or vector machines. Aside from this

limitation, DAP FORTRAN makes coding the finite element model easy as the

processor array has the equivalent structure to the nodal arrangement for the

model. This removes the need for lookup tables to carry nodal information, as

required by the long-vector approach (Lai and Liddell, 1987a). The same would

be true for a finite difference model on a rectangular domain.

Since the model domain matches the size of the processor array, high

efficiency can be expected during the calculation of the finite element matrices

and their solution. Like the spectral model, there is a relationship between the

efficiency of the algorithms and the choice of data mapping. For the

calculation of the finite element matrices access to neighbouring nodes will be

required. From Eq.(7.6.1), this can be achieved by using the shift functions.

Only one mapping is optimum here, there is no choice as there was for the

spectral model. This makes implementing the model quicker and easier.

The model equations are written in a form suitable for the DAP. The

equations often use the transpose of matrices for which the DAP FORTRAN

function TRAN can be used. Translation of the model equations to DAP

FORTRAN is hence straightforward since there is a one-to-one

correspondence between the matrices in the model equations and a matrix as

defined by DAP FORTRAN. The model was therefore developed quickly with

247

concise code.

7.6.3. Model output

Like the spectral model, periodic history output of the model fields is

possible. The DDX software was used as in the spectral model, following the

same procedure. For more details, see the section on model output in the

previous chapter.

7.6.4. Boundary conditions

As the boundary conditions apply only to a limited area of the domain, it is

natural to use the DAP vector mode to calculate them rather than masked

matrix operations which take more time. The nondimensional ratio, r , used for

the interpolation of the boundary nodes is computed in vector mode i.e. the

value is calculated in parallel for all levels at the boundaries.

7.7. Efficient calculation of finite element matrices

7.7.1. Derivative terms

The finite element solution to a derivative of the form, u u/ax is given by

Eq.(3.5.20) for the interior nodes and,

(1/3)[xw1 + Lxw2] = 	- u)
	

(7.7.1)

(1 /3)[xwN_i + ZWN] = (UN - UN-1)

for the boundary nodes. A DAP FORTRAN matrix function was written to

evaluate the RHS of Eq.(3.5.20) and Eq.(7.7.1) (a matrix function is a DAP

FORTRAN function that returns a matrix result). The difference is computed by

shifting the matrix. The boundaries have to be calculated separately as

different routing is required. The function was written to evaluate the matrix

for the x derivative. A separate function could have been used for the z

derivative but a matrix transpose on entry and exit allowed the same function

to be used. This incurred added expense that can be estimated, since 5

derivatives in the z direction have to be computed. The additional cost is

2.2msecs per timestep.

248

7.7.2.. Product terms

This section describes how the finite element matrix for the product of two

functions is computed for the model. The general case of an irregular grid,

where the spacing is variable in the z and z directions, is considered first. The

semi-irregular grid of the model, with a constant spacing in the x direction, is

then considered.

7.711. Irregular grid

To solve for the product of two functions, the matrix whose elements are

given by,

xk+1J) 2i+i

F,1 =
	

uva,k bl dxdz

Zk_j 	2 _1

(7.7.2)

must be evaluated, where u and v are any two-dimensional functions. If the

usual Galerkin procedure is followed, this integral can be written in the form,

F1r,i = (1/36){ Xk_lAZI_lE P,I + 2Pi4 + 	+ 4Pk4.I 	I

+ XkZl_l[PlcI + 2k+ 	+ 2Pkj-4 + 4Pk+4I 	I

..lAz[Pk.I + 	+ 24- 12 A24- 12 A+ 4PkI+4 1 	(7.7.3) + Axk

+ AzkAzj[Pk,I + 	+ 2k+I + 4Pk4I+ I)

where p is defined by,

= U1ç1V1ç1 	 (7.7.4)

=

and,

= 	+ ¼+i,u) 	
(7.7.5)

Uk+I+I. = 	(uk+ I + UI•.f 41 4.1)

The terms in Eq.(7.7.3) have been grouped for each grid rectangle. To evaluate

the integral, half-integer nodes are defined, as illustrated by Fig. 34.

To compute the integral efficiently, Staniforth and Mitchell (1978)

advocated evaluating all contributions from a given grid rectangle to the

neighbouring four nodes simultaneously, avoiding repeated calculations. This

method would require evaluating the element matrix,

C Xk+1 C 2+1
Le 	J 	J 	uva 1 b dzdz 	for i=k,k+1; j=1,1+1 	 (7.7.6)

Zk 	2

so that L has four entries, one for each node. To calculate the entire matrix,

the contributions from the element matrices are summed as,

£= E Le
	 (7.7.7)

This is the usual approach for engineering problems (Strang and Fix, 1973).

However, the four terms in Eq.(7.7.6) are the same as those for each grid

element in Eq.(7.7.3), except for a different part of the grid. The only

difference between DAP implementations of the two approaches is the routing

required to align the products before the summation in Eq.(7.7.7), since on the

DAP the products are evaluated for all the nodes simultaneously. The

procedure to evaluate Eq.(7.7.3) is described in detail in Appendix C. A total of

11 multiplications and 17 additions in matrix mode are required.

7.7.2.2. Semi-irregular grid

If the constant spacing in the z direction is taken into account, the number

of matrix operations can be reduced. For the irregular grid the boundary

values are computed correctly using the equation for the interior nodal values

by using planar shifts and setting unused parts of the matrices to zero. It is

desirable to retain this for the semi-irregular grid of the model otherwise the

added cost of vector operations to compute the boundary values is greater

than the saving made in computing the interior.

The preserve the accuracy of Eq.(7.7.3) at the boundaries, two vectors, ci

and B are introduced,

250

E

k - i 	k 	 k+1

N

Az I

LZ1

1+1

1

1-i

LXkl 	Ax
W

Figure 34. Illustration of the nodes and half-integer nodes used during the
calculation of the integral over the product of two two-dimensional
functions. Circles denote nodes at which elements are unity,
crosses denote the additional half-integer nodes defined to
calculate the product at node (k,1).

251

a=(011l... 11)T 	 (7.7.8)

=(1111... 10)T

such that the spacing in the z direction becomes,

= akz, 	Ax1 = Bkx 	
(7.7.9)

These are substituted into Eq.(7.7.3) to give,

F1 , = (AzA_ 1 /36)1 (ak+8k)p , I + 20LkPk_.I + 2 BkPk+I

+ 2(ak+Bk)p_ + 4akPk.I 	+ 4 BkPk+,I_ I

+ (AxA/36)j (c1k+Bk)p, + 2akPk 	+ 2BkPk+4,I 	
(7.7.10)

+ 2(ak+Bk)PkI+4 ± 4akPk_.I ~ 4 + 4 kPk+I+' I

where the definitions of Eq.(7.7.4) are assumed. All the products, p, multiplied

solely by ak
will therefore disappear at k=O. However, since a planar shift

south is used in the DAP FORTRAN code, these terms would be zero without

ak. Similarly for terms multiplied solely by 5 k. Therefore, a and B can be

removed from these terms. The remaining terms involve the sum of the

vectors, written as,

(7.7.11)

The procedure to compute Eq.(7.7.10) for the model is given in Appendix C.

The total operation count is 9 multiplications and 13 additions in matrix mode

and 2 multiplications in vector mode. This is a reduction of 2 multiplications

and 4 additions in matrix mode over the irregular case, achieved by computing

the contribution from two grid rectangles along each level simultaneously.

The boundary nodes are computed in parallel with the interior nodes. The

saving in CPU time is 1.08msec i.e. 6.5msecs per timestep. For this particular

calculation, the use of an irregular grid would involve only a small overhead.

252

7.7.2.3. Further improvements

Although the above algorithm was used for the DAP model, Staniforth and

Beaudoin (1986) devised a more efficient method of evaluating the integral

associated with a product. The changes to the DAP algorithm foUowing their

method are described in this section, although the algorithm was not coded.

Staniforth and Beaudoin (1986) considered the efficient evaluation of the

integral Eq.(7.7.2) by 3 methods; substitution of the expansions of u and v as

above, the use of Gaussian quadrature and the use of Simpson quadrature.

They showed that Simpson quadrature gave a significantly lower operation

count. For an irregular grid, they. obtained an algorithm requiring 10

multiplications and 12 additions per node, about the same as the operation

count for the DAP algorithm on the semi-irregular grid.

They stated that the algorithm obtained by substituting the expansions is

computationally 4 times as expensive as the Simpson quadrature algorithm.

This is incorrect. It is straightforward to show that the two methods are

equivalent. Whilst it is true that to evaluate all the terms in Eq.(7.7.3) for each

node would be expensive (which is how Staniforth and Beaudoin arrive at the

factor of 4), repeated calculations are avoidable by computing intermediate

results. The advantage to the Simpson quadrature method is that it leads

directly to these intermediate results required for a reduction in the operation

count. This is something that is difficult to see directly from Eq.(7.7.3).

To show the two methods are equivalent, consider the one-dimensional

case for simplicity. The result is also true in two dimensions. The integral,

= 	
dz

 fo U(X)V(X%(x)

	
(7.7.12)

where 	k are the basis functions, becomes, after substituting the usual

expansions for u and v, from Eq.(3.5.31),

Ik = (1/12)E Az,K(uk + uk+ 1)(vk + Vk+1) -f 2u,vk(t2k+tzk_1) 	 (7.7.13)

+ Axk1(Uk + uk1)(vk + Vkl) I

Simpson's rule is,

253

J f(z) dz = (Ax.,(/6)[f(x.,() + 4f(zk+) + f(z,) 	 (7.7.14)

where, 	 -

1' = 	Zk ± 1(+1) 	

(7.7.15)

Applying this to the evaluation of Eq.(7.7.12) gives,

Ik = (x./ 3)uk~ 4vk+ + (1/6)(zk + Ax_l)ukvk + (Ax, _1/3)uIh_vk_ 	(7.7.16)

where,

Uk = IL(Xk), 	Uk+ f = u(zk+i) 	 (7.7.17)

Assuming a linear basis function gives,

Uk+ = (uk + Uk+1), 	Vk+ = 	+ vk+1) 	
(7.7.18)

Substituting Eq.(7.7.18) into Eq.(7.7.16) gives Eq.(7.7.13).

The algorithm for an irregular grid, following the method of Staniforth and

Beaudoin (1986), is given in Appendix C. The operation count is now 10

multiplications and 12 additions. The reduction by a multiplication and 5

additions over the previous algorithm for an irregular grid means a decrease in

CPU time of imsec or 18.5%. The algorithm is still accurate at the boundaries

if unused elements of the matrices are set to zero and planar shifts are used.

To explain why this algorithm is more efficient, the integral Eq.(7.7.2) is

partially evaluated and written as,

254

1
F1 = 	J u(z,)v(z,) dz

o x
fix

1
+ -(+) J u(z,)v(x,) dz 	 (7.7.19)

1 f o

X

 dx +

If the first integral on the RHS is calculated for all nodes, this result can be

used for the third integral. On the DAP this involves routing the result. The

only other integral to evaluate is the second one. Hence, rather than

computing contributions from adjacent grid rectangles, it is more efficient to

evaluate the one-dimensional integrals along z and z, as the values of the

integral for z1 give those for z1 .

For the semi-irregular grid of the model, as before, the code should still

compute the boundaries and the internal nodes concurrently. To ensure this,

the vectors ak and 8k
are again used. When Eq.(7.7.9) is substituted into

Eq.(7.7.19), after the integrals are evaluated by Simpson quadrature, it is

possible to write,

F 1 = 	+ H 1 + H1_1 	 (7.7.20)

where,

Gk,I = (1/36)[z(z + Az_l)Yk]Pk.I

+ (1/72)[Az(+ A)](Pk+.I + Pk-4) 	
(7.7.21)

H ,, = (1/72)1 AZAZiYk lPk.I+ + (
1/144)1 tzA2 J(Pk+,I+ + Pk-4.I+)

The constants can be combined so that the product Azyk is a constant matrix.

Use has again been made of the planar shift and unused elements are set to

zero to avoid the need for the vector Yk to be multiplied to the Pk+jI and

Pk+4,I+4
products so that these constants can be formed.

The operation count for the semi-irregular grid algorithm is 8

255

multiplications and 12 additions. This is a saving of 0.5msecs or 12% over the

irregular case using the Simpson quadrature approach. Compared to the

original DAP algorithm on the semi-irregular grid of the previous section, the

saving is 2 multiplications and 3 additions; lmsec or 21%. The overhead in

using a fully irregular grid for the Simpson quadrature algorithms is small.

Much of this algorithm can be followed for an implementation on a serial

or vector computer. However, the boundary nodes would have to be computed

separately from the interior nodes for both the irregular and semi-irregular

grids. The DAP algorithm exploits the hardware boundary conditions and

computes the boundary and interior nodes simultaneously. The algorithm is

formulated such that there is no overhead in calculating the values at the

boundaries, as might at first be expected.

7.7.3. Diffusion terms

7.7.3.1. Calculation of the eddy diffusivity

Before discussing the evaluation of the integrals for the diffusion terms,

the calculation of the eddy diffusivity, ice, used by the integrals is considered.

This parameter is dependent on the local potential temperature difference as

given by Eq.(7.2.7). In the model, the vertical potential temperature gradient is

computed for the advection term. The potential temperature difference

between two levels is set by,

= 	 (7.7.22)

where l=0,..63. Boundary conditions set e 2 to zero at the bottom boundary.

The equation for the eddy diffusivity becomes,

Kej i = K0
	

e z > 0

ice 11 = K0[1 + LIO,I 113 I 	, e 2 < 0 	 (7.7.23)

where,

2 1/3 L = C(g / ce0ic0)

with D at J=O equal to zero.

(7.7.24)

To compute Ke at all the nodes, first set them equal to the background

256

field K0. Then assign a logical matrix such that elements are TRUE where e 2 is

negative. If any of the elements of this matrix are TRUE, the correction

Eq.(7.7.24) is added for which the logical matrix is used as a mask.

7.73.2. Semi-irregular grid

Consider the evaluation of the integral,

Xk+1Z+1

Fk, = 	 —[Ke (z,z)—]akbl dxdz 	 (7.7.25)
. f

arising from the diffusion term in the x direction. Constants have been ignored

for clarity. Following the usual procedure, assuming an irregular grid gives.

= (z_ 1 /6Az., _ 1)(2Kk_,I_xk_1,I- + 1Ck_,Ix4k_1.I)

- (Lzj_ l /6Axk)(2Kk+,I_x4kI_ + Kk+ 4I x4j) 	
(7.7.26)

+ (Az/ 6 xk_l)(2Kk_.I+x$k_1,I+ + Kk_+,Ix4k_1.I)

- (z/6xk)(2Kk+I+141+ +)

where the subscript has been omitted from 1e
for clarity. As for the algorithm

for the product of two functions, the terms in the above equation are grouped

according to their contribution from an individual element. Values at the

half-integer nodes are defined as the mean of neighbouring nodal values as

for the product term, the difference operator &, is given by Eq.(7.3.34).

The algorithm for the irregular grid is not presented since the overhead to

the semi-irregular grid is similar to that found for the evaluation of the

product term matrix. To derive the algorithm for the semi-irregular grid case,

the vectors a and B. given by Eq.(7.7.8), are again introduced to compute

boundary and interior values simultaneously. Writing,

1 / Xk1 = Uk / Ax, 	1 / Azk = 8 k / Ax 	
(7.7.27)

and defining,

257

PIcI =

(7.7.28)

and substituting into Eq.(7.7.26) gives,

= (A_ 1 /6z)[ak(Pk-1,I-1 ± q_I) - Bk(Pk,[-1 + q 1) 1 	(7.7.29)

+ (/6Az)[ak(Pk-1I + q_1I) - Bk(pk.I + q,1)

The mapping expressions for p and q are,

pk,I (k, 1) + { k+1, 1+1 } k,1_0,..N-1 	 (7.7.30)

q,1 	: (k, 1) - 	{ k+1, 1-4-1 } k=0,..N-1; 1=0,..N

Using these expressions it can be seen that ak is unnecessary since a planar

shift south is required for the p and q coefficients anyway. The Bk term is also

unnecessary as, from Eq.(7.7.30), p and q are not defined at kN So by setting

unused elements of matrices to zero the need for the a and B vectors is

removed.

If the differences,

U1ç1 = 	- Pici 	
(7.7.31)

Vk. I = 	- qkl

are computed then Eq.(7.7.29) is given by,

F11 = (Lz 1 _ 1 /6Lx)[+ v1] + (Az/6z)[u I,,I + vk'j] 	 (7.7.32)

The values of the eddy diffusivity at the half integer nodes are computed at

the start of each timestep and stored. The total matrix operation count is 6

multiplications, 4 additions and 4 subtractions.

For the term in the z direction, the integral,

Xk+1Jl i+1a = S 	dzdz
3z 	z

k1 	21-i

(7.7.33)

has to be computed. The same procedure as before is followed; integrate by

parts and assume an irregular grid to introduce the vectors cz and B. This

leads to the equation,

Gk,I = (Az/6tu_i)[akpk_1,I_1 + BkP,1-1 + Ykqk,I_1 1 	 (7.7.34)

- (Ax/&&z1)[akpk_1,I + Bkpk,I + Ykqk,I I

where,

Pig1 = 2Kk++Az4k++I
	 (7.7.35)

=

analogous to Eq.(7.7.28) where 1k is given by Eq.(7.7.11). At k=O, the first terms

in the square brackets in Eq.(7.7.34) vanish as c&k=O. However, these terms

would be zero anyway from the planar shift south applied to the matrix

holding the coefficients. The same applies to the terms multiplied by Bk as

at k=N by definition. Therefore, Eq.(7.7.34) becomes,

Gig1 = [Az/6z_1IR1_1 - [Ax/6z1]R1(,1 	 (7.7.36)

where,

R1 = p11 ± Pk-1,I + 1q1 	
(7.7.37)

The only difference from the calculation of the x derivative is the calculation

of and G 1. The vector j has to be retained to ensure the boundary and

interior values are computed concurrently.

The operation count for this algorithm is 7 multiplications, 3 additions and

3 subtractions in matrix mode. The calculation of the z derivative term

requires less time than that for the x derivative despite the matrix

multiplication required for the vector x Like the product term algorithm,

efficient use of the DAP processor array is made.

The approach of Staniforth and Beaudoin (1986) can be used to derive a

259

more efficient algorithm for the diffusion terms. Using their approach, the

contributions formed by integrals along each level and half integer level are

evaluated rather than from each grid rectangle. The changes to the algorithm

are not described in detaill. as it was not used for the mode! or coded in DAP

FORTRAN. However, it is possible to show that for the z derivative term, 4

multiplications, 3 additions and 4 subtractions in matrix mode are required.

This is a reduction of 2 multiplications and 1 addition, or 24% of the CPU time

of the DAP algorithm described above.

7.8. Efficient solution of the finite element equations

The final aspect to the implementation of this model on the DAP is the

solution of 64 sets of 64 tridiagonal simultaneous equations. Each timesteP

requires the solution of 15 such sets and so efficient algorithms are essential.

The solution to the equation,

(7.8.1)

is required where A takes two forms. For the streamfunctiOn equation,

Eq.(7.3.18), the leading diagonal is the sum of the other diagonals so .4 is not

diagonally dominant. For all other equations, A is either the horizontal or

vertical mass matrix in which the ratio of the leading diagonal to the lower

and upper diagonals is 1:4. This is approximate for the vertical mass matrix

with a nonuniform vertical spacing. Hence these systems are diagonally

dominant.

Hockney and Jesshope (1981) studied the performance of 3 algorithms;

Gaussian elimination applied in parallel, a serial cyclic reduction algorithm

applied in parallel and a parallel cyclic reduction algorithm applied in parallel.

Their analysis showed that for the solution of m systems of rz equations On

the DAP, the parallel cyclic reduction algorithm is more efficient when mn is

less than or equal to the number of processors, as for this model. As mn

increases, the analysis showed that there is some value at which it is more

efficient for each processor to solve a tridiagonal system using a serial

algorithm. Wait (1988) and Lai and Liddell (1987a) also discussed methods for

solving Eq.(7.8.1) on the DAP when mn is greater than the number of

processors.

The cyclic reduction algorithm has been used for a tridiagoflal solver

260

routine in the DAP subroutine library (DAPLIB). Generally however, it has been

found that iterative methods are more suited to the DAP, mainly because

parallel versions of these algorithms are more efficient (Lai and Liddell, 1987).

The Jacobi method (described in chapter 21 is one example and this was used

for another subroutine in DAPLIB (Bowgen, 1981a,b). Recently, the

preconditioned conjugate gradient algorithm has received much attention and

has been shown to be an efficient solution method for finite element problems

on parallel machines (Wait, 1988; Lai and Liddell, 1987b; Adams, 1983). In the

sections that follow, the performance of the DAPLIB routines is evaluated and

a preconditioned conjugate gradient algorithm developed.

The timings of the routines in the following sections were made by calling

them in a DO. loop 104 times. The cost of the loop itself was measured and

found to be 40msecs. Since the DAP CPU times were reported to the nearest

second, this introduces a larger error than the DO loop. Therefore all times

reported are given subject to an error of ±O.lmsecs. In the following tests, 4
is set equal to the horizontal mass matrix with Ax=1 for convenience. The

matrix bwas set to,

b(ij) = sin[1T(j-1)/128} cos[1T(j-1)/64] 	for all i and 5 	 (7.8.2)

78.1. DAP library subroutines

The cyclic reduction algorithm used for the DAPLIB routine F04TRIDS64SQ

is described in chapter 2 and by Whiteway (1979). It is a direct method and

completes in 1092n steps for a nxn system. When timed for the test problem,

this routine took 26.6msecs.

The iterative solver F04ITTRIDS64SQ in the DAP library uses the hybrid

Jacobi method, described in chapter 2 and Bowgen (1981), in which a single

pass of the cyclic reduction algorithm is used before iterating using the Jacobi

method. This routine was timed and converged in 20.1msecs after 11

iterations.

This routine was optimized by altering the code so that the convergence

test was first done after the g
th iteration. When timed, the optimized version

converged after 11 iterations in a time of 18.5msecs. This is 30% faster than

the cyclic reduction DAPLIB routine and therefore preferred for the model.

261

However, the streamfunction equation cannot be solved this way as it is not

diagonally dominant, so there must be at least one use of the direct method

solver.

7.8.2. Conjugate gradient algorithm

The review by Lai and Liddell (1987a) showed that the groups in the

U.K. using the DAP for finite element problems have all concentrated on the

conjugate gradient (CG) algorithm for their solution method. The DAP Support

Unit at Queen Mary College employed the method in their finite element

library (Davies, 1985). The CO algorithm is well suited to parallel

implementation on the DAP.

In this section, the tridiagonal matrix equation Eq.(7.8.1) is solved using the

CG algorithm. This is novel as engineering problems involve matrices with

greater bandwidth and it is not clear how efficient the CO algorithm will be

compared to the DAPLIB solvers timed in the previous section. The routine

written for the model solves 64 sets of 64 equations each, all in parallel.

The method of conjugate gradients was first proposed by HestefleS and

Stiefel (1952) for solving a set of simultaneous linear equations having a

positive definite matrix of coefficients. It is a direct method as convergence is

guaranteed in n steps for an nxn system. However, convergence usually

occurs in less iterations. Golub and Van Loan (1983) give a detailed

description of the CO algorithm.

