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Abstract 

Parallel computers are being increasingly used for meteorological 
modelling. It is therefore important to establish which types of parallel 
computer architectures are suitable for meteorological models and whether 
existing modelling techniques can be used efficiently. 

A study of meteorological modelling techniques on the ICL Distributed 
Array Processor (DAP) is described. This computer has 1-bit processing 
elements, connected as a 64x64 array, that execute the same instructions at 
the same time. It is programmed in DAP FORTRAN, a version of FORTRAN that 
supports parallel data objects. The architecture of this computer requires a 
different approach to algorithm design from conventional computers. 

Studies by other authors on applying gridpoint models to the DAP were 
reviewed. These studies concluded that global gridpoint models can make 
efficient use of the DAP, although the choice of finite difference grid is 
important because it affects the number of processors used. A regular 
latitude-longitude grid with Fourier filtering on polar latitudes appeared the 

best choice. 

In a spectral meteorological model, the Legendre transforms account for 
most of the CPU time. Therefore, prior to the implementation of a barotropic 
spectral model on the DAP, efficient parallel Legendre transform algorithms 
were derived. The performance of these algorithms was dependent on the 
way the data were mapped onto the processor array. The best algorithms 
resulted from the data mappings that made the most efficient use of memory. 
The spectral model based on these algorithms was not as efficient as an 
equivalent gridpoint model, mainly because of the different storage 
requirements for the spectral, Fourier and gridpoint representations of the 

variables. 

A two-dimensional finite element mesoscale model was implemented on 
the DAP to contrast the algorithms used for the gridpoint and spectral models. 
The finite element model was found to make efficient use of the processors 
and storage, if the equations were written to result in tridiagonal matrix 
equations. It was concluded that the finite element method is better suited to 
the DAP than the spectral method, although each is applied to different types 
of meteorological modelling problems. 

The algorithms used for meteorological modelling on other parallel 
computers were reviewed. In particular, the sophisticated techniques used to 
multiprocess a spectral forecast model on the 4 processor CRAY X-MP were 

described. 

In all the models studied, there was more parallelism available than could 
be exploited on the DAP. However, the lack of a fast data transfer facility, a 
limited processor memory and the array size constraints of DAP FORTRAN 
made the DAPs at Edinburgh University unsuitable for meteorological 
modelling problems in general. These objections do not apply to the latest 
generation DAP so this architecture was concluded to be suitable for gridpoint, 
spectral and finite element models. 
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CHAPTER 1 

INTRODUCTION 

With the development of the first electronic computer came the first 

successful numerical weather forecast at 500mb by Charney et al. (1950) using 

a barotropic model. Developments in numerical weather prediction led to the 

use of quasi-geostroPhiC models followed by primitive equation models in the 

late 1960s. Currently, models with a sophisticated representation of physical 

processes are used for daily medium range global forecasts, requiring typically 

a total of 10 12  operations on 10 6  gridpoints for a 10 day forecast. By the 

1990s, Bengtsson (1988) estimates that 10 14  operations will be required by 

such models. 

These advances in forecasting closely followed the rapid development in 

computer technology; roughly a ten-fold increase in computing speed every 

five years (Hockney and Jesshope. 1981). This increase is the result of 

improvements in hardware performance and the introduction of parallelism at 

all levels of computer architecture. 

Two broad classes of parallel computer can be identified. The first is the 

pipelined computer of which the CYBER 205 and the CRAY 1 are examples. 

The second is the processor array architecture consisting of many 

interconnected processors. The ICL Distributed Array Processor (DAP) is an 

example of this class, having 1-bit processors, connected as a 64
2  array. 

Whilst the speed of each processor is slow, the performance of the array as a 

whole can be tens of millions of floating point operations per second (Mflops). 

Up to now, meteorological models have been run on the pipelined class of 

computer. In the short term, this will continue because these machines offer 

the best performance and the code of these models has a long development 

time. However, in the long term, other architectural types may offer the best 

performance. It is therefore essential to gain experience and expertise in 

developing numerical weather prediction models on alternative parallel 

computers. 

The motivation for any study of meteorological modelling on parallel 

computers is to establish whether existing modelling techniques can be used 

efficiently, to develop new algorithms for such techniques and to develop any 
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new techniques required for specific architectures. What is more, the facilities 

offered by parallel computer systems need to be reviewed: what programming 

languages are available, what programming environment and tools are 

provided, what peripheral devices are available and whether input/output 

facilities are sufficient. From such a study it should be possible to list the 

requirements of future computer systems for meteorological models, identify 

drawbacks of different architectures and discuss trade-offs from a 

meteorological viewpoint. 

In this thesis, the application of numerical weather prediction to the ICL 

DAP is studied. To obtain the best performance, the processor array 

architecture of this machine requires a different approach to algorithm design. 

Furthermore, the programming language for the DAP is a parallel version of 

FORTRAN. Unlike the original DAPs, the current generation is built in VLSI and 

their physical size allows them to be used as add-on processors to 

workstations. Whilst these machines do not match the fastest pipelined 

computers available at present, arrays of 256 2  would give a performance of 

the order of several Gflops (10 floating point operations per second). A study 

of the suitability of this type of computer is therefore relevant to operational 

forecasting requirements. It could also be argued that research models that do 

not fully utilize the potential of a supercomputer would more suited to a local 

workstation with a DAP attached. 

This thesis will demonstrate the feasibility of using processor arrays for 

meteorological modelling based on the implementation and performance study 

of two models, using the latest numerical methods, on the ICL DAP. 

Experience gained from this study should not be applicable solely to the DAP 

but also to other massively parallel computers. Comparison with the 

techniques used to implement models on other architectures might indicate 

the types of computer most suited to meteorological modelling. Guidelines 

could be put forward for the design of models on future parallel computers 

which have their origins in the computer architectures of the present. 

The rest of this thesis is organized as follows. Chapter 2 reviews parallel 

computers, languages and algorithms. Chapter 3 reviews the various 

meteorological modelling techniques in use. Chapter 4 gives a general 

introduction to applying meteorological modelling to the DAP by reviewing 

past work. In chapter 5, new parallel algorithms for the Legendre transforms 
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are developed for the implementation of a barotrOpic spectral model on the 

DAP, described in chapter 6. Chapter 7 describes the implementation of a 

mesoscale finite element model on the DAP. Chapter 8 discusses the 

techniques used for meteorological modelling on other parallel architectures. 

Finally, chapter 9 presents conclusions and discusses the overall findings of 

this work. 
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CHAPTER 2 

PARALLEL COMPUTERS, LANGUAGES AND ALGORITHMS 

2.1. Introduction 

In this chapter the ICL DAP is described, together with a brief description 

of some other parallel computers. It is important to review parallel computer 

architectures likely to be commercially available in the near future, to be abie 

to comment on the architectures most suited to meteorological modelling and 

to anticipate future processing speeds. A discussion of programming 

languages for parallel computers is also presented. Finally, some of the 

considerations and problems involved in writing algorithms for parallel 

computers are described. Some well known algorithms for the ICL DAP, used 

in the meteorological models described in this thesis, are presented as 

examples. 

2.2. Classification of parallel computers 

The architecture of early computers is described as serial and referred to 

as the von Neumann organization. Flynn (1972) has classified this type of 

computer as asingle instruction stream/single data stream (SISD) computer. 

Parallelism can be introduced into computer architecture in several 

principal ways. From Hockney and Jesshope (1981), these are: 

Pipelining - overlapping of separate operations in an 

assembly line fashion to improve the performance of an 

arithmetic or control unit. 

Functional - providing several independent units for 

performing different functions, such as logic or addition, to 

operate simultaneously on different data. 

Array - providing an array of identical processing elements 

operating simultaneously under the same instructions on 

different data. 

Multiprocessing - the provision of several processors, each 

obeying its own 	instructions, with a facility for 
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interprocessor communication. 

The idea of pipelining applies to basic operations, such as the steps in a 

floating point addition. If two or more pipes are present in a machine, different 

operations may be 'chained' to give an improved performance. For example, 

suppose a computer contained a multiplication pipe and an addition pipe. If a 

vector multiply instruction was followed by a vector add, chaining allows the 

addition pipe to take the results emerging from the multiplication pipe, without 

waiting for the first vector instruction to complete. 

A pipelined vector computer is usually classified as a SISD computer 

(Hockney, 1977), although Flynn (1972) preferred to classify this type of 

architecture as single instruction stream/multiple data stream (SIMD). However, 

the term SIMD has become associated with arrays of processors working in 

lockstep (i.e. a common instruction stream) and is usually used to distinguish 

such array processors from pipelined computers. The classification of 

computers as multiple instruction stream/multiple data stream (MIMD) 

machines follows Flynn's (1972) definition and is used to refer to all forms of 

multiprocessors, where each processor obeys its own instructions. 

This classification scheme, however, is very general. Shore (1973) and 

Hockey and Jesshope (1981) both describe more detailed classification 

schemes based on architectural configuration, rather than how the machine 

relates its instructions to the data being processed. However, these 

comprehensive schemes have not come into general use. 

2.3. Description of some current and future parallel computers 

There are now many parallel computers commercially available, with more 

used for research in universities. In this section, a brief overview is given of 

some parallel computers, most of which have been used for meteorological 

modelling. 
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2.3.1. Pipelined computers 

2.3.1.1. Cray 

The CRAY-1, first delivered in 1976, was the first commercially successful 

pipelined vector supercomputer. The CRAY X-MP is a multiprocessor 

upgrading of the CRAY-1 architecture, available with 1, 2 or 4 processors and 

central memory sizes of 2, 4, 8 or 16Mwords. A Solid-state Storage Device 

(SSD) is also available with memory sizes from 32 to 512Mwords. The SSD 

functions as a secondary memory and can be accessed using normal FORTRAN 

I/O statements. As the SSD is a nonrotating memory device, transfer rates are 

typically 2000Mbytes per second, 200 times faster than transfers from disk. 

The clock period of the CRAY X-MP processor is 9.5nsecs. The peak speed 

of one processor is 21OMflops, so the peak performance of the 4 processor 

system is about 0.8Gflops. 

The central memory is divided into 16 banks which are shared between the 

processors. As each processor has three computational ports, memory bank 

conflicts can arise. Larson (1988) describes some programming techniques to 

avoid memory contention. 

The CRAY X-MP operating system allows multiple jobs to be executing 

simultaneously and programs to utilize several processors. Support for 

multiprocessing in programs is provided by the multitasking (or macrotasking) 

FORTRAN subroutine library and the microtasking FORTRAN compiler directives. 

As task creation overheads are relatively large, macrotasking is applied at the 

subroutine level, whereas the small overheads for microtasking mean it is 

applied at the loop level. 

The CRAY Y-MP, due to be commercially available in late 1989, is an 

upgraded CRAY X-MP with 8 processors. Its peak performance is about 

5Gflops. 

The CRAY-2 is available with 2 or 4 processors. The combined peak 

performance of 4 processors is 1.8GfIops. The clock period is 4.1nsecs. Each 

processor is pipelined with separate functional units for integer, scalar and 

floating point arithmetic and eight 64 element vector registers. 
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The CRAY-2 has a large directly addressable shared memory of up to 

256Mwords, arranged in 128 banks. In addition, each processor has a local 

memory of 16kwords used to temporarily hold scalar operands or vector 

segments during computation. The CRAY-2 offers the same parallel processing 

facilities as the CRAY X-MP. 

The CRAY-3, due to be available in 1990, is an implementation of the 

CRAY-2 in gallium arsenide semiconductor technology. The machine is 

expected to have 8 or 16 processors and the performance of each is expected 

to be about lGflops. 

2.3.1.2. ETA 

The Engineering Technology Associates (ETA) company was founded in 

1983, as an offshoot to the Control Data Corporation (CDC), with the aim of 

developing a lOGflops supercomputer commonly known as the ETA-10. The 

ETA-10 can support up to 8 processors where each processor is based on the 

CDC CYBER 205 architecture. Each processor contains two vector pipelines 

but, unlike the CRAY machines, has no vector registers, fetching and saving 

vectors directly from memory instead. The two vector pipelines can operate 

concurrently with the scalar unit. 

An unusual feature of the ETA-10 is that the processors are immersed in 

liquid nitrogen and cooled to a temperature of 77K. This enables the clock 

period to be reduced. The 8 processor ETA-10 is rated at 4.5Gflops for 64-bit 

and gGflops for 32-bit floating pcint arithmetic, with a 7nsecs clock period. 

The ETA-10 is different from the CRAY computers as it has a hierarchical 

memory. Each processor is connected to its own 32Mbytes of local memory 

which in turn is connected to a shared memory of 256Mbytes to 2Gbytes in 

size. The shared memory is also connected to the I/O processors. The 

ETA-10 is a virtual memory machine, unlike the CRAY computers. 

The parallel programming environment for the ETA-10 provides three types 

of approaches. The first is the use of compiler directives, the second is the 

provision of a multitasking library and the third, unique to ETA, is the provision 

of a FORTRAN-like language, used in a top-down design approach, which 

contains all the parallel constructs. This top layer then calls the FORTRAN 

subroutines to execute the computation. The memory hierarchy is reflected in 
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the complexity of the compiler directives and the multitasking library. Snelling 

(1988) reports that the ETA multitasking library has a total of 61 subroutines 

requiring a total of 187 parameters, compared to 16 subroutines and 22 

parameters for the CRAY multitasking library. 

2.3.1.3. IBM 

The IBM corporation offer the IBM 3090/200 (2 processors) and the IBM 

3090/400 (4 processors) with an optional vector facility for each processor. 

Each vector facility has two pipelined arithmetic units connected to 16 vector 

registers, each of which contains 128 32-bit elements. The peak performance 

of the 3090/400 is 430MfIopS. The processors access a shared memory of 

64Mbytes (model 200) or 128Mbytes (model 400), expandable to three times 

these sizes. 

Macrotasking is available through a FORTRAN multitasking library. This is 

relatively simple, compared to that of CRAY, with 4 subroutines requiring a 

total of 5 parameters. No microtasking facilities are available. 

2.3.1.4. Japanese supercomputers 

The three largest Japanese computer manufacturers have been making 

pipelined supercomputers since the late 1970s. The current generation of 

supercomputers have only a single processor but have peak performances 

comparable to the CRAY and ETA machines. 

Fujitsu have produced the 250MfIops VP-100, 500Mflops VP-200 and the 

lGflops VP-400. The machines have multiple vector units and a clock period 

of 7.5nsecs. They also contain a memory of 256Mbytes. 

Hitachi have produced the 315Mflops S-810/10 and the 630Mflops 

S-810/20. This also has multiple vector units with a 14nsecs clock period. The 

S-810/20 may include 1Gbyte of solid state storage. 

NEC make the 570Mflops SX-1 and the 1.3Gflops SX-2. Again, each 

machine has multiple vector units with a clock period of 6nsecs. The faster 

machine may include a 2Gbytes solid state storage device to go with 

256Mbytes of main memory. 

The next generation of Japanese supercomputers will be multiprocessors. 
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NEC recently announced the SX-3, due for release in the mid 1990s, which is a 

four processor machine capable of 22Gflops. Fujitsu are designing an •8 

processor machine for the 1990s. 

2.3.2. Array computers 

Computers in this class include the SIMD type such as the DAP (described 

in detail in the next section) and the MIMD type such as the FPS T-series. The 

memory for these systems may be shared between processors through an 

interconnecting switching network or distributed local to each processor, with 

processors connected by a network or switch. Hockney (1985) discusses 

these architectural types in more detail. 

2.3.2.1. Goodyear Aerospace Corporation 

The Goodyear Aerospace Corporation delivered the SIMO Massively Parallel 

Processor (MPP) to the NASA Goddard Space Flight Centre in 1983. It consists 

of 1-bit processing elements (PEs) connected in a 128x128 mesh. Each PE has 

connections to its four nearest neighbours and has 1kbyte of memory. The 

machine was constructed in VLSI chips. The clock period is lOOnsecs. 

The MPP is designed principally for satellite picture processing but has also 

been used for fluid dynamics problems (Gallapoulos, 1984). The floating point 

performance of the machine is enhanced by the i,iclusion of a programmable 

shift register to give 200Mflops for 32-bit floating point multiplication. 

Input and output on the MPP is accomplished by shifting data across the 

columns of the PE array, either from a separate host computer or an input 

interface. The MPP has only a global broadcast capability, unlike the DAP 

which has row and column broadcast capability. The MPP is programmed in a 

parallel version of Pascal. 

2.3.2.2. Thinking Machines 

The Connection Machine CM-1 built by Thinking Machines Incorporated has 

65536 1-bit processors and is 'a SIMD machine. The recently introduced CM-2 

adds 2048 Weitek floating point processors to give a peak performance of 

32Gflops. Sixteen bit-serial processors are fabricated on a single chip and 

each processor has 8kbytes of local memory, so the machine contains 
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512Mbytes of memory as a whole. No code is stored in the local memory, the 

CM is used by a host computer to execute the parallel sections of a program; 

all serial code is executed on the host. Every two chips (32 1-bit processors) 

share a Weitek floating point unit. 

Communication between processors on the same chip is achieved through 

a Benes network (Hockney and Jesshope, 1981) whilst the chips themselves 

are connected as a hypercube. In a hypercube, if all the processors are 

numbered 0 to n, processor i is connected to all processors j, such that the 

binary representations of i and j differ by 1 bit. See Hockney and Jesstiope 

(1981) for more details. The hardware also supports communications on a 

two-dimensional grid, like the DAP, which is quicker than the general 

communication on the hypercube. 

The Connection Machine can be programmed in parallel versions of 

FORTRAN, C and LISP. A useful feature of the CM is that the system supports 

virtual processors in that it can be programmed as if it has more processors 

than it actually has. Each processor simulates virtual processors by dividing 

its memory space into equal parts and sequentially serving the virtual 

processors. This feature is typically used to assign a virtual processor to each 

gridpoint in a numerical solution. 

2.3.2.3. Floating Point Systems 

The Floating Point Systems MIMD T-series is another distributed memory 

machine based on a hypercube network. Each node of the hypercube consists 

of an INMOS 1400 transputer, 1Mbyte of memory and a Weitek floating point 

vector unit. The T400 transputer contains a 32-bit integer processor, 2Kbytes 

of RAM and four bi-directional serial communication ports, all on one chip in 

VLSI. The transputer acts as a controller to the vector unit and also performs 

integer arithmetic in parallel. The vector unit has pipelined functional units 

and vector registers. The peak performance of each node is 12Mflops. The 

largest possible T-series configuration would have 16384 nodes with a peak 

processing speed of 192Gflops. The computer can be programmed in OCCAM, 

FORTRAN or C. 
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2.3.2.4. Edinburgh Concurrent Supercomputer 

When the ICL 2900 mainframe service at Edinburgh University was closed 

down, a replacement for the ICL DAPs was sought. This led to the Edinburgh 

Concurrent Supercomputer (ECS) project. The ECS is a MIMD machine 

consisting of T800 transputers as nodes on an electronically configurable 

network. The T800 transputer has a 32-bit floating point unit as well as an 

integer unit and 4Kbytes of memory instead of 2Kbytes on the T400. Each 

node on the ECS also has 4Mbytes of external memory. Each transputer has a 

peak performance of 0.8Mflops, although this can only be sustained if the data 

is stored in the internal memory. 

The ECS is hosted by a microVAX with three 0.8Gbyte disks. It can be 

programmed in FORTRAN, C, OCCAM, or a mixture. At present, the largest 

single-user-resource offered on the ECS is 259 nodes, which would give a 

peak performance of approximately 200Mflops. 

2.4. The ICI DAP 

The design of the International Computers Limited (ICL) Distributed Array 

Processor (DAP) (Reddaway, 1973) was begun in 1972 and the first production 

machine was delivered in 1980, to Queen Mary College in London. The first 

DAP for Edinburgh University was delivered in 1982 and a second DAP 

delivered in 1983. The integration of the DAPs into the dual ICL 2976 

mainframe service running the Edinburgh Multi-Access System (EMAS) 

operating system is described by Brown (1986) and Stephens and Yarwood 

(1986). 

2.4.1. Architecture 

The DAP is a SIMD computer comprising a 64x64 array of 1-bit processing 

elements. Each PE is connected to its four nearest neighbours and has its 

own 4Kbits of memory, expandable to 1161(bits (see Fig. 1). Each DAP at 

Edinburgh University had a memory size of 2Mbytes. The cycle time of the 

DAP is 200nsecs. 

Unlike most supercomputers, the DAP was built from modest technology at 

low levels of integration. The simple nature of the bit processors meant the 

hardware was cheap and quick to develop and manufacture. The drawback 
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MCU Single controller 

PE array 

Random Access 
Memory (RAM) 

Figure 1. Schematic illustration of the DAP showing processor connections and 

processor memory. From Ettinger (1987). 
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was the physical size of the machine. 

The decoding and issuing of instructions is performed by the Master 

Control Unit (MCU). The code for the DAP and the program's data are both 

stored in the processor memory. The MCU contains eight 64-bit registers 

which are connected to row and column highways leading to each processor. 

Thus register data can be broadcast to all the array, or to all rows or all 

columns. 

The DAP forms an integral part of the host mainframe ICL 2900. It can 

provide memory in the conventional way, for example if the host system is 

being heavily used, or it can be instructed to execute autonomously. The DAP 

interface to the 2900 mainframe is provided by the DAP access controller and 

the column highway. Therefore, data transfer between the host and the DAP 

takes place 1 row of 64 bits at a time, requiring 1 cycle per access. 

Each PE contains an activity register which is used to determine whether 

store operations are obeyed or not. Therefore the writing of data back to 

memory can be controlled for each individual PE, by the user, in the DAP 

program. 

Flanders et al. (1977) and HockneV and Jesshope (1981) give more details 

on the architecture of the DAP. 

2.4.2. Storage and processing modes 

There are three formats in which data can be held in the DAP store. The 

first, known as FORTRAN storage mode, is the way the host stores data in the 

DAP memory (ICL, 1979). Two 32-bit words are held in a row of a DAP store 

plane. Before it can be used, the DAP program must reformat this data, into 

either the horizontal or vertical storage format. 

The horizontal storage format is similar to FORTRAN storage mode except 

that each word is held one per row, right justified. This mode leads to vector 

processing where 64 numbers are stored on one plane and processed in 

parallel. 

In the vertical storage format, words are held vertically in the store of each 

PE. This gives matrix processing in which 4096 numbers are processed in 
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parallel, but the arithmetic in this case is bit serial. Arithmetic operations take 

longer in vertical mode than in horizontal mode but the factor is less than 64 

so that optimum processing is achieved in vertical mode. 

2.4.3. Programming and performance 

The DAP is programmed in DAP FORTRAN, which is based on FORTRAN77 

but includes extensions to support vector and matrix processing. The language 

is described in a later section. 

A program to use the DAP consists of a FORTRAN part that runs on the 

host and a DAP FORTRAN part that is called from the host part of the 

program. Brown (1986) describes the procedure for the preparation and 

running of DAP programs at Edinburgh University in more detail. 

DAP FORTRAN does not support the FORTRAN READ and WRITE statements 

and all communication of data is made via COMMON blocks shared between the 

DAP and the host. The lack of DAP FORTRAN I/O statements means that 

debugging DAP FORTRAN programs becomes difficult. 

As the DAP consists of 1-bit processing elements, basic arithmetic 

operations have to be built up in software. For the matrix processing mode, 

there is a strong dependency of performance on word length. DAP FORTRAN 

will allow floating point variables to be declared as 3 to 8 bytes in length, 

integers 1 to 8 bytes. For integer arithmetic, performance varies linearly with 

word length for addition and as the square of the word length for 

multiplication. The overheads of exponent and mantissa manipulation mean the 

same is not true for floating point addition and multiplication. However, for a 

typical mix of addition and multiplication floating point operations show a 

linear trend with word length. There are obvious gains in performance to be 

made if block floating point arithmetic is used. In block floating point 

arithmetic, a single exponent is used for a data array. The largest value in the 

array determines the scale factor and exponent for the entire array. However, 

operations are still done in fixed point arithmetic as all values share the same 

exponent. If overflow occurs, the exponent increases and the entire array is 

shifted 1 bit. 

For 32-bit floating point numbers in matrix mode, addition takes place at 

25Mflops and multiplication at 14Mflops. Bit level algorithms can be used for 
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operations such as computing the sum, logarithm or square root of the 4096 

values in the PE array. The relative performances of these operations to basic 

arithmetic operations is often very different to that found on conventional 

architectures. For example, the DAP FORTRAN version of the MAX function 

achieves a processing rate of 60Mflops whilst changing the sign of 4096 

vertically stored numbers can be done at 10Gflops (Flanders et al. 1977). 

2.4.4. Next generations 

The second generation DAP, produced in 1986 and called the mil-DAP, was 

a 32x32 PE array in LSI. The clock cycle was 145nsecs and the machine had 

2Mbytes of memory. It was hosted by an ICL Perq workstation and was 

mainly intended for signal processing. 

The Active Memory Technology (AMT) company was set up in October 

1986, as a spin off from ICL, to develop and market the DAP technology. They 

have produced the third generation DAP, the AMT DAP 500 and 600 series 

implemented in VLSI. The first machine, a DAP 510, was delivered in late 1987. 

The third generation DAP has many improvements over the first generation, 

both in terms, of hardware and software. One significant difference is that 

they are add-on processors to a SUN or VAX computer, rather than forming an 

integral part of a mainframe computer. They can either provide high 

performance for a workstation environment or act as a mainframe service. 

The 500 series comprises a 32x32 array of PEs with either a 6MHz 

(167nsecs; model 506) or 10MHz (lOOnsecs; model 510) clock. The 600 series 

is a 64x64 array. 

The PE array is controlled from the Master Control Unit as before, except 

that the DAP program code is now held in a separate code memory attached 

to the MCU. This has a minimum size of 0.5Mbytes and can be expanded to 

2Mbytes. The minimum size for the PE memory is 321(bits expandable up to 

iMbit, giving a maximum total memory of 128Mbytes for the 500 series or 

5 12Mbytes for the 600 series. 

A Host Connection Unit is responsible for all communication to the host. 

It contains a 32-bit microprocessor with various interfaces and connects to 

the MCU. 

r 
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The PE in this generation is exactly the same as in the original DAP. 

However, an additional bit-plane exists between the processors and their 

memory to act as a fast data transfer channel between memory and peripheral 

devices, such as a high resolution colour display. Data can be transferred at a 

rate of 70Mbytes/sec utilizing just 6% of the processor cycles during the 

transfer. This facility, coupled with the DAP's ability to use short word 

lengths, makes it well suited to graphics and image processing applications. 

The DAP 510 has a maximum floating point performance, on 32-bit words, 

of 60Mflops. This is 2.5 times faster than the 64x64 ICL DAP. The DAP 610 

would therefore be rated at 240Mflops, nearly 10 times faster than the first 

generation DAP; the difference in clock period accounting for a factor of 2. A 

DAP 710 (2 or 128x128) would have a peak performance of about lGflops, 5 

times faster than the MPP which also has a 128x128 array and a lOOnsec 

clock. 

The programming environment has also been improved. The AMT DAP can 

be programmed in FORTRAN-PLUS (DAP FORTRAN renamed) and the DAP 

assembly language APAL. DAP programs are developed on the host as before. 

Any run-time errors, such as divide by zero, are detected by the DAP which 

informs the user on the host and automatically enters an interactive 

debugging mode. The user can then request the value of variables by name. 

Alternatively, a dump can be made and saved for later analysis. When in this 

debugging mode, the user can resume or abandon the run at any time. 

AMT recently announced (AMT, 1989) their intention to develop 

FORTRAN-PLUS (enhanced) and FORTRAN 8X compilers. The main new feature 

of FORTRAN-PLUS (enhanced) is the lack of size constraints for matrix and 

vector type variables. In FORTRAN-PLUS (or DAP FORTRAN) these types are 

constrained to the size of the PE array. The FORTRAN 8X language is 

attractive to AMT as it includes similar array processing statements to DAP 

FORTRAN. As it will also need to support all FORTRAN 77 instructions, this 

makes the DAP potentially available to more users. 

In reaching conclusions about the suitability of the DAP to meteorological 

modelling, it is obviously important to take account of the facilities provided 

by this latest generation of the DAP. 
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2.5. Programming languages for parallel computers 

2.5.1. Introduction 

Every programming language is based on the type of computer system 

that the computer program is to run on. The sequential von Neumann 

architecture has therefore influenced the design of programs since the 1950s. 

With the development of parallel computers (SIMO and MIMD) the need arose 

for languages to reflect the new hardware, either by extracting parallelism 

from existing sequential programs (e.g. vectorization, parallel processing 

subroutine libraries, refined languages), by extending languages to include 

parallel constructs (e.g. DAP FORTRAN) or by designing new parallel languages 

(e.g. OCCAM). A great deal of work has been done in these areas and they 

are discussed in more detail in subsequent sections and by Jesshope (1987). 

Hockney and Jesshope (1981) introduce the principle of the conservation of 

parallelism. This states that the degree of parallelism should not decrease 

from the algorithm development stage, through the programming stage to the 

code executing on the machine. This is desirable because it is much easier to 

translate from a parallel to a serial approach, rather than from a sequential to 

parallel approach which would require a detailed program analysis. 

Unfortunately, the compilers of pipelined vector computers violate this 

principle, in that intervention by the programmer is often required to achieve 

the desired performance. However, this method has been successful because 

of the long development time and the cost of large FORTRAN programs. It also 

allows programs to be ported between different computers, something that is 

generally not possible for the extended or new parallel languages without 

rewriting the code. 

2.5.2. Data management 

The extraction of parallelism from a program is the application of the 

Parallelizatiofl Principle (Klappholz et a!, 1987) by the compiler. Put simply, this 

is the analysis of the program's pattern of data access, as code sections can 

be performed in parallel if they do not write to the same area of memory. 

Thus the parallelization of code is intimately related to the access of data. 

Data management is probably the most critical aspect of parallel 

processing. A multiprocessor system may support a shared memory directly 
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connected to the processors (e.g. CRAY X-MP), or connected via a switching 

network. The memory may be distributed, where each processor has direct 

connection to its own local memory (e.g. ICL DAP), or a memory hierarchy may 

exist. In the same way, a programmer may require that data is to be shared 

between all processors or is private to a processor. There may also be a need 

for semi-private data, which is to be shared between groups of processors. 

The availability of these data classes within a language will be strongly 

influenced by the intended architecture and have an effect on the design of 

the algorithms. Data security is also an issue, since unrepeatable results 

(known as races) can occur from improper use of shared data. 

2.5.3. Models of parallelism 

There are two ways in which parallelism can be exploited in applications. 

The first is 'data parallelism' where an operation or sequence of operations is 

applied simultaneously to a set of data values. This is SIMD mode. The 

second is known as 'process parallelism', where multiple operations, or 

multiple operation sequences, are applied simultaneously to the same or 

different data. Languages for SIMD computers need only support data 

parallelism, whereas both may be supported for MIMD computers. The 

requirements and features of languages that support these models of 

parallelism are described at length by Hockney and Jesshope (1981) and 

Jesshope (1987) and are summarized below. 

2.5.3.1. Data parallelism 

In a sequential language, operations on an array are applied on an array 

element basis within a loop. When these operations are independent of the 

data, parallel processing can be applied. Thus, it is natural to use the array as 

a basic parallel construct. The most general approach is where an array of 

any number of dimensions can be treated as a distinct object. Any reference 

to the array then refers to all the elements in the array. This approach has 

been adopted for the forthcoming FORTRAN 8X standard (Reid and Wilson, 

1986). 

Many languages, essentially those for processor arrays, have compromised 

this general approach and restricted the number of dimensions over which the 

array can be considered as a parallel object. Any further dimensions must be 
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indexed. DAP FORTRAN (ICL, 1979) uses this approach, where the first or first 

two dimensions only may be referenced in parallel and these dimensions are 

constrained to the size of the processor array. This has the disadvantage that 

the language becomes machine and array size dependent, making programs 

nonportable. 

Indexing parallel data objects can be thought of as a rank reducing 

operation (Hockney and Jesshope, 1981). Thus, a two-dimensional matrix could 

be indexed as a vector or a scalar. More generally, it becomes necessary to 

specify regions of the array which are to be manipulated and updated. DAP 

FORTRAN provides good examples of these facilities and is discussed later. 

2.5.3.2. Process parallelism 

Process parallelism in programming languages has arisen from the need to 

exploit MIMD multiprocessor computers and concurrency in algorithms. 

Support for concurrent processes in a language can be provided by allowing 

process creation during execution or by assuming all processes to be active at 

the start of the program and remain so for its lifetime. 

Process creation during program execution uses the fork/join approach. 

The CRAY multitasking library provides a TSKSTART routine to create a new 

process (or task) and a TSKWAIT routine which causes a process to wait until 

the specified process terminates. The PAR construct in OCCAM, placed around 

statements, uses the fork/join approach but can be applied to a piece of work 

of a shorter time duration than on the CRAY because of the smaller process 

creation overheads. 

Process parallelism is an MIMD mode of operation in which the task of 

algorithm design is inherently more complex than for SIMD mode or the use of 

data parallelism. What is more, an MIMD algorithm will be harder to debug 

since new types of errors, not possible in SIMO (or SISD) programming, can 

occur. These are described in more detail in a later section. As discussed by 

Jesshope (1987), this additional complexity requires expressive programming 

languages with simple but powerful abstract constructs with which to exploit 

the concurrency in the algorithms. 
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2.5.4. Communication and synchronization 

Communication and synchronization overheads are among the main 

reasons why the speed-up of a program on N processors is not N SIMD 

machines are simpler than MIMD machines in this respect as no 

synchronization is required. 

Communication between processes can be via an interconnecting network 

(e.g. a transputer based architecture), a communications buffer (e.g. the 

ETA-b) or by a shared variable in a global memory (e.g. CRAY X-MP). For a 

network system, messages or data can be passed directly between processes 

(direct-send systems) or left with a global entity for later collection by the 

relevant process (mailbox systems). The level at which communication is 

supported in a language varies. Since communication is generally an overhead 

(except in cases where the cost can be completely masked by concurrent 

processing), parallel MIMO algorithms should ideally contain a minimum of 

interprocessor communication coupled with a fast and efficient communication 

network. 

Unless each process is independent, some means of synchronization will 

be required to ensure the correct behaviour of the program. There are two 

basic types of synchronization; data and control oriented. 

Data oriented synchronization is used to synchronize the updating of 

variables which are shared between processes. Variables must have an 

associated status to indicate whether they are full or empty. The 

programming language described by Jordan (1987), 'The Force', supports this 

form of synchronization. 

One control oriented synchronization concept is that of the barrier 

(Axelrod, 1986). A barrier defines a point in the control flow of an algorithm 

or program at which all processes must arrive before any are allowed to 

proceed further. A barrier is expensive in terms of communication since each 

process must communicate with every other process. Additionally, since all 

processes must wait at the barrier until the last arrives, the effects of 

fluctuations in process execution time or imperfect load balancing are 

maximized. However, one advantage of the barrier is that it can be 

implemented such that each process does not need to explicitly perform any 

communication (this can be hidden at a lower system level), so that programs 



can be independent of the number of processes (Jordan, 1987). The fork/join 

approach to process control also provides a means of synchronization as 

mentioned previously. 

Control oriented synchronization also uses the concept of a critical region. 

A critical region is a protected section of sequential code through which only 

one process is allowed to progress at any time. If any other processes reach 

this critical region whilst another process is executing it, they wait until that 

process has completed. This mutually exclusive condition is usually used for 

writing to shared memory locations. The LOCKS in the CRAY multitasking 

library (CRAY, 1986) are a facility for defining critical regions. 

The concepts of communication and synchronization are unified in the 

paper by Hoare (1978), where simple input and output commands are 

introduced for communication between processes. If one process expects 

input from another, it will wait until the second process is ready to send. 

Likewise, a process will wait to send data until the receiving process is ready. 

Thus processes can be made to synchronize by communicating. This simple 

approach can be extended to the barrier concept. These ideas have since 

been incorporated into-the OCCAM and ADA programming languages. 

2.5.5. Parallelism from sequential languages 

The pipelined vector class of computers use vectorizing compilers to 

generate parallel machine instructions from sequential code. This method is 

attractive because standard FORTRAN can generally be used, although for the 

best performance the programmer usually has to adopt a suitable 

programming style. The compiler will analyse DO loops, generally the 

innermost loop, substituting vector instructions. More intelligent compilers 

will analyse nested loops and can reorder them to remove a data dependency 

in an inner loop (Hockney and Jesshope, 1981). 

In a loop, conditional statements and sequential data dependencies can 

inhibit vectorization. Conditional statements can often be vectorized by using 

a masking technique. Those loops with conditional statements that cannot be 

vectorized can usually be replaced with a vector function (e.g. the CRAY vector 

merge functions). 

Facilities for FORTRAN programs to make use of multiple processors have 
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been provided in the form of compiler directives and subroutine libraries. 

Compiler directives take the form of a normal FORTRAN comment line with a 

special string of characters, including the directive, which the compiler 

recognizes. Compiler directives are advantageous since they do not require 

modifications to executable FORTRAN statements. Parallel processing 

subroutine libraries are provided by the major supercomputer manufacturers 

CRAY, ETA and IBM. These vary greatly in the facilities offered, as discussed 

in the survey by Snelling and Hoffmann (1988). All use the fork/join concept 

of process control discussed above. The libraries all reflect the underlying 

architecture and are therefore machine dependent. 

The refined language methodology (Klappholz et al. 1987) offers an 

evolutionary approach to the problem of moving programs from SISD to MIMD 

machines. A range - f tools is provided to support the programmer in 

developing parallel programs based on a refined sequential language (i.e. 

FORTRAN or C). Klappholz et al. (1987) describe the software tool Prefine, 

which analyses the pattern of data access within subroutines and between 

subroutines. The analysis of this tool can be combined with a sequential 

program in standard FORTRAN or C, which the compiler then exploits by using 

the parallelization principle to translate specifications of data access rights 

into parallel processes. The additional data access information enables a 

larger degree of parallelism to be detected. Furthermore, runtime error 

checking code can use the same information to prevent races. In essence, 

Prefine performs the translation from standard FORTRAN or C to the refined 

version of the language. The refined version is an extension of the original 

with added syntax for definition of data access rights. The refined languages 

are therefore still sequential languages, but provide an evolutionary step for 

moving large sequential programs to a safe parallel form, free from the errors 

associated with MIMO programs. 

2.5.6. Extensions to existing languages 

Language extensions for parallel processing use either data parallelism or 

process parallelism, occasionally both. Languages for SIMD computers use the 

data parallelism approach by incorporating parallel data objects into their 

syntax and providing facilities for manipulating these objects. Extensions for 

use with MIMD machines have generally supported process parallelism through 

the use of preprocessors or macros (Leasure, 1988) to hide machine 
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dependent instructions. 

Extended languages to support data parallelism include; Actus II (a Pascal 

based language for the DAP, described by Perrott et 8/. 1987), DAP FORTRAN 

(described in more detail below) and FORTRAN 8X (Reid and Wilson, 1986). 

Both Actus II and FORTRAN 8X support the declaration of arrays as parallel 

objects with unconstrained rank (or number of parallel dimensions) and range 

(length of each dimension) unlike DAP FORTRAN which is more restrictive. All 

the languages have been extended so that functions and subroutines can be 

passed and can return parallel data objects. Actus II provides indexing facilities 

and operations for data alignment. FORTRAN 8X is expected to include 

powerful indexing facilities similar to DAP FORTRAN. For example, the 

statement, WHERE(A.GT.0) B = B/A performs the division on elements in B 

where the corresponding elements in A are nonzero (A and B are parallel data 

arrays). In DAP FORTRAN, this would be written as B(A.GT.0) = B/A. One 

important advantage with parallel data constructs is that the program becomes 

more concise and easier to read as, for example, loops over individual array 

elements are no longer needed. 

The Force programming language (Jordan, 1987) is an example of a 

portable, parallel programming language based on FORTRAN, incorporating 

process control primitives which are translated to machine dependent 

statements using a macro preprocessor. The language is portable because the 

parallel instructions embody simple process parallelism constructs which are 

machine independent. Shared and private data are supported as well as data 

and control synchronization concepts. The Force has been implemented on a 

variety of computers (e.g. the CRAY-2), but can only be applied to shared 

memory multiprocessors. 

2.5.6.1. DAP FORTRAN 

As an example of an extended language supporting data parallelism and as 

the language is used for the work presented in this thesis, a brief review of 

DAP FORTRAN (ICL, 1979) is given here. 

In DAP FORTRAN, arrays are declared in the usual way. For example, 

DIMENSION VECTO, MAT(,), MAT3(,,3) 
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defines VECT to be a vector of 64 elements, stored in horizontal format, with 

MAT a matrix of 64x64 elements, stored in the vertical format. Both are parallel 

data objects. Arrays or sets of vectors and matrices can be defined in the 

usual way; MAT3 is an array of 64x64x3 elements. 

Operations on vectors and matrices take place on all elements 

simultaneously. For example, the FORTRAN code below, 

DO 1 J = 1, 64 
DO 1 I = 1, 64 

1 M1(I,J) = Ml(I,J) + M2(I,J) 

could be replaced in DAP FORTRAN, by, 

Ml = Ml + M2 

Indexing the constrained (parallel) dimensions can be performed with 

integer, integer vector or logical indices, on the left and right hand side of 

assignment statements. For example, MAT( ,3) would select a vector equal to 

the third column of the matrix. If IV() is an integer vector, whose elements 

all lie in the range 1 to 64, MAT(IV,) selects a vector containing MAT(IV(I),I) 

in element I. If LV() and LM(,) are a logical vector and logical matrix 

respectively, MAT( ,LV) selects a column and MAT(LM) selects a scalar when 

used on the RHS of an assignment statement or in a procedure call. The 

logical vector and matrix must have only one element TRUE. When this 

indexing is used on the LHS of an assignment statement, this restriction does 

not apply. For example, MAT(LM) = would cause updating of the matrix 

elements only where the correspondin' element of LM was TRUE. This 

powerful facility is known as masking. Any valid logical expression can be 

substituted in place of the logical matrix, as shown in the previous section. As 

logical data objects occupy one bit plane, logical operations are fast and have 

a negligible overhead in the indexing operations. 

The movement of data between processors is done using functions. Planar 

and cyclic boundary conditions can be specified at the edges of the PE array. 

When planar conditions are specified, zeros are shifted in to replace boundary 

values. With cyclic conditions, data shifted off one edge of the array appear at 
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the opposite edge. For example, SHNP(MAT,3) would shift the matrix 3 PEs 

north (SHift-North-Planar) with planar boundary conditions. Data can also be 

shifted south, east and west across the array using similar functions. 

Functions to shift vectors also exist. The execution times for the shift 

functions are given in Table 1. 

Other functions are provided to transform data in matrices. The TRAN 

function performs a matrix transpose, whilst REVC and REVR reverse the 

column and row ordering of the matrices. There are other DAP FORTRAN 

functions for logical operations, reduction operations and type conversion 

functions, the timings of some of which are presented in Table 2. 

Most of the standard FORTRAN functions are included in DAP FORTRAN and 

extended to support data in vector and matrix mode. Timings of some of 

these functions together with the CPU times for basic arithmetic operations on 

the DAP are given in Table 3. 

Matrices may also be treated as 'long vectors' in DAP FORTRAN, where the 

vector is formed by conceptually concatenating successive columns of the 

matrix. For certain applications, a long vector mapping of data onto the PE 

array is advantageous. A number of functions are available in DAP FORTRAN 

for long vector operations (e.g. shift functions). 

2.5.7. Parallel languages 

Several new languages have been designed which support process 

parallelism. Two examples are ADA and OCCAM, both described in Jesshope 

(1987). 

ADA was designed in the mid-1970s for the U.S. Department of Defence. It 

supports process parallelism but not data parallelism. Processes can be 

created dynamically i.e. process control uses the fork/join concept. Processes 

communicate with each other by passing parameters. This also provides a 

synchronization mechanism in that if a process calls another it will wait until 

the called process is ready to receive the call. 

OCCAM is a lower-level language in that it has a direct correspondence 

between hardware (the transputer) and code. Communication is via channels, 

with input and output statements representing primitive processes i.e. a single 
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Number of places (n) 	1 2 	4 	8 	16 	32 

Matrix shift 32 48 72 

Vector shift 8 8 8 

120 232 

ffl~ : 

Table 1. 

DAP routing operation times in psecs for M = SHEC(M,n) and 

V = SHLC(V,n). From Fishbourne (1980). 
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Operation Time (jisec) 

Matrix x scalar. 120-296 (136-224) 

Vector x scalar. 64 (80) 

Matrix x vector (expanded by rows). 304 (328) 

Summation of all elements of a matrix. 464 (488) 

Summation along each row to give a column vector. 352 (368) 

Expansion of a vector to a matrix by rows. 32 (32) 

Reverse column ordering of matrix. 232 (232) 

Transpose matrix. 216 (216) 

Logical .OR. of all elements of a logical matrix. 2.25 (3.25) 

Generate logical matrix with alternate S columns .TRUE. 3.8 (4.1) 

Logical .OR. of two logical matrices. 2.1 (2.5) 

Z=M*S 

z=v*s 
Z = M*MATR(V) 

S=SUM(M) 

V = SUMC(M) 

Z = MATR(V) 

Z = REVC(M) 

Z = TRAN(M) 

(A) 

	 LS = ANY(LM) 
0, 	

LM = ALTC(S) 

LM = LM  .OR. LM2 

Table 2. 

DAP times for mixed mode operations and functions. All times are in p.secs for 32-bit floating point arithmetic and logical 

operations where appropriate. The times in brackets are with all the run-time checks performed. From Fishbourne (1980). 



Operation I 	Matrix Mode 	Vector Mode 	Scalar Mode 

Z = X + Y 152 (176) 64 (80) 24 (40) 

Z = X * Y 272 (296) 64 (80) 40 (48) 

Z=X/Y 376 (408) 136(146) 80(88) 

z = x ** 2 152 (160) 152 (160) 96 (104) 

Z=Y 16(16) 8(8) 8(8) 

Z = LOG(X) 312 (328) 376 (384) 376 (384) 

Z = SIN(X) 856 (872) 920 (928) 920 (928) 

Z = COS(X) 848 (864) 920 (928) 912 (920) 

Z=ABS(X) 24(24) 16(16) 8(8) 

Z = SQRT(X) 192 (208) 272 (280) 256 (264) 

Table 3. 

DAP times for basic arithmetic operations and standard functions. All times 

are in tsecs for 32-bit floating point numbers. The times in brackets are with 

all run-time checks carried Out. Matrix mode processing uses 4096 numbers, 

vector mode 64 numbers and scalar mode 1 number. From Fishboume (1980). 
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statement in OCCAM is a process. Synchronization is similar to ADA, as 

communication between two processes cannot proceed until they are both 

ready. Parallelism is introduced into OCCAM by the PAR statement, as 

described previously. Execution proceeds after the PAR statement only when 

every process within that PAR block has finished, thus providing another 

method of synchronization. 

OCCAM can only be used for distributed memory systems since it does not 

provide for shared memory. ADA can be applied to both shared and 

distributed memory systems but is more suited to the former. In ADA, there is 

no language syntax available to specify which processes should be assigned 

to individual processors on a distributed system, unlike OCCAM. 

2.6. Parallel programming and algorithms 

2.6.1. Measuring computer performance 

The most frequently used measure of a computer's performance is the 

peak floating point operation rate in millions of floating point operations per 

second (Mflops). Such figures are misleading on any computer but especially 

parallel compUters because they do not take into account; finite vector length, 

memory latency, bank conflicts, multitasking overheads and so on. It is often 

necessary to qualify a Mflops rate by stating what floating point operation is 

being considered. For example, the rate at which floating point addition and 

multiplication are performed on the DAP differs by a factor of 1.7. 

To obtain a measure of the likely performance of an application on a 

computer, benchmarks are often used. The kernel method of benchmarking 

involves extracting the core routines, responsible for a large proportion of the 

execution time, from a program and timing the execution of these routines. 

This method does not provide an accurate performance figure for the 

application as it is not based on a statistical collection of instructions. 

However, the kernel can be altered to suit the target architecture and provides 

a good indication of the likely performance. 

There are several well known kernel benchmarks. The UNPACK benchmark 

(Dongarra, 1985) is based on the Basic Linear Algebra Subprograms (BLAS) and 

solves a dense system of linear equations. The benchmark is therefore 
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application specific. The more general Livermore Loops benchmark (Feo, 1988) 

represents the type of computational kernels typically found in large scale 

scientific computing. The kernels range from operations such as the 

calculation of an inner product and matrix multiplication, to searching and 

storing algorithms typical of Monte Carlo methods. The kernels are all 

extracts from production programs run at the Lawrence Livermore national 

laboratory and there are 24 loops in all. The loops contain code fragments 

that range from sequential to completely vectorizable and are also suited to 

parallel processing. 

Hackney and Jesshope (1981) introduce two parameters, n, and re,, which 

are used to characterize the performance of a computer, serial or parallel. 

These parameters are related to the time taken for an arithmetic operation, 4 

on a vector of length n, by the equation, 

t = (n + n) / r 	 (2.6.1) 
2 

The r, parameter is the maximum or asymptotic performance of the computer 

i.e. the maximum rate of computation in units of equivalent scalar operations 

performed per second, for a vector of infinite length. This gives an indication 

of the performance for long vectors and is a characteristic of the computer 

technology used. It is also a function of the type of operation under 

consideration. For pipelined computers it varies with dyadic, triadic, 

register-to-register and memory-to-memory operations. For a DAP it varies 

with addition or multiplication operations, floating point and integer arithmetic 

and the precision used. 

The n parameter is known as the half-performance length as it is the 

vector length, n, required to achieve half the maximum performance. This 

parameter is a measure of the amount of parallelism in the computer 

architecture. It varies from 0 for a serial computer, to infinity for an infinite 

array of processors. For a pipelined machine, this parameter is proportional to 

the vector start up time and is typically of the order.of 100. For an array 

processor, such as the DAP, Hackney and Jesshope (1981) consider two cases. 

If the vector length is less than the number of processors, the array appears 

as an infinite array and the half-performance length is infinity. The time for 

the operation on the vector is just the time for one parallel operation. If n is 

more than the number of processors, N, the half-performance length is given 
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by N12.' Like the parameter r, n j  also depends on the precise operation 

being considered. 

The half-performance length is used by Hockney and Jesshope (1981) as a 

measure of the relative performance of different algorithms on the same 

computer. The ratio 'V = ni/n represents how parallel the computer appears 

to the algorithm. For example, if v is zero or small a sequential algorithm is 

appropriate, whereas if v is large a highly parallel algorithm is appropriate. 

For the DAP, the half-performance length, serves to emphasize the highly 

parallel nature of the architecture. The use of ni and r therefore merely state 

the obvious, that execution time depends on the number of parallel operations. 

This method of algorithm performance analysis therefore has little use for 

processor array applications. 

The parameter si was introduced by Hockney and Snelling (1984) in order 

to assess the synchronization overheaG in MIMD computers. If t is the time 

for a piece of work between synchronization points, the timing equation 

analogous to Eq.(2.6.1) is, 

t - ( s + si) / r0, 	
(2.6.2) 

where s is the total number of floating point operations during this piece of 

work. The parameter Sj, expresses the overhead in terms of how many 

floating point operations could have been performed in the time taken for 

synchronization. When s is equal to si, half the time is spent on useful 

arithmetic, the other on synchronization. This parameter therefore indicates 

whether the work under consideration is of sufficient duration for efficient 

multiprocessing. Hockney (1988) measured this parameter for a CRAY X-MP/2 

(2 processors) and obtained a value in the range 2000-6000fIoP , depending 

on the synchronization method used. For the DAP, s is zero. 

Benchmarkiflg can omit some important issues, such as the I/O 

requirements of the program or whether bottlenecks occur with the full 

program. The full program may not fit entirely in memory so the effect of 

disks and so on is unaccounted for. However, benchmarks are useful because 

of their simplicity. They are economical to test on several architectures and 

serve to indicate which computers should be investigated further in a 

procurement process. Meteorological benchmarks are discussed in chapter 8. 
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2.6.2. SIMD programming 

In this and the following section, some of the issues in programming 

parallel computers are discussed. This section is concerned with SIMD 

computers, more specifically processor arrays, which present different issues 

to MIMD computers. 

2.62.1. Data mapping 

The SIMO processor array computer is often considered a specialized 

machine whereas the pipelined MIMD computer is thought of as a general 

purpose computer (Suarez, 1988). The reason for this is that the application 

must contain arrays with at least as many elements as the number of 

processors. However, this level of parallelism is generally easy to achieve 

with atmospheric models and MIMD progra;1miflg is more complex, as will be 

seen in the next section. 

The most important issue in programming SIMO processor arrays is the 

mapping of data i.e. the placement of array elements to processors. This is 

because it not only affects the efficiency of the program, since as many 

processors as possible should be kept doing useful work, but also because it 

affects the parallel algorithms used. On a processor array, there is a much 

stronger relationship between the storage mapping and the algorithm than in 

pipelined or sequential machines. 

The need to exploit all the processors constrains the problem size, for 

efficiency reasons. For example, grids in meteorological models should ideally 

be multiples of the array size. Also, meteorologists find it useful to vary the 

resolution of models in order to test their behaviour. This would require good 

support from the software environment on the computer. 

Mapping data arrays larger than the DAP can be done in two ways. The 

first is to divide the domain into sections or 'sheets', where each sheet is the 

same size as the DAP array as shown in Fig. 2. The sheets are then stored 

successively in the PE memory. This arrangement has a disadvantage, in that 

the boundary processors in each sheet have to be treated separately if they 

require access to the data in neighbouring gridpoints in another sheet. The 

other method is to assign neighbouring gridpointS to each processor. This is 

known as a 'crinkled' mapping and illustrated in Fig. 3. In this mapping, each 
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Figure 2. Sheet mapping of arrays onto the DAP. 
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Figure 3. Crinkled mapping of arrays onto the DAP. 
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PE can access data from neighbouring points either in its own memory or that 

of a neighbour from processors nearby. The routing required for this 

approach is less than for sheet mapping and additional boundary calculations 

do not arise. The mapping of irregularly shaped grids to the DAP depends on 

the precise problem and cannot be discussed generally. Some examples of 

mappings of nonrectangular arrays in finite difference and spectral models are 

given in chapters 4 and 5 respectively. 

2.6.2.2. Data routing 

The routing or movement of data between PEs during a program can be 

regarded as an overhead to the parallel approach. The size of this overhead 

depends on the amount of routing required and the ratio of the cost of routing 

to that of the arithmetic. On the DAP, routing a matrix by one PE costs about 

a tenth of a 32-bit floating point operation. Other transformations, such as a 

matrix transpose, are more expensive. The routing overhead therefore also 

depends on the type of routing. The relatively low cost of routing on the DAP 

generally leads to acceptable routing overheads. However, for block point or 

integer arithmetic, the relative cost of routing increases and may become 

significant (Hockney and Jesshope, 1981). 

2.6.2.3. Performance 

To indicate the performance of parallel computers, a speedup ratio is often 

used. This is the ratio of the time on a single processor of a computer to that 

on all the processors. For processor arrays, speedup ratios are somewhat 

meaningless, since they cannot be sensibly used in SISD mode, unlike MIMD 

machines. A more meaningful performance measure is the average number of 

processors kept busy during the program. To define this efficiency, E, the 

total time of a program, T, is divided into time slices, t, where the number of 

processors doing useful work in each time slice stays constant at mp. The 

efficiency can then be defined as, 

E 
=

(t/fl(m/n) 	 (2.6.3) 

where n, is the number of processors actually used at the 	stage and P is 

the total number of time slices. 
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Consider a simple example where each gridpoint takes a time t to 

compute where, 

ti = 'MAX if i< rN 
	

(2.6.4) 

;=JtMAX if i>rN 

where N is the number of gridpoints so that a fraction, r, of the gridpoints 

take - the maximum time, tM,  to be computed. The time, T1 , 

for a serial version is then the sum of the times for the individual points, 

= tMAxNI 1+ r(1 - 1) 1 	 (2.6.5) 

The time, Ts, for the SIMD implementation is tM/u  if the number of processors 

is also N The efficiency for the SIMD case applied to this example, using 

Eq.(2.6.3), is calculated with p = 2, n = Nfor p = 1 and 2, as, 

E = I + ( 1-j)r 	 (2.6.6) 

The performance of an application on a SIMD computer is degraded by 

operations which do not involve all the available processors, as expressed by 

Eq.(2.6.6). The suitability of an application to a processor array architecture 

therefore depends on the fraction of the total work that uses all the available 

processors. One example is the conditional operations found in convective 

parametrizations; processors only do useful work if the air at that gridpoint is 

saturated. 

In Eq.(2.6.6), f represents the fraction of the total time spent executing fully 

parallel operations and r represents the fraction of the array actually doing 

useful work during the remaining time. By plotting curves for constant values 

of E against f and r, as shown in Fig. 4, it is possible to gauge the effect of 

operations with idle processors. 

Fig. 4 shows that as f tends to unity, when most of the time is spent using 

all processors, there is a negligible effect of r on the overall efficiency of the 

program. Even with half the time spent using half the number of processors, 

the overall efficiency, E, is still 75%. 

The degradation in SIMO efficiency arising from the convective 
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Figure 4. Variation of overall efficiency, E, of a program with a fraction, f, of the work 

fully parallel and a fraction, r, of the processors doing useful work for the 

remaining time of the program. 
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parametrizatiOflS can be estimated by suitable choices for I and r. Reddaway et 

al. (1976) used the values f = 0.75 and r = 0.15 for their study of the estimated 

DAP performance for the Meteorological Office's forecast model. The 

conditional operations are very inefficient but because they only make up a 

small part of the total number of operations, the overall efficiency, from 

Eq.(2.6.6), is still acceptable at 79%. The degradation of performance for 

models containing conditional operations, involving only a part of the PE array, 

does not appear to make them unsuitable for implementation on SIMD 

computers, as might at first be anticipated. 

2.6.3. MIMD programming 

2.6.3.1. Amdahl's law 

Now suppose the above example is implemented on a MIMD computer with 

p processors. Assuming p < N each processor is assigned several gridpoints. 

The ideal case is when each processor takes a time T1 /p. However, since 

portions of work are only available as combinations of the individual 

components ftMJ( and in general it will not be possible to find a 

combination that gives each processor work of a duration T1 1p. Instead the 

work is shared between processors such that each one computes for a time 

duration of (T1 -cz)/p, where ci is chosen so that this work is a combination of 

the basic portions of work available and is constant for each processor. 

However, one processor must also compute the remaining gridpoints, the time 

for which is given by ci. The time for the MIMD implementation, TM, the 

maximum processing time of any processor, is therefore given by, 

TM = [(T1  - ci) / ] + a 	 (2.6.7) 

If the speedup ratio for the MIMD implementation, SM, is defined as the ratio 

of the time for the uniprocessOr, serial version to that of the MIMD version, 

using Eq.(2.6.5) gives, 

SM = p / (1 - B + Bp) 
	

(2.6.8) 

where the expression a = $ T1  has been substituted and the parameter B 

represents the fraction of the serial time that is computed sequentially in the 

MIMD implementation. Eq.(2.6.8) is known as Amdahl's law (Amdahl, 1967) and 

is represented in Fig. 5 for several values of p. The curves show that 
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Figure 5. Amdahl's law for several values of p, the number of processors. Speedup 
is shown as the fraction of the number of processors. 
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significant speedups are not possible unless significant portions of the 

program can be multiprocessed. This effect becomes more noticeable with an 

increasing number of processors. Another feature is that, for a fixed 

percentage of sequential time, the speedup does not increase as fast as the 

number of processors. As p approaches infinity, so the speedup SM  in 

Eq.(2.6.8) converges to 8. For a large number of processors, the execution 

(wall-clock) time becomes dominated by the sequential part of the program. 

However, considering the example of the previous section, when p = N, 

processing can proceed in the SIMD mode where the speedup behaves as in 

Fig. 4 and the effect of processing that takes place on just some of the 

processors, is less marked than for the MIMO case. This would suggest 

massive parallelism is the best approach for these kind of problems, rather 

than a computer with a few processors. 

2.6.3.2. Granularity and overheads 

On a MIMD computer, the grain of an algorithm is the time taken to 

execute a segment of work between two synchronization points. Granularity is 

sometimes also measured in terms of floating point operations. The 

granularity of an algorithm can determine the best architecture or the best 

multiprocessing method to use (e.g. CRAY macrotasking or microtasking), as 

the cost of overheads will limit the smallest grain size that can be profitably 

exploited. The sj. parameter, described previously, limits the grain size in 

terms of the overhead from synchronization. 

Overheads also arise from the finite time for communication between 

processors. This is often the main overhead for distributed memory, 

multiprocessor systems especially when communication cannot be overlapped 

with computation. 

Memory bandwidth and memory latency also contribute to overheads, not 

just in multiprocessing. The memory bandwidth of a machine can lead to bank 

conflicts if the processors require more memory references than the memory 

banks can service. Memory latency is the time taken for memory access. As 

computer systems are built with larger memories, the latency can become 

significant. This is especially true of --ystems where processors are connected 

to memory via a network of some kind. On vector machines, latency is not 
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important so long as it is small compared to the length of the vector registers 

(Hsiung, 1988). 

The effects of overheads on the speedup of an application on a parallel 

computer can be modelled in a similar way to Amdahl's law and a similar 

curve results. For a given overhead, it is possible to determine the potential 

speedup for a particular grain size (Larson, 1988). 

On a SIMD machine, synchronization and process control overheads do not 

occur. Furthermore, on the DAP, bank conflicts cannot occur and memory 

latency is negligible. 

2.6.3.3. Scheduling 

Two commonly used techniques for scheduling work on MIMD computers 

are static and dynamic scheduling. Perhaps the most commonly used 

approach is static scheduling, where work is assigned to a processor before 

runtime. This can be used when the work in a loop is to be multiprocessed 

and the CPU time is approximately the same for each loop iteration. A subset 

of the iterations is assigned explicitly to each process. This simple method 

has the advantage that the work schedule is under the control of the 

programmer. 

However, if the time duration of each iteration of the loop varies, it is 

possible for the processor workload to be uneven leading to a loss of 

performance through Amdahl's law. In these circumstances a dynamic or self 

scheduling approach is best. This technique maintains a list or a counter to 

indicate the loop iterations to be done. Each process accesses and updates 

the list to get its next piece of work. Those processes that have iterations of 

a short time duration access the list more often to get more work, so that 

some processes may process more iterations than others. Whilst this method 

is more flexible and achieves a better overall performance with iterations 

assigned to processors at runtime, it has several disadvantages. If the time 

duration of an iteration is data dependent, the work schedule for processes is 

indeterminate and may result in indeterminate or irreproducible results. Also 

the work schedule is no longer controlled by the programmer and more 

complex control logic is required. An example of dynamic scheduling applied 

to a spectral meteorological model is presented in chapter 8. 
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The dynamic scheduling technique also incurs an overhead from having to 

protect the list or counter whilst being updated. This is a critical region as 

only one process must be allowed access to the list at any one time. If the 

average granularity of the iterations is large compared to this overhead, the 

iterations may be allocated one at a time. If the average is small compared to 

the time for the overhead, the iterations should be allocated in blocks. 

2.63.4. MIMD bugs 

Programming MIMD computers is undoubtedly more complex and requires 

more development time than for SIMD computers. Furthermore, entirely new 

types of bugs can arise which do not occur in programming SIMD or SISD 

computers. Snelling (1988c) and Snelling and Hoffmann (1988) have divided 

these new problems into five classes. These are the stampede effect, 

bystander effect, deadlock effect, irreproducibilitv effect and the Heisenberg 

effect. 

The stampede effect occurs when a process, for whatever reason, 

encounters an error. The other processes continue to execute for a time and 

'stampede' over the evidence, leaving little or no information for debugging. 

This effect cannot occur on distributed memory computers. 

The bystander effect (bystanders are assumed innocent) occurs when one 

process corrupts another's data. Although the failed process is the obvious 

place to start debugging, the problem is actually with another process. This 

type of error can occur in a distributed memory system although it is less 

likely than in a shared memory system. 

Deadlock is perhaps the simplest problem in multiprocessing. It occurs 

when all processes are awaiting input from another process. Therefore, all the 

processes have stopped at or near the code that caused the problem, making 

the problem easy to identify. 

The irreproducibility effect is a result of the nondetermiflistic nature of 

parallel processing. For example, a program may begin to fail because of a 

change in the timing of processes relative to one other, perhaps because a 

critical region of code has not been identified. The problem may be especially 

hard to track down if the program does not always fail. Another example is 

when a global quantity is accumulated from contributions from processes. 



The value of this quantity can be different on different runs if the processes 

add their contributions in a different order, because of the finite precision of 

numbers on a computer. Whilst these differences are small, typically the same 

magnitude as those arising from using a different compiler, they make the 

testing of new code virtually impossible. 

Lastly, the Heisenberg effect occurs when debugging is in progress. 

Additional diagnostic code is often used to help in finding bugs. However, it 

can happen that when this extra code is used it perturbs the execution 

environment (i.e. alters the timing of processes relative to each other) such 

that the problem never occurs or manifests itself in a completely different 

form. 

The occurrence of these effects or the degree to which they occur 

depends on the architecture of the computer and the multiprocessing 

environment. This is discussed further in Snelling and Hoffmann (1988). 

2.6.4. Some algorithms for the DAP 

In this section, some parallel algorithms for the DAP are presented. These 

algorithms are used in the following chapters. Hockney and Jesshope (1981) 

describe some additional parallel algorithms for the DAP. 

2.6.4.1. Cascade-sum 

An important example of the tree-height reduction technique is the 

cascade-sum algorithm for the evaluation of, 

S 
=

Zj 	 (2.6.9) 

In a serial approach this would require N-i additions. However, by evaluating, 

some of these in parallel, the sum can be performed in 1092N  stages, as 

illustrated in Fig. 6. On the DAP, this would be done by first assigning all N 

elements to processors. The first stage would involve shifting the data -by one 

PE and adding it to unshifted data to form the sum of adjacent pairs. The next 

stage uses a shift of two PEs. In general, at the 
jth  stage a shift of 21  PEs is 

required (Hockney and Jesshope, 1981). 



Figure 6. Parallel evaluation of the sum of 8 numbers. 
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However, it is possible to exploit additional parallelism at the bit level on 

computers with 1-bit processors such as the DAP. For example, if N 

processors are available, only half are actually used at the first stage. It is 

therefore possible to share the addition operations between pairs of 

processors; one calculating the least significant part, the other the most 

significant part. The addition would then take half the time. Similarly, at the 

next stage, the additions can be shared between 4 processors and so on. This 

technique, combined with block point arithmetic, is used in the DAP FORTRAN 

intrinsic function SUM which returns the scalar sum of a matrix or vector 

(Flanders et a!, 1977). To evaluate the sum of a matrix requires the equivalent 

of three matrix additions, illustrating the flexibility of the bit serial processors. 

2.6.4.2. Fast Fourier Transform 

The Fast Fourier Transform (FFT) is a well known algorithm and its 

implementation on the DAP has already been described by Jesshope (1980) 

and Hockney and Jesshope (1981) among others. A brief description of the 

DAP algorithm is given here as FFTs are used in global gridpoint models (for 

filtering) and spectral models. 

A complex Fourier transform on N points is written as, 

N-i 

z(k) = 	x(j)w 	 (2.6.10) 

j=O 

where k = 0,1 .... N-1 and 

2 WN - eiTi/N  

It is assumed that N=2M i.e. a radix-2 transform. The FFT algorithm is 

derived by writing z(j) as two sequences, 

x0  (j) = z(2j), 	j=0,...(N/2)-1 

z1  (j) = z(2j+1), 

which, when substituted into Eq.(2.6.10), give the recurrence relations, 
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z(k) = z(k) + wz 1 (k) 
	

(2.6.11) 

z(N+k) = zD  (k) - wz 1 (k) 

where k = 0 .... N-l. Thus, the original transform has been reduced to the 

calculation of two transforms over half the original length. This process is 

repeated M times until N 1-point transforms have to be calculated and the 

transform of a point is the point itself. The FFT algorithm consists therefore 

Of $092N recurrence relations of the form Eq.(2.6.11). The flowchart in Fig. 7 

illustrates the algorithm by showing the movement of data and the multipliers, 

that are applied at each stage. 

If this procedure is applied to the DAP, Fig. 7 also illustrates the routing 

requirements of the algorithm. In long vector mode, the DAP could be used to 

calculate a 4096 point transform. In matrix mode, 64 FFTs of 64 points each 

could be calculated. Although there are a significant number of routing 

operations required by the algorithm, because arithmetic is relatively slow, the 

routing only accounts for 10-20% of the overall cost (Flanders et al. 1977). 

Hockney and Jesshope (1981) describe the DAP algorithm in more detail. 

Essentially, at each stage a complex multiplication and addition are required 

which have a parallelism of N, so that the available parallelism is constant 

throughout the procedure. The number of operations required is O(Nlo92N). 

The data are transformed into bit reversed order i.e. the 4th point (0100) is 

transformed to the 2nd point (0010), as shown in Fig. 7. Depending upon the 

application, this may need to be ordered correctly by further routing (Flanders, 

1982), or additional temporary storage and routing during the transform can be 

used to leave the data in normal order. 

2.6.4.3. Tridiagonal systems 

Tridiagonal systems are an important class of linear algebraic equations 

and occur frequently in meteorological modelling. However, solution 

techniques based on Gaussian elimination are unsuitable for a processor array 

as they are sequential algorithms. Instead parallel versions of the cyclic 

reduction and Jacobi algorithms are preferred. 

The implementation of the parallel cyclic reduction algorithm on the DAP is 

described by Whiteway (1979). Consider 3 consecutive equations of a 
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tridiagonal matrix equation of length N, AX = 

a1-1-2  + -1 + 	 = y1_1 

ai + X + CZ11 	
= yi 

a141  z + x141  + c.1 +2 	= 

The term 	can be eliminated from (b) by subtracting a1  times (a). 

Similarly, c,x 41  can be eliminated from (b) by subtracting c times (c). Doing 

this and dividing by the main diagonal gives, 

+ zi  + c1X2 = yi (1) 

so that the off-diagonals are now twice the distance from the main diagonal. 

Repeating the process gives the general equation at step j as, 

alx_k + 2 + CJXI+k 
= y ) 	 ( 2.6.12) 

where k = 2. As soon as i-k or i-k are outside the range 1 to N, the term can 

be considered zero. After 1092N steps, all such terms are eliminated and only 

the main diagonal remains. On the DAP, the algorithm can be applied to all Zi 

in parallel. Planar boundary conditions are used so that terms shifted in 

outside the range 1 to N are zero. As for tl' 3 FFT, the DAP may be used to 

solve a system with N = 4096 or 64 systems each of length 64. Whilst this 

direct method always completes in 1092N steps, it is sometimes possible to 

halt the procedure without loss of accuracy if the matrix is sufficiently 

diagonally dominant (Hockney and Jesshope, 1981). This is because the 

diagonal dominance increases at each successive stage. If at any stage in the 

reduction, the inverse of the diagonal dominance exceeds the arithmetic 

precision, the procedure can be stopped. 

However, this method is not fully efficient on the DAP, because as the 

algorithm proceeds fewer PEs are performing useful work. At the last stage 

the off-diagonals are only half their original length. An alternative solution 

procedure is the iterative Jacobi method (Golub and Van Loan, 1983). For this 

method, the tridiagonal matrix, A is split into strictly lower and upper 

triangular matrices, L and jj respectively. The Jacobi iteration step is then. 
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(k +1 ) = 	- 	+ 	
(2.6.13) 

It is possible to show that this iteration converges only if the tridiagonal 

matrix, A, is diagonally dominant (Bowgen, 1981a). The application of 

Eq.(2.6.13) to the DAP is straightforward and can be done efficiently. 

The convergence rate of the Jacobi method depends on the diagonal 

dominance of the system. Since the cyclic reduction algorithm increases the 

diagonal dominance, Bowgen (1981a) developed a hybrid algorithm which uses 

one pass of this method to improve the convergence rate of the Jacobi 

scheme. This adds an overhead due to the more expensive step of the cyclic 

reduction algorithm and because routing in the Jacobi iteration has to increase 

as the diagonals are further apart. The optimum number of passes of the 

cyclic reduction algorithm depends on the initial diagonal dominance of the 

equations. 

The cyclic reduction algorithm and the hybrid Jacobi solver (with one pass 

of the cyclic reduction algorithm) are used in subroutines in the DAP FORTRAN 

subroutine library (supplied originally by Queen Mary College and now by AMT) 

for the solution of tridiagonal equations. Several versions are available, 

including the solution of 64 systems of length 64 each. 

2.6.5. Notation 

With data arrays mapped into parallel data objects in DAP FORTRAN, it is 

useful to have a notation to express the way in which the data are mapped. A 

simple notation used by the author is of the form, 

	

(1, j, k) 	{ 1, m, n) 	 (2.6.14) 

where L m and n can all be functions of i, j and k This mapping expression is 

interpreted to mean the value at the coordinate (tj,A) is stored at the PE in the 

th row, MIh column and the nth matrix, assuming that the data are stored as a 

matrix array. 

DAP FORTRAN routing functions can therefore be presented in terms of 

their translation on the mapping expression Eq.(2.6.14). For example, the ThAN, 

REVC and REVR functions perform the following translations, 
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TRAN{z,j}(j,i) 

REvC{ i, j } = { i, 65-j } 	 (2.6.15) 

REVR{ i, j ) = { 654, j } 

The shift functions have analogous expressions. 

This notation was found to be useful, not only in representing the way data 

was stored on the DAP, but also in determining the routing between two 

mappings. It is similar to the low-level, bit oriented notation developed by 

Flanders (1982) for expressing data mappings and determining routing 

operations in the DAP assembly language. APAL. 
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CHAPTER 3 

METEOROLOGICAL MODELLING TECHNIQUES 

3.1. Introduction 

Before discussing the implementation of meteorological models on parallel 

computers, particularly the ICL DAP, it is necessary to have an understanding 

of the techniques that are used to solve the governing equations. In this 

chapter, the methods used to approximate temporal and spatial terms are 

reviewed. 

Time differencing methods are reviewed first. The finite difference method 

is then reviewed to illustrate the potential areas of difficulty in implementing a 

model on a parallel computer and also to enable a complete understanding of 

the contents of chapter 4. Then, the spectral and finite element methods of 

the Galerkin approach are reviewed, as they are used in the models developed 

and described in this thesis. 

3.2. Time differencing - 

Many methods of integrating the time dependent equations that occur in 

meteorology have been proposed. These methods have been reviewed by 

Haltiner and Williams (1980) and Mesinger and Arakawa (1976) and are 

summarized below. The choice of time scheme is not influenced by the 

computer architecture in use, since the parallelism is associated with the 

spatial dimensions. However, storage requirements may be a consideration. 

3.2.1. Explicit schemes 

The most commonly used explicit scheme is the leapfrog scheme defined 

by, 

dF/dt = ( F(t+At) - F(t-At) ) / 2tt 
	

(3.2.1) 

It is a neutral scheme and simple to use. However, it has several 

disadvantages, in common with all other three time level schemes. First, a 

computational mode is present in the solution, which tends to amplify for 

nonlinear problems resulting in a separation of the solution on odd and even 

time levels. A time filter or the occasional use of a scheme with good 
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damping properties, such as the Euler-backward or Matsuno scheme (Matsuno, 

1966), can be used to control this mode. Second, two initial fields are 

required to start the integration. Last, it is generally true that models using 

three time levels require more memory or I/O than those requiring two. Also, 

the leapfrog scheme is unstable when applied to friction terms. Another 

method, usually the forward scheme in gridpoint models or an implicit method 

in spectral models, has to be used. 

Another explicit scheme that has received much attention is the 

Lax-WendrOff scheme (Haltiner and Williams, 1980). This is a two-step 

scheme that has good selective damping properties. It uses two time levels, 

avoiding the disadvantages of the leapfrog scheme. Gadd (1978a, 1980) added 

a simple modification to significantly reduce the phase speed errors. The 

resulting scheme has fourth order accurate phase speeds but a second order 

accurate truncation error. Carpenter (1981) and Collins (1983) developed 

variants of the scheme with third and fourth order accurate truncation error, 

respectively. 

It is well known that the maximum allowable timestep for an explicit time 

scheme is restricted by the Courant-FriedrichsLeWY (CFL) condition. In 

primitive equation models, the timestep is restricted by the speed of the 

gravity wave modes. Several techniques have been used to overcome this 

restriction so that the timestep is limited only by the more significant but 

slower moving meteorological waves. One method involves treating those 

terms responsible for the generation of gravity waves implicitly, the so called 

semi-implicit method discussed in the next section. Another efficient method 

is known as the splitting technique, pioneered by Marchuk (1974). In this 

approach the horizontal advection terms are integrated separately from the 

gravity wave terms, using a timestep limited only by the windspeed. The 

gravity wave terms are integrated using a smaller timestep. Different time 

integration schemes can be used for these advective and adjustment stages. 

This split explicit scheme is used operationally by the U.K. Meteorological 

Office (Gadd, 1978b, 1980). A forward-backward scheme (Mesinger and 

Arakawa, 1976) is used for the adjustment stage whilst the modified 

Lax-WendrOff scheme of Gadd (1978a) is used for the advective terms. One 

advantage of the scheme is that the memory requirements of the model are 

reduced, as only one time level of data needs to be stored (Cullen, 1983). 

60 



3.2.2. Implicit schemes 

Implicit time integration methods, such as the trapezoidal (or 

Crank-Nicolson) scheme, are usually unconditionally stable and the timestep is 

chosen on the basis of accuracy requirements. The principal difficulty is that 

the solution of a large system of simultaneous equations is required at each 

step. In general, nonlinear equations lead to complicated systems that can 

only be solved by iterative methods. Efficient techniques have been developed 

to solve these systems. The splitting method of Marchuk (1974) or the 

alternating-direction-implicit method (ADI) (Gustafsson, 1971) have been 

successfully used by reducing the dimensionality of the problem and solving 

sets of equations in only one spatial dimension. 

3.22.1. Semi-implicit scheme 

Perhaps the most commonly used method for extendin: the CFL limit is 

the semi-implicit scheme, first used by Robert (1969) in a spectral model. In 

this method, only linear terms generating gravity waves are treated implicitly. 

A Helmholtz or Poisson equation has to be solved each timestep, but this 

added computational cost is offset by a timestep up to six times greater than 

that for a fully explicit scheme. 

In spectral models on a sphere, the semi-implicit scheme is particularly 

efficient since, as shown later, the basis functions are eigenfunctionS of the 

Poisson operator. Daley (1980) estimated the additional overhead for a 

spectral model using a semi-implicit scheme to be 3%. For a gridpoint model 

this figure might be as large as 50% (Robert et al, 1972). The semi-implicit 

scheme has also been successfully implemented in a finite element model by 

Staniforth and Mitchell (1977), although a Helmholtz equation still has to be 

solved. 

Despite its obvious advantages, the semi-implicit method has several 

drawbacks. First, the formulation of the scheme in baroclinic models is not 

entirely straightforward. Second, Simmons et al. (1978) have shown that 

under certain conditions, the scheme is unstable whatever the choice of 

timestep. Last, the scheme achieves its stability by slowing down the fastest 

gravity wave modes, resulting in a poorer representation of the geostrophic 

adjustment process. This also allows the possibility of interactions with the 

Rossby waves although there is no documented evidence of this so far. 
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3.2.3. Semi-Lagrangian scheme 

A method that has recently been the subject of much research is the 

semi-Lagrangian scheme. It was first used by Sawyer (1963) based on a 

trajectory method proposed by Wiin-Nielson (1959). The scheme achieves 

long timesteps by treating the advective terms in a Lagrangian sense. That is, 

at each time level, the properties of each gridpoint are determined by 

calculating a back trajectory of the fluid parcel at that point over the last time 

interval. 

Robert (1981, 1982) combined a semi-Lagrangian treatment of advection 

with the semi-implicit scheme in a finite difference shallow-water model. 

Robert et at (1985) extended the approach to a multi-level model. They found 

that the timestep could be further increased by a factor of six over that for a 

semi-implicit scheme alone. Bates and McDonald (1982) and Bates (1984) 

combined the scheme with the split explicit and AOl integration techniques. 

Staniforth and Temperton (1986) applied the semi-Lagrangian semi-implicit 

approach to the variable resolution finite element model of Staniforth and 

Mitchell (1978). They found that the combined scheme could again be used 

successfully with timesteps greater by a factor of six. 

Although the semi-Lagrangian semi-implicit scheme has been implemented 

successfully in baroclinic finite difference and barotropic finite element models, 

only recently has the method been implemented in a spectral model. Ritchie 

(1987) made a preliminary study of advection on a Gaussian grid using a 

semi-Lagrangian scheme before applying the method to a spectral 

shallow-water model on the sphere (Ritchie, 1988). It was found necessary to 

reformulate the spectral model to use wind components as the prognostic 

variables, rather than the more usual vorticity and divergence formulation, to 

be consistent with the semi-Lagrangian approach. Ritchie (1988) found that, 

like finite difference and finite element implementations, the semi-Lagrangian 

semi-implicit scheme gave acceptable results using a timestep greater by a 

factor of six than that for an Eulerian semi-implicit version. 

Another advantage of the semi-Lagrangian approach is that the scale 

dependent phase speed errors are less than in an Eulerian approach. This led 

Ritchie (1985) to use the method just for the moisture equation in the 

baroclinic model of Staniforth and Daley (1979). One technical difficulty with 
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the scheme however, is that field values on neighbouring latitudes must be 

available. Spectral models are usually designed to process one latitude at a 

time to reduce core storage (Baede et al. 1979). 

3.2.4. lime filtering 

The computational mode associated with three level time integration 

schemes is undesirable. Although frequent use of another scheme with 

selective damping properties is one way of reducing the effect of this mode, 

the preferred and more flexible approach is to use a time filter. The Asselin 

(1972) filter, originally developed by Robert (1966), is generally used and takes 

the form, 

F(t) = F(t) + u[ F(t-At) - 2F(t) + F(t+At) 1 	 (3.2.2) 

The filter parameter, v, must be less than 0.5 and an overbar represents a 

filtered value. Asselin (1972) found that the filter is a strong damper of the 

computational mode and of two grid length noise in explicit, semi-implicit and 

implicit time schemes. Since the filter is linear, it can be applied in spectral, 

Fourier and gridpoint space. 

Schlesinger at al. (1983), Sakellarides (1984) and Deque and Cariolle (1986) 

have made more detailed studies of the effects of the Asselin filter. In 

particular the last two references show the filter can destabilize a numerical 

solution when damping terms are present in the equations and a timestep 

close to the CFL limit is selected. 

3.3. Finite difference methods 

3.3.1. Choice of grid for modelling on the sphere 

A major aspect in the design of a model to forecast for all or part of the 

globe is the choice of grid. There has been much literature in Vie past on this 

subject and the main approaches are reviewed here. A good review is given 

by Williamson (1979). 
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3.3.1.1. Map projections 

Map projections represent the surface of the sphere on a plane in some 

way. However, such projections cannot retain all the properties of the sphere. 

A conformal projection preserves the angle between intersecting lines of 

latitude and longitude. Commonly used conformal mappings are the polar 

stereographic and Mercator projections. It is not possible to define a 

conformal mapping that represents the entire globe on a finite plane and so 

conformal mappings are often used for limited area modelling (e.g. Staniforth 

and Mitchell, 1977). However, by overlapping projections it is possible to 

cover the entire globe (e.g. Phillips, 1959; Stoker and Isaacson, 1975). 

One type of nonconformal projection is the equal area grid, where the area 

in each grid square is approximately constant. Kurihara (1965) developed an 

equal area grid in which the number of gridpoints decreased as the poles were 

approached and the latitudes were at equally spaced intervals. However, the 

gridpoints no longer lined up in the north-south direction and the finite 

difference schemes were derived by considering fluxes across grid boxes 

(Bryan, 1966). Holloway and Manabe (1971), Dey (1969), Sankar-Rao and 

Umscheid (1969) and Grimmer and Shaw (1967) have all tested the Kurihara 

grid and found there is insufficient resolution in polar regions, resulting in 

serious errors. 

Sadourney (1975a) used a cylindrical equal area grid where every latitude 

has the same number of points. The latitudinal spacing was varied to achieve 

the equal area. He tested the grid using Rossby-Haurwitz waves as used by 

Phillips (1959) and achieved reasonably accurate results. However, the 

poleward increase in spacing between latitudes allows the possibility of the 

refraction of poleward propagating waves. 

3.3.1.2. Spherical geodesic grids 

The spherical geodesic grid was developed (Williamson, 1968; Sadourney et 

al., 1968) to provide a homogeneous spherical grid, where not only are the 

grid areas equal but they are also of the same shape. The finest resolution 

grid with these properties is an icosahedron constructed within a sphere, 

consisting of 20 equilateral triangular faces with 12 vertices connected by  

great circles. Each vertex therefore has 5 nearest neighbours. This grid, 
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however, does not provide sufficient resolution and so the two conditions 

above must be relaxed slightly. Each of the major triangles is subdivided into 

smaller triangles. Each vertex of these smaller triangles has 6 nearest 

neighbours. 

Williamson (1970) found that the slight irregularity of the grid gave only 

first order accuracy. A 2 0  degree resolution grid was required so that 

truncation errors did not dominate in divergence calculations. Williamson 

(1971) developed nonconserving second order schemes to overcome this 

problem. Although this type of grid has not been used much by 

meteorologists, it appears to be a natural choice for a finite element model 

based on triangular elements (Cullen, 1974b). 

The spherical geodesic grid has several computational disadvantages. The 

indexing of the gridpoints is complex and more storage space is required than 

for an equivalent latitude-longitude grid. The complex indexing together with 

the number of nearest neighbours being either 5 or 6 would present 

difficulties in implementing this type of grid on a parallel computer based on 

an array of processors connected in a regular mesh. 

3.3.1.3. Latitude-longitude grids 

The easiest grid to use for equations written in polar spherical coordinates 

is one in which the gridpoints are at regularly spaced intervals of latitude and 

longitude. A difficulty, however, is that the wind components are undefined at 

the poles. Modifications to the differencing scheme are therefore necessary at 

or near the poles. From a programming point of view, it is easiest not to use 

pole gridpoints but to place the nearest latitude half the latitudinal spacing 

from the poles. No special section of code is then needed and finite 

differences can be applied by using the gridpoints opposite, across the pole. 

3.3.1.4. The pole problem 

If the spacing between gridpoints decreases as the poles are approached, 

the CFL limit requires a small and impractical timestep for stability. This is a 

problem for the latitude-longitude grid and it has been overcome in several 

ways. 

Grimmer and Shaw (1967) and Corby et al. (1972) allowed the timestep to 
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decrease as the poles were approached in the integration. Although the results 

were satisfactory and the scheme stable, Grimmer and Shaw (1967) pointed 

out that over half of the computing time was spent on integrating the 

northernmost rows, about 2% of the hemisphere. 

Another approach is to use a coarser grid near the pole. The Kurihara grid 

is one example. Washington and Kasahara (1970) used a similar grid but with 

more points around the poles than the Kurihara grid, to get better resolution in 

the polar regions. A slightly different approach was adopted by Gates and 

Riegel (1962) who integrated at each point on a regular latitude-longitude grid, 

but as the poles were approached the longitudinal differences were taken over 

larger intervals which were multiples of the basic longitudinal spacing. Their 

results were not as accurate as those obtained on a Kurihara type grid. 

One method of ensuring stability on a latitude-longitude grid is to apply 

some form of filtering in the polar regions to remove the short wavelengths. 

Umscheid and Sankar-Rao (1971) tested the smoothing algorithm used in the 

Mintz-Arakawa general circulation model (Gates et a!, 1971). They found that 

although it was a strong damper of short waves it also damped the longer 

waves. They also tested a longitudinal Fourier filter, where the amplitudes of 

the waves above a certain cutoff frequency were set to zero. This frequency 

was a function of latitude and the filter was only applied to polar latitudes. 

The results showed this technique could be used successfully, without loss of 

accuracy in the large scale flow. Further studies by Holloway at al. (1973), 

Williamson and Browning (1973) and Umscheid and Bannon (1977) confirmed 

this. In the ECMWF gridpoint forecast model, Burridge and Haseler (1977) 

reduced the amplitude of the short waves rather than eliminating them 

entirely. Temperton (1977) showed that this reduced the effect on the 

unfiltered model modes. 

3.3.2. Finite difference approximations of spatial derivatives 

Centred differencing is commonly used in finite difference models to 

approximate spatial derivatives. For example, the approximation, 

ax 
	

(+ - tiil) / 2tx 	 (3.3.1) 

is straightforward and second order accurate. One sided differences are 
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sometimes used and are known as upstream or downstream differences 

depending on the direction of the advecting flow field (Mesinger and Arakawa, 

1976). Unlike the centred scheme, they are only first order accurate and have 

a wavelength dependent damping. They have occasionally been used in 

meteorology since they use less gridpoints and therefore have a smaller 

domain of influence (e.g. Miller and Thorpe, 1981). 

33.2.1. Higher order schemes 

Although computationally efficient to use, centred differences have poor 

phase properties (Mesinger and Arakawa, 1976). Both the accuracy and the 

phase behaviour can be improved by using more points. An explicit fourth 

order difference approximation to the first derivative would be, 

	

= 4(u1 ., 1  - 	-) - (u 2  - u1-2) 	 (3.3.2) 

ax 	6Ax 	 12A  

This scheme requires more computation and cannot be applied at the 

boundaries of the solution domain. Another problem arises when Eq.(3.3.2) is 

used with an implicit time differencing scheme, such that a Helmholtz type 

equation has to be solved. The coefficient matrix that has to be inverted is 

then pentadiagonal and therefore computationally more expensive to solve. 

It is possible to derive fourth order accurate schemes without using more 

points than for the second order scheme Eq.(3.3.1). The price is to make these 

schemes, known as compact differencing schemes, implicit (Navon and 

Riphagen, 1979; Haltiner and Williams, 1980; Chang and Shirer, 1985). The 

method would approximate the first derivative by, 

aw1 _ 1  + bw, + cw+1  = du11  + eu1  + ftL11 	 (3.3.3) 

where, 

3u 	 (3.3.4) 
(-). = w. 

The values of the 	coefficients in 	Eq.(3.3.3) 	are determined by requiring the 

scheme to be accurate up to and including fourth order expressions for v. 

The resulting scheme for this example 	is the same as the finite element 

approximation with 	regular spacing. 	However, the approximations obtained 

from compact differencing and finite elements are 	usually totally 	different. 
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Chang and Shirer (1985) compared finite element and compact difference 

schemes for geostrophic adjustment and vorticity advection problems. They 

found the finite element method to be superior for the adjustment problem. 

Although compact differences gave the best results in the advection problem 

they noted that the finite element results could have been improved. 

3.33. Staggered grids 

When solving the equations used for meteorological modelling, it is 

uneconomical and unnecessary to store all the variables at every gridpoint. 

Savings in storage space can be achieved if a staggered grid is used, in which 

the variables are held at alternate points. Staggered schemes can also reduce 

the problem of solution separation that occurs with leapfrog time differencing 

on an unstaggered grid. Also, noise can be generated in the pressure field if 

an unstaggered grid is used. 

Arakawa and Lamb (1977) discussed five different arrangements of the 

dependent variables using linearized shallow-water equations. They found that 

the simulation of the geostrophic adjustment process is highly dependent on 

the form of the staggering used. The best scheme has since become known 

as the Arakawa 'C' grid, although the 'B' grid analysed by Arakawa and Lamb 

(1977) can also exhibit similar properties. Both grids are shown in Fig. 8. 

Hattiner and Williams (1980) and Mesinger and Arakawa (1976) both review the 

Eliassen grid (also shown in Fig. 8) which was proposed for a baroclinic 

primitive equation model. This scheme is staggered in both space and time 

and has excellent geostrophic adjustment properties as the arrangement of 

variables at each timestep is optimal for the principal terms. 

3.4. Galerkin techniques: Spectral method 

3.4.1. Introduction 

The use of spectral methods in atmospheric models was first proposed by 

Blinova (1942) in the USSR, who advocated using a linearized model based on 

spherical harmonics for long-range forecasting. In 1954, Silberman's use of the 

method was the first of several theoretical studies. The method was found to 

have useful properties but was costly in storage and computation, as the 

interaction coefficient method was used to compute the nonlinear terms. It 
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was concluded that only low-resolution spectral models were feasible. 

Orszag (1970) and Eliasen at at (1970) independently developed the 

transform method, for integrating the nonlinear terms, removing the storage 

problem and substantially reducing the computation required. Higher 

resolution models became feasible and subsequent research has been devoted 

to developing multi-level spectral models, particularly for forecasting. At 

current resolutions, spectral models appear to be superior to gridpoint models 

for the same computing resources (Jarraud and Girard, 1983). 

This section gives a general overview of the spectral method. More 

detailed descriptions are given by Bourke at al. (1977), Machenhauer (1979) and 

Jarraud and Simmons (1983). 

3.4.2. General method 

The basis of the spectral method is to expand the variables in the 

equations as a series. To do this, it is convenient to regard the variables as 

functions in a complex, infinitely-dimensional function space or 'Hilbert space'. 

H (Courant and Hilbert, 1953). This space can be defined by a complete set of 

linearly-independent basis functions defined on a fundamental domain, so that 

any function in H may be expanded as a linear combination of these basis 

functions (Mandl, 1957). The set of basis functions can be regarded as 

forming a coordinate system spanning the Hubert space H 

The equations used in numerical weather prediction can be written 

generally as, 

(3.4.1) 

where F is a function of space and time and represents any prognostic 

variable and A represents the corresponding spatial operator, generally a 

combination of linear and nonlinear terms. 

In expanding F, it is assumed that a suitable set of orthonormal basis 

functions, , are known. For example, on a sphere, spherical harmonics form 

such a set, whereas on a plane, double Fourier series would be appropriate. It 

will also be assumed that the boundary conditions of the domain can be 

satisfied by a proper choice of any finite dimensional set of basis functions. F 
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may therefore be written as, 

F=J c4i 
	 (3.4.2) 

where the c, for n = 1 to , are functions of time only and the 	are 

functions of space only. As the basis functions are orthonormal, the 

coefficients can be determined by, 

(F,) = 	
F 	dt 	for 	= Ito 	 (3.4.3) 

Jr 

By taking the scalar product of both sides of Eq.(3.4.1) with the basis 

functions, the evolution equations for the time dependent coefficients can be 

obtained by. 

dc/dt = ( A(F),) = JA(F) dt 	for n=1 to 	 (3.4.4) 

It is computationally impossible to deal with an infinite number of basis 

functions. Instead F must be approximated by a linear combination of basis 

functions that span a finite dimensional subspace of H, denoted by H' So, F is 

approximated by, 

N 

F = 	 F = F 	 (3.4.5) 

n1 

The best approximation to F in a least squares sense, is the projection of F 

onto the finite dimensional space H' (Machenhauer, 1979). Hence d is set 

equal to c for n1 to N. 

Eq.(3.4.1) must now be solved using F rather than F. However, since a 

truncated representation of F is used, F' will not in general satisfy Eq.(3.4.1) 

e.g. if nonlinear terms are present in the operator A. A residual R which is a 

function of F', can be defined by, 
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R(F) = }' - A(F) 	 (3.4.6) 

To ensure that F satisfies the equation Eq.(3.4.I) as accurately as possible, 

it is desirable to minimize the residual R(F) averaged over the fundamental 

domain, by some criteria. The norm N(R) of the residual, 

N(R) = (R(F'),R(F')) = (3F'/at - A(F'),aF'/t - A(F')) 	 (3.4.7) 

can be minimized. The function obtained by. A acting on F, A(F), may be 

expanded as a linear combination of the basis functions, 

CO 

A(F) = 	an (CJ ) C
21 ... C N)'Pn 	

(3.4.8) 

n1 

where the coefficients a n  are functions of c 1  for i =  1 to N This resulting 

function can be separated into two parts, 

A(F) = A, (F) + A 2  (F) 	 (3.4.9) 

CO 	 N 

A l  = 	 A2 = 
nN+1 	 n1 

Substituting this into Eq.(3.4.7), expanding the product and using Eq.(3.4.5) and 

Eq.(3.4.9) gives, 

N 

(R,R) = 	- ct fl (c l ,cZ ,...cN)1 2  + 	 (3.4.10) 
dt 

n1 	 nN+1 

The first term of the above equation involves coefficients of the projection 

of A(F) onto H', whilst the second, which may arise from nonlinear 

interactions, involves the projection of A(F) onto the complement of H'. If 

the second term is ignored (assuming it is small), as it would otherwise result 

in a complicated system of equations, Eq.(3.4.10) is minimized if, 
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dt 
= a(c1  ,c2,...cN) 	for n=1 to N 	 (3.4.11) 

That is, Eq.(3.4.11) gives N first order ordinary differential equations which can 

be solved for c(t), for n =  1 to N, subject to certain boundary conditions. If 

the set of coefficients {c,.1} are known at a particular time, standard 

differencing techniques can be used for the time derivative in Eq.(3.4.11) to 

calculate the {c} at a later time. 

The coefficients a n  are given by, 

	

= (A(F'),ip) 	for n=1 to N 	 (3.4.12) 

So, Eq.(3.4.1 1) becomes, 

dc/dt =f A (F' ) 	dt 	for n=1 to N 	 (3.4.13) 

Comparison with Eq.(3.4.4) shows that Eq.(3.4.13) may be obtained by taking 

the scalar product of the truncated equation with the basis functions IP,, for 

n = 1 to N If the residual is expanded as a linear combination of basis 

functions, from Eq.(3.4.1 1) it is easy to see that the projection of R(F) onto If 

vanishes and R(F) only exists in the complement of H. 

The initial conditions, F0 , will not, in general, be represented exactly using 

the truncated set of basis functions and so a best fit using a minimization of 

the norm IV( 17'o  - F) is usually made i.e. 

N 

F = 	co  i, 	F = F0 	 (3.4.14) 

n=1 

where, 

c°  = (F04) 	for n = 1 to N 	 (3.4.15) 
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3.4.3. Some properties of the spectral method 

Since interactions between the components spanning If and components 

spanning the complement of If are excluded, in theory the approximate 

solution F' is calculated with no aliasing errors. In practice however, in 

meteorological models, the nonlinear terms in A of Eq.(3.4.1) are calculated by 

transform methods using a grid with sufficient resolution to ensure alias free 

calculation of the quadratic terms only (Hoskins and Simmons, 1975). 

However, the aliasing caused by triple product terms is generally negligible, 

although some effects can sometimes be observed (Jarraud and Simmons, 

1983). The lack of aliasing errors, means that nonlinear instability, as described 

by Phillips (1959), cannot occur. In addition, no phase errors will be 

introduced by the linear terms of A since these are represented exactly. A 

cause of computational dispersion is thereby eliminated (Machenhauer, 1979). 

The neglect of interactions between members of if and members of the 

complement of if is an important source of error in spectral models. 

Although the projection of the residual R(F') on if vanishes (i.e. the error in 

satisfying the equation is orthogonal to the basis functions that span H'), 

neglect of interactions involving components outside H' causes errors in the 

components of the basis functions spanning If (Haltiner and Williams, 1980). 

Since R(F') is orthogonal to the basis functions that span if, it will also be 

orthogonal to any function in H'. In particular, 

(R,F') = $ R(F)F* dt = 0 	for n=1 to N 	 (3.4.16) 

I 

which is important as it expresses the conservation properties of the 

technique. It can be shown (Machenhauer, 1979) that the spectral method 

conserves the first and second moments of F, subject to time differencing 

errors. For example, in a model with vorticity as a prognostic variable, 

vorticity and squared vorticity would both be conserved. For shallow-water 

and primitive equation models however, energy is not exactly conserved as it 

is a triple product. However, in practice, as the nonlinear terms are calculated 

accurately with the spectral method, energy is nearly conserved (Bourke, 1972). 
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3.4.4. Basis functions 

The choice of basis functions depends on the geometry of the problem to 

be solved. For global or hemispheric problems, spherical harmonics are the 

natural choice. An important property of spherical harmonics is that they are 

eigenfunctions of some of the operators that typically occur in the operator A 

of Eq.(3.4.1), simplifying the equation. No pole problem occurs as the 

harmonics satisfy the boundary conditions; if continuous variables are used no 

discontinuities at the poles are encountered. Hence the use of vorticity and 

divergence as prognostic variables.. Spherical harmonics are also useful as 

they converge rapidly for sufficiently smooth functions. Therefore spectral 

models need fewer degrees of freedom compared to equivalent grid point 

models, to achieve comparable results. 

Spherical harmonics are defined by, 

Ymn(XU) = P 	iMX  m, n 
(3.4.17) 

where X is the longitude, p is sin8 for e as latitude and the Pm, , are the 

associated Legendre functions of the first kind of order m and degree n. Here, 

m is the zonal wavenumber and n is known as the total wavenumber or the 

two dimensional index (Jarraud and Simmons, 1983). Also, n— ImI is the number 

of zeros between the poles and n—ImI+1 can be considered as a 

pseudo-latitudinal wavenumber (Doron et al. 1974). 

There are many definitions of the Pm,n 
because of the freedom of choice 

of the normalization constant. Following Jarraud and Simmons (1983), a 

suitable definition is, 

	

'm (i.') = [ (
2n+11 1 mU 	(1p2 )lmI12  ir11-II 	

2 - 1) 	 3.4.18 

	

(n+ml)! 	2n ni 	n+ImI(1.L 	 () 

which gives, 

= 
	 (3.4.19) 

The spherical harmonics are eigenfunctions of the two-dimensional 

Laplacian on a sphere, 
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V2 y 	
= ..n(n + 1) y 
	 (3.4.20) 

m,n 	a2 	m,n 

where a is the radius of the sphere. This holds only when a is a constant, 

which is not generally true for meteorological models. For example, in a sigma 

coordinate model a will not be constant along a coordinate surface. However, 

this approximation is a good one (except possibly in mountainous regions) and 

consistent with others used in the derivation of the primitive equations. 

Spherical harmonics are also eigenfunctions of the zonal derivative, 

= imY 	 (3.4.21) ax 

Following the general method outlined in the previous section, the scalar 

product on the sphere is defined by, 

fi f 2TT

iifg*dXdj (f,g) = 	T I
ti_i 	o  

(3.4.22) 

The constant outside the integral may be chosen freely and only changes the 

length or norm of the function. Eq.(3.4.22) implies that, 

(i "2IT 

	

1 I 	
'm,n'rn',n dXdi = 	mm'nn' 	 (3.4.23) (YmnYm•n) 	I 

,_itJ a 

Thus the infinite set 	 n=-G} form an orthonormal set of 

complex valued basis functions defined on the sphere. Any function, F, may 

therefore be expanded as, 

Fmn(t)Ymn(AL) 	 . 	 (3.4.24) 

m- n=-co 

with the coefficients Fmn  given by, 

	

f 1 	21T
1 J F(X,t)Y 	dXdp 	for all m,n (3.4.25) Fmn (t) = (FYmn ) = 	 ,ii

1 	0 
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The property Eq.(3.4.19) implies that, 

Km,n= Yrn 	
(3.4.26) 

and, 

F_mn(t) = Fm* ,n(t) 	
(3.4.27) 

This means that the model only needs to deal explicitly with the Fmn  for m>O. 

The values of Fmn  for m<O can be obtained by taking the complex conjugate 

of the values of Fmn  for positive in.. This halves the storage requirements of 

the model variables. 

Another property that arises from the definition Eq.(3.4.18) is that, 

= 0 	if Imi > n 	 (3.4.28) 

This can be used to write Eq.(3.4.24) as, 

0. Fmn(t)Ymn(X1I) 	 (3.4.29) 

M=-CO nImI 

From Eq.(3.4.18) it can also be shown that, 

Pmn(••11) = (1)n4imlpmn() 	 (3.4.30) 

That is, the Legendre functions are antisymmetric about the equator when 

n+m is odd and symmetric when n+Itnl is even. This property can be used to 

reduce the computations necessary for the Legendre transforms as described 

later. 

Recurrence relations are used to compute the values of the Pm,n  and also 

dPmn /dI•L as the Ym,n 
are not eigenfunctions of the meridional derivative. 

They are (Hobson, 1931), 

Cmn+iPmn+i(P) = 11  Pm,n - Cm,nPmn.i 
	 (3.4.31) 

m+l.m+l = [ ((
2m+3)/(2m+2))(1-112 ) J 

il/2p 
m,m 
	 (3.4.32) 
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2 	dP 
(ii - 1)m.n = 	m,n+1"m,n+1 - (n±1)CmnPm n1 	 (3.4.33) 

- m2  
C m , n  = ( TIT - 

(3.4.34) 

A more stable formula for high resolution is used at ECMWF (Jarraud and 

Simmons, 1983). 

3.4.5. Truncation 

A truncated set of basis functions must be used to solve the equations. 

As the variables are real-valued functions, from Eq.(3.4.27), m must satisfy 

-M<_m<_M However, there is no restriction on the limit of the index n. So, the 

truncated set gives the approximation F' to F as, 

MN(m) 

F'=E E FmnYmn 	 (3.4.35) 

m-M nImI 

As m and n increase they correspond to features with decreasing 

horizontal scales. By careful choice of the limits M and N(m) it is therefore 

possible to select the desired scales and features to be represented. This is 

somewhat analogous to choosing the size of the grid spacings in finite 

difference models. 

The two most common truncations used are known as triangular and 

rhomboidal truncation. These are best illustrated by their form in the complex, 

spectral plane and shown in Fig. 9. For triangular truncation, 

N=M 	 (3.4.36) 

whilst for rhomboidal truncation, 

N=K+M, n=K+ImI 	 (3.4.37) 

A property of the triangular truncation is that it is isotropic (Jarraud and 

Simmons, 1983). That is, it is invariant under rotation about an arbitrary axis 

through the centre of the sphere, so that the resolution is uniform on the 

sphere and the truncated field is the same whatever the position of the pole. 
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Figure 9. Illustration of triangular and rhomboidal spectral truncation. 
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Therefore, for triangular truncation, all components with a horizontal scale 

smaller than that represented are consistently neglected. 

On the other hand, rhomboidal truncation is only invariant under rotation 

about the Earth's axis, so that there is uniform resolution in the east-west 

direction but varying resolution in the north-south direction. With the same 

number of degrees of freedom as triangular truncation, the rhomboidal 

truncation gives increased resolution at high latitudes to the medium part of 

the spectrum (not just in the meridional direction) at the expense of lower 

longitudinal resolution at low latitudes. Rhomboidal truncation can be thought 

of as being analogous to a regular latitude-longitude grid whereas triangular 

truncation resembles a latitude-longitude grid with a decreasing number of 

points on a latitude circle approaching the pole. 

Early spectral models employed the rhomboidal truncation, as Ellsaesser 

(1966) showed that for coarse resolutions this truncation could maximize the 

variance retained for the kinetic energy at 500mb. Later, however, Baer (1972) 

made a more detailed analysis of the kinetic energy from two winter months 

at several levels and his results favoured the triangular truncation. 

Comparisons of the results from models using rhomboidal and triangular 

truncation have been made (e.g. Simmons and Hoskins, 1975; Daley and 

Bourassa, 1978; Jarraud and Simmons, 1983). The results were generally 

similar, with triangular truncation better at high levels. 

From a computational point of view, triangular truncation offers several 

advantages over rhomboidal truncation. Since shorter waves are represented 

with rhomboidal truncation, the timestep must be smaller. Also, the Gaussian 

grid on which the nonlinear terms are calculated is larger by about 20%. 

These two considerations lead to an increase in computer time of about 25% 

for the rhomboidal truncation. 

3.4.6. The transform method 

Whilst linear terms can be computed in spectral space, the approach for 

nonlinear terms is not so straightforward. Early spectral models used the 

method of Silberman (1954), known as the interaction coefficient method. This 

involves substituting the spectral expansions directly into the equations and 

evaluating the extensive summations. Although selection rules (Baer and 
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Platzmann, 1961) can be used to reduce the number of computations, this is 

still of the order of N 5  where N is the truncation wavenumber (Orszag, 1970). 

Computer storage requirements are also large and become prohibitive as 

resolution increases. 

A further problem was that the effects of physical parametrizations could 

not be included. As a consequence, only low resolution spectral models were 

possible until the transform method was developed independently by Orszag 

(1970) and Eliassen et al. (1970). In this approach, the nonlinear products are 

formed by transforming the required variables to gridpoint space, computing 

the products locally at each point and then transforming back to spectral 

space. The number of operations using this technique is proportional to N 3  

(Orszag, 1970), a substantial reduction compared to the interaction coefficient 

method. Additionally, a substantial saving in storage space is achieved. 

The transform method can be demonstrated by rewriting Eq.(3.4.25) as, f 1/ f 21 

F n = 	
Fe 	d), m.n d 	 (3.4.38)

2 	27f 
1  c 

That is, a Fourier transform, 

f 
27r

Fm (P,t) = 
	

F(A,ii,t) e mX dX 	 (3.4.39) 
2ir 

0 

to give the Fourier coefficients at each latitude, followed by a direct Legendre 

transform, 

Fmn(t) = 
1 	

Fm (P,t)Pmn (I.L) di.i 
	

(3.4.40) 

to give the spectral coefficients. The inverse spectral transform Eq.(3.4.24) can 

be separated in the same way into inverse Legendre and Fourier transforms. 

Considering the longitudinal integral first (the Fourier transform), this can 

be computed exactly by the trapezoidal quadrature formula if a sufficient 

number of points are chosen (Machenhauer and Rasmussen, 1972). The 
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integral becomes, 

Fm(11jt) = 
	1(t) exp{-imA1} 	 (3.4.41) 

I 

using a regular set of points, A, in the east-west direction. These are given 

by, 

A 1 =:211i/I 	for i=Otol-1 
	

(3.4.42) 

which is exact for I-1>N, where Nis the maximum wavenumber of the series 

to be summed (Machenhauer, 1979). The integrand of Eq.(3.4.41) is the 

product of three trigonometric functions, as F1  represents the result of 

calculating the nonlinear terms (the product of two functions) each with a 

maximum zonal wavenumber M. The result is therefore exact if I satisfies, 

1> 3M+ 1 (3.4.43) 

(Orszag, 1971). In practice, the number of points, I, is chosen to allow the use 

of the Fast Fourier Transform (FFT) algorithm (Cooley and Tukey, 1965). 

The latitudinal integral Eq.(3.4.40) is computed using the Gaussian 

quadrature formula (Eliasen et a!, 1970), 

J 

Fmn =•- E 	Fm (i1jt) rn.n(j) 
j=1 

(3.4.44) 

which is exact for an integrand that is a polynomial in ji of degree < 2J-1. 

The Vj  are the zeros of P 	that is, 

PO'j Old = 0 	 for J = 1 to J 	 (3.4.45) 

which is the condition used to determine the Gaussian latitudes, 1i, of the 

grid. They can be approximated by the zeros of Bessel functions (Abramowitz 

and Stegun, 1965) and then iterated using a Newton-RaphSOfl procedure until 

the desired accuracy is achieved. The Gaussian coefficients or weights, g, are 

determined by, 
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2(1 - 4)(2J - 1) 	 (3.4.46) 
= 1JP01()I2  

using the normalized values of the mfl 
given in Eq.(3.4.18) 

Substituting the spectral expansions for the variables into the product of 

two functions (the calculation at each gridpoint), shows that the integrand of 

Eq.(3.4.40) is a polynomial in .i of degree 3M for triangular truncation and 

2M+3K for rhomboidal truncation. Therefore the number of latitudes, J, must 

satisfy, 

J> (3M+ 1)/ 2 	 (3.4.47) 

and, 

J > (2M + 3K + 1)/ 2 	 (3.4.48) 

for triangular and rhomboidal truncation respectively. 