The CO procedure given below is taken from Lai and Liddell (1987a) but

written to take account of repeated calculations. Matrix and vector notation is

omitted for clarity. The matrix A and Lare those of Eq.(7.8.1). The solution at

each iteration is given by .Lk and Lk and £k
are known as the residual and

search direction respectively, whilst a and B are vectors. The CO algorithm is,

z% =o, 	rO =b, 	PO =rO ,

w = 	 y =

For k=lton

q = Apk_,

= Xk_1 	apk_l 	
(7.8.3)

tk = 	-

262

=
If ,'(y') / w < C StOp

B = y ' I !l
- rk -I- 8 Pk- 1

Y =

The angle brackets denote the inner product and c is the accuracy required

for convergence. The calculation of the matrix product, and the

inner products can be computed efficiently using DAP FORTRAN as described

by Lai and Liddell (1987b).

When timed for the test problem, the CG routine converged after 10

iterations in a time of 46.7msecs. So although fewer iterations than the

DAPLIB iterative solver are required, the complexity of each iteration makes the

algorithm too expensive.

7.8.2.1. Preconditioning

The convergence rate of the CG algorithm is determined by the condition

number of A, K(A), (Adams, 1982). If 4 is symmetric, its condition number is

given by the ratio of the maximum and minimum eigenvalueS (Golub and Van

Loan, 1983).

The convergence rate can be improved by multiplying Eq.(7.8.1) by a

preconditioning matrix ff' to give,

£14= £1L 	
(7.8.4)

such that the condition number of Z1 4 is less than that of A. This will be

true if P-1 is approximately equal to 4. The choice of £ is clearly important

and many authors have put forward possible forms for (e.g. Lai and Liddell,

1987a). Furthermore, the choice of £ partly depends on the problem to be

solved and the machine in use.

7.8.2.2. Cyclic reduction preconditioner

Like the Jacobi iterative solver, the cyclic reduction algorithm can be

applied to Eq.(7.8.1) before the CG algorithm is used. This is equivalent to

multiplying by a preconditioning matrix as in Eq.(7.8.4), and solving the

transformed system,

263

4':= V 	 (7.8.5)

This will only improve convergence if K(4')<KLA). Schendel (1984) finds the

eigenvalues of a matrix similar to 4 and shows that the condition number

depends on the diagonal dominance of A. As the cyclic reduction algorithm

increases the diagonal dominance, it can therefore be used as a

preconditioner.

A routine that used the cyclic reduction method once before applying the

CG algorithm Eq.(7.8.3) was written. The use of the cyclic reduction method

adds a slight overhead to the CG algorithm itself during the calculation of the

matrix product Ap, as the upper and lower diagonals are further away from

the main diagonal, increasing the routing for this operation.

When timed for the test problem, this routine took 5 iterations to converge

in a time of 28.4msecs. This is an improvement by a factor of 1.7 but not

enough to achieve a better performance than the DAPLIB routines. Timings of

the routine were also made using several passes of the cyclic reduction

method before using the CO algorithm. With 2 passes, the solution converged

in a CPU time of 23.4msecs after..3 iterations. With 3 passes, the CPU time

was 22.8msecs after 2 iterations. The CPU time is now less than the DAPLIB

solver based on the cyclic reduction method.

As the cyclic reduction algorithm is used for tridiagonal systems, it has not

been used to improve the convergence of the CO algorithm by any of the

previously cited references. However, for this particular application, it is

clearly effective. To improve on the time for the optimized DAPLIB Jacobi

solver, the preconditioning applied to Eq.(7.8.1) must be computationally

inexpensive and the CG algorithm must converge very rapidly.

7.8.2.3. rn-step Jacobi preconditioner

It is possible to write the CO algorithm Eq.(7.8.3) to include a

preconditioning step at each iteration (Golub and Van Loan, 1983). The

algorithm becomes,

XO = 0, 	ro = b, 	w =

Solve Pz. = ro, 	Y =

PO =

264

For k = 1 to n

q = Apk_l

cx = y I <p-1,q>

= Zk1 + apkl

rk 	- aq

If /<t$j1> / w < E StOP

Solve Pzk 	rk

=

B = y' / y

=Zk + B Pk- 1

(7.8.6)

The convergence is accelerated by the solution of the matrix equation, ZCrat

each iteration, where P is the preconditioning matrix.

Lai and Liddell (1987b) studied the implementation of the preconditioned

conjugate gradient (PCG) algorithm Eq.(7.8.6) on the DAP for engineering

problems with several preconditioflerS. They concluded that, for problems

requiring one processor per node, the in-step Jacobi preconditiOner is

preferred. Adams (1982, 1983) studied in detail the conditions for rn-step

preconditioners to be applicable and effective in solving symmetric positive

definite systems and showed that these conditions were met by the Jacobi

scheme. Adams (1982) also studied the implementation of these algorithms

on the MIMD finite element machine.

Using a rn-step Jacobi preconditiofler, the equation 	is solved by m

steps of the Jacobi scheme Eq.(2.6.13). To see the form of L following Adams

(1982), A is written as,

4 	2 	
(7.8.7)

=L-

where Q=-(L+ .o from Eq.(2.6.13). Applied to the solution of the equation 4i

this gives.

(m) = 2z(m1) +:n, 	 (7.8.8)

Eq.(7.8.8) can be written as,

iL (m) = =Q ML (0) + (2 mt + m2 + 	+ 2 +:L) L. 	 (7.8.9)

If the initial guess, b 0 }, is chosen to be zero, Eq.(7.8.9) becomes,

265

(2 M-1 + 	+ 	+ 	= . 	 (7.8.10)

so that the preconditioning matrix is,

P 	(Qml + ... +I) 	 (7.8.11)

Adams (1982) shows this result holds for a general class of iterative schemes

based on a splitting of A.

The convergence rate will be improved if K(ff'4<K(4. It can be seen

from Eq.(7.8.10) that as m increases, m) tends to Land E tends to A. As £

becomes a better approximation to 4 so K(Z'4) will reduce as desired.

There will be some value of m however, for which the increase in the cost

of the precoñditioner offsets the reduction in CPU time from the increased

convergence. This value of m will depend on the preconditiofler in use but

also on the computer. For example, the relative cost of the arithmetic to the

cost of the communication.

Dubois et al. (1979) proved that the rn-step preconditioner can reduce the

number of iterations needed by a 1-step PCG algorithm by a factor of m at

most. In practice, this theoretical limit may not be reached. The extent to

which it is true depends on the distribution of the eigenvalueS of A. However,

the implication is that rn-step preconditioning will be most effective when m is

small.

For the tridiagonal system Eq.(7.8.1), it is only worthwhile considering

simple iterative procedures as preconditioners if the time for the optimized

DAPLIB routine is to be improved upon. Therefore the Jacobi scheme is used,

following the recommendations of Lai and Liddell (1987b). To implement the

preconditioner, the algorithm Eq.(7.8.6) is used with,

Pzk=rk

replaced by,

O) = 0

For I = 1, m

Zk
m) 	Qm-l) + tk

(7.8.12)

266

A routine using the algorithm Eq.(7.8.6) with the rn-step preconditioner.

Eq.(7.8.12), was coded and timed for different values of m. The results are

presented in Table 14.

The optimum value of m is 7, although this gives a time greater than both

the DAPLIB solvers and also the CG algorithm with the cyclic reduction

preconditioner. As expected, the greatest improvement is for small values of

in. For example, with only one preconditioning step, the number of iterations

required reduces from 10 to 6. The CPU time however only reduces by 20%.

This is because the preconditioner increases the cost of each CO iteration,

whereas the cyclic reduction algorithm was used only to precondition the

matrix equation before the CG algorithm and did not alter the CO algorithm

itself. The use of the cyclic reduction method to precondition the equations

before the CG algorithm is clearly more effective.

7.8.2.4. Combined preconditioner

Since the cyclic reduction preconditioner is applied before the CO

algorithm Eq.(7.8.3) is used, it is possible to combine the cyclic reduction

preconditioner with the rn-step Jacobi PCG algorithm Eq.(7.8.6). Both methods

have been seen to improve the convergence rate and their combination is

straightforward. The introduction of the cyclic reduction method adds an

overhead to the initial calculations and the PCG iteration since, as explained

previously, the amount of routing required for the calculation of 4&increaSeS.

A routine combining these two techniques was written and timed. The

cyclic reduction preconditioner was used once. The results are presented in

Table 15. As expected, for rn1 to 7, the use of the cyclic reduction method

reduces the number of iterations for convergence. Again, the effect is most

noticeable for small values of in, with a factor of 2 decrease in the number of

iterations. The CPU times are all less than the cyclic reduction method DAPLIB

routine (the time for m=5 is the same). Also, there are now two values of m

for which the CPU time is below that of the optimized iterative DAPLIB solver

(18.5msecs). In these cases the algorithm halts at the first convergence test.

This is a relatively large reduction in the CPU time compared with two

iterations as the code to compute a new search vector Pk and solve Mzrk is

not executed. Using this algorithm with m7 instead of the optimized DAPLIB

solver would mean a saving of 6.7% in the CPU time of the model.

267

Number of Iterations to Time
preconditioning convergence (msecs)
steps

1 6 38.9

2 5 38.1

3 4 35.1

4 3 30.0

5 3 33.2

6 3 36.4

7 2 27.0

8 2 29.2

9 2 31.3

10 2 33.4

Table 14.

The CPU time for a conjugate gradient algorithm using a rn-step

Jacobi preconditioner.

268

Number of' Iterations to Time
preconditioning convergence (msecs)
steps

1 3 24.2

2 2 20.1

3 2 22.3

4 2 24.4

5 2 26.6

6 1 17.2

7 1 18.2

Table 15.

The timings of a rn-step Jacobi preconditioned conjugate gradient

algorithm. One pass of the cyclic reduction is used to precondition

the equations initially.

269

It was previously found that several uses of the cyclic reduction method

continued to reduce the iterations required for convergence. Therefore the

algorithm was modified to include two and three passes of the cyclic

reduction algorithm. The timings are presented in Table 16 and Table 17.

Table 16 shows that with two passes of the cyclic reduction algorithm, one

iteration of the PCG algorithm can be achieved with only 2 preconditioning

steps. The CPU time shows a slight improvement over the best time reported

in Table 15. For the tridiagonal systems of this model, to be competitive with

the DAPLIB optimized solver, the PCG algorithm must clearly converge in one

iteration. When the cyclic reduction method was applied a third time, Table 16

shows the routine becomes more costly than with 2 passes. The cyclic

reduction method is more efficient as a preconditioner because it gives a

greater reduction in the CPU time for less additional work.

It should be noted that this PCG algorithm is specific to tridiagonal matrix

problems. Furthermore, the use of the Jacobi preconditioner implies that for

best performance the equation A should be diagonally dominant. The

streamfunction would therefore have to be solved using the cyclic reduction

DAPLIB routine. The use of the cyclic reduction algorithm to precondition the

equations is only possible with tridiagonal systems. It is not useful for

matrices with a greater bandwidth.

Finally, the convergence rate of the CO or PCG algorithm might be

improved by using the value of the variable to be solved at the previous

timestep if it is available. The algorithms Eq.(7.8.3) and Eq.(7.8.6) have to be

modified to do this. The initial assignments, z0=0 and are replaced by

and r0=b-Ax0 . The technique would only have been possible for a

small number of the matrix equations solved in the model since not all results

at the previous timestep were available.

7.9. Storage requirements and performance

7.9.1. Storage requirements

The output from the DAP consolidator can be used to produce statistics on

the use of the DAP store by the model (Table 18). The model's COMMON blocks

take up a third of the available DAP store, so the model fits easily into the

270

Number of 	 Iterations to 	Time
preconditioning 	convergence 	(msecs)
steps

1 	 2 	 21.9
2 	 1 	 16.8

3 	 1 	 17.8

Table 16.

As Table 15 but with two passes of the cyclic reduction method

initially.

Number of 	 Iterations to 	 Time
preconditioning 	convergence 	(msecs)
steps

1 	 I 	1 	 I 	19.6

Table 17.

As Table 15 but with three passes of the cyclic reduction method

initially.

271

Storage area 	Size 	Number of 	Percentage
(kbytes) 	planes occupied 	of total

Program code 69.69 140 3.4%

System 12.0 24 0.6%

Workspace 18.0 36 0.9%

Stack 1308.0 2616 63.9%

User COMMON 640.0 1280 31.2%

Total 2047.69 4096

Table 18.

The storage required for the DAP finite element model. Values given are

for the main sections of the binary file, as given by the DAP consolidator

listing.

272

DAP.

The consolidator output also gives the space required for the model's

individual COMMON blocks, presented in Table 19. The largest fraction of the

user COMMON data is used for the matrices that hold the three diagonals for the

z and z mass matrices and the streamfunction equation. For efficiency in the

tridiagonal solvers, each diagonal is replicated in every column of its matrix. If

it was necessary to economize on use of memory, these diagonals would be

stored in vectors and broadcast across the PE array as required. The matrix

constants would then occupy 19 planes instead of 577. However, the CPU

time per model step would increase.

The finite element method is more suited to machines with a limited

memory (2Mb for the DAPs at Edinburgh University) and a slow I/O than the

spectral method, as there are no large arrays required. With about half the

DAP store still available, there is more space to increase the number of nodes

in the finite element model than there was for the spectral model.

7.9.2. Model timings

In this section, the CPU time per model step is presented for each different

algorithm used to solve the matrix equations. These timings were performed

by running the model for 1000 steps, using a timestep of 30 seconds. The

mid-tropospheric jet and surface jet initial conditions were used to see if

there were any differences caused by the initial conditions.

The results for the mid-tropospheric jet case are presented in Table 20.

Those for the surface jet case are shown in Table 21. The DAP time for each

run was approximately 6 minutes and was reported to the nearest second.

Thus the timings presented can be considered accurate to imsec. The tables

show the algorithm used to solve each of the 3 types of matrix equation; r

direction, z direction and the streamfunction. Also presented with each

algorithm is the average number of iterations required for convergence, as

monitored by the model.

There are several interesting points arising from these results. The

unoptimized DAPLIB Jacobi routine takes less iterations for convergence, on

average, than in the test case. The average number of iterations when the

optimized version of this routine is used, however, is greater, although the

273

Use of store
	Size 	Planes 	Percentage

(kbytes) 	 of total

Main variables 96.0 192 15.1%

Auxiliary variables 96.0 192 15.1%

Work COMMON 54.0 108 8.5%

Matrix constants 288.5 577 45.3%

Vector constants 4.5 9 0.7%

Scalar data 0.5 1 0.08%

Logical masks 0.5 1 0.08%

Output COMMON 96(+1) 192(+2) 15.2%

Total 637.0 1274

Table 19.

The storage requirements for user data for the finite element model. The

output COMMON block includes the size of the dummy COMMON (in

brackets) required to page align the output COMMON. This offset varies

with program size.

274

;treamfunction
Ugorithm Iterations

x direction
Algorithm Iterations

z direction
Algorithm Iterations

Time per mode]
step (msecs)

1 	6.0 1 	6.0 1 	6.0 493

1 	6.0 2 	9.677 2 	9.823 376

1 	6.0 3 	10.411 2 	9.814 373

1 	6.0 3 	10.399 3 	9.970 364

1 	6.0 4 	1.194 4 	1.614 398

4 	44.0 4 	1.200 4 	1.429

1 	6.0 5 	1.000 5 	1.000 372

Table 20.

The CPU time per model step for various choices of algorithms to solve the

three types of matrix equations indicated. Initial conditions are the

mid-tropospheric jet case. The key for the algorithms is:

DAPLIB cyclic reduction algorithm.

DAPLIB hybrid Jacobi iterative algorithm.

Optimized DAPLIB Jacobi iterative algorithm.

2-step preconditioned conjugate gradient algorithm.

3-step preconditioned conjugate gradient algorithm.

275

Streamfunction x direction z direction Time per model

Algorithm Iterations Algorithm Iterations Algorithm Iterations step (msecs)

1 	6.0 2 	10.158 2 	9.889 382

1 	6.0 3 	10.470 3 	10.142 366

1 	6.0 5 	1.0 5 	1.0 372

Table 21.

The CPU time per model step for various choices of algorithms to solve the

three types of matrix equations indicated. Initial conditions are the surface

jet only case. Key to the algorithms is the same as Table 20.

276

CPU time per model step is still less. The reason for the average being

greater is because the minimum iterations for this routine is 9, the number of

iterations performed before the convergence test is carried out. However, the

standard DAPLIB routine computes an estimate of the minimum number of

iterations required. If the optimized routine has a higher average, some matrix

equations take fewer than 9 iterations to converge. If the model was run on

the DAP again, an iterative routine with a test for convergence after every step

should be used, with the model monitoring the maximum and minimum

number of iterations required for all equations. From this, the routine could be

optimized by adjusting the minimum number of iterations as necessary. The

average number of iterations for convergence for the solution of the z

direction equations shows much less increase than for the x direction

equations when the optimized routine is used. This is because the nonuniform

vertical spacing of the model gives a tridiagonal matrix in which the ratio of

the main diagonal to the upper and lower diagonals is different from the ratio

for the uniform spacing in the x direction. The implication is therefore, that

convergence in 8 iterations or less occurs less frequently.

An interesting feature of these results is that when one type of equation is

solved using a different algorithm, the average number of iterations changes

for the other type of equations for which the algorithm is not changed. There

are several examples of this in Table 20. When the z direction equations are

solved using the optimized Jacobi routine instead of the standard DAPLIB

routine, the average number of iterations for the z direction equations

decreases. Similarly when the streamfunction equation is solved using the

PCG algorithm, the averages for the x and z direction equations change. In all

cases, the changes are slight but show the effect of the precision of the

solution on the model fields. The results from these runs were compared.

Occasional differences in the placement of contours drawn in some fields

were noted but there were no significant differences seen on runs of 20 hours

duration.

When the 2-step PCG algorithm was used, the average number of

iterations for convergence for the x and z direction equations was greater than

one, implying that sometimes more than one iteration is required (Table 20).

When this occurs, a new search vector is computed. This is costly and Table

20 shows that the 2-step PCG routine performs worse than the standard

277

DAPLIB routines. It can also be seen that the average number of iterations for

the z direction equations is greater than for the x direction equations, as

expected. Thus, it becomes necessary to use a 3-step PCG routine. When

tested previously, this stilt gave a faster time than the optimized DAPLIB

Jacobi routine. From Table 20, this is no longer the case, as fewer iterations

are required in the model using the optimized DAPLIB Jacobi routine than

when tested. However, the 3-step PCG algorithm always requires one

iteration. It is puzzling however, that whilst the number of iterations required

for convergence in the DAPLIB Jacobi routines shows a decrease from the test

case, the 2-step PCG algorithm, which uses a Jacobi preconditioner, shows an

increase. No explanation can be offered for this. The model needs to be run

on the DAP again to identify the equations for which a different number of

iterations to the test case is required. The use of the 3-step instead of the

2-step PCG algorithm reduces the model CPU time by 6.3%.

The performance of the PCG algorithm when applied to the streamfunction

equation is also shown in Table 20. There is a large increase in the number of

iterations required as the mass matrix is not diagonally dominant. Only the

cyclic reduction algorithm is suitable for this equation.

For the algorithms used here, the optimized DAPLIB iterative solver gives

the best performance. This is contrary to the test results given previously.

However, both the DAPLIB and PCG routines could be optimized further by

examining the iterations required for convergence for every equation solved.

It may be possible to reduce the computation in each routine for some of

these equations. However, the gains in performance are likely to be small as

are the relative performances of one routine to the other. The optimized

DAPLIB routine is preferred for its performance and algorithmic simplicity.

Table 21 shows that the performance of the optimized and unoptimized

Jacobi solvers and the CPU time per model step does depend on the initial

conditions. When the unoptimized DAPLIB Jacobi routine is used, there is an

increase in the average number of iterations for the z and z direction

equations, increasing the CPU time per model step of 1.6% compared to the

mid-tropospheric jet initial conditions. Without more detailed statistics from

the model, it is impossible to say which equations are causing these increases.

278

7.93. Performance

The timings of the subroutines in the model are given in Table 22. Eaôh

model timestep is divided into four scans similar to the spectral model. The

first scan computes diagnostic variables, such as the velocity components and

eddy diffusivity, for that timestep. The other scans integrate forward in time

the vorticity, potential temperature and jet velocity, in that order. By

computing each variable in turn, workspace requirements are minimized. It

was difficult to time the four scans accurately outside the model because the

behaviour of the iterative solvers is data dependent. The values given in Table

22 for SCAN]., SCAN2, SCAN3 and SCAN4 are therefore estimates, calculated using

measured timings of the routines called by the four scan routines. These

estimates assume the use of the 3-step PCG routine which always executes in

the same time.

The other routines in Table 22 were timed outside the model. Each was

called in a Do loop and timed over a large number of calls (in the range

5000-500000). The timings presented allow for the cost of the DO loop but

because the system reported the DAP CPU time to the nearest second, each

time is subject to a possible error of ±1 in its last digit.

The solution of the matrix equations takes the greatest percentage of the

CPU time per model step. The percentage of the model CPU time spent

solving the matrix equations is shown in Table 23. There are 15 matrix

equations solved each timestep. The average CPU time per call for the 3-step

PCG and cyclic reduction DAPLIB routines are taken from the timings

presented in the previous section. The average CPU time per call for the

Jacobi routines was estimated from the cost of 1 iteration and the average

number of iterations given in Table 20. As the streamfunction equation is

always solved using the same algorithm, the percentages are shown with and

without this calculation taken into account. The lower percentage is therefore

the relative cost of the solution of the z and z direction equations only.

The solution of the matrix equations takes 74% to 81% of the CPU time of

the model. The solution of the z and z direction equations alone takes 67% to

68% (excluding the figure for the cyclic reduction algorithm).

The relative costs of solving the -matrix equations for the surface jet initial

conditions run are the same as for the mid-tropospheric jet initial conditions

279

00
C

Routine 	Time per
name 	I call (msec)

Main subroutines called

SCAN I 59.55 M3XM, SOLVER(3), DEVRHS(2)
SCAN2 97.98 SOLVER(4), DEVRHS(3), PRODRHS(2), DIFFX, DIFFZ, TIMESTEP, TIMEFILTER, VORBNDRY
SCAN3 97.78: SOLVER(4), DEVRHS(2), PRODRHS(2), DIFFX, DIFFZ, TIMESTEP, TIMEFILTER, THETABNDRY
SCAN4 99.92 SOLVER(4), DEVRHS(2), PRODRHS(2), DIFFX, DIFFZ, TIMESTEP, TIMEFILTER, YVELBNDRY
DEVRHS 0.724 NONE

PRODRHS 5.82 NONE

DIFFX 3.35 NONE
DIFFZ 3.18 NONE

M3XM 1.39 NONE

THETABNDRY 3.20 RATIO

VORBNDRY 1.45 NONE

YVELBNDRY 5.09 RATIO(2)

RATIO 1.86 NONE

TIMESTEP 0.362 NONE

TIMEFILTER 0.914 NONE

Table 22.

The execution times of the main subroutines of the finite element model and the subroutines that each calls.

* indicates these times are estimates, based on the time for the 3-step preconditioned conjugate gradient algorithm.

Algorithm Average time Time
	

Percentage of time per step
per call 	per step 	Including solution Excluding solution

(msecs) 	(msecs) 	of sireamfunction 	of streamfunction

1 26.6 493 80.9% 	 75.5%

2 18.4 376 75.6% 	68.3%

3 17.4 364 74.2% 	66.9%

5 17.8 372 74.1% 	67.0%

Table 23.

The percentage of the CPU time per model step that is spent solving the

matrix equations. Percentages are shown for different choices of

algorithm. The streamfunction equation is always solved using the same

algorithm, percentages with and without this taken into account are shown.

See Table 20 for the key describing the algorithms. Results are for the

mid-tropospheric jet case.

281

and are therefore not shown. These results show that optimization efforts will

give the best results if applied to the tridiagonal solvers.