Unfortunately, there is no fast algorithm analogous to the FFT for the 

Legendre transform, although optimization is possible as described below. It 

is not surprising therefore that the Legendre transforms account for a 

significant fraction of the total computational cost of any spectral model. 

The grid on which the nonlinear products are calculated is regular in the 

east-west direction but irregular in the north-south direction. However, the 

irregularity decreases with increasing resolution. A major advantage of the 

transform method over the interaction coefficient method is that the use of a 

grid in physical space allows the effects of the physical processes to be 

included. 

3.4.6.1. Optimization of the transforms 

The Legendre transforms may be optimized by using the property 

Eq.(3.4.30), that the Legendre functions are either symmetric or antisymmetric 

about the equator, to halve the number of necessary computations 

(Machenhauer, 1979; Jarraud and Simmons, 1983). 

Optimization of the FFT is also possible. Since the spectral coefficients are 

conjugate-symmetric from Eq.(3.4.27), the transform of real data of length N 

can be done using a complex transform of length N12 by treating the even 
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values as the real part and the odd values as the imaginary part (Hockney and 

Jesshope, 1981; Orszag, 1971). Also, it is possible to improve the FFT 

algorithm if I can be factorized into mutually prime numbers (Temperton, 

1983). 

3.5. Galerkin techniques: Finite element method 

3.5.1. Introduction 

Although the use of the finite element method in engineering had become 

standard by the early 1970s (e.g. Zienkiewicz, 1971), the first meteorological 

applications of the method were only just beginning to appear in the literature 

(e.g. Wang et a!, 1972; Cullen, 1973). Finite element barotropic models were 

developed by Cullen (1974b) and Staniforth and Mitchell (1977). The global 

model of Cullen (1974b) used triangular elements mapped onto a icosahedron. 

A baroclinic model was developed by Staniforth and Daley (1979). Boundary 

layer finite element models have also been developed independently by 

Malihot and Benoit (1982) and Chang at a/. (1982). The finite element 

technique has also been successfully used for the vertical discretization in 

sigma coordinate primitive equation models, particularly those incorporating a 

spectral representation in the horizontal. Work on the Canadian spectral and 

finite element models using finite elements in the vertical has been performed 

by Staniforth and Daley (1977), Cote et al. (1983) and Beland and Beaudoin 

(1985). More recent work on the inclusion of finite elements in the vertical for 

the ECMWF spectral forecast model has been done by Burridge et al. (1986) 

and Steppler (1986). Whilst at current model resolutions the finite element 

method is not superior to the spectral technique for global models (Cullen, 

1974b), it is being increasingly used by research workers developing 

mesoscale and limited area models, as demonstrated by the list of active 

mesoscale research groups in Pielke (1984). 

In this section, the general approach of the method is described along with 

a discussion of its properties and the treatment of boundary conditions. Most 

of this review is a summary of the papers by Cullen, Staniforth and of selected 

text books. 
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3.5.2. General method 

The finite element method is usually introduced using variational principles 

(e.g. Strang and Fix, 1973). However, the Galerkin method is more suited to 

time dependent problems and does not rely on finding a variational form of 

the problem. 

Like the spectral method, the finite element method is best described in 

terms of Hubert spaces and their norms. The admissible functions to a Hilbert 

space must have finite energy, 

N(f)=5f 2 dt < 
	 (3.5.1) 

where MI) is the norm. The space of functions satisfying Eq.(3.5.1) is denoted 

by 110. The superscript denotes how many derivatives of f are required to 

have finite energy. 

The Galerkin finite element method proceeds as for the spectral method. 

The general form of meteorological equations, Eq.(3.4.1), is written as, 

= A(F) 	 (3.5.2) 

where w=Ff9L This is multiplied by some test function, v, in some test 

space, V. and integrated over the domain to give, 

(w,v) = (A,v) 
	

(3.5.3) 

This must hold for each function v in V. 

If V is H 0, the equation is said to hold in a strong sense. The solution 

must therefore lie in the space 
jjm where 2m is the order of the operator A 

and e denotes that the full boundary conditions must be satisfied. However, 

by choosing a test space V=H 5, this permits (by integration by parts) 8 of the 

derivatives in A to be shifted from F to v. The solution therefore need only 

be sought in g2ms 

As 8 increases and only 2in-s derivatives of F need have finite energy (by 

shifting s of them to v) to qualify for the solution space, the only boundary 

conditions which can be applied directly are those of order less than 2m-a 

This is an important point in the finite element method. Those boundary 
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conditions of order less than 2m-s are known as the essential conditions in 

that the test functions v must satisfy them. Those conditions of order greater 

than or equal to 2m-s are known as natural boundary conditions as the 

Galerkin problem can be formulated so that the test functions v automatically 

satisfy them. 

When m=s, the test space is the same as the solution space (the Ritz case), 

as is usual for meteorological applications using the finite element method. 

The solution space is then denoted by IJ where the E denotes that only the 

essential boundary conditions need to be satisfied. The test functions, v, must 

lie in the solution space IJ. 

The Galerkin method is a discretization of the continuous equation 

Eq.(3.5.3). The Ritz case is used, where the functions, 4, n1 to N, form a set 

for the space B' Any function in IPE  be expanded as, 

N 

	

I = 	 ( 3.5.4) 

n1 

where the qn  are the expansion coefficients. 

Since the test functions v in Eq.(3.5.3) can also be written as Eq.(3.5.4) it is 

sufficient to use 	in Eq.(3.5.3), 

	

N 	 N 

4m) = (A(Fct), 4m) 	for m=1 to N 	 (3.5.5) 

	

n1 	 n1 

Eq.(3.5.5) can then be solved by a suitable choice of basis functions. Unlike 

the spectral method, the basis functions usually employed in the finite element 

method are not orthogonal, although they are nearly so. 

3.5.3. Some properties of the finite element method 

Papers by Cullen (1973, 1974a, 1974b) illustrate that finite element models 

can achieve better results than finite difference models of second order that 

use four times the number of gridpoints. Aliasing is eliminated in finite 

element models, although not in the sense of the spectral method. Instead 

short wave interactions are heavily damped (Cullen, 1973). Also, phase 

propagation is accurate and nonlinearities are handled well. The finite element 



technique, as a Galerkin method, has good conservation properties, depending 

on the problem. 

One advantage over spectral methods is that the finite element method 

can be applied to irregular domains and have irregular spacing with little 

additional effort. Grids that vary with time are also possible. An advantage 

over finite difference techniques is that boundary conditions can be 

incorporated in a more mathematically consistent way. Also, the finite element 

method, implies the form of the field between nodes from the basis functions 

used. In the finite difference method nothing is known about the shape of the 

field between gridpoints, which therefore leads to aliasing. 

The disadvantages of the finite element method are that first the resulting 

scheme is more difficult to program; large systems of linear equations have to 

be solved. Noise can also be a problem with finite element models (Cullen, 

1976) and O'ie . cA when all the variables are carried at each 

nodal point (Haltiner and Williams, 1980). However, in the barotropic model of 

Staniforth and Mitchell (1977), the vorticity and divergence equations were 

used as in spectral models. This was found to reduce the noise problem 

considerably. Williams and Zienkiewicz (1981) have shown that using different 

basis functions for the height and velocity variables can also give good 

results. 

3.5.4. Basis functions 

The key difference between the spectral and finite element methods is that 

the basis functions used in the former are defined over the whole domain 

whereas for the latter they are nonzero only over a small, local area. It is this 

local nature of the basis functions that gives the finite element method its 

flexibility in solving problems with irregular geometry. 

The domain is first divided into a mesh of nodal points. The placement of 

nodal points depends on the choice of basis functions; triangular elements 

would require the region to be divided into triangular regions. For general 

problems, this will require some approximation of the boundary (Strang and 

Fix, 1973). However, at any point in the region the mesh can be refined to 

give a higher resolution (Stariiforth and Mitchell, 1978). The choice of the type 

of basis function depends on the desired accuracy of the solution and on the 
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geometry of the problem itself. 

The simplest basis function is the one-dimensional Chapeau function. It is 

defined by, 

4n = 0 

= (z-2_ 1 )/(z-x_ 1 ) 

= (z +1 -z)/(z 1 _x) 

for x K 	and z > 

for Zn_i ~ Z( 

for z~ r (3.5.6) 

and is 1 only at xn  and zero elsewhere. This is an interpolatory basis function 

since for an expansion, 

N 

tz(z) = 	tLn4n(Z) 	 (3.5.7) 

n0 

then, 

u(x) = U0 	 (3.5.8) 

Thus, unlike the spectral method, the expansion coefficients u,, are the field 

values at the nodal points x. This is not true for higher order elements. 

The simplest basis function in two dimensions is the rectangular bilinear 

piecewise basis function. It is the product of two one-dimensional Chapeau 

functions i.e. 

e(x,y) = 4(x)(y) 	 (3.5.9) 

where p = p(ij). This is also an interpolatory basis function. 

Any function u(Z,y) can be expanded as, 

M 

u(r,y) = 	tze(z,y) 	 (3.5.10) 

P=O 

but from Eq.(3.5.9), this can be written as, 

N N 

u(Z,y) 	 ts,4,(x)4j(y) 	 (3.5.11) 

=0 j=0 

As the solution space is a product of one-dimensional spaces, the finite 



element matrices resulting from the approximation of the linear operators in 

Eq.(3.5.2) may also be decomposed into the product of one-dimensional 

matrices. This results in reduced computation. This property of the bilinear 

elements has been used by Staniforth and co-workers in developing their 

barotropic and baroclinic models (Staniforth, 1987). 

3.5.5. Approximation of some simple terms 

In this section, the finite element method is illustrated for some simple 

terms which form the components for solving meteorological problems and 

will be used for the model developed in chapter 7. In particular, the treatment 

of the nonlinear advective terms is described, where the precise approach is 

important. The one-dimensional examples discussed below are a summary of 

the review by Cullen (1979). 

3.5.5.1. First derivative 

Consider the equation, 

W = 	 (3.5.12) 

over the interval x=O to x where x=E 1 Lz1. Following the Galerkin procedure, 

the variables w and u are expanded as, 

W  = u = 
	 (3.5.13) 

Substituting into Eq.(3.5.12) and taking the scalar product gives, 

dx = 	

X 

u 

	

dx 
i=O 	fo 	1=0 	fo for all j (3.5.14) 

If the integrals are written as matrix elements, 

M. 

= 
$ 4j4 dx, 	P-ii = 

$ 
4j d 1 /dz dx 	 (3.5.15) 

then Eq.(3.5.14) can be written as, 

M. 



rL L 	 (3.5.16) 

where u and w are vectors containing the nodal values. Mis the so-called 

mass matrix (Strang and Fix, 1973) and both Mand P are often referred to in 

the literature as Galerkin or projection operators (Burridge et al. 1986). 

The integrals in Eq.(3.5.15) are evaluated by substituting for •,. using 

Eq.(3.5.6). Since the 4 n  are locally defined, only neighbouring elements 

interact. Thus, although the basis functions are not orthogonal they are nearly 

so and the evaluation of the integrals is straightforward. 

To evaluate j, the derivative of the basis functions is required, which is, 

( 	1/A_ 1 	for 

d/dx = , 	- 1/ 	for 	 (3.5.17) 

\ 0 	 elsewhere 

This leads to, 

Px,, j _1 = - 1/2, 	Pxjj+1 = 1/2, 	Px 11  = 0 	 (3.5.18) 

together with, 

= Az-1 / 6, 	M. +1  = Az 1 . / 6 	 (3.5.19) 

M, = (Ax + 	) / 3 

so the resulting scheme for a node j is, 

+ .( 2 -i + A) + 	= 1 (uj+i - 	 (3.5.20) 

The solution of Eq.(3.5.16) is given by, 

w=t -1 	
(3.5.21) 

Since the mass matrix is positive definite it is invertible and Eq.(3.5.21) can be 

solved. Both matrices (as with all matrices resulting from the use of 

one-dimensional linear basis functions) are tridiagonal. Higher order basis 

functions and problems in more than one dimension lead to higher bandwidth 

matrices. 

Eq.(3.5.21) is implicit and therefore the solution at each node must be 
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obtained simultaneously. The additional cost to solving Eq.(3.5.21), when 

compared with an explicit finite difference scheme, is offset by its superior 

accuracy. With an irregular spacing, as above, the solution is first order 

accurate. For regular spacing the usual truncation error analysis shows the 

method to be fourth order accurate (Cullen. 1976). This high accuracy is a 

case of superconvergence, where the accuracy of the solution at the nodes is 

of a higher accuracy than at non-nodal points (Strang and Fix, 1973; de Boor, 

1974). For free boundary nodes (free meaning no boundary conditions are 

imposed) the accuracy is only first order. The boundary nodes are therefore 

likely to be a source of error. This can be improved by including more nodes 

in the equation for the solution of the boundary node as in the procedure 

given in the appendix to Betand and Beaudoin (1985). However, the modified 

mass matrix is then no longer tridiagonal. The approach of Beland and 

Beaudoin (1985), similar to the approach used in compact differencing, can 

also be used to obtain a scheme for the first derivative that is fourth order 

accurate with irregular spacing and the resulting matrices are tridiagonal. 

For the two dimensional problem, Eq.(3.5.12) is solved over a domain z0 to 

x, z0 to z. The variables are expanded as in Eq.(3.5.13) but using the bilinear 

basis functions defined in Eq.(3.5.9). Applying the Galerkin proceaure gives, 

P=O 	f
Cqp  dzdz = 	 u f eq 3 ep /a x dxdz for all q 	 (3.5.22) 

D 	
P=O 	

D 

By introducing the matrices, 

Mqp 
= 	

e 	dxdz  
fD 

q p 	
(3.5.23) 

PXqp = 5 eqaepIzdxdz 

D 

Eq.(3.5.22) can be written in matrix form as before, 

	

fi?= x  u 	
(3.5.24) 

except w and u are vectors holding all the nodes in the two-dimensional 

domain in some particular nodal ordering (e.g. along successive horizontal 
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levels). The mass matrix in Eq.(3.5.23) is block tridiagonal where each block is 

itself tridiagonal. 

Staniforth and Mitchell (1977) describe how the use of the bilinear basis 

function enables Eq.(3.5.22) to also be solved as a set of one-dimensional 

problems. To see this, for the LHS of Eq.(3.5.22) substitute for the bilinear 

basis using Eq.(3.5.9) and separate the integrals to give, 

P 	 I 	K 

WP fD CqCp dxdz 	 dx fo Ik dz 	 (3.5.25) 

 j 
	k 	 o  

Following the same procedure for the RHS and using matrix notation, 

Eq.(3.5.22) becomes, 

N(u)T 	
(3.5.26) 

where, N is the mass matrix for the vertical only, Mis the horizontal mass 

matrix andis the projection matrix defined in Eq.(3.5.15). The variables w 

and u are now represented by matrices rather than vectors. The approach of 

Staniforth and Mitchell (1977) is to first solve Mw and then j.. However, as 

pointed out by Staniforth (1987), multiplying Eq.(3.5.26) by Y 1  reduces it to, 

(3.5.27) 

Thus the computation of the derivative becomes less expensive as not only is 

the RHS simpler but only tridiagonal systems need to be solved. This 

simplification could not be done if the e p  were not the product of 

one-dimensional basis functions or if the domain was not rectangular. 

3.5.5.2. Approximation of products 

Now consider the simplest nonlinear equation in one dimension, 

W = uv 
	 (3.5.28) 

Following the Galerkin procedure, the resulting finite element equation is, 

	

N 	 N 

	

wi  fo 
kX

=0 	 i=0 fxMjE 	k
j=0 	0  

for all k 	 (3.5.29) 
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Evaluation of these integrals gives, 

f dx = (A-1 + A) / 4 

	

k-1 	dz = 	k-1k dz = Azk_ / 12 
	

(3.5.30) 

J k+1k dz = 
$ 

•+1k dz = 	/ 12 

which, substituting into Eq.(3.5.29) gives the following equation for a node k 

1k1A 2k_1 +j?k(LZ_1 +A)+j k+lAxk = 1 [A2k(u+uk+1)(vk+vk+1)+ 	(3.5.31) 

6 	3 	 6 	12 

2 ukvk(xk_, +&X0 +A Zk_1 (uk+uk_1 )(vk+vk_1 )1 

It is possible to write this in matrix form by introducing the projection 

matrix . (Cote et a!,, 1983) where, 

	

f x
PukJ = 	44i dx 	 (3.5.32) 

1=0 

so that Eq.(3.5.29) can be written as, 

(3.5.33) 

where Mis the mass matrix defined in Eq.(3.5.15). The solution to Eq.(3.5.33) 

again requires the solution to a set of simultaneous equations. 

Cullen (1976) has analysed the error associated with this scheme and 

shown it to be fourth order accurate. Using the basic operations of 

differentiation and multiplication it is possible to have a fourth order accurate 

finite element model. An example of this is the barotropic model of Staniforth 

and Mitchell (1977). 

Also important is the scheme's treatment of short wave interactions. This 

can be examined by substituting Fourier modes of the form, 



= exp{ikx}, 	v = exp{ilz 0 }, 	 w = K(k,1) exp{i(k+1)x) 	(3.5.34) 

into Eq.(3.5.31). Solving for K(k)) gives, 

K(k,1) = (3 + cosk + cosl + cos(k±1)) / (4 + 2cos(k+1)) 	 (3.5.35) 

This function is plotted in Fig. 10 for k=1 and k21i/X where A is the 

wavelength, assuming a constant spacing. From this figure it can be seen that 

those short wave interactions that would result in aliasing are heavily damped 

(although not shown, this is also true when I44. With the possibility of aliasing 

greatly reduced, nonlinear instability as described by Phillips (1959) is less 

likely to occur. Cullen (1973) found this to be the case in practice. 

Although the Galerkin formulation reduces aliasing, it has been found that 

Eq.(3.5.28) can be computed by, 

=Un Vn
(3.5.36) 

when either u or v is a smoothly varying function (Staniforth and Mitchell, 

1977). This point collocation approach is still fourth order accurate but is 

much cheaper to compute. 

For the product of two functions in two dimensions the procedure is 

identical to that used for the first derivative. Again, the equation may be 

solved using one dimensional matrices. The finite element approximation 

becomes, 

MWwT)T= F 
	

(3.5.37) 

where £ represents the matrix resulting from the computation of the RHS to 

the Galerkin equation of Eq.(3.5.28) in two dimensions. The elements of £ are 

given by, 

= 1ZtZ1 	
+ P4  + 	+ 	,j + 

	
(3.5.38) 

Pi,j  + 	+ 	+ Pi,j+4 + Pi++,+4 I 

where, 
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P.,,14 4 = U1,1+4 Vj,14 4 
	 (3.5.39) 

= (ui,j  + tz1141) / 2 

and equal spacing in both directions is assumed for clarity. The procedure to 

solve Eq.(3.5.37) is therefore to first solve, 

AT  — M'F 	 (3.5.40) 

and then solve, 

= 	A 	 (3.5.41) 

3.5.5.3. Approximation of advective terms 

The finite element approximation of the one-dimensional advective term, 

W 
= uv/3x (3.5.42) 

is now considered. In finite difference approximations, care must be taken to 

ensure that the scheme does not lead to nonlinear instability. 

The procedure is as before, the variables are approximated and the scalar 

product with the basis functions is taken over the domain. The resulting 

scheme for a node i is (Cullen, 1979), 

+ 4w1  + w4.1] = 	+ u 1 )(v, - v 1 _ 1 ) + 	 ( 3.5.43) 

1 	2 (u, 41  +u )(v141 - Vj )] 

where regular spacing is assumed. 

The analysis of Cullen (1979) shows that this scheme has a leading 

truncation error term of Ax 4/40. However, using the basic operations of 

differentiation and multiplication it is possible to compute Eq.(3.5.42) using an 

alternate approach, as described in Cullen (1974a). First compute s-- 9v/3x so 

that s is fitted to a piecewise linear function. Then compute the product wus 

using the finite element scheme for products. Since these individual 

operations are fourth order accurate, the combined scheme gives the solution 

at the nodes to fourth order accuracy. This split or two stage scheme has 



been shown by Cullen (1974a) to have a leading error term of AX 4/240 so that 

it is more accurate than the single stage scheme above. However, it is no 

longer a conservative scheme. Even so, when the two stage scheme was 

used in the model of Staniforth and Mitchell (1977) the total energy and mass 

of the barotropic model were conserved to a few percent over a run of 50 

days. 

The accuracy of both schemes can be illustrated by substituting Fourier 

modes of the form given by Eq.(3.5.34), assuming regular unit spacing. For 

Eq.(3.5.43), 

K(k,t) -- i(sin(k+1) + 2sint - sink) 	 (3.5.44) 
 2 + cos(k+1) 

whilst the response of the two stage scheme is, 

3sink 3 + cosk + cost + cos(k+1) 	 (3545) K(k,1) 	
2+cosk 	4 ± 2cos(k±1) 

By comparison, the response of the second order finite difference 

approximation, 

w 
1 	

[(U. + u._ 1 )(v, - Vi -1) + (u. + u+1 	- ) 1 	 (3.5.46) 

is, 

K(k,1) = i(sint - sink + sin(k+1)) / 2 
	

(3.5.47) 

Fig. 11 shows a comparison of Eq.(3.5.44), Eq.(3.5.45) and Eq.(3.5.47) plotted for 

k=L Both the finite element schemes are superior to the finite difference 

scheme. The two stage scheme is the most accurate at a wavelength of 4Az 

but appears to be slightly less accurate for wavelengths between 5tx and 

The extension to two dimensions for the single step scheme is 

straightforward and follows the procedure for the approximation of a product 

in two dimensions. For the two stage scheme, the approach is a combination 

of the two dimensional schemes used for the first derivative and product. 
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3.5.6. Stability and phase properties 

To examine the stability criterion of the finite element method consider the 

one dimensional advection equation, 

au/at = Ca u/az 	 (3.5.48) 

where c is a constant. Following the procedure in Haltiner and Williams (1980), 

assume a solution of the form, 

U = X"e ° 	 (3.5.49) 

where A'1  represents an amplification factor at time level n and A=X'11 iA". 

The Galerkin scheme for Eq.(3.5.48) is given by Eq.(3.5.20) so, 

	

+ 4&, + 	= 	[u"~ 
- 	 (3.5.50) 

The time derivative is approximated using the leapfrog time scheme. 

Substituting Eq.(3.5.49) into Eq.(3.5.50) and requiring that A be bounded for 

all n gives, 

At < 	
0.57Ax 

- c/3 	c 	 (3.5.51) 

The fourth order accurate finite difference scheme, 

au/ax = f 8(u..1  - u1 _ 1 ) - (u12  - u1_2) J / 12Az 	 (3.5.52) 

by comparison requires a timestep of, 

At < 	
- 0.75Az 

- 4c - c (3.5.53) 

for stability. The finite element approximation is more restrictive. This has led 

to the use of implicit, semi-implicit and semi-Lagrangian time integration 

schemes for finite element models. 

To study the phase properties of the scheme, a solution of the form, 

u = exp(i(kz + at)) 
	

(3.5.54) 

(Cullen, 1973), is substituted into Eq.(3.5.50) and Eq.(3.5.52) and a solved for. 

Fig. 12 shows the behaviour of the phase velocity, where the ratio of a to the 
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true phase velocity 21Tc/X is plotted against wavelength. Also shown is the 

phase behaviour of a second order finite difference approximation to 

Eq.(3.5.48). A timestep that is 75% of the maximum allowable for each scheme 

is assumed in each case to illustrate the behaviour for a timestep close to 

that used in practice. 

Fig. 12 shows that the finite element scheme is more accurate; even 3tx 

waves are propagated at almost the correct phase speed. However, it can 

also be seen that, like the fourth order finite difference scheme, the short 

waves have a leading phase error. Nevertheless, the phase speeds of the 

waves in the finite element method are very accurate, a property noted by 

early literature on the use of the technique for meteorology (Cullen, 1973, 

1974a; Staniforth and Mitchell, 1977). The penalty in the timestep is therefore 

due to the superior treatment of the shortest waves. 

3.5.7. Boundary conditions 

The incorporation of boundary conditions into a finite element problem is 

perhaps more mathematically consistent than in finite difference methods. 

The subject is not discussed to any length in meteorological literature on finite 

element applications. Therefore this section discusses some of the theory and 

finer points to the inclusion of boundary conditions. 

3.5.7.1. Homogeneous conditions 

To illustrate the application of boundary conditions the equation, 

d2  u 
d xZf 

(3.5.55) 

is to be solved over a region x=O to X. Since this is a second order equation, 

the second derivative of the solution, u, must have finite energy. That is, u 

must reside in the il space. 

Following Strang and Fix (1973), Eq.(3.5.55) is solved subject to the 

boundary conditions, 

U (0) = 0 	
(3.5.56) 

du(X)/dx = 0 
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The solution must now reside in the space 14, where the subscript denotes 

that Eq.(3.5.56) is satisfied. 

Applying the Galerkin method to Eq.(3.5.55) and integrating the LHS by 

parts gives, f x 
du dx + I ciz 	for i=1 to N 

-x

dxdx 	 4ij. =

f
f4I 

 o 	0 

where the basis functions, , can reside in H1 , as the order of the equation 

has been reduced. This implies that 4 j  may be piecewise linear functions. 

The integrated term at x=X vanishes since du(X)/dzO from the boundary 

condition Eq.(3.5.56). Since the 4 j  belong to the homogeneous space H', 

(0)=0 for all i and the integrated term at z=0 also vanishes. The resulting 

equation is then solved in the usual way by approximating u and f where the 

basis 4 j  are defined on N nodes for z=itz and 1=1 to N There are thus N 

unknowns for the Nil nodes as the solution at z=0 is known. 

The essential condition is satisfied by the finite element expansion for u. 

This is not true of the natural condition but the Galerkin equation to be solved 

ensures that u satisfies it. This is the classic finite element problem as 

discussed by Strang and Fix (1973) and Mitchell and Wait (1977). 

3.5.7.2. lnhomogeneous conditions 

Consider the solution to Eq.(3.5.55) but with the condition, 

u(0) = g 
	 (3.5.58) 

This is an essential inhomogeneous condition and must therefore be satisfied 

by the solution in the space 14. 

The functions in 14 are not linearly independent as it is possible to write, 

(u1  + u2)I0 = 2g 
	 (3.5.59) 

That is, the sum of two such functions does not satisfy Eq.(3.5.58). However, 

the function obtained as the difference of two such functions, 
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V = U1  - U2 
	 (3.5.60) 

must belong to the homogeneous space H, such that v(0)0. This 

homogeneous space was the solution space in the previous section. 

If the same procedure as in the homogeneous case is followed, Eq.(3.5.55) 

is multiplied by a basis 4 j  and integrated over the domain. The integrated 

term at z=X vanishes as before. However, for the term at z=0, since nothing is 

known of the derivative at that point and the basis 4 j  can be freely chosen, it 

is necessary to insist that $(0)=O for all I as in the homogeneous case. This 

is an important point to understand in the finite element method. That is, 

whilst the solution must reside in the 14 space, the test and basis functions 

must reside in the homogeneous space M. This is true for homogeneous and 

inhomogeneous boundary conditions (Strang and Fix, 1973; Conner and 

Brebbia, 1976). The inhomogeneous essential boundary condition does not 

alter the Galerkin equation for Eq.(3.5.55) in any way. 

Now consider the approximation of u. As before, u is expanded in terms of 

the basis 4 j  that span the homogeneous space 1]1 To satisfy Eq.(3.5.58), the 

function 4 O  is introduced. So, 

	

+ 	u141 	 (3.5.61) 

where 4 0(0)=1 at z=O. The function 00  need not be of the same form as the 4j 

but is usually taken to be so. Burridge et al. (1986) give examples of different 

boundary elements for the vertical discretization of primitive equation models. 

However, although of the same form, this function is treated differently from 

all other 4. The Galerkin equation must not be minimized with respect to 4. 

In other words, there are N+1 nodes, the value at one is fixed and so N 

equations for the remaining nodes must be obtained. 

Consider the inhomogeneous Cauchy condition, 

dz 
	 (3.5.62) 

This condition need not be satisfied by the approximation to u but it does 

require a modification to the Galerkin equation so that it is a natural boundary 

condition for the problem. The procedure is exactly as above, resulting in the 
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Galerkin equation Eq.(3.5.57). As before, the integrated term disappears at z0 

but at z=X Eq.(3.5.62) is used so that the equation becomes, 

f fo

x  
du 	dx - 	- c*u,) = f dx 	for 1=1 to N 	 (3.5.63) dx dx 

0  

where 6jN  is used since •(X)=1 only when i=N and u(x)=uN,  as the piecewise 

linear basis is used. The condition Eq.(3.5.62) modifies the LHS and the RHS of 

the resulting matrix equation whereas the essential inhomogeneous condition 

above, Eq.(3.5.58), will only modify the RHS: However, they are only local 

changes, involving modifications to the equations of the boundary nodes. 

Nevertheless, since the equations are solved simultaneously the boundary 

value can affect any interior node on the first timestep. This is in contrast to 

the explicit finite difference method, where the effect of the boundaries 

propagates into the interior of the domain as the integration in time 

progresses. This therefore suggests that it is more important in finite element 

models to have accurate boundary conditions. 

In practice however, it is possible to ignore the boundary conditions until 

after the projection matrices have been assembled. This is because of the 

local nature of the changes that need to be made. Thus, u would be written 

as, 

U,4 
	

(3.5.64) 

The Galerkin equation is then solved for 1=0 to N The essential and natural 

conditions can then be introduced in the same way, by modifying the 

appropriate equation. For example, the equation for the node 1=0 without any 

boundary condition is, 

(U - u) / A z = J0 	 (3.5.65) 

which is replaced by, 

U0  = g 	 (3.5.66) 

in the matrix equation. The natural condition is imposed in the same way. 

This is slightly inefficient for the solution of the system, as the known values 
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could be moved to the RHS. However, as pointed out by Conner and Brebbia 

(1976), this often presents technical difficulties as the program has to 

renumber rows and columns in the matrices. 

3.5.8. Initial conditions 

In providing the initial conditions for a finite element model given a 

continuous function u, the problem is to determine the best way to 

approximate the function and obtain the finite element expansion coefficients. 

For linear elements, since the basis function is interpolatory (from Eq.(3.5.8)), 

one way of determining the expansion coefficients is simply to take the value 

of u at each of the nodes. The approximation error can be shown to be O(z) 

(Cullen, 1979). 

A better approach is to use the Galerkin method. If u is approximated by, 

U = tt' = 	u1 4 
	 (3.5.67) 

then multiplying the residual u-u' by the basis function and integrating over 

the domain gives, 

N 

1=1 _st 
u1  J 	jj  clz - 	u ciz 	for j=l  to N 	 (3.5.68) 

The LHS leads to the mass matrix as before whilst the RHS integral has to be 

numerically evaluated using some form of quadrature, the most common and 

efficient of which is Gaussian quadrature (Krylov, 1962). Duller and Paddon 

(1984) give a parallel implementation of this for a finite element program On 

the ICL DAP. 

Following Cullen (1976), the effect of this procedure can be seen by 

assuming that, 

u =e{e} 
	

(3.5.69) 

and that the expansion coefficients can be written as, 
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= a(k)exp{ikz1} 	 (3.5.70) 

Substituting into Eq.(3.5.68) and solving for a gives, 

12 1 - cos(kx) ) 	 (3.5.71) a(k) 	
k 2 z (4 + 2cos(kAz)) 

This is plotted in Fig. 13 against wavelength expressed as a multiple of the 

grid spacing. It can be seen that projecting the data onto the nodes using a 

Galerkin procedure virtually eliminates all waves of length less than 2tz i.e. 

those that would be misrepresented on the grid. 
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CHAPTER 4 

METEOROLOGICAL MODELLING ON THE ICL DAP 

4.1. Introduction 

This chapter reviews the previous meteorological modelling studies on the 

ICL DAP. The processor array has a natural analogue to the finite difference 

method and this formed the basis for the initial studies on using the DAP for 

meteorological modelling, reviewed in the next two sections. As the spectral 

method is preferred for global modelling, it is important to try to apply it to 

the DAP. The first study of this method on the DAP is described in section 3. 

The finite element method has already been shown by other authors (e.g. Lai 

and Liddell, 1987a) to be suited to the DAP for engineering problems. No 

meteorological studies using this technique have been conducted on the DAP 

to the author's knowledge. 

4.2. Studies using the Meteorological Office operational suite 

Hunt (1974a,b) and Reddaway (1976) studied the application of the DAP to 

the operational suite in use by the U.K. Meteorological Office at that time. As 

the machine was not yet built, these studies were estimates of the DAP 

execution time based on operation counts from the code listings. 

Hunt (1974a) considered the implementation of the initialization program 

that prepared a balanced initial state for the general circulation forecast model. 

The input to the program was height and humidity, mapped to a rectangular 

three dimensional grid. The wind field, height and humidity (adjusted to be 

convectively stable) were output from the program. The grid had 66x50 points 

with 10 vertical levels. The study assumed a 64x64 DAP so that each PE 

processed one column. 

Hunt (1974a) found that much of the original FORTRAN code could be 

directly expressed in parallel form, the remainder consisting of conditional 

operations and the calculation of boundary values. The conditional operations 

occurred in the adjustment for convective instability and the height field was 

adjusted so that the balance equation for the streamfunctiOn was elliptic. 

Adjustments were made with logical masks to ensure the correct PEs were 

updated. Although inefficient, these calculations formed only a small part of 

the total number of operations. 
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About 65% of the arithmetic operations were spent solving Poisson 

equations. A parallel version of the serial solution procedure was shown to be 

inefficient and Hunt (1974a) discussed other methods but made no estimate of 

the likely improvements in performance. 

The overall efficiency of the DAP program expressed as the percentage of 

PEs doing useful work was estimated as 50%. For 32-bit floating point 

precision, the estimated performance was about 6 times that of the program 

running on the IBM 360/195 used by the Meteorological Office at that time. 

Hunt (1974a) noted that some parts of the. program appeared suitable for 

calculation using block point arithmetic. Assuming the entire program was 

coded using block point arithmetic, the estimated performance on the DAP 

would be 18 times that on the IBM. The initialization program fitted entirely 

into the 2Mbyte DAP store. 

If a larger grid was used, it would have been processed in sections on the 

DAP. On the other hand; if the array size was a multiple of the grid size (e.g. 

a 128x128 DAP), Hunt (1974a) described how several levels could be processed 

in parallel for some but not all parts of the program, depending on the 

relationship between levels. First, in some calculations, each level was 

processed independently. Second, some calculations used values at adjacent 

levels or, last, a progressive calculation was made in which the results at one 

level influenced values at successive levels. The second case could be 

implemented in parallel if the data was mapped to the PE array to allow the 

communication required. The latter case could not be implemented in parallel 

and alternative algorithms would be needed. 

Hunt (1974b) studied the implementation of the Meteorological Office 11 

level general circulation model on the DAP. The grid of this model had 90 

latitudes with a varying number of gridpoints around each latitude. In the 

rows nearest the equator there were 180 points. In other rows, the number of 

points was chosen to make the spacing in terms of distance approximately 

equal to that at the equator. However, close to the poles, the spacing was 

reduced to give a minimum of 16 points per row. This grid arrangement 

meant that each point had two neighbours in the same row, one or two in the 

adjacent row nearer the equator and one, two or occasionally three in the row 

nearer the pole. 
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Hunt (1974b) discussed various methods of mapping this grid onto the PE 

array. Each PE was assigned one vertical column and each latitude row 

corresponded to part of a row of PEs. In the northern hemisphere, 

consecutive PEs were assigned starting from the west edge of the PE array. In 

the southern hemisphere they were assigned from the east edge, as depicted 

in Fig. 14a. At 60 °N and 60 0S, the poleward latitudes were then wrapped 

around onto the grid of 180x60 PEs as shown in Fig. 14b. Within this 

rectangle 96% of the PEs were being utilized. Assuming a 128x128 DAP, the 

grid could be stored by using two rows of PEs for each row of the 180x60 

array. Another method considered was, starting from Fig. 14a, the grid was 

displaced at the equator and wrapped around in the east-west direction 

interchanging hemispheres, as shown in Fig. 14c. Utilization of PEs was 90% 

in this case. 

For a number of horizontal gridpoints greater than the number of PEs, Hunt 

(1974b) showed it was possible for each PE to store two columns of 

gridpoints. One method was for each PE to store two adjacent columns from 

neighbouring rows, so that on successive processing steps odd and even rows 

were advanced alternately. Another method split the rows into two sections 

corresponding to east and west hemispheres. If the PE array size was a 

multiple of the grid size, as for the initialization program, Hunt (1974b) found 

that parts of the physics section of the model prevented several levels from 

being processed simultaneously. 

As the grid was irregular, the finite difference equations were formulated in 

terms of fluxes (Corby et al. 1977). The serial method for solving the finite 

difference equations was found by Hunt (1974b) to be readily expressed in 

parallel form. Some logical masks were used during the routing operations to 

ensure correct positioning of fluxes, especially across the Greenwich meridian. 

At the two rows nearest the poles, the timestep was halved to ensure 

stability and the calculations were made twice. Hunt (1974b) discussed some 

methods to reduce the inevitable loss of efficiency in the use of the PE array 

that this introduced. A different treatment of polar latitudes, such as Fourier 

filtering, might be more appropriate for the DAP. 

As for the initialization program; the convection subroutines introduced an 

inefficiency because some PEs, particularly around the polar regions, were idle 
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during these calculations. The analysis of the code by Hunt (1974b), showed 

that about 16% of the total operations were conditional. Assuming an 

arbitrarily small number of PE5 did useful work during the conditional 

operations, the minimum percentage of PE utilization for the model was given 

as 74%. An upper limit of 89% was obtained by Hunt (1974b) by assuming all 

conditional operations fully utilized the PE array. Both these figures assumed 

the same number of gridpoints as processors and therefore need to be 

weighted by the ratio of the number of gridpoints to processors given above. 

A realistic estimate of the overall efficiency might be 75%, higher if the grid 

was expanded to use all the PEs. Hunt (1974b) also estimated the amount of 

routing required during each timestep. This routing occurred solely in the 

dynamics calculations and represented about 2.5% of the total estimated CPU 

time per model step. 

The possibility of using block point arithmetic or a reduced precision 

representation of numbers was suggested by Hunt (1974b). A method was 

suggested where variables at one time-level are held in 32-bit precision, 

whereas values at the previous step are held as differences at reduced 

precision. Although this reduces storage requirements, extra operations would 

be required for this approach so it is not obvious that the CPU time would be 

reduced. No other details were given of where reduced precision or block 

point representation could be used. 

Hunt (1974b) concluded that the general circulation model was suited to 

the DAP, especially when the grid was chosen to match the number of 

processors. A 128x128 DAP was estimated to give a factor of 10 speedup 

over the performance of programs on the IBM 360/195. 

Reddaway et at (1976) conducted a study of the application of the 

Meteorological Office's operational suite of programs on the ICL DAP, 

comprised of programs for; data extraction from a database, data analysis, 

initialization, forecast and output. The model considered was the hemispheric 

octagon model on a polar stereographic projection. This model mapped onto 

the PE array in a straightforward manner. Reddaway et at (1976) used the 

estimates of Hunt (1974a,b) for the initialization and forecast model to obtain 

an estimate of the performance for the complete suite of programs. Overall a 

factor of 13 over the throughput of the IBM 360/195 was estimated for a 

64x64 DAP. However, this relied on the assumption that block point 
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representation could be used for the initialization and forecast model 

programs. If 32-bit floating point values were used the factor would be about 

5. 

4.3. A study using finite difference and spectral models 

The unfinished Ph.D. thesis of Fishbourne (1980) contains a description of 

the application of finite difference and spectral meteorological models to the 

ICL DAP. As far as the author is aware, this is the only other study of 

meteorological modelling on the DAP. An incomplete copy of Fishbourne's 

thesis was obtained during this study at Edinburgh University and the main 

findings of his work are presented here. 

4.3.1. Mapping grids to the DAP 

Fishbourne (1980) studied the problem of mapping global finite difference 

grids onto the processor array. He considered the equal-area type of grid, as 

used by the Meteorological Office and described in the study of Hunt (1974b), 

unsuitable for a DAP implementation. This is because of the unused PEs and 

the nonuniform nature of the finite difference schemes, resulting in a loss of 

efficiency. Fishbourne (1980) favoured the latitude-longitude grid as it maps 

directly to the DAP and the finite difference equations take the same form 

throughout the region, making them well suited to parallel processing. The 

only drawback is the smoothing or filtering required near the poles for 

stability, which must not present a large overhead for efficiency reasons. 

4.3.2. Finite difference models 

Fishbourne (1980) developed several finite difference global models for the 

64x64 DAP at Queen Mary College in London, two shallow-water equation 

models and a dry multi-level primitive equation model. The first 

shallow-water model was based on the description of the general circulation 

model of Arakawa and Lamb (1977), which used the equations in flux form. 

The second shallow-water model was based on that of Sadourney (1975a) 

written in spherical coordinates. This was similar to the first model but with 

the equations in advective form and with a different treatment of the 

equations at the poles. 

The models used a regular latitude-longitude grid with 64 latitudes and 64 
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points around each latitude. The variables were held on an Arakawa 'C' grid. 

Points around a latitude were mapped along rows of the PE array and the 

meridians along columns. Height was defined at the poles but not velocity. 

The distribution of variables on the grid and the PE array is illustrated in Fig. 

15. Since the wind components were not defined at the poles there were 

some unused elements in these matrices. There was also a redundancy in the 

use of processors to store the value of the height at the poles. However, 

these slight inefficiencies in the use of the PE array allowed the full parallelism 

of the finite difference calculations to be exploited. 

To facilitate the difference calculations in the north-south direction near 

the poles, planar conditions for the respective edges of the PE array were 

used. This removed the need for any masks and allowed the polar operations 

to be done in parallel with those on the rest of the grid. Cyclic boundary 

conditions were used in the east-west direction to remove the need for any 

special code to compute the values at these edges. 

The use of a regular latitude-longitude grid in both models ensured that 

the form of the equations was the same at each gridpoint, except at the polar 

gridpoints. Fishbourne (1980) noted there were two types of calculations for 

these. For the first type, the equations formed a subset of those required for 

the rest of the grid. Logical masks were used to prevent writing of the 

unrequired results for the polar points, adding a negligible overhead, so that 

all points were computed simultaneously. In the second type, the equations at 

the poles and those for the rest of the grid did not share any common 

operations e.g. the continuity equation takes a completely different form at the 

poles. As latitudes were stored on rows of the PE array, this type were 

computed in vector mode, which was more efficient than masked matrix 

operations. 

Fishbourne (1980) applied a Fourier filter to latitudes greater than 45 0N and 

450S. This meant filtering was applied to three variables with 32 rows each. 

Fishbourne (1980) chose to implement this filtering using a complex FFT on 

each row of the PE array. Two of the variables were used as real and 

imaginary coefficients for the FFT for the 16 northern and 16 southern rows, 

whilst the third variable was routed from these rows to the 32 unused rows 

about the equator for the FFT and then routed back afterwards. The CPU time 

for this routing was small compared to the time for the transform. The 
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filtering therefore made full use of the PE array, except that the imaginary 

coefficients for the 32 rows about the equator was zero as there were only -3 

variables. 

For a grid larger than the DAP array, Fishbourne (1980) favoured the 

crinkled mapping over the sheet mapping for several reasons. It allows the 

cyclic boundary conditions in the east-west direction to be used. As some 

points are held in the same PE, the routing for difference or averaging 

calculations is reduced. However, the amount of code has to be increased as, 

for the 128x64 grid considered by Fishbourne (1980), the relative position of 

the east-west neighbours in the PE memories is different between alternate 

grid points. 

Fishbourne (1980) measured the DAP CPU time per timestep of the flux 

model to be 62msecs and the advective model to be 48msecs. The latter was 

faster because of the simpler finite difference calculations. Fishbourne (1980) 

does not give the model's performance rates but from the operation counts 

presented in his thesis, these can be calculated as 11.5Mflops and 10.2Mflops 

for the flux and advective models respectively. These are overestimates as 

Fishbourne (1980) does not give the percentage of PEs performing useful work 

during the calculations. 

The Fourier filtering accounted for about 46% and 58% of the CPU time for 

the flux and advective models respectively. This was not a reflection of the 

inefficiency of the FFT algorithm, but resulted from the ratio of the number of 

arithmetic operations in the FFT to that in the rest of the model. This large 

overhead led Fishbourne (1980) to speculate that a nonuniform grid (such as 

that used in Hunt, 1974b) might give a better performance, although the 

inevitable mapping problems and extra routing required for the finite 

differences might offset any advantage. Fishbourne (1980) noted that the time 

for the FFT could be decreased by about 10% by leaving the transformed data 

in bit reversed order, since this data is then transformed back to gridpoint 

space directly after the amplitudes are modified. Fishbourne (1980) also 

pointed out that for a multi-level model, the relative cost of the filtering would 

be much less. 

About 10% of the total CPU time per step for both models was spent 

computing the operations specific to the poles in vector mode. Fishbourne 
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(1980) regarded this as a small overhead. A timestep of 5 minutes was used 

for both models. 

The shallow-water model in flux form was extended by Fishbourne (1980) 

to a dry, multi-level sigma coordinate model. The same 64x64 

latitude-longitude Arakawa 'C' grid was used. This increased the number of 

potential processes in the spatial dimensions to a maximum of NLEVx4096, 

where NLEV is the number of levels. This number of processes was not 

possible throughout the whole procedure, however, as the calculations at the 

top and bottom levels differed from those at other levels. However they 

generally formed a subset and masked operations allowed all the levels to be 

processed simultaneously. In addition to the spatial parallelism, the 

temperature and humidity (not used by Fishbourne) calculations are largely 

SIMD, offering a factor of two in the number of available processes. The 

parallelism available in a SIMD sense therefore varied throughout the 

processing steps but was greater than could be exploited by the DAP. 

The model was implemented on the DAP by processing the layers 

sequentially; the most natural way to deal with more potential processes than 

available processors. The number of vertical levels was varied from 3 to 8 to 

compare the performance of the model. The Fourier filtering was applied to 

latitudes greater than 60 °N and 600S, ten rows in each hemisphere, so that a 

complex transform was used to filter 6 variables. The full PE array was used 

for filtering by routing data from the polar latitudes in place of the unfiltered 

rows, as for the shallow-water models. The model required that 3NLEV+1 sets 

of derivatives were also filtered. The time for the Fourier transforms was 

reduced by removing the routing required to convert the data from bit 

reversed to normal ordering. Fishbourne (1980) obtained a 20% decrease in 

execution time for the FFTs when this was done. 

In examining the performance of the model, Fishbourne (1980) showed that 

the execution time of those routines that depended on NLEV varied almost 

linearly. The proportion of the model CPU time spent executing in matrix mode 

was 83%, the proportion in vector mode was 7.5% and scalar mode operations 

accounted for 2%. The remaining proportion of the time, 7.5%, was spent 

routing and broadcasting data, most of this was in the FFTs. The 

computations in the polar regions accounted for nearly all of the time spent in 

vector mode. The FFTs in this model accounted for some 25% of the 
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execution time. This is a smaller fraction than before because of the 

increased finite difference calculations, an optimized FFT routine and the 

application of filtering to fewer latitudes. 

Fishbourne (1980) found that with 3 levels one timestep required 176msecs, 

whilst with 8 levels the time was 449msecs. These times are 2.8 and 7.2 

times the CPU time for the shallow-water model. The size of the DAP 

memory prevented the model from being run with greater than 8 levels. If 

humidity had been included, only a 6 level model would have been possible. 

Fishbourne (1980) gives a performance rate of 18Mflops for the model, with 

14Mflops for the finite difference calculations only, excluding Fourier filtering, 

vector and scalar mode operations. These rates are greater than those for the 

shallow-water models and the overall rate is 67% of the DAP peak 

performance for 32-bit floating point addition or 93% of the performance 

attained with an equal number of matrix additions and multiplications 

(19.3Mflops). These show that the model is well suited to the DAP. 

This model's storage requirements and performance could have been 

improved. For example, Fishbourne (1980) noted that some repeated 

calculations could be avoided by using temporary storage. He did not discuss 

the use of lower precision or block point arithmetic. 

4.3.3. Spectral model 

To compare with the finite difference models, Fishbourne (1980) 

implemented the global spectral shallow-water model described by Hoskins 

(1973) on the DAP. Only a brief review of the main points of this work is 

given here 'as more detailed comments are made in the next chapter. The 

DAP FORTRAN code for Fishbourne's spectral model was made available to the 

author at Edinburgh University but did not compile and was not run on the 

Edinburgh University DAPs. 

Fishbourne (1980) chose a triangular truncation at wavenumber 42 for the 

model. In analysing the potential parallelism available, he commented that this 

varied significantly during each timestep, more so than for the gridpoint 

model. The available parallelism of each variable varied between gridpoint, 

Fourier and spectral space. Additional parallelism existed from the same 

operations on different variables. However, at some stages, the total number 
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of available processes was less than the available processors. For example, in 

calculating the spectral coefficients of the wind components, the procedure 

was parallel in all the real and imaginary components of the two fields, giving 

a total of 2(M+1)(M+2) processes where M is the truncation wavenumber. 

With M=42, this is less than 4096, the number of available processors. 

However, at other points, such as the spectral transforms, there were more 

potential processes than processors. Careful consideration of the data layout 

on the PE array was thus required for an efficient implementation. 

The storage requirements of the Legendrepolynomials and their derivatives 

was recognized as considerable by Fishbourne (1980), who chose to pack the 

polynomials and compute the derivatives every timestep. This resulted in a 

significant overhead to the Legendre transforms. More details are given in the 

next chapter. 

The model was found to take 1.38msecs per timestep. When compared 

with the gridpoint shallow-water models on an equivalent grid, this is about a 

factor of 10 greater. This is also 3 times the cost of the 8 layer primitive 

equation model on the 64x64 grid. This implementation by Fishbourne (1980) 

is clearly not competitive. 

The spectral transforms accounted for 99.2% of the CPU time with the 

Legendre transforms alone accounting for 82.7%. The routing was found to 

account for 11.6% of the CPU time per timestep. Fishbourne (1980) does not 

give a performance figure in Mflops for this model. 

The storage requirements of the model were such that Fishbourne (1980) 

calculated that a maximum of 3 layers would be possible for a 3 dimensional 

primitive equation model, without the need for external storage. Of the 

memory used by the program, 35% was for the storage of the Legendre 

polynomial values. 

4.4. Arithmetic precision and block point arithmetic 

Although the execution time of programs on the DAP can be decreased by 

using lower precision and block point arithmetic, none of the above references 

studied the effect of these changes on the CPU time and on the model results. 

It must be demonstrated that lower precision and block point arithmetic do 

not adversely affect the meteorological results for any model. This would 
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require a detailed study and would probably be model dependent. Hence, such 

a study was not done for the models described in the following chapters. 

However, this section reviews some previous work done on the effect of 

precision on model results. 

4.4.1. Precision requirements for meteorological modelling 

The experiments of Williamson and Washington (1974) used the NCAR 

global circulation model (Kasahara and Washington, 1971) on a CDC 6600 

computer. They examined the importance of precision in short term forecasts 

and climate simulations using 48, 24 and 21-bit mantissa arithmetic. 

They used a 48-bit forecast to derive the global root-mean-square (rms) 

errors in wind and temperature for the 24 and 21-bit forecasts and found that 

there was a rapid error growth in the first 12 hours of approximately one 

order of magnitude every hour. After a day, the growth rate decreased and 

became comparable to the growth rate from observational errors. They 

concluded that since the rapid error growth dominated the accumulation of 

round-off error and typical observational errors are greater than round-off 

errors, lower precision arithmetic did not significantly affect the result for 

short range forecasts. However, they noted that the rapid error growth was 

caused by the latent heating term as, when this was set to zero, the rapid 

growth did not occur. 

For long-term forecasts over 80 days they compared the results of 

integrations using 48 and 24-bit mantissa arithmetic. Again, although they 

found minor differences, they concluded that 24-bit mantissa arithmetic does 

not significantly change the results as there seemed to be no tendency for 

round-off error to dominate. 

The reply of Kurihara and TuleVa (1974) to the work of Williamson and 

Washington (1974) described differences in the results of a hurricane 

simulation model when run with 27-bit mantissa arithmetic on a UNIVAC 1108 

computer and 24-bit mantissa arithmetic on an IBM 360 machine. With the 

higher precision the conservation of mass was perfect, however, with the 

lower precision a small but systematic decrease was noted. They also found 

that the heat budget of the model became inconsistent as more energy was 

lost through round-off error than added to the system. 
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They made several recommendations to correct the problems associated 

with low precision. In particular, the use of double precision with a 'rounding 

up or down' formula when a small term, comparable to or slightly larger than 

the round-off error, is added to a large term. Also the moist processes should 

be calculated in double precision. 

Searle and Davies (1975) ran a four level model on an Atlas computer 

(40-bit mantissa) and on an IBM 360, in single (24-bit mantissa) and double 

precision (56-bit mantissa), to compare the effect of mantissa length. Using a 

timestep of 30 minutes they found that after 30 days, significant differences 

occurred in the eddy kinetic energy between the two runs on the IBM machine. 

The run on the Atlas machine showed noticeable differences to both. runs on 

the IBM machine after 15 days. They suggested that tiny differences in the 

initial eddies became significant when the model eddies were amplified to near 

peak values. 

The work of Baede et at (1976) examined the effect of precision in more 

detail. They described two experiments; one using the adiabatic baroclinic 

spectral model of Hoskins and Simmons (1975), the other using the GFDL 

general circulation gr.idpoint model described by Miyakoda (1973). Both 

models were run on an IBM 360, in single and double precision and a 48-bit 

mantissa CDC 6600. 

The spectral model was run for 8 days with a triangular truncation at wave 

number 21, for timesteps of 30 and 90 minutes, using a semi-implicit time 

integration scheme. Comparing the amplitudes and phases of the dependent 

variables in all runs they found no differences when the values were printed to 

4 significant figures. Mass was formally conserved in the model and when the 

change in the total mass was studied, it was almost identical between runs. 

This agreement showed that time truncation errors rather than round-off 

errors dominated the nonconservation of mass, although for Kurihara and 

Tuleya (1974) round-off error seemed to be the cause of the problem. 

In studying the energy conservation they found no difference between the 

CDC run and the double precision IBM run. However, the single precision run 

on the IBM showed a large deviation of several orders of magnitude from the 

previously calculated values. On closer examination they found that this large 

change could be attributed to a change in a single bit. Baede et at (1976) 
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concluded that 24 bit mantissa arithmetic was sufficient for dynamics 

purposes as at least four figure accuracy could be obtained during an 8 day 

integration. 

For their second experiment, the GFDL model was integrated over 10 days. 

Most of the dynamics and physics, apart from the moist processes, was 

carried out in single precision, although at many points in the OFOL code 

double precision arithmetic was used following the recommendations of 

Kurihara and Tuleya (1974). In running the model on the IBM computer, the 

original model was used with the moist processes in double precision, but on 

the CDC 6600 these processes were calculated using single precision (48-bit 

mantissa). 

The results of Baede et at (1976) paralleled those of Williamson and 

Washington (1974), as the global vertically integrated rms errors of wind and 

temperature showed the same initial rapid error growth. However, they also 

found that the errors were much greater over the tropics and equatorial 

regions. They concluded that the wind and temperature discrepancies 

originated in the equatorial regions and propagated into the mid-latitudes. 

The errors also showed a pronounced vertical structure. 

The initial growth of discrepancies was attributed to the moist convective 

adjustment (MCA) scheme as, after only a few hours, local discrepancies of 

several degrees were observed in the tropics, at first near the ground but later 

in the mid-troposphere. This agreed with the conclusion of Williamson and 

Washington (1974). On further investigation they found that it was not the 

calculation of the MCA that was strongly computer dependent but instead the 

process that determined whether MCA occurred. However, as the decision 

making was performed in single precision on the CDC and double precision on 

the IBM computer, the length of the mantissas were comparable in both runs. 

Therefore Baede et at (1976) suggested that compiler differences played a 

role. They concluded by stating that the precise nature of the problem was 

not clear but the MCA part of the code required double precision arithmetic 

and very careful coding. 

From this review, it can be concluded that the dynamics calculations for 

the models presented in the following chapters can be coded using 32-bit 

precision. It is not clear, however, if the word length can be reduced still 
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further. The limit is the numerical inaccuracy introduced by the spatial and 

temporal truncation errors, as there should be enough precision to avoid 

round-off error (and its growth) exceeding the truncation error. The error in 

observations could also be used as a limit. As model resolutions increase and 

timesteps decrease correspondingly (ignoring advances in time integration 

techniques), the differences or increments in the model equations for each 

timestep become smaller. Therefore, the future trend might be for an increase 

in the arithmetic precision used for meteorological models. 

For spectral models, the effect of the arithmetic precision on the Legendre 

transforms would be a concern. At high wavenumbers and close to the poles, 

the Legendre polynomials tend to zero. Therefore, high precision might be 

needed to allow for these small contributions. Alternatively, an algorithm that 

starts the summation from the high wavenumbers to accumulate these small 

contributions first might be suitable for use with a lower precision. 

For the physics part of the models, it could be argued on the one hand 

that the required precision should be based on the accuracy of the 

approximations made in each parametrization scheme. On the other hand, the 

conditional part of the convective parametrization would seem to require as 

large a word length as possible. However, the reviewed studies may not be 

relevant to current convective parametrization schemes. 

It would seem, therefore, that there is scope for employing reduced 

precision in meteorological models, although not for all parts of the program. 

As mentioned in chapter 2, the CPU time for calculations depends linearly on 

the precision. 

4.4.2. Block point arithmetic 

The use of block point arithmetic instead of floating point arithmetic for 

meteorological applications was suggested by Hunt (1974a,b). In block point 

arithmetic, a common exponent is held for each value on the PE array; hence 

it is best suited to fields without a large variation in their maximum and 

minimum values (e.g. water vapour). 

Block point arithmetic is not available in DAP FORTRAN. However, it can 

be simulated using integer arithmetic. Tests using a one-dimensional linear 

advection equation model showed that integer arithmetic required 
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approximately a third less CPU time than the equivalent floating point 

precision. 

4.5. Discussion 

The previous studies of finite difference models reviewed in this chapter 

showed them to be suited to the DAP as they are efficient with low overheads 

(routing, nonmatrix mode operations). The appropriate choice of grid for global 

models on the DAP is not entirely clear. For a regular latitude-longitude grid, 

the overhead caused by the need for FFTs may offset the added complexity of 

finite difference operations on an equal-area type grid and the inefficiency 

caused by mapping this grid to the DAP. For example, Hunt (1974b) estimated 

the routing overhead to be 2.5%, whereas Fishbourne (1980) measured it as 

7.5%. 

In comparison, the spectral model of Fishbourne (1980) was expensive and 

had greater storage requirements. Any improvement to the spectral model 

would need to be made to the Legendre transforms since these accounted for 

83% of the processing time. The following chapter describes improved 

parallel algorithms for these transforms. 
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CHAPTER 5 

PARALLEL LEGENDRE TRANSFORM ALGORITHMS 

5.1. Introduction 

In this chapter, parallel algorithms for the inverse and direct Legendre 

transforms are developed prior to the implementation of a spectral 

shallow-water model on the DAP described in the next chapter. These 

transforms accounted for 83% of the CPU time of the spectral model of 

Fishbourne (1980). Efficient algorithms are therefore essential for an efficient 

implementation of the model. Furthermore, the Legendre transforms have to 

use the nonrectangular data structure of the spectral coefficients which is 

likely to inhibit their efficiency. To simplify the derivation of the algorithms, 

transforms that do not use the symmetry property Eq.(3.4.30) are first derived. 

5.2. Data mapping 

Before the algorithms are developed, methods for mapping the spectral 

data on the DAP must be considered, as the algorithm is dependent on the 

data storage format. The optimum algorithm will be the one which takes the 

least time to execute. It need not have the least storage requirements 

although this is also an important issue. Methods for mapping the two most 

commonly used truncations, triangular and rhomboidal, onto the DAP array are 

described. 

5.2.1. Real spectral coefficients 

The spectral coefficients require the least amount of space of the three 

representations of a variable (gridpoint, Fourier and spectral). For a single level 

model, at resolutions practical for the DAP, the space used by the spectral 

coefficients is not critical. However, it should be noted that in spectral 

models, the spectral coefficients must be held complete in store. For high 

resolution, multi-level spectral models (e.g. Baede et a!, 1979) where latitude 

rows can only be processed and held in memory one at a time, the space 

used by the spectral coefficients is therefore important. 

The earliest spectral models used a rhomboidal truncation and the spectral 

coefficients could be conveniently stored in two dimensional arrays since for 

each tn, the number of coefficients over all n is constant. When triangular 
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truncation became more popular, one dimensional arrays or vectors were used 

to hold the spectral coefficients. 

The spectral coefficients were traditionally stored column-wise in these 

one dimensional arrays but Baede et 8/. (1979) found this arrangement 

inhibited vectorization of the Legendre transforms. This problem was overcome 

by storing the coefficients in a diagonal-wise manner (Fig. 16). A similar 

approach could be used for storage of spectral coefficients on the DAP. 

Considering only the real parts such a mapping would be, 

(m,n)(m+1,n-m+1) 	 (5.2.1) 

using the notation introduced in chapter 2. Diagonals are stored down columns 

of the DAP matrix. 

If the DAP processor array is used in 'long-vector' format, where columns 

of the array are assumed to be concatenated (ICL, 1979), the spectral 

coefficients can be stored in the DAP analogous to the use of one dimensional 

arrays on serial or vector machines using either column-wise or diagonal -wise 

arrangements. This makes efficient use of storage. For a triangular truncation 

M, the number of real and imaginary spectral coefficients to be stored for 

each variable is given by, 

NT = (M+1)(M+2) 
	 (5.2.2) 

For example, for M=42, two variables could be held completely in one DAP 

matrix, each occupying 46%. An equivalent rhomboidal truncation would have 

the same number of degrees of freedom and therefore occupy the same 

amount of space. 

This mapping generally results in a column of the processor array 

containing coefficients for several values of m (column-wise storage) or 

diagonals (diagonal-wise storage) for both rhomboidal and triangular 

truncations. This means that the ( m,n)th coefficient will be stored at different 

locations on the PE array for different resolutions, implying that the transform 

algorithms will apply only to a particular resolution. They will also be 

inefficient as they involve summations over .i and n and the required 

coefficients may exist on different rows or columns of the processor array. 

Despite the storage efficiency of this mapping, it would seem unsuitable for 
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(a) Column-wise storage for triangular truncation. 
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(b) Diagonal-wise storage for triangular truncation. 

Figure 16. The number of each spectral coefficient 
indicates its storage position in a 
one-dimensional array. 

m 
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use with the transforms. 

Perhaps the most obvious mapping is to store the spectral coefficients as 

they appear in spectral space. Spectral coefficients triangularly truncated 

could fit into the upper or lower triangular part of the PE array (assuming for 

now a sufficiently low resolution). This mapping could be written as, 

(m,n)-(m+1,n+1} 	 (5.2.3) 

Unlike the long-vector format, wavenumber m increases solely with the row 

index and n increases with the column index. This has the advantage that 

indexing the array is straightforward. Increasing the resolution involves simply 

adding another column without disturbing the existing spectral coefficients. 

For rhomboidal truncation, the coefficients would be more efficiently stored 

if transformed slightly from their representation in spectral space. This 

mapping is identical to the one that might be used for serial or vector 

machines and is given by Eq.(5.2.1). Although indexing is slightly more 

complex than for triangular truncation, increases in resolution would be 

similarly straightforward. 

Two methods exist for storing arrays larger than the DAP processor array. 

These are the sheet and crinkle methods described in chapter 2. Either can be 

used in mapping the spectral cofficients for a high resolution. 

For the :rinkled mapping, storing the coefficients of the summation index 

(total wavenumber or latitude) in a single processor or among neighbouring 

processors would give efficient transforms. For a sheet mapping, the spectral 

coefficients could be divided to make full use of the available space, for 

example by dividing the coefficients in half about a specified zonal 

wavenumber. 

5.2.2. Imaginary spectral coefficients 

So far only the storage arrangement of the real part has been considered. 

Perhaps the simplest approach for storing the imaginary part is to use the 

same mapping as the real part, requiring the use of a separate matrix. 

However, this is inefficient; half or less of the matrix would hold data. The 

advantage would be that selection of coefficients for the Legendre transforms 
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is straightforward as the mapping of the real and imaginary coefficients is the 

same. The spectral model of Fishbourne (1980) used this approach. 

By storing the imaginary coefficients in the same matrix as the real 

coefficients not only are the storage requirements for the spectral coefficients 

halved, but so is the time taken for any computation in spectral space. While 

this is expected to be a small percentage of the total CPU time per timestep, 

it would be more beneficial with the use of a semi-implicit time scheme. 

The disadvantage of storing the imaginary coefficients in the same matrix 

is that routing operations will be needed to reformat them for the Legendre 

transforms. To see how costly this would be, assume that the mapping used 

for the imaginary part is a transpose operation of the real part. Using the 

time of 216psecs given in chapter 2 for the TRAN function, the overhead per 

timestep per variable will be 0.432msecs, assuming TRAN is called once for 

each of the inverse and direct Legendre transforms. By comparison, the gain 

from the reduction of operations in spectral space (diffusion, time differencing 

and filtering) will be approximately 1.85msecs. It is therefore advantageous in 

CPU time and storage space to store real and imaginary coefficients in the 

same matrix, for resolutions at which this is possible. 

To minimize the routing to reformat the imaginary coefficients, some of 

the DAP FORTRAN intrinsic functions can be used. One possible mapping of 

the imaginary parts uses the REVC and REVR functions, which reverse the 

columns and rows of a matrix respectively (Eq.(2.6.15)). Applying these 

operations to the mapping for the real coefficients of, 

Real: (m,n)-{m+1,n+2} 
	

(5.2.4) 

which is obtained from Eq.(5.2.3) with the leading diagonal left free, gives a 

mapping for the imaginary coefficients of, 

Imag: (m,n).{64-m,63-n} 
	

(5.2.5) 

Another possibility would be to transpose the real coefficients using the TRAN 

function (Eq.(2.6.15)), to give an imaginary coefficients' mapping of, 
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lmag: ( m, n) 	( n + 2, m + 1) 	 (5.2.6) 

The shift functions together with REVC and REVR can be used to obtain 

further possibilities. Suppose each column of the real coefficients is shifted 

n+1 places north cyclically and the rows reversed. The resulting mapping 

would be, 

Imag: (m, n)+{64+ m- n,63- n} 	 (5.2.7) 

It occupies the same array space as Eq.(5.2.5) but the m and n axes are 

orientated differently. Alternatively, the rows of the real coefficients could be 

shifted and then reversed. This cannot be applied to the rhomboidal 

truncation. The mappings, Eq.(5.2.5), Eq.(5.2.6) and Eq.(5.2.7) are shown 

schematically in Fig. 17. 

The orientation of the axes of the imaginary coefficients is different in each 

mapping and to the real coefficients. This may be influential on the efficiency 

of the Legendre transforms in the way the coefficients are selected from the 

matrix. Although the functions used above have similar execution times and 

therefore the differences in CPU time of various algorithms may not vary 

much, it is not clear if this is the case for the complete model. Therefore, 

several versions of the Legendre transform algorithms are developed in this 

chapter, corresponding to each of the mappings discussed above. 

5.2.3. Legendre polynomials 

It is a computational advantage to store the Legendre polynomials and 

their derivatives. In this section, the mapping of these values within the DAP 

store is considered. 

The polynomial values require a three dimensional array unlike the 

coefficients for the Fourier transform and the space required to store them is 

considerable. One method of storing the polynomials would be that used for 

the spectral coefficients, where the data for each latitude would be held in a 

separate matrix. The mapping expression would be, 
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Figure 17. Illustration of possible mappings of imaginary spectral 
coefficients. (a) REVC and REVR, (b) TRAN, (c) SHIFT 
and REVC. 
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Pmn: (m,n,i1)-(m+1,n+2,j) 	 (5.2.8) 

where j=l to J and J is the number of latitudes. The third index, j, on the RHS 

refers to the matrix number with positive increasing down in the DAP store. 

This arrangement only utilizes 23% of the total space occupied by the 

polynomials. By also storing the derivatives in the array, 46% of the total area 

could be used. Whilst this is not efficient use of store, a more serious 

problem is that as many matrices as latitudes are required. For example, at 

T42, half the available DAP memory (2048 planes) would be used, assuming 

32-bit precision and the symmetry property was not used. 

Fishbourne (1980) overcame this problem by packing the polynomials SO 

that each matrix held all the values for three latitudes. He obtained the 

derivatives by the recursion formula Eq.(3.4.33) at each timestep. This method 

introduces an overhead in routing the polynomials to the correct format and in 

calculating the derivatives. It has the advantage, however, that the values can 

be unpacked into a different format for the inverse and direct Legendre 

transforms. The number of planes required at T42 with packing is 704, with 

69% of the array in use. The unpacking overheads are undesirable since the 

performance of the model will depend strongly on the performance of the 

Legendre transforms. An alternative storage arrangement is therefore required 

that does not introduce any overheads and improves on the storage efficiency 

and reduces the number of planes required. 

Since the Legendre polynomials occupy a three dimensional area of 

storage, it is possible to store them such that either the n or m axis lies 

vertically in the store. In either case, the number of matrices required is M+1, 

1376 planes at T42, rather than J. Although twice as much store as 

Fishbourne's packing approach, it is a third less storage than when latitude is 

mapped down the store, with 34% of the space used to hold the polynomials. 

No unpacking is required and the derivatives do not have to be calculated 

each step, since they may also be stored in the same area increasing the use 

of space to 68%. If the derivatives were also stored in Fishbourne's model, the 

total number of planes needed would become 1408. 

If m is mapped down the store, the Legendre values can be stored as, 
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Pmn : ( m,n,i)+{j,n+2,m+1} 	 (5.2.9) 

The derivatives may be stored as, 

dQmn /dp: ( m, n, p )-s' {j, M- n+ 1, M- m + 1 	 (5.2.10) 

This arrangement is illustrated schematically in Fig. 18. 

If n is mapped vertically down the store, one possible mapping could be, 

Pmn : 	 ( m, n, p ) - ( m + 1, 5, n + 1 ) 	 (5.2.11) 

d Qm, n /dp: 	( m, n, p ) - { 64 - m, 5, M + 1 - n) 

This is shown in Fig. 19. 

Within these different approaches there are several ways in which to map 

the Legendre polynomials. The options are: (i) whether to map m or n up or 

down the DAP store, (ii) how to orientate the other axes, (iii) where to position 

the origin and (iv) how to map the derivatives. Much of the discussion in 

mapping the real and imaginary parts of the spectral coefficients is relevant to 

mapping the Legendre values. Mappings need to be selected in such a way as 

to reduce any routing in selection of rows or columns of values during the 

Legendre transforms. If m or n is mapped such that it increases vertically 

down the store a simple mapping expression results (Eq.(5.2.9) or Eq.(5.2.11)). 

That is, indexing matrices of polynomials involves one integer scalar addition. 

For the derivatives, the mapping expression is more expensive. Selection of a 

matrix now involves an addition and a subtraction. Thus the amount of 

computation involved in selecting components of the array is directly related 

to the complexity of the mapping expression. Therefore, by comparing 

mapping expressions between spectral coefficients and Legendre values it is 

possible to determine the amount of routing required. 

The mapping expression of the derivatives could be simplified by storing 

them with their m axis increasing down the store whilst the n axis of the 

polynomials increases down the store, 

Pmn : 	( m, n, lij ) - { m + 1, j, n + 1 } 	 (5.2.12) 

dQmn/dp: 	(m,n,p)+{n+2,j,m+1} 
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Legendre polynomials and their modified derivatives when 
the m axis of the polynomials is mapped vertically. 
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Figure 19. Schematic illustration of one possible storage format for the 
Legendre polynomials and their modified derivatives when 
the n axis of the polynomials is mapped vertically. 
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analogous to the transpose mapping of the imaginary spectral coefficients. It 

is possible to devise another mapping analogous to Eq.(5.2.7). 

It is not possible to completely determine the optimum data mapping for 

the Legendre values until the transform algorithms are considered. However, 

from the above discussion the algorithms must use a mapping of the Legendre 

values such that wavenumbers n or in are vertical in the DAP store. It will also 

be beneficial to store the derivatives in the same array space as the 

polynomials. Another aspect is the data mapping expected by the FFTs. 

Whilst these are performed independently of latitude, the FFT algorithm will 

expect m to be mapped regularly on either rows or columns. 

5.3. Inverse Legendre transform 

In this section, the parallel algorithms for the inverse Legendre transform 

are developed. The symmetry property of the Legendre polynomials is not 

used. The inverse transform to be required in the spectral model of chapter 6 

is given by, 

M 

Pm (Pjt) = 	F m, n (t  )rn.n(j) 	for m=O to M 	 (5.3.1) 

nlmI 

and is the simpler of the two Legendre transforms. It consists of two steps, 

multiplying the spectral coefficients by the Legendre polynomials and then for 

each m and i summing over n- 

The algorithms for the three storage arrangements of the Legendre 

polynomials are introduced first. Then the most efficient is examined in more 

detail, to be able to decide on the best precise mappings for the real, 

imaginary and Legendre coefficients. 

5.3.1. Algorithms 

In this section, only a general mapping of the spectral coefficients or 

Legendre polynomials is assumed. Any extra routing needed when the precise 

mappings are subsequently decided, is assumed to have a negligible effect on 

the execution time of the algorithms presented here. This is reasonable as 

arithmetic operations are more costly than routing operations. 
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5.3.1.1. Latitude vertical 

Although the type of mapping exampled by Eq.(5.2.8) where V is vertical in 

the DAP store was deemed to be unsatisfactory, the algorithm arising from 

this arrangement is described to enable comparison with later algorithms since 

it is essentially the method used by Fishbourne (1980). For either the real or 

imaginary coefficients, the algorithm is, for each latitude, 

Multiply the spectral coefficients by the Legendre 

polynomials. This is done in matrix mode and is parallel in 

m and n. 

Sum along rows (or columns, depending on the data 

mapping) of processors to give a vector result. 

The real and imaginary coefficients are transformed sequentially. Some routing 

is required before the loop to format the imaginary coefficients correctly. 

Step 2 implies the m and n axes must be parallel to rows or columns and 

long-vector storage cannot be used. The estimated time for each pass is 

therefore, 

T = 544 + 704 = 1248 psec. 	
(5.3.2) 

As real and imaginary coefficients are stored in the same matrix, the 

opportunity to multiply the spectral coefficients by the polynomials in parallel 

exists, removing a multiplication on each pass, as noted by Fishbourne (1980). 

However, the summation along n must be done separately for the real and 

imaginary parts, whatever the mapping. As the polynomials and their 

derivatives must be stored in the same array, some routing and an addition 

become necessary to create the working polynomial arrays at each pass. 

Using the timings given in chapter 2, the total time (ignoring assignments and 

masking) per pass for this method is, 

T = 152 + 272 + 704 + r 

= 1128 + r jsecs 	
(5.3.3) 

where r represents the time taken for the routing operation. For this method 

to be faster, r < 120.isecs. None of the imaginary part mappings discussed 
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earlier used routing operations which took this time or less to execute (see 

function timings given in chapter 2). Transforming the real and imaginary 

parts sequentially is therefore better. 

An estimated execution time, based on the DAP FORTRAN code in Appendix 

A. is given in Table 4. Fishbourne (1980) gives an estimated CPU time of 

89.28msecs and a measured CPU time of 96.63msecs for his inverse Legendre 

transform routine. The overhead incurred by unpacking the polynomials can 

be calculated to be between 8% and 17% by comparing Fishbourne's timings 

to that in Table 4. The higher figure is derived from the measured CPU time, 

the lower from the estimate given by Fishbourne. This overhead therefore 

makes a significant contribution to ,  the execution time of the algorithm. 

However, if the available memory was such that the Legendre polynomials had 

to be packed, this overhead would be unavoidable. 

The efficiency of an algorithm can be defined using Eq.(2.6.3). Only the 

operations in the loop over latitude are considered. The first step, the 

multiplication by the Legendre polynomials, has m1 -(M+1)(M+2) and 

t1 =272isecs. For the second step, the summation, only M+l rows will be in 

use, so m2=64(M+1). Substituting into Eq.(2.6.3) for T42 gives an efficiency of 

E=0.48 or 48%. It is assumed that the DAP FORTRAN summation function uses 

100% of the processors. This is not strictly true as the columns contain 

different amounts of spectral coefficients to be summed. However, the 

algorithm used by this function (see chapter 2) spreads the work across more 

processors than those that contain data initially, so this assumption should not 

significantly affect the calculated efficiency. The inverse Legendre transform 

has 2NLAT(M+1) 2  floating point operations, where NLAT is the number of 

latitudes. Using the estimated time from Table 4, an estimated performance 

rate, at T42, of 2.9Mflops is obtained. 

5.3.1.2. m vertical 

Suppose the Legendre polynomial mapping, Eq.(5.2.9), is used, in which the 

m axis lies vertically in the store. The algorithm becomes, for each zonal 

waven umber, 

1. Select a vector of spectral coefficients for all n. Broadcast 

and multiply to the Legendre polynomials. 
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Pm,n 	 Loop 	 Estimated 
mapping 	 length 	time (msecs) 

Latitude 	 64 	 82.45 

vertical 

m 	 43 	 58.23 

vertical 

n 	 43 	 41.71 

vertical 

Table 4. 

Estimated execution times for three inverse Legendre transform algorithms 

derived from different mappings of the Legendre polynomials. 

139 



2. Sum along processors (rows or columns) to give a vector 

result over latitudes. 

The algorithm is now sequential in m and parallel in n and latitude. The real 

and imaginary parts are treated sequentially. 

Although each pass through the loop includes a broadcast of data, 

compared to Fishbourne's (1980) algorithm (latitude vertical) the loop length is 

now only 43 instead of 64. As the broadcast function is inexpensive, this 

method should be faster than the previous one. The estimated time in Table 4 

shows the algorithm takes 29% less time than Fishbourne's. This gives an 

estimated performance rate of 4.1Mflops. 

The algorithm still suffers from inefficient use of the array. At best, when 

m=0, 67% of the array is in use. At worst, when m-- M, only 1.5% or 1 row or 

column is doing useful work. Whilst each row or column represents a latitude, 

the number of PEs holding useful data along the n axis varies between 1 and 

43, so that, as for the latitude vertical algorithm the summation involves more 

processors than necessary. To compute the efficiency, the broadcast, 

multiplication and summation operations in each pass are considered. As the 

number of processors performing useful work changes with m, there are 3x43 

timeslices for Eq.(2.6.3), giving an overall efficiency of 0.70. The decrease in 

execution time and improvement in the performance rate is consistent with an 

increase in the efficiency. 

5.3.1.3. nvertical 

The final mapping discussed for the Legendre polynomials was when the n 

axis was mapped vertically. The algorithm becomes, for each wavenumber n, 

Select a vector of spectral coefficients for all in. 

Broadcast to all latitudes and multiply by the Legendre 

polynomials. 

Add product to the partial sum of products computed on 

previous pass. 

This is parallel in latitude and m but sequential in it The summation function 
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SUrdc or SUMR is now replaced by a computationally cheaper matrix addition. 

As before, real and imaginary parts are transformed sequentially. The 

estimated timing in Table 4 confirms the superiority of this algorithm. The 

estimated performance rate is 5.7Mflops for this algorithm, almost twice the 

performance rate of the latitude vertical algorithm. 

To compute the efficiency, the broadcast, multiplication and addition 

operations are considered for each wavenumber n. Using Eq.(2.6.3) gives 

&0.34. This is less than the efficiencies for the m vertical and latitude vertical 

algorithms because the DAP FORTRAN function to sum across rows or 

columns, which is efficient in its use of processors, is no longer used. If all 

the processors were doing useful work during the loop, the performance rate 

would be 17Mflops. Thus 34% of the potential performance is achieved, 

consistent with the calculated efficiency. 

The overall efficiency is only a third of the available processors. This is 

mainly due to the decreasing length of the selected vector as n decreases, an 

inefficiency common to all of the algorithms discussed. To improve this and 

keep a constant vector length it is necessary to pack the spectral coefficients 

and the Legendre polynomials. A simple method is where the spectral data 

are separated into two halves about n=n' to give a rectangle. The loop length 

is halved as the coefficients for two values of n are stored in the same 

column. However, it is possible to show that no overall decrease in execution 

time occurs because of the additional work required in the loop to unpack the 

coefficients. A rhomboidal truncation, mapped as Eq.(5.2.1) would give a 

rectangular data structure without the need for packing. Minor optimizations 

of the code are possible e.g. some gain may be made by making use of vector 

operations rather than matrix ones when n is 0 or 1, since only one or two 

rows respectively are in use. A much greater improvement would result if this 

algorithm was coded in assembler, to use the spare processors during the 

arithmetic operations. For example, at n=31, half the PE array is unused so 

each processor could process 16 bits of each word, halving the computation 

time at this stage. At n=15, each processor would be assigned 8 bits of each 

word and so on. 
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5.3.2. Choice of mappings 

Having determined the most efficient algorithm, the next step is to select 

the precise mappings for the real and imaginary spectral coefficients and the 

Legendre polynomials. The key point to the algorithm as far as the real 

coefficients are concerned is that a vector of coefficients over all m for each n 

is selected. All these coefficients must lie completely in a row or column to 

ensure efficient selection. Thus, a mapping using long-vector format or 

packing would be unsuitable. Furthermore, although not as important, to 

simplify the selection of a vector during the loop and avoid any unnecessary 

integer scalar arithmetic or initial routing, the n axis should increase with 

either the row or column index. For the m axis, its mapping should be such as 

to avoid any routing before the inverse FFT. The algorithm used for the FFT 

(see chapters 2 and 6) expects the m axis to increase with the row or column 

index and that m=O maps to the first row. The mapping that satisfies these 

criteria is given by Eq.(5.2.4). 

Some of the above points also apply to the Legendre polynomials. The m 

axis must be mapped across rows or columns as for the real coefficients. To 

avoid any integer scalar arithmetic during array indexing, the n axis should 

increase down the store with the values for n0 as the first matrix. Although 

calculations are independent of latitude, it seems preferable to map latitude 

regularly across the colLnns of the DAP array. A suitable mapping of the 

Legendre polynomials is therefore given by Eq.(5.2.1 1). 

The imaginary coefficients must be assigned to a work matrix before the 

loop, such that selection of a vector for each n gives a mapping for the m axis 

the same as for the polynomials. So, when each vector is selected, the m axis 

should be mapped as, 

( m  ) - ( m + 1) 	
(5.3.4) 

Indexing in the loop is simpler if the n axis increases with rows or columns. 

Only Eq.(5.2.6), the imaginary coefficients' mapping given by use of the TRAN 

function achieves this. Transforming the imaginary parts would therefore 

involve no routing at all before the loop, merely masked assignment to a work 

array. Inside the loop a row vector is selected and broadcast rather than a 

column vector as for the real coefficients. Unfortunately, this method was not 

considered until after access to the DAPs at Edinburgh University was no 
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longer possible. The original approach routed the imaginary coefficients to the 

same mapping as the real coefficients. 

Two other possible mappings of the imaginary coefficients were 

considered. The first used the DAP functions that reversed rows and columns, 

Eq.(5.2.5) i.e. the m and n axes are both reversed. Using the estimate of Table 

4 and replacing the routing operation time by the time for the combined REVC 

and REVR operation gives an estimate of 41.98msecs. This code was timed to 

the nearest second over 10000 repetitions and executed in 52.5msecs. Thus 

the possible error is 0.1msecs. The overhead from high level language 

manipulations is therefore 25% and consistent with the 20% overhead found 

by Hockney and Jesshope (1981) for DO loops performing matrix operations. 

The time for a transform using the imaginary coefficients' mapping Eq.(5.2.6) 

would be 52.Ômsecs, by subtracting the cost of the REVC and REVR functions. 

The penalty for using Eq.(5.2.5) instead of Eq.(5.2.6) is therefore negligible at 

1% of the CPU time. 

The other mapping used the matrix shift functions instead of the reversal 

functions to give Eq.(5.2.7). Since the m axis increases with the row index only 

shifts are required to align the m0 coefficients with the first row. Due to the 

uncertainty in the time for the shift operation, an estimate of the routine is not 

given. The measured time was 51.9msecs, again with a possible error of 

0.lmsec. 

To conclude, it has been shown that by mapping the imaginary parts by a 

TRAN function no initial routing is needed. However, other possible mappings 

in which routing is necessary cause a negligible increase in the execution time 

of the transform. It seems therefore that the imaginary parts mapping can be 

freely chosen. However, the effect of the mapping options on the direct 

Legendre transform should be considered before deciding on the precise 

mapping. Fishbourne (1980) gives a CPU time of 96.63msecs for his inverse 

Legendre transform. The n vertical algorithm is therefore faster by a factor of 

1.9. 
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5.4. Direct Legendre transform 

The algorithms for the direct Legendre transform are now derived. The 

same approach as for the inverse transform is used. The algorithms arising 

from the three Legendre polynomial mappings are discussed generally and the 

most efficient is then examined in more detail. Any subsequently necessary 

routing is assumed to be negligible compared to the difference in execution 

times of the algorithms. The mapping that gave the most efficient algorithm 

for the inverse transform may not give the most efficient direct transform. 

The direct Legendre transform, to be required by the model is of the form, 

J 

Fm , n = 	h.(l.Lj){BmdQmn/dP - iAmPmn) 	
(5.4.1) 

j=1 

where, 

= g / [2(1 - 	
(5.4.2) 

and, 

dQmn ( 1j) 	2
)  - 
dPmn(ij) 	 (5.4.3) 

dp 	 J  d4 

Since the derivatives are stored in the same array as the polynomials, the 

possibility exists of computing the two products and their summations in 

parallel. That is, writing Eq.(5.4.1) as, 

	

J 	 J 

Fmn  = 	hBm dQmn /dP - 	i/ZAmPmn 

	

j=1 	 j=1 

(5.4.4) 

algorithms should be developed that compute these two terms in parallel and 

then as the final step evaluate the difference to form the spectral coefficients. 
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5.4.1. Algorithms 

5.4.1.1. Latitude vertical 

First, consider the case where the polynomials are mapped with latitude 

increasing down the store. Since the final result is spectral coefficients, it will 

be beneficial to map the polynomials for each latitude exactly as the real 

coefficients. Likewise, the derivatives values are best mapped as the 

imaginary coefficients. 

Using this storage arrangement the algorithm is, 

Multiply the modified Gaussian weights to the Fourier 

coefficients. 

For each latitude: Select a vector of wavenumbers to be 

multiplied by the polynomials and broadcast to a work 

matrix. 

Select a vector of wavenumbers to be multiplied by the 

derivatives and broadcast (using masking) to the same 

work matrix. Routing will be required to position the 

Fourier coefficients. 

Multiply the work matrix by the Legendre data. This is 

parallel in n, m and the two products. End of latitude loop. 

Compute difference, using routing, to give spectral 

coefficients. 

The transform of the imaginary parts is done after the real parts and is as 

above, except step (5) is a summation. 

By treating the products in parallel, one addition and multiplication in 

matrix mode are avoided. The overhead in forming the Fourier matrix is slight 

as it involves matrix assignments. 

An estimate of the time for the algorithm is given in Table 5, based on the 

code given in Appendix A. The number of floating point operations required for 

this transform is given by 4NLAT(M+1)(M+3)-(M+1)(M+2) which, for M=42, gives 
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Pm,n 	 Loop 	 Estimated 
mapping 	 length 	time (msecs) 

Latitude 	 64 	 97.54 
vertical 

m 	 43 	 83.58 
vertical 

n 	 43 	 57.78 
vertical 

Table 5. 

Estimated execution times for three direct Legendre transform algorithms 

derived from different mappings of the Legendre polynomials. 
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an estimated performance rate of 5Mflops. The execution time is only 18% 

more than that of the inverse transform routine with the same Legendre data 

mapping. This is because the two products involving the polynomials and their 

derivatives are computed in parallel. If the products were computed 

sequentially, the extra operations would give an estimate of 153.86msecs, an 

increase of 58% on the parallel version. 

To calculate the efficiency using Eq.(2.6.3), only the operations in the loop 

are considered. This gives L=0.37. This efficiency is greater than for the 

inverse Legendre transform, because the derivatives are involved. 

5.4.1.2. m vertical 

Consider the algorithm when the Legendre polynomials are mapped with m 

down the store. The procedure becomes, 

Multiply the modified Gaussian weights to all the Fourier 

coefficients. 

For each in Select a vector for m over all latitudes from 

A m . 

Broadcast only to the processing elements in the work 

matrix that are multiplied by the polynomials. 

Select vector for rn from Bm  

Broadcast to the processing elements in the work matrix 

that are multiplied by the Legendre polynomial derivatives. 

Multiply the work matrix by the array containing the 

polynomials and derivatives. This is parallel in n, p and the 

products involving the polynomials and derivatives. 

Sum along each latitude to give a vector result of the two 

required products. End of loop. 

Route the products and compute difference to give the 

final spectral coefficients. 
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Like the previous algorithm, the imaginary coefficients are transformed 

sequentially. The amount of work within each pass - of the loop has increased 

but the loop length has decreased. The timing estimate in Table 5 shows a 

decrease in time by 14% from the latitude vertical algorithm. This is almost 

half the decrease achieved in the inverse transform between these mappings. 

The estimated performance rate of this algorithm is 6Mflops. 

To compute the efficiency of this algorithm, the routing, broadcast, 

multiplication and summation operations are taken into account. During the 

multiplication and addition stages, 68.8% of the processors are performing 

useful work. Unlike the inverse transform case, this is constant throughout the 

loop. The only operation in which the number of usefully active processors 

varies with the wavenumber m is the routing for the Fourier coefficients. 

Using Eq.(2.6.3) gives E=0.59. This is an increase on the last algorithm and 

consistent with the improved performance. 

5.4.1.3. n vertical 

The time for the m vertical algorithm could be improved if the 

broadcasting and routing during each pass could be reduced. This can be 

achieved if the n axis of the Legendre data is mapped vertically in the store. 

Since the loop variable is n, the Fourier coefficients are effectively 

constants during the loop and masked assignment to a work matrix can be 

done outside the loop. Care must be taken, however, to ensure that the Fourier 

coefficients are placed correctly. At the start of the loop over n., either the 

polynomials or the derivatives will be mapped such that n=42 for one and n0 

for the other. As the loop index increases, the number of occupied rows 

decreases for one and increases for the other. Thus by assigning all the 

Fourier coefficients to be multiplied by the Legendre data for which n=42 at 

the start of the loop to the Fourier work matrix, only those Fourier coefficients 

multiplied by the Legendre data for which n increases down the store, need to 

be updated. The other set of Fourier coefficients can be overwritten. 

Since a total of 44 rows or columns will be in use, the remaining 20 rows 

can be used to store the Fourier coefficients multiplied by the Legendre values 

for which n increases down the store. Thus, only after each 21 passes of the 

loop does the Fourier work matrix need to be updated. One masked matrix 
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assignment is faster than 21 vector assignments. A higher resolution would 

result in less unused rows or columns and therefore the Fourier work matrix 

would need to be updated more often. The steps of the algorithm are, 

Multiply the modified Gaussian weights to all the Fourier 

coefficients. 

Mask assign the correct Fourier coefficients valid up to 

n20 to the Fourier work matrix. 

For each n Multiply the Fourier work matrix by the 

Legendre data array. This is parallel in m, p and the two 

products. 

Sum along the lines of latitude to give a vector containing 

the two products. 

If n20 or n=41, update the Fourier work matrix. End of 

loop. 

Route the two products and compute the sum and 

difference to give the real and imaginary spectral 

coefficients. 

As before, the real and imaginary parts are transformed sequentially. The DAP 

FORTRAN code is given in Appendix A. 

The estimated time for this algorithm is given in Table 5. A reduction in 

time of 31% on the previous algorithm has been achieved, resulting from less 

work in the loop although the loop length is the same. The algorithm is also 

40% faster than the latitude vertical algorithm. The inverse n vertical transform 

algorithm was 50% faster than the inverse latitude vertical algorithm. The 

estimated performance rate for this algorithm is 8.5Mfops. 

Calculating the efficiency of each pass through the loop is straightforward. 

The Fourier work matrix updates at n=20 and 41 are ignored as they contribute 

little to the overall time. Like the previous algorithm, during the multiplication 

68.8% of the array is doing useful work. The summation along latitudes takes 

place on the same percentage of rows or columns so the efficiency using 

149 



Eq.(2.6.3) is given by D=0.69. Therefore, nearly 70% of the processor array is 

doing useful work on average. It is this higher efficiency that enables the 

direct transform algorithm to execute in a time close to that of the inverse 

transform. In serial terms, the amount of computation for the direct transform 

is over twice that for the inverse transform. As the parallel version takes only 

1.4 times the estimated time of the inverse transform, this shows that extra 

parallelism is available in the direct transform and it has been exploited 

successfully. 

The direct transform algorithm of Fishbourne (1980) also uses the n 

sequential approach. However, he incurs an additional cost from unpacking 

the polynomials and computing the derivatives at each timestep. The two 

products are computed sequentially but the summation over latitude is done 

concurrently for both products. Comparing the time given by Fishbourfle (1980) 

for his direct transform to that of the n vertical algorithm above shows the 

latter method to be about 3 times faster than Fishbourne's. However, the 

storage required by his algorithm is half that of this one. When symmetry is 

included in the Legendre transform algorithms, the storage requirement will be 

halved and an additional gain in execution time will result. 

5.4.2. Choice of mappings 

In this section, given the most efficient algorithm, the precise data 

mappings and movements are studied in detail. The relationships between the 

data mappings are first examined. 

The best algorithm is achieved when the n axes of the Legendre 

polynomials and their derivatives are mapped down the DAP store. The first 

stage of this algorithm is the multiplication of the Fourier coefficients by the 

polynomial values. The Fourier coefficients are mapped as, 

( m, 1.i ) + { m + 1,j) 
	

(5.4.5) 

with real and imaginary values in separate matrices. The routing required to 

position the Fourier coefficients to be multiplied by the derivatives can be 

minimized if the m axis of the derivatives also increases with rows, as only 

shifts are required. These could be kept to a minimum if there were no free 

rows between the polynomials and the derivatives. However, it was shown in 

the last section how the 20 free rows can be used to advantage in the 
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algorithm. The arguments for selecting Eq.(5.2.11) as the polynomial mapping 

for the inverse Legendre transform also apply for the direct transform. A 

mapping satisfying the above criteria for the derivatives is, 

dQmn /dl.1 : ( m, n, pi ) • ( 64 + m - n, j, 43 - n ) 	 (5.4.6) 

This uses the shift functions as discussed in the section on mapping the 

Legendre data. Another option would be to use the mapping of Eq.(5.2.11) for 

the derivatives. A reversal of rows (REVR), rather than shifts, would be 

necessary in order to map the Bm coefficients correctly. The effect on the 

algorithm is discussed below. 

The next stage - in the algorithm is the summation. This produces a vector 

containing the two products. For any n, the first n+1 elements of this vector 

hold the polynomial product values, the last 43-n elements hold the derivative 

product values. Within this vector, the products will be mapped the same as 

the row mapping of the polynomials and their derivatives. Furthermore, if this 

vector is assigned to the 
fl1th column of a work matrix, the column mapping 

of the work matrix will be the vertical (matrix) mapping of the polynomials. 

Using the mapping of Eq.(5.4.6) as an example this could be written as, 

Pm,npr0t SUMC{m+1,j,n+1){rn+1,fl+1} 

dQmn /dI.I product: suMc{ 64+m - n, j, 43 - n } = ( 64+m - n, 43 - n } (5.4.7) 

as the suc function sums along j. Therefore, Eq.(5.4.7) expresses the change 

of mapping that takes place during this stage of the algorithm. 

Following the calculation of the products, they are combined to form the 

spectral coefficients. This involves another change of mapping. The closer 

the mapping Eq.(5.4.7) is to the spectral coefficients' mapping, the less routing 

will be necessary. For example, in Eq.(5.4.7), the Legendre polynomial product 

mapping needs only one shift east to be the same as the real part mapping. 

Likewise, the derivative product mapping is similar to the imaginary 

coefficients' mapping of Eq.(5.2.7), requiring an eastward shift of 20 places. 

The key point here is that the mapping of the polynomials should be 

closely related to the mapping of the real coefficients for efficiency. Similarly, 

the mapping of the derivatives should be closely related to the mapping of the 
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imaginary parts. Routing is needed to map the derivative product as the real 

coefficients, and the polynomials as the imaginary coefficients, to form the 

real and imaginary spectral coefficients. 

Having seen the relationships between the data mappings, the algorithms 

resulting from the different imaginary part mappings are now examined. 

Although varying the way they were mapped had a negligible impact on the 

execution time of the inverse Legendre transform, this should be verified for 

the direct transform. Assume that the same type of mapping is used for the 

imaginary coefficients and the derivatives i.e. a mapping using the shift 

functions, reversal of rows and columns or a matrix transpose. 

With the mapping of Eq.(5.4.6), assignment to the Fourier work matrix for 

the Bm  coefficients only requires shifts and is therefore economical. However, 

as n increases the row in which the m=0 coefficients reside changes. 

Therefore, on each pass of the loop over n, the Bm coefficients only must be 

shifted one 'place south. Masked assignment is necessary so as not to disturb 

the Am  coefficients. The algorithm can still make use of the 20 free rows as 

described in the previous section. 

The routing required when combining the products can be determined by 

using the mapping expressions. Suppose that the real coefficients are to be 

formed and mapped as (m+l,n+2). The derivative product is mapped as 

{64+m-n443n} from Eq.(5.4.7). By knowing the change of mapping effected by 

the DAP matrix functions (Eq.(2.6.15)) the necessary routing operations can be 

determined. These are a cyclic shift of each row, the number of shifts 

depending on n, followed by REVC and a shift west of 20 processors. 

Consider the algorithm when Eq.(5.2.11) is used as the mapping of the 

derivatives. Forming the Fourier work matrix becomes marginally more 

expensive using REVR rather than a shift of 20 places. During the loop the 

products are calculated in reverse order; the polynomial product starting from 

n0 and increasing, the derivative product from n=42 and decreasing. From 

the mapping expression in Eq.(5.2.11), it can be seen that the mapping of m 

does not alter with n and no shift is required during the transform loop. 

For this mapping, different routing operations will be required to form the 

spectral coefficients. Applying the summation function SUMC to the mapping of 
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Eq.(5.2.1 1) gives, 

dQmn /dll product: ( in, n ) • ( 64 - m, 43 - n ) 	 (5.4.8) 

This has to be routed to the real coefficients' mapping as before. First, as the 

directions of the m and n axes in Eq.(5.4.8) are reversed, the functions REVC 

and 1VR are applied, followed by a shift west of 20 PEs. The routing for the 

polynomial product to the imaginary coefficients' mapping is obtained in a 

similar way. Comparison of these routing operations to those described above 

using Eq.(5.4.6) show that these are slightly computationally cheaper. 

Both this method and the previous one were coded and timed. The results 

are given by the first two entries in Table 6. The mapping of Eq.(5.4.6) for the 

derivatives is denoted by the word SHIFT because of the use of the shift 

functions to map the data correctly. Likewise for the imaginary spectral 

coefficients mapping of Eq.(5.2.7). For the mapping Eq.(5.2.11) of the 

derivatives and associated imaginary parts mapping of Eq.(5.2.5) the word REV 

is used because of the use of the REVR and REVC functions. To time the 

subroutines, each was called 10000 times and the CPU time obtained to the 

nearest second. All times therefore have a possible error of 0.1msecs. 

The times in Table 6 clearly show the overhead in shifting the Fourier 

matrix at every loop pass. The measured times can be compared with the 

estimates of Table 5. The difference in CPU times resulting from changes in 

the routing are much smaller than the differences due to changes in the 

mapping of the polynomials (latitude, m or n vertical), validating the 

assumption made at the start of the previous section. The SHIFT algorithm is 

3.5% more expensive than the REV algorithm. 

Use of the TRAN function to map the imaginary coefficients gave the best 

inverse transform algorithm, removing all routing. As before, the derivatives 

should be mapped in such a way to give a product mapping that is as close 

as possible to the imaginary part mapping. The derivatives are separated by 

the 20 free rows to keep the algorithm efficient. 

A derivative mapping of, 
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Imaginary 
coefficients 

Derivatives 	Time 
mapping 	I 	(msecs) 

mapping 

SHIFT SHIFF 61.4 

REV REV 59.3 

SHIFT REV 59.7 

TRANS REV 59.7 

Table 6. 

The CPU times for the direct Legendre transform for different data 

mappings of the imaginary spectral coefficients and Legendre polynomial 

derivatives. Refer to text for explanation of mappings. 
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dQmn /dp: ( m, n, 	) - { n + 22, j, m + 1 } 	 (5.4.9) 

will give a product mapping of, 

dQmn /dl.L product: { n + 22, m + 1 } 	 (5.4.10) 

The routing needed to transform Eq.(5.4.10) to the real part mapping is a shift 

north of 20 places followed by a transpose. This is the cheapest so far. 

However, from Eq.(5.4.9) the derivatives have the m axis mapped down the 

store so that on each pass of the loop over n for the polynomials, a vector is 

selected from the Bm  Fourier coefficients and broadcast to the area of the 

Fourier work matrix to be multiplied by the derivatives. This will make the 

algorithm more costly. It is essentially a combination of the n vertical and rn 

vertical algorithms discussed in the previous section. 

The most efficient algorithm therefore results when the mapping Eq.(5.2.11) 

is selected for the derivatives; other mappings introduce additional operations 

into the loop. In the above discussion, the routing in the final stage of the 

algorithm has been minimized by relating the mapping of the derivative 

product (and hence that of the derivatives) to that of the imaginary spectral 

coefficients. 

Suppose that Eq.(5.2.11) is used for the derivatives but an imaginary 

coefficients' mapping that is not based on the reversal of rows and columns is 

used. Although the time for the direct transform will increase because of the 

extra routing, the combined times of the inverse and direct transform may 

decrease, because of a decrease in the inverse transform time. Using the 

mapping expressions as above, it is straightforward to determine the different 

routing operations necessary. Only the routing used in forming the real and 

imaginary coefficients at the end of the direct transform algorithm is affected. 

Table 6 shows the actual timings of two of these combined mapping 

algorithms for the direct transform. The transpose mapping Eq.(5.2.6) is used 

for the imaginary part in one, the shifted m axis mapping Eq.(5.2.7) the other. 

The increase in CPU time of these methods over the case where both 

imaginary part and derivatives are mapped using reversal of m and n axes is 

seen to be small since the modifications occur outside the main loop. 

The sum of the inverse and direct transform times gives 111.8msecs for 
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the REV mapping of the imaginary coefficients, 111.6msecs for the SHIFT 

mapping and 111.7msecs for the TRAN mapping based on a matrix transpose 

operation. For the TRAN mapping, an estimate is used, obtained by 

subtracting the time for the REVC and REVR functions from the measured time 

of the REV algorithm. These figures show that overall the fastest method for 

the direct transform does not give the best time, the shifted m axis mapping 

of the imaginary coefficients is marginally superior, a difference of 0.2% to the 

execution time of the REV mapping. A REV mapping of the derivatives is 

assumed in all cases. 

To summarize, the precise mapping of the imaginary coefficients is not 

important to the efficiency of the transforms although the mapping of the 

Legendre polynomials and the derivatives is. Other aspects, such as 

conceptual simplicity and conciseness of code, may affect the choice of 

mapping. 

5.5. Inclusion of symmetry 

In this section, the modifications necessary to the data mappings and the 

parallel Legendre transform algorithms to make use of the symmetry property 

Eq.(3.4.30) are described. The n vertical algorithms derived in the preceding 

section are used, as this mapping of the Legendre data gave the best 

algorithms. The choice of mapping for the imaginary coefficients is arbitrary 

and so the REV mapping is used to be consistent with the derivatives' 

mapping. The amount of computation required to calculate the inverse and 

direct Legendre transforms can be reduced by using the property Eq.(3.4.30). 

The storage requirements for the Legendre polynomials and their derivatives 

are halved. 

Assume that the latitudes are numbered from the North Pole to the 

equator i.e. 7=1 to J12, and that 1i represents a latitude in the southern 

iemisphere. Writing Eq.(5.3.1) as, 

M 

Fm (1.Ij) + Fm (ILj) = E Fmn (Pmn (1 1j) + "rn,n('j)) 	
(5.5.1) 

n'lmI 

Fm (j) Fm (j) = 	Fmn(Pmn(Pj) - m,n(j)) 
n"lmI 
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and using the symmetry relation Eq.(3.4.30) it can be shown that the 

symmetric (am) and antisymmetric (bm) Fourier coefficients are computed by, 

M 

nPmn 	for Iml+n even 	 (5.5.2) 
am = :: Fm   

nImI 

M 

6 = L FmnPmn 	for ImI+n odd 

nIml 

for j=1 to J12 only. The Fourier coefficients are then given by, 

F(p) = am (I1j) + b(i) 	 (5.5.3) 

Fm (1ij) = am (pj ) - bm (lLj) 

The direct Legendre transform required by the spectral model in chapter 6 

is given by Eq.(5.4.1). Using Eq.(3.4.33) and Eq.(3.4.46), it can be shown that, 

= g(-P), 	h(p) = h(-p) 	 (5.5.4) 

and, 

dQmn(_1•tj) = (_l)tmI+n1 dQ m, n (luj) 	 (5.5.5) 

dp 	 dp 

Rewriting Eq.(5.4.1) as, 

J/2 

Fmn  = 	h(1.tj)[Bm(Pj) 4Qm,n(hhj) - iAm(1.tj)Pm.n(1ij)I 	 (5.5.6) 
d.i 

j= 1 

+ Qm,n('j) - iAm (1Jj)Pmn (Pj)1 h(I.Lj)[Bm(l1j) dii 

and using Eq.(3.4.30), Eq.(5.5.4) and Eq.(5.5.5), it can be shown that the direct 

transform can be computed by, 

I mI+n even 

bm  = Bm (Iij) - Bm (I•1 j) 
	 (5.5.7) 
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dm  = A m (Pj) + Am (1Aj) 

J/2 

Fmn = 	ltbmdQmn/d31 - idPl 	 (5.5.8) 

i=1 

and, 

ImI+n odd 

am = Bm (i.Lj) + Bm(1Aj) 	 (5.5.9) 

C = A m (Pj) A m (I.Ij) 

J/2 

F 	= 	JIamdQm.n/d1 - iCmPmnl 	
(5.5.10) 

j=1 

5.5.1. Storage of spectral data 

Using the symmetry property Eq.(3.4.30), the number of latitudes for which 

values of Legendre polynomials are required is halved. For T42 this means 

that half of the DAP array is then free, because latitude is mapped across 

columns. One possibility would be to copy the polynomials in each half and 

transform two variables simultaneously, but since there are an odd number of 

prognostic variables and this does not reduce the storage required, better use 

can be made of the available processors. 

There are several mappings that can be formulated to make use of the 

available space. The first possibility would be to separate coefficients with 

odd and even rn+n, or symmetric and antisymmetric values. The symmetric 

coefficients could be stored in one half of the DAP array, the antisymmetric 

coefficients in the other half. 

Since symmetric or antisymmetric coefficients are represented by 

diagonals in the (m,n) plane, the amount of storage required will not be 

reduced, as the depth of store depends on the length of the diagonals. 

However, a reduction in storage can be obtained if each vertical column is 

moved up by 'ii matrices. This means that diagonals of in+n odd and even are 

now stored on a DAP plane. Fig. 20 illustrates the steps in remapping the data 
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Key 
M.0  0 = m+n even 

n 	 * = m+n odd 

(a) The original Legendre polynomial mapping viewed from the side of the 
DAP store. 

W 

S 

m 

The storage arrangement after separation of symmetric and antisymmetric 
values to separate halves of the DAP array. 

in 

%--&- 9 

The separated coefficients are shifted vertically up the DAP store to 
achieve a reduction in storage. Diagonals now he horizontally on DAP 
planes. 

Figure 20. Illustration of the remapping of the Legendre polynomials for 
T4 resolution in order to use the symmetry property. 
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from the original nonsymmetric mapping. The mapping expression for this 

storage arrangement is, 

Pmn : ( 
m, n, 1i  ) + ( m + 1, j + 32, 1 + (n-m)/2 ) 	m+n even 

	

( m, n, 1i ) + ( m + 1, j, (n-tn+1)/2 ) 	m+n odd 	(5.5.11) 

Only (M+2)/2 or 22 matrices (704 planes) at T42 are now required to store the 

coefficients. For odd resolutions, the storage requirement is (M+1)12 matrices. 

As for the nonsymmetric storage mappings, the derivatives can be stored 

in the same array. From Eq.(5.5.5), the symmetric and antisymmetric 

coefficients of the derivatives can also be separated. A mapping expression 

similar to Eq.(5.5.11) results except that the n axis increases up through the 

DAP store. 

It was shown in the previous section that for efficiency, the mappings of 

the spectral coefficients should be related to the mappings of the Legendre 

polynomials and their derivatives. The inverse and direct Legendre transforms 

use and return a vector of spectral coefficients. In both cases, the mapping of 

data in this vector should match the mapping of Legendre values. This implies 

that diagonals should be stored in columns i.e. 

	

Fmn  real:  ( m, n ) -1- { m + 1, n - m + 1 } 	 (5.5.12) 

The imaginary coefficients would be mapped by applying the REVC and REVR 

functions to Eq.(5.5.12). This mapping is identical to the mapping Eq.(5.2.1) 

discussed for the rhomboidal truncation. 

It is also possible to use the mapping Eq.(5.2.4) with the Legendre 

transforms that use the symmetry propery, whilst keeping an efficient storage 

method for the Legendre polynomials. The n axis of the Legendre values must 

be kept vertical in the OAf' store. 

Each column of the original spectral coefficients' mapping Eq.(5.2.4) 

contains coefficients that alternate m+n odd and even, so the Legendre values 

cannot be separated into m+n odd and even as before. However, if the 

Legendre polynomials are separated so that values with odd and even n are 

stored in each half of the OAf' array, calculations for one n odd and even 

could proceed in parallel. Fig. 21 illustrates how this mapping is obtained from 
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N 
Q = m+n 

)IE = m+n 

(a) Shows the original Legendre polynomial mapping before symmetry. 

rn—J 

rn N 

(b) Shows storage format after coefficients with odd and even n are 
separated into each half of the DAP array. 