Section 7 of this chapter described improvements to the algorithms that

compute the finite element matrices for the product and diffusion terms.

Using the timings for the routines PRODRHS, DIFFX and DIFFZ given in Table 22

and using a CPU time per model step of 364msecs jassurning the optimized

DAPLIB Jacobi routine is used) the calculation of the finite element matrices

for the product and diffusion terms taken 15% of the CPU time per model

step. It was estimated in section 7 that the CPU time for the calculation of the

finite element matrix for the product (PRODRHS) could be improved by 21%.

For the z derivative diffusion term the improvement was estimated at 24%. The

improvement for the z derivative diffusion term was not estimated but is

assumed to be the same as the x derivative term. The reduction in the CPU

time per model step if these improvements were made would be 12.Omsecs, a

decrease of 3.3%.

.It is interesting to see the relative cost of computing the boundary

conditions, which are computed in vector mode. Adding up the cost of the

routines THETABNDRY, VORBNDRY and YVELENDRY, assuming a CPU time per

model step of 364msecs, these routines take 2.7% of the model CPU time.

7.9.4. Parallel processing performance

As for the spectral model, it is necessary to study the finite element model

from a parallel processing point of view. It is obvious that this model makes

more efficient use of the DAP PE array than the spectral model. The available

parallelism does not alter during a model timestep in the same way that it

does in the spectral model, as there are no transformations from gridpoint to

spectral space. In the finite element model, as each processor is assigned a

node, there is no further parallelism to be gained from calculations on the

grid. However, several terms could be computed simultaneously on a larger

DAP. For example, all the variables could be integrated in time simultaneously

or derivatives could be computed simultaneously. Thus, by exploiting the

same operations applied to different variables there are more potential

processes than available processors. However, certain points in the program

have a parallelism the same as the number of nodes (e.g. calculation of the

eddy diffusivity coefficients) although these take only a small fraction of the

282

model time. A MIMD machine would be needed for further parallelism to be

achieved.

The movement of data between processors can be considered as an

overhead for any program on the DAP. By noting the time for the

broadcasting and routing of data in the program this overhead can be

computed. The total time per step for data routing is 15.Omsecs, assuming

the use of the optimized DAPLIB Jacobi routine, giving an overhead of 4.1%.

This is much less than the value obtained for the spectral model. Data routing

is clearly not an expensive overhead for this model. Almost 90% of the cost

comes from the solver routines.

Using Eq.(2.6.3), the efficiency of the algorithms to compute the finite

element matrices for the product and diffusion terms is 98.4% and 98.9%

respectively. Their performance rates are 15.2Mflops and 16.9Mflops

respectively. The efficiency of the algorithm to compute the finite element

matrix for the derivative term is 98.4% and its performance rate is 11.3Mflops.

For the tridiagonal solvers, the cyclic reduction DAPLIB routine has an

efficiency of 86.4% and a performance rate of 9.7Mflops. The optimized Jacobi

DAPLIB routine's efficiency and performance rate is 98.2% and 12.9Mflops.

The calculation of the finite element matrices and the solution of the

tridiagonal equations together account for 90% of the model CPU time.

Considering only the performance of these routines would therefore give a

good estimate of the performance of the model. The efficiency of the model

can therefore be calculated as 97% from Eq.(2.6.3). The performance rate is

13.1 Mflops.

This model is therefore very efficient as almost all of the PE array is

performing useful work during each step. However, it should not be inferred

from this that a finite element model would be preferred to a spectral model

for global modelling. The choice of grid on the sphere might result in a

mapping of nodal data onto the processor array that leaves some processors

unused. The triangular elements on an icosahedron in the global finite

element model of Cullen and Hall (1979) might be one example.

283

7.10. Model results

The model of CR77 was used to study the quasi-steady circulation that

develops within the initial frontal system. In this section, the results from this

model are compared to two of the cases discussed by CR77.

7.10.1. Surface jet case

The first solution discussed by 0R77 is a surface jet configuration

representing cold and warm air masses separated by a frontal system with a

jet whose maximum occurs at the surface. The jet profile is set using

Eq.(7.2.17) with VM=45ms1. The geostrophic wind, (J(z). is set according to,

U9 = 8.92a0 (z) - 5.61

such that the front is advected to the right in the figures to be presented.

0R77 refer to this case as SJ3(45).

Fig. 35 is reproduced from 0R77 and shows the evolution of the

cross-front flow field in the z-z plane for the SJ3 case. The frames to the left

show composite contour diagrams of the potential temperature (solid lines)

and the perturbation streamfunction (dashed lines) at 3, 11.43 and 19.43 hours

into the run. The perturbation streamfunction, 4)', is defined by,

4)' = 4) - 	 (7.10.1)

where the geostrophic streamfunction, 4), is given by the solution of,

U
9
 (z) a0d4)9/dz 	 (7.10.2)

The frames to the right of Fig. 35 show the jet velocity, v (solid lines) and the

total streamfunction, 4) (dashed lines).

Circulation cells develop in the perturbation streamfunction by 3 hours.

The vorticity within these cells is negative on the warm side of the front and

positive on the cold side. These cells intensify until a quasi-equilibrium is

achieved in which the cells coexist with the moving frontal system. As shown

by the streamfunction, on the right of Fig. 35, the effect of this vorticity above

the front is to cause air parcels to sink as they pass over the frontal surface.

In contrast, the positive vorticity on the cold side of the front reduces the

cross-front advection of cold air parcels close to the surface. This localized

284

= 3.00hrs
15

10

km

5

0
0 	 500 	 1000

km

0,'

t 11.43hrs 	 OY

:-" 	 ,----

	

0-f 	 -S

	

0 	500 	 1000
km

100 ioo

10
—" 	 ---..

mb km - ZT_;T ,i. mb

- 	 ::-=-- 500

0 	500 	 1000
km

15

10

km

5

___________ 	 v,",

100
15r- X-

	

- 	 -

	

F 	 - ----

	

10-r 	'----------------

mb km

500 	sJ;k-:-y*:i:--:::::::::::= 00

1000 	0 	 1000

	

0 	 500 	 1000
km

15

10

km

5

t 19.43hrs
 100

100 	 -:-:-=--=;:- - 	-- 	 -

mb km 	 - 	 -- 	 : 	

mb

sw

_ 	 --p 	0 X 	 _low
0 	 500 	 1000

km 	 km

Figure 35. Reproduced from Orlanski and Ross (1977). Time sequence from surface

jet case SJ3(45). Left frames show potential temperature (solid contours)

and perturbation streamfunction (dashed contours) with X and N denoting

locations of maximum and minimum streamfunction. Right frames show

the jet velocity (solid contours with long dashed contours for zero lines) and

total streamfunction (short dashed contours) with X and N denoting

locations of maximum and minimum velocity. Contour intervals are:

AO=5 C, Ai'=250kg(ms) , Av=5ms , zi=2000kg(ms)

- (iiIJ

285

blocking produces the dome in the streamfunction and potential temperature

contours in Fig. 35.

Fig. 36 shows the potential temperature and perturbation streamfunction at

3, 12 and 20 hours from a run of the finite element model with the SJ3 initial

conditions. The perturbation streamfunction shows the same early

development of two circulation cells. The negative cell develops to the same

dimensions as in the 0R77 run and to about the same strength. However, the

positive cell on the warm side of the front is clearly much too strong and its

centre is lower than in Fig. 35. This means the model is generating more

negative vorticity ahead of the front than in the run of 0R77.

The potential temperature fields are in good agreement with those in Fig.

35. The dome shape of the potential temperature contours can be seen but it

appears that the front is not advected as far in this model.

Fig. 37 shows the streamfunction and the jet velocity at the same times as

in Fig. 36. The streamfunction shows the dome-like contours behind the front,

the same as in 0R77. However, there is also a feature associated with the

nose of the front, at 700km at 12 hours. This is undoubtedly associated with

the more intense circulation ahead of the front in this case.

The evolution of the jet velocity field is in broad agreement with that

shown in Fig. 35. The flattening of the contours is well represented although

the advection of the jet is some 100km less than in the 0R77 case after 20

hours. However, the warm side of the jet shows different development. In

Fig. 37 the jet has extended much further into the warmer air than in Fig. 35

and the depth of the jet is shallower. Forward of the jet minimum, a nose

develops where the vertical gradient of v is negative over the first 200m,

before becoming positive. Comparison with Fig. 36 shows this change in

gradient is correlated with the horizontal gradient in the potential temperature

at the surface. This implies the bottom boundary condition for the jet velocity

is incorrect and this was confirmed when inspection of the program code

revealed a programming error. The bottom boundary of the jet velocity is set

to be in geostrophic balance according to Eq.(7.2.10), the values at the bottom

level are set by Eq.(7.4.8). Unfortunately, in the model the O x term was added

rather than subtracted. From Eq.(7.2.1), the primary generation of vorticity, at

least initially, results from the deviation from thermal wind balance of the jet

286

0

Ne
11I.

o 200 400 600 800 1000 1200 	 ,u iou bOO 500 1000 1200

KM
	

KM

=V4S.

E

=IIa• 	

:

	

JSO
	

Chi

0 200 400 600 800 1000 1200 1400
	

0 200 400 600 800 1000 1200

KM
	

KM

t=2Ohrs

E

fr4.. 	II

N ZWO

U 200 400 600 800 1000 1200 1400 	 0 200 400 600 800 1000 1200 1400

KM 	 KM

Figure 36. Results from the finite element model run of the SJ3(45) case presented by
Orlanski and Ross (1977). Shown are the potential temperature and

perturbation streamfunction fields at 3, 12 and 20 hours. Contour intervals
are the same as in Figure 35.

287

15
t=3hrs
	

'V
	

V

E

I-
=own

 10

5

)0 400 600 800 1000 1200
	

0 400 600 800 1000 1200

KM
	

KM

hrs
I

I

=pI

xz
NC

:

)_
)0 400 600 800 1000 1200

	
o 200 400 600 800 1000 1200

KM
	

KM

thrs
I

•i U

II

I') I L- \i
200 400 500 800 1000 1200 1400 	 0 200 400 600 800 1000 1200 1400

KM 	 KM

Figure 37. As Figure 36 but showing the total streamfunction and the jet velocity.

velocity and the potential temperature fields. Since the erroneous boundary

condition ensures this is always the case at the front at the surface, more

negative vorticity is generated in this region than should be. This is clearly

apparent if the vorticity fields are examined and accounts for the stronger

circulation in the perturbation streamfunction figures and the other

discrepancies noted above. It is not clear to what extent the potential

temperature fields are affected by this error. Unfortunately the Edinburgh

DAPs were no longer available for this case to be rerun with the correct

boundary condition.

7.10.2. Mid-tropospheric jet case

0R77 also presented results for a more realistic mid-tropospheric jet run.

The initial jet velocity field is given by Eq.(7.2.18). The jet parameter, VM, is

set to 30ms 1 and the geostrophic wind field is set to,

U9 = 2 + 3tanh(z/5000)

0R77 refer to this run as MTJ2(30).

Fig. 38 is reproduced from 0R77 and shows the results for the MTJ2 case.

The format of this diagram is the same as for the surface jet case. The fields

are shown at times of 3, 10.87 and 14.86 hours. The MTJ2 initial conditions

have comparable mean frontal wind shear in the jet velocity to the SJ3 case

(which produces a similar horizontal gradient of potential temperature due to

the initial geostrophic balance) and in the vertical shear in the geostrophic

wind field at the front. Even though these shears are comparable, the

circulation that develops is much stronger than in the surface jet run. A

negative cell develops on the warm side of the front i.e. positive vorticity

rather than the negative vorticity of the SJ3 case. The circulation in the

colder air is much weaker by comparison. As a consequence, this circulation

produces a blocking effect near the surface ahead or downwind of the surface

front, thereby lifting air parcels ahead. This is seen clearly in the

streamfunction shown in Fig. 38. The jet velocity profile remains largely

unchanged except for the tilting produced by the vertical shear of the

advecting wind.

Fig. 39 shows the streamfunction and potential temperature fields at 3, 11

and 15 hours from a run of the finite element model. The initial development

289

0,41 '

0

t r14.86hrs
15

km

500 	 1000
km

10

km

5

t1O87hrs
15

15
:300hrs 0, k' 	

15

EEEE4 100

'U

km

5

0

- 4
10

nib km

500 	5

MW 	0

I
-

1

0 	 500 	 1000
km

nib

500

1000

0 500 	 1000
km

v,*
15--

100 	 100

:7Thf 10

mb km 	 -t- 	mb

500 	 C 	
500

1000 	O- 	 . 	1000
0 	 500 	 1000

km

v,*
15 	

100

10

nib km

500 	5

zz

0 	 500 	 1000 	 0 	 500 	 1000
km- 	 - 	 km

Figure 38. Reproduced from Orlanski and Ross (1977). Time sequence from the
mid-tropospheric case MTJ2(30). Format is the same as Figure 35.

-1
Contour intervals are: A=5

0
 C, 	'=500kg(ms) , Av=5ms

A=1000kg(ms)

OAIM

'U,
)- 	p j1

1c;
t=3hrs
	

0

FA

E
	

E

310-

S6

E

0- 2
051

o 200 400 600 800 1000 1200 1400
	

M) 400 600 800 1000 1200

KM
	

KM

t=1 Mrs

r E

5_-310

0 200 400 600 800 1000 1200

KM

0 200 400 600 800 1000 1200

KM

0 200 400 600 800 1000 1200 1400 	 0 200 400 600 800 1000 1200 1400

KM 	 KM

Figure 39. Results from the finite element model for the MTJ2(30) case of Orlanski

and Ross (1977). Shown are the potential temperature and perturbation

streamfunction at 3, 11 and 15 hours. Contour intervals are the same as
Figure 38.

291

in the perturbation streamfunction is very similar to the 0R77 results.

However, the erroneous boundary condition produces negative vorticity at the

surface at the front whilst, as in the 0R77 run, positive vorticity is generated

aloft. The result is that the positive perturbation streamfunction cell extends

into the warmer air, as clearly seen in Fig. 39, producing an intense gradient at

the interface of the negative vorticity near the surface and the positive

vorticity aloft resulting in a strong circulation and numerical noise in this

region. The effect of the erroneous boundary condition is more noticeable than

in the SJ3 case. The potential temperature field also shows the effect of the

strong circulation at the nose of the front.

The streamfunction and the jet velocity fields are shown in Fig. 40 for the

MTJ2 case. The streamfunction shows the lifting ahead of the front but also

the effect of the erroneous boundary condition with a small cell at a height of

1km. The jet velocity field reproduces the general features of the CR77

solution. The change in sign of the vertical gradient of v at the surface is

again apparent.

To summarize, a programming error in applying the bottom boundary

condition for the jet velocity has meant it has not been possible to make

anything other than a qualitative comparison of results from the two models.

The error has a significant effect on the circulations seen in the perturbation

streamfunction, particularly for the MTJ2 case. However, the model appears to

produce the general development described by 0R77, so that devoid of the

erroneous boundary condition the model should reproduce the results of CR77

well.

7.11. Discussion and conclusions

In this chapter, the implementation of the two-dimensional frontal model of

Orlanski and Ross (1977) on the ICL DAP was described. The model was

formulated using finite elements rather than finite differences as in the origirl

model to test the suitability of this technique to the DAP. The streamfunction

was solved outside the usual Galerkin framework to achieve a higher accuracy.

The boundary conditions of this model were also not formulated in the way

usual for finite elements. The lateral boundaries were computed using a fourth

order accurate scheme rather than the second order scheme of the original

model.

292

0 200 400 600 800 1000 1200 14

KM

t=1 1 firs
15

10

5

0
0 200 400 600 800 1000 1200 1400

KM

LO

E

o 200 400 600 800 1000 1200 14
	

200 400 600 800 1000 1200 14

KM
	

KM

r

t=l5hrs
15

10

r

5

0
0 200 400 600 800 1000 1200 1400

KM

IIPM

200 400 600 800 1000 1200 14

KM

Figure 40. As Figure 39 but showing the total streamfunction and the jet velocity.

293

A detailed description of the solution procedure was given in which the

equations were written using matrices. This made implementation on the DAP

convenient as each processor was assigned an element of these matrices. The

finite element method would usually use two-dimensional basis functions for a

two-dimensional problem, but the equations of this model used basis

functions written as the product of two one-dimensional basis functions so

that the equations could be solved as a succession of one-dimensional

problems, as advocated by Staniforth (1987). This had the advantage that

tridiagonal matrix problems, instead of higher bandwidth matrix problems, had

to be solved.

Parallel algorithms to compute the finite element matrices for the

derivative, product and diffusion terms were derived. These were optimized for

the semi-irregular grid of the model. They were also formulated to ensure

that the boundary nodes, which required a slightly different calculation, were

computed in parallel with the interior nodes. As the hardware boundary

conditions of the DAP were used, this approach would not be possible if

implementing these algorithms on a serial or MIMD machine (which did not

have equivalent hardware conditions).

It was found that the calculation of these matrices took a 15% of the

model CPU time per step. Most of the time, about 75%, was spent solving the

matrix equations. Two DAP subroutine library routines were timed for a test

problem and several conjugate gradient algorithms were designed and tested.

A preconditioned conjugate gradient algorithm was developed which, for the

test problem, had a superior performance to the DAP library routines and an

optimized version of the Jacobi DAP library routine. However, when used in

the model, these results were reversed and the optimized Jacobi routine gave

the best performance. To be competitive, the conjugate gradient routine used

preconditioning such that only one iteration was required. The use of the

cyclic reduction algorithm was found to be successful at reducing the number

of iterations to convergence. In this respect, the preconditioned conjugate

gradient algorithm was specialized to this model. These solution methods

would not be used on conventional architectures where methods such as

Gaussian elimination are more appropriate.

A programming error prevented an accurate comparison of results from

this model to those of Orlanski and Ross (1977). There is a general agreement

294

between the results however. Two-gridlength noise was apparent in the

solutions presented for this model. Undoubtedly, much of this was a result of

the programming error but there was some evidence of false reflections off

the lateral boundaries. Further tests would be needed to confirm this.

The finite element method is suited to the DAP; a conclusion supported by

other authors (Lai and Liddell, 1987a). The spectral method by comparison is
2.

not so well suited. The matrix notation for the equations allowed their easy

translation to DAP FORTRAN; the low overhead for routing data in the model

supports this. Near optimum use of the DAP processors is made during a

model step in contrast to the lower efficiency of the spectral model. The

storage requirements of the finite element model are also much lower than

the spectral model. In particular, the main storage requirements, the mass

matrix components, increase linearly with increased resolution. However, the

Legendre polynomial storage requirement in the spectral model increases

quadratically with resolution. Overall, the development effort and time for this

model was considerably less than that of the spectral model.

The finite element method is best suited to certain types of problems, for

example limited area modelling, so it is not possible to recommend the use of

the finite element technique over the spectral method for a global modelling

problem. However, given a choice of architectures on which to implement the

problem, one could comment on the preferred architecture.

Further optimization of the model is possible. It was described how the

algorithms to compute the finite element matrices for the product and

diffusion terms could be improved. The optimized Jacobi DAPLIB routine could

be tuned to give a better performance. Lower precision arithmetic would also

reduce the execution time. The best results would be obtained if the Jacobi

routine used lower precision. However, it is not clear if this would be possible

and further work would be needed to clarify this.

It has been shown that the minimum parallelism available in a SIMD sense

is the number of nodes of the finite element grid. A MIMD approach would

yield further parallelism. Therefore, a larger processor array would require the

same number of nodes as processors for efficiency. This could be achieved

with a three-dimensional model, but at this stage it is not obvious how best

to implement a three-dimensional finite element model. Once again, the lack

295

variable size arrays in DAP FORTRAN is seen as a disadvantage for

meteorological modelling.

CHAPTER 8

METEOROLOGICAL ALGORITHMS ON OTHER PARALLEL COMPUTERS

81. Introduction

It would not be prudent to discuss the application of the DAP to

meteorological modelling without an understanding of the issues involved in

using other parallel computer architectures. Several authors have recognized

that a simple meteorological benchmark would give an indication of the likely

performance on a particular computer. A finite difference model has therefore

been implemented on different computers and this work is reviewed in the

following section.

As the spectral transforms account for a large proportion of the execution

time of spectral models, they are an obvious benchmark. FFTs are often one of

the first algorithms applied to any new computer, in which case the Legendre

transforms become an appropriate benchmark. The design of the Legendre

transform algorithms is discussed in section 3. The issues in implementing

spectral models on parallel computers are discussed in section 4.

In the summer of 1986, the author was employed by the ECMWF for 3

months to assist in the development of an enhanced multitasking strategy for

their spectral forecast model. This work is described in the penultimate section

of this chapter. In the final section, the multiprocessing strategy of the

Meteorological Office's finite difference model is described, to contrast the

scheme used by the ECMWF.

8.2. A finite difference meteorological benchmark

A number of authors used the finite difference shallow-water model in

Cartesian coordinates described by Sadourney (1975b), as a meteorological

benchmark for supercomputers and parallel computers. Hoffmann et at (1988)

ran the model on the CRAY-1, CYBER-205 and CRAY X-MP computers. Ikeda

(1988) benchmarked the model on the Fujitsu VP-400. Tanqueray and Snelling

(1988) applied the model to a 16-node FPS T-series machine. McBryan (1988)

ran the model on the Connection Machine (CM-2), whilst Fishbourne (1980)

used the model in spherical coordinates on the ICL DAP.

Table 24 presents a compilation of the results from these benchmarks. The

MOYA

Computer Grid
size

Number of
processors

Average
performance
(Mflops)

Percentage of
peak speed

ICL DAP 64x64 4096 10 38%

Connection 512x1024 8192 214 5%
Machine (CM2)

CRAY-1 64x64 1 61 38%

CYBER 205 64x64 1 39 20%

CYBER 205 64x64 1 110 55%
(optimized)

FPS T-series 64x64 16 13 7%

FPS T-series 256x256 16 41 21%

CRAY X-MP 64x64 1 98 47%

CRAY X-MP 64x64 2 168 (tasks) 40%

CRAY X-MP 64x64 2 188 (events) 45%

CRAY X-MP 512x512 1 148 70%

CRAY X-MP 512x512 4 560 67%

FUJITSU 64x64 1 379 33%
VP-400

FUJITSU 256x256 1 567 50%
I!d 	[II

Table 24.

Performance of the shallow-water finite difference benchmark

model for various computers. See text for additional comments.

298

performance figures given are average Mflop rates. Unfortunately, the authors

did not all use the same grid size or the same degree of optimization so

precise comparisons are difficult.

All the benchmarks were made with the same basic code (given by

Hoffmann et al, 1988), with modifications only for language differences or

machine specific optimizations, except Fishbourne's (1980) model. This was a

global model and included Fourier filtering near the poles.

The CM-2 implementation was written in parallel LISP rather than

FORTRAN. Although a powerful machine in theory, in practice, communication

overheads and an inability to maintain the pipeline for the floating point

processor yielded a poor average performance relative to the peak

performance. However, for a three dimensional primitive equation model on

the same number of gridpoints (a 128x128x32 grid), Pozo and MacDonald

(1989) obtained an average performance of 1.1Gflops, 28% of the peak

performance. It is not clear from the papers why the two models gave such

different performances, but a likely explanation is that the three dimensional

model had longer vectors. McBryan (1988) pointed out that there is a serious

performance decrease, by a factor of 2.4, for grids that are not a power of 2 in

each direction. This is because of the extra communications required for the

periodic boundary conditions. It can be concluded that careful programming

and a problem with a large degree of parallelism, many times the number of

processors, are required in order to obtain a reasonable efficiency with the

CM-2.

The CRAY-1, CYBER-205 and CRAY X-MP implementations used arrays

declared as (65,65) to decrease memory bank conflicts. The CRAY-1 and

CRAY X-MP versions used no other optimizations other than that performed

by the compiler. The CYBER-205 version was written to give longer vectors

than the CRAY version, to overcome the longer start up time of the vector

pipeline on this machine. Another CYBER-205 version was written with the

loops replaced by special vector subroutines. This optimized version (see

Table 24) improved the performance by almost a factor of 3.

For the CRAY X-MP multitasking runs with 2 processors, two versions were

written by Hoffmann et al. (1988). The first explicitly created processes for

each piece of work and synchronized by waiting for processes to finish. The

299

other version created the processes once only and synchronized using signals

or CRAY EVENTS. The better performance of the EVENT version illustrates the

overhead of repeated process creation.

The program for the T-series was optimized for the vector processor at

each node by subroutine calls. The programming strategy overlapped

communications with computation. A one dimensional torus topology was

used. The results show a poor performance relative to the peak performance

of the machine. As Tanqueray and Snelling (1988) pointed out, this was due to

the imbalance between the communication time and computation time, the

improved performance of the 256 2 grid model illustrates this. Tett et at (1988)

implemented a spherical coordinate, finite difference shallow-water model on

the Edinburgh Concurrent Supercomputer. The finite difference scheme was

based on that used for the Meteorological Office forecast model.

Unfortunately, they did not give a performance figure for their model.

The performance of the model on the VP-400 is impressive compared to

the CRAY X-MP, as the machine has only one processor. Ikeda (1988) does

not indicate if any optimizations were performed, but the figures from Table 24

suggest some scope for improvement.

Overall, Table 24 shows that performance figures between a third to a half

of the peak performance of the pipelined machines were achieved for a 642

grid. Larger grids resulted in longer vectors and gave performance rates closer

to the asymptotic limit. It is important to realize that this was achieved with

standard, sequential FORTRAN, a vectorizing compiler and a modest amount of

additional code for multiprocessing. The situation seems to be different on

the distributed memory machines such as the SIMO CM-2 and MIMD FPS

T-series. It appears more difficult to achieve rates close to the peak

theoretical performance. For the DAP, the SIMD nature and simple

interprocessor connections remove communication overheads to a large extent

and a percentage performance comparable to that on the pipelined machines

was achieved. Since most forecast models are now spectral, it would be

interesting to compare the performance of a spectral benchmark on different

machines.

300

8.3. Legendre transforms

8.31. Use as a benchmark

As mentioned in the introduction, the implementation of the Legendre

transforms is a key issue in the design of spectral models on parallel

computers. There are a number of reasons why those transforms would be

useful as a benchmark for spectral models, as described below. There have

been several recent studies of the Legendre transforms on parallel computers,

such as Snelling (1988b), Hoffman and Nehrkorn (1989) and chapter 5 of this

thesis, illustrating this point.

It has already been shown that the Legendre transforms account for the

major computational part of a single-level spectral model. Even with

multi-level forecast models they still account for a significant proportion. For

example, Dent (1988) reported a figure of 22% for the T106 spectral model of

ECMWF. Furthermore, the computation in the Legendre transforms varies as

the cube of the truncation and therefore represents the fastest growing

computational load.

The Legendre transform algorithms require a globally available array to

hold the spectral data. This has an effect on the algorithm when implemented

on a shared, hierarchical or distributed memory machine. It should be noted

that the spectral data are the only data in a spectral model that are required

to be globally available to all processors. The consequences of this are that

synchronization and communication between processors are necessary for

machines without a shared memory.

8.3.2. Algorithms

In this section, the algorithms used for the Legendre transforms are

reviewed. A multi-level model is assumed.

In order to use a high resolution with a limited memory, it is usually

necessary to design a spectral model such that only part of the data are held

in central storage. As the calculations in gridpoint and Fourier space are

independent of latitude, the usual approach is to scan through the latitudes,

storing gridpoint and Fourier data for one latitude in memory at a time. As

the summation for the direct Legendre transform is across latitudes, it implies

301

that each pass through the latitude loop adds a contribution to the spectral

data. This approach is used at ECMWF (Dent, 1988).

However, Hoffman and Nehrkorn (1989) suggested an alternative scanning

approach. They used latitude scanning for all gridpoint and Fourier space

calculations, but looped over the zonal wavenumber m for the Legendre

transforms and spectral space calculations. This hasa number of advantages

for a multiprocessing algorithm, which are discussed in the next section. A

disadvantage is the additional memory that the wavenumber scanning

approach requires. To store the Fourier coefficients of a variable for one

latitude and one level requires 2(m+1) words. In contrast, 3m+1 words would

be needed per zonal wavenumber.

The shape of the retained modes in a triangular truncation means that the

spectral coefficients are usually stored in one dimensional arrays. They can be

stored in a column-wise or diagonal-wise format, as depicted in Fig. 16. These

two formats result in two formulations of the Legendre transform algorithm,

register-to-memory and memory-to-memory approaches respectively. The

architecture of the target machine determines the best algorithm to use. That

is, the register-to-memory approach is best suited to a machine with vector

registers, such as the CRAY X-MP, whereas the memory-to-memory approach

is best suited to a computer like the ETA-10 where the pipelines are fed

directly from memory.

To illustrate the difference between the two approaches, consider the

inverse Legendre transform,

M

Fm(PZ) = L Fmn (Z)Pmn (1i)

nImI

where z represents any vertical coordinate. Assuming a column-wise storage

format, in FORTRAN this might be written as,

DC 100 J1, NLAT

DO 100 M1, (MT+1)

DC 100 NM, (MT+1)

DO 100 L1, NLEV2

100 	FM(L,M,J) = FM(L,M,J) + FMN(L,M,N) * PMN(M,N,J)

302

where NLAT is the number of latitudes, MT is the truncation wavenumber

(M=m+1) and NLEv2 is twice the number of levels. The real and imaginary

components account for this factor of 2. The vector length is therefore NLEV2

but could be made longer if all the variables were stored together. As the

Fourier coefficients depend only on m and not n, during the loop over N the

Fourier data vector FM, over NLEV2, is invariant and can remain in the vector

register whilst the sum over n is accumulated. Memory references are

therefore minimized. In this example, the spectral coefficients are stored

two-dimensionally for clarity.

Now suppose a diagonal-wise approach was used. The code becomes,

DO 100 J=1, NLAT

DO 100 N1, (MT+1)

DO 100 M=1, (MT-N+2)

DO 100 L=1, NLEV2

100 	FM(L,M,J) = FM(L,M,J) + FMN(L,M,M+N-1) * PMN(M,M+N-1,J)

The spectral coefficients are now accessed, in order, along diagonals. As the

loops over M and N have been interchanged, the vector FM holding the Fourier

coefficients over all levels and real and imaginary components has to be

continually updated from memory. In practice, the transforms would use the

symmetry property of the Legendre polynomials but the approach is the same.

The wavenumber scanning method, discussed previously, can be used with

the register-to-memory algorithm since the loops over latitude and zonal

wavenumber may be interchanged. However, this is not possible for the

memory-to-memory algorithm. The wavenumber scanning method might

therefore be better suited to computers with vector registers.

It is obviously important, when devising algorithms for a pipelined machine,

to try to achieve vectors which are as long as possible. The vector length in

the two cases above is relatively short, twice the number of levels, although

this is used to advantage in the register-to-memory algorithm. Current

forecast models typically have about 20 levels. The performance from a

vector of 40 elements can be estimated from the equation relating the

parameters, r,, and n. From Hackney (1988), the fraction r of the asymptotic

303

performance that would be achieved using a vector length n is given by,

= 1 / (1 + ni/n) 	 (8.3.1)

Hockney (1988) gives n+ as 60 	for the CRAY X-MP for the type of

calculation used in the inverse Legendre transform (known as the CYBER 205

triad), whilst Mozdzynski (1988) gives a figure of 53 for the ETA-10 (the

CRAY X-MP n should be regarded as approximate as it was measured for

memory-to-memory operations). Therefore, with a vector length of about 40,

only 40-45% of the asymptotic processing rate of the pipeline would be

achieved. If several variables, say 4, could be processed in one vector, about

70% of the maximum rate could be obtained. Snelling (personal

communication) increased the vector length by replicating the Legendre

polynomials over the levels so that the vector length was over all levels, real

and imaginary parts and the zonal wavenumber. However, when tried on the

ETA-10, the scatter operation required was not available in the hardware and

the cost of the additional code for this operation resulted in only minor

improvements in execution time.

The inverse Legendre transform can be written as a matrix times a vector

for each m and latitude. Optimized matrix algebra routines often exist in the

libraries provided with pipelined computers. The direct Legendre transform

can also be written as a matrix times vector for every m and n. Therefore this

approach could not be used with the latitude scanning model, only a

wavenumber scanning model or one in which all data could be held in

memory.

8.4. Parallel implementation of spectral models

Spectral models have so far been applied to pipelined machines with

shared or hierarchical memories and a modest number of processors (10 or

less). In this section, the techniques for applying spectral models to MIMD

shared and hierarchical memory machines are reviewed, with some comment

on implementing them on distributed memory machines.

304

8.4.1. Multiprocessing

For a computer with a small number of processors, the obvious way to

spread the workload across the processors is to assign a subset of the

latitudes to each processor for the latitude scanning approach, or a subset of

latitudes and wavenumbers for the latitude-wavenumber scanning approach.

This is efficient if the work per processor is the same. For a model with no

physical parametrizations, Hoffman and Nehrkorn (1989) found that load

balancing problems arose when the number of latitudes or wavenumbers was

not an exact multiple of the number of processors. For a model that includes

physical parametrizations, load imbalances also occur due to lack of

convective activity in the polar regions (Dent, 1988). In these cases, dynamic

scheduling improves the load balance.

An important difference between gridpoint and spectral models is that a

synchronization point is required every timestep in spectral models. This is

because a new step cannot commence until all contributions to the spectral

coefficients during the direct Legendre transform have been accumulated. For

a gridpoint model however, there is no such requirement. As pointed out by

White and Wiley (1988), sub-domains of the grid can be integrated forward in

time independently, although the lack of boundary information limits the

maximum difference in timesteps between two adjacent regions. The latitude

scanning approach requires a minimum of one synchronization, at the end of

the latitude loop. The latitude-waven umberscanning approach however

requires two synchronization points, one at the end of each loop. This need

not result in a worse performance if the processes are suitably scheduled

(Hoffman and Nehrkorn, 198) and has the advantage that spectral space

calculations can be multiprocessed with the transforms. For a latitude scanning

approach, spectral space calculations have to be performed on one processor,

or they can be microtasked or multitasked if the grain allows.

8.4.2. Data management and communication

The requirement that the spectral data are available to all processors is

easily satisfied by shared memory MIMD computers (sMIMD). The spectral

data are only read during the inverse Legendre transform so no problems

arise. However, as the direct Legendre transform updates the spectral data,

this forms a critical region if the latitude scanning approach is used. The

305

updating procedure must be protected to ensure that two or more processors

cannot update the same data at the same time. The other concern is that

results must be reproducible.

With the latitude scanning scheme, reproducibility can be ensured by using

signals to force processes to increment the spectral data in a set order. This

incurs an overhead because processes may not be at the point where they are

ready to receive the signal before it is sent. Dent (1988) reported that these

delays accounted for 1% of the total wall-clock execution time of the ECMWF

model. However, reproducibility is assured if the Legendre transforms are

multiprocessed over the zonal wavenumber m. This is because the

summations over total wavenumber and latitude in the inverse and direct

transforms respectively, are contained entirely within each process (Hoffman

and Nehrkorn, 1989).

When a hierarchical memory MIMD machine is used (hMIMD), the

appropriate technique depends on the size of the local memory attached to

each processor i.e. there may not be enough memory available to store all of

the spectral coefficients. Snelling (1988b). Hoffmann and Snelling (1988) and

Mozdzynski (1988) applied the Legendre transform algorithms to the ETA-10.

The ideal case is when there is sufficient local memory to hold a complete

copy of the spectral coefficients. The complexity of the multiprocessing

strategy is then contained in the method used to perform the associative

reduction of the data at each timestep. A sequential method would be where

the first process copies its spectral data (for the latitudes it processed) to

shared memory. All other processes then copy, update and copy the data

back to the shared memory in turn. If the spectral data are split into a

number of segments, the second process can read, update and write the first

segment whilst the first process writes the second segment in parallel and so

on. These two methods are illustrated in Fig. 41. Whilst the parallel method is

more efficient, increasing the number of segments improves the parallelism

but increases the overhead from the I/O operations. Mozdzynski (1988)

presents the. optimum number of segments for the ETA-10. In this approach,

each processor must read and write the entire spectral data once.

If the local memory is not sufficient to contain all the spectral data, it has

to be split into several parts. Each part is copied to local memory and

306

CPU 1 	CPU 2 	CPU 3 	CPU 4

0

TIME

Serial reduction of spectral data for the direct Legendre transform.

CPU 1 	CPU 2 	CPU 3 	CPU 4

0

Parallel reduction of spectral data.

Figure 41. Redrawn from Mozdzynski (1988).

307

updated in turn. A natural partitioning of the spectral data is into symmetric

and antisymmetric parts and by variables. If this does not reduce the memory

requirements enough, the spectral coefficients can be separated by zonal

wavenumber m. Hoffmann and Snelling (1988) describe the results of

simulating such algorithms, where the spectral coefficients are separated by

zonal wavenumber into 8 and 16 parts (for a T63 resolution), on a 4 processor

CRAY X-MP. They measured a factor of 2 reduction in the speedup obtained

for the 8 and 16 part algorithms over the case where all the spectral data

resides in memory, because of the additional costs involved.

A latitude-wavenumber scanning method can also be applied to a hMIMD

computer. Data movement is required at both the necessary synchronization

points in this method. After the latitude loop, the processors must gather the

wavenumbers at the other latitudes they require, whilst after the wavenumber

loop they gather the latitudes at the other zonal wavenumbers. The key

differences between the two scanning approaches, are that no spectral data

are transferred and the communication necessary is to exchange data and not

as part of the summation for the direct Legendre transform. All data transfers

to and from the shared memory can therefore proceed in parallel. Hoffman

and Nehrkorn (1989) use a set of shared, protected variables to indicate when

data are available to be copied to a processor's local memory. Although

transfer of data to and from shared memory is required at two distinct points

in the program, there are less data to be transferred at each point, given

enough processors. Suppose there are p processors and each processor is

assigned (3M+1)/2p latitudes and (M+1)/p zonal wavenumbers, where M is the

truncation wavenumber. At the end of the latitude loop, each processor has

to write its Fourier data to shared memory. This is (3M+1)(M+1)/p words per

variable per level. It must also read the Fourier data it needs for the

wavenumber scan, (3M-f 1)(M+1)(p-1)/p 2 words per variable per level. The

number of words, W, transferred per processor in the latitude-waveflumber

scanning approach at the end of each loop is thus.

W = (3M + 1)(M + 1)(2p - 1)/ p2 	 (8.4.1)

For a latitude scanning approach, each processor must read and write the

entire spectral data, 2(M+1)(M+2) words per level per variable. Equating the

two gives p=3. Therefore, when 3 or more processors are being used, less

words are transferred per processor using latitude-wavenumber scanning than

308

for latitude scanning.

An important consequence of looping over m for the spectral calculations,

is that each processor does not need to hold all the spectral data, only the

coefficients for the wavenumbers assigned to it. The space required

decreases with an increasing number of processors.

Static scheduling is advantageous for latitude-wavenumber scanning

because certain constant data and data at previous timelevels can be fixed to

a processor. With dynamic scheduling, these data, some of which are spectral,

must also be communicated to processors, increasing the amount of

communication (Hoffman and Nehrkorn, 1989). To overcome load balancing

problems, polar latitudes could be paired with equatorial latitudes and, for a

triangular truncation, low wavenumbers with high wavenurnbers, to give

processors a similar workload.

8.4.3. Processor arrays

The transputer array is an example of a distributed memory MIMD

computer (dMIMD). To obtain optimum performance from dMIMD

architectures, communication between processors must be kept to a minimum

and localized. In this respect, the latitude-wavenumber scanning scheme is

the only one suitable for dMIMD architectures. Coupled with a static

scheduling scheme, communication (between processors now rather than to

and from a shared memory) could be kept to a minimum. As Eq.(8.4.1) varies

as lip, communication requirements per processor scale well with the number

of processors.

An important question to address in implementing spectral models on

dMIMD computers is the optimum topology. It may be the case that different

topologies give the best performance for different operations. For example,

gridpoint calculations are independent of their neighbours so the topology is

irrelevant. However, some calculations couple the vertical levels so each

processor should process all levels for one gridpoint. This is an important

difference between gridpoint and spectral models on dMIMD machines since

the topology for a gridpoint model is determined by the nearest neighbour

interactions from the finite difference equations (Tett et al. 1988). The

topology for a spectral model would therefore be determined by the need for

309

efficient FFT and Legendre transform algorithms.

Hoffman and Nehrkorn (1989) suggested a ring of hypercubes as a

topology for spectral models. Along each latitude, the gridpoints are

connected as a hypercube, allowing the FFTs on each latitude to be conducted

efficiently. Assuming a static scheduling scheme, the Fourier coefficients at the

end of the latitude and wavenumber loops would be sent around the ring.

'Although the total amount of data travelling around the ring is more than if

the spectral coefficients were sent, each processor only writes and reads a

small fraction rather than the whole spectral array. Furthermore, a static

scheduling scheme would mean each processor could direct its data to those

processors that require it. This would be impossible with a dynamic

scheduling scheme.

A dMIMD implementation would suffer from some of the same

inefficiencies as the DAP implementation. That is, as not all of the Fourier

wavenumbers are retained, some processors would be left idle. However, it

might be possible to keep these processors busy by assigning several levels

from a neighbouring process. Hoffman and Nehrkorn (1989) suggest an

alternative method where 2 or more gridpoints or wavenumbers are assigned

to a processor. This is useful because it reduces the communications required.

The ideal case is when each processor contains all the gridpoints for one

latitude so that the FFT is performed using a sequential algorithm and only the

communication of Fourier data at the end of the loops remains.

8.5. The ECMWF MIMD spectral model

In this section, the ECMWF forecast model is used as an example of the

development of a MIMD model on a sMIMD computer. The contribution, by

the author, to the development of an enhanced multitasking strategy is also

described. D.Dent and D.Snelling were supervisors for this work.

The development of the multiprocessing aspects of the ECMWF model is

documented by Gibson (1985), Dent (1988) and Dent and O'Neill (1988). It

currently runs on the CRAY X-MP/48 at ECMWF.

310

8.5.1. Overview

The first version of the spectral forecast model had a resolution of T63 and

16 levels and was run on a CRAY-1A. In 1985, a CRAY X-MP/22 was

purchased and the model muititasked to aHow a T106 resolution. Then i-

1986, with the arrival of the CRAY X-MP/48 at ECMWF, further development

allowed the model to utilize 4 processors and the vertical resolution was

increased to 19 levels.

8.5.1.1. Structure

The ECMWF model uses the latitude scanning approach described

previously. To eliminate the need to store spectral coefficients at two

time-levels, the model is organized into two latitude scans, as illustrated in

Fig. 42. The model resolution used for forecasting requires gridpoint and

Fourier data to be held on backing store in workfiles. During the latitude

loops, these data are brought into memory one latitude at a time.

At the start of scan 1, the variables are in Fourier representation. The work

in scan 1 consists of; input of Fourier coefficients, inverse FFTs, gridpoint

space calculations, direct FFT5 and direct Legendre transforms. There are also

some computations performed in Fourier space, notaoly concerning the

semi-implicit time scheme. The time-stepping is completed in spectral space

and diffusion applied. Scan 2 consists of the inverse Legendre transforms and

the output of the Fourier coefficients to the work files, ready for the start of

scan 1 at the next timestep.

8.5.1.2. Data and I/O

The model uses workfiles for the Fourier data, Legendre coefficients and

the gridpoint data. At the start of scan 1, a northern hemisphere and southern

hemisphere latitude row of Fourier coefficients are read in. These are

necessary to construct the symmetric and antisymmetric coefficients for the

Legendre transforms. This implies that the length of the latitude loop is over

half the model latitudes and each pass processes a northern row and its

corresponding southern row.

Before the calculations in gridpoint space, gridpoint data are read from the

gridpoint workfiles. After the gridpoint calculations on each latitude row are

311

start

loop
SCAN 1 	 over

rows
loop
over
time
steps 	

loop
over
rows

finish

Figure 42. Scan structure of the ECMWF spectral model. From Dent (1988).

312

completed, the gridpoint data are written back to these files.

The latitude loop in scan 2 is also over half the model latitudes. At the

start of each pass, the required Legendre polynomials are read from workfiles.

At the end, the Fourier data for the northern and southern rows are output to

the Fourier workfiles.

All these workfiles are normally stored in the Solid-state Storage Device

(SSD). As the transfer rate between SSD and main memory is fast, all I/O is

performed synchronously i.e. the model waits until the I/O has completed.

Dent (1988) reported that the penalty for synchronous I/O is about 3% of the

execution time. All I/O takes place to and from buffers declared within the

model. If the SSD is not used, the model stores the workfiles on disk with all

I/O double buffered. This means that twice as many I/O buffers are declared

in the model and all I/O is asynchronous. That is, whilst computation is

proceeding on the data in one buffer, the data for the next latitude is being

read into (or written from) the other buffer. Using the SSD therefore reduces

memory requirements and simplifies the code.

8.5.2. Static scheduling schemes

8.5.2.1. Original approach

As the model was first multitasked on the CRAY X-MP/22, memory use

was the dominant concern. A multitasking strategy was therefore chosen that

provided effic.ent computation with minimum memory requirement. The

approach chosen split scan 1 into two pairs of processes after the Fourier data

had been read in. The first pair of processes includes all the work between

the Fourier space calculations inclusive. One process uses the northern

hemisphere row whilst the other process uses the corresponding southern

hemisphere row. The second process pair compute the direct Legendre

transform. The Legendre transform separates naturally into a process to

update the symmetric components of the spectral data and another to update

the antisymmetric components. Since the processes therefore update

separate halves of the spectral data, there is no danger of writing to the same

memory simultaneously and hence no critical region. However, there must be

a synchronization point between the pairs of processes as both northern and

southern rows contribute to the symmetric and antisymmetric Fourier

313

coefficients.

In scan 2, another pair of processes compute the inverse Legendre

transform for the north and south latitude rows of Fourier coefficients. The

diffusion calculations between the two scans have a sufficiently large grain

that they can also be multitasked. This multitasking structure for two

processors is illustrated in Fig. 43.

This scheme can be extended to any even number of processors by

replicating the multitasking strategy described above. Each pair of processors

is given a pair of north and south latitudes to process. The Fourier

coefficients for each pair of processors are read in by the odd numbered

processors (starting from 1) before the process to compute the southern row

is created. A static scheduling scheme is used where the rows are assigned

to processors at compile time rather than run time. This multitasking

procedure is illustrated schematically in Fig. 44. Scan 2 can be multitasked

over 4 or more processors in the same way.

However, with 4 or more processors, the updating of the spectral

coefficients during the direct Legendre transform becomes a critical region as

there are now two processors trying to update the symmetric and

antisymmetric parts. The ECMWF model uses two mechanisms to prevent this

happening. The first protects the critical region of code using CRAY LOCKS. A

process that enters the critical region sets the LOCK variable and unsets it

when completed. Any process that finds the LOCK set when it reaches the

critical region must wait until it is released. Unfortunately, with 4 or more

processors the order in which the contributions for symmetric and

antisymmetric parts are added to the spectral data is indeterminate. The

second method of protecting this critical region is through the use of CRAY

EVENTS. This facility is used to control the order of processors incrementing

the spectral data to ensure reproducibility.