Figure 21. illustration of the remapping of the Legendre polynomials, for 
T5 resolution, in order to use the symmetry property. 
Coefficients of odd and even n are separated.. 
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the data mapping used for the nonsymmetriC transforms. The mapping 

expression is, 

Pm,n : (
m,n,1Lj)*{m+1,j+32,1+n/2} 	neven 

( m, n, jj j ) - ( m + 1, j, 1 + n/2 ) 	n odd 	 (5.5.13) 

Each half contains a mix of symmetric and antisymmetric coefficients unlike 

Eq.(5.5.11). It will• be seen however, that because the spectral coefficients' 

mapping matches that of the Legendre data in both cases, the transform 

algorithms are almost the same. 

To store the polynomial derivatives in the same array, the above procedure 

is followed. The details of the mappings will be left until the transforms are 

considered. The used fraction of the array holding the Legendre values does 

not alter from that given for the nonsymmetriC case, although less total 

storage is required. 

5.5.2. Inverse Legendre transform 

In this section the modifications necessary to the nonsymmetric inverse 

Legendre transform are described. The original spectral coefficients' mapping 

Eq.(5.2.4) and associated symmetric mapping of the Legendre polynomials 

Eq.(5..13) are used, although the changes necessary to use the remapped 

spectral coefficients Eq.(5.5.12) together with Eq.(5.5.11) are also described. 

The algorithm commences as before, the real and imaginary coefficients 

are separated into work matrices. This code would be the same regardless of 

the spectral coefficients' mapping. The main difference is in the loop, where 

the symmetric and antisymmetric products are computed in parallel. On each 

pass of the loop, two vectors are selected from the spectral coefficients, one 

for n odd and one for n even. These are multiplied by their respective 

Legendre polynomials in each half of the DAP array. This step involves more 

work than the previous algorithm as each vector must first be broadcast and 

mask-assigned to the appropriate half of a work matrix. 

Although the amount of data routing has increased in the loop, the loop 

length is now only 22 since two values of n are computed in parallel and 

therefore half the number of arithmetic operations in matrix mode are 
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required. However, after the loop, an additional step to form the Fourier 

coefficients from their symmetric and antisymmetric parts is necessary 

(Eq.(5.5.3)). Before describing this step, it is necessary to determine exactly 

how latitude is mapped for the Fourier data in each half of the DAP array. The 

example of Eq.(5.5.13) assumed j to increase with the column index for both 

odd and even n, in which case, a shift of 32 processors would be required to 

map one half onto the other. Alternatively, j could increase from columns 

1-32 and decrease from 33-64, requiring a reversal of columns. From the 

timings of DAP functions given in chapter 2, a shift of 32 processors takes the 

same time as the REVC function. The symmetric mapping using REVC is 

chosen for which the mapping expression is, 

Pmn : ( m,n,ii)+{m+1,j,1+n/2} 
	

n even 

( m, n, p i ) 	{ m + 1, 65 - j, 1 + n/2 } 	 n odd 	(5.5.14) 

After the loop, the symmetric (am)  and antisymmetric (bm ) Fourier 

coefficients are mapped as, 

am: (m,ii)-{m+1,j} 	 for meven 

( m, Ili ) + {m + 1, 65 - 5) 	for m odd 	 (5.5.15) 

bm : 
( m,i)-{m+1,65-j} 	 for meven 

(m,i.i) - {m+l,j) 	 for modd 

where j=1 to 32 and am  and bm  are those in Eq.(5.5.3). This storage format is 

illustrated in Fig. 22. From Eq.(5.5.3), the bm coefficients must be negated for 

the southern hemisphere before the am  and  bm  coefficients are added together, 

in parallel for both hemispheres. 

The DAP FORTRAN code for this algorithm is given in Appendix A. Using 

this code, an estimate of the execution time of the routine can be made. This 

estimate and the measured CPU time of the routine are given in Table 7. As 

before, the measured time is subject to a possible error of O.lmsecs. An 

overhead of 21% applies to the estimated time, consistent with overheads 

found previously. The number of floating point operations required for this 
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Transform 	Estimated 	Measured 	Overhead 
time (msecs). 	time (msecs) 

Inverse 	 27.13 	 32.8 ±0.1 	21% 
I 	 I 

Direct 	 49.2 	 58.0± 0.1 	20% 
2 	 2 

34.6 	 41.5 

Table 7. 

Estimated and measured times for the inverse and direct Legendre transforms 

that use the symmetry property of the Legendre polynomials. 
1 

This estimate uses the the measured time of the SUM2C function. 

This assumes the SUM2C function takes the same time as the SUMC function. 

The measured time in this case is the estimated time plus 20% overhead. 
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transform is NLAT[(M+1)(M+6)+M(M-1)] which gives a performance rate of 

3.7Mf lops. 

Comparing the measured time with the 52.5msecs for the nonsymmetriC 

algorithm gives a speedup ratio of 1.6 or a decrease or 37.5%. Although the 

loop length has been halved, the additional cost of forming the work matrix 

inside the loop and combining the symmetric and antisymmetric parts after 

the loop reduce the speedup and the performance rate. 

The efficiency of this algorithm can be calculated using Eq.(2.6.3) to be 

0.31. Only the operations inside the loop are considered since the initial and 

final operations only account for 4% of the execution time. This efficiency is 

less than the nonsymmetric transform because two broadcasts are now used, 

where each writes to half the PEs written to in the nonsymmetric version. This 

efficiency could be increased and the performance improved by coding the 

routine in the DAP assembly language to take advantage of the spare 

processors as described for the nonsymmetric version. 

Suppose the mappings of Eq.(5.5.12) and Eq.(5.5.11) were used. No changes 

to the initial operations in the algorithm are required. Furthermore, no 

changes to the code within the loop are necessary since the data are properly 

positioned relative to each other. The only change necessary is to the 

formation of the full Fourier coefficients from the symmetric and 

antisymmetric parts after the loop, as each half of the DAP array contains 

coefficients for m+n odd or even instead of n odd or even. This simplifies the 

operations necessary to form the full Fourier coefficients. The difference this 

makes to the algorithm timing however is negligible. A more important point 

is that the algorithm can use different spectral data mappings, as long as the 

spectral coefficients are mapped correctly, relative to the Legendre 

polynomials. Only the final routing operations will need to be changed. 

5.53. Direct Legendre transform 

Following on from the inverse transform, the modifications to the direct 

transform to make use of the symmetry property are described. As before, the 

original spectral coefficient mapping is retained and the necessary changes to 

the algorithm to use the alternative mapping are described later. The mapping 

of the derivatives will also need to be altered. 
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As for the inverse transform, the direct transform algorithm will be similar 

to the nonsymmetric version. As the derivatives remain stored in the same 

array as the Legendre polynomials, their products can be computed in parallel. 

In addition, for each product, a vector result for two values of n will be 

obtained. The loop length will again be M'2 rather than M 

After the multiplication by the Gaussian weights, the second step, new to 

the algorithm, is to compute the symmetric and antisymmetric parts of the 

Fourier coefficients using Eq.(5.5.7) and Eq.(5.5.9). Since this additional work is 

outside the loop over n it represents a small increase in the total work of the 

algorithm. Only the code in this step will change if the alternative data 

mapping is used, since the mapping of the symmetric and antisymmetric parts 

depends on the mapping of the Legendre values. 

The formation of the symmetric and antisymmetric Fourier coefficients is 

complicated because on each row m+n is alternately odd and even. Thus dm  

and Cm 
from Eq.(5.5.7) and Eq.(5.5.9) are stored alternately on each row. 

Fig. 23 shows how the coefficients must be created so they are multiplied 

correctly to the Legendre polynomials. The  am and bm coefficients to be 

multiplied to the derivatives have to be similarly created and stored. Since the 

mapping of the derivatives has not been finalized yet, this will be discussed 

later. 

The next step is to form the Fourier work matrix, as before, to be 

multiplied by the Legendre data array. If the problem of avoiding an overlap 

of coefficients is ignored for the moment, the following stage is to sum along 

each half row to give a vector result of each product for one odd and one 

even n. These two vectors would then be stored in a product matrix as before. 

Two issues arise. First, a new function is needed to sum each half of a row 

separately. Unfortunately, as the Edinburgh University DAPs were to be taken 

out of service soon after this symmetry work was started, an optimized 

function written in the DAP assembly language (APAL) that summed each half 

was not developed. Instead the function was written using two calls of SiJMC 

with appropriate masking. The measured time of the new algorithm suffered 

as a consequence. However, since an optimized function would take no more 

time than the SUMC function, the measured time could be made more realistic 

by assuming the same CPU time for the new function (sUM2C) as SUMC. 
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Figure 23. Illustration of the first 5 rows of the DAP matrix showing how 
the symmetric and antisymmetric Fourier coefficients are mapped 
for the Legendre polynomials in the direct Legendre transform. 
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The second issue is that the mapping of the product vectors has to be 

determined. The polynomial product vectors are assigned to columns of the 

product matrix with n increasing with the column index. In other words, 

multiply the mapping of n in Eq.(5.5.14) by 2 to give, 

Pmnproduct: (m,n)-*{m+1,n±2} 
	

(5.5.16) 

The derivatives, separated into n odd and even, are stored with n decreasing 

down the store. When assigning the derivative product vectors to the matrix, rz 

must decrease with the column index of the matrix. This means that the 

parity of the truncation wavenumber M determines the half of the array that n 

odd and n even for the derivatives map to. That is, if M is odd, derivatives 

with n odd map to the west half of the array, as the first vector from this half 

contains the values for n=O for the polynomials and n=M for the derivatives. 

Mapping derivatives with n even to the west would have given the coefficients 

for n=M-1 from the first vector, M from the second. This would be in the 

wrong order when assigned to the product matrix. The opposite is true for 

even M, which is the case for the model described in the next chapter. This 

means the mapping of the polynomial derivatives using the symmetry property 

is 

dQmn /dp: 	(m, n, 	) - { 64 - m, j, (42-n) + 1 } 	n even 

( m, n, p ) - { 64 - m, 65 - j,(42-n) + 1) n odd 	(5.5.17) 

and the derivative product mapping is, 

dQmn /dP product:  ( m, n ) - { 64 - m, 44 - n ) 	 (5.5.18) 

Whether M is odd or even, within a column on a DAP plane there must always 

be a total of M+2 Legendre values. 

Eq.(5.5.17) shows how the symmetric (bm) and antisymmetric (am) Fourier 

coefficients that are multiplied to the derivatives have to be stored (Fig. 24). 

They are calculated efficiently using routing and masking operations in a way 

similar to the Cm  and dm  coefficients. The DAP FORTRAN code to compute the 

transform is given in Appendix A. As explained above, the code is dependent 

on the parity of the maximum wavenumber. This dependency will also apply 

to the alternative mapping Eq.(5.5.12) discussed earlier. 
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Figure 24. Illustration of the last 5 rows of the DAP matrix showing how 
the symmetric and antisymmetric Fourier coefficients are mapped 
for the Legendre derivatives in the direct Legendre transform. 
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The Legendre polynomials have to be stored to a resolution of M43 to 

allow for the inverse transform of the velocities. This means 22 matrices are 

required for storage, half that when the symmetry property was not used; 17% 

of the available DAP store. Fig. 25 illustrates how the Legendre values appear 

in the DAP store. 

The reassignment of the Fourier work matrix, constructed from the 

symmetric and antisymmetric coefficients, during the loop is now considered. 

The loop length becomes 22. For 142, on the west half of the PE array, the 

polynomials use the first row only of the first matrix whilst the derivatives use 

the last 43 rows. On the east half however, the polynomials use the first two 

rows, the derivatives the last 42 rows. Therefore, although 20 rows are free in 

each half, those in the eastern half are displaced one row south relative to 

those in the western half. The first loop over index n must therefore go only 
as far as n19, or the 10th matrix from Eq.(5.5.14). This is one less than in the 

nonsymmetric case. Similarly, the second loop can only go as far as n=39, 

before the Fourier work matrix has to be altered, again one less than before. 

The DAP FORTRAN for this transform is given in Appendix A. An estimate 

of the execution time for this code is given in Table 7. Two values are given. 

The first assumes that the summation function StJM2C takes the same time as 

stmic. The second uses the measured time of the SUM2C function of 684msecs. 

The measured time of the algorithm, therefore, should only be compared to 

the second estimate. The overhead is found to be 20%. This algorithm 

requires 2 NLAT(M+1)(M+6)-(M+1)(M+2) floating point operations, so the 

measured performance is 4.5Mflops but the potential performance would be 

6.3Mflops. Like the inverse transform, a decrease over the nonsymmetric 

direct transform has resulted. 

Comparison with Table 6 shows that the inefficient summation function 

means the symmetric transform routine gives no improvement over the 

nonsymmetric version. However, if the summation function took the same time 

as the DAP FORTRAN function suc, an overhead of 20% would imply a 

measured time of 41.5msecs. This is 30% less than the time for the 

nonsymmetric algorithm. The speedup ratio would therefore be 1.43, less than 

that for the inverse transform. Unlike the inverse transform, the work in the 

loop over n has only slightly increased (if an efficient SUM2C function is 

assumed). So the poorer speedup ratio is a result of the increased work 

171 



n even n odd 

n 

Pm, n 

Figure 25. Schematic illustration of the storage format for the Legendre polynomials 

and their derivatives. Reproduced from Carver (1988). 
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outside the loop contributing more to the overall time, since the time spent in 

the loop has now decreased. Operations outside the loop account for about 

12% of the CPU time. The efficiency of the code inside the loop is the same 

as the nonsymmetric case at 0.69. 

For the alternative mapping for which diagonals are stored down columns, 

only the computation of the symmetric and antisymmetric coefficients has to 

be changed, which becomes simpler. For example, the corresponding storage 

to Fig. 23 would be dm  entirely in one half and cm  entirely in the other. 

Similarly for am  and  bm • The storage of the derivatives is still subject to the 

restriction that the total number of Legendre values in each column must be 

M+2. The product mapping follows from the Legendre values as before. 

5.6. Summary 

By considering different storage arrangements of the Legendre polynomials 

and their derivatives, the most efficient algorithms and mappings were 

devised. In both cases, the best algorithms arose from the most efficient 

mappings. Inefficiencies from the triangular nature of the data could not be 

overcome by simple packing strategies, although this property allowed 

derivatives and polynomials to be stored in the same array. This reduced 

storage requirements and allowed the summations required for the direct 

transform to be computed in parallel. For the data arrangement chosen, the 

ratio of the time of the direct transform to that of the inverse transform is 

1.13 for these parallel algorithms. For serial algorithms this ratio would be 

greater than 2, which illustrates the success of the exploitation of the extra 

parallelism available in the direct transform. 

The Legendre transform algorithms developed in this chapter achieved 

better performances than those of Fishbourne (1980). Although with the 

nonsymmetric algorithms, the storage requirements of the Legendre data were 

more than in Fishbourne's algorithms, when the symmetry property was used, 

the storage requirements became the same (704 planes) and a further 

improvement in performance over Fishbourne's algorithms resulted. 

A detailed account was given of the effect of different mappings for the 

data, within the context of the most efficient algorithm. The relationships 

between the mappings of the data involved in the transform, particularly for 
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the direct case, were established. These were then used to determine 

combinations of mappings of Legendre values and spectral coefficients that 

would be expected to give the best performance. Therefore, the storage of 

data on the DAP plays an important role, more so than on a serial machine. 
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CHAPTER 6 

A SAROTROPIC SPECTRAL MODEL ON THE ICL DAP 

6.1. Introduction 

In this chapter the implementation of a spectral model on the ICL DAP is 

discussed in detail. Since the spectral method is preferred to the finite 

difference method for global models, it is important. to study the 

implementation of this type of model on a processor array computer. The 

algorithms used to solve the spectral equations have a large degree of 

inherent parallelism but are different from those used for finite difference 

models. Therefore new parallel algorithms will need to be developed. Also, as 

the number of degrees of freedom of a variable is different in spectral, Fourier 

and gridpoint representations, particular attention will need to be paid to the 

choice of data mapping. Since the spectral method is usually only applied in 

the horizontal, it is sufficient to implement a single level model on the DAP. 

The shallow-water equations on a sphere are therefore used for the model. 

In the next section, the model equations are formulated and the 

computational procedure described. The third section presents a preliminary 

discussion on what are likely to be the key issues in developing an efficient 

model for the DAP. The following two sections deal with the actual 

implementation of the model on the computer, followed by sections that 

analyse the performance of the model and present results to show the model's 

veracity. Finally, conclusions on the suitability of the DAP to spectral models 

are presented. 

6.2. Description of the model 

6.2.1. Spectral equations 

The nondimensional shallow-water equations used for the spectral model 

are those of Hoskins (1973). They are, 

a & 	-13 	 3 

72 -i-f)U1_[(+f)VJ a'.' 

3D 	1 3 	 3
Ll 

 
= —1--[(+f)V1 - 	 - V2[$' 	(1312) 1 	(6.2.1) 

2 
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.P±__[4)'Uj .—(4)'V.D 
at 	1-p 2  ax 	all 

To dimensionalize these equations, the radius of the Earth, a, is used as the 

length scale and the reciprocal of the angular velocity, is used as the time 

scale. Also, 4)' is the departure of the geopotential height of the fluid from 

some mean value given by, 

= gH1(a22) 	 (6.2.2) 

where H is the mean height of the fluid. The velocity components U and V 

are given by ucosO and tcose respectively, where e is the latitude, p = sine 

and X is the longitude. The divergence is represented by D and the relative 

vorticity by 

Following the procedure described in chapter 3, the prognostic variables 

are approximated (assuming a triangular truncation) by, 

= 
m-M njmI 

D b(X,p,t) = 	 Dmn(t)Ymn()'P) 	 (6.2.3) 

m-M nImI 

m"-M nImI 

The expansion coefficients are determined by Eq.(3.4.25). The " denoting an 

approximation will now be dropped on the understanding that the truncated 

variables are being used unless otherwise stated. 

Introducing the streamfunction 	and velocity potential X the relative 

vorticity and divergence can be expressed as, 

= V 24', 	D = X 	 (6.2.4) 

Substituting expansions for the variables into the above equations and using 

Eq.(3.4.20) in nondimensional form gives the relations, 
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Pmn = m,n I [n(n+1)j 

Xm,n = Dm, n / [ m(n+1)] 

The velocities, U and V. can be written as, 

= .a ?L (1M2 ) '  
ax 	all 

= 	+ (1.42).  
ax 

ax 	all 

(6.2.5) 

(6.2.6) 

Taking the scalar product of both of these equations, substituting expansions 

for ip and x  and using the relations Eq.(3.4.23), Eq.(3.4.33) and Eq.(6.2.5), gives 

the expansion coefficients of Uand Vas, 

	

U 	= 4cxmnDmn  + 	Bmn+imn+i - 8m.nm.n-i 	 (6.2.7) 

V = 'm,nm,n - Bmn+iDmn+ i + Bmn Dm  n-i M, n 

where, 

	

m,n = m / [n(rz+1)I 	 (6.2.8) 

B m,n = C mn  / fl 

and Cm,n  is given by Eq.(3.4.34). 

A problem with calculating the spectral coefficients Umn  and Vmn  is that 

the series expansions must extend one degree above that of the other 

variables to be consistent with their truncation, as discussed by Machenhauer 

(1979) and easily seen from Eq.(6.2.7). The disadvantages of calculating the 

coefficients of U and V from the coefficients of vorticity and divergence are 

that more storage space is required and the truncation is not the same 

throughout the model. By substituting expansions for 4 and  x into Eq.(6.2.6) 

and using Eq.(6.2.5), it is possible to obtain the gridpoint values of U and V 

(which is the only representation of the wind used in the model) from the 

spectral coefficients of and D. This approach, although more expensive 

computationally, has been used in the ECMWF spectral model (Baede et a!, 
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1979) to avoid the disadvantages described above. 

Following the procedure described in chapter 3, the truncated spectral 

equations are obtained by substituting the expansions for the variables into 

the governing equations (except for the nonlinear terms) and taking the scalar 

product with the basis mn• 
After integrating by parts and using the property 

that Pmn(±l) = 0, the equation for the relative vorticity becomes, 

I'l fo 211

m.n - - J 	(+f)V] 4 m,n -2E(+f)U]Pm.n}e1m?\ dAd.i (6.2.9) 
dt 	4TT-1 

	

dp 

The divergence equation becomes, 

1' 1 1'  211 

4pm,n=_J J im  dP 
dt 	

(j2 [(+f)V1Pm,n + [(+f)Uj 	m,ui) e m? dXdp(6.2.10) 

	

-1 	0 

1 f 211 

	

_____ 	 U2-+.p.  V2 + n(n + 	
[ 2(12) 	 , n e- M

X  dXd + n(n+1)'mn  
411 

after using Eq.(3.4.20) and the continuity equation becomes, 

4'm,n - _i 	{[V]th° 	im 
['L7]Pn} 

e mX dXdp - Dmn (6.2.11) 

I1 f02 lT

—m,o -
dt 	- 4rrJ 	 di.i 	1-.t

-1  

6.2.2. Calculation of nonlinear terms 

To compute the nonlinear terms in the prognostic spectral equations the 

transform method is used. The method is now illustrated for the vorticity 

equation. 

The first stage involves the computation of the gridpoint values of vorticitv 

and the wind components from their spectral coefficients. From Eq.(3.4.35), for 

any variable F, these are computed by the inverse Legendre transform, 
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Fm (1.t j t) = L F(t )Pmn(1lj) 	for m=O to M 	 (6.2.12) 

nIml 

followed by an inverse Fourier transform, 

F(X 1)p,t) = 	Fm(Pjt) exp(imX,) 	for all Iii 	 (6.2.13) 

For the velocities U and V. the summation in the inverse Legendre transform 

must extend to M+1. 

The products [(+f) Ul ij  and [(+f) V] i ,j  are computed once the required 

gridpoint fields have been obtained. This is a local computation as the 

calculation of the product at any point involves only values at that point. Any 

linear operations can be applied in gridpoint space. 

To compute the vorticity tendency, a Fourier transform of the products is 

performed, 

f 
2IT 

A m (Pj) = 
	

RE; + f)U}1 e m? dX 	 (6.2.14) 

0 

and, 

f

21T2  

Bm (Pj) = 

	

[( E; + f ) V e mt dX 	 (6.2.15) 

0 

followed by a direct Legendre transform, 

•1 • 

(B 	m.n- im 
m,n = 

	
m dp 	i;i2Am  m,n dii 	

(6.2.16) 2f 

The quadrature formulae Eq.(3.4.41) and Eq.(3.4.44) are used to compute the 

integrals Eq.(6.2.14), Eq.(6.2.15) and Eq.(6.2.16). The integrals in Eq.(6.2.10) and 

Eq.(6.2.11) are computed in a similar way to give the tendencies of the 

divergence and the geopotential. 
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6.2.3. Inclusion of diffusion 

To prevent spectral blocking (Gordon and Stern, 1974; Machenhauer, 1979), 

a linear diffusion term is included to remove energy from the smallest scales. 

For a variable f which may be E or D only, the diffusion term is applied as, 

I = P - (- flKV2f 	 (6.2.17) 

where K is a nondimensional diffusion coefficient. The term f represents the 

tendency of / computed without any damping. Thus, the diffusion can be 

applied as a correction to the adiabatic tendencies. 

Transforming to spectral space gives, 

1, f = 	- [ n(n+1 ) 'J Kf m,n 1 m,n 	,n 
(6.2.18) 

where the property Eq.(3.4.20) has been used. Since a Laplacian does not have 

to be solved, an implicit time scheme can be used with little added 

computational cost i.e. 

fm.n(tt) = 1* (t+t) / (1 ± 2tt (n(n+1))K} 	 (6.2.19) 
M, n 

where f represents the values of f computed from the adiabatic tendency. 

The model uses a sixth order diffusion term (p= 3) to affect the long 

wavelengths as little as possible. The value of the diffusion coefficient used 

was 1.3x10 26  m 6 s 1 . Table 8 shows the e-folding times for several 

wavenumbers using this value of K 

6.2.4. Time differencing 

Once the tendencies of the prognostic variables have been computed, they 

are integrated forward in time using the leapfrog scheme Eq.(3.2.1). The 

Asselin time filter Eq.(3.2.2) is applied to each of the prognostic variables at 

each timestep to control the time-level splitting associated with the leapfrog 

scheme and also to provide additional smoothing of the short wavelengths. A 

weak filter parameter of v=0.005 is used. 

The linear stability condition is, 

180 



Wavenumber, n 	I 	e-folding time (days) 

8 
1 7.4x10 

5 
5 

2.2x10 
3 

10 4.5x10 

15 431 

20 80 

25 22 

30 7.4 

35 3.0 

40 1.4 

42 1.0 

Table 8. 

The e-folding times for selected wavenumbers using a sixth order 
26 6 -1 

diffusion term and a diffusion coefficient of 1.3x10 m s as used 

in the spectral model. 
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At < 1 / IOmaxI 	
(6.2.20) 

where a m ax  is the frequency of the fastest oscillating mode. This can be 

determined by computing the eigenfrequeflcies of the linearized spectral 

equations. As shown by Machenhauer (1979), for spectral models that are not 

too severely truncated, the timestep limit is approximately given by, 

At < 340 / /[M(M+1)] 	minutes 	 (6.2.21) 

where M is the truncation wavenumber. For M = 42, this implies that, 

At < 8 minutes. 
	 (6.2.22) 

Tests confirmed this limit and a timestep of 5 minutes was used for the 

model. 

6.2.5. Computational procedure 

Assuming the values of each variable, , D and 4' are available at two time 

levels t and t-At, where the t-At values are filtered, the computational 

procedure for each variable (in turn) is given below. 

The gridpoint values of U and V are computed from their 

spectral values by an inverse Legendre transform followed 

by an inverse Fourier transform. These only need be 

computed once each step. 

Gridpoint calculations are performed to evaluate the 

nonlinear terms. 

Fourier transforms of the nonlinear products are used to 

obtain their Fourier coefficients. 

Legendre transforms are performed to evaluate the spectral 

coefficients of the nonlinear terms. 

If necessary, spectral calculations for the variable are 

performed to compute the spectral tendency. 

The variable is integrated forward in time. 

Time filtering and diffusion are applied. 
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6.3. Preliminary discussion on implementing the model on the DAP 

6.3.1. Introduction 

In this section some important issues in the implementation of the model 

on the ICL DAP will be discussed; namely the mapping of the data on the PE 

array, the choice of resolution and truncation. 

Each model variable has three representations, spectral, Fourier and 

gridpoint and the mapping of data to the DAP will be different in each case. 

The number of degrees of freedom of each representation is also different. 

This means it will not be possible to achieve maximum use of the processors 

for all representations, in contrast to a gridpoint model. 

This difficulty poses the problem of how to make best use of the array. A 

reasonable aim might be to attain maximum efficiency, in storage and 

processing, in the representation used most often. However, for the spectral 

shallow-water model of Fishbourne (1980), the transform stages, during which 

the representation of a variable changes, accounted for 99% of the processing 

time. Therefore it would seem that the correct approach should be to 

optimize the transform stages. Efficient parallel Legendre transform algorithms 

were developed in the previous chapter. The model is based on the 

nonsymmetric Legendre transform algorithms, although the effect of the 

symmetric algorithms on the model's performance is considered. 

6.3.2. Data mapping 

6.3.2.1. Spectral coefficients 

The conclusions from the previous chapter show that the real spectral 

coefficients can be mapped as Eq.(5.2.4) with the imaginary coefficients 

mapped according to Eq.(5.2.5). The Legendre polynomials and their modified 

derivatives are mapped according to Eq.(5.2.11). 

6.3.2.2. Fourier and gndpoint data mappings 

The Fourier coefficients exist as an intermediate stage between spectral 

and gridpoint space. No calculations other than the transforms are done in 

Fourier space. For a 142 resolution, the number of Fourier coefficients is 
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greater than the space available in one DAP matrix and two matrices are 

required, the real coefficients are stored in one matrix and the imaginary 

coefficients in another. The precise mapping depends not only on the 

Legendre transforms but also on the FFT5. The FFT algorithm described in 

chapter 2 is used, in which the coefficients are required with wavenumber m 

increasing with the row index. The FFTs are performed on each latitude and 

are independent of each other. Therefore the latitude mapping will be 

completely determined by the Legendre transforms. The FFT will determine 

the longitude mapping of gridpoint data on the PEs. The amount of space 

required for the gridpoint representation of a variable is the greatest of all 

three representations. At T42, two matrices are needed. 

6.3.3. Constraints on model formulation 

6.3.3.1. Architectural constraints 

Given that the dimensions of each representation of the data are different, 

it will generally be impossible to efficiently utilize the DAP array in all three 

representations. This is an important difference from finite difference models 

for which high efficiency is possible if all processors hold gridpoints. This is 

an aspect of spectral models that would seem to make them unsuitable for a 

SIMD processor array architecture. 

The dimensions of the PE array impose constraints on the formulation of 

the model if the data are to utilize the array as much as possible. This applies 

equally to all classes of model; finite difference, spectral and finite element. 

These constraints will restrict the allowable resolutions of such models. This 

is discussed for the spectral model in the next section. 

If the resolution is reduced, the execution time of a spectral model on the 

DAP may not decrease as much as the same model on a vector machine 

(multiprocessor or otherwise). This is because certain calculations would still 

require the same number of operations although less of the array would be 

used. It ought to be possible to use any spare processor time in a MIMD 

processor array for other tasks or jobs. Thus, of the processor array 

architectures, the SIMD type will impose perhaps the severest constraints on 

the model formulation, as the penalty for not making optimum use of the 

processors is likely to be the highest. This underlines the need for efficient 
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data mapping strategies and algorithms, justifying the time spent on these 

issues. 

63.32. Restrictions on model resolution 

Since it is not possible for all three data representations to fully utilize the 

DAP array, only one can be made to fit. The choice depends on the amount of 

time spent in each space. From the work of Fishbourne (1980), most of the 

execution time is spent in the Legendre transforms. This would suggest 

matching the spectral coefficients to the size of the array or, as the Legendre 

transforms change total wavenumber n to latitude, the number of latitudes. 

Consider the spectral coefficients first. The greatest space required for the 

spectral coefficients for triangular truncation is, using Eq.(5.2.2), 

S = (M+1)(M+2) 	 (6.3.1) 

where M is the truncation of U and V Ignoring the data mapping but 

assuming real and imaginary coefficients are stored in the same matrix, write, 

(M+1)(M+2) = r4096 	 (6.3.2) 

where r is any positive integer. For some values of r, this gives, 

M=61 

M=88 

= 3, 	M= 108 	 (6.3.3) 

r=4, 	M= 125 

where M=M -1 . Table 9 shows the percentage of the DAP array that contains 

useful data in all three representations, for a resolution of T61. The real and 

imaginary Fourier coefficients are held in separate matrices. The gridpoint 

data is assumed mapped in a regular fashion. Using a sheet mapping for 

storing all the gridpoint values uses 75% of the matrices. Using a crinkled 

mapping this figure could be raised to 90% as the number of matrices 

required is reduced. 

If the number of latitudes is matched to the DAP array dimension then, 
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Matching spectral data to DAP an-ay (M = 61) 

Spectral data - 95% 	 (1 matrix/variable) 

Fourier data - 73% 	 (4 matrices/variable) 

Gridpoint data - 75% 	 (6 matrices/variable) 

Gridpoint data - 90% 	 (5 matrices/variable) 

Matching number of latitudes (M = 42) 

Spectral data - 46% 	 (1 matrix/variable) 

Fourier data - 67% 	 (2 matrices/variable) 

Gridpoint data - 100% 	 (2 matrices/variable) 

Table 9. 

The percentage use of the DAP array for two resolutions for each of the 

data representations. 
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J = 864 
	

(6.3.4) 

where s is a positive integer. Using Eq.(3.4.47) for triangular truncation gives, 

M< (s128-1)/3 	 (6.3.5) 

For some values of s this gives, 

81, M=42 

s=2, M=85 

83, M=127 

Table 9 also illustrates usage of the processor array for the T42 resolution. 

From the values given in the table, it would seem that matching the 

spectral data gives the best aggregate efficiency over all representations. 

However, as the Legendre transforms will account for most of the CPU time of 

the model, it will be the data mappings in these stages that determine the 

performance of the model. 

The allowable resolutions will clearly be reduced or increased for larger or 

smaller PE array sizes respectively. For the DAP-310 with 1024 processors, 

additional resolutions such as T21 and T30 could be efficiently used. Another 

opportunity would arise with multi-level models. The number of latitudes J in 

Eq.(6.3.4) could be reduced by a factor of two if two levels could be processed 

simultaneously. 

For any model, the choice of resolution depends on the nature of the 

problem and perhaps more importantly the computing facilities available. 

Estimates of the DAP memory requirements and execution time showed that 

only low resolution barotropic spectral models would be practical on the DAPs 

at Edinburgh University, so a resolution of T42 was chosen. A triangular 

truncation was selected since it is preferred in meteorology and techniques to 

use it should be developed. The Legendre transform algorithms were 

developed in the previous chapter for this resolution. 

The choice of resolution for spectral models implemented on vector 

computers also tends to be influenced by the architecture. Computers that 

have vector registers, such as the CRAY series, are most efficient when vector 

lengths are multiples of the number of vector registers. Another factor is that 
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the FFT algorithms used are commonly radix 2, where I must be 2,  or where 

the number of points is a multiple of powers of prime numbers (Temperton, 

1983). This is why spectral models are commonly designed to run with 

resolutions T21, T42, T63, T84 etc. 

6.4. Fast Fourier transforms 

6.4.1. Computational transforms 

The spectral model requires inverse and direct Fourier transforms of the 

form, 

F(X 1  ,ji ,t) =Fa Fm(Pj ,t)exp(imX) 	 (6.4.1) 

and, 

Fm (11jt) = - 
	

F(X 1 ,i 3 Oexp(-imX 1 ) 	 (6.4.2) 

where X i  is given by Eq.(3.4.42). However, FFT routines are written to evaluate, 

Aj 

 =.

aexp(2irinj/N) 	j=O .... 	N-1 	 (6.4.3) 

To use these routines, it is necessary to extend the range of zonal 

wavenumbers to - 1/2<m<(112 ) -1  and set the additional coefficients to zero. 

Following Orszag (1971), for the inverse transform Eq.(6.4.1), define m'm+L12. 

It follows that, 

1-1 

F(X 	,t) = (-1Fm .exP( 27rim'j/ 1) 
	

(6.4.4) 

where m'=O ..... I-1. Thus the inverse transform requires the creation of the 

coefficients with m negative. The odd points of the resulting gridpoint field 

have to be negated. For the direct transform, one method would be the 

reverse of Eq.(6.4.4), 

iE*. 



1 
I-i 

' 

Fm(I.Ljt) = 	
(- 1F(X 1 ,i,,t) exp(-im'X 1 ) 

=0 

(6.4.5) 

such that the required coefficients for 0<m<I/ 2-1  are given by m'1/2..... 1-1. 

Alternatively, Orszag (1971) notes that Eq.(6.4.2) is equivalent to the direct form 

of Eq.(6.4.3), 

N-i 

a = - 
N 	

A exp(-21r1nj/iV) 
	 (6.4.6) 

j=0  

for m and 00 but < N12. By substituting a computational wavenumber of the 

form nm+I it can be shown that the coefficients for 112<n<I are equivalent 

to the coefficients for m<0. 

6.4.2. Complex transform 

As the model has 128 points of longitude, the FFT5 would be done by 

extending the wavenumbers to m=64 and setting these new coefficients to 

zero. The coefficients for m<0 would then have to be created. This is the 

approach used by Fishbourne (1980). However, since the gridpoint values are 

real and the Fourier coefficients therefore conjugate symmetric, the transforms 

can be done as complex ones on 64 points only. This reduction is well known 

and described, for example, in the appendix to Orszag (1971). 

Assuming Ito be a multiple of two, define, 

Bm  = Fm  + Fp 	+ iexp[(21Tim)/I1(Fm  - Fp+m) 	for m=O,...I-1 (6.4.7) 

where P-- Y2 and m refers to the computational wavenumber, dropping the 

prime for convenience. The inverse transform of Bm  is then given by, 

= 	Bexp(21Timj/P) 
	 (6.4.8) 

from which it is straightforward to show that, 
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i 	2i + iF,1 	for 3=0,...P-1 	 (6.4.9) 

Hence the transform of Bm  fufly determines the transform of Fm• The even 

points are stored as the real part of B. and the odd points as the imaginary 

part i.e. 

	

B = F2  - iF2+1 	 (6.4.10) 

The direct transform of B uses Eq.(6.4.6). To recreate the Fm coefficients, 

Eq.(6.4.7) and the conjugate symmetry relation are used to give, 

F =[Bm + B_m - iexp(-2lTim/I)(B m  - Bp* 	 (6.4.11) 

for m=0,...P-1. A similar expression can be obtained for the coefficients for 

mP...I-1. 

6.4.3. Implementation 

The model stores Fourier coefficients in the range tn'=L 12.....I-1. The above 

equations should be written to use only those coefficients stored by the model 

rather than creating the coefficients for m'0,...L'2_1. 

The conjugate symmetry relation (omitting the prime again) is, 

Fm = * m 
	 (6.4.12) 

and can be used to give the following relation for the inverse transform, 

Bm = 	m + Fp 	+ iexp(27rim/I)(F m  - Fp+m) 	for m=0,...I-1 (6.4.13) 

from Eq.(6.4.7). Thus, all references to Fourier coefficients on the RHS are in 

the range F112  to F and can use the model coefficients directly. At m0, 

Eq.(6.4.13) reduces further to, 

Re{ B 0  ) = . ke{ F } 

j)g7j{ B0  I = -e{ FI 
	 (6.4.14) 

since Fr=F0 and F0=0 from the extension of the definition of the model 

wavenumber in, and F is real as this corresponds to the mO model zonal 

waven umber. 
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The calculation of Eq.(6.4.13) is straightforward. First the coefficients 1 m 

have to be formed by routing. If the mapping of the computational 

wavenumber indexing Fp+m  is, 

Fp+m : ( P+m)+{m+1} 
	

(6.4.15) 

then to be able to add and subtract the -m coefficients, they must also be 

mapped as Eq.(6.4.15). Adding P-2m to Eq.(6.4.15) gives the mapping of F...m  

as, 

_m: (J-m).{65-m} 

before routing. A reversal of rows and a planar shift south are therefore 

required to align F m  and Fp+m  The planar shift ensures that for m0 in 

Eq.(6.4.13), there is no contribution from the 1m term. The real and imaginary 

Bm  coefficients can therefore each be computed by one DAP FORTRAN 

statement. 

For the direct transform, Eq.(6.4.11) can be used directly as long as the 

sign of the odd gridpoint values is not changed i.e. the method of Orszag 

(1971) is used. For m=O, using Eq.(6.4.13) it can be shown that BO=B which 

gives, 

F=1[B0+B+i(B0 - B)] 

Using Eq.(6.4.14), this reduces to, 

e { F  

i',n( FP  ) = 0 
	 (6.4.16) 

The computation of Fm  is done in the same way as for Bm  with the same 

routing. 	However, there 	is a 	nonzero contribution from the 	routed B_m  

coefficient for 	m--P. Thus after routing, a vector assignment to set Fp  is 

necessary. 

To summarize, the inverse transform is computed in three stages. The first 

involves calculating the Bm coefficients and in doing so converting to the 

computational wavenumber. The second stage is the FFT itself for which the 
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Cooley and Tukey (1965) algorithm is used. Finally, the values at the odd 

gridpoints are negated. 

Usually the final part of the Cooley-Tukey algorithm is a sorting step, as 

the transform leaves the data in a bit-reversed order (see chapter 2). 

However, since all the calculations in gridpoint space only involve values at 

each point, the mapping of gridpoint values along each latitude is irrelevant. 

All gridpoint data has to be transformed and so will use the same bit-reversed 

mapping. By eliminating the sorting step on the direct and inverse transform, 

a small saving in CPU time can be made. The omission of the sorting step 

might not be possible for a model that has physical parametrizations in which 

information is required from neighbouring gridpoints. 

Since the data is in bit-reversed order along each latitude, the reverse of 

the Cooley-Tukey algorithm, the Gentleman and Sande (1966) FFT, has to be 

used for the direct transform. The direct transform consists of three steps; 

the sign change at odd numbered gridpoints, the FFT itself and the calculation 

of the Fourier coefficients as detailed above. Once the Fourier coefficients are 

obtained, coefficients for m>42 are set to zero. 

The values at even points are stored in one matrix, the values at odd 

points in another. Changing the sign of odd values is therefore a single matrix 

operation with no masking. 

6.5. Implementation of the model 

6.5.1. Available parallelism 

In spectral space, computations can at most proceed over all real and 

imaginary coefficients and all variables. Thus, calculations such as the time 

stepping and diffusion have, 

3(M+1)(M-f 2) = 5676 for M= 42 

potential processes. The calculation of the wind components, considered in the 

next section, has less inherent processes as only two variables are involved. 

For the Legendre transforms, four variables could be transformed concurrently 

if the PE array was large enough. as the inverse and direct Legendre 

transforms are required four times per timestep. The same applies to the 
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FFTs. 

For gridpoint calculations, such as the evaluation of nonlinear products, 

there is again more parallelism available in the model than in the hardware. 

At T42, the grid size is an exact multiple of the OAR array size so there are no 

idle processors. All four gridpoint products could potentially be computed 

concurrently making the available processes eight times the number of 

available processors. 

To conclude, although the potential parallelism depends on the 

computations at each stage and the space (spectral, Fourier or gridpoint) those 

computations are performed in, it is still greater than the parallelism available 

from the hardware. 

6.5.2. Calculation of the velocity components 

The gridpoint values of U and V have to be computed to evaluate the 

nonlinear terms in the tendency equations. Their spectral coefficients are 

evaluated first using Eq.(6.2.7) and then transformed. Storage of U,. and Vmn  

at n-- M+1 does not cause any problems since the extra coefficients are stored 

in the next column in the matrix. 

To illustrate the computation of the coefficients, the equation to calculate 

Umn  is separated into real and imaginary parts, 

= am,n m D' ,n + Bmn+irnn+i - Bmnn,n-i 	
(6.5.1) 

UM' 
 
'n - Z m , n D n  + 8mn+1mn+1 - Bm,nrn,n-i 

where the superscripts r and i denote real and imaginary respectively. 

Eq.(6.5.1) implies that B m n must be defined up to and including n=M+2. 

In coding Eq.(6.5.1) in DAP FORTRAN, shift operations are used to correctly 

align the data. However, because the orientation of the n axis is different for 

the real and imaginary spectral coefficients, the shifts are applied in opposite 

directions for the calculation of the real and imaginary coefficients of the 

velocity components. Some repeated operations may be omitted by 

precomputing the product with am,,.  That is, set, 
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—r D' m,n - m,n m,n 
(6.5.2) 

El -a - 	D' m,n - m,n m.n 

Substituting Emn  into Eq.(6.5.1) shows how the velocities are computed in the 

model. 

These calculations could have been optimized further, by the additional 

preliminary calculations, 

= Bm,n+i, 	 = 8mn+i 

yr - rr 
- Fm' ,n 

	r1  
mn - ,m,n+1 (6.5.3) 

f-yr - er 
- 

r-i 	_r1 
"rn,n 	t i  

Their real and imaginary parts have to be computed separately because the 

shifts to correctly align them are done in opposing directions. Once these 

variables are set, the evaluation of Umn  can be done by the single equation, 

U = Emn  + Bm , n Fm , n  + B m , n  G 	 (6.5.4) 

This saves an addition, subtraction and two multiplications at the expense of 

some routing and assignments. The same approach can be applied to the 

calculation of Vmn  Overall a saving of about 1.5msecs would have been 

achieved over the use of Eq.(6.5.2). 

6.5.3. Spectral space calculations 

The timestep calculations are completed in spectral space with the 

leapfrog step, time-filtering and the application of damping. The matrices of 

spectral data are then updated for the new time level. 

The leapfrog step can be done in parallel over real and imaginary 

coefficients since they are stored in the same matrix. The constant 2ttt is 

broadcast to the tendencies. The time-filtering is done in the same Way. In 

the model, the diffusion is applied to real and imaginary coefficients 

simultaneously, with one matrix multiply operation. 
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6.5.4. Model output 

For the periodic output of model results (known as history output), the DAP 

Data eXpansion (DDX) software developed by the Edinburgh Regional 

Computing Centre was used. DDX provides a facility for synchronous or 

asynchronous I/O of a DAP FORTRAN COMMON block to or from EMAS disk files. 

The code is efficient and does not occupy much memory in the DAP. Transfer 

rates are typically 250-300Kbytes/sec, although it can vary significantly 

depending on the machine load. 

A difficulty with DDX is that the COMMON block must be aligned to a 4K 

page boundary (recall that the DAP store also exists as host store). This can 

only be determined at runtime and so a second compilation is necessary once 

the appropriate offset has been found. The disk files are non-standard EMAS 

files and must be handled using special DDX commands only, which can 

convert them to standard EMAS files. 

The prognostic spectral fields are output asynchronously at time t and frtL 

The procedure is as follows. 

Copy the fields into the output COMMON. 

Normalize the fields. 

Convert the data from DAP to host storage format. 

Check that the previous write (if any) has finished. 

Initiate the next asynchronous transfer. 

The space required for the I/O COMMON is not substantial and can be 

accommodated within the available DAP store. The estimated time for the 

transfer is about 3secs, assuming a transfer rate of 250KbyteS/Sec. With 

approximately 0.5 CPU seconds per timestep and output at intervals of more 

than 1 hour, there was no I/O overhead. This was confirmed by comparing 

the elapsed wall-clock time and the DAP CPU time of the job. 
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6.5.5. Programming environment 

One important issue in the use of any fast computer is the programming 

environment; how easy the programming language is to use, what support is 

provided, what facilities or tools for debugging are available and so on. The 

DAPs at Edinburgh University, in the author's experience, offered a reasonable 

environment. Interactive use of the DAPs meant testing could be done quickly. 

User support was also good. A DAP subroutine library similar to the NAG 

library was provided. Submission of batch jobs was straightforward and a 

minimum of job control language (JCL) was required. Most jobs consisted of 

normal foreground operating system commands. 

The main difficulties were encountered in the DAP FORTRAN language itself 

and the relationship between the DAP and the host. Although the array syntax 

of the language meant much neater and succinct code, useful FORTRAN77 

constructs such as IF-THEN-ELSE were not available. 

Initialization of data also required some thought. Whether data was 

initialized in BLOCKDATA subprograms in the DAP or host depended on which 

parts of the program the data was used and the loading sequence of the data 

blocks. The transfer of data between the DAP and the host also required 

some thought. 

By far the biggest problem with the DAP was in debugging programs. As 

DAP FORTRAN has no WRITE statement, variables' values could not be obtained 

at strategic places in the code. The best method of obtaining diagnostics was 

by deliberately halting the program using the DAP FORTRAN ERROR statement 

(ICL, 1979). This had the same effect as a zero-divide say, and the values of all 

the variables in the calling subroutine and COMMON blocks were printed out. 

Debugging was generally time-consuming. 

6.6. Storage requirements and performance 

6.6.1. Storage requirements 

The output produced by the DAP consolidator, which links the code to 

produce an executable binary, can be used to produce statistics on the use of 

the DAP store (Table 10). The largest requirement is for the program's COMMON 

blocks. The system and system workspace both require small amounts of 
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Storage area 	Size 	Number of 	Percentage 
(kbytes) 	planes occupied 	of total 

Program code 94.74 190 4.6% 

System 14.0 28 0.68% 

Workspace 18.0 36 0.88% 

Stack 740.0 1480 36.1% 

User COMMON 1181.0 2362 57.7% 

Total 2047.74 4096 

Table 10. 

Storage required for the DAP shallow-water model. Requirements shown 

are for the main sections of the program, as given by the DAP consolidator 

listing. Sizes are shown in kbytes and number of planes occupied. 
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memory. The remaining memory is used as stack, enough for the program's 

requirement. Unfortunately, the consolidator does not produce any statistics On 

the maximum stack used. 

The requirements for the individual COMMON blocks can also be obtained 

from consolidator output and are shown in Table 11. The largest area is for 

the Legendre polynomials and their derivatives. The figures given in Table 11 

are for the nonsymmetric Legendre transforms. For the symmetric versions, 

the space for the Legendre values is 704 planes, giving a total user space of 

1658 planes (829kbytes). The Legendre data array now accounts for 42.5% of 

the total user data area instead of 60%. A significant decrease but still a large 

fraction. This is an inherent problem of spectral models. There is also a large 

amount of unused memory within these areas. For example, spectral space 

variables and constants use only 46% of their allocated space. Similarly, the 

Legendre polynomial data use 68.8%. 

6.6.2. Performance 

The CPU time per timestep for the shallow-water model was measured as 

0.603secs. The variables are integrated sequentially so it is possible to run 

the model as a nondivergent model solving just the vorticity equation. The 

CPU time per timestep for the nondivergent configuration was measured as 

0.305secs. The vorticity model has about half the cost of the shallow-water 

model. 

In Table 12, timings of the main routines called in each timestep are 

presented, together with the routines that each one calls. The routines sci to 

SC4 are the four scans that compute the velocities and integrate the vorticity, 

divergence and geopotential respectively. The nondivergent model is obtained 

by calling sci and SC2 only. These four routines call other routines than those 

shown, for the calculation of gridpoint space products and to apply diffusion. 

However, these other routines were not timed as they contain only a few 

matrix operations and accurate estimates can be made. 

The routines were timed by calling each one repeatedly within a DO loop. 

The CPU time of the DAP part of the program was reported by the operating 

system to the nearest whole second. Hence, each routine was called several 

thousand times to decrease the error in the timing. Each timing shown has a 
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Use 
	

Size 	Planes 	Percentage 
(kbytes) 	 of total 

Main variables 128.0 256 10.9% 

Auxiliary variables 64.0 128 5.4% 
(velocity) 

Work COMMON 80.0 160 6.8% 

Legendre values 704.0 1408 59.8% 

Matrix constants 80.0 160 6.8% 

Vector constants 12.0 24 1.0% 

Scalar data 0.5 1 0.04% 

Logical masks 3.0 6 0.25% 

Global diagnostics 10.5 21 0.89% 

Output COMMON 96.0 192 8.2% 

Total 1178 2356 

Table 11. 

Storage requirements for user data for the spectral model showing the 

size in kbytes, number of planes and percentage of total. 
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Routine 	 Time per 	 Main subroutines called 
name 	 call (msec) 

SM. 142.0 UV, ILEG(2), WFI'(2) 

SC2 155.0 ILEG, 1FFT, DFFT(2), DLEG, TSTEP, FU 

SC3 133.0 DFFT, DLEG(2), TSTEP, FU 

SC4 154.0 ILEG, IFFT, DFFT(2), DLEG, TSTEP 

DFFT 15.4 GSFFTCOL, POSTDFFT 

IFFF 14.6 PRE1FFF, CFHqCOL 

POSTDFFT 3.79 NONE 

PREIFFI' 3.57 NONE 

GSFFTCOL 11.6 NONE 

Ci. 11F1'COL 10.5 NONE 

DLEG 56.7 NONE 

ILEG 51.8 NONE 

UV 5.94 NONE 

TSTEP 0.362 NONE 

FU 0.914 NONE 

Table 12. 

The execution times of the main subroutines of the spectral model and the main routines that each calls. 



possible error of ±1 to the last digit. The cost of the DO loop is accounted for 

in these timings. 

The time taken for each scan is roughly the same. Although the 

divergence equation involves more terms than the geopotential or vorticity 

equation, the routine SC3 takes less time than SC2 (vorticity) or SC4 

(geopotential) because the nonlinear products involving U and V have already 

been computed by SC2 for the vorticity equation. The total time for the scans 

is less than the CPU time per model step. This can be attributed to additional 

computations taking place on entry and exit from the model and within the 

main time loop. However, the four scans account for 97% of the CPU time per 

step. 

The spectral model of Fishbourne (1980) had a CPU time per step of 

1.38secs, a factor of 2.3 more than the model of this chapter. This is due to 

several reasons, but mainly to more expensive transform routines. As 

Fishbourne did not store the real and imaginary parts of spectral variables in 

the same matrix, spectral space calculations took twice as long. The fastest 

version of Fishbourne's gridpoint shallow-water model took 0.05 CPU seconds 

per timestep for a 64x64 grid. This can be multiplied by a factor of 2 as the 

spectral model uses a 128x64 grid although, as pointed out by Jarraud and 

Simmons (1984), an equivalent gridpoint model would have a slightly larger 

grid than this because of the superior accuracy of the spectral technique. This 

means the spectral model of this chapter takes 6 times as long as an 

equivalent gridpoint model. The use of the symmetric Legendre transforms 

will improve this, but it does suggest that spectral models are not as suited to 

implementation on the DAP as gridpoint models. 

The performance rates of the nonsymmetric inverse and direct Legendre 

transforms were given in chapter 5 as 5.7Mflops and 8.5Mflops respectively. 

The performance rates of the inverse and direct Fourier transforms (IFFT and 

DFFT in Table 12) are 15.9Mflops and 12.3Mflops respectively. These are better 

than the Legendre transforms because for most of the algorithm, all the 

processors are doing useful work. As the spectral transforms account for 

most of the computation in the model, an accurate performance rate for the 

model will be obtained by considering these routines. This gives a rate of 

8.7Mflops, demonstrating the dominance of the performance of the Legendre 

transforms. This performance is 32% of the peak performance of the DAP 
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(27MfIops for 32-bit floating point addition) or 45% of the performance for an 

equal number of floating point additions and multiplications. For comparison, 

the shallow-water gridpoint models of Fishbourne (1980) achieved a 

performance of lOMf!ops (see chapter 4). 

6.6.2.1. Performance of the transforms 

Table 12 shows that the spectral transforms account for 94.4% of the CPU 

time per model step. In each step there are four calls each to the inverse FFT, 

direct and inverse Legendre transforms and five calls to the direct FFT. The 

Legendre transforms alone account for 72.0% of the CPU time. The total time 

for the spectral transforms is 569.4msecs per step, with 434mSeCS for the 

Legendre transforms and 135.4msecs for the FFT5. 

The spectral transforms of Fishbourne's (1980) model accounted for 99.2% 

of the CPU time per step, with the Legendre transforms using 82.7%. The time 

for his FFTs was 218.2msecs and 1150.4msecs for the Legendre transforms. 

The FFTs in Fishbourne's model are therefore 1.6 times more expensive. This 

is because he used 128 point real transforms rather than 64 point complex 

ones. His Legendre transforms are 2.7 times slower than the nonsymmetriC 

routines developed for this model. There are a number of reasons for this. 

The Legendre polynomial values for Fishbourne's model are packed and 

unpacking incurs additional cost. This affects the inverse transform, for which 

the performance ratio is 1.9. In the Fishbourrie model the Legendre polynomial 

derivatives are calculated for the direct transform at each step. The 

performance ratio for the direct transforms is 3.3. This illustrates the 

efficiency of the Legendre transform algorithms used for this model. The ratio 

of the Legendre transform time to that of the FFT is 3.2 for this model. This is 

typical for low resolution models, the T63 ECMWF model had a ratio of 4. 

Now that the model timings are available, it is possible to estimate what 

the CPU time per step would be if the symmetric transforms were used. 

Recall that the measured time of the inverse symmetric Legendre transform 

was 32.8msecs, and the estimated attainable time for the symmetric direct 

Legendre transform was 41.5msecs. This means that the total time spent 

doing Legendre transforms decreases from 434msecs to 297.2mSeCS, a 

reduction by a factor of 1.46. Subtracting this decrease from the measured 

time of the model gives a time per step of 0.466secs. Of this, the Legendre 
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transforms take 64%, the FFTs 29% and the spectral transforms as a whole 

take 93%. The ratio of the CPU time for Fishbourne's Legendre transforms 

(that do not use the symmetry property) and the symmetric transforms is 3.9. 