Whilst each process must be synchronized in every pass of the latitude

loop, the process pair for a northern and southern row contain a latitude loop

and do not need to be synchronized with other process pairs until they have

finished all their rows (see Fig. 44). However, although the amount of work in

the dynamics part of the model is the same for each latitude, this is not true

in the physical parametrization part due to the variation in convective activity.

314

Figure 43. Original multitasking structure of the ECMWF model using 2 processors.

From Dent (1988).

Loop over rows

North south pair
for process I

North south pair
for process 2

Figure 44. Schematic illustration of the multitasking strategy for scan 1 of the

ECMWF model, using 4 processors. From Dent (1988).

315

The graph in Fig. 45 shows a typical variation in the time for process 1 and

clearly shows the effect of the decreasing occurrence of convection moving

from the tropics to polar regions. The use of EVENTS to ensure reproducibility

and other LOCKS in the code add to the imbalance between the workload of

each processor. Fig. 46 shows how the execution time is broken down. The

out-of-balance percentage is due to the variation in. time resulting from the

convection parametrization. The multitasking overheads (MT overheads) are

due to the cost of creation and synchronization of processes and the use of

LOCKS.

8.5.2.2. Enhanced approach

In order to reduce the amount of wasted CPU time indicated in Fig. 46, the

static scheduling strategy was enhanced. Using the extra memory available on

the CRAY X-MP/48 it was possible to implement a different multitasking

strategy which retained the pairing of north and south rows but computed

them sequentially (north followed by south) instead of in parallel as before. In

this scheme, each process does the same operations but on different latitude

pairs, which allows the model to run on a computer with N processors rather

than 2N processors.

Twice as much memory is required in this scheme to store the Fourier

coefficients, since every process now reads a pair of Fourier latitudes. The

main advantage however, is that the delays caused by synchronizing process 1

in every latitude loop pass have been removed. Also, as no processes are

created during the latitude loop the overhead is reduced.

The only synchronization point now required is after the processes have

completed all their latitudes. Imbalances from convection still arise however.

Scan 2 remains unchanged. This enhanced scheme was implemented by David

Snelling as a model option.

8.5.3. Dynamic scheduling

In order to reduce the imbalance in the workload between the processes, a

dynamic scheduling approach was implemented, in which the latitude row

pairs are allocated to the processes at run time. This technique uses a counter

which each process accesses and increments to determine which row pair to

use next. Processes working on polar latitudes will access this counter more

316

MS
110

105

100

95

90

Multi-tasked
88.0%

le-tasked
2.0%

IT overheads
.0%

Reproducebility
1.0%

Out of balance
5.0%

-00 	 —.5 U 	0 	30 	60 	90
latitude

Figure 45. Graph showing the measured time of process 1 against latitude for a

timestep from a forecast model run. From Dent (1988).

Figure 46. The multitasking efficiency of the ECMWF model using. the static
multitasking scheme. From Dent (1988).

317

often for work. For this scheme to be effective, the variation in the grain size

must be significant compared to the grain size itself. Although an additional

LOCK is required to protect the use of the latitude counter, the time spent in

this section of code is negligible. Whilst the updating of the counter must

obviously be protected from simultaneous execution by processes, reading the

counter is also a critical region of code, otherwise several processes may

begin using the same latitude. Identifying critical regions of code which do

not involve writing to shared data can be difficult and time consuming.

The dynamic scheduling approach was implemented, as a model option, to

both the original multitasking strategy (north and south rows parallel) and the

enhanced strategy (north and south rows sequential). All the work was done

by this author with assistance on certain details by Messrs. Dent and Snelling.

Changes to the control flow of scans 1 and 2 (ignoring the I/O aspect of the

model for now) were straightforward and mainly involved adding code to

implement the latitude counter. The dynamic scheduling strategy is most

effective when used with the north-south sequential multitasking scheme. The

combined scheme became known as the DSC scheme (for dynamic

scheduling). Fig. 47 illustrates the control flow for scan 1 using the DSC

scheme and should be compared to Fig. 44.

The inefficiencies introduced by enforcing reproducibility become larger

with the north-south sequential approach. This is because, as each processor

now updates both symmetric and antisymmetric parts of the spectral data,

only one processor at a time can be executing the direct Legendre transform

compared to two in the original scheme. The wasted CPU time can be

minimized by dividing the spectral array into sections so that waiting

processes can commence as soon as the active process finishes updating

each portion. More recently, Dent and O'Neill (1988) have successfully used

microtasking in the direct Legendre transform to speed the work at loop level

for one process over the idle processors.

The performance of the DSC model is presented by Dent (1988) and

reproduced in Fig. 48. The out-of-balance overhead has been reduced from

5% to 1% and the multitasking overhead to 3%. This produces an increase in

the portion of time spent multitasking to 92%. The multitasking speedup

(defined as the ratio of the wall-clock time on one processor to the time on 4

processors) of the original static scheduling strategy was 3.6. With the DSC

318

;ingle—tasked
2.0%

multi—tasked
92.0%

out of balance
1.07.

reproducability
2.07.

MT overheads
3.07.

Loop over rows

Get next row number

North-south pair
for process 1

North-south pair
for process 2

Figure 47. Dynamic multitasking strategy for scan using the north-south sequential

approach. From Dent (1988).

Figure 48. Multitasking efficiency for the dynamic scheduling north-south sequential

(DSC) multitasking strategy. From Dent (1988).

319

strategy, the speedup increased to 3.7.

In retrospect, the imbalances caused by convection could be reduced by a

careful ordering of latitudes. Following analysis of process 1 times, such as

shown in Fig. 45, throughout the seasons, latitudes could be assigned to

processors (in a list) in such a way as to give a better balance of the

workload. Whilst this method does not have the flexibility of dynamic

scheduling, it would greatly simplify the changes required to the I/O structure

and control routines of the model.

8.5.4. Dynamic I/O scheme

In the I/O routines for the original multitasking scheme the I/O buffers

were assigned to particular rows. The routines were passed the row number

to be read in and if results needed to be written, calculated the row number

waiting in the buffer. However, with a dynamic scheduling scheme this is no

longer possible. First, the previous row processed, waiting to be written out,

may have no relationship to the row the processor is about to use. Second,

the assignment of a buffer and a subset of rows to a processor is no longer

valid since different processors might be given rows that would involve the

use of the same buffer. It became necessary therefore to completely rewrite

the I/O code of the model and design a dynamic I/O system which would

allocate rows to buffers when they became free. This new I/O system was

designed and implemented by the author. A brief description of the dynamic

I/O system is given by Dent (1988). A more detailed description of the design

and implementation of the system is given by Carver (1986).

8.5.4.1. Requirements

The new I/O system had to support the existing model options and those

introduced by the new multitasking schemes. Specifically, the code had to

support single and multitasking, static and dynamic scheduling, north-south

parallel and sequential multitasking, single buffering (SSD workfiles) and double

buffering (disk workfiles). Other existing options in the original I/O code also

had to be supported. These are detailed in Carver (1986).

As the code had to be completely rewritten, at the suggestion of David

Dent, the opportunity was taken to introduce new model options and take

advantage of new operating system facilities. An additional requirement of the

320

new I/O system was for latitudes to be retained in memory until all processors

indicated they were no longer needed. This was to allow parametrization

schemes to be developed that could access gridpoints on neighbouring

latitudes, something not possible with the original code.

At the time of the design of the new system, a new version of the CRAY

operating system (COS 1.15) was due for release which would allow

asynchronous queued I/O (ASIO). This would achieve savings by queuing

transfer requests and avoid operating system overheads for each individual

request. ASIO is particularly attractive for random I/O requests to SSD when

several requests may be outstanding at any one time. A further design aim

was therefore to make best use of this facility, assuming its existence. The

results presented in Fig. 48 had to simulate the ASIO facility using existing I/O

routines as the new operating system was not available at that time.

8.5.4.2. Design and implementation

To allow all the options described above to be supported, a sophisticated

and flexible design was required. The dynamic allocation of buffers to rows

implied that a method of flagging buffers no longer needed had to be

developed. This was done by providing each buffer with a counter for each

process, that was incremented by that process when it finished with its row.

Free buffers were detected by summing these counters and comparing the

result with the known total number of times each latitude was required. Each

process had a separate counter to avoid the need for a LOCK.

To use the ASIO facility as efficiently as possible the I/O queue had to be

prevented from emptying. Given that finished buffers could be detected, it

was decided to design the I/O system to 'lookahead' and start any read

transfers that had yet to be requested by processes. A set of rules was

therefore developed to decide the next row to be assigned to a free buffer.

These rules had to support the functional requirements described in the

previous section and are described in detail by Carver (1986).

Although the row required by a process was passed to the I/O routines, it

was realized that the lookahead rules developed also applied to this row so

that all free buffers could be treated using the same logic, simplifying the

code. It was impossible to tell the order in which the rows for the free

321

buffers would be requested by other processes but the transfer request for

the calling process was always initiated first.

As the master I/O routines were called from within the multitasked code, a

LOCK was used to ensure only one process at a time executed these routines.

However, this did not cause much inefficiency since the executing process

detected the free buffers of the waiting processes and queued their transfer

requests. The processes delayed by the LOCK therefore normally found no

work to do when it was released, except wait for completion of their I/O which

was done outside the LOCK.

As the lookahead rules anticipated the next rows required by the

processes, double buffering was achieved simply by doubling the number of

available buffers (although the lookahead rules change if the row pairs are

processed sequentially). The provision of additional latitude rows was

achieved in the same way, although the number of buffers required varied. The

minimum number of gridpoint buffers applied when processors were working

on consecutive rows. The additional buffers are required at the ends of the

ranges of northern and southern rows. On the other hand, if the latitudes the

processes were using were well separated, each process required additional

buffers for the latitudes north and south of its row. This is the maximum

number of buffers required.

When dynamic scheduling is used and a number of buffers less than the

maximum is provided, it is possible that, if the processes separate sufficiently,

one or more rows required by the calling process are not yet available. In this

situation it must wait for the other processes to catch up sufficiently, so that

they will free buffers and start the I/O to read the rows required by the

delayed process into these buffers. There is thus a trade-off between the

number of buffers that can be provided and the efficiency of the dynamic

scheduling. If the minimum number is provided and the I/O single buffered,

the dynamic scheduling will be constrained to operate in a static scheduling

manner. If double buffering is used, the extra buffers will be used to satisfy

requests for additional rows instead, so that true double buffering will fail,

although this will just introduce delays in waiting for some I/O requests to

complete.

The dynamic I/O system is therefore very flexible. The I/O system also

322

functions correctly when the number of buffers provided is not an integer

multiple of the number of processes, so that as much of the available memory

as possible can be used.

8.6. The Meteorological Office MIMD finite difference model

The Meteorological Office recently purchased a 4 processor ETA-10 to

replace their single processor CYBER-205. At the time of writing, plans to

adapt the Meteorological Office finite difference forecast model for

multiprocessing were well advanced (Mozdzynski, 1988; Dickinson, personal

communication). These plans are briefly described here to contrast the

multitasking strategy of the spectral model at ECMWF.

The basic multitasking approach is to divide the model latitudes into 4

sections. Each section overlaps adjoining sections by several latitudes. This

has to be done because 3 adjustment steps for the gravity wave terms are

made each timestep (Gadd, 1985), resulting in invalid values for the boundary

latitudes. The correct boundary values are then read at the start of the new

timestep from the appropriate adjoining process. In this static scheduling

approach, a barrier is used to synchronize all processors to ensure they have

all written their edge data to the shared memory. Thus the data transfers for

each process are a read and write of the boundary latitudes, compared to the

ECMWF spectral model in which the entire spectral data is transferred.

Load imbalances due to convection still arise. However, the Fourier

filtering that takes place on polar latitudes acts to even the workload. It is

also straightforward to alter the number of latitudes in each section to provide

a better balance of the workload based on an analysis of the average time

spent processing each latitude.

The I/O in this static scheduled scheme is synchronous. That is, a

processor writes its boundary data after it has finished processing its latitudes.

Also computation cannot begin until boundary data have been read in. This

overhead can be avoided by using a dynamic multitasking scheme

(Mozdzynski, 1988). The dynamic scheme works by partitioning the latitudes

into smaller segments so that each processor will process several segments.

The number of segments each processor is given depends on the length of

time spent processing the segments. The I/O overhead is minimized by

323

allowing the data transfers to be asynchronous. Whilst each processor is

computing a segment, the next segment for processing can be read in at the

same time as the previous segment is written out. There is clearly much

more data transferred using this approach as all the latitudes are read once

and written once to shared memory per timestep. However, by assigning

groups of segments to processors (static scheduling), the total amount of data

transferred reduces to boundary data only, as before, but the I/O remains

asynchronous.

324

CHAPTER 9

CONCLUSIONS

This thesis has presented a study of the application of meteorological

modelling to the ICL DAP and other parallel computers. Chapter 2 reviewed

some current and future parallel computers, including the DAP. Parallel

programming languages and the facilities they offer were also described.

Software tools to assist in the development of models on parallel computers

will be invaluable since most meteorological models are still written in serial

FORTRAN. FORTRAN 8X will undoubtedly be a step in the right direction with

its support for SIMD parallelism, making SIMD architectures such as the DAP

potentially available to more users. Chapter 2 also reviewed the main issues in

programming parallel computers and the differences between SIMD and MIMD

programming, illustrating the added complexities of the latter.

Chapter 3 reviewed the meteorological modelling techniques that were

applied to the DAP in later chapters. The gridpoint, spectral and finite element

methods were reviewed and shown to contrast in the issues that each

presents for implementation on the DAP.

In chapter 4, related research work by other authors was reviewed. They

concentrated mainly on gridpoint models (e.g. Hunt, 1974b), although

Fishbourne (1980) also studied the implementation of a spectral model on the

DAP. For global gridpoint models, the choice of grid and how it is mapped to

the DAP is very important. Hunt (1974b) applied the Meteorological Office's

global forecast model at that time to the DAP. The model grid had a varying

number of longitude points on each latitude. Mapping the grid to the PEs was

not straightforward, the finite difference calculations and hence the DAP

FORTRAN were more complicated than with the latitude-longitude grid in the

gridpoint model of Fishbourne (1980). However, Fishbourne (1980) found that

the Fourier filtering required at polar latitudes for a latitude-longitude grid was

costly. The studies described in chapter 4 all showed the gridpoint method to

be well suited to the DAP. The local nature of the finite difference calculations

resulted in models that used the DAP array efficiently and with low routing

overheads.

In contrast, the T42 spectral model of Fishbourne (1980), also described in

chapter 4, was seen to be inefficient on the DAP. The CPU time was 10 times

325

that of an equivalent gridpoint model. As the Legendre transforms accounted

for 83% of the execution time, substantial improvements in the CPU time of

this model required significantly improved Legendre transform algorithms.

In chapter 5, new parallel Legendre transform algorithms for the DAP were

developed. Different storage arrangements of the Legendre polynomials and

their derivatives were considered and it was found that the best algorithms

resulted from data mappings that made the most efficient use of processor

memory, but did not involve packing the data.

Legendre transform algorithms that did not use the symmetry property of

the Legendre polynomials were developed first. Compared to the algorithms

used by Fishbourne (1980), the inverse Legendre transform was faster by a

factor of 1.9, the direct transform was faster by a factor of 3.3. The inverse

transform has a number of inefficiencies related to the triangular nature of the

spectral truncation. It was pointed out that improvements can be made by

programming the algorithm in the DAP assembly language to take advantage

of the idle processors. In comparison, the direct transform made efficient use

of the DAP array by computing the two products in the transform concurrently.

This was possible because of the efficient way in which the Legendre

polynomials and their derivatives were stored in the same array.

Toe algorithms and data mappings were then altered to enable the use of

the symmetry property of the Legendre polynomials. This resulted in a

speedup of 1.6 for the inverse transform and 1.4 for the direct transform over

the original nonsymmetric algorithms, as well as halving the storage

requirements of the Legendre data. Again, programming the symmetric inverse

transform in the DAP assembly language would improve the algorithm.

The relationships between the spectral and Legendre data mappings and

the efficiency of the algorithms were pointed out. That is, at each stage of

the algorithm, certain restrictions on the data mapping applied if that stage

was to be efficient. The mappings of the real spectral coefficients and the

Legendre data were shown to be important to the execution time of the

routines, whereas the imaginary coefficients' mapping had a negligible effect.

The development of these algorithms illustrates the strong relationship

between the storage mapping and the efficiency of the algorithm for the DAP.

326

Chapter 6 described a T42 spectral shallow-water model implemented on

the DAP, using the Legendre transform algorithms developed in chapter 5. The

CPU time per step of this model was a factor of 2.3 less than that of the T42

spectrall shallow-water mode! of Fishbourne (1980). This was mainly due to

the superior Legendre transform algorithms but the FFTs of the model were

also faster. This makes the spectral method appear to be more suited to the

DAP than Fishbourne's results implied.

The lack of a fast I/O facility and the limited amount of processor memory

were put forward as the main reasons for the DAPs at Edinburgh University

being generally unsuitable for multi-level and high resolution spectral models,

even though the results of chapter 6 showed that the DAP is potentially suited

to high resolution models. The latest generation DAP from AMT has both

these requirements.

In chapter 7, a finite element model was implemented on the DAP to study

the suitability of this technique, in contrast with the gridpoint and spectral

methods. The finite element model was shown to be efficient in its use of

processors and storage, more so than the spectral model. On average, the

finite element model kept 97% of the processors busy doing useful work

compared to 64% for the spectral model. Therefore its performance rate of

13.lMflops was more than the 8.7Mflops for the spectral model. The gridpoint

shallow-water models of Fishbourne (1980) had a performance rate of

1 OMfiops.

Parallel algorithms to construct the matrices arising from the finite element

approximations were derived. The most efficient method of solving the

system of simultaneous equations was also studied. The hybrid Jacobi

iterative routine in the DAP subroutine library was found to give the best

performance, although a preconditioned conjugate gradient algorithm was

developed that took almost the same CPU time. The finite element model was

designed so that tridiagonal matrix equations resulted. This was important as

it allowed the use of existing, efficient algorithms to solve them. Based on the

efficient use of resources, it was concluded that the finite element method is

better suited to the DAP than the spectral method, although each is applied to

different types of meteorological modelling problems.

A serious problem with DAP FORTRAN is that it is impossible to program a

327

model which can be run at different resolutions, because of the constraint on

the array size. As AMT have recently announced their intention to support

FORTRAN 8X (chapter 2) this objection to the use of the DAP for

meteorological modelling is removed. However, the size of the DAP processor

array will still influence the possible efficient resolutions as discussed in

chapters 6 and 7.

The DAP exploited the geometric parallelism in the models. That is, each

processor represented a gridpoint, spectral coefficient or finite element node.

The size of the processor array therefore had a strong influence on the

domain size of the models implemented on the DAP. However, the parallelism

available in meteorological models in a geometric sense is generally more

than can be . exploited by the hardware, especially for multi-level models.

There is also further SIMD parallelism available from identical calculations

between variables. This leads to the question of whether meteorological

modelling is better suited to SIMD or MIMD architectures, as much SIMD

parallelism is available in the models and MIMD programming is more

complex. Chapter 8 reviewed the application of meteorological models to

other parallel computers and discussed why the parametrization of physical

processes in multi-level models requires MIMD architectures for optimum

efficiency. However, the work undertaken with the ECMWF spectral model

illustrates the degree of sophistication required in programming MIMD

computers to obtain this efficiency. The effect of conditional operations in the

parametrizations on the performance of a model on the DAP depends on the

fraction of time spent processing with a reduced number of processors, as

discussed in chapter 2.

It is easier to conclude the architectures not suited to meteorological

modelling rather than those that are. Communication and synchronization

requirements of the models lead to the conclusion that their performance on

distributed memory SIMD or MIMD computers, whose processing speed is

unmatched by interprocessor communication speed, is poor relative to the

peak performance of the computer. The same might be true for hierarchical

memory machines where communication takes place via a shared memory.

On the DAP, arithmetic is slower than the transfer of data between processors.

This is not to say that modelling cannot be done on these machines, but for a

time critical program such as a forecast model, a machine with a

328

proportionally greater processing speed (or number of processors) would be

required. A heterogeneous architecture consisting of SIMD processors and

MIMD processors might be more suitable. The dynamics calculations in the

models would be done on the SIMD part whilst the physics would be done on

the MIMD part. As far as the DAP is concerned, for the latest generation from

AMT and taking into account future compilers, the degree of SIMD parallelism

available in meteorological models means that DAP is a suitable computer

architecture. This thesis has shown that the gridpoint and finite element

methods are both able to make efficient use of the DAP. Whilst the spectral

method is less suited by comparison, its performance is not such as to

dismiss the DAP architecture, bearing in mind that spectral models warrant

detailed study when implemented on other parallel computers, as described in

chapter 8.

There are several ways in which this research could continue. First, the

inverse Legendre transform should be written in the DAP assembly language

to determine the performance benefits. The next stage would be the

development of a multi-level spectral model. This would allow the effect of

the conditional operations in the physical parametrizations to be properly

assessed. The additional levels would also allow the study of whether the

additional parallelism could be exploited by the Legendre transform algorithms

in the spectral model. Another research area would be the use of block

floating point or reduced precision arithmetic in gridpoint, spectral and finite

element meteorological models. Finally, in chapter 8 it was suggested that the

spectral transforms (FFT5 and Legendre transforms) could be used as a

benchmark for spectral models. For a finite element model, the solution of

tridiagonal simultaneous equations would perhaps be a suitable benchmark. It

would be worthwhile implementing these benchmarks on different parallel

computers to enable further conclusions to be made about the suitability of

different parallel architectures to meteorological modelling.

329

Acknowledgements

First and foremost, I would like to express my thanks to my supervisor, Dr.

Charles Duncan, for his constant encouragement, enthusiasm and constructive

advice of this work and for proofreading this thesis. l would a!so like to thank

the other members of the Department of Meteorology at Edinburgh University

for making my stay there so enjoyable.

Thanks are also due to Charles Duncan, Edinburgh University, SERC and

ECMWF for allowing me to spend 3 months working at ECMWF. At ECMWF I

would like to thank David Dent and David Snelling (now at Leicester University)

for their help and useful conversations.

Financial support from SERC and GEC is acknowledged.

Last, but by no means least, I would like to express my deepest thanks to

my wife for her constant support and encouragement whilst this thesis was

being prepared. I would also like to thank her for proofreading this thesis and

her assistance in typing the text and preparing some of the figures and tables.

330

Appendix A. Code examples from the spectral model

Appendix AJ. Inverse Legendre transform algorithms

This section presents the DAP FORTRAN used for estimating the execution

times of the inverse Legendre transform algorithms, derived from the Legendre

polynomial mappings. Tl3 generic function ROUTE in the code below

represents any of the suitable routing operations discussed in chapter 5. All

variables are assumed to be set to zero before use.

Latitude vertical:

ZREAL(REAL_MASK) = FMN(,)
ZIMAG(REAL_MASK) = ROUTE(FMN(,))

DO 100 J = 1, 64
FMR(,J) = StJMC(ZREAL * p4r(,,J))

FMI(,J) = StJMC(ZIMAG * P(11 J))

100 CONTINUE

m vertical

ZREAL(REAL_MASK) = FMN(,)
ZIMAG(REAL_MASK) = ROUTE(FMN(,))

DO 100 M = 1, 43
FMR(,M) = StJMC(MATR(ZREAL(,M)) * PMN(,,M))
FMI(,M) = SUMC(MATR(ZIMAG(,M)) * PMN(,,M))

100 CONTINUE

n vertical:

ZREAL(REAL_MASK) = FMN(,)
ZIMAG(REAL_MASK) = ROUTE(FMN(,))

DO 100 N = 1, 43
FMR(,) = FMR(,) + MATC(ZREAL(,N)) * PMN(,,N)
FMI(,) = FMI(,) + MATC(ZIMAG(,N)) * PMN(,,N)

100 CONTINUE

331

Appendix All. Direct Legendre transform algorithms

This section presents the DAP FORTRAN used for estimating the execution

times of the direct Legendre transform algorithms derived in chapter 5.

Latitude vertical:

AMR(,) = AMR(,)
ANI(,) = AMI(,)
BMR(,) = BMR(,)
BMI(,) = BMI(,)
DO 100 3 = 1, 6

F(PMN_MASK)
F(DQ_MASK)
FMNR(,)
F(PMN_MASK)
F(DQ_MASK)
FMNI (,)

100 CONTINUE
FMN (REAL_MASK)
FMN(IMAG_MASK)

• MATR(HJ()
• MATR(HJ())
• MATR(HJ()
• MATR(HJ())

4
= MATC(ANI(,J)
= ROUTE(MATC(BMR(,J)
= FMNR(,) + F(,) * PMN(,,J)
= MATC(AMR(,,J)
= ROUTE(MATC(BMI(,J)
= FMNI(,) + F(,) * p(,,J)

ROUTE(FMNR) + FMNR
= ROUTE(FMNI) - FMNI

m vertical:

MP1 = 44
A2'1R(,) = AMR(,)
AMI(,) = AMI(,)
BMR(,) = BMR(,)
BMI(,) = BMI(,)
DO 100 M = 1, 4

F(PMN_MASK)
F(DQ_MASK)
FMNR(M,)
F(PMN_MASK)
F(DQ_MASK)
FMNI(M,

100 CONTINUE
FMN(REAL_MASK)
FMN (IMAG_MASK)

• MATR(HJ()
• MATR(HJ())
• MATR(HJ()
• MATR(HJ())

3
= MATR(AMI(M,))
= ROUTE(MATR(BMR(MP1-M.)
= SUMC(F(,) * PMN(,,M)
= MATR(A1R(M,)
= ROUTE(MATR(BMI(MP1-M,))
= SUMC(F(,) * PMN(,,M)

= ROUTE(FMNR) + FMNR
= ROUTE(F4NI) - FMNI

n vertical:

AMR(,) = AMR(,) * MATR(HJ())
AMI(,) = 	Al'41(,) * MATR(HJ())
BMR(,) = BMR(,) * MATR(HJ())
BMI(.) = BMI(,) * MATR(HJ())

332

FR(,) 	= A141(,)
FR(DL_MASK) = ROUTE(BMR(,))
FI(,) = AMR(,)
FI(DL_MASK) = ROUTE(BMI(,))
DC 100 N = 1, 43

FMNR(,N) = StJMC(FR(,) * PMN(,,N))
FMNI(,N) = SUMC(FI(,) * P4(,,N)
IF (N.NE.21) GO TO 5

FR(DL1_MASK) = AMI(,)
FI(DL1_MASK) = AMR(,)

5 	IF (N.NE.42) GO TO 100
FR(43,) = AMI(43,)
FI(43,) = AMR(43,)

100 CONTINUE
FMN (REAL MASK) = ROUTE(FMNR (,)) + FMNR (,)
FMN (IMAG_MASK) = ROUTE(FMNI (..)) - FMNI (,)

Appendix Aill. Symmetric Legendre transform algorithms

This section presents the DAP FORTRAN for the inverse and direct

Legendre transforms using the symmetry property of the Legendre

polynomials. This was used for estimating and measuring the execution time

of the algorithms.

Inverse Legendre transform:

AMWORK1 (REAL_MASK) = AMFMN (,)
AMWORK2(REAL_MASK) = REVC(REVR(AMFMN(,)))

DO 100 N = 1, 23
N2 = 2 * N
N2P1 = N2 + 1
AM(,) 	 = MATC(AMWORK1(,N2))
AN(ALTC(32)) = MATC(AMWORK1(,N2P1))
AMFM(,,1) 	= AMFM(,,1) + AM(,) * PMN(,,N)

AM(,) 	 = MATC(AMWORK2(,N2))
AM(ALTC(32)) = MATC(AMWORK2(,N2P1))
AMFM(,,2) 	= AMFM(,,2) + A14(,) * PMN(,,N)

100 CONTINUE
AN(,) 	 = REVC(AMFM(,,1))
AM(ALTC (32)) = -AM(,)
AMFM (, , 1) 	= AMFM (, , 1) + AM(,)
AMFM(ALTC(32).AND..NOT.ALTR(1),1) = -AMFM(,,1)
AM(,) 	 = REVC(ANFM(,,2))
AM(ALTC(32)) = -AM(,)
AMFM(,,2) 	= AMFM(,,2) + A14(,)
AMFI4(ALTC(32).AND..NOT.ALTR(1),2) = -AMFM(,,2)

333

Direct Legendre transform:

AM(,) 	 = REM AMBM(,,1))
AMBM(LMEAST, 1) = -AMBM(,)
AM(LMWEST) 	= -AM(,)
AMBM(11 1) 	= AM(,) + ANBM(,,1)

AM(,) 	 = REM AMBM(,,2))
AMBM(LMEAST, 2) = •-AMBM(, , 2)
AM(LMWEST) 	= -AM(,)
AMBM(,,2) 	= AM(,) + AMBM(,,2)

= REM AMAM(,,1))
AMAM(LMEAST,1) = -AMAN(,,1)
AM(LMWEST) 	= -AM(,)
AMAM(,,1) 	= AM(,) + AMAM(,,1)

AM(,) 	 = REVC(AMAM(,,2))
AMAM(LMEAST,2) = -AMAI4(,,2)
AM(LMWEST) 	= -AM(,)
A4M(,,2) 	= AM(,) + AMAM(,,2)

AM(11 1) 	 = REVR(AMAM(,,1))
AM(,,2) 	 = REVR(AMAM(,,2))
AMFMR (,) 	 = AMAM (, , 1)
AMFMI(,) 	 = AMAM(,,2)
AMFMR (LMDL2 1) = AMBM (, , 2)
AMFMI(LMDL21) = AMBM(,,1)
DO 100 N = 1, 10

N2 = 2 * N
N2P1 = N2 + 1
AM(,) = AMFMR(,) * PMN(, ,N)
CALL SUM2C(AM, AMWR(,N2), AMWR(,N2P1)
AM(,) = AMFNI (,) * PMN (, , N)
CALL StJM2C(AM, AMWI(,N2), ANWI(,N2P1)

100 CONTINUE
AMFMR (LMDL4 1) = AMBM (, , 2)
AMFMI(LMDL41) = AMBM(,,1)
DO 200 N = 11, 20

N2 = 2 * N
N2P1 = N2 + 1
AM(,) = AMFMR(,) * PMN(,,N)
CALL SUM2C(AM, AMWR(,N2), AMWR(,N2P1)
AM(,) = AMFMI(,) * p(,,N)
CALL SUM2C(AM, AMWI(,N2), AMWI(,N2P1)

200 CONTINUE
AMFMR(42,) = AMBM(42,,2)
AMFMR(43,) = ANBM(43,,2)
AMFMI(42,) = AMBM(42,,1)
AMFMI(43,) = AMBM(43,,1)
DO 300 N = 21, 22

N2 = 2 * N
N2P1 = N2 + 1
AM(,) = AMFMR(,) * PMN(,,N)
CALL SUM2C(AM, ANWR(,N2), AMWR(,N2P1))

= AMFMI(,) *
CALL SUM2C(AM, AMWI(,N2), A14WI(,N2P1)

300 CONTINUE

334

M4FMN (REAL _MASK) = ANWR (,) + REVC (REVR (SHEP (AMWR, 19))

AI4FMN(IMAG_MASK) = SHEP(AMWI ,19) - REM REVR(AMWI))

335

Appendix B. Accuracy of the finite element scheme for the diffusion term

This appendix presents the proof of the accuracy of the finite element

scheme used for the diffusion term in the finite element model of chapter 7,

r,-.,l .,;.I, ,-,s,s • ,+ spacing ... 	- - directions. Tile 	 of
on a 	.,.. 	 ..

Cullen (1976) is used.

Consider the equation,

	

w = Lu
	 (1)

where L is the differential operator acting on u. Define a projection, p, such

that pu and pw are the representations of u and w on the finite element grid

i.e. the numbers held in the computer. If the finite element form of L is written

as L then, as shown by Cullen (1976), the spatial error E is given by,

E = (Lp - pL)u (2)

This is the difference between the finite element solution and the analytical

solution Eq.(1) projected onto the finite element grid.

To simplify the analysis, consider the one-dimensional case only on a

uniform grid,

3 	3u 	 (3)
I

	

aY 	ay

where u and Ke are assumed to be of the form,

	

= e 	 Ke = e'' 	 (4)

and y is a normalized coordinate with e=kAz i1tx with

The projection of u and Ke onto the finite element grid is given by,

pu = 	(6)exp(iOy1),

PK e =

with 4 j as the piecewise linear basis functions. The projection factor a, is

given by Eq.(3.5.24). The analytical solution to Eq.(3) using Eq.(4) is given by,

336

f = -e(O+1p)expi(8+4))y] 	
(6)

The computer representation of this is,

p1= - 	e(e+(O+R)exp[i(e+P)Y11c 	
(7)

The finite element scheme for Eq.(3) follows from the two-dimensional case

and is,

(1 1 3)(f_ + 4f + f.) = (K1+1 + K1)(u1 - 	- (K + K1)(U - u11) 	(8)

If the numerical solution of f is written as,

f Ipu = 	
(9)

and Eq.(5) is substituted into Eq.(8) to solve for a , then,

-3[1 - cose + cosR - cos(e+p)] 	 (10)

2 + cos(e+iR)

From Eq.(2), the error is therefore,

E 	jct(e)ci()B(e,i) + e(e--)(e-1-)1 exp[i(e+4')y 1 1 4 	(11)

The error of the finite element scheme is therefore proportional to,

e (e+)(e+)
+ 1 	

(12)

at each node. Expanding this as e and i$i tend to 0 and using the result from

Cullen (1976) that,

a(k) = 1 + k 2 /12 + 	 as k-. 0

the leading error term is found to be 6/6. Thus, on a regular grid the

scheme is second order accurate.

337

Appendix C. Calculation of finite element matrices

This appendix details the algorithms used to calculate the finite element

matrix for the product term. The procedure for an irregular grid,

semi-irregular grid and an improved algorithm following Staniforth and

Beaudoin (1986) are presented.

Appendix C.I. Product term on an irregular grid

Consider the implementation of Eq.(7.7.3) on the DAP. The first stage is the

calculation of the products on all the nodes. By redefining the half-integer

values as,

= ILL,1 + tik+lf
	 (13)

= H V11 + Vk+1I)

and the products as,

=
	 (14)

then,

= Pk+,I

=
	 (15)

which can be used to remove multiplications in the calculation of the

half-integer products and the multiplication by 2 and 4 in Eq.(7.7.3).

As the DAP array matches the model domain, matrix notation can be used

to express the operations on the nodes. The multiplications are written

explicitly to show that they are DAP FORTRAN multiplications and not matrix

multiplications in the mathematical sense.

To compute the products, the half-integer values are first formed by,

= I + smwL)

= 0.5 * (,g + sENPc)

338

Z =u+sHwPc :)

V Z = 0.5 * (+ SHWP()

where 	 utiOns of DAP FORTRAN are written explicitly where they

are required. Unused elements of the matrices are set to zero,

i(64,i) = 0 	for I = 1,...64

UZ (i,64) = 0

v(64,I) = 0

v(i,64) = 0

before the remaining half-integer values are computed by,

XZ = 	+ sHWP()

= 0.5 * 	+ sHwPc))

Ukz (i,64) = v(i,64) = 0 	for I = 1,...64

The products are computed by,

o =u x =x =X

P= =u
Z =z =Z

liz = xz * £ ,

The mapping expressions for these products are,

p11 	(k, 1) + { k+1, 1+1 } 	for k, I = 0.....63

Pk+,I 	(k+, 	k+1, 1+4)

339

P+4 : 	(k, 1+ 22L 	k+1, 1+1 } 	 (16)

Pk+I+4 : (k+, 1+12) + k+1, 1+1 }

and the constant matrix, A. is set by,

A 1 = 	Az / 36 	
(17)

for which the mapping expression is,

A: 	(k,1)(k+1,1+1) 	
(18)

Using these mapping expressions it is straightforward to write the operations

for the contributions from each element to include the correct shifts. First,

some intermediate results are formed. The overbars are dropped for

convenience. The operations required are,

Q=&+SHSPC)

+&xz
	 (19)

= =z -I- SHSP(2)

so that the elemental contributions are,

= SHSP(SHEPU)) * [' + SHEP()

£2 = SHEP(4) * [:& simiPW) I

£3 = sHsP(4) * [+ £ 1 	 (20)

£=4 I+1

The matrix for the integral is then formed by,

£= 	 i=1,2,3,4 	 (21)

The total operation count is therefore eleven multiplications and seventeen

340

additions in matrix mode.

Appendix C.lt. Product term on a semi—irregular grid

Consider the implementation of Eq.(7.7.10) on the DAP. 	It is a

computational advantage to redefine the products, p, to be,

= (Uiç + Uk+I)(V ,1 + V+.1)

= (uk, , + tik+lI + U I .I. l + uk+ll+l)(vk,I + Vk+l, + 	+ vk+1I+1) (22)

similar to the irregular grid, so that,

= 4Pk+,I
	 (23)

=

where the products, p, are given by Eq.(7.7.4). Substituting into Eq.(7.7.10) then

gives,

FkI= (z_1/36)[ikkI + Ykk.t-4 +

	

+ 2 Pk+I + 	 + *k+,I_ I

+ (LxL/36)[YkP + 	 + 2Pk4I 	
(24)

	

+ 2Pk+I + 	 + Pk+I+4 I

The first stage in calculating Eq.(24) is again the calculation of the

products, except that there are no multiplications by J necessary, saving 3

matrix multiplies. The next stage is to evaluate the contributions from each

grid element. However, since there is a regular spacing in the z direction, the

contribution from the two elements at the same level can be evaluated

together. That is, first compute,

= MATC(X) * ,+ 0.5 * (i + sHsP(i)) 	 (25)

= MATC(X')
* 	+ 0.25 * 	+ SHSP(& XZ))

341

where the vector x' is defined by,

,en e\duud te we matrix uy, ,

The total operation count is now 10 multiplications and 13 additions in matrix

mode.

The above procedure can be optimized further as the vector x' is not equal

to 1 only at k=0 and 63. Thus, the factor of 0.5 at these points can be

performed by two multiplications in vector mode, replacing the matrix multiply

and the MATC call. The saving in time is small at 0.18msecs but there is also

no need to store the vector f.

Nearly all of the DAP array is used during these calculations. The

calculation of the half-integer nodes uses all the array. The calculation of the

products uses all but 1 row or column. For the products at the nodes at the

mid-point of each rectangle, 1 row and column are unused. As the resulting

matrix F in Eq.(7.7.10) has an entry for each node, all the processors are

performing useful work for Eq.(25) and Eq.(27).

Appendix C.11l. Further improvements

Following Staniforth and Beaudoin (1986), the DAP algorithm for an

irregular grid is as follows. First compute the half-integer sums,

= £ + SHNP(,,)

i x = .L+ SHNPL

= + sHwPc

iz = £+ SHWP(
	

(28)

ixz = x + sHWP()

ixz = x + SHWP(,)

342

Unused elements of these matrices are set to zero as before. The next stage

is the computation of the products, different from before,

£ = u * V * MATC (Ax + sRP (Ax)) /6 1

= 	* £ * MATC[(+ smp())/6]

- *_ *
£ =x £ 	MATC[Ax/12 1 	 (29)

P. XZ = 	
* 	* MATC Ax/12 I

Then some intermediate results are calculated by,

A = MATR[Az/12 I * 	+ SHSPAXZ +)) 	
(30)

=&+iX -1- SHSP()

The final matrix is given by,

£ = A + SHEP(4) + MATR[(Az + SHRP(Az)/6 I * B 	 (31)

The terms in square brackets represent values that can be precomputed and

stored. The operation count is now 10 multiplications and 12 additions.

For a semi-irregular grid, the required changes to the algorithm steps in

Eq.(29), Eq.(30) and Eq.(31) are straightforward. New constants are defined and

two multiplications are removed.

343

Appendix D. Published Paper

344

Parallel Computing 8 (1988) 121-126
	

121
North-Holland

A spectral meteorological model
on the ICL DAP

Glenn CARVER

Department of Meteorology, The University, Edinburgh, United Kingdom EH9 3JZ

Abstract. The key points to the implementatibn of a meteorological spectral model on the ICL Distributed Array
Processor (DAP) are presented. Spectral models involve transforming the variables between spectral and
gridpoint space and these spectral transforms comprise of Legendre and fast Fourier transforms.

The storage format of the data is discussed and the algorithms used for the Legendre transforms presented.
Timings of these algorithms are compared with those from a serial machine.

Keywords. DAP, meteorology, spectral, Legendre transforms.

1. Introduction

The ICL DAP is a SIMD machine [7] comprising a 64 by 64 array of 1-bit processing
elements (PEs) and 2 Mbytes of memory. Whilst this architecture seems ideally suited to finite
difference techniques [2,8], the spectral method [3,5] is preferred in Meteorology for modelling
the atmosphere over the globe for its superior accuracy. In this method, the model variables are
expanded as a truncated set of spherical harmonics defined by

Ymn(X, 	= e lm Pmn (t)

where m is the number of waves around a latitude circle, n is the total wavenumber, X is the
longitude and a = sin 0 where 0 is the latitude. The mfl are normalised Legendre polynomials.

The most common form of truncation is known as triangular truncation because of the
shape of the retained modes in spectral or wavenumber space. Figure 1 illustrates this for a
triangular truncation at wavenumber 5, denoted by T5.

The expansion coefficients of each variable are functions of time only. The model equations
are written so that these expansion coefficients are integrated forward in time. However, it has
been found more efficient to evaluate non-linear terms by first transforming to a collocation
grid in physical space to form the products and then transforming back to spectral space. These

n

t
x+x+x+x+x+x

X+X+(+X+X

x+x+x+x
X+(+X

X +x
Fig. 1. Spectral coefficients for triangular
truncation at wavenumb-r 5 (T5). Crosses
denote coefficients where I m I + n is even,

M 	pluses where Im)+n is odd.

0167-8191/88/$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)

345

122 	 G. Carver / Spectral meteorological model on the JCL DAP

spectral transforms consist of Legendre and fast Fourier transforms (FFTs) and form a large
part of the overall model calculations.

To study the suitability of the DAP architecture to spectral meteorological models, a T42
spectral shallow-water model [3], where the atmosphere is represented as a single layer of fluid,
was implemented on the ICL DAP. For this model, the spectral transforms account for more
than 90% of the computing time. The Legendre transforms alone account for 74%. Thus
efficient implementation of the spectral transforms is essential if the method is to be successful
on this type of architecture. The implementation of the FFT follows that in [6] and is not
discussed here.

2. Legendre transforms

The Legendre transforms use the property

=(1)"'Pm.n (!.Lj)

in order to reduce the amount of computation and the storage required for the Legendre
polynomials and their derivatives. The model latitudes are denoted by , where j is a positive

integer.
The inverse Legendre transform involves first computing

A m = 	Fmn (t)Pmn (Lj) for lml+neven,
' 	II

M' 	
(1)

Bm = Y Fmn (1)Pmn (L j) for. jml+n odd
nImI

where Fm are the spectral coefficients and M the truncation wavenumber. The symmetric

(A m) and antisymmetric (Bm) Fourier coefficients are then combined to give the final Fourier

coefficients by

Fm(fLj) = Am(Pj) + Bm(!Ij), 	Fm (Lj) = Am(Lj) - Bm (ij). 	 (2).

The symmetric and antisymmetnc spectral coefficients are illustrated in Fig. 1.
The direct Legendre transform required by the model takes the general form

- 	even:

J/2 	 dPmn
+j(Hm (LL j)±Hm (Lj))Pmn , 	(3) Fm (t)= 	(Gm (!Lj) Gm (I2j))

j1 	
dp

- ImI+n odd:

J/2 	 dPmn
Fmn(t) = 	(Gm (Lj) + Gm(Lj)) d& +

(Hm (ij) - Hm(tLj))Pmn
j=1

where J is the number of model latitudes (64 at T42 resolution) and Gm and H. are the
Fourier coefficients obtained from non-linear products evaluated on the grid in physical space.
The weights associated with this Gaussian quadrature equation are assumed to have been
incorporated into the Fourier coefficients. It is clearly a computational advantage to store the
Legendre polynomials and their derivatives.

346

G. Carver / Spectral meteorological model on the ICL DAP 	 123

3. Storage of data

The different representations of a variable during the spectral transforms, spectral, Fourier
and gridpoint, have differing degrees of freedom [5). The storage requirements are such that it
is not possible, in general, to achieve optimum use of the DAP store for the three representa-
tions. Whilst it is possible to utilise 100% of the PE array in gs -idpoint space for the T42 model,
the spectral coefficients only occupy 46% of their matrix. On the other hand, a higher resolution
of T62 would achieve 98% for the spectral coefficients but 75% for the gridpoint data (although
a simple packing scheme could increase this to 90%).

The percentage use of the PE array by the spectral coefficients could be increased by
packing them. For example, several variables could be held in one matrix using the long vector
storage format [4]. However, this introduces additional overhead in unpacking and in any case
the storage for the spectral coefficients is small compared to that of the Legendre polynomials.

3.1. Storage of the spectral coefficients

The spectral coefficients are stored in the DAP in the same way that they appear in Fig. 1.
Since the model variables are real, only positive values of m need to be stored as the negative
values are their complex conjugate. The imaginary parts are stored in the same matrix as the
real parts where their mapping is obtained for efficiency by builtin DAP FORTRAN functions.
A matrix transpose or the reversal of rows and columns is suitable, the latter is used in the
model. This storage format can be expressed as

Fmn real: 	(m, n) —(m+1, n±2), 	
(4)

F... imaginary: (m,n)—*(64—m,63—n).

This mapping expression is read as, for example, the (m, n)th real coefficient is found at the
element in row m + 1, column n ± 2 of the DAP matrix.

In order to achieve vectorisation of the Legendre transforms for the implementation of a
spectral model on a vector machine, it has been found necessary to store the spectral
coefficients in a 'diagonal-wise' manner [1], where coefficients along diagonals of m + n odd or
even are stored consecutively. A similar approach could be used for the DAP implementation
where diagonals are stored down columns of the PE array. This could be expressed as

Fmn real: 	(m, n) —(m±1, n—m±1),

F,..,, imaginary: (m, n)—.(64—m,64—n±m).

A different storage format for the em,, and their derivatives is necessary in this case but the
code for the Legendre transforms remains the same apart from minor changes to some routing
operations.

3.2. Storage of the Legendre polynomials and derivatives

As with the spectral coefficients, the em,, are not packed in order to avoid routing
overheads, which means the amount of storage required is considerable. The most efficient
mapping was found to be when the wavenumber m and latitude tL are mapped horizontally on
the DAP store and total wavenumber n increases vertically down the store. The derivatives
dPmn/d can then be stored in the same storage area 'upside down' in much the same way as
the imaginary parts of the spectral coefficients are stored in relation to the real parts. One
benefit of storing the derivatives in this way is that the products involving the polynomial
values and their derivatives in the direct transform (3) can then be computed in parallel.