Comparing the new model CPU time to an equivalent gridpoint model now 

gives a factor of 4.7. 

6.6.22. Parallel processing performance 

Aside from the CPU time per step and timings of individual subroutines, 

the program's parallel processing performance has to be examined i.e. how 

many of the processors are kept busy, what the inefficient parts of the 

program are, what amount of routing is necessary. As described in chapter 2, 

a useful performance measure for SIMD processor arrays is the weighted 

fraction of the PE array kept doing useful work during the program as defined 

by Eq.(2.6.3). This of course does not give a complete picture, a poor 

algorithm may still keep all processors busy. The timings of the routines are 

also important in this context. Comparisons with models on other 

architectures are interesting, but because of algorithm differences are of little 

value. A more relevant comparison would be between implementations on 

different SIMD machines, particularly with different array sizes where the 

percentage of the PE array kept busy may be less or more important. 

Comparison with the spectral model of Fishbourne (1980) has been useful. 

By estimating the times for the routines called within each scan that were 

not timed, it is possible to calculate the percentages of the model CPU time 

during which computations take place in either spectral, Fourier or gridpoint 

space outside the spectral transforms, as shown in Table 13. To compute an 

average efficiency for the model, Eq.(2.6.3) is used by dividing the model CPU 

time per step into time slices for spectral space, Fourier space and gridpoint 

space calculations and the transforms. Using Table 13 and the efficiencies for 

the nonsymmetric Legendre transforms given in the previous chapter, an 

average efficiency of 63.5% is obtained. In other words, during the model run, 

on average two-thirds of the PE array is doing useful computation. 

This percentage is strongly influenced by the efficiencies of the Legendre 

and Fourier transforms. So, although a mean efficiency of 63.5% may suggest 

scope for improvement, only improvements to the efficiency of the transforms 

will give significant increases in this mean value. 
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Representation 	Percentage of time 
per step 

Gridpoint 0.74% 

Fourier 0.42% 

Spectral 2.2% 

Table 13. 

The estimated percentage of the time per step that the data 

is in spectral, Fourier or gridpoint forms, excluding time 

spent during the spectral transforms. 
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It is possible to determine what fraction of the model time is spent routing 

and broadcasting data by noting the number of calls to the relevant DAP 

FORTRAN functions (MATR, MATC, REVR, REVC and the shift functions). Using the 

timings of these functions from chapter 2 the total time spent routing data is 

52.77msecs per step with the nonsymmetric Legendre transforms and 

58.21msecs with the symmetric transforms. If the time per step for the two 

cases is 603msecs and 466msecs, routing accounts for 8.8% and 12.5% of the 

total time per step respectively. Fishbourne (1980) reports a percentage of 

11.6% for Ns model. Most of the routing takes place in the spectral 

transforms, with roughly equal routing in the FFTs as in the Legendre 

transforms. The increase in routing for the symmetric transforms is because 

the symmetric and antisymmetric coefficients are treated separately. 

Routing can be regarded as an overhead for a parallel implementation of 

the model on the DAP. The routing overheads of this model are therefore not 

excessive. They are comparable to the multitasking overheads for the ECMWF 

spectral model i.e. 9% (Dent, 1988). The routing in the FFTs is 22% of the CPU 

time for this routine but the routing for the inverse and direct Legendre 

transforms is only 6.5% and 3.3% of the CPU time respectively, although each 

routine spends roughly similar times doing routing operations. 

6.7. Legendre transforms at different resolutions 

Using the timing estimates and the overheads for the symmetric Legendre 

transforms, it is possible to estimate the CPU time for the routines at the 

resolutions, T21, T62 and T85. To make these estimates, a sheet mapping is 

used for when the data array size is greater than the PE array size. Also, the 

same basic algorithm is used and no attempt is made to devise new, more 

efficient, algorithms. 

At T21, there are 16 latitudes from the pole to the equator. If the Legendre 

data are separated into odd and even n about the centre column of the DAP 

array, the transforms are almost identical to those atT42. The difference is 

that the loop is now half the length. The estimated T21 inverse and direct 

transform times are 17.4msecs and 24.2msecs respectively. These times could 

possibly be improved since in theory four values of n could be computed 

simultaneously. However, more broadcasting and routing of data would be 

required, so it is not obvious how much improvement, if any, would occur. 
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At T62, the spectral coefficients of the velocities would not be able to use 

the same mapping as the rest of the spectral variables. The assumption is 

that the real and imaginary coefficients are stored separately for U and V only 

but this does not affect the time of the transforms. All the other spectral 

variables however, can use the same mapping as the T42 model. 

For the Legendre coefficients, 48 latitudes of data must be stored. With 

odd and even n values separated as before they cannot be held together in 

the same matrix and as a consequence the odd and even n computation has 

to be done sequentially. This effectively doubles the code in the loop over n 

for the inverse and direct transforms. The Fourier coefficients would also 

need two matrices for both the real and imaginary values and therefore 

additional code is required when forming the symmetric and antisymmetric 

values. During the loop in the direct transform, as there are no free rows in 

the Legendre data array, the Fourier work matrix has to be updated on every 

pass. When all these changes to the T42 algorithms are made, the T62 

inverse and direct transform estimated timings are found to be 81.Omsecs and 

1 12.9msecs respectively. 

At a resolution of T85, 64 latitudes need to be stored. Separating odd and 

even n as before, the latitudes now use all the columns of the PE array unlike 

the T62 resolution. Additional array space is required to store all the 

coefficients. Partitioning the polynomials and their derivatives across four 

matrices would leave 41 rows free, so that the Fourier work matrices only 

have to be updated after 41 passes during the direct transform. For the 

inverse transform, if n<63 the same code as the T62 case can be used in the 

loop. However, once n>63, the Pm,r, occupy additional matrices and extra 

code is required for the coefficients with m>63. Additional work arises at this 

resolution in both transforms as the space required for the Fourier and 

spectral coefficients is double the T62 case. All these modifications to the 

code give an estimated time for the inverse and direct transforms of 

166.Omsecs and 283.3msecs respectively. These estimates may be optimistic 

as the total storage area required for the Legendre data now exceeds the total 

DAP memory for the DAPs at Edinburgh University. Overheads from the I/O of 

Legendre values during the transforms may increase the estimated timings. 
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6.7.1. Comparison with serial routines 

Serial versions of the Legendre transforms were written in the IMP80 

programming language and timed at T21, T42, T62 and T85 on the AMDAHL 

470/%18 computer running the EMAS-3 operating system at Edinburgh 

University. The code was optimized by the IMP compiler. Each routine was 

called four times in a loop and an average of the last-three times was taken to 

avoid the dynamic loading overhead when the routine was first called. 

Fig. 26 is a graph showing the variation in CPU time for the AMDAHL and 

DAP versions of the transforms. The serial 'ersions clearly show the cubic 

variation of processor time with truncation. Between T21 and T42, the DAP 

times vary linearly with M, as the same T42 code is used but the loop length 

varies. Although the T42, T62 and T85 DAP times are joined by straight lines, 

times for intermediate resolutions would not lie on these lines. For example, 

at T43, extra space is required for the Legendre data so that the same data 

mapping as for T62 would have to be used and would mean a larger increase 

in time than depicted in the graphs. A more economical approach might be 

feasible using a vector array. The increased slope of the line joining the T42 

and T62 times shows the additional cost as the odd and even n computations 

are no longer done in parallel. The increased slope between the T62 and T85 

times is a consequence of the additional work required as the Legendre and 

spectral data use more space. 

There is a clear performance gain at the higher resolutions for the DAP. 

For the inverse transform, the ratio of the DAP and serial times is 3.6 at T42 

and 5.2 at T85. For the direct transform, the ratios are 5.6 and 8.8. The T21 

resolution however, is too low to make effective use of the 642  PE array. The 

ratios are greater for the direct transform because the products involving the 

Legendre polynomials and their derivatives are computed in parallel in the DAP 

versions. This is shown by the ratio of the direct transform time to that of 

the inverse transform. For the serial versions the ratio is about 2.85 for all 

resolutions, whilst for the DAP versions it is 1.4, except at T85 when it 

becomes 1.7. 
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Figure 26. Variation of the CPU time with the truncation wavenumber for the Legendre 

transform algorithms. Solid curves represent the DAP routines, dashed 

curves the serial routines. Inverse transform times are shown with a cross, 

direct transform times with a circle. Taken from Carver (1988). 

208 



6.8. Model results 

In this section, the model results are compared with the previously 

published results of Doron et at (1974). They compare spectral and gridpoint 

models by using Rossby-Haurwitz waves as initial conditions. The 

Rossby-Haurwitz wave is an exact solution of the nondivergent barotropic 

equation but not for the divergent case. Zonal wavenumber 4 is stable and 

moves east at about 110  per day. However, zonal wavenumber 8 is unstable 

and breaks down within 5 days. Doron et at use a rhomboidal spectral model 

and present results at two resolutions. The highest of these, R31, is 

comparable in resolution to the T42 model of this chapter. 

6.8.1. Initial conditions 

The initial streamfunction given by Doron et a/. (1974) is, 

	

- 
	K 	

(6.8.1) 

with K as -0.8776 for both wavenumbers 4 and 8. The value of w is chosen to 

give a super-rotation of 50ms 1  at the equator. The fluid depth is 8km. The 

definition of used by Doron et at for their spectral model differs from 

Eq.(3.4.18) in the normalization constant and to be consistent, for this model 

Eq.(6.8.1) becomes, 

K 
= 	- 	 PcosmX 	 (6.8.2) 

n(n+1) f2 

To determine the initial vorticity coefficients start with the expansion, 

M M 

* = E L *m.n(t)Pm,n eimX 	 (6.8.3) 

m-M nImI 

Since, 

P0,1  = /3 ji 

and assuming one nonzero coefficient, Eq.(6.8.3) becomes, 

'S. 



i 
iP = / 314P0,1 + 13mnE(m.ne 	)* + 4J m , n e

mX 
 (6.8.4) 

where the properties Eq.(3.4.19) and Eq.(3.4.27) have been used. Comparing 

Eq.(6.8.4) and Eq.(6.8.2) gives, 

= -w / /3 • 

4'm,n ) = 0 	
(6.8.5) 

AC  Rm,n ) = -K / [2/2 n(n+i)I 

Using Eq.(6.2.5) gives the initial vorticity coefficients as, 

= 2w / /3 

m,n = K / 2/2 = 0.31 	 (6.8.6) 

The geopotential coefficients are calculated from the divergence equation 

Eq.(6.2.10) by assuming the initial divergence and divergence tendency are 

zero. 

6.8.2. Rossby wave results 

The wavenumber 4 and 8 cases described by Doron et al. (1974) were run 

for the T42 model. A timestep of 5 minutes was used, whilst Doron et al. use 

a semi-implicit timescheme with a timestep of 30 minutes. 

Contour maps of the total geopotential (+c') are presented on a polar 

stereographic projection for the northern hemisphere. Graphs of the main 

spectral coefficients of vorticity are also presented. To calculate the 

magnitude of the waves, following Hoskins (1973), the spectral coefficients are 

written in amplitude-phase form, 

Fmn = Aexp(i9mn) 	 for m0 

F0  = Aexp(iO 0 ) 	 for m=0 	 (6.8.7) 

since there is no complex conjugate coefficient for m0. This gives, 
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A = 21F1 	for m0 

A = I FO,n I 	for m=O 	 (6.8.8) 

For comparison with the results of Doron at aI the amplitude A is normalized 

by dividing by the Earth's angular velocity. All amplitudes are multiplied by /2 

so that values on the graphs may be compared to those of Doron at al- 

6.8.2.1. Rossby wavenumber 4 

In Fig. 27, the results from the R31 model of Doron at al. (1974) are 

reproduced for a zonal wavenumber 4 together with the T42 results. The 

treatment of the wave appears to be identical in both cases. A weak 

north-west/south-east tilt of the troughs and ridges is evident by day 3. This 

transfers momentum southwards weakening the zonal flow in mid-latitudes 

and produces a closed low. The tilting of the pattern weakens until by day 7 

it has disappeared. The average eastward displacement in the T42 model over 

the 7 days is 11.2 0  per day. 

Fig. 28, from Doron at a!, shows some of the principal spectral 

components as they vary with time. In Fig. 29, the variation, of the same 

spectral components for the T42 model are shown. Agreement is good but 

the curves are not identical. The T42 model decreases the amplitude of the 

(0,7) and (4,7) components slightly from day 6 to 7 whilst Fig. 28 does not 

appear to show this. 

6.8.2.2. Rossby wavenumber 8 

Fig. 30 shows the results from Doron at a! for a Rossby-Haurwitz zonal 

wavenumber 8 and the results from the T42 spectral model. As before, the 

integrations are in good agreement. The wave moves eastward at 30 0  per day 

in both models. 

A tilt in the pattern again develops and persists, transferring energy from 

the main wave to the zonal flow. The breakdown of the wave at day 5 in the 

T42 model appears identical to the R31 model results. 

The principal spectral components from Doron at at are shown in Fig. 31, 

whilst those from the T42 model are shown in Fig. 32. The curves appear 

identical in both cases. 
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DAY 	•3 	5 	7 

Figure 27. (a) Reproduced from Doron et al. (1974) showing polar stereographic 

projections of the height field at days 0, 3, 5 and 7 for a Rossby-Haurwitz 

wave of zonal wavenumber 4 for the high resolution spectral model, (b) The 

geopotential field for the T42 model. 

(b) 
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Figure 28. The variation in time of some principal spectral components of vorticity 

for the wavenumber 4 integrations of Doron et al. (1974). Solid line is the 

low resolution spectral model. Dotted line is the high resolution spectral 

model. Dashed line is the low resolution gridpoint model. Crossed line is 

the high resolution gridpoint model. 
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Figure 29. The variation in time of some principal spectral components of vorticity for 

the zonal wavenumber 4 integration with the T42 spectral model. 

Amplitudes are corrected for the different normalization of the Legendre 

polynomials to that of Doron et al. (1974). Points are joined by straight 

lines and circles indicate times at which output was available. 
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(a) 

Figure 30. (a) Reproduced from Doron et al. (1974), showing polar-stereographic 

projections of the height field at days 0, 3, 4 and 5 for a Rossby-Haurwitz 

wave of zonal wavenumber 8 for the high resolution spectral model, (b) 

The geopotential field for the T42 spectral model. 

i IA 

(b) 
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Figure 31. The variation in time of some principal spectral components of the vorticity 

in the zonal wavenumber 8 integration. Reproduced from Doron et al. 
(1974). Key as for Figure 28. 
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Figure 32. The variation in time of some principal spectral components of vorticity for 

the wavenumber 8 integration of the T42 model. Amplitudes are corrected 

for different normalization of Legendre polynomials to that of Doron et al. 

(1974). Circles represent times at which output was available and are joined 

by straight lines. 
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6.9. Conclusions 

In this chapter a T42 spectral shallow-water model was designed and 

implemented on the ICL DAP. As the model execution time depends mainly on 

the transforms, further improvements to these routines would benefit the 

model most. The Fourier transforms could be improved as the number of 

gridpoints contain factors of four as described in. Hockney and Jesshope 

(1981). A reduction in CPU time of 10% might result. For the Legendre 

transforms, no similar optimizations exist. Only minor optimizations would be 

possible since the major parts of the operations are tied to the storage format 

of the Legendre data. One optimization might be the use of lower precision 

arithmetic. This could perhaps be applied to all parts of the model, although it 

is not clear if it would be successful or possible for the transforms, 

particularly the Legendre transforms. Special summation algorithms might be 

required to preserve accuracy. For example, always summing from the highest 

total wavenumber to the lowest to accumulate the smallest contributions first. 

The use of lower precision arithmetic would require much study. Another 

optimization would involve writing the inverse Legendre transform algorithm in 

the DAP assembly language APAL to exploit the available processors, as 

described in chapter 5. 

In concluding this chapter, the fundamental question to answer is whether 

the DAP is suited to spectral models. The answer is dependent on the problem 

to be implemented, for the DAPs at Edinburgh University will suit only medium 

resolution models with just a few levels. High resolution models require a 

large quantity of Legendre data and hence need a substantial amount of 

memory and the lack of a fast I/O facility would undoubtedly reduce the 

efficiency of the Legendre transforms. Only a few levels would be practical 

because of memory requirements. However, the addition of more levels adds 

another dimension to the number of potential processes and more efficient 

transform algorithms may result. This is an obvious next step to this work. 

The DAP is also suited to higher resolution models as evidenced by Fig. 26. 

The resolution of the model of this chapter is the lowest that would be 

worthwhile implementing on a DAP of this size, given the speedup achieved 

over the serial machine and the extra effort involved in designing the 

algorithms. One conclusion is that the DAP should have a higher ratio of 

memory to the number of processors and a fast I/O facility to be more suited 

to spectral models. The new DAP-310 satisfies both these requirements. 
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Larger array sizes on the other hand, will further restrict the choice of 

resolution for efficiency reasons and be more suited to proportionally higher 

resolutions. 

A triangular truncation was used for this model, substituting a rhomboidal 

one would require some remapping of data but the Legendre transform 

algorithms would remain largely unchanged. It would - be interesting to extend 

this work to consider what the best spectral truncations are for the DAP and 

the type of meteorological problems they would be used to study. 

Finally, the Legendre transforms pose implementation problems whatever 

parallel computer is used. A comparison of techniques on different parallel 

computers is presented in chapter 8. 
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CHAPTER 7 

A MESOSCALE FINITE ELEMENT MODEL ON THE ICL DAP 

7.1 Introduction 

In this chapter the implementation of a finite element meteorological 

model on the ICL DAP is described. Although the finite element technique is 

used infrequently in meteorology its use is growing. Recent studies using the 

finite element method for applications on the DAP have shown it to be well 

suited to the array processor architecture (Lai and Liddell, 1987a). 

As was shown in chapter 3, the finite element technique involves different 

algorithms to those of gridpoint and spectral methods. Parallel algorithms for 

the solution of finite element systems of simultaneous equations is an area of 

current research. An aim of this chapter is to establish the algorithm best 

suited to finite element meteorological models. An obvious requirement for a 

time dependent problem is a fast algorithm. New parallel algorithms will also 

be required for evaluating the finite element matrices. Like the implementation 

of the spectral model, the DAP will affect the formulation of a finite element 

model and another aim of this chapter will be to study the differences 

between formulating the model on a serial and parallel machine. 

The model had to be computationally cheap and simple to be implemented 

in a short time, but also be a realistic meteorological model so that typical 

problems in formulating finite element models for the DAP had to be solved. 

Since the spectral method is more accurate globally, the finite element method 

is usually used for limited area studies. The choice of model was the 

two-dimensional dry model of Orlanski and Ross (1977), hereafter referred to 

as 01177, which was used to simulate the development of a cold front. 

The next section contains a description of the model and the following two 

sections describe the formulation of the finite element version. The model 

equations are then described followed by their implementation on the DAP. 

After describing the parallel algorithms to compute and solve the finite 

element matrices, an analysis of the model's storage requirements and 

performance is presented. Results from the model are then compared to 

those of Orlanski and Ross (1977). Finally, conclusions are presented and 

discussed. 
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7.2. Description of the model 

7.2.1. Equations 

The mesoscale model employs the deep anelastic equations formulated by 

Ogura and Phillips (1962) with a hydrostatic approximation. They are written in 

Cartesian coordinates (x,y,z) with the y-coordinate running parallel to the axis 

of the front. The numerical solution is assumed to be two-dimensional with 

all the variables independent of y. A vorticity, , is used to represent the 

velocity field in the x-z plane. The potential temperature, 9, within the frontal 

system is determined by a y-velocity jet, v, initially in geostrophic balance with 

the temperature gradient across the front. A large scale geostrophic wind, 

U9  (4, advects the front in the x-direction, where U9  is taken to be uniform in 

z A horizontal temperature gradient in the y-direction is included for 

consistency with the large scale wind through the thermal wind relation. The 

Coriolis parameter, f is assumed to be constant and all moist processes are 

neglected. 

The prognostic variables are , v and 8 and their rates of change are given 

by, 

a 	ae 	a 	a 	a 	a (ao 	
i_ - - - + 	KV e ) + 	e) 	(7.2.1) 

— -tL - 
at 	3x c*0 az 	3z 0 0  ax 	ax 	ax 	az 	3z 

ae 	ae 	Be 	j Do  au a 	ae 	a 	ae 
- = 	- W 	 V 9+ ( KK e ) + —(K —) 	 (7.2.2) 
at 	ax 	3 	a. 	ax 	ax 	az eaz 

aV 	8 	8 	 a, a 	a 	3  
- = -u— - w— + f(Ug  - u) + ( KV e ) + (Ve) 	 (7.2.3) 
at 	8x 	az 	 ax 	az 	8z 

The specific volume is given by, 

a0  E 1 / Po = 	[1 - ( gz1 c e 0 )] 1 R 
	

(7.2.4) 

with the surface specific volume, a, independent of x and 0 0  as the surface 

potential temperature at the right-hand boundary. A streamfunctiofl, 4), is 

defined so that the velocities u and w, in the z and z directions respectively, 

are given by, 
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= ti/cL0 , 	a1/az = - w/CZ0 	 (7.2.5) 

The streamfunctiOn is obtained from, 

a 	
—) (a0 
a4) 	 (7.2.6) 

= — 

az 	az 

The turbulent fluxes of momentum and heat are parametrized using an 

eddy viscosity parametrization developed by Orlanski and Ross (1973) and 

Orlanski et at (1974) in which the eddy diffusivity takes the form, 

KeKO 	
,Ae>_o 

Ce = K0[ 1 + , AE)< 0 
e0K0v0 

(7.2.7) 

where AG is the local vertical gridpoint difference in potential temperature. In 

the 0R77 model, the parameters are set to, 

= O. 7Ke, 

K = 1000, 

K0 = 5m2 s 1 , 

= 0.7K 0 , 

C = 0.75. 

(7.2.8) 

K is included in the momentum equations so that the horizontal eddy viscosity 

and heat diffusivity are 1000 times larger than their respective vertical values. 

K0 represents the background diffusivity. 

7.2.2. Finite difference formulation 

The finite difference formulation of the original model was that of Orlanski 

and Ross (1973) (based on that of Lipps, 1971). Centred space and time 

differences were used but with the diffusion terms lagged by one timestep. 

The variables were specified over a staggered grid with the advective terms 

written as Jacobians in 4i and formulated according to Arakawa (1966) and Lilly 

(1965), to minimize computational instability. The solution was time-smoothed 

every 30 timesteps to suppress the mode splitting of the leapfrog scheme 

used for the model. 

The horizontal domain was 1500km with 76 equally spaced points giving a 

resolution of Az=20km. The vertical spacing, however, was varied to give an 
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increased resolution near the ground with Aa150m at the surface, 300m at 

5km and 400m at 15km, the top of the model. There were 51 points in the 

vertical with a tropopause prescribed at 10km in the temperature profile. 

7.2.3. Boundary conditions 

The bottom boundary of the 0R77 model consists of a level surface on 

which velocity slip (u and v nonzero) is permitted. The boundary condition for 

0 is, 

aG/az = 0 at z = 0 	 (7.2.9) 

In the interior of the model, v is roughly in geostrophic balance with the 

horizontal temperature gradient, so the thermal wind relation is assumed to 

hold at the surface, to give, 

8V  30 
- 	 at z = 0 	 (7.2.10) 

az 	fOo  a 

The cross-front circulation, represented by the streamfunction and vorticity, 

requires the use of the simple boundary condition, 

= 0 at z = 0 	 (7.2.11) 

Since the prognostic equation for vorticity involves diffusion terms, a boundary 

condition for vorticity is also required at the surface. 0R77 used the 

condition, 

=0 at z=0 
	

(7.2.12) 

The numerical domain of the model extends above the tropopause. 

Although intense perturbations may affect the lower stratosphere, the large 

static stability above the tropopause will weaken these perturbations. 

Therefore, rigid-lid boundary conditions were used at the top boundary. That 

is, 

= 4(t=0) 
	

(7.2.13) 

and, 
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a(t) 	(t=o) 	a v(t) 	3v(t=O) 	ae(t) 	a 0 (t=O) 
at the top. (7.2.14) 

a 	az, 	3z 

Instead of rigid or periodic boundary conditions, open boundary conditions 

were used for the sides of the model to permit propagating waves to escape 

from the numerical domain. Orlanski (1976) discussed open boundaries in 

detail. His scheme is based on computing a phase velocity, which includes 

advection and wave propagation, in the neighbourhood of each boundary point 

and extrapolating to the boundary. The choice of whether a boundary point 

exhibits inflow or outflow behaviour is determined by the direction of this 

phase velocity, rather than the direction of the mean flow. 

For any variable 4, at timestep n+1, for the boundary point b, its value is 

given by, 

	

1-r 	 2r 
n+1 	________  _)g  _______ n-i + 

(- i 	
(7.2.15) 

	

•b 
IT _+ r 	 1+r 

where 0 < r < 1 and r is given by, 

__ 	 n-2 __ n 	n 
- (h-i

-2 
 - 'b-i) / (-i + b-1 - 2:) 	 (7.2.16) 

The values of r for the 0R77 model variables are computed in the above 

manner except that for vorticity at both sides and temperature at the right 

side the values are fixed at 1, corresponding to an outflow velocity of AXIAL 

7.2.4. Initial conditions 

Orlanski and Ross (1977) considered two types of initial conditions. The 

first was a surface jet only, using the following expression for the y-velocity 

field v, 

v(z,z) = (x/Zj)Vm(1 - tanh[8(z+(%z-x0 )]) 
	

(7.2.17) 

with z=500km, 8=50km 	and a=100. Vm  is a jet intensity parameter. 

Eq.(7.2.17) produces a jet 4km deep and 600km wide with a maximum velocity 

at the surface. 

The second type was a mid-tropospheric jet given by, 
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v(z,z) = - ( Z/ZO) V {1-tanhLB(z+ctz-z)j}+ VMexp{Rj2I(z-2)2+(Y (z-))21)(7.2.18) 

with z=z, z=4km, R=8//2km and y=0.03. This produces a weak surface jet as 

before but with a strong jet centred at 8km height and directed in the positive 

y direction. 

The 8 field is initialized so that the horizontal potential temperature 

gradient is in geostroptiic balance with v from the thermal wind relation. The 

vertical variation of 8 is prescribed on the rightmost boundary (the warm side 

of the front) with lapse rates of, 

2x10 3 ° C/m 	for z < 2km 

4x10 3  °CIm 	for 2km < z < 10km 
	 (7.2.19) 

14.5x10 3 ° C/m 	for z> 10km 

with 80  (not given by 0R77) assumed to be 15 ° C, the mean sea-level 

temperature at mean sea-level pressure (McIntosh and Thom, 1981). 

The initial vorticity field can be set using the large scale wind U9 . From 

Eq.(7.2.5) and Eq.(7.2.6) with u= U9(4, 

= a(J9(z)/az 	 (7.2.20) 

7.3. Formulation of the DAP model 

7.3.1. Model domain 

The DAP implementation of the 0R77 model has 64 points in the horizontal 

and 64 in the vertical. The horizontal grid spacing is 24km to give a domain 

width of 1512km. Thus, the resolution in the horizontal is less than for the 

original model but the superior accuracy of the finite element method should 

offset this. 

For the vertical, the model may use either a constant spacing or the 

stretched vertical coordinate scheme of 0R77. If a constant spacing is used, 

the increment Az is 240m, giving a model top of 15.12km. With the stretched 

vertical coordinate, at the ground Az=119m compared to 150m in 0R77 and 

Az314m compared to 400m at the top of the model, with a model top of 

14.85km. Thus, coupled with the use of the finite element method this model 
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has superior vertical resolution to the original model. 

732. Method of solution 

7.31.1. Choice of elements 

As shown by Staniforth (1987), bilinear rectangular elements, defined by 

Eq.(3.5.9) and Eq.(3.5.6), are superior to triangular or higher order elements. As 

discussed in chapter 3, there are several advantages to using these elements. 

First, fourth order accuracy is obtained for the solution at the nodes of a 

regular grid. Second, the resulting system of equations can be solved as sets 

of one-dimensional tridiagonal problems. Last, for the calculation of a simple 

derivative, the two-dimensional calculation reduces to one dimension. Since 

efficient and economic solvers for tridiagonal systems exist for the DAP, the 

use of rectangular bilinear elements is made more attractive and are therefore 

used. The model equations may be solved as a succession of derivative and 

product computations in contrast to the more traditional technique where all 

terms are considered together and the resulting stiffness matrix assembled 

and solved. 

7.3.2.2. Choice of grid 

Williams (1981) showed that the elements must be staggered if the 

momentum form of the shallow-water equations is used, whereas no 

staggering is required for the vorticity-divergence form. If the nodal points 

for the free surface height are not staggered relative to those of the velocities, 

the energy in the small scales propagates in the wrong direction. Staniforth 

(1987) reported that unstaggered formulations also suffer from small scale 

noise. As vorticity is used in this model, an unstaggered grid is chosen in 

which values of all the variables are held at each node. A node is identified 

by integers i and j where z and z are given by, 

z=iLx, 	i0.....63 
	

(7.3.1) 

and, 

z 

=
z1, 	j = 0 ..... 63 	 (7.3.2) 
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73.23. Approximation of variables 

The approximation of the model variables with the basis functions Eq.(3.5.9) 

follows directly from chapter 3. From Eq.(3.5.1 1), any model variable I can be 

approximated by, 

63 63 

f(z,z,t) = 	J(t)a1(z)b(z) 	
(7.3.3) 

i=O j=O 

where a and b are the piecewise linear functions in the x and z directions 

respectively. They are given by Eq.(3.5.6) except that the spacing in the x 

direction is constant. The nodal values at t=O, J=O, 1=63 and j=63 for the 

appropriate variables are given by the boundary conditions in the previous 

section. 

7.3.3. Calculation of velocities 

7.3.3.1. Streamfunction 

The first stage of a new timestep is to compute the streamfunction from 

the vorticity, using Eq.(7.2.6). The streamfunctiOr and vorticity are expanded 

according to Eq.(7.3.3). The streamfunction'S boundary conditions, Eq.(7.2.11) 

and Eq.(7.2.13), are essential conditions and must be explicitly satisfied. 

The finite element method can be applied in the usual way. A truncation 

error analysis of the resulting scheme (assuming ct 0(z)1 for all z) shows only 

first order accuracy on the irregular vertical spacing of the model (the 

horizontal mass matrix cancels from the LHS and RHS as for the first 

derivative case). However, Beland and Beaudoin (1985) have devised a 

scheme, outside the Galerkin finite element framework, for the second order 

equation, 

d2 y/dx2  = I 

which is fourth order accurate on an irregular grid but remains as complex as 

the finite element method. Their method is applied to the streamfuflCtiOfl 

equation Eq.(7.2.6). 

To simplify the derivation of the scheme initially, a 0(41 for all z is 

assumed so that the equation, 
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a2/9z2 = 
	 (7.3.4) 

is to be solved for ip. The discretized form of this equation is assumed to be, 

IL 
	- 	) - 	- 	= a 1i  + b 1  + c 1+1 

	 (7.3.5) 

where, for convenience, /=f. The coefficients a, b, c and d are found by 

requiring that Eq.(7.3.5) is exact for fourth order polynomials of IP expanded 

about z, and valid in the interval z 1 , z 4 .1 . Beland and Beaudoin (1985) chose, 

(z - 	m = 1, 2, 3, 4 
	 (7.3.6) 

which gives, 

= m(m - i)(z - 
	 (7.3.7) 

Substituting these into Eq.(7.3.5) gives, 

+ (1)mh 1  d =m(m - 1)[a(1)m_2/42 + tSm , 2 b + ch. 2 1 
1-1 

(7.3.8) 

This must hold for m=1, 2, 3 and 4. Substituting these values of m into 

Eq.(7.3.8) gives four equations that can be solved for a, b, c and ti The 

coefficients are found to be, 

h.  
I ______________________________________________ 

12 	hh1 _ 1  

b 
	h.)1 	 (7.3.9) - 	[5 + 	
'- - '  

12 	hh. I 	I1 

C. = 	+ 	
1h.1 12 	h. 

with d=1 for all i to give, 

1 	1 	1 
- (- + -)_1) + 	= a11 ... 1  + b 	 (7.3.10) 

	

1 	+ c +1  
h. 	h. i-i 	I 	I 

The value of the coefficients given by Eq.(7.3.9) do not hold at the 

boundaries. However, since the values of at the top and bottom of the 

model are known, no derivation of the coefficients at the boundaries is 

228 



required (although these coefficients are given by Beland and Beaudoin, 1985). 

The specific volume must now be introduced and the streamfunction 

solved using Eq.(7.2.6) rather than Eq.(7.3.4). The specific volume only alters 

the LHS of Eq.(7.3.10). The LHS is the same scheme that the usual Galerkin 

procedure would give. Therefore, to solve Eq.(7.2.6). Eq.(7.3.10) is used but with 

the LHS derived from the finite element procedure for the second derivative 

term in Eq.(7.2.6). 

Following the usual finite element procedure, the LHS is, 

LHS ff 	—(ao -- )ak bI  dzdz for k 	O .... N, I = i,...N-1 	(7.3.11) 

where x is the width and z the height of the domain. Integrating by parts 

gives, 

x 

, 
 8* dbi  

	

dLHS 	 f - zdz 
 dzJ o  

The integrated term is zero since b1  is U at zO and z for all ! by definition. 

Substituting the expansion for 1P gives, 

	

LHS = - 	4)jjKfjM1çj 	 (7.3.12) 

where, 

Ka I a 0— —i 

	

Ij 	
dz 

	

j 	
dzdz 

0 	
(7.3.13) 

= f ak  ai  d x 

It can be shown that the horizontal mass matrix cancels with the same 

matrix on the RHS. The problem now is the evaluation of the integral for the 

stiffness matrix, j. Only three values of j at I-i, I and 1+1 give a nonzero 
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contribution to this integral, 

1 
iCL 1

+

R 2 ci0 dz+K O 

KjaF
' 

= - 	a0  dz 	 (7.3.14) 

zl- .I  

f
2 1 

x +1 =_ 2 	ci0 dz 

zi 

using Eq.(3.5.17). These terms can be evaluated by the two integrals, 

()2 	
S 

Zi+1 

A l  
1 

 J 
a0  dz, 	B 1  = - 	ci0 dz 	 (7.3.15) 

h2 1  
zi 

These could be computed by numerical quadrature, but since a o  is a known 

analytical function it is more accurate to evaluate them analytically. 

Substituting Eq.(7.2.4) into Eq.(7.3.15) and integrating gives, 

1 Cts R  
Al 	2t 

 
h1 _ 1  8(R- c) 

1osR 	
- 	1)Y 	

(7.3.16) 
B 1  =[- 8(R-c) ][( 

 

where, 

B = g1ce 0 , 	y = 1 - (c/R) 	 (7.3.17) 

Substituting Eq.(7.3.15) into Eq.(7.3.14) and then expanding Eq.(7.3.12) gives the 

LHS of Eq.(7.3.10) as, 

AP,1_1 - (A + B)iP 1  + B 1P1+i = 	+ 	+ cji.j+ 1 	 (7.3.18) 

where A and 	are given by Eq.(7.3.16) and a1, b3  and ej  are computed from 

Eq.(7.3.9). Since a0  is constant with time, all these coefficients are computed 

once only at the beginning of the run and stored. Also, as Eq.(7.3.18) results 
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in tridiagonal matrices, it is as efficient as the normal Galerkin finite element 

approach. 

7.3.3.2. Velocities 

Once the streamfunction has been computed by Eq.(7.3.18), the next step is 

to compute the velocities u and w using Eq.(7.2.5). This is done by calculating, 

= a/a, 	, 	= 	 (7.3.19) 

followed by, 

U = 	= 	 (7.3.20) 

It will be seen later that ,P is required for the calculation of one of the 

advective terms and so this result is stored for later use. 

The procedure to calculate uP is exactly that described in chapter 3 and 

the result can be written immediately using Eq.(3.5.27), 

= - 	 (7.3.21) 

where M is the horizontal mass matrix and £ is the projection operator for 

the first derivative in the x direction. The elements of these matrices are given 

by Eq.(3.5.18) and Eq.(3.5.19). In Eq.(7.3.21), it is assumed that the nodal index 

in the z direction, i increases with the row index of the matrices wa  and 

and that the z direction nodal index, j increases with the column index of the 

matrices. A similar matrix equation to Eq.(7.3.21) is used to calculate uP. 

However, the solution is only first order accurate, because of the stretched 

vertical coordinate. As an alternative, the procedure of Beland and Beaudoin 

(1985) could have again been used to give a fourth order accurate solution to 

The true velocities u and w are then calculated by using Eq.(7.3.20). 

Staniforth and Mitchell (1977) successfully used point collocation to compute 

products in which one function varies smoothly. Since the specific volume is a 

smoothly varying function, no aliasing will occur if u and w are computed by, 
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W = 	 w1, 	 (7.3.22) 

This is still fourth order accurate (Cullen, 1979). 

73.4. Advection terms 

The advection terms are of the form 04/az and u/3z where • is either 

(a), v or 0. The product a0E is computed by point collocation as for the 

velocities. 

As described in chapter 3, advection terms are computed more accurately 

by a two stage process (Cullen, 1979) in which the gradients are computed 

first, followed by the calculation of the product. For the first stage, exactly the 

same procedure as for the computation of the velocities is used so, 

= ZA 
	 (7.3.23) 

= ZA 

where N is the vertical mass matrix and 4 is the projection matrix for the z 

derivative. 

The second stage is the evaluation of the product with the velocities, as 

described in chapter 3. The elements of the finite element product matrix are 

not given by Eq.(3.5.38) as a uniform spacing in both directions was assumed 

in chapter 3. The exact form will be shown later when the computation of the 

finite element matrices on the DAP is considered. The products will not be 

calculated to fourth order accuracy because of the stretched vertical spacing. 

7.3.5. Diffusion terms 

The diffusion terms must be integrated in time using either an implicit 

scheme or a forward scheme, as the leapfrog method is unsuitable. Since the 

eddy diffusivity coefficient ice varies with time, an implicit scheme would be 

costly. Instead an explicit scheme was used with the diffusion terms lagged by 

one step. 

The diffusion terms take the general form, 
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3/3z(K e 341 3 x), 	aia z(K e a 4)/az) 	 (7.3.24) 

where 4) represents any of the model prognostic variables and any additional 

constants applied to 1e  are ignored. One approach is to solve these terms in 

3 stages using the basic operations of differentiation and the calculation of the 

product of two functions. As the diffusion terms are evaluated using values at 

t-At, the first derivatives (all except aF/az) could be stored from the previous 

step and used. However, this still requires three calls to the routine that 

solves the matrix equations. If the usual Galerkin procedure was applied to 

each term in Eq.(7.3.24) only two calls would be needed. Over one timestep, 

the extra cost would be significant as it is anticipated that the solution of the 

simultaneous equations will be the major portion of the CPU time per 

timestep. Furthermore the 3 stage process will not be fourth order accurate 

on the nonuniform grid due to the calculation of the product. It was therefore 

decided to use the usual Galerkin procedure directly. 

Consider the term in 4 the Galerkin method is applied to, 

1= a/3x(Kea4)/ax) 	 (7.3.25) 

to give, 

f
X/)Z 	

I

X

f 

 Z 
a 

 J fab dxdz = 	 _(Ke_)tzkbl dxdz 	for all k, 1 	(7.3.26) 
3x 	ax 

0 

When the RHS is integrated by parts, it is convenient to set the integrated 

term to zero by setting the eddy diffusivity to zero at all the boundaries i.e. 

= Ke(X,z) = K e (X,O) = Ke(X,Z) = o 	 (7.3.27) 

After substituting expansions for f iCe and 4), the LHS becomes, 

LHS = M(T)T 	 (7.3.28) 

The RHS integral has not been seen before. It is, 

F 1  = 	c 	Kij4)rs fo 

b1 bb a 	f o 

dak da
dx (7.3.29) rz 	

dxdx i 	r 	j 	S   
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where the subscript on Ke  has been omitted for clarity. The integral in curly 

brackets is the same as the integral in the calculation of the one-dimensional 

product Eq.(3.5.29). From Eq.(3.5.31), 

	

bbb, dz = 	 (7.3.30) 

j S 	fo  
(1/3)A2_iKii_4rI_ + (1/6)(Ltzj_ 1  + zj)1Ci,ir.i + (1/3)t2jK i.1+ 0+ 

where, 

•r,i+4 	(r.i + 	r.I+1) 	
(7.3.31) 

Calculating Eq.(7.3.29), requires evaluating the integral, 

= J a Lak  .r dz 	 (7.3.32) 

dxdx 

This is simple to evaluate since the basis functions are only locally defined. 

Using Eq.(3.5.6) and Eq.(3.5.17) and evaluating the integral for the point rsl 

gives, 

K ,40 J 	dakda r 
a. dz = (1/Az)(Kk_4.IX4k_1,I - Kk+.lX4)I) (7.3.33) 

r 	

I 

where mid-point values at k-  and k~ are given by Eq.(7.3.31) and, 

Mkj = k+1.l - 

	 (7.3.34) 

Applying Eq.(7.3.33) to all the terms in Eq.(7.3.30) gives the scheme for 

each point as, 

FkI  = (1/z)( (1/3)A 	(Kk_,I_AX+k_1,,_ - Kk+.I_Ax4k,I-) 	 (7.3.35) 

+ (1/6)(A_ 1  + A)(Kk_4,IAX$k_1,I - 

+ (1/3)(Kk_ , I ++Ax k_1 , I++ - Kk+4I+AX4k.l+) } 
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The matrix equation is then, 

McrLT )T  - - 	 ( 7.3.36) 

For the derivative in z, 

(K -) 
(7.3.37) 

g=— 
az 	3z 

the same procedure gives the matrix equation, 

MWLT)T = -2 	
(7.3.38) 

where elements of C are given by, 

G1,1  = 	 + Kk,t_AZkI_1 + Kk+4.I_4tZ4)k+)(7.3'39) 

(Kk_4l+zk_4,I + K çi+A z 4) IcI + 

For the nonuniform grid used in this model, this scheme will only give first 

order accuracy. On a uniform grid, with a constant spacing in the x and z 

directions, this scheme is second order accurate (see Appendix B). 

7.3.6. Time scheme 

The time scheme for this model is the same as that used for the spectral 

model in the last chapter. A leapfrog scheme, Eq.(3.2.1) is used once the 

tendencies have been computed from the finite element equations. An Asselin 

(1972) time filter of the form Eq.(3.2.2) is used to control the computational 

mode of the leapfrog scheme. The first step is made using a forward or Euler 

step as in the spectral model. 

The timestep for a one-dimensional model was limited by, Eq.(3.5.51), 

At < 0.57Az/c 

With Az24km and c=300m/s (the fastest external gravity wave), At < 45 

seconds. The timestep used by 0R77 was one minute. Several runs of the 

DAP model were made in which the timestep was varied to test the timestep 

limit. It was found that a timestep of two minutes was always unstable. 
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However, a timestep of one minute was stable in some runs and a timestep of 

30 seconds was always stable. A comparison of results after 20 hours from 

runs with timesteps of 30 and 15 seconds showed little differences. Thus, a 

timestep of 30 seconds was used. 

The time filter coefficient was set to 0.01, twice that used for the spectral 

model. It was found that computational modes were reflected at the lateral 

boundaries and a filter coefficient of this value had some success in damping 

these modes. No other sensitivity tests were performed varying the time filter 

parameter in the model. 

7.33. Initial conditions 

The jet velocity field is set initially by either Eq.(7.2.17), the surface jet 

case, or by Eq.(7.2.18), the mid-tropospheric jet case. As discussed in chapter 

3, these expressions can either be used directly to obtain the expansion 

coefficients, as the basis functions are interpolatory, or the Galerkin procedure 

can be applied (i.e. Eq.(3.5.68)) and the integrals evaluated numerically. Since 

the functions of v are smooth, the former method is chosen so that the nodal 

values vi,j  are given by, 

= v(x,z) 	 (7.3.40) 

To set e, it is assumed to be in geostrophic balance with the v field 

through the thermal wind relation, 

(7.3.41) 
ax 	gz 

with, 

= logO 	 (7.3.42) 

The first stage is to compute =8v/z using the finite element method. The 

next step is to solve, 

- = fn/g 	 (7.3.43) 
ax 

The Galerkin procedure results in the matrix equation, 
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(fIg)M 	
(7.3.44) 

The essential boundary condition is that is known at the right boundary from 

Eq.(7.2.19). Inclusion of this essential condition prevents Ex  from being 

singular and allows Eq.(7.3.44) to be solved. Once I is known, the nodal 

values of the potential temperature are computed from Eq.(7.3.42). 

The nodal values of U9  are set as for v. Its vertical gradient (and hence 

the vorticity) is calculated using the finite element method. 

7.4. Formulation of the boundary conditions 

7.4.1. Lateral boundaries 

Miller and Thorpe (1981) showed that the radiation boundary condition 

scheme of Orlanski (1976) is second order accurate and devised a scheme that 

was fourth order accurate. Their scheme is based on calculating an improved 

estimate for r. Using the present time-level, from Eq.(7.2.16), another 

calculation of r is, 

- 	b-i - b-i) 	b 	+ -i 	4b-i - 24_2) 	
(7.4.1) - ( 4 fl_l 	n+i 

/ 
(4 fl+i 	n-i 

Similarly, another estimate could be calculated by using the boundary point 

itself, 

n-2 n-2 	n 
r2 = 4b - 4b) / (4 + 4 	- 2:) 	 (7.4.2) 

Miller and Thorpe (1981) showed that the combined scheme, 

= r1  + r2  - r 	
(7.4.3) 

 

with, 

n+1 	1 1 - 	2 (7.4.4) 
b 	

)on-1
b +

bl 

is fourth order accurate. 

For a model based on finite differences, the implementation of the above 

scheme is straightforward. This is not the case for the finite element model in 

which the tendencies of the variables are computed using the finite element 

method. The usual procedure to implement the boundary conditions would be 
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to after the equations for the boundary nodes in the finite element matrices. 

However, the Orlanski scheme gives, 

- r 	n+1 	n-1 	n i 	 ( 7 A \ 

at 	
- 4b 1 - 4b-1i 

for the tendency of the boundary node. This cannot be solved as it refers to a 

value at the next time-level. The time average is necessary in Eq.(7.4.5) to 

maintain stability in the presence of physical and computational modes. 

Without this average, large amplitude computational modes would be reflected 

off the boundaries. 

To apply the Miller-Thorpe scheme, the usual Galerkin finite element 

framework is not adopted. Instead the tendencies are computed by the finite 

element method, ignoring the lateral boundary conditions. When the values at 

&At have been calculated, the ratios r, r1  and r2
are, computed and the lateral 

boundary nodes are recomputed from Eq.(7.4.4). 

It is to be expected that in using this scheme some noise will be reflected 

from the boundary as a wave passes through it. This is first because the 

usual finite element framework has been abandoned and the interior points are 

solved simultaneously with no knowledge of the correct boundary value 

(except from the previous timestep). Second, although the Miller-Thorpe 

scheme is fourth order accurate, it is based on a finite difference 

approximation and as described in chapter 3, the finite element method is 

more accurate than fourth order finite differences. 

To examine the behaviour of this scheme, a finite element model of the 

one-dimensional linear advection equation, 

a 	a 
—+c—=o 
at 	ax 

(7.4.6) 

was used. The velocity c is constant and hence the product with the spatial 

derivative was computed by point collocation rather than using the finite 

element approach. The spatial derivative is computed using the finite element 

approach. The linear advection equation was also used by Sundstrom and 

Elvius (1979) to study the behaviour of outflow boundary conditions for finite 

differences. A Gaussian profile is advected across the domain and out 
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through the boundary. 

Fig. 33 shows results from this model for two cases. The lower curve 

shows the results when there are no boundary conditions applied to either end 

of the domain. The top curve shows the results when the Miller-Thorpe 

scheme is used. No time filtering or diffusion is applied. 

Differences between the two cases are apparent. However, in both cases, 

two gridlength noise is reflected off the boundary as the profile moves out of 

the domain. For the Miller-Thorpe scheme, the noise is a result of the sources 

of error described above. For the unconstrained solution, the noise results 

from the lesser accuracy of the solution at the boundary node; the usual 

truncation error analysis shows this is solved to first order accuracy only, 

compared to fourth order accuracy in the interior. 

The noise propagates across the domain to the LHS. For the unconstrained 

solution, the short wave noise is reflected and the original profile reappears. 

This was also observed by Sundstrom and Elvius (1979). The similarity of this 

reflected profile to that of the initial shape indicates the accuracy of the finite 

element method. For the Miller-Thorpe scheme there is also evidence of a 

reflected profile. However, its amplitude, although significant, is greatly 

reduced. 

It would seem that the Miller-Thorpe scheme is adequate but there is a 

clear need to remove or reduce the amplitude of any two gridlength noise in 

the domain to avoid further reflections at the opposite boundary. The Asselin 

timefilter was found to reduce the amplitude of these waves. The inclusion of 

diffusion in the model also helped to dampen any noise. 

7.4.2. Top and bottom boundaries 

The homogeneous boundary condition for the streamfunctiOn at 20, 

Eq.(7.2.11), and the inhomogeneous one at the model top, Eq.(7.2.13), are both 

essential conditions and are incorporated by modifying the equations for these 

points. The velocity components are computed subject to the boundary 

conditions implied by the streamfunction i.e. the vertical velocity is zero at the 

top and bottom of the model. 

For the vorticity, the homogeneous condition Eq.(7.2.12) is an essential one 
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STEP 000 
	

STEP 055 

STEP 070 
	 STEP 080 

STEP Q9 STEP 310 

Figure 33. Behaviour of a finite element model of the one-dimensional advection 

equation when a Gaussian profile is advected out through the boundary. 

Bottom curve is when the boundary nodes are computed free from any 

boundary conditions. Top curve is when the Miller and Thorpe (1981) 

radiation scheme is used as described in the text. 
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and incorporated by modifying the first row of the matrices as the tendencies 

at the bottom must also be zero. Like, the other prognostic variables, to 

maintain a rigid top boundary, the vertical gradient of vorticity is held the 

same as its initial value. The usual method of including such inhomogefleoUS 

Neumann conditions is by modifying the Galerkin equation for second order 

terms; the diffusion term in this case. However, since this does not guarantee 

the condition will be satisfied (see the discussion of boundary conditions in 

chapter 3), it was decided to reformulate the boundary condition to ensure it 

is satisfied. 

Starting with the equation, 

where k represents the gradient at the initial time, the finite element method 

gives the following equation for the nodes at the model top, 

i,M = i,M-1 + AzM _ l k 	 () 

This is the same as the usual finite difference approximatipn and is first order 

accurate. A simple scheme to implement this would be the same as that used 

for the lateral boundaries, where the boundary condition is ignored when the 

nodes at the new time-level are calculated and the top level values 

recomputed using Eq.(7.4.7). 

For the velocity, v, the top boundary condition is implemented as for the 

vorticity. The bottom boundary condition, Eq.(7.2.10), is enforced by using the 

same method. If the vertical gradient is approximated as for the top boundary, 

the condition becomes, 

8 
tP1 - 
	

8 
- 	) 	 (7.4.8)

fE) O  3z 

Therefore, the bottom boundary is recomputed after the new time-level values 

have been set. 

For the potential temperature the top boundary condition is dealt with in 

the same way as for the other variables. The bottom boundary condition, 

Eq.(7.2.9), is a homogeneous natural condition and, as before, formulated as an 
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essential condition by writing, 

O' 1  (z 	
n+1 

1 ,z0 ) = u 	(z1 ,z) 	for all i 	 (7.4.9) 

to ensure it is satisfied. At the end of each timestep, the bottom boundary 

values are overwritten with those of the next level. 

7.5. Model equations 

7.5.1. Vorticity 

Multiplying Eq.(7.2.1) by the bilinear basis functions, integrating over the 

domain and substituting the expansions for the variables, yields the following 

matrix equation for the vorticity tendency, 

MWeLT)T =-A - + ff)T - (g/e0)'e)T1T - 70Q4 - 0.7; (7.5.1) 

The matrices A and B arise from the advective terms which are computed as 

described in a previous section. The matrices .4 and .Q result from the x and 

z diffusion terms. The elements of these matrices are given by Eq.(7.3.35) and 

Eq.(7.3.39) respectively. The subscript on the vertical mass matrix, Te' 

indicates that an essential boundary condition at 2=0 for E has to be satisfied. 

The procedure to solve Eq.(7.5.1) is first to compute, 

1= -(4 + + 700.4 +.O.7.Q) 
	

(7.5.2) 

Substituting this into Eq.(7.5.1) and multiplying both sides by the inverse of the 

horizontal mass matrix gives, 

(lieLT )T  = M 1  + f(L)T - (g1e0)M1ET 	 (7.5.3) 

where the property 
(4T)T = 	T has been used. The next stage is to solve, 

(7.5.4) 

and, 

= 	
(7.5.5) 

Following this, compute, 
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RT  = + f(L)T 	 TT 	 (7.5.6) 

so that Eq.(7.5.3) becomes, 

AT .T - D 	 (7.5.7)
%

11  e A& -  

The final stage is therefore to solve, 

L = ( 1R)T 	
(7.5.8) 

subject to Eq.(7.2.12). The tendency is then integrated forward in time and the 

remaining boundary conditions applied. 

7.5.2. Potential temperature 

Since U. is constant, its vertical gradient is computed at the start of the 

run and stored. As this gradient is smooth, the product with the jet velocity is 

computed by point collocation, 

d  (z) f 0 

	

A(,z 1 ) = v(x,z)— 	- 

	

dz 	9 

(7.5.9) 

Applying the finite element method to Eq.(7.2.2) gives the matrix equation, 

M( T )T  = - - ! + M(li4T)T - 1000k - go 
	 (7.5.10) 

where B and C are the matrices for the advective terms, F0 and 	are the 

diffusion matrices formed using the potential temperature and A is given by 

Eq.(7.5.9). 

The solution procedure follows from that used to solve for the vorticity 

tendency. First compute, 

= - 	+ Q ++ 2e) 	
(7.5.11) 

to give, 

T)T = M1D + ( TAT)T 	 (7.5.12) 

Then solve, 
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ET = M'D 	 (7.5.13) 

which gives, 

I- 	 • 

=,+I• 

Multiplying by the inverse of the vertical mass matrix, 

Ifr = 	 (7.5.15) 

the potential temperature tendency is given by, 

..=ll+A 	 (7.5.16) 

The tendency is then integrated forward in time and the boundary conditions 

applied. 

7.5.3. Jet velocity 

The ageostrophic component of the Coriolis force in Eq.(7.2.3) is computed 

by, 

I(x,,z) = f[U9 (i) - u(z)) 	 (7.5.17) 

Applying the finite element method to Eq.(7.2.3) gives the matrix equation, 

= -A - 
.fl + 
	liu)T - 7OOE - O.7.Q 	 (7.5.18) 

where A and B are the matrices resulting from the advection terms and £ 

and Z 
 are the matrices arising from the diffusion terms. As before, first 

compute, 

- (4 + & + 700L,  + O.72) 	
(7.5.19) 

Multiply Eq.(7.5.18) by the inverse of the horizontal mass matrix to give, 

Jr 	 (7.5.20) 

which implies, 

NOV 	 (7.5.21) 

To get the tendency, solve, 
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Er = r-l.p 	 - 	 (7.5.22) 

and then, 

(., 
v 

The tendency is then integrated forward in time and the boundary conditions 

applied. 

7.6. Implementation on the DAP 

7.6.1. Introduction 

Unlike the spectral method, several research groups have studied the 

application of' the DAP to finite element problems in engineering. The group 

at Liverpool University mainly studied the solution of two-dimensional elliptic 

problems, when the number of nodes was greater than the available 

processors (Wait and Martindale, 1985). The matrices were partitioned and 

their solution was by preconditioned conjugate gradient methods (Wait, 1988). 

The group at Hatfield Polytechnic studied the solution of steady 

two-dimensional problems formulated using a least squares approach (Dixon 

and Singh, 1984) and a variational approach (Dixon and Ducksbury, 1985). 

They also used a conjugate gradient method (Dixon et a!, 1982) but modified 

so that the global stiffness matrix did not need to be assembled. The 

equations were solved on an element by element basis. As Lai and Liddell 

(1987a) point out, although this saves storage space more computing is 

required. 

The group at the DAP Support Unit (DAPSU) reviewed existing studies (Lai 

and Liddell, 1987a) and studied the solution of problems by the conjugate 

gradient method (Lai and Liddell, 1987b). A parallel version of the SERC/NAG 

finite element library for the DAP has since been developed at DAPSU (Lai, 

1989). 

The finite element model of this chapter contrasts the above work in 

several ways. First, this problem is time dependent, putting more emphasis on 

fast solution methods and the efficient evaluation of the finite element 

matrices. Second, the adopted solution method decomposes the problem into 

sets of one-dimensional equations resulting in tridiagonal matrices rather than 
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the higher bandwidth matrices of the two-dimensional problems studied in the 

previously cited work. This means that the nodes of the finite element model 

are more appropriately mapped as a matrix on the DAP, rather than using 

vectors. Thirdly, it is not obvious that a conjugate gradient solver will be 

superior to existing tridiagonal solvers. Lastly, there is no assembly of the 

stiffness matrix for the RHS of the equations. Instead, each term is computed 

individually. This has several benefits. The first is that a set of kernel routines 

to compute spatial derivatives, products and diffusion terms can be designed 

and used as the basis for a model. Second, the work for the derivative terms 

is reduced by cancelling mass matrices (as seen in the previous section). 

7.6.2. Data mapping 

Two approaches have been used to map finite element grids onto the DAP. 

Lai and Liddell (1988) and Wait and Martindale (1985) use the 'long-vector' 

mode of the DAP, where elements are stored consecutively according to their 

element numbering. The group at Hatfield use an 'upper-leftmost' storage 

mapping in which the x and y coordinates of the nodes are mapped along the 

rows and columns of the DAP matrix. 

An advantage of the long-vector storage format is that it easily handles 

arbitrary element shapes and irregular boundaries. Also, it permits a random 

allocation of elements to processors, useful for automatic mesh generation 

(Mouhas, 1987). For the model of this chapter, these issues are irrelevant. The 

choice of data mapping is effectively determined by the formulation of the 

finite element equations. These have been derived such that systems of 

simultaneous equations are solved along levels or vertical columns. Thus, the 

long-vector format is unsuitable because of the added cost of ordering the 

nodes for the solver. For the derivative, product and diffusion terms, an 

upper-leftmost mapping allows efficient calculation of the finite element 

matrices using shift operations on the processor array. Clearly, if the 

long-vector storage mode is used, the equations should be formulated using 

the two-dimensional basis functions and the nodes numbered using vectors. 

A straightforward mapping of, 
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(x,z) = (itx, E tz) + { i + 1 , j + 1 } 
	

(7.6.1) 

k=O 

is therefore chosen for the model. Like the spectral model, the PE array size 

will influence the size of the domain if the best performance is to be achieved. 

The model domain was chosen such that there are the same number of nodes 

as processors, as this was a close match to the number of points used by the 

0R77 model. For grids larger than the array size both the crinkled (Wait, 1988) 

and sheet (Lai, 1989) mapping strategies have been successfully used for finite 

element problems. The mapping of data to the PE array is simpler than in the 

spectral model, as there is no change of representation space. 

A problem with modelling on the DAP is that once the program is written 

the number of nodes and the resolution are fixed. Tests at higher resolutions 

than the working resolution are often desirable and usually straightforward 

with well coded models on serial or vector machines. Aside from this 

limitation, DAP FORTRAN makes coding the finite element model easy as the 

processor array has the equivalent structure to the nodal arrangement for the 

model. This removes the need for lookup tables to carry nodal information, as 

required by the long-vector approach (Lai and Liddell, 1987a). The same would 

be true for a finite difference model on a rectangular domain. 

Since the model domain matches the size of the processor array, high 

efficiency can be expected during the calculation of the finite element matrices 

and their solution. Like the spectral model, there is a relationship between the 

efficiency of the algorithms and the choice of data mapping. For the 

calculation of the finite element matrices access to neighbouring nodes will be 

required. From Eq.(7.6.1), this can be achieved by using the shift functions. 

Only one mapping is optimum here, there is no choice as there was for the 

spectral model. This makes implementing the model quicker and easier. 

The model equations are written in a form suitable for the DAP. The 

equations often use the transpose of matrices for which the DAP FORTRAN 

function TRAN can be used. Translation of the model equations to DAP 

FORTRAN is hence straightforward since there is a one-to-one 

correspondence between the matrices in the model equations and a matrix as 

defined by DAP FORTRAN. The model was therefore developed quickly with 
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concise code. 

7.6.3. Model output 

Like the spectral model, periodic history output of the model fields is 

possible. The DDX software was used as in the spectral model, following the 

same procedure. For more details, see the section on model output in the 

previous chapter. 

7.6.4. Boundary conditions 

As the boundary conditions apply only to a limited area of the domain, it is 

natural to use the DAP vector mode to calculate them rather than masked 

matrix operations which take more time. The nondimensional ratio, r , used for 

the interpolation of the boundary nodes is computed in vector mode i.e. the 

value is calculated in parallel for all levels at the boundaries. 

7.7. Efficient calculation of finite element matrices 

7.7.1. Derivative terms 

The finite element solution to a derivative of the form, u u/ax is given by 

Eq.(3.5.20) for the interior nodes and, 

(1/3)[xw1  + Lxw2] = 	- u) 
	

(7.7.1) 

( 1 /3)[xwN_i + ZWN] = (UN - UN-1) 

for the boundary nodes. A DAP FORTRAN matrix function was written to 

evaluate the RHS of Eq.(3.5.20) and Eq.(7.7.1) (a matrix function is a DAP 

FORTRAN function that returns a matrix result). The difference is computed by 

shifting the matrix. The boundaries have to be calculated separately as 

different routing is required. The function was written to evaluate the matrix 

for the x derivative. A separate function could have been used for the z 

derivative but a matrix transpose on entry and exit allowed the same function 

to be used. This incurred added expense that can be estimated, since 5 

derivatives in the z direction have to be computed. The additional cost is 

2.2msecs per timestep. 
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7.7.2.. Product terms 

This section describes how the finite element matrix for the product of two 

functions is computed for the model. The general case of an irregular grid, 

where the spacing is variable in the z and z directions, is considered first. The 

semi-irregular grid of the model, with a constant spacing in the x direction, is 

then considered. 

7.711. Irregular grid 

To solve for the product of two functions, the matrix whose elements are 

given by, 

xk+1J)  2i+i 

F,1 = 
	

uva,k bl dxdz 

Zk_j 	2 _1 

(7.7.2) 

must be evaluated, where u and v are any two-dimensional functions. If the 

usual Galerkin procedure is followed, this integral can be written in the form, 

F1r,i = (1/36){ Xk_lAZI_lE P,I + 2Pi4  + 	+ 4Pk4.I 	I 

+ XkZl_l[ PlcI + 2k+ 	+ 2Pkj-4  + 4Pk+4I 	I 

..lAz[ Pk.I + 	+ 24- 12 A24- 12 A+ 4PkI+4 1 	(7.7.3) + Axk  

+ AzkAzj[Pk,I + 	+ 2k+I  + 4Pk4I+ I) 

where p is defined by, 

= U1ç1V1ç1 	 (7.7.4) 

= 

and, 

= 	+ ¼+i,u) 	
(7.7.5) 

Uk+I+I. = 	(uk+ I + UI•.f 41 4.1) 

The terms in Eq.(7.7.3) have been grouped for each grid rectangle. To evaluate 



the integral, half-integer nodes are defined, as illustrated by Fig. 34. 

To compute the integral efficiently, Staniforth and Mitchell (1978) 

advocated evaluating all contributions from a given grid rectangle to the 

neighbouring four nodes simultaneously, avoiding repeated calculations. This 

method would require evaluating the element matrix, 

C Xk+1  C 2+1  
Le 	J 	J 	uva 1 b dzdz 	for i=k,k+1; j=1,1+1 	 (7.7.6) 

Zk 	2 

so that L has four entries, one for each node. To calculate the entire matrix, 

the contributions from the element matrices are summed as, 

£= E Le 
	 (7.7.7) 

This is the usual approach for engineering problems (Strang and Fix, 1973). 

However, the four terms in Eq.(7.7.6) are the same as those for each grid 

element in Eq.(7.7.3), except for a different part of the grid. The only 

difference between DAP implementations of the two approaches is the routing 

required to align the products before the summation in Eq.(7.7.7), since on the 

DAP the products are evaluated for all the nodes simultaneously. The 

procedure to evaluate Eq.(7.7.3) is described in detail in Appendix C. A total of 

11 multiplications and 17 additions in matrix mode are required. 

7.7.2.2. Semi-irregular grid 

If the constant spacing in the z direction is taken into account, the number 

of matrix operations can be reduced. For the irregular grid the boundary 

values are computed correctly using the equation for the interior nodal values 

by using planar shifts and setting unused parts of the matrices to zero. It is 

desirable to retain this for the semi-irregular grid of the model otherwise the 

added cost of vector operations to compute the boundary values is greater 

than the saving made in computing the interior. 

The preserve the accuracy of Eq.(7.7.3) at the boundaries, two vectors, ci 

and B are introduced, 
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Figure 34. Illustration of the nodes and half-integer nodes used during the 
calculation of the integral over the product of two two-dimensional 
functions. Circles denote nodes at which elements are unity, 
crosses denote the additional half-integer nodes defined to 
calculate the product at node (k,1). 
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a=(011l... 11)T 	 (7.7.8) 

=(1111... 10)T 

such that the spacing in the z direction becomes, 

= akz, 	Ax1  = Bkx 	
(7.7.9) 

These are substituted into Eq.(7.7.3) to give, 

F1 , = (AzA_ 1 /36)1 (ak+8k)p , I + 20LkPk_.I + 2 BkPk+I 

+ 2(ak+Bk)p_ + 4akPk.I 	+ 4 BkPk+,I_ I 

+ (AxA/36)j (c1k+Bk)p, + 2akPk 	+ 2BkPk+4,I 	
(7.7.10) 

+ 2(ak+Bk)PkI+4 ± 4akPk_.I ~ 4 + 4 kPk+I+' I 

where the definitions of Eq.(7.7.4) are assumed. All the products, p, multiplied 

solely by ak 
will therefore disappear at k=O. However, since a planar shift 

south is used in the DAP FORTRAN code, these terms would be zero without 

ak. Similarly for terms multiplied solely by 5 k. Therefore, a and B can be 

removed from these terms. The remaining terms involve the sum of the 

vectors, written as, 

(7.7.11) 

The procedure to compute Eq.(7.7.10) for the model is given in Appendix C. 

The total operation count is 9 multiplications and 13 additions in matrix mode 

and 2 multiplications in vector mode. This is a reduction of 2 multiplications 

and 4 additions in matrix mode over the irregular case, achieved by computing 

the contribution from two grid rectangles along each level simultaneously. 

The boundary nodes are computed in parallel with the interior nodes. The 

saving in CPU time is 1.08msec i.e. 6.5msecs per timestep. For this particular 

calculation, the use of an irregular grid would involve only a small overhead. 
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7.7.2.3. Further improvements 

Although the above algorithm was used for the DAP model, Staniforth and 

Beaudoin (1986) devised a more efficient method of evaluating the integral 

associated with a product. The changes to the DAP algorithm foUowing their 

method are described in this section, although the algorithm was not coded. 

Staniforth and Beaudoin (1986) considered the efficient evaluation of the 

integral Eq.(7.7.2) by 3 methods; substitution of the expansions of u and v as 

above, the use of Gaussian quadrature and the use of Simpson quadrature. 

They showed that Simpson quadrature gave a significantly lower operation 

count. For an irregular grid, they. obtained an algorithm requiring 10 

multiplications and 12 additions per node, about the same as the operation 

count for the DAP algorithm on the semi-irregular grid. 

They stated that the algorithm obtained by substituting the expansions is 

computationally 4 times as expensive as the Simpson quadrature algorithm. 

This is incorrect. It is straightforward to show that the two methods are 

equivalent. Whilst it is true that to evaluate all the terms in Eq.(7.7.3) for each 

node would be expensive (which is how Staniforth and Beaudoin arrive at the 

factor of 4), repeated calculations are avoidable by computing intermediate 

results. The advantage to the Simpson quadrature method is that it leads 

directly to these intermediate results required for a reduction in the operation 

count. This is something that is difficult to see directly from Eq.(7.7.3). 

To show the two methods are equivalent, consider the one-dimensional 

case for simplicity. The result is also true in two dimensions. The integral, 

= 	
dz 

 fo U(X)V(X%(x) 

	
(7.7.12) 

where 	k are the basis functions, becomes, after substituting the usual 

expansions for u and v, from Eq.(3.5.31), 

Ik  = (1/12)E Az,K(uk  + uk+ 1)(vk + Vk+1) -f 2u,vk(t2k+tzk_1) 	 (7.7.13) 

+ Axk1(Uk + uk1)(vk + Vkl) I 

Simpson's rule is, 
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J f(z) dz = (Ax.,( /6)[ f(x.,( ) + 4f(zk+) + f(z,) 	 (7.7.14) 

where, 	 - 

1' = 	Zk ± 1(+1 ) 	

(7.7.15) 

Applying this to the evaluation of Eq.(7.7.12) gives, 

Ik = (x./ 3 )uk~ 4vk+ + (1/6)(zk + Ax_l)ukvk +  (Ax, _1/3)uIh_vk_ 	(7.7.16) 

where, 

Uk = IL(Xk), 	Uk+ f = u(zk+i) 	 (7.7.17) 

Assuming a linear basis function gives, 

Uk+ = (uk + Uk+1), 	Vk+ = 	+ vk+1) 	
(7.7.18) 

Substituting Eq.(7.7.18) into Eq.(7.7.16) gives Eq.(7.7.13). 

The algorithm for an irregular grid, following the method of Staniforth and 

Beaudoin (1986), is given in Appendix C. The operation count is now 10 

multiplications and 12 additions. The reduction by a multiplication and 5 

additions over the previous algorithm for an irregular grid means a decrease in 

CPU time of imsec or 18.5%. The algorithm is still accurate at the boundaries 

if unused elements of the matrices are set to zero and planar shifts are used. 

To explain why this algorithm is more efficient, the integral Eq.(7.7.2) is 

partially evaluated and written as, 
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1 
F1 = 	J u(z,)v(z,) dz 

o x  
fix 

1 
+ -(+) J u(z,)v(x,) dz 	 (7.7.19) 

1  f o

X 

 dx +  

If the first integral on the RHS is calculated for all nodes, this result can be 

used for the third integral. On the DAP this involves routing the result. The 

only other integral to evaluate is the second one. Hence, rather than 

computing contributions from adjacent grid rectangles, it is more efficient to 

evaluate the one-dimensional integrals along z and z, as the values of the 

integral for z1  give those for z1 . 

For the semi-irregular grid of the model, as before, the code should still 

compute the boundaries and the internal nodes concurrently. To ensure this, 

the vectors ak and 8k 
are again used. When Eq.(7.7.9) is substituted into 

Eq.(7.7.19), after the integrals are evaluated by Simpson quadrature, it is 

possible to write, 

F 1  = 	+ H 1  + H1_1 	 (7.7.20) 

where, 

Gk,I = ( 1/36)[ z(z + Az_l)Yk ]Pk.I 

+ (1/72)[ Az( 	+ A) ]( Pk+.I + Pk-4 ) 	
(7.7.21) 

H ,, = (1/72)1 AZAZiYk lPk.I+ + (
1/144)1 tzA2 J( Pk+,I+ + Pk-4.I+ ) 

The constants can be combined so that the product Azyk is a constant matrix. 

Use has again been made of the planar shift and unused elements are set to 

zero to avoid the need for the vector Yk  to be multiplied to the Pk+jI and 

Pk+4,I+4 
products so that these constants can be formed. 

The operation count for the semi-irregular grid algorithm is 8 

255 



multiplications and 12 additions. This is a saving of 0.5msecs or 12% over the 

irregular case using the Simpson quadrature approach. Compared to the 

original DAP algorithm on the semi-irregular grid of the previous section, the 

saving is 2 multiplications and 3 additions; lmsec or 21%. The overhead in 

using a fully irregular grid for the Simpson quadrature algorithms is small. 

Much of this algorithm can be followed for an implementation on a serial 

or vector computer. However, the boundary nodes would have to be computed 

separately from the interior nodes for both the irregular and semi-irregular 

grids. The DAP algorithm exploits the hardware boundary conditions and 

computes the boundary and interior nodes simultaneously. The algorithm is 

formulated such that there is no overhead in calculating the values at the 

boundaries, as might at first be expected. 

7.7.3. Diffusion terms 

7.7.3.1. Calculation of the eddy diffusivity 

Before discussing the evaluation of the integrals for the diffusion terms, 

the calculation of the eddy diffusivity, ice,  used by the integrals is considered. 

This parameter is dependent on the local potential temperature difference as 

given by Eq.(7.2.7). In the model, the vertical potential temperature gradient is 

computed for the advection term. The potential temperature difference 

between two levels is set by, 

= 	 (7.7.22) 

where l=0,..63. Boundary conditions set e 2  to zero at the bottom boundary. 

The equation for the eddy diffusivity becomes, 

Kej i  = K0 
	

e z  > 0 

ice 11  = K0[ 1 + LIO,I 113  I 	, e 2  < 0 	 (7.7.23) 

where, 

2 1/3 L = C( g / ce0ic0 ) 

with D at J=O equal to zero. 

(7.7.24) 

To compute Ke  at all the nodes, first set them equal to the background 
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field K0. Then assign a logical matrix such that elements are TRUE where e 2  is 

negative. If any of the elements of this matrix are TRUE, the correction 

Eq.(7.7.24) is added for which the logical matrix is used as a mask. 

7.73.2. Semi-irregular grid 

Consider the evaluation of the integral, 

Xk+1Z+1 

Fk, = 	 —[Ke  (z,z)—]akbl dxdz 	 (7.7.25) 
.  f 

arising from the diffusion term in the x direction. Constants have been ignored 

for clarity. Following the usual procedure, assuming an irregular grid gives. 

= (z_ 1 /6Az., _ 1 )( 2Kk_,I_xk_1,I- + 1Ck_,Ix4k_1.I ) 

- (Lzj_ l /6Axk)( 2Kk+,I_x4kI_ + Kk+ 4I x4j ) 	
(7.7.26) 

+ (Az/ 6 xk_l)( 2Kk_.I+x$k_1,I+ + Kk_+,Ix4k_1.I ) 

- (z/6xk)( 2Kk+I+141+ + 	 ) 

where the subscript has been omitted from 1e 
for clarity. As for the algorithm 

for the product of two functions, the terms in the above equation are grouped 

according to their contribution from an individual element. Values at the 

half-integer nodes are defined as the mean of neighbouring nodal values as 

for the product term, the difference operator &, is given by Eq.(7.3.34). 

The algorithm for the irregular grid is not presented since the overhead to 

the semi-irregular grid is similar to that found for the evaluation of the 

product term matrix. To derive the algorithm for the semi-irregular grid case, 

the vectors a and B. given by Eq.(7.7.8), are again introduced to compute 

boundary and interior values simultaneously. Writing, 

1 / Xk1 = Uk / Ax, 	1 / Azk  = 8 k / Ax 	
(7.7.27) 

and defining, 
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PIcI = 

(7.7.28) 

and substituting into Eq.(7.7.26) gives, 

= (A_ 1 /6z)[ ak( Pk-1,I-1 ± q_I ) - Bk( Pk,[-1 + q 1  ) 1 	(7.7.29) 

+ (/6Az)[ ak( Pk-1I + q_1I ) - Bk( pk.I + q,1 ) 

The mapping expressions for p and q are, 

pk,I ( k, 1) + { k+1, 1+1 } k,1_0,..N-1 	 (7.7.30) 

q,1 	: ( k, 1) - 	{ k+1, 1-4-1 } k=0,..N-1; 1=0,..N 

Using these expressions it can be seen that ak  is unnecessary since a planar 

shift south is required for the p and q coefficients anyway. The Bk  term is also 

unnecessary as, from Eq.(7.7.30), p and q are not defined at kN So by setting 

unused elements of matrices to zero the need for the a and B vectors is 

removed. 

If the differences, 

U1ç1 = 	- Pici 	
(7.7.31) 

Vk. I = 	- qkl 

are computed then Eq.(7.7.29) is given by, 

F11  = (Lz 1 _ 1 /6Lx)[ 	+ v1 ] + (Az/6z)[ u I,,I  + vk'j ] 	 (7.7.32) 

The values of the eddy diffusivity at the half integer nodes are computed at 

the start of each timestep and stored. The total matrix operation count is 6 

multiplications, 4 additions and 4 subtractions. 

For the term in the z direction, the integral, 



Xk+1Jl i+1a = S 	dzdz 
3z 	z 

k1 	21-i 

(7.7.33) 

has to be computed. The same procedure as before is followed; integrate by 

parts and assume an irregular grid to introduce the vectors cz and B. This 

leads to the equation, 

Gk,I = (Az/6tu_i)[ akpk_1,I_1  + BkP,1-1 + Ykqk,I_1 1 	 (7.7.34) 

- (Ax/&&z1)[ akpk_1,I  + Bkpk,I + Ykqk,I I 

where, 

Pig1 = 2Kk++Az4k++I 
	 (7.7.35) 

= 

analogous to Eq.(7.7.28) where 1k  is given by Eq.(7.7.11). At k=O, the first terms 

in the square brackets in Eq.(7.7.34) vanish as c&k=O. However, these terms 

would be zero anyway from the planar shift south applied to the matrix 

holding the coefficients. The same applies to the terms multiplied by Bk as 

at k=N by definition. Therefore, Eq.(7.7.34) becomes, 

Gig1  = [Az/6z_1IR1_1 - [Ax/6z1]R1(,1 	 (7.7.36) 

where, 

R1 = p11 ± Pk-1,I + 1q1 	
(7.7.37) 

The only difference from the calculation of the x derivative is the calculation 

of and G 1. The vector j has to be retained to ensure the boundary and 

interior values are computed concurrently. 

The operation count for this algorithm is 7 multiplications, 3 additions and 

3 subtractions in matrix mode. The calculation of the z derivative term 

requires less time than that for the x derivative despite the matrix 

multiplication required for the vector x Like the product term algorithm, 

efficient use of the DAP processor array is made. 

The approach of Staniforth and Beaudoin (1986) can be used to derive a 

259 



more efficient algorithm for the diffusion terms. Using their approach, the 

contributions formed by integrals along each level and half integer level are 

evaluated rather than from each grid rectangle. The changes to the algorithm 

are not described in detaill. as it was not used for the mode! or coded in DAP 

FORTRAN. However, it is possible to show that for the z derivative term, 4 

multiplications, 3 additions and 4 subtractions in matrix mode are required. 

This is a reduction of 2 multiplications and 1 addition, or 24% of the CPU time 

of the DAP algorithm described above. 

7.8. Efficient solution of the finite element equations 

The final aspect to the implementation of this model on the DAP is the 

solution of 64 sets of 64 tridiagonal simultaneous equations. Each timesteP 

requires the solution of 15 such sets and so efficient algorithms are essential. 

The solution to the equation, 

(7.8.1) 

is required where A takes two forms. For the streamfunctiOn equation, 

Eq.(7.3.18), the leading diagonal is the sum of the other diagonals so .4 is not 

diagonally dominant. For all other equations, A is either the horizontal or 

vertical mass matrix in which the ratio of the leading diagonal to the lower 

and upper diagonals is 1:4. This is approximate for the vertical mass matrix 

with a nonuniform vertical spacing. Hence these systems are diagonally 

dominant. 

Hockney and Jesshope (1981) studied the performance of 3 algorithms; 

Gaussian elimination applied in parallel, a serial cyclic reduction algorithm 

applied in parallel and a parallel cyclic reduction algorithm applied in parallel. 

Their analysis showed that for the solution of m systems of rz equations On 

the DAP, the parallel cyclic reduction algorithm is more efficient when mn is 

less than or equal to the number of processors, as for this model. As mn 

increases, the analysis showed that there is some value at which it is more 

efficient for each processor to solve a tridiagonal system using a serial 

algorithm. Wait (1988) and Lai and Liddell (1987a) also discussed methods for 

solving Eq.(7.8.1) on the DAP when mn is greater than the number of 

processors. 

The cyclic reduction algorithm has been used for a tridiagoflal solver 
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routine in the DAP subroutine library (DAPLIB). Generally however, it has been 

found that iterative methods are more suited to the DAP, mainly because 

parallel versions of these algorithms are more efficient (Lai and Liddell, 1987). 

The Jacobi method (described in chapter 21 is one example and this was used 

for another subroutine in DAPLIB (Bowgen, 1981a,b). Recently, the 

preconditioned conjugate gradient algorithm has received much attention and 

has been shown to be an efficient solution method for finite element problems 

on parallel machines (Wait, 1988; Lai and Liddell, 1987b; Adams, 1983). In the 

sections that follow, the performance of the DAPLIB routines is evaluated and 

a preconditioned conjugate gradient algorithm developed. 

The timings of the routines in the following sections were made by calling 

them in a DO. loop 104 times. The cost of the loop itself was measured and 

found to be 40msecs. Since the DAP CPU times were reported to the nearest 

second, this introduces a larger error than the DO loop. Therefore all times 

reported are given subject to an error of ±O.lmsecs. In the following tests, 4 
is set equal to the horizontal mass matrix with Ax=1 for convenience. The 

matrix bwas set to, 

b(ij) = sin[1T(j-1)/128} cos[1T(j-1)/64] 	for all i and 5 	 (7.8.2) 

78.1. DAP library subroutines 

The cyclic reduction algorithm used for the DAPLIB routine F04TRIDS64SQ 

is described in chapter 2 and by Whiteway (1979). It is a direct method and 

completes in 1092n  steps for a nxn system. When timed for the test problem, 

this routine took 26.6msecs. 

The iterative solver F04ITTRIDS64SQ in the DAP library uses the hybrid 

Jacobi method, described in chapter 2 and Bowgen (1981), in which a single 

pass of the cyclic reduction algorithm is used before iterating using the Jacobi 

method. This routine was timed and converged in 20.1msecs after 11 

iterations. 

This routine was optimized by altering the code so that the convergence 

test was first done after the g
th iteration. When timed, the optimized version 

converged after 11 iterations in a time of 18.5msecs. This is 30% faster than 

the cyclic reduction DAPLIB routine and therefore preferred for the model. 
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However, the streamfunction equation cannot be solved this way as it is not 

diagonally dominant, so there must be at least one use of the direct method 

solver. 

7.8.2. Conjugate gradient algorithm 

The review by Lai and Liddell (1987a) showed that the groups in the 

U.K. using the DAP for finite element problems have all concentrated on the 

conjugate gradient (CG) algorithm for their solution method. The DAP Support 

Unit at Queen Mary College employed the method in their finite element 

library (Davies, 1985). The CO algorithm is well suited to parallel 

implementation on the DAP. 

In this section, the tridiagonal matrix equation Eq.(7.8.1) is solved using the 

CG algorithm. This is novel as engineering problems involve matrices with 

greater bandwidth and it is not clear how efficient the CO algorithm will be 

compared to the DAPLIB solvers timed in the previous section. The routine 

written for the model solves 64 sets of 64 equations each, all in parallel. 

The method of conjugate gradients was first proposed by HestefleS and 

Stiefel (1952) for solving a set of simultaneous linear equations having a 

positive definite matrix of coefficients. It is a direct method as convergence is 

guaranteed in n steps for an nxn system. However, convergence usually 

occurs in less iterations. Golub and Van Loan (1983) give a detailed 

description of the CO algorithm. 

The CO procedure given below is taken from Lai and Liddell (1987a) but 

written to take account of repeated calculations. Matrix and vector notation is 

omitted for clarity. The matrix A and Lare those of Eq.(7.8.1). The solution at 

each iteration is given by .Lk and Lk and £k 
are known as the residual and 

search direction respectively, whilst a and B are vectors. The CO algorithm is, 

z% =o, 	rO =b, 	PO =rO , 

w = 	 y = 

For k=lton 

q = Apk_, 

= Xk_1 	apk_l 	
(7.8.3) 

tk = 	- 
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= 
If ,'(y') / w < C StOp 

B = y '  I !l 
- rk -I- 8  Pk- 1 

Y = 

The angle brackets denote the inner product and c is the accuracy required 

for convergence. The calculation of the matrix product, and the 

inner products can be computed efficiently using DAP FORTRAN as described 

by Lai and Liddell (1987b). 

When timed for the test problem, the CG routine converged after 10 

iterations in a time of 46.7msecs. So although fewer iterations than the 

DAPLIB iterative solver are required, the complexity of each iteration makes the 

algorithm too expensive. 

7.8.2.1. Preconditioning 

The convergence rate of the CG algorithm is determined by the condition 

number of A, K(A), (Adams, 1982). If 4 is symmetric, its condition number is 

given by the ratio of the maximum and minimum eigenvalueS (Golub and Van 

Loan, 1983). 

The convergence rate can be improved by multiplying Eq.(7.8.1) by a 

preconditioning matrix ff' to give, 

£14= £1L 	
(7.8.4) 

such that the condition number of Z1 4 is less than that of A. This will be 

true if P-1  is approximately equal to 4. The choice of £ is clearly important 

and many authors have put forward possible forms for (e.g. Lai and Liddell, 

1987a). Furthermore, the choice of £ partly depends on the problem to be 

solved and the machine in use. 

7.8.2.2. Cyclic reduction preconditioner 

Like the Jacobi iterative solver, the cyclic reduction algorithm can be 

applied to Eq.(7.8.1) before the CG algorithm is used. This is equivalent to 

multiplying by a preconditioning matrix as in Eq.(7.8.4), and solving the 

transformed system, 
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4':= V 	 (7.8.5) 

This will only improve convergence if K(4')<KLA). Schendel (1984) finds the 

eigenvalues of a matrix similar to 4 and shows that the condition number 

depends on the diagonal dominance of A. As the cyclic reduction algorithm 

increases the diagonal dominance, it can therefore be used as a 

preconditioner. 

A routine that used the cyclic reduction method once before applying the 

CG algorithm Eq.(7.8.3) was written. The use of the cyclic reduction method 

adds a slight overhead to the CG algorithm itself during the calculation of the 

matrix product Ap, as the upper and lower diagonals are further away from 

the main diagonal, increasing the routing for this operation. 

When timed for the test problem, this routine took 5 iterations to converge 

in a time of 28.4msecs. This is an improvement by a factor of 1.7 but not 

enough to achieve a better performance than the DAPLIB routines. Timings of 

the routine were also made using several passes of the cyclic reduction 

method before using the CO algorithm. With 2 passes, the solution converged 

in a CPU time of 23.4msecs after..3 iterations. With 3 passes, the CPU time 

was 22.8msecs after 2 iterations. The CPU time is now less than the DAPLIB 

solver based on the cyclic reduction method. 

As the cyclic reduction algorithm is used for tridiagonal systems, it has not 

been used to improve the convergence of the CO algorithm by any of the 

previously cited references. However, for this particular application, it is 

clearly effective. To improve on the time for the optimized DAPLIB Jacobi 

solver, the preconditioning applied to Eq.(7.8.1) must be computationally 

inexpensive and the CG algorithm must converge very rapidly. 

7.8.2.3. rn-step Jacobi preconditioner 

It is possible to write the CO algorithm Eq.(7.8.3) to include a 

preconditioning step at each iteration (Golub and Van Loan, 1983). The 

algorithm becomes, 

XO  = 0, 	ro  = b, 	w = 

Solve Pz. = ro, 	Y = 

PO = 
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For k = 1 to n 

q = Apk_l 

cx = y I <p-1,q> 

= Zk1 + apkl 

rk 	- aq 

If /<t$j1> / w < E StOP 

Solve Pzk 	rk 

= 

B = y'  / y 

=Zk + B Pk-  1 

(7.8.6) 

The convergence is accelerated by the solution of the matrix equation, ZCrat 

each iteration, where P is the preconditioning matrix. 

Lai and Liddell (1987b) studied the implementation of the preconditioned 

conjugate gradient (PCG) algorithm Eq.(7.8.6) on the DAP for engineering 

problems with several preconditioflerS. They concluded that, for problems 

requiring one processor per node, the in-step Jacobi preconditiOner is 

preferred. Adams (1982, 1983) studied in detail the conditions for rn-step 

preconditioners to be applicable and effective in solving symmetric positive 

definite systems and showed that these conditions were met by the Jacobi 

scheme. Adams (1982) also studied the implementation of these algorithms 

on the MIMD finite element machine. 

Using a rn-step Jacobi preconditiofler, the equation 	is solved by m 

steps of the Jacobi scheme Eq.(2.6.13). To see the form of L following Adams 

(1982), A is written as, 

4 	2 	
(7.8.7) 

=L- 

where Q=-(L+ .o from Eq.(2.6.13). Applied to the solution of the equation 4i 

this gives. 

(m) = 2z(m1) +:n, 	 (7.8.8) 

Eq.(7.8.8) can be written as, 

iL (m) = =Q ML (0) + ( 2 mt  + m2 + 	+ 2 +:L) L. 	 (7.8.9) 

If the initial guess, b 0 }, is chosen to be zero, Eq.(7.8.9) becomes, 
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(2 M-1  + 	+ 	+ 	= . 	 (7.8.10) 

so that the preconditioning matrix is, 

P 	(Qml + ... +I) 	 (7.8.11) 

Adams (1982) shows this result holds for a general class of iterative schemes 

based on a splitting of A. 

The convergence rate will be improved if K(ff'4<K(4. It can be seen 

from Eq.(7.8.10) that as m increases, m) tends to Land E tends to A. As £ 

becomes a better approximation to 4 so K(Z'4) will reduce as desired. 

There will be some value of m however, for which the increase in the cost 

of the precoñditioner offsets the reduction in CPU time from the increased 

convergence. This value of m will depend on the preconditiofler in use but 

also on the computer. For example, the relative cost of the arithmetic to the 

cost of the communication. 

Dubois et al. (1979) proved that the rn-step preconditioner can reduce the 

number of iterations needed by a 1-step PCG algorithm by a factor of m at 

most. In practice, this theoretical limit may not be reached. The extent to 

which it is true depends on the distribution of the eigenvalueS of A. However, 

the implication is that rn-step preconditioning will be most effective when m is 

small. 

For the tridiagonal system Eq.(7.8.1), it is only worthwhile considering 

simple iterative procedures as preconditioners if the time for the optimized 

DAPLIB routine is to be improved upon. Therefore the Jacobi scheme is used, 

following the recommendations of Lai and Liddell (1987b). To implement the 

preconditioner, the algorithm Eq.(7.8.6) is used with, 

Pzk=rk 

replaced by, 

O) = 0 

For I = 1, m 

Zk 
m) 	Qm-l) + tk 

(7.8.12) 
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A routine using the algorithm Eq.(7.8.6) with the rn-step preconditioner. 

Eq.(7.8.12), was coded and timed for different values of m. The results are 

presented in Table 14. 

The optimum value of m is 7, although this gives a time greater than both 

the DAPLIB solvers and also the CG algorithm with the cyclic reduction 

preconditioner. As expected, the greatest improvement is for small values of 

in. For example, with only one preconditioning step, the number of iterations 

required reduces from 10 to 6. The CPU time however only reduces by 20%. 

This is because the preconditioner increases the cost of each CO iteration, 

whereas the cyclic reduction algorithm was used only to precondition the 

matrix equation before the CG algorithm and did not alter the CO algorithm 

itself. The use of the cyclic reduction method to precondition the equations 

before the CG algorithm is clearly more effective. 

7.8.2.4. Combined preconditioner 

Since the cyclic reduction preconditioner is applied before the CO 

algorithm Eq.(7.8.3) is used, it is possible to combine the cyclic reduction 

preconditioner with the rn-step Jacobi PCG algorithm Eq.(7.8.6). Both methods 

have been seen to improve the convergence rate and their combination is 

straightforward. The introduction of the cyclic reduction method adds an 

overhead to the initial calculations and the PCG iteration since, as explained 

previously, the amount of routing required for the calculation of 4&increaSeS. 

A routine combining these two techniques was written and timed. The 

cyclic reduction preconditioner was used once. The results are presented in 

Table 15. As expected, for rn1 to 7, the use of the cyclic reduction method 

reduces the number of iterations for convergence. Again, the effect is most 

noticeable for small values of in, with a factor of 2 decrease in the number of 

iterations. The CPU times are all less than the cyclic reduction method DAPLIB 

routine (the time for m=5 is the same). Also, there are now two values of m 

for which the CPU time is below that of the optimized iterative DAPLIB solver 

(18.5msecs). In these cases the algorithm halts at the first convergence test. 

This is a relatively large reduction in the CPU time compared with two 

iterations as the code to compute a new search vector Pk and solve Mzrk  is 

not executed. Using this algorithm with m7 instead of the optimized DAPLIB 

solver would mean a saving of 6.7% in the CPU time of the model. 
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Number of Iterations to Time 
preconditioning convergence (msecs) 
steps 

1 6 38.9 

2 5 38.1 

3 4 35.1 

4 3 30.0 

5 3 33.2 

6 3 36.4 

7 2 27.0 

8 2 29.2 

9 2 31.3 

10 2 33.4 

Table 14. 

The CPU time for a conjugate gradient algorithm using a rn-step 

Jacobi preconditioner. 
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Number of' Iterations to Time 
preconditioning convergence (msecs) 
steps 

1 3 24.2 

2 2 20.1 

3 2 22.3 

4 2 24.4 

5 2 26.6 

6 1 17.2 

7 1 18.2 

Table 15. 

The timings of a rn-step Jacobi preconditioned conjugate gradient 

algorithm. One pass of the cyclic reduction is used to precondition 

the equations initially. 
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It was previously found that several uses of the cyclic reduction method 

continued to reduce the iterations required for convergence. Therefore the 

algorithm was modified to include two and three passes of the cyclic 

reduction algorithm. The timings are presented in Table 16 and Table 17. 

Table 16 shows that with two passes of the cyclic reduction algorithm, one 

iteration of the PCG algorithm can be achieved with only 2 preconditioning 

steps. The CPU time shows a slight improvement over the best time reported 

in Table 15. For the tridiagonal systems of this model, to be competitive with 

the DAPLIB optimized solver, the PCG algorithm must clearly converge in one 

iteration. When the cyclic reduction method was applied a third time, Table 16 

shows the routine becomes more costly than with 2 passes. The cyclic 

reduction method is more efficient as a preconditioner because it gives a 

greater reduction in the CPU time for less additional work. 

It should be noted that this PCG algorithm is specific to tridiagonal matrix 

problems. Furthermore, the use of the Jacobi preconditioner implies that for 

best performance the equation A should be diagonally dominant. The 

streamfunction would therefore have to be solved using the cyclic reduction 

DAPLIB routine. The use of the cyclic  reduction algorithm to precondition the 

equations is only possible with tridiagonal systems. It is not useful for 

matrices with a greater bandwidth. 

Finally, the convergence rate of the CO or PCG algorithm might be 

improved by using the value of the variable to be solved at the previous 

timestep if it is available. The algorithms Eq.(7.8.3) and Eq.(7.8.6) have to be 

modified to do this. The initial assignments, z0=0 and are replaced by 

and r0=b-Ax0 . The technique would only have been possible for a 

small number of the matrix equations solved in the model since not all results 

at the previous timestep were available. 

7.9. Storage requirements and performance 

7.9.1. Storage requirements 

The output from the DAP consolidator can be used to produce statistics on 

the use of the DAP store by the model (Table 18). The model's COMMON blocks 

take up a third of the available DAP store, so the model fits easily into the 
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Number of 	 Iterations to 	Time 
preconditioning 	convergence 	(msecs) 
steps 

1 	 2 	 21.9 
2 	 1 	 16.8 

3 	 1 	 17.8 

Table 16. 

As Table 15 but with two passes of the cyclic reduction method 

initially. 

Number of 	 Iterations to 	 Time 
preconditioning 	convergence 	(msecs) 
steps 

1 	 I 	1 	 I 	19.6 

Table 17. 

As Table 15 but with three passes of the cyclic reduction method 

initially. 
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Storage area 	Size 	Number of 	Percentage 
(kbytes) 	planes occupied 	of total 

Program code 69.69 140 3.4% 

System 12.0 24 0.6% 

Workspace 18.0 36 0.9% 

Stack 1308.0 2616 63.9% 

User COMMON 640.0 1280 31.2% 

Total 2047.69 4096 

Table 18. 

The storage required for the DAP finite element model. Values given are 

for the main sections of the binary file, as given by the DAP consolidator 

listing. 
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DAP. 

The consolidator output also gives the space required for the model's 

individual COMMON blocks, presented in Table 19. The largest fraction of the 

user COMMON data is used for the matrices that hold the three diagonals for the 

z and z mass matrices and the streamfunction equation. For efficiency in the 

tridiagonal solvers, each diagonal is replicated in every column of its matrix. If 

it was necessary to economize on use of memory, these diagonals would be 

stored in vectors and broadcast across the PE array as required. The matrix 

constants would then occupy 19 planes instead of 577. However, the CPU 

time per model step would increase. 

The finite element method is more suited to machines with a limited 

memory (2Mb for the DAPs at Edinburgh University) and a slow I/O than the 

spectral method, as there are no large arrays required. With about half the 

DAP store still available, there is more space to increase the number of nodes 

in the finite element model than there was for the spectral model. 

7.9.2. Model timings 

In this section, the CPU time per model step is presented for each different 

algorithm used to solve the matrix equations. These timings were performed 

by running the model for 1000 steps, using a timestep of 30 seconds. The 

mid-tropospheric jet and surface jet initial conditions were used to see if 

there were any differences caused by the initial conditions. 

The results for the mid-tropospheric jet case are presented in Table 20. 

Those for the surface jet case are shown in Table 21. The DAP time for each 

run was approximately 6 minutes and was reported to the nearest second. 

Thus the timings presented can be considered accurate to imsec. The tables 

show the algorithm used to solve each of the 3 types of matrix equation; r 

direction, z direction and the streamfunction. Also presented with each 

algorithm is the average number of iterations required for convergence, as 

monitored by the model. 

There are several interesting points arising from these results. The 

unoptimized DAPLIB Jacobi routine takes less iterations for convergence, on 

average, than in the test case. The average number of iterations when the 

optimized version of this routine is used, however, is greater, although the 

273 



Use of store 
	Size 	Planes 	Percentage 

(kbytes) 	 of total 

Main variables 96.0 192 15.1% 

Auxiliary variables 96.0 192 15.1% 

Work COMMON 54.0 108 8.5% 

Matrix constants 288.5 577 45.3% 

Vector constants 4.5 9 0.7% 

Scalar data 0.5 1 0.08% 

Logical masks 0.5 1 0.08% 

Output COMMON 96(+1) 192(+2) 15.2% 

Total 637.0 1274 

Table 19. 

The storage requirements for user data for the finite element model. The 

output COMMON block includes the size of the dummy COMMON (in 

brackets) required to page align the output COMMON. This offset varies 

with program size. 
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;treamfunction 
Ugorithm Iterations 

x direction 
Algorithm Iterations 

z direction 
Algorithm Iterations 

Time per mode] 
step (msecs) 

1 	6.0 1 	6.0 1 	6.0 493 

1 	6.0 2 	9.677 2 	9.823 376 

1 	6.0 3 	10.411 2 	9.814 373 

1 	6.0 3 	10.399 3 	9.970 364 

1 	6.0 4 	1.194 4 	1.614 398 

4 	44.0 4 	1.200 4 	1.429 

1 	6.0 5 	1.000 5 	1.000 372 

Table 20. 

The CPU time per model step for various choices of algorithms to solve the 

three types of matrix equations indicated. Initial conditions are the 

mid-tropospheric jet case. The key for the algorithms is: 

DAPLIB cyclic reduction algorithm. 

DAPLIB hybrid Jacobi iterative algorithm. 

Optimized DAPLIB Jacobi iterative algorithm. 

2-step preconditioned conjugate gradient algorithm. 

3-step preconditioned conjugate gradient algorithm. 
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Streamfunction x direction z direction Time per model 

Algorithm Iterations Algorithm Iterations Algorithm Iterations step (msecs) 

1 	6.0 2 	10.158 2 	9.889 382 

1 	6.0 3 	10.470 3 	10.142 366 

1 	6.0 5 	1.0 5 	1.0 372 

Table 21. 

The CPU time per model step for various choices of algorithms to solve the 

three types of matrix equations indicated. Initial conditions are the surface 

jet only case. Key to the algorithms is the same as Table 20. 
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CPU time per model step is still less. The reason for the average being 

greater is because the minimum iterations for this routine is 9, the number of 

iterations performed before the convergence test is carried out. However, the 

standard DAPLIB routine computes an estimate of the minimum number of 

iterations required. If the optimized routine has a higher average, some matrix 

equations take fewer than 9 iterations to converge. If the model was run on 

the DAP again, an iterative routine with a test for convergence after every step 

should be used, with the model monitoring the maximum and minimum 

number of iterations required for all equations. From this, the routine could be 

optimized by adjusting the minimum number of iterations as necessary. The 

average number of iterations for convergence for the solution of the z 

direction equations shows much less increase than for the x direction 

equations when the optimized routine is used. This is because the nonuniform 

vertical spacing of the model gives a tridiagonal matrix in which the ratio of 

the main diagonal to the upper and lower diagonals is different from the ratio 

for the uniform spacing in the x direction. The implication is therefore, that 

convergence in 8 iterations or less occurs less frequently. 

An interesting feature of these results is that when one type of equation is 

solved using a different algorithm, the average number of iterations changes 

for the other type of equations for which the algorithm is not changed. There 

are several examples of this in Table 20. When the z direction equations are 

solved using the optimized Jacobi routine instead of the standard DAPLIB 

routine, the average number of iterations for the z direction equations 

decreases. Similarly when the streamfunction equation is solved using the 

PCG algorithm, the averages for the x and z direction equations change. In all 

cases, the changes are slight but show the effect of the precision of the 

solution on the model fields. The results from these runs were compared. 

Occasional differences in the placement of contours drawn in some fields 

were noted but there were no significant differences seen on runs of 20 hours 

duration. 

When the 2-step PCG algorithm was used, the average number of 

iterations for convergence for the x and z direction equations was greater than 

one, implying that sometimes more than one iteration is required (Table 20). 

When this occurs, a new search vector is computed. This is costly and Table 

20 shows that the 2-step PCG routine performs worse than the standard 
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DAPLIB routines. It can also be seen that the average number of iterations for 

the z direction equations is greater than for the x direction equations, as 

expected. Thus, it becomes necessary to use a 3-step PCG routine. When 

tested previously, this stilt gave a faster time than the optimized DAPLIB 

Jacobi routine. From Table 20, this is no longer the case, as fewer iterations 

are required in the model using the optimized DAPLIB Jacobi routine than 

when tested. However, the 3-step PCG algorithm always requires one 

iteration. It is puzzling however, that whilst the number of iterations required 

for convergence in the DAPLIB Jacobi routines shows a decrease from the test 

case, the 2-step PCG algorithm, which uses a Jacobi preconditioner, shows an 

increase. No explanation can be offered for this. The model needs to be run 

on the DAP again to identify the equations for which a different number of 

iterations to the test case is required. The use of the 3-step instead of the 

2-step PCG algorithm reduces the model CPU time by 6.3%. 

The performance of the PCG algorithm when applied to the streamfunction 

equation is also shown in Table 20. There is a large increase in the number of 

iterations required as the mass matrix is not diagonally dominant. Only the 

cyclic reduction algorithm is suitable for this equation. 

For the algorithms used here, the optimized DAPLIB iterative solver gives 

the best performance. This is contrary to the test results given previously. 

However, both the DAPLIB and PCG routines could be optimized further by 

examining the iterations required for convergence for every equation solved. 

It may be possible to reduce the computation in each routine for some of 

these equations. However, the gains in performance are likely to be small as 

are the relative performances of one routine to the other. The optimized 

DAPLIB routine is preferred for its performance and algorithmic simplicity. 

Table 21 shows that the performance of the optimized and unoptimized 

Jacobi solvers and the CPU time per model step does depend on the initial 

conditions. When the unoptimized DAPLIB Jacobi routine is used, there is an 

increase in the average number of iterations for the z and z direction 

equations, increasing the CPU time per model step of 1.6% compared to the 

mid-tropospheric jet initial conditions. Without more detailed statistics from 

the model, it is impossible to say which equations are causing these increases. 
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7.93. Performance 

The timings of the subroutines in the model are given in Table 22. Eaôh 

model timestep is divided into four scans similar to the spectral model. The 

first scan computes diagnostic variables, such as the velocity components and 

eddy diffusivity, for that timestep. The other scans integrate forward in time 

the vorticity, potential temperature and jet velocity, in that order. By 

computing each variable in turn, workspace requirements are minimized. It 

was difficult to time the four scans accurately outside the model because the 

behaviour of the iterative solvers is data dependent. The values given in Table 

22 for SCAN]., SCAN2, SCAN3 and SCAN4 are therefore estimates, calculated using 

measured timings of the routines called by the four scan routines. These 

estimates assume the use of the 3-step PCG routine which always executes in 

the same time. 

The other routines in Table 22 were timed outside the model. Each was 

called in a Do loop and timed over a large number of calls (in the range 

5000-500000). The timings presented allow for the cost of the DO loop but 

because the system reported the DAP CPU time to the nearest second, each 

time is subject to a possible error of ±1 in its last digit. 

The solution of the matrix equations takes the greatest percentage of the 

CPU time per model step. The percentage of the model CPU time spent 

solving the matrix equations is shown in Table 23. There are 15 matrix 

equations solved each timestep. The average CPU time per call for the 3-step 

PCG and cyclic reduction DAPLIB routines are taken from the timings 

presented in the previous section. The average CPU time per call for the 

Jacobi routines was estimated from the cost of 1 iteration and the average 

number of iterations given in Table 20. As the streamfunction equation is 

always solved using the same algorithm, the percentages are shown with and 

without this calculation taken into account. The lower percentage is therefore 

the relative cost of the solution of the z and z direction equations only. 

The solution of the matrix equations takes 74% to 81% of the CPU time of 

the model. The solution of the z and z direction equations alone takes 67% to 

68% (excluding the figure for the cyclic reduction algorithm). 

The relative costs of solving the -matrix equations for the surface jet initial 

conditions run are the same as for the mid-tropospheric jet initial conditions 
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00 
C 

Routine 	Time per 
name 	I call (msec) 

Main subroutines called 

SCAN I 59.55 M3XM, SOLVER(3), DEVRHS(2) 
SCAN2 97.98 SOLVER(4), DEVRHS(3), PRODRHS(2), DIFFX, DIFFZ, TIMESTEP, TIMEFILTER, VORBNDRY 
SCAN3 97.78: SOLVER(4), DEVRHS(2), PRODRHS(2), DIFFX, DIFFZ, TIMESTEP, TIMEFILTER, THETABNDRY 
SCAN4 99.92 SOLVER(4), DEVRHS(2), PRODRHS(2), DIFFX, DIFFZ, TIMESTEP, TIMEFILTER, YVELBNDRY 
DEVRHS 0.724 NONE 

PRODRHS 5.82 NONE 

DIFFX 3.35 NONE 
DIFFZ 3.18 NONE 

M3XM 1.39 NONE 

THETABNDRY 3.20 RATIO 

VORBNDRY 1.45 NONE 

YVELBNDRY 5.09 RATIO(2) 

RATIO 1.86 NONE 

TIMESTEP 0.362 NONE 

TIMEFILTER 0.914 NONE 

Table 22. 

The execution times of the main subroutines of the finite element model and the subroutines that each calls. 

* indicates these times are estimates, based on the time for the 3-step preconditioned conjugate gradient algorithm. 



Algorithm Average time Time 
	

Percentage of time per step 
per call 	per step 	Including solution Excluding solution 

(msecs) 	(msecs) 	of sireamfunction 	of streamfunction 

1 26.6 493 80.9% 	 75.5% 

2 18.4 376 75.6% 	68.3% 

3 17.4 364 74.2% 	66.9% 

5 17.8 372 74.1% 	67.0% 

Table 23. 

The percentage of the CPU time per model step that is spent solving the 

matrix equations. Percentages are shown for different choices of 

algorithm. The streamfunction equation is always solved using the same 

algorithm, percentages with and without this taken into account are shown. 

See Table 20 for the key describing the algorithms. Results are for the 

mid-tropospheric jet case. 
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and are therefore not shown. These results show that optimization efforts will 

give the best results if applied to the tridiagonal solvers. 

Section 7 of this chapter described improvements to the algorithms that 

compute the finite element matrices for the product and diffusion terms. 

Using the timings for the routines PRODRHS, DIFFX and DIFFZ given in Table 22 

and using a CPU time per model step of 364msecs jassurning the optimized 

DAPLIB Jacobi routine is used) the calculation of the finite element matrices 

for the product and diffusion terms taken 15% of the CPU time per model 

step. It was estimated in section 7 that the CPU time for the calculation of the 

finite element matrix for the product (PRODRHS) could be improved by 21%. 

For the z derivative diffusion term the improvement was estimated at 24%. The 

improvement for the z derivative diffusion term was not estimated but is 

assumed to be the same as the x derivative term. The reduction in the CPU 

time per model step if these improvements were made would be 12.Omsecs, a 

decrease of 3.3%. 

.It is interesting to see the relative cost of computing the boundary 

conditions, which are computed in vector mode. Adding up the cost of the 

routines THETABNDRY, VORBNDRY and YVELENDRY, assuming a CPU time per 

model step of 364msecs, these routines take 2.7% of the model CPU time. 

7.9.4. Parallel processing performance 

As for the spectral model, it is necessary to study the finite element model 

from a parallel processing point of view. It is obvious that this model makes 

more efficient use of the DAP PE array than the spectral model. The available 

parallelism does not alter during a model timestep in the same way that it 

does in the spectral model, as there are no transformations from gridpoint to 

spectral space. In the finite element model, as each processor is assigned a 

node, there is no further parallelism to be gained from calculations on the 

grid. However, several terms could be computed simultaneously on a larger 

DAP. For example, all the variables could be integrated in time simultaneously 

or derivatives could be computed simultaneously. Thus, by exploiting the 

same operations applied to different variables there are more potential 

processes than available processors. However, certain points in the program 

have a parallelism the same as the number of nodes (e.g. calculation of the 

eddy diffusivity coefficients) although these take only a small fraction of the 

282 



model time. A MIMD machine would be needed for further parallelism to be 

achieved. 

The movement of data between processors can be considered as an 

overhead for any program on the DAP. By noting the time for the 

broadcasting and routing of data in the program this overhead can be 

computed. The total time per step for data routing is 15.Omsecs, assuming 

the use of the optimized DAPLIB Jacobi routine, giving an overhead of 4.1%. 

This is much less than the value obtained for the spectral model. Data routing 

is clearly not an expensive overhead for this model. Almost 90% of the cost 

comes from the solver routines. 

Using Eq.(2.6.3), the efficiency of the algorithms to compute the finite 

element matrices for the product and diffusion terms is 98.4% and 98.9% 

respectively. Their performance rates are 15.2Mflops and 16.9Mflops 

respectively. The efficiency of the algorithm to compute the finite element 

matrix for the derivative term is 98.4% and its performance rate is 11.3Mflops. 