347

124 	 G. Carver / Spectral meteorological model on the ICL DA P

n even n odd

Pm, n

(1

Fig. 2. Schematic illustration of the stor-
age format for the Legendre polynomials
and their derivatives.

The T42 resolution allows the symmetric and antisymmetnc parts of the transforms to be
computed in parallel. To do this, the storage format of the polynomial values best suited to (4),
is to store all even values of n in one half of the array and all the odd values in the other half.
This mapping can be written-as

Pmn (neven): 	{m,n,,i}—(m+l,j,in+1),

Pm . n (fl 01 	{m,n,ii}—(m+1,65 — j,i(n+1))

for j=1.....32.

A similar expression occurs for the derivatives. Figure 2 illustrates this storage arrangement.
The total number of planes occupied is then 704 (assuming 32-bit precision) or 17% of the

total store of the DAP. Within this area of memory the P, and the dPmn /di values together
occupy 68%.

4. Legendre transform algorithms

4.1. Inverse transform

Having defined the storage arrangement for the relevant data, the procedure to compute (1)
and (2) is straightforward. The algorithm is parallel in m, u and symmetric and antisymmetric
parts and sequential in n. The loop over n executes (M ± 2)/2 times and on each pass a
column vector of spectral coefficients of n odd and even is broadcast and multiplied to the
Legendre polynomial array. The symmetric and antisymmetric parts of the Fourier coefficients
are then combined after the loop by simple routing.

It can be easily seen that this algorithm is not efficient. At worst (n = 0), only 1.5% of the PE
array is performing useful work, whilst at best (n = 42) 67% is in use. Simple packing strategies
can be used to improve on this but at the expense of being able to compute the products in (3)
in parallel so that there is no net gain for the model.

4.2. Direct transform

The direct Legendre transform algorithm has additional parallelism to the inverse transform
in that the products involving em,, and dP,,,.,/dp are computed in parallel. Each pass of the

348

Truncation wovenumber

800.0
(I)
0
Q)

600.0

ti)
E

400.0
-I-

3
0

200.0

rel
MEMIJ 40 	 60 	 80

G. Carver / Spectral meteorological model on the ICL DA P 	 125

loop over n involves multiplying the symmetric and antisymmetric parts of the Fourier
coefficients to the array and summing along each half row to give a vector for n odd and
even. The two products are combined at the end of the loop to give the final spectral
coefficients.

Unlike the inverse transform, the efficiency of this algorithm stays constant with 68% of the
PE array performing useful work. The summation along rows was done in the model by a
cascade sum routine written in DAP FORTRAN. However, the CPU time presented in the
next section for the direct transform is corrected from that measured by assuming the use of an
assembler written routine which takes the same time as the DAP FORTRAN builtin function
that sums across all columns to give a vector result [4].

5. Results

Figure 3 shows the CPU times of the Legendre transforms measured for the T42 resolution
and estimated at other resolutions. Also shown are the times for serial versions of the
transforms, measured on a AMDAHL 470/V8 computer.

The DAP times for the inverse transform show the linear dependency on truncation, the
increased slope between T42 and T62 occurs because the symmetric and antisymmetric
components can no longer be computed in parallel. At resolutions greater than T62, additional
work is required as the spectral and Legendre polynomial values require additional matrices of
storage. By contrast, the serial algorithms show the cubic variation with truncation. Clearly, the
DAP performance improves with the higher truncation; the ratio between the CPU times is 3.6
at T42 and 5.2 at T85. The T21 resolution is too low to make effective use of the DAP
architecture.

Figure 3 also shows the times for the direct Legendre transform. The difference between the
DAP and serial times is now much greater due to the additional parallelism exploited in the
DAP algorithm. The ratio of these times is 5.6 at T42 and 8.8 at T85.

Whilst the ratio of the direct transform time to that of the inverse transform is about 2.8 for
the serial routines, by contrast the DAP algorithms show a much smaller ratio of about 1.4

Fig. 3. Variation of CPU time with trun-
cation for the Legendre transform al-
gorithms. Solid curves represent the DAP
routines, dashed curves the serial routines.
Inverse transform times are shown with a
cross, direct transform times with a circle.

349

126 	 G. Carver / Spectral meteorological model on the JCL DAP

(except at T85 where it is 1.7). The T85 DAP times are only rough guides as this resolution
would require I/O during the transforms as the required space for the Legendre polynomials
would exceed that available.

6. Discussion

The CPU time per step of this model is approximately 4 times that of the finite difference
shallow-water model in (2). However, equivalent spectral and finite difference models on serial
and vector computers tend to require approximately the same computing time. From the above
results this would suggest the use of higher resolutions for greater efficiency, or perhaps
multilevel models where the additional available parallelism might lead to more efficient
transform algorithms. -

Acknowledgments

This paper forms a part of the author's Ph.D. thesis, for which financial support from SERC
is acknowledged.

References

11) A.P.M. Baede, M. Jarraud and U. Cubasch, Adiabatic formulation and organisation of ECMWF's spectral model,
ECWMF Technical Report No. 15, European Centre for Medium Range Weather Forecasts, Reading, United

Kingdom, 1979.
(2) J. Fishboume, Unfinished Ph.D. thesis, Computer Science Department, Reading University, United Kingdom.

[3 1 G.J. Haltiner and R.T. Williams, Numerical Prediction and Dynamic Meteorology (Wiley, New York, 1980).

1 4 1 1.C.L., DAP: FORTRAN language reference manual, ICL Technical Publication TP6918, 1979.
151 M. Jarraud and A.J. Simmons, The spectral technique, Proc.. Seminar on Numerical Methods for Weather Prediction,

Vol. 2 (European Centre for Medium Range Weather Forecasts, Reading, 1984).
[61 C.R. Jesshope, The implementation of fast radix-2 transforms on array processors, IEEE Trans. Comput. 29 (1980)

20-27.
[7] S.F. Reddaway, DAP—a distributed array processor, Proc. 1st IEEE/ACM Annual Symposium on Computer

Architecture (1973).
[8) S.F. Reddaway, D.J. Hunt and D. Parkinson, Study of a meteorological operational suite, ICL RADC Document

CM.52, 1976.

350

References

Abramowitz M., 	1965 	Handbook of mathematical functions with

Stegun I.A. 	 formulas, graphs and mathematical tables,

New York Dover Publications, 1046pp.

Adams L.M. 	 1982 	Iterative algorithms for large sparse linear

systems on parallel computers,

NASA contractor report 166027, available from the

DAP Support Unit, Doc. 8.34, Queen Mary College.

Adams L.M. 	 1983 	rn-step preconditioned conjugate gradient methods,

NASA contractor report 172130, available from the

DAP Support Unit, Doc. 8.32, Queen Mary College.

Amdahl 0. 	 1967 	The validity of the single processor approach to

achieving large scale computing capabilities,

AFIRS Conf. Proc., SJCC, 3, 483-485.

AMT 	 1989 FORTRAN for the DAP,

Centre for Parallel Computing, Newsletter No.2,

Queen Mary College, London, 7-11.

Arakawa A. 	 1966 	Computational design for long-term numerical

integration of the equations of motion,

J. Comput. Phys., 1, 119-143.

Arakawa A., 	1977 	Computational design of the basic dynamical

Lamb V.R.

	

	 processes of the UCLA general circulation model,

Meth. in Comp. Phys., 17, 174-267.

Asselin R. 	 1972 	Frequency filter for time integrations,

Mon. Wea. Rev., 100, 487-490.

351

Axelrod T.S. 	1986 	Effects of synchronisation barriers on

multiprocessor performance,

Parallel Computing, 3, 129-140.

Baede A.P.M., 	1976 	The effect of arithmetic precision on some

Dent 0., 	 meteorological integrations,

Hollingsworth A. 	 ECMWF Tech. Rep. No.2, 22pp.

Baede A.P.M., 	1979 	Adiabatic formulation and organisation of

Jarraud M., 	 ECMWF's spectral model,

Cubasch U. 	 ECMWP Tech. Rep. No.15, 39pp.

Baer F. 	 1972 	An alternate scale representation of atmospheric

energy spectra,

J. Atmos. Sci., 29, 649-664.

Baer F., 	 1961 	A procedure for numerical integration of the

Platzman G.W. 	 spectral vorticity equation,

J. Meteor., 18, 393-410.

Bates J.R. 	 1984 	An efficient semi-Lagrangian and alternating

direction implicit method for integrating the

shallow water equations,

Mon. Wea. Rev., 112, 2033-2047.

Bates J.R., 	 1982 	Multiply upstream, semi-Lagrangian advective

McDonald A.

	

	 schemes: analysis and application to a multi-

level primitive equation model,

Mon. Wea. Rev., 110, 1831-1842.

Bates J.R., 	 1987 	Improving the estimate of the departure point

McDonald A.

	

	 position in a two time level semi-Lagrangian

and semi-implicit model,

Mon. Wea. Rev., 115, 781-794.

352

Beland M., 	 1983 	A global spectral model with a finite element

Beaudoin C. 	 formulation for the vertical discretization:

Adiabatic formulation,

Mon. Wea. Rev., 113, 1910-1919.

Bengtsson L. 	1988 	Computer requirements for atmospheric modelling,

Multiprocessing in meteorological models,

edited by Hoffmann and Snelling, Springer-Verlag,

438pp.

Blinova E.N. 	1942 	Hydrodynamic theory of pressure and temperature

waves and centres of action of the atmosphere,

(Translated from Russian, 1944), Regional

control offices, Second Weather Region,

Pattersonfield, U.S.A.

Boas M.L. 	 1966 	Mathematical methods in the physical sciences,

John Wiley and Sons, London, 778pp.

de Boor C. 	 1974 	Mathematical aspects of finite elements in

partial differential equations,

Academic Press, New York.

Bourke W. 	 1972 	An efficient, one-level, primitive equation

spectral model,

Mon. Wea. Rev., 100, 683-689.

Bourke W. 	 1974 	A multi-level spectral model. I: Formulation

and hemispheric integrations,

Mon. Wea. Rev., 102, 687-701.

Bourke W., 	 1977 	Global modelling of atmospheric flow by

McAvaney B., 	 spectral methods,

Puri K., 	 in: Meth. in Comp. Phys., 17,

Thurling R. 	 Academic Press.

353

Bowgen C. 	 1981a Iterative solution of tridiagonal linear equations,

DAP Support Unit Tech. Doc. No.2-9,

Queen Mary College.

Bowgen G. 	 1981 b Iterative solution of partial differential equations,

DAP Support Unit Lecture Note 8,

Queen Mary College.

Brown M.W. 	1986 	Integrating Distributed Array Processing into

EMAS 2900,

Software - practise and experience, 16, 517-529.

Bryan K. 	 1966 	A scheme for numerical integration of the

equations of motion on an irregular grid

free of nonlinear instability,

Mon. Wea. Rev., 94,38-40.

Burridge D.M., 	1977 	A model for medium range weather forecasts -

Haseler J. 	 adiabatic formulation,

ECMWF Tech. Rep. No. 4, Reading, U.K.

Burridge D.M., 	1986 	Finite element schemes for the vertical

Steppler J., 	 discretization of the ECMWF forecast

Strufing R. 	 model using linear elements,

ECMWF Tech. Rep. 54, Reading, Slpp.

Carpenter K.M. 	1981 	The accuracy of Gadd's modified Lax-Wendroff

algorithm for advection,

Q. J. R. Meteorol. Soc., 107, 467-470.

Carver C. 	 1986 	A note on a dynamic I/O system for dynamic

balancing of the ECMWF forecast model,

End of contract report (unpublished), ECMWF,

August, 22pp.

354

Carver G. 	 1988 	A spectral meteorological model on the ICL DAP,

Parallel Computing, 8, 121126.

Chalmers C.B., 	1987 	Algorithms for calculating quark propogatorS

Kenway R.D., 	 on large lattices,

Roweth D. 	 J. Comp. Phys., 70, 500-520.

Chang H.R., 	 1985 	Compact spatial differenciflg techniques in

Shirer H.N. 	 numerical modelling,

Mon. Wea. Rev., 113, 409-423.

Chang LP., 	 1982 	Development of a two-dimensional finite element

Takie E.S., 	
PBL model and two preliminary model applications,

Sani R.L. 	 Mon. Wea. Rev., 110, 2025-2037.

Charney J.G., 	1950 	Numerical integration of the barotropic

Fjortoft R., 	 vorticity equation,

von Neumann J. 	 Tellus, 2, 237-254.

Cohn S.E., 	 1985 	A fully implicit scheme for the barotropic

Dee D., 	 primitive equations,

Isaacson E., 	 Mon. Wea. Rev., 113, 436-448.

Marchesin 0.,

Zwas G.

Collins W.G. 	1983 	An accurate variation of the two-step Lax-

Wendroff integration of horizontal advectiofl,

Q. J. R. Meteorol. Soc., 109, 255-261.

Conner J.J., 	 1976 	Finite element techniques for fluid flow,

Brebbia C.A. 	 Newnes-ButterWOrthS, 310pp.

Cooley J.W., 	1965 	An algorithm for the machine calculation

Tukey J.W. 	 of complex Fourier series,

Math. Comp., 19, 297-301.

355

Corby G.A., 1972 	A general circulation model of the atmosphere

Gilchrist A., suitable for long period integrations,

Newson R.L. Q. J. R. Meteorol. Soc., 98, 809-832.

Corby G.A., 1977 	U.K Meteorological Office five-level general

Gilchrist A., circulation model,

Rowntree P.R. Meth. in Comp. Phys., 17, 67-110.

Cote J., 	 1983 	Stability of vertical discretization schemes

Beland M., 	 for semi-implicit primitive equation models:

Staniforth A.N. 	 Theory and application,

Mon. Wea. Rev., 111, 1189-1207.

Courant A., 	 1953 	Methods of Mathematical Physics, Vol I,

Hilbert D. 	 lnterscience publishers Ltd. London, 561pp.

CRAY 	 1986 	CRAY Programmer's Library Reference Manual,

SR-0113, Cray Research Inc., USA.

Cullen M.J.P. 	1973 	A simple finite element method for

meteorological problems,

J. last. Math. Applications, 11, 15-31.

Cullen M.J.P. 	1974a A finite element method for a non-linear

initial value problem,

J. Inst. Math. Applications, 13, 233-247.

Cullen M.J.P. 	1974b Integration of the primitive equations on a

sphere using the finite element method,

Q. J. R. Meteorol. Soc., 100, 555-562.

Cullen M.J.P. 	1976 	On the use of artificial smoothing in Galerkin

and finite difference solutions of the

primitive equations,

Q. J. R. Meteorol. Soc., 102,77-93.

356

Cullen M.J.P. 	1979 	The finite element method,

Numerical methods used in atmospheric science,

vol 2, GARP Publications Series No-17, WMO.

Cullen M.J.P. 	1983 	Current progress and prospects in numerical

techniques for weather prediction models,

J. Comput. Phys., 50, 1-37.

Cullen M.J.P., 	1979 	Forecasting and general circulation results

Hall co. 	 from finite element models,

Q. J. R. Meteorol. Soc., 105, 571-592.

Daley R. 	 1980 	The development of efficient time integration

schemes using model normal modes,

Mon. Wea. Rev., 108, 100-110.

Daley R.W., 	 1978 	Rhomboidal versus triangular spherical harmonic

Bourassa V. 	 truncation: some verification statistics,

Atmosphere, 16, 187-196.

Davies S. 	 1985 	Notes on a DAP finite element library,

DAP Support Unit Doc.2-37, Queen Mary College.

Dent D. 	 1988 	The ECMWF model: Past, present and future,

Multiprocessing in meteorological models,

eds. Hoffmann and Snelling, Springer-Verlag, 438pp.

Dent D., 	 1988 	Microtasking as a complement to macrotasking,

O'Neill M. 	 Parallel Computing, 8, 149-154.

Deque M., 	 1986 	Some destabilizing properties of the Asselin

Cariolle D. 	 time filter,

Mon. Wea. Rev., 114, 880-884.

357

Dey C.H. 	 1969 	A note on forecasting with the Kurihara grid,

Mon. Wea. Rev., 97, 597-601.

Dixon L.C.W., 	1982 	A parallel version of the conjugate gradient

Ducksbury P.O., 	 algorithm for finite element problems,

Singh P. 	 Hatfield Poly., Numerical Optimisation Centre,

Tech. Rep. No. 132.

Dixon LC.W., 	1984 	The finite element method for Navier-Stokes

Singh P. 	 equations: A least squares approach,

Hatfield Poly., Numerical Optimisation Centre,

Tech. Rep. No. 142.

Dixon LC.W., 1985 Finite element optimisation on the DAP,

Ducksbury P.G. Comp. Phys. Commun., 37, 187-193.

Dongarra J.J. 1985 Performance of various computers using standard

linear equations software in a FORTRAN

environment,

Argonne National Lab., Tech. Memo. No.23,

Argonne, Illinois, USA.

Doron E., 1974 A comparison of grid-point and spectral methods

Hollingsworth A., in a meteorological problem,

Hoskins B.J., Q. J. R. Meteorol. Soc., 100, 371-383.

Simmons A.J.

Dubois p., 1979 Approximating the inverse of a matrix for use in

Greenbaum A., iterative algorithms on vector processors,

Rodrique G. Computing, 22, 257-268.

Ducksbury P.O. 1983 Experience solving non-linear PDE's by finite

element optimisation on the DAP. I: The least

squares conjugate gradient solution of

Morgan's problem,

Hatfield Poly., Numerical Optimisation Centre,

Tech. Rep. No. 136.

358

Ducksbury P.O. 	1986 	Parallel Array Processing,

Ellis Horwood Series in Electrical and

Electronic Engineering, 112pp.

Duller A.W.G., 	1984 	Processor arrays and the finite element method,

Paddon D.J.

	

	 mt. Conf. 'Parallel Computing 88 Elsevier Science

Publishers B.V. (North Holland), 131-136.

Dutton J.A. 	 1986 	The ceaseless wind

Dover Publications Inc., 617pp.

ECMWF 	 1985 	ECMWF Forecast model - Adiabatic part,

ECMWF Research Manual 2, ECMWF, Reading.

Eliasen E., 	 1970 	On a numerical method for integration of the

Machenhauer B., 	 hydrodynamical equations with a spectral

Rasmussen E. 	 representation of the horizontal fields,

Institut for Teoretisk Meteorolog,

Rep. No.2, University of Copenhagen.

Ellsaesser H.W. 	1966 	Evaluation of spectral versus grid methods of

hemispheric numerical weather prediction,

J. Appi. Meteor., 5, 246-262.

Ettinger J.E. 	1987 	Distributed Array Processors,

Infotech State of the Art Report, 15:4,

ed. C.R.Jesshope, Pergamon Infotech Ltd, 19-36.

Evans D.J., 	 1984 	Implementation of the conjugate gradient and

Shanehchi J., 	 Lanczos algorithms for large sparse banded

Barlow R.H. 	 matrices on the ICL DAP,

Int. Conf. 'Parallel Computing 88 Elsevier

Science Publishers B.V. (North Holland), 131-136.

Feo J.T. 	 1988 	An analysis of the computational and parallel

complexity of the Livermore loops,

Parallel Computing, 7, 163-185.

359

Fishbourne J. 	1980 	Unfinished Ph.D. thesis,

Comp. Sci. Dept., Reading University.

Flanders P.M., 	1977 	Efficient high speed computing with the

Hunt D.J., 	 Distributed Array Processor,

Reddaway S.F., 	 High speed computer and algorithm organisation,

Parkinson D. 	 Academic Press, 113-128.

Flanders P.M. 	1982 	A unified approach to a class of data movements

on an array processor,

IEEE Trans. on computers, C-31, 809-819.

Flynn M.J. 	 1972 	Some computer organisations and their effectiveness,

IEEE Trans. on computers, C-21, 948-960.

Gadd A.J. 	 1978a A numerical advection scheme with small

phase speed errors,

Q. J. R. Meteorol. Soc., 104, 583-594.

Gadd A.J. 	 1978b A split explicit integration scheme for

numerical weather prediction,

Q. J. R. Mete orol. Soc., 104, 569582.

Gadd A.J. 	 1980 	Two refinements of the split explicit

integration scheme,

Q. J. R. Meteorol. Soc., 106, 215-220.

Gadd A.J. 	 1985 	The 15 level weather prediction model,

Met. Mag., 114, 222-226.

Galerkin B. 	 1915 	Rods and plates. Series occurring in various

questions concerning the elastic equilibrium

of rods and plates,

Vestnik Inzhenerov, 19, 897-908.

360

Gallopoulos E.J. 	1984 	The massively parallel processor for problems

in fluid dynamics,

Proc. of Vector and Parallel Processors

in Comp. Sci., Oxford, England.

Gates W.L., 	 1962 	A study of numerical errors in the integration of

Riegel C.A. 	 barotropic flow on a spherical grid,

J. Geophys. Res., 67, 773-784.

Gates W.L., 	 1971 	A documentation of the Mintz-Arakawa two-level

Batten E.S., 	 general atmospheric circulation model,

Kahle A.B., 	 Advanced Research Projects Agency,

Nelson A.B. 	 Report R-877-ARPA, Rand Corporation,

Santa Monica, California.

Gentleman W.M., 	1966 	Fast Fourier transforms - for fun and profit,

Sande G. 	 1966 Fall Joint Computer Conference,

AFIPS Proc., 29, 563-578.

Gibson J.K. 	 1985 	A production multitasking numerical weather

prediction model,

Comp. Phys. Commun., 37,317-327.

Golub G.H., 	 1983 	Matrix computations,

Van Loan C.F. 	 North Oxford, 476pp.

Gordon T., 	 1974 	Spectral modelling at GFDL,

Stern W. 	 GARP WGNE Report, No. 7, 46-82.

Grimmer M., 	1967 	Energy conserving integrations of the primitive

Shaw D.B. 	 equations on the sphere,

Q. J. R. Meteorol. Soc., 93, 337-349.

Gustafsson B. 	1971 	An alternating direction implicit method for

solving the shallow-water equations,

J. Comput. Phys., 7, 239-254.

361

Haltiner G.J., 	1980 	Numerical prediction and dynamic meteorology,

Williams R.T. 	 John Wiley and Sons, New York, 477pp.

Hestenes M.R., 	1952 	Methods of conjugate gradients for solving

Stiefel E. 	 linear systems,

J. Res. N. B. S., 49, 409.

Hoare C.A.R. 	1978 	communicating sequential processes,

Communications of the ACM, 21, 666-677.

Hobson E.W. 	1931 	The theory of spherical and ellipsoidal harmonics,

Cambridge Univ. Press, 500pp.

Hockney R.W. 	1977 	Supercomputer architecture,

Infotech State of the Art Con[: future systems,

Chairman F.Sumner, Maidenhead Infotech Intl, 65-93.

Hockney R.W. 	1985 	MIMD computing in the USA - 1984,

Parallel Computing, 2, 119-136.

Hockney R.W. 	1988 	(re,, ni, s)

Measurements on the 2-CPU CRAY X-MP,

Multiprocessing in Meteorological Models,

eds. Hoffmann and Snelling, Springer-Verlag, 67-88.

Hockney R.W., 	1981 	Parallel computers: Architecture, programming

Jesshope C.R. 	 and algorithms,

Adam Huger Ltd, Bristol, 423pp.

Hockney R.W., 	1984 	Characterizing MIMD computers:e.g. the

Snelling D.F. 	 Denelcor HEP,

Int . Conf. 'Parallel Computing 89 Elsevier

Science Publishers B.V. (North-Holland), 521-526.

362

Hoffman R.N., 	1989 	Multiprocessing algorithms for global spectral

Nehrkorn T. 	 numerical weather prediction,

Proc. of mt. Conf. on Supercomputing,

Crete, Greece, June 5-9.

Hoffmann G.-R., 	1988 A comparative study of the ECMWF weather

Snelling D.F.

	

	 model on several multiprocessor architectures,

Multiprocessing in meteorological models,

eds. Hoffmann and Snelling, Springer-Verlag, 438pp.

Hoffmann G.-R., 	1988 	Aspects of using multiprocessors for

Swarztrauber P.N., 	 meteorological modelling,

Sweet R.A. 	 Multiprocessing in meteorological models,

eds. Hoffmann and Snelling, Springer-Verlag, 438pp.

Holloway J.L., 	1971 	Simulation of climate by a global general

Manabe S. 	 circulation model: I. Hydrological cycle

and heat balance,

Mon. Wea. Rev., 99,335-370.

Holloway J.L., 	1973 	Latitude-longitude grid suitable for numerical

Spelman M.J., 	 time integration of a global atmospheric model,

Manabe S. 	 Mon. Wea. Rev., 101, 69-78.

Hoskins B.J. 	1973 	Stability of the Rossby—Haurwitz wave,

Q. J. R. Meteorol. Soc., 99, 723-745.

Hoskins B.J., 	1975 	A multi-layer spectral model and the semi-

Simmons A.J. 	 implicit method,

Q. J. R. Meteorol. Soc., 101, 637-655.

Hsiung C.C. 	 1988 	The myth of performance for parallel machines,

Multiprocessing in Meteorological Modelling,

eds. Hoffmann and Snelling, Springer-Verlag, 438pp.

363

Hunt D.J. 	 1974a A proposed implementation of a meteorological

initialization program on the DAP,

ICL Research and Advanced Development Centre,

Doc. No. CM24, 15pp.

Hunt D.J. 	 1974b A proposed implementation of the Meteorological

Office global circulation model on the DAP,

ICL Research and Advanced Development Centre,

Doc. No. CM29, 13pp.

Hunt D.J. 	 1981 	A study of finite element analysis on DAP,

ICL Research and Advanced Development Centre,

Doc. No. CM22.

Hunt D.J., 	 1980 	Application of a parallel processor to the solution

Webb S.J., 	 of finite difference problems,

Wilson A. 	 DAP Support Unit, Doc. 4.8, Queen Mary College.

ICL 	 1979 	DAP:FORTRAN language reference manual,

ICL Tech. Pub!. TP6918.

Ikeda M. 	 1988 	Multitasking with a memory heirarchy,

Multiprocessing in meteorological models,

eds. Hoffmann & Snelling, Springer-Verlag, 438pp.

Jarraud M., 	 1983 	An extensive quasi-operational comparison

Girard C. 	 between a spectral and a gridpoint model,

ECMWF seminar proceedings, 'Numerical methods

for weather prediction', Reading.

Jarraud M., 	 1983 	Adiabatic formulation of models: the

Simmons A.J. 	 spectral technique.,

ECMWF seminar proceedings, 'Numerical methods

for weather prediction', Reading.

364

Jesshope C.R. 	1980 	The implementation of fast radix-2 transforms

on array processors,

IEEE Trans. Comput., C-29, 20-27.

Jesshope C.R. 	1987 	Parallel processing,

Infotech State of the Art Report, 15:4,

ed. C.R.Jesshope, Pergamon Infotech Ltd, 336pp.

Jordan H.F. 	 1987 	The Force,

The characteristics of parallel algorithms,

MIT Press, 395-436.

Kasahara A. 	1977 	Numerical integration of the global barotropiC

primitive equations with Hough harmonic expansions.

J. Atmos. Sci., 34, 687-701.

Kasahara A. 	1978 	Further studies on a spectral model of the global

barotropic primitive equations with Hough

harmonic expansions,

J. Atmos. Sci., 35, 2043-2051.

Kasahara A., 	1971 	General circulation experiments with a six-layer

Washington W.M.

	

	 NCAR model including orography, cloudiness and

surface temperature calculations,

J. Atmos. Sci., 28, 657-701.

Klappholz D., 	1987 	Refined languages: an evolutionary approach to

Kong X., 	 the use of sequential languages for programming

Parle H.C., 	 parallel (MIMD) machines,

Stein K. 	 Infotech State of the Art Report, 15:4,

ed. C.R.Jesshope, Pergamon Infotech Ltd, 59-70.

Krylov V.I. 	 1962 	Approximate calculation of integrals,

MacMillan, New York, 357pp.

CII1

Kuehn J.T., 	 1985 	Extensions to the C programming language for

Siegel H.J. 	 SIMD/MIMD parallelism,

Proc. IEEE Intl. Conf. Parallel Processing, 232-235.

Kurihara Y. 	 1965 	Numerical integration of the primitive equations

on a spherical grid,

Mon. Wea. Rev., 93,399-415.

Kurihara V., 	 1974 	Comments "On the importance of precision for

Tuleya R.E.

	

	 short-range forecasting and climate simulation",

J. App!. Met., 13, 601-602.

Lai C. H. 	 1989 	The DAP finite element library,

Centre for Parallel Computing, Doc 5A.31,

Queen Mary College, London.

Lai C.H., 	 1987a A review of parallel finite element methods on the DAP,

Liddell H.M. 	 App!. Math. Modelling, 11, 330-340.

Lai C.H., 	 1987b Preconditioned conjugate gradient methods on the DAP,

Liddell H.M.

	

	 Math. of Finite Elements and App!., IV, 145-156,

ed. J.R.Whiteman, Academic Press.

Lai C.H., 	 1988 	Finite elements using long vectors of the DAP,

Liddell H.M. 	 Parallel Computing, 8, 351-362.

Larson J.L. 	 1988 	Practical concerns in multitasking on the CRAY X—MP,

Multiprocessing in Meteorological Modelling,

eds. Hoffmann and Snelling, Springer-Verlag, 438pp.

Leasure B. 	 1988 	An approach to automatic parallel processing,

Multiprocessing in meteorological models,

eds. Hoffmann and Snelling, Springer-Verlag, 438pp.

366

Lilly O.K. 	 1965 	On the computational stability of numerical

solutions of time dependent non-linear

geophysical fluid dynamics problems,

Mon. Wea. Rev., 93, 11-26.

Lipps F.B. 	 1971 	Two dimensional numerical experiments in

thermal convection with vertical shear,

J. Atmos. Sci., 28(1), 3-19.

Machenhauer B. 	1979 	The spectral method,

in: Num. Meth. used in Atm. models, vol 2,

GARP Publications Series No.17, 124-277.

Machenhauer B., 	1972 	On the integration of the spectral hydrodynamical

Rasmussen E. 	 equations by a transform method,

Institut for Teoretisk Meteorologi,

Rep. No.3, University of Copenhagen.

Mailhot J., 	 1982 	A finite element model of the atmospheric

Benoit R.

	

	 boundary layer suitable for use with numerical

weather prediction models,

J. Atmos. Sci., 39, 2249-2266.

Mandl F. 	 1957 	Quantum Mechanics,

Butterworths, London, 267pp.

Marchuk G.I. 	1974 	Numerical methods in weather prediction,

Academic Press, New York, 277pp.

Matsuno T. 	 1966 	Numerical integrations of the primitive equations

by a simulated backward difference method,

J. Meteor. Soc. Japan, Ser. 2, 44, 76-84.

McBryan O.A. 	1988 	New architectUres: Performance highlights and

new algorithms,

Parallel Computing, 7, 477499.

367

McDonald A. 	1986 	A semi-Lagrangian and semi-implicit two time

level integration scheme,

Mon. Wea. Rev., 114, 824-830.

Mcintosh D.H., 	1981 	Essentials of meteorology,

Thom A.S. 	 Taylor and Francis Ltd, London, 240pp.

Merilees P.E. 	1973 	An alternative scheme for the summation

of a series of spherical harmonics,

J. Appi. Meteor., 12, 224-227.

Merilees P.E., 	1977 	Experiments with a polar filter and a one-

Ducharme P., 	 dimensional semi-implicit algorithm,

Jacques C. 	 Atmosphere, 15, 19-32.

Mesinger F., 	1976 	Numerical methods used in atmospheric models,

Arakawa A. 	 CARP Pubi. Ser. No. 17, Vol I, WMO—ICSU.

Miller M.J., 	 1981 	Radiation conditions for the lateral boundaries of

Thorpe A.J. 	 limited-area numerical models,

Q. J. R. Meteorol. Soc., 107, 615-628.

Mitchell A.R., 	1977 	The finite element method in partial differential

Wait R. 	 equations,

John Wiley and Sons, 198pp.

Miyakoda K. 	1973 	Cumulative results of testing a meteorological

mathematical model. The description of the model,

Proc. Roy. Irish Academy, 73A, 99.

Mouhas C. 	 1987 Automatic mesh generation on the DAP,

Centre for Parallel Computing, Doc. 5A.13,

Queen Mary College, London.

Mozdzynski G. 	1988 	Multitasking on the ETA10,

Proc. of Workshop on Multiprocessing in

meteorological models, ECMWF, Dec. 1988.

368

Navon l.M., 	 1979 	An implicit compact fourth-order algorithm for

Riphagen H.A. 	 solving the shallow-water equations in

conservation law form,

Mon. Wea. Rev., 107, 1107-1127.

Ogura V., 	 1962 	Scale analysis of deep and shallow convection

Phillips N.A. 	 in the atmosphere,

J. Atmos. Sci., 19, 173-179.

Orlanski I. 	 1976 	A simple boundary condition for unbounded

hyperbolic flows,

J. Comput. Phys., 21, 251-269.

Orlanski I., 	 1973 	Numerical simulation of the generation and

Ross B.B. 	 breaking of internal gravity waves,

J. Geophys. Res., 78, 8808-8826.

Orlanski I., 1974 	Diurnal variation of the planetary boundary

Ross B.B., layer in a mesoscale model,

Polinsky L.J. J. Atmos. Sci., 31, 965-989.

Orlanski I., 1977 	The circulation associated with a cold front,

Ross B.B. Part I: dry case,

J. Atmos. Sci., 34, 1619-1633.

Orszag S.A. 1970 	Transform method for calculation of vector

coupled sums: Application to the spectral

form of the vorticity equation,

J. Atmos. Sc., 27, 890-895.

Orszag S.A. 	 1971 	Numerical simulation of incompressible

flows within simple boundaries.

I. Galerkin (spectral) representations,

Studies in App!. Math., Vol L No.4, 293-327.

C..

Orszag S.A. 	1974 	Fourier series on spheres,

Mon. Wea. Rev., 102, 56-75.

Owen A. 	 1982 	A note on using finite differences on the ICL

Distributed Array Processor,

App!. Math. Modelling, 6, 394-396.

Perrott R.H., 	1987 	The design and implementation of a Pascal based

language for array processor architectures,

J. of Parallel and Distrib. Computing, 4, 266-287.

Phillips N.A. 	1959 	Numerical integration of the primitive equations

on the hemisphere,

Mon. Wea. Rev., 87,333-345.

Pielke R.A. 	 1984 	Mesoscale meteorological modelling,

Academic Press, 612pp.

Pozo R., 	 1989 	Performance characteristics of scientific

MacDonald A.E. computation on the Connection Machine,

Dept. of Comp. Sci. Rep. CU-CS-440-89,

Colorado Univ., Boulder, USA.

Reddaway S.F. 	1973 	DAP - a distributed array processor,

1st Annual Sym. on Comput. Architecture,

IEEE/ACM, Florida.

Reddaway S.F., 	1976 	Study of a meteorological operational suite,

Hunt D.J., 	 ICL Research and Advanced Development Centre,

Parkinson D. 	 Doc. No. CM52, 15pp.

Reid J.K., 	 1986 	The array features in FORTRAN 8X with

Wilson A. 	 examples of their use,

Comp. Phys. Commun., 37, 125-132.

370

Ritchie H. 	 1985 	Application of a semi-Lagrangian integration scheme

to a moisture equation in a regional forecast model,

Mon. Wea. Rev., 113,424-435.

Ritchie H. 	 1987 	Semi-Lagrangian advectiorl on a Gaussian grid,

Mon. Wea. Rev., 115, 608-619.

Ritchie H. 	 1988 	Application of the semi-Lagrangian method to a

spectral model of the shallow water equations,

Mon. Wea. Rev., 116, 1587-1598.

Robert A.J. 	 1966 	The integration of a low order spectral form

of the primitive meteorological equations,

J. Meteor. Soc. Japan, Ser. 2, 44, 237-245.

Robert A.J. 	 1969 	The integration of a spectral model of the

atmosphere by the implicit method,

Proc. WMO/IUGG Symp. on Numerical Weather

Prediction, Tokyo, Japan Meteor. Agency,

VII-19-VII-24.

Robert A.J. 	 1981 	A stable numerical integration scheme for

the primitive meteorological equations,

Atmos. Ocean, 19, 35-46.

Robert A.J. 	 1982 	A semi-Lagrangian and semi-implicit numerical

integration scheme for the primitive

meteorological equations,

J. Meteor. Soc. Japan, 60, 319-325.

Robert A.J., 	 1972 	An implicit time integration scheme for baroclinic

Henderson J., 	 models of the atmosphere,

Turnbull C. 	 Mon. Wea. Rev., 100, 329-335.

371

Robert AJ., 	 1985 	A semi-Lagrangian and semi-implicit numerical

Yee T.L, 	 integration scheme for multilevel

Ritchie H. 	 atmospheric models,

Mon. Wea. Rev., 113,388-394.

Ross B.B., 	 1978 	The circulation associated with a cold front.

Orlanski I. 	 Part 2: Moist case,

J. Atmos. Sci., 35, 445-465.

Sadourney R. 	1972 	Conservative finite difference approximations of the

primitive equations on quasi-uniform spherical grids,

Mon. Wea. Rev., 100, 136-144.

Sadourney R. 	1975a Compressible model flows on the sphere,

J. Atmos. Sci., 32, 2103-2110.

Sadourney R. 	1975b The dynamics of finite difference models of

the shallow water equations,

J. Atmos. Sci., 32, 680-689.

Sadourney R., 	1968 	Integration of the nondivergent barotropic

Arakawa A., 	 vorticity equation with an icosahedral-hexagonal

Mintz V. 	 grid for the sphere,

Mon. Wea. Rev., 96, 351-356.

Sakellarides G. 	1984 	Some properties of the Asselin time filter in the

presence of friction,

ECMWF Tech. Memo. No. 89, Reading, U.K., 20pp.

Sankar-Rao M., 	1969 	Tests of the effect of grid resolution in a global

Unscheid L 	 prediction model,

Mon. Wea. Rev., 97, 659-664.

Sawyer J.S. 	 1963 	A semi-Lagrangian method of solving the

vorticity advection equation,

Tellus, 15, 336-342.

372

Schendel U. 	1984 	Introduction to numerical methods for parallel

computers,

Ellis Horwood Ltd, 151pp.

Schlesinger R.E.. 	1983 	The effects of the Asseiin time filter on numerical

Uccellini LW., 	 solutions of the linearised shallow water equations,

Johnson D.R. 	 Mon. Wea. Rev., 111, 455-467.

Searle J.W., 	1975 	A note on the effect of gridpoint numerical

Davies D.R. 	 errors on the large-scale flow characteristics

of a four-level model of the atmosphere,

Tellus, 27, 155-156.

Silberman I. 	1954 	Planetary waves in the atmosphere,

J. Meteor., 11, 27-34.

Simmons A.J., 	1975 	A comparison of spectral and finite difference

Hoskins B.J. 	 simulations of a growing baroclinic wave,

Q. J. R. Meteorol. Soc., 101, 551-565.

Simmons A.J., 	1978 	Stability of the semi-implicit method of time

Hoskins B.J., 	 integration,

Burridge D. 	 Mon. Wea. Rev., 106, 405-415.

Snelling D.F. 	1988a Standard FORTRAN77 as a parallel language,

Parallel Computing, 8, 409-414.

Snelling D.F. 	1988b A high resolution parallel Legendre

transform algorithm,

Lecture Notes in Comp. Sci., 297,

'Supercomputing', Springer-Verlag, 854-862.

Snelling D.F. 	1988c Tools for assessing multiprocessing,

Multiprocessing in Meteorological Modelling,

eds. Hoffmann and Snelling, Springer-Verlag, 438pp.

373

Snelling D.F., 	1988 	A comparative study of libraries for

Hoffmann G.-R. 	 parallel processing,

Parallel Computing, 8, 255-266.

Staniforth A.N. 	1987 	Review: Formulating efficient finite-element

codes for flows in regular domains,

Int. J. Num. Meth. in Fluids, 7, 1-16.

Staniforth AA, 	1977 	A finite element formulation for the vertical

Daley R.W. 	 discretization of sigma coordinate primitive

equation models,

Mon. Wea. Rev., 105, 11081118.

Staniforth AX, 	1977 	A semi-implicit finite element barotropic model,

Mitchell H.L. 	 Mon. Wea. Rev., 105, 154-169.

Staniforth A.N., 	1978 	A variable resolution finite element technique for

Mitchell H.L.

	

	 regional forecasting with the primitive equations,

Mon. Wea. Rev., 106,439-447.

Staniforth AX, 	1979 	A baroclinic finite element model for regional

Daley R.W. 	 forecasting with the primitive equations,

Mon. Wea. Rev., 107, 107-121.

Staniforth AX, 	1985 	Reply to comments on and addenda to "Some

Pudykiewicz J. 	 properties and comparative performance of the

semi-Lagrangian method of Robert in the solution

of the advective-diffusion equation",

Atmos. Ocean, 23, 195-200.

Staniforth AX, 	1986 	On the efficient evaluation of certain integrals in

Beaudoin C. 	 the Galerkin finite element method,

Int. J. Num. Meth. in Fluids, 6, 317-324.

374

Staniforth AX, 	1986 	Semi-implicit semi-Lagrangian integration schemes

Temperton C.

	

	 for a barotropic finite element regional model,

Mon. Wea. Rev., 114, 2078-2090.

Stephens PD., 	1986 	Providing muti-user access to Distributed

Yarwood J.K. 	 Array Processors,

Software - practise and experience, 16, 531-539.

Steppler J. 	 1986 	Finite element schemes for the vertical

discretization of the ECMWF forecast model

using quadratic and cubic elements,

ECMWF Tech. Rep.55, Reading, UK, 59pp.

Stoker J.J., 	 1975 	Final Report 1,

Isaacson E. 	 Courant Institute of Mathematical Sciences,

1MM 407, New York Univ., 73pp.

Strang G., 	 1983 	An analysis of the finite element method

Fix G.J. 	 Prentice-Hall, 306pp.

Suarez M.J. 	 1988 	Atmospheric modelling on a SIMD computer,

Multiprocessing in Meteorological Modelling,

eds. Hoffmann and Snelling, Spring er-Verlag, 438pp.

Sundstrom A., 	1979 	Computational problems related to limited area

Elvius T. 	 modelling,

Numerical methods used in atmospheric science,

Vol II, GARP Publ. Series No. 17, WMO.

Swartz B., 	 1974 	The relative efficiency of finite difference and

Wendroff B.

	

	 finite element methods. I. Hyperbolic problems

and splines,

SIAM J. Numer. Anal., 11, 979-993.

375

Tanguay M., 	1986 	Elimination of the Helmholtz equation associated

Robert A.J.

	

	 with the semi-implicit scheme in a gridpoint

model of the shallow-water equations,

Mon. Wea. Rev., 114, 2154-2162.

Tanqueray D.A., 	1988 	A distributed memory implementation of the

Snelling D.F. 	 shallow water equations,

Proc. ECMWF Workshop on Multiprocessors

in meteorological models, ECMWF, Reading.

Temperton C. 	1977 	Normal modes of a barotropic version of

the ECMWF gridpoint model,

ECMWF Research Dept. Internal Rep. 12,

Reading, 39pp.

Temperton C. 	1983 	Fast mixed-radix real Fourier transforms,

ECMWF Tech. Memo. No.71, Reading, 18pp.

Temperton C., 	1987 	An efficient two time level semi-Lagrangian

Staniforth A.N. 	 semi-implicit integration scheme,

Q. J. R. Meteorol. Soc., 113, 1025-1039.

Tett S.F.B., 	 1988 	Implementation of atmospheric models on large

Harwood R.S., 	 multi-processor surfaces,

Kenway R.D. 	 ECMWF Workshop on Multiprocessing in

Meteorological models, December.

Umscheid L., 	1971 	Further tests of a grid system for global

Sankar-Rao M. 	 numerical prediction,

Mon. Wea. Rev., 99, 686-690.

Umscheid L., 	1977 	A comparison of three global grids used in

Bannon P.R. 	 numerical prediction models,

Mon. Wea. Rev., 105,618-635.

376

Wait R. 	 1986 	The solution of finite element equations on the DAP,

Proc. of Vector and Parallel Processing,

Leon, Norway, June.

Wait R. 	 1988 	Partitioning and preconditioning of finite element

matrices on the DAP,

Parallel Computing, 8, 275-284.

Wait R., 	 1985 	Finite elements on the DAP,

Martindale I. 	 The math. of finite elements and applications,

V, 113-122, ed. J.R.Whiteman', Academic Press.

Wang H.H., 	 1972 	Numerical solutions of the one-dimensional

Halpern P., 	 primitive equations using Galerkin approximations

Douglas J., 	 with localised basis functions,

Duport T. 	 Mon. Wea. Rev., 100, 738-746.

Washington W.M., 	1970 	A January simulation experiment with the two-layer

Kasahara A.

	

	 version of the NCAR global circulation model,

Mon. Wea. Rev., 98, 559-580.

White P.W., 	 1988 	U.K. Meteorological Office's plans for using

Wiley R.L. 	 multiprocessor systems,

Multiprocessing in Meteorological Modelling,

eds. Hoffmann and Snelling, Springer-Verlag, 438pp.

Whiteway J., 	1979 	A parallel algorithm for solving tridiagonal systems,

DAP Newsletter No. 3, DAP Support Unit,

Queen Mary College, London.

Wiin-Nielson A. 	1959 	On the applications of trajectory methods in

numerical forecasting,

Tellus, 11, 180-196.

Williams R.T. 	1981 	On the formulation of finite element

prediction models,

Mon. Wea. Rev., 109, 463-466.

377

Williams R.T., 	1981 	Improved finite element forms for the

Zienkiewicz O.C. 	 shallow-water wave equations,

Int. J. Num. Meth. Fluids, 1, 81-97.

Williamson D.L. 	1968 	Integration of the barotropic vorticity equation

on a spherical geodesic grid,

TelIus, 20, 642-653.

Williamson D.L. 	1970 	Integration of the primitive barotropic model

over a spherical geodesic grid,

Mon. Wea. Rev., 98, 512-520.

Williamson D.L. 	1971 	A comparison of first and second order difference

approximations over a spherical geodesic grid,

J. Comput. Phys., 7, 301-309.

Williamson D.L. 	1976 	Linear stability of finite difference approximations

on a uniform latitude longitude grid with Fourier

filtering,

Mon. Wea. Rev., 104,31-41.

Williamson D.L. 	1979 	Difference approximations for fluid flow on a sphere,

Numerical methods used in atmospheric models,

Vol II, CARP PubI. Series No. 17, WMO, 53-123.

Williamson D.L., 	1973 	Comparison of grids and difference approximations

Browning G.L.

	

	 for numerical weather prediction over a sphere,

J. App!. Meteor., 12, 264-274.

Williamson D.L., 	1973 	On the importance of precision for short-range

Washington W.M. 	 forecasting and climate simulation,

J. AppI. Met., 12, 1254-1258.

Zienkiewicz O.C. 	1971 	The finite element method in engineering science,

McGrawHill, 521 pp.

378