For the tridiagonal solvers, the cyclic reduction DAPLIB routine has an 

efficiency of 86.4% and a performance rate of 9.7Mflops. The optimized Jacobi 

DAPLIB routine's efficiency and performance rate is 98.2% and 12.9Mflops. 

The calculation of the finite element matrices and the solution of the 

tridiagonal equations together account for 90% of the model CPU time. 

Considering only the performance of these routines would therefore give a 

good estimate of the performance of the model. The efficiency of the model 

can therefore be calculated as 97% from Eq.(2.6.3). The performance rate is 

13.1 Mflops. 

This model is therefore very efficient as almost all of the PE array is 

performing useful work during each step. However, it should not be inferred 

from this that a finite element model would be preferred to a spectral model 

for global modelling. The choice of grid on the sphere might result in a 

mapping of nodal data onto the processor array that leaves some processors 

unused. The triangular elements on an icosahedron in the global finite 

element model of Cullen and Hall (1979) might be one example. 
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7.10. Model results 

The model of CR77 was used to study the quasi-steady circulation that 

develops within the initial frontal system. In this section, the results from this 

model are compared to two of the cases discussed by CR77. 

7.10.1. Surface jet case 

The first solution discussed by 0R77 is a surface jet configuration 

representing cold and warm air masses separated by a frontal system with a 

jet whose maximum occurs at the surface. The jet profile is set using 

Eq.(7.2.17) with VM=45ms1.  The geostrophic wind, (J(z). is set according to, 

U9  = 8.92a0 (z) - 5.61 

such that the front is advected to the right in the figures to be presented. 

0R77 refer to this case as SJ3(45). 

Fig. 35 is reproduced from 0R77 and shows the evolution of the 

cross-front flow field in the z-z plane for the SJ3 case. The frames to the left 

show composite contour diagrams of the potential temperature (solid lines) 

and the perturbation streamfunction (dashed lines) at 3, 11.43 and 19.43 hours 

into the run. The perturbation streamfunction, 4)', is defined by, 

4)' = 4) - 	 ( 7.10.1) 

where the geostrophic streamfunction, 4), is given by the solution of, 

U
9 
 (z) a0d4)9/dz 	 (7.10.2) 

The frames to the right of Fig. 35 show the jet velocity, v (solid lines) and the 

total streamfunction, 4) (dashed lines). 

Circulation cells develop in the perturbation streamfunction by 3 hours. 

The vorticity within these cells is negative on the warm side of the front and 

positive on the cold side. These cells intensify until a quasi-equilibrium is 

achieved in which the cells coexist with the moving frontal system. As shown 

by the streamfunction, on the right of Fig. 35, the effect of this vorticity above 

the front is to cause air parcels to sink as they pass over the frontal surface. 

In contrast, the positive vorticity on the cold side of the front reduces the 

cross-front advection of cold air parcels close to the surface. This localized 

284 



= 3.00hrs 
15 

10 

km 

5 

0 
0 	 500 	 1000 

km 

0,' 

t 11.43hrs 	 OY 

:-" 	 ,---- 

	

0-f 	 -S 

	

0 	500 	 1000 
km 

100 ioo 

10 
—" 	 ---.. 

mb km - ZT_;T ,i. mb 

- 	 ::-=-- 500 

0 	500 	 1000 
km 

15 

10 

km 

5 

___________ 	 v,", 

100 
15r- X- 

	

- 	 - 

	

F 	 - ---- 

	

10-r 	'---------------- 

mb km  

500 	sJ;k-:-y*:i:--:::::::::::= 00 

1000 	0 	 1000 

	

0 	 500 	 1000 
km 

15 

10 

km 

5 

t 19.43hrs 
 100  

100 	 -:-:-=--=;:- - 	-- 	 - 

mb km 	 - 	 -- 	 : 	

mb 

sw 

_ 	 --p 	0 X 	 _low  
0 	 500 	 1000 

km 	 km 
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blocking produces the dome in the streamfunction and potential temperature 

contours in Fig. 35. 

Fig. 36 shows the potential temperature and perturbation streamfunction at 

3, 12 and 20 hours from a run of the finite element model with the SJ3 initial 

conditions. The perturbation streamfunction shows the same early 

development of two circulation cells. The negative cell develops to the same 

dimensions as in the 0R77 run and to about the same strength. However, the 

positive cell on the warm side of the front is clearly much too strong and its 

centre is lower than in Fig. 35. This means the model is generating more 

negative vorticity ahead of the front than in the run of 0R77. 

The potential temperature fields are in good agreement with those in Fig. 

35. The dome shape of the potential temperature contours can be seen but it 

appears that the front is not advected as far in this model. 

Fig. 37 shows the streamfunction and the jet velocity at the same times as 

in Fig. 36. The streamfunction shows the dome-like contours behind the front, 

the same as in 0R77. However, there is also a feature associated with the 

nose of the front, at 700km at 12 hours. This is undoubtedly associated with 

the more intense circulation ahead of the front in this case. 

The evolution of the jet velocity field is in broad agreement with that 

shown in Fig. 35. The flattening of the contours is well represented although 

the advection of the jet is some 100km less than in the 0R77 case after 20 

hours. However, the warm side of the jet shows different development. In 

Fig. 37 the jet has extended much further into the warmer air than in Fig. 35 

and the depth of the jet is shallower. Forward of the jet minimum, a nose 

develops where the vertical gradient of v is negative over the first 200m, 

before becoming positive. Comparison with Fig. 36 shows this change in 

gradient is correlated with the horizontal gradient in the potential temperature 

at the surface. This implies the bottom boundary condition for the jet velocity 

is incorrect and this was confirmed when inspection of the program code 

revealed a programming error. The bottom boundary of the jet velocity is set 

to be in geostrophic balance according to Eq.(7.2.10), the values at the bottom 

level are set by Eq.(7.4.8). Unfortunately, in the model the O x  term was added 

rather than subtracted. From Eq.(7.2.1), the primary generation of vorticity, at 

least initially, results from the deviation from thermal wind balance of the jet 
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velocity and the potential temperature fields. Since the erroneous boundary 

condition ensures this is always the case at the front at the surface, more 

negative vorticity is generated in this region than should be. This is clearly 

apparent if the vorticity fields are examined and accounts for the stronger 

circulation in the perturbation streamfunction figures and the other 

discrepancies noted above. It is not clear to what extent the potential 

temperature fields are affected by this error. Unfortunately the Edinburgh 

DAPs were no longer available for this case to be rerun with the correct 

boundary condition. 

7.10.2. Mid-tropospheric jet case 

0R77 also presented results for a more realistic mid-tropospheric jet run. 

The initial jet velocity field is given by Eq.(7.2.18). The jet parameter, VM, is 

set to 30ms 1  and the geostrophic wind field is set to, 

U9  = 2 + 3tanh(z/5000) 

0R77 refer to this run as MTJ2(30). 

Fig. 38 is reproduced from 0R77 and shows the results for the MTJ2 case. 

The format of this diagram is the same as for the surface jet case. The fields 

are shown at times of 3, 10.87 and 14.86 hours. The MTJ2 initial conditions 

have comparable mean frontal wind shear in the jet velocity to the SJ3 case 

(which produces a similar horizontal gradient of potential temperature due to 

the initial geostrophic balance) and in the vertical shear in the geostrophic 

wind field at the front. Even though these shears are comparable, the 

circulation that develops is much stronger than in the surface jet run. A 

negative cell develops on the warm side of the front i.e. positive vorticity 

rather than the negative vorticity of the SJ3 case. The circulation in the 

colder air is much weaker by comparison. As a consequence, this circulation 

produces a blocking effect near the surface ahead or downwind of the surface 

front, thereby lifting air parcels ahead. This is seen clearly in the 

streamfunction shown in Fig. 38. The jet velocity profile remains largely 

unchanged except for the tilting produced by the vertical shear of the 

advecting wind. 

Fig. 39 shows the streamfunction and potential temperature fields at 3, 11 

and 15 hours from a run of the finite element model. The initial development 
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in the perturbation streamfunction is very similar to the 0R77 results. 

However, the erroneous boundary condition produces negative vorticity at the 

surface at the front whilst, as in the 0R77 run, positive vorticity is generated 

aloft. The result is that the positive perturbation streamfunction cell extends 

into the warmer air, as clearly seen in Fig. 39, producing an intense gradient at 

the interface of the negative vorticity near the surface and the positive 

vorticity aloft resulting in a strong circulation and numerical noise in this 

region. The effect of the erroneous boundary condition is more noticeable than 

in the SJ3 case. The potential temperature field also shows the effect of the 

strong circulation at the nose of the front. 

The streamfunction and the jet velocity fields are shown in Fig. 40 for the 

MTJ2 case. The streamfunction shows the lifting ahead of the front but also 

the effect of the erroneous boundary condition with a small cell at a height of 

1km. The jet velocity field reproduces the general features of the CR77 

solution. The change in sign of the vertical gradient of v at the surface is 

again apparent. 

To summarize, a programming error in applying the bottom boundary 

condition for the jet velocity has meant it has not been possible to make 

anything other than a qualitative comparison of results from the two models. 

The error has a significant effect on the circulations seen in the perturbation 

streamfunction, particularly for the MTJ2 case. However, the model appears to 

produce the general development described by 0R77, so that devoid of the 

erroneous boundary condition the model should reproduce the results of CR77 

well. 

7.11. Discussion and conclusions 

In this chapter, the implementation of the two-dimensional frontal model of 

Orlanski and Ross (1977) on the ICL DAP was described. The model was 

formulated using finite elements rather than finite differences as in the origirl 

model to test the suitability of this technique to the DAP. The streamfunction 

was solved outside the usual Galerkin framework to achieve a higher accuracy. 

The boundary conditions of this model were also not formulated in the way 

usual for finite elements. The lateral boundaries were computed using a fourth 

order accurate scheme rather than the second order scheme of the original 

model. 
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A detailed description of the solution procedure was given in which the 

equations were written using matrices. This made implementation on the DAP 

convenient as each processor was assigned an element of these matrices. The 

finite element method would usually use two-dimensional basis functions for a 

two-dimensional problem, but the equations of this model used basis 

functions written as the product of two one-dimensional basis functions so 

that the equations could be solved as a succession of one-dimensional 

problems, as advocated by Staniforth (1987). This had the advantage that 

tridiagonal matrix problems, instead of higher bandwidth matrix problems, had 

to be solved. 

Parallel algorithms to compute the finite element matrices for the 

derivative, product and diffusion terms were derived. These were optimized for 

the semi-irregular grid of the model. They were also formulated to ensure 

that the boundary nodes, which required a slightly different calculation, were 

computed in parallel with the interior nodes. As the hardware boundary 

conditions of the DAP were used, this approach would not be possible if 

implementing these algorithms on a serial or MIMD machine (which did not 

have equivalent hardware conditions). 

It was found that the calculation of these matrices took a 15% of the 

model CPU time per step. Most of the time, about 75%, was spent solving the 

matrix equations. Two DAP subroutine library routines were timed for a test 

problem and several conjugate gradient algorithms were designed and tested. 

A preconditioned conjugate gradient algorithm was developed which, for the 

test problem, had a superior performance to the DAP library routines and an 

optimized version of the Jacobi DAP library routine. However, when used in 

the model, these results were reversed and the optimized Jacobi routine gave 

the best performance. To be competitive, the conjugate gradient routine used 

preconditioning such that only one iteration was required. The use of the 

cyclic reduction algorithm was found to be successful at reducing the number 

of iterations to convergence. In this respect, the preconditioned conjugate 

gradient algorithm was specialized to this model. These solution methods 

would not be used on conventional architectures where methods such as 

Gaussian elimination are more appropriate. 

A programming error prevented an accurate comparison of results from 

this model to those of Orlanski and Ross (1977). There is a general agreement 
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between the results however. Two-gridlength noise was apparent in the 

solutions presented for this model. Undoubtedly, much of this was a result of 

the programming error but there was some evidence of false reflections off 

the lateral boundaries. Further tests would be needed to confirm this. 

The finite element method is suited to the DAP; a conclusion supported by 

other authors (Lai and Liddell, 1987a). The spectral method by comparison is
2. 

not so well suited. The matrix notation for the equations allowed their easy 

translation to DAP FORTRAN; the low overhead for routing data in the model 

supports this. Near optimum use of the DAP processors is made during a 

model step in contrast to the lower efficiency of the spectral model. The 

storage requirements of the finite element model are also much lower than 

the spectral model. In particular, the main storage requirements, the mass 

matrix components, increase linearly with increased resolution. However, the 

Legendre polynomial storage requirement in the spectral model increases 

quadratically with resolution. Overall, the development effort and time for this 

model was considerably less than that of the spectral model. 

The finite element method is best suited to certain types of problems, for 

example limited area modelling, so it is not possible to recommend the use of 

the finite element technique over the spectral method for a global modelling 

problem. However, given a choice of architectures on which to implement the 

problem, one could comment on the preferred architecture. 

Further optimization of the model is possible. It was described how the 

algorithms to compute the finite element matrices for the product and 

diffusion terms could be improved. The optimized Jacobi DAPLIB routine could 

be tuned to give a better performance. Lower precision arithmetic would also 

reduce the execution time. The best results would be obtained if the Jacobi 

routine used lower precision. However, it is not clear if this would be possible 

and further work would be needed to clarify this. 

It has been shown that the minimum parallelism available in a SIMD sense 

is the number of nodes of the finite element grid. A MIMD approach would 

yield further parallelism. Therefore, a larger processor array would require the 

same number of nodes as processors for efficiency. This could be achieved 

with a three-dimensional model, but at this stage it is not obvious how best 

to implement a three-dimensional finite element model. Once again, the lack 
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variable size arrays in DAP FORTRAN is seen as a disadvantage for 

meteorological modelling. 



CHAPTER 8 

METEOROLOGICAL ALGORITHMS ON OTHER PARALLEL COMPUTERS 

81. Introduction 

It would not be prudent to discuss the application of the DAP to 

meteorological modelling without an understanding of the issues involved in 

using other parallel computer architectures. Several authors have recognized 

that a simple meteorological benchmark would give an indication of the likely 

performance on a particular computer. A finite difference model has therefore 

been implemented on different computers and this work is reviewed in the 

following section. 

As the spectral transforms account for a large proportion of the execution 

time of spectral models, they are an obvious benchmark. FFTs are often one of 

the first algorithms applied to any new computer, in which case the Legendre 

transforms become an appropriate benchmark. The design of the Legendre 

transform algorithms is discussed in section 3. The issues in implementing 

spectral models on parallel computers are discussed in section 4. 

In the summer of 1986, the author was employed by the ECMWF for 3 

months to assist in the development of an enhanced multitasking strategy for 

their spectral forecast model. This work is described in the penultimate section 

of this chapter. In the final section, the multiprocessing strategy of the 

Meteorological Office's finite difference model is described, to contrast the 

scheme used by the ECMWF. 

8.2. A finite difference meteorological benchmark 

A number of authors used the finite difference shallow-water model in 

Cartesian coordinates described by Sadourney (1975b), as a meteorological 

benchmark for supercomputers and parallel computers. Hoffmann et at (1988) 

ran the model on the CRAY-1, CYBER-205 and CRAY X-MP computers. Ikeda 

(1988) benchmarked the model on the Fujitsu VP-400. Tanqueray and Snelling 

(1988) applied the model to a 16-node FPS T-series machine. McBryan (1988) 

ran the model on the Connection Machine (CM-2), whilst Fishbourne (1980) 

used the model in spherical coordinates on the ICL DAP. 

Table 24 presents a compilation of the results from these benchmarks. The 
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Computer Grid 
size 

Number of 
processors 

Average 
performance 
(Mflops) 

Percentage of 
peak speed 

ICL DAP 64x64 4096 10 38% 

Connection 512x1024 8192 214 5% 
Machine (CM2) 

CRAY-1 64x64 1 61 38% 

CYBER 205 64x64 1 39 20% 

CYBER 205 64x64 1 110 55% 
(optimized) 

FPS T-series 64x64 16 13 7% 

FPS T-series 256x256 16 41 21% 

CRAY X-MP 64x64 1 98 47% 

CRAY X-MP 64x64 2 168 (tasks) 40% 

CRAY X-MP 64x64 2 188 (events) 45% 

CRAY X-MP 512x512 1 148 70% 

CRAY X-MP 512x512 4 560 67% 

FUJITSU 64x64 1 379 33% 
VP-400 

FUJITSU 256x256 1 567 50% 
I!d 	[II 

Table 24. 

Performance of the shallow-water finite difference benchmark 

model for various computers. See text for additional comments. 
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performance figures given are average Mflop rates. Unfortunately, the authors 

did not all use the same grid size or the same degree of optimization so 

precise comparisons are difficult. 

All the benchmarks were made with the same basic code (given by 

Hoffmann et al, 1988), with modifications only for language differences or 

machine specific optimizations, except Fishbourne's (1980) model. This was a 

global model and included Fourier filtering near the poles. 

The CM-2 implementation was written in parallel LISP rather than 

FORTRAN. Although a powerful machine in theory, in practice, communication 

overheads and an inability to maintain the pipeline for the floating point 

processor yielded a poor average performance relative to the peak 

performance. However, for a three dimensional primitive equation model on 

the same number of gridpoints (a 128x128x32 grid), Pozo and MacDonald 

(1989) obtained an average performance of 1.1Gflops, 28% of the peak 

performance. It is not clear from the papers why the two models gave such 

different performances, but a likely explanation is that the three dimensional 

model had longer vectors. McBryan (1988) pointed out that there is a serious 

performance decrease, by a factor of 2.4, for grids that are not a power of 2 in 

each direction. This is because of the extra communications required for the 

periodic boundary conditions. It can be concluded that careful programming 

and a problem with a large degree of parallelism, many times the number of 

processors, are required in order to obtain a reasonable efficiency with the 

CM-2. 

The CRAY-1, CYBER-205 and CRAY X-MP implementations used arrays 

declared as (65,65) to decrease memory bank conflicts. The CRAY-1 and 

CRAY X-MP versions used no other optimizations other than that performed 

by the compiler. The CYBER-205 version was written to give longer vectors 

than the CRAY version, to overcome the longer start up time of the vector 

pipeline on this machine. Another CYBER-205 version was written with the 

loops replaced by special vector subroutines. This optimized version (see 

Table 24) improved the performance by almost a factor of 3. 

For the CRAY X-MP multitasking runs with 2 processors, two versions were 

written by Hoffmann et al. (1988). The first explicitly created processes for 

each piece of work and synchronized by waiting for processes to finish. The 
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other version created the processes once only and synchronized using signals 

or CRAY EVENTS. The better performance of the EVENT version illustrates the 

overhead of repeated process creation. 

The program for the T-series was optimized for the vector processor at 

each node by subroutine calls. The programming strategy overlapped 

communications with computation. A one dimensional torus topology was 

used. The results show a poor performance relative to the peak performance 

of the machine. As Tanqueray and Snelling (1988) pointed out, this was due to 

the imbalance between the communication time and computation time, the 

improved performance of the 256 2  grid model illustrates this. Tett et at (1988) 

implemented a spherical coordinate, finite difference shallow-water model on 

the Edinburgh Concurrent Supercomputer. The finite difference scheme was 

based on that used for the Meteorological Office forecast model. 

Unfortunately, they did not give a performance figure for their model. 

The performance of the model on the VP-400 is impressive compared to 

the CRAY X-MP, as the machine has only one processor. Ikeda (1988) does 

not indicate if any optimizations were performed, but the figures from Table 24 

suggest some scope for improvement. 

Overall, Table 24 shows that performance figures between a third to a half 

of the peak performance of the pipelined machines were achieved for a 642 

grid. Larger grids resulted in longer vectors and gave performance rates closer 

to the asymptotic limit. It is important to realize that this was achieved with 

standard, sequential FORTRAN, a vectorizing compiler and a modest amount of 

additional code for multiprocessing. The situation seems to be different on 

the distributed memory machines such as the SIMO CM-2 and MIMD FPS 

T-series. It appears more difficult to achieve rates close to the peak 

theoretical performance. For the DAP, the SIMD nature and simple 

interprocessor connections remove communication overheads to a large extent 

and a percentage performance comparable to that on the pipelined machines 

was achieved. Since most forecast models are now spectral, it would be 

interesting to compare the performance of a spectral benchmark on different 

machines. 
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8.3. Legendre transforms 

8.31. Use as a benchmark 

As mentioned in the introduction, the implementation of the Legendre 

transforms is a key issue in the design of spectral models on parallel 

computers. There are a number of reasons why those transforms would be 

useful as a benchmark for spectral models, as described below. There have 

been several recent studies of the Legendre transforms on parallel computers, 

such as Snelling (1988b), Hoffman and Nehrkorn (1989) and chapter 5 of this 

thesis, illustrating this point. 

It has already been shown that the Legendre transforms account for the 

major computational part of a single-level spectral model. Even with 

multi-level forecast models they still account for a significant proportion. For 

example, Dent (1988) reported a figure of 22% for the T106 spectral model of 

ECMWF. Furthermore, the computation in the Legendre transforms varies as 

the cube of the truncation and therefore represents the fastest growing 

computational load. 

The Legendre transform algorithms require a globally available array to 

hold the spectral data. This has an effect on the algorithm when implemented 

on a shared, hierarchical or distributed memory machine. It should be noted 

that the spectral data are the only data in a spectral model that are required 

to be globally available to all processors. The consequences of this are that 

synchronization and communication between processors are necessary for 

machines without a shared memory. 

8.3.2. Algorithms 

In this section, the algorithms used for the Legendre transforms are 

reviewed. A multi-level model is assumed. 

In order to use a high resolution with a limited memory, it is usually 

necessary to design a spectral model such that only part of the data are held 

in central storage. As the calculations in gridpoint and Fourier space are 

independent of latitude, the usual approach is to scan through the latitudes, 

storing gridpoint and Fourier data for one latitude in memory at a time. As 

the summation for the direct Legendre transform is across latitudes, it implies 
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that each pass through the latitude loop adds a contribution to the spectral 

data. This approach is used at ECMWF (Dent, 1988). 

However, Hoffman and Nehrkorn (1989) suggested an alternative scanning 

approach. They used latitude scanning for all gridpoint and Fourier space 

calculations, but looped over the zonal wavenumber m for the Legendre 

transforms and spectral space calculations. This hasa number of advantages 

for a multiprocessing algorithm, which are discussed in the next section. A 

disadvantage is the additional memory that the wavenumber scanning 

approach requires. To store the Fourier coefficients of a variable for one 

latitude and one level requires 2(m+1) words. In contrast, 3m+1 words would 

be needed per zonal wavenumber. 

The shape of the retained modes in a triangular truncation means that the 

spectral coefficients are usually stored in one dimensional arrays. They can be 

stored in a column-wise or diagonal-wise format, as depicted in Fig. 16. These 

two formats result in two formulations of the Legendre transform algorithm, 

register-to-memory and memory-to-memory approaches respectively. The 

architecture of the target machine determines the best algorithm to use. That 

is, the register-to-memory approach is best suited to a machine with vector 

registers, such as the CRAY X-MP, whereas the memory-to-memory approach 

is best suited to a computer like the ETA-10 where the pipelines are fed 

directly from memory. 

To illustrate the difference between the two approaches, consider the 

inverse Legendre transform, 

M 

Fm(PZ) = L Fmn (Z)Pmn (1i) 

nImI 

where z represents any vertical coordinate. Assuming a column-wise storage 

format, in FORTRAN this might be written as, 

DC 100 J1, NLAT 

DO 100 M1, (MT+1) 

DC 100 NM, (MT+1) 

DO 100 L1, NLEV2 

100 	FM(L,M,J) = FM(L,M,J) + FMN(L,M,N) * PMN(M,N,J) 
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where NLAT is the number of latitudes, MT is the truncation wavenumber 

(M=m+1) and NLEv2 is twice the number of levels. The real and imaginary 

components account for this factor of 2. The vector length is therefore NLEV2 

but could be made longer if all the variables were stored together. As the 

Fourier coefficients depend only on m and not n, during the loop over N the 

Fourier data vector FM, over NLEV2, is invariant and can remain in the vector 

register whilst the sum over n is accumulated. Memory references are 

therefore minimized. In this example, the spectral coefficients are stored 

two-dimensionally for clarity. 

Now suppose a diagonal-wise approach was used. The code becomes, 

DO 100 J=1, NLAT 

DO 100 N1, (MT+1) 

DO 100 M=1, (MT-N+2) 

DO 100 L=1, NLEV2 

100 	FM(L,M,J) = FM(L,M,J) + FMN(L,M,M+N-1) * PMN(M,M+N-1,J) 

The spectral coefficients are now accessed, in order, along diagonals. As the 

loops over M and N have been interchanged, the vector FM holding the Fourier 

coefficients over all levels and real and imaginary components has to be 

continually updated from memory. In practice, the transforms would use the 

symmetry property of the Legendre polynomials but the approach is the same. 

The wavenumber scanning method, discussed previously, can be used with 

the register-to-memory algorithm since the loops over latitude and zonal 

wavenumber may be interchanged. However, this is not possible for the 

memory-to-memory algorithm. The wavenumber scanning method might 

therefore be better suited to computers with vector registers. 

It is obviously important, when devising algorithms for a pipelined machine, 

to try to achieve vectors which are as long as possible. The vector length in 

the two cases above is relatively short, twice the number of levels, although 

this is used to advantage in the register-to-memory algorithm. Current 

forecast models typically have about 20 levels. The performance from a 

vector of 40 elements can be estimated from the equation relating the 

parameters, r,, and n. From Hackney (1988), the fraction r of the asymptotic 
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performance that would be achieved using a vector length n is given by, 

= 1 / (1 + ni/n) 	 (8.3.1) 

Hockney (1988) gives n+  as 60 	for the CRAY X-MP for the type of 

calculation used in the inverse Legendre transform (known as the CYBER 205 

triad), whilst Mozdzynski (1988) gives a figure of 53 for the ETA-10 (the 

CRAY X-MP n should be regarded as approximate as it was measured for 

memory-to-memory operations). Therefore, with a vector length of about 40, 

only 40-45% of the asymptotic processing rate of the pipeline would be 

achieved. If several variables, say 4, could be processed in one vector, about 

70% of the maximum rate could be obtained. Snelling (personal 

communication) increased the vector length by replicating the Legendre 

polynomials over the levels so that the vector length was over all levels, real 

and imaginary parts and the zonal wavenumber. However, when tried on the 

ETA-10, the scatter operation required was not available in the hardware and 

the cost of the additional code for this operation resulted in only minor 

improvements in execution time. 

The inverse Legendre transform can be written as a matrix times a vector 

for each m and latitude. Optimized matrix algebra routines often exist in the 

libraries provided with pipelined computers. The direct Legendre transform 

can also be written as a matrix times vector for every m and n. Therefore this 

approach could not be used with the latitude scanning model, only a 

wavenumber scanning model or one in which all data could be held in 

memory. 

8.4. Parallel implementation of spectral models 

Spectral models have so far been applied to pipelined machines with 

shared or hierarchical memories and a modest number of processors (10 or 

less). In this section, the techniques for applying spectral models to MIMD 

shared and hierarchical memory machines are reviewed, with some comment 

on implementing them on distributed memory machines. 
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8.4.1. Multiprocessing 

For a computer with a small number of processors, the obvious way to 

spread the workload across the processors is to assign a subset of the 

latitudes to each processor for the latitude scanning approach, or a subset of 

latitudes and wavenumbers for the latitude-wavenumber scanning approach. 

This is efficient if the work per processor is the same. For a model with no 

physical parametrizations, Hoffman and Nehrkorn (1989) found that load 

balancing problems arose when the number of latitudes or wavenumbers was 

not an exact multiple of the number of processors. For a model that includes 

physical parametrizations, load imbalances also occur due to lack of 

convective activity in the polar regions (Dent, 1988). In these cases, dynamic 

scheduling improves the load balance. 

An important difference between gridpoint and spectral models is that a 

synchronization point is required every timestep in spectral models. This is 

because a new step cannot commence until all contributions to the spectral 

coefficients during the direct Legendre transform have been accumulated. For 

a gridpoint model however, there is no such requirement. As pointed out by 

White and Wiley (1988), sub-domains of the grid can be integrated forward in 

time independently, although the lack of boundary information limits the 

maximum difference in timesteps between two adjacent regions. The latitude 

scanning approach requires a minimum of one synchronization, at the end of 

the latitude loop. The latitude-waven umberscanning approach however 

requires two synchronization points, one at the end of each loop. This need 

not result in a worse performance if the processes are suitably scheduled 

(Hoffman and Nehrkorn, 198) and has the advantage that spectral space 

calculations can be multiprocessed with the transforms. For a latitude scanning 

approach, spectral space calculations have to be performed on one processor, 

or they can be microtasked or multitasked if the grain allows. 

8.4.2. Data management and communication 

The requirement that the spectral data are available to all processors is 

easily satisfied by shared memory MIMD computers (sMIMD). The spectral 

data are only read during the inverse Legendre transform so no problems 

arise. However, as the direct Legendre transform updates the spectral data, 

this forms a critical region if the latitude scanning approach is used. The 
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updating procedure must be protected to ensure that two or more processors 

cannot update the same data at the same time. The other concern is that 

results must be reproducible. 

With the latitude scanning scheme, reproducibility can be ensured by using 

signals to force processes to increment the spectral data in a set order. This 

incurs an overhead because processes may not be at the point where they are 

ready to receive the signal before it is sent. Dent (1988) reported that these 

delays accounted for 1% of the total wall-clock execution time of the ECMWF 

model. However, reproducibility is assured if the Legendre transforms are 

multiprocessed over the zonal wavenumber m. This is because the 

summations over total wavenumber and latitude in the inverse and direct 

transforms respectively, are contained entirely within each process (Hoffman 

and Nehrkorn, 1989). 

When a hierarchical memory MIMD machine is used (hMIMD), the 

appropriate technique depends on the size of the local memory attached to 

each processor i.e. there may not be enough memory available to store all of 

the spectral coefficients. Snelling (1988b). Hoffmann and Snelling (1988) and 

Mozdzynski (1988) applied the Legendre transform algorithms to the ETA-10. 

The ideal case is when there is sufficient local memory to hold a complete 

copy of the spectral coefficients. The complexity of the multiprocessing 

strategy is then contained in the method used to perform the associative 

reduction of the data at each timestep. A sequential method would be where 

the first process copies its spectral data (for the latitudes it processed) to 

shared memory. All other processes then copy, update and copy the data 

back to the shared memory in turn. If the spectral data are split into a 

number of segments, the second process can read, update and write the first 

segment whilst the first process writes the second segment in parallel and so 

on. These two methods are illustrated in Fig. 41. Whilst the parallel method is 

more efficient, increasing the number of segments improves the parallelism 

but increases the overhead from the I/O operations. Mozdzynski (1988) 

presents the. optimum number of segments for the ETA-10. In this approach, 

each processor must read and write the entire spectral data once. 

If the local memory is not sufficient to contain all the spectral data, it has 

to be split into several parts. Each part is copied to local memory and 
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CPU 1 	CPU 2 	CPU 3 	CPU 4 

0 

TIME 

Serial reduction of spectral data for the direct Legendre transform. 

CPU 1 	CPU 2 	CPU 3 	CPU 4 

0 

Parallel reduction of spectral data. 

Figure 41. Redrawn from Mozdzynski (1988). 
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updated in turn. A natural partitioning of the spectral data is into symmetric 

and antisymmetric parts and by variables. If this does not reduce the memory 

requirements enough, the spectral coefficients can be separated by zonal 

wavenumber m. Hoffmann and Snelling (1988) describe the results of 

simulating such algorithms, where the spectral coefficients are separated by 

zonal wavenumber into 8 and 16 parts (for a T63 resolution), on a 4 processor 

CRAY X-MP. They measured a factor of 2 reduction in the speedup obtained 

for the 8 and 16 part algorithms over the case where all the spectral data 

resides in memory, because of the additional costs involved. 

A latitude-wavenumber scanning method can also be applied to a hMIMD 

computer. Data movement is required at both the necessary synchronization 

points in this method. After the latitude loop, the processors must gather the 

wavenumbers at the other latitudes they require, whilst after the wavenumber 

loop they gather the latitudes at the other zonal wavenumbers. The key 

differences between the two scanning approaches, are that no spectral data 

are transferred and the communication necessary is to exchange data and not 

as part of the summation for the direct Legendre transform. All data transfers 

to and from the shared memory can therefore proceed in parallel. Hoffman 

and Nehrkorn (1989) use a set of shared, protected variables to indicate when 

data are available to be copied to a processor's local memory. Although 

transfer of data to and from shared memory is required at two distinct points 

in the program, there are less data to be transferred at each point, given 

enough processors. Suppose there are p processors and each processor is 

assigned (3M+1)/2p latitudes and (M+1)/p zonal wavenumbers, where M is the 

truncation wavenumber. At the end of the latitude loop, each processor has 

to write its Fourier data to shared memory. This is (3M+1)(M+1)/p words per 

variable per level. It must also read the Fourier data it needs for the 

wavenumber scan, (3M-f 1)(M+1)(p-1)/p 2  words per variable per level. The 

number of words, W, transferred per processor in the latitude-waveflumber 

scanning approach at the end of each loop is thus. 

W = (3M + 1)(M + 1)(2p - 1)/ p2 	 (8.4.1) 

For a latitude scanning approach, each processor must read and write the 

entire spectral data, 2(M+1)(M+2) words per level per variable. Equating the 

two gives p=3. Therefore, when 3 or more processors are being used, less 

words are transferred per processor using latitude-wavenumber scanning than 
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for latitude scanning. 

An important consequence of looping over m for the spectral calculations, 

is that each processor does not need to hold all the spectral data, only the 

coefficients for the wavenumbers assigned to it. The space required 

decreases with an increasing number of processors. 

Static scheduling is advantageous for latitude-wavenumber scanning 

because certain constant data and data at previous timelevels can be fixed to 

a processor. With dynamic scheduling, these data, some of which are spectral, 

must also be communicated to processors, increasing the amount of 

communication (Hoffman and Nehrkorn, 1989). To overcome load balancing 

problems, polar latitudes could be paired with equatorial latitudes and, for a 

triangular truncation, low wavenumbers with high wavenurnbers, to give 

processors a similar workload. 

8.4.3. Processor arrays 

The transputer array is an example of a distributed memory MIMD 

computer (dMIMD). To obtain optimum performance from dMIMD 

architectures, communication between processors must be kept to a minimum 

and localized. In this respect, the latitude-wavenumber scanning scheme is 

the only one suitable for dMIMD architectures. Coupled with a static 

scheduling scheme, communication (between processors now rather than to 

and from a shared memory) could be kept to a minimum. As Eq.(8.4.1) varies 

as lip, communication requirements per processor scale well with the number 

of processors. 

An important question to address in implementing spectral models on 

dMIMD computers is the optimum topology. It may be the case that different 

topologies give the best performance for different operations. For example, 

gridpoint calculations are independent of their neighbours so the topology is 

irrelevant. However, some calculations couple the vertical levels so each 

processor should process all levels for one gridpoint. This is an important 

difference between gridpoint and spectral models on dMIMD machines since 

the topology for a gridpoint model is determined by the nearest neighbour 

interactions from the finite difference equations (Tett et al. 1988). The 

topology for a spectral model would therefore be determined by the need for 
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efficient FFT and Legendre transform algorithms. 

Hoffman and Nehrkorn (1989) suggested a ring of hypercubes as a 

topology for spectral models. Along each latitude, the gridpoints are 

connected as a hypercube, allowing the FFTs on each latitude to be conducted 

efficiently. Assuming a static scheduling scheme, the Fourier coefficients at the 

end of the latitude and wavenumber loops would be sent around the ring. 

'Although the total amount of data travelling around the ring is more than if 

the spectral coefficients were sent, each processor only writes and reads a 

small fraction rather than the whole spectral array. Furthermore, a static 

scheduling scheme would mean each processor could direct its data to those 

processors that require it. This would be impossible with a dynamic 

scheduling scheme. 

A dMIMD implementation would suffer from some of the same 

inefficiencies as the DAP implementation. That is, as not all of the Fourier 

wavenumbers are retained, some processors would be left idle. However, it 

might be possible to keep these processors busy by assigning several levels 

from a neighbouring process. Hoffman and Nehrkorn (1989) suggest an 

alternative method where 2 or more gridpoints or wavenumbers are assigned 

to a processor. This is useful because it reduces the communications required. 

The ideal case is when each processor contains all the gridpoints for one 

latitude so that the FFT is performed using a sequential algorithm and only the 

communication of Fourier data at the end of the loops remains. 

8.5. The ECMWF MIMD spectral model 

In this section, the ECMWF forecast model is used as an example of the 

development of a MIMD model on a sMIMD computer. The contribution, by 

the author, to the development of an enhanced multitasking strategy is also 

described. D.Dent and D.Snelling were supervisors for this work. 

The development of the multiprocessing aspects of the ECMWF model is 

documented by Gibson (1985), Dent (1988) and Dent and O'Neill (1988). It 

currently runs on the CRAY X-MP/48 at ECMWF. 
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8.5.1. Overview 

The first version of the spectral forecast model had a resolution of T63 and 

16 levels and was run on a CRAY-1A. In 1985, a CRAY X-MP/22 was 

purchased and the model muititasked to aHow a T106 resolution. Then i-

1986, with the arrival of the CRAY X-MP/48 at ECMWF, further development 

allowed the model to utilize 4 processors and the vertical resolution was 

increased to 19 levels. 

8.5.1.1. Structure 

The ECMWF model uses the latitude scanning approach described 

previously. To eliminate the need to store spectral coefficients at two 

time-levels, the model is organized into two latitude scans, as illustrated in 

Fig. 42. The model resolution used for forecasting requires gridpoint and 

Fourier data to be held on backing store in workfiles. During the latitude 

loops, these data are brought into memory one latitude at a time. 

At the start of scan 1, the variables are in Fourier representation. The work 

in scan 1 consists of; input of Fourier coefficients, inverse FFTs, gridpoint 

space calculations, direct FFT5 and direct Legendre transforms. There are also 

some computations performed in Fourier space, notaoly concerning the 

semi-implicit time scheme. The time-stepping is completed in spectral space 

and diffusion applied. Scan 2 consists of the inverse Legendre transforms and 

the output of the Fourier coefficients to the work files, ready for the start of 

scan 1 at the next timestep. 

8.5.1.2. Data and I/O 

The model uses workfiles for the Fourier data, Legendre coefficients and 

the gridpoint data. At the start of scan 1, a northern hemisphere and southern 

hemisphere latitude row of Fourier coefficients are read in. These are 

necessary to construct the symmetric and antisymmetric coefficients for the 

Legendre transforms. This implies that the length of the latitude loop is over 

half the model latitudes and each pass processes a northern row and its 

corresponding southern row. 

Before the calculations in gridpoint space, gridpoint data are read from the 

gridpoint workfiles. After the gridpoint calculations on each latitude row are 
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Figure 42. Scan structure of the ECMWF spectral model. From Dent (1988). 
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completed, the gridpoint data are written back to these files. 

The latitude loop in scan 2 is also over half the model latitudes. At the 

start of each pass, the required Legendre polynomials are read from workfiles. 

At the end, the Fourier data for the northern and southern rows are output to 

the Fourier workfiles. 

All these workfiles are normally stored in the Solid-state Storage Device 

(SSD). As the transfer rate between SSD and main memory is fast, all I/O is 

performed synchronously i.e. the model waits until the I/O has completed. 

Dent (1988) reported that the penalty for synchronous I/O is about 3% of the 

execution time. All I/O takes place to and from buffers declared within the 

model. If the SSD is not used, the model stores the workfiles on disk with all 

I/O double buffered. This means that twice as many I/O buffers are declared 

in the model and all I/O is asynchronous. That is, whilst computation is 

proceeding on the data in one buffer, the data for the next latitude is being 

read into (or written from) the other buffer. Using the SSD therefore reduces 

memory requirements and simplifies the code. 

8.5.2. Static scheduling schemes 

8.5.2.1. Original approach 

As the model was first multitasked on the CRAY X-MP/22, memory use 

was the dominant concern. A multitasking strategy was therefore chosen that 

provided effic.ent computation with minimum memory requirement. The 

approach chosen split scan 1 into two pairs of processes after the Fourier data 

had been read in. The first pair of processes includes all the work between 

the Fourier space calculations inclusive. One process uses the northern 

hemisphere row whilst the other process uses the corresponding southern 

hemisphere row. The second process pair compute the direct Legendre 

transform. The Legendre transform separates naturally into a process to 

update the symmetric components of the spectral data and another to update 

the antisymmetric components. Since the processes therefore update 

separate halves of the spectral data, there is no danger of writing to the same 

memory simultaneously and hence no critical region. However, there must be 

a synchronization point between the pairs of processes as both northern and 

southern rows contribute to the symmetric and antisymmetric Fourier 

313 



coefficients. 

In scan 2, another pair of processes compute the inverse Legendre 

transform for the north and south latitude rows of Fourier coefficients. The 

diffusion calculations between the two scans have a sufficiently large grain 

that they can also be multitasked. This multitasking structure for two 

processors is illustrated in Fig. 43. 

This scheme can be extended to any even number of processors by 

replicating the multitasking strategy described above. Each pair of processors 

is given a pair of north and south latitudes to process. The Fourier 

coefficients for each pair of processors are read in by the odd numbered 

processors (starting from 1) before the process to compute the southern row 

is created. A static scheduling scheme is used where the rows are assigned 

to processors at compile time rather than run time. This multitasking 

procedure is illustrated schematically in Fig. 44. Scan 2 can be multitasked 

over 4 or more processors in the same way. 

However, with 4 or more processors, the updating of the spectral 

coefficients during the direct Legendre transform becomes a critical region as 

there are now two processors trying to update the symmetric and 

antisymmetric parts. The ECMWF model uses two mechanisms to prevent this 

happening. The first protects the critical region of code using CRAY LOCKS. A 

process that enters the critical region sets the LOCK variable and unsets it 

when completed. Any process that finds the LOCK set when it reaches the 

critical region must wait until it is released. Unfortunately, with 4 or more 

processors the order in which the contributions for symmetric and 

antisymmetric parts are added to the spectral data is indeterminate. The 

second method of protecting this critical region is through the use of CRAY 

EVENTS. This facility is used to control the order of processors incrementing 

the spectral data to ensure reproducibility. 

Whilst each process must be synchronized in every pass of the latitude 

loop, the process pair for a northern and southern row contain a latitude loop 

and do not need to be synchronized with other process pairs until they have 

finished all their rows (see Fig. 44). However, although the amount of work in 

the dynamics part of the model is the same for each latitude, this is not true 

in the physical parametrization part due to the variation in convective activity. 
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Figure 43. Original multitasking structure of the ECMWF model using 2 processors. 

From Dent (1988). 

Loop over rows 

North south pair 
for process I 

North south pair 
for process 2 

Figure 44. Schematic illustration of the multitasking strategy for scan 1 of the 

ECMWF model, using 4 processors. From Dent (1988). 
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The graph in Fig. 45 shows a typical variation in the time for process 1 and 

clearly shows the effect of the decreasing occurrence of convection moving 

from the tropics to polar regions. The use of EVENTS to ensure reproducibility 

and other LOCKS in the code add to the imbalance between the workload of 

each processor. Fig. 46 shows how the execution time is broken down. The 

out-of-balance percentage is due to the variation in. time resulting from the 

convection parametrization. The multitasking overheads (MT overheads) are 

due to the cost of creation and synchronization of processes and the use of 

LOCKS. 

8.5.2.2. Enhanced approach 

In order to reduce the amount of wasted CPU time indicated in Fig. 46, the 

static scheduling strategy was enhanced. Using the extra memory available on 

the CRAY X-MP/48 it was possible to implement a different multitasking 

strategy which retained the pairing of north and south rows but computed 

them sequentially (north followed by south) instead of in parallel as before. In 

this scheme, each process does the same operations but on different latitude 

pairs, which allows the model to run on a computer with N processors rather 

than 2N processors. 

Twice as much memory is required in this scheme to store the Fourier 

coefficients, since every process now reads a pair of Fourier latitudes. The 

main advantage however, is that the delays caused by synchronizing process 1 

in every latitude loop pass have been removed. Also, as no processes are 

created during the latitude loop the overhead is reduced. 

The only synchronization point now required is after the processes have 

completed all their latitudes. Imbalances from convection still arise however. 

Scan 2 remains unchanged. This enhanced scheme was implemented by David 

Snelling as a model option. 

8.5.3. Dynamic scheduling 

In order to reduce the imbalance in the workload between the processes, a 

dynamic scheduling approach was implemented, in which the latitude row 

pairs are allocated to the processes at run time. This technique uses a counter 

which each process accesses and increments to determine which row pair to 

use next. Processes working on polar latitudes will access this counter more 
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Figure 45. Graph showing the measured time of process 1 against latitude for a 

timestep from a forecast model run. From Dent (1988). 

Figure 46. The multitasking efficiency of the ECMWF model using. the static 
multitasking scheme. From Dent (1988). 
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often for work. For this scheme to be effective, the variation in the grain size 

must be significant compared to the grain size itself. Although an additional 

LOCK is required to protect the use of the latitude counter, the time spent in 

this section of code is negligible. Whilst the updating of the counter must 

obviously be protected from simultaneous execution by processes, reading the 

counter is also a critical region of code, otherwise several processes may 

begin using the same latitude. Identifying critical regions of code which do 

not involve writing to shared data can be difficult and time consuming. 

The dynamic scheduling approach was implemented, as a model option, to 

both the original multitasking strategy (north and south rows parallel) and the 

enhanced strategy (north and south rows sequential). All the work was done 

by this author with assistance on certain details by Messrs. Dent and Snelling. 

Changes to the control flow of scans 1 and 2 (ignoring the I/O aspect of the 

model for now) were straightforward and mainly involved adding code to 

implement the latitude counter. The dynamic scheduling strategy is most 

effective when used with the north-south sequential multitasking scheme. The 

combined scheme became known as the DSC scheme (for dynamic 

scheduling). Fig. 47 illustrates the control flow for scan 1 using the DSC 

scheme and should be compared to Fig. 44. 

The inefficiencies introduced by enforcing reproducibility become larger 

with the north-south sequential approach. This is because, as each processor 

now updates both symmetric and antisymmetric parts of the spectral data, 

only one processor at a time can be executing the direct Legendre transform 

compared to two in the original scheme. The wasted CPU time can be 

minimized by dividing the spectral array into sections so that waiting 

processes can commence as soon as the active process finishes updating 

each portion. More recently, Dent and O'Neill (1988) have successfully used 

microtasking in the direct Legendre transform to speed the work at loop level 

for one process over the idle processors. 

The performance of the DSC model is presented by Dent (1988) and 

reproduced in Fig. 48. The out-of-balance overhead has been reduced from 

5% to 1% and the multitasking overhead to 3%. This produces an increase in 

the portion of time spent multitasking to 92%. The multitasking speedup 

(defined as the ratio of the wall-clock time on one processor to the time on 4 

processors) of the original static scheduling strategy was 3.6. With the DSC 
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Figure 47. Dynamic multitasking strategy for scan  using the north-south sequential 

approach. From Dent (1988). 

Figure 48. Multitasking efficiency for the dynamic scheduling north-south sequential 

(DSC) multitasking strategy. From Dent (1988). 
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strategy, the speedup increased to 3.7. 

In retrospect, the imbalances caused by convection could be reduced by a 

careful ordering of latitudes. Following analysis of process 1 times, such as 

shown in Fig. 45, throughout the seasons, latitudes could be assigned to 

processors (in a list) in such a way as to give a better balance of the 

workload. Whilst this method does not have the flexibility of dynamic 

scheduling, it would greatly simplify the changes required to the I/O structure 

and control routines of the model. 

8.5.4. Dynamic I/O scheme 

In the I/O routines for the original multitasking scheme the I/O buffers 

were assigned to particular rows. The routines were passed the row number 

to be read in and if results needed to be written, calculated the row number 

waiting in the buffer. However, with a dynamic scheduling scheme this is no 

longer possible. First, the previous row processed, waiting to be written out, 

may have no relationship to the row the processor is about to use. Second, 

the assignment of a buffer and a subset of rows to a processor is no longer 

valid since different processors might be given rows that would involve the 

use of the same buffer. It became necessary therefore to completely rewrite 

the I/O code of the model and design a dynamic I/O system which would 

allocate rows to buffers when they became free. This new I/O system was 

designed and implemented by the author. A brief description of the dynamic 

I/O system is given by Dent (1988). A more detailed description of the design 

and implementation of the system is given by Carver (1986). 

8.5.4.1. Requirements 

The new I/O system had to support the existing model options and those 

introduced by the new multitasking schemes. Specifically, the code had to 

support single and multitasking, static and dynamic scheduling, north-south 

parallel and sequential multitasking, single buffering (SSD workfiles) and double 

buffering (disk workfiles). Other existing options in the original I/O code also 

had to be supported. These are detailed in Carver (1986). 

As the code had to be completely rewritten, at the suggestion of David 

Dent, the opportunity was taken to introduce new model options and take 

advantage of new operating system facilities. An additional requirement of the 
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new I/O system was for latitudes to be retained in memory until all processors 

indicated they were no longer needed. This was to allow parametrization 

schemes to be developed that could access gridpoints on neighbouring 

latitudes, something not possible with the original code. 

At the time of the design of the new system, a new version of the CRAY 

operating system (COS 1.15) was due for release which would allow 

asynchronous queued I/O (ASIO). This would achieve savings by queuing 

transfer requests and avoid operating system overheads for each individual 

request. ASIO is particularly attractive for random I/O requests to SSD when 

several requests may be outstanding at any one time. A further design aim 

was therefore to make best use of this facility, assuming its existence. The 

results presented in Fig. 48 had to simulate the ASIO facility using existing I/O 

routines as the new operating system was not available at that time. 

8.5.4.2. Design and implementation 

To allow all the options described above to be supported, a sophisticated 

and flexible design was required. The dynamic allocation of buffers to rows 

implied that a method of flagging buffers no longer needed had to be 

developed. This was done by providing each buffer with a counter for each 

process, that was incremented by that process when it finished with its row. 

Free buffers were detected by summing these counters and comparing the 

result with the known total number of times each latitude was required. Each 

process had a separate counter to avoid the need for a LOCK. 

To use the ASIO facility as efficiently as possible the I/O queue had to be 

prevented from emptying. Given that finished buffers could be detected, it 

was decided to design the I/O system to 'lookahead' and start any read 

transfers that had yet to be requested by processes. A set of rules was 

therefore developed to decide the next row to be assigned to a free buffer. 

These rules had to support the functional requirements described in the 

previous section and are described in detail by Carver (1986). 

Although the row required by a process was passed to the I/O routines, it 

was realized that the lookahead rules developed also applied to this row so 

that all free buffers could be treated using the same logic, simplifying the 

code. It was impossible to tell the order in which the rows for the free 
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buffers would be requested by other processes but the transfer request for 

the calling process was always initiated first. 

As the master I/O routines were called from within the multitasked code, a 

LOCK was used to ensure only one process at a time executed these routines. 

However, this did not cause much inefficiency since the executing process 

detected the free buffers of the waiting processes and queued their transfer 

requests. The processes delayed by the LOCK therefore normally found no 

work to do when it was released, except wait for completion of their I/O which 

was done outside the LOCK. 

As the lookahead rules anticipated the next rows required by the 

processes, double buffering was achieved simply by doubling the number of 

available buffers (although the lookahead rules change if the row pairs are 

processed sequentially). The provision of additional latitude rows was 

achieved in the same way, although the number of buffers required varied. The 

minimum number of gridpoint buffers applied when processors were working 

on consecutive rows. The additional buffers are required at the ends of the 

ranges of northern and southern rows. On the other hand, if the latitudes the 

processes were using were well separated, each process required additional 

buffers for the latitudes north and south of its row. This is the maximum 

number of buffers required. 

When dynamic scheduling is used and a number of buffers less than the 

maximum is provided, it is possible that, if the processes separate sufficiently, 

one or more rows required by the calling process are not yet available. In this 

situation it must wait for the other processes to catch up sufficiently, so that 

they will free buffers and start the I/O to read the rows required by the 

delayed process into these buffers. There is thus a trade-off between the 

number of buffers that can be provided and the efficiency of the dynamic 

scheduling. If the minimum number is provided and the I/O single buffered, 

the dynamic scheduling will be constrained to operate in a static scheduling 

manner. If double buffering is used, the extra buffers will be used to satisfy 

requests for additional rows instead, so that true double buffering will fail, 

although this will just introduce delays in waiting for some I/O requests to 

complete. 

The dynamic I/O system is therefore very flexible. The I/O system also 
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functions correctly when the number of buffers provided is not an integer 

multiple of the number of processes, so that as much of the available memory 

as possible can be used. 

8.6. The Meteorological Office MIMD finite difference model 

The Meteorological Office recently purchased a 4 processor ETA-10 to 

replace their single processor CYBER-205. At the time of writing, plans to 

adapt the Meteorological Office finite difference forecast model for 

multiprocessing were well advanced (Mozdzynski, 1988; Dickinson, personal 

communication). These plans are briefly described here to contrast the 

multitasking strategy of the spectral model at ECMWF. 

The basic multitasking approach is to divide the model latitudes into 4 

sections. Each section overlaps adjoining sections by several latitudes. This 

has to be done because 3 adjustment steps for the gravity wave terms are 

made each timestep (Gadd, 1985), resulting in invalid values for the boundary 

latitudes. The correct boundary values are then read at the start of the new 

timestep from the appropriate adjoining process. In this static scheduling 

approach, a barrier is used to synchronize all processors to ensure they have 

all written their edge data to the shared memory. Thus the data transfers for 

each process are a read and write of the boundary latitudes, compared to the 

ECMWF spectral model in which the entire spectral data is transferred. 

Load imbalances due to convection still arise. However, the Fourier 

filtering that takes place on polar latitudes acts to even the workload. It is 

also straightforward to alter the number of latitudes in each section to provide 

a better balance of the workload based on an analysis of the average time 

spent processing each latitude. 

The I/O in this static scheduled scheme is synchronous. That is, a 

processor writes its boundary data after it has finished processing its latitudes. 

Also computation cannot begin until boundary data have been read in. This 

overhead can be avoided by using a dynamic multitasking scheme 

(Mozdzynski, 1988). The dynamic scheme works by partitioning the latitudes 

into smaller segments so that each processor will process several segments. 

The number of segments each processor is given depends on the length of 

time spent processing the segments. The I/O overhead is minimized by 
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allowing the data transfers to be asynchronous. Whilst each processor is 

computing a segment, the next segment for processing can be read in at the 

same time as the previous segment is written out. There is clearly much 

more data transferred using this approach as all the latitudes are read once 

and written once to shared memory per timestep. However, by assigning 

groups of segments to processors (static scheduling), the total amount of data 

transferred reduces to boundary data only, as before, but the I/O remains 

asynchronous. 
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CHAPTER 9 

CONCLUSIONS 

This thesis has presented a study of the application of meteorological 

modelling to the ICL DAP and other parallel computers. Chapter 2 reviewed 

some current and future parallel computers, including the DAP. Parallel 

programming languages and the facilities they offer were also described. 

Software tools to assist in the development of models on parallel computers 

will be invaluable since most meteorological models are still written in serial 

FORTRAN. FORTRAN 8X will undoubtedly be a step in the right direction with 

its support for SIMD parallelism, making SIMD architectures such as the DAP 

potentially available to more users. Chapter 2 also reviewed the main issues in 

programming parallel computers and the differences between SIMD and MIMD 

programming, illustrating the added complexities of the latter. 

Chapter 3 reviewed the meteorological modelling techniques that were 

applied to the DAP in later chapters. The gridpoint, spectral and finite element 

methods were reviewed and shown to contrast in the issues that each 

presents for implementation on the DAP. 

In chapter 4, related research work by other authors was reviewed. They 

concentrated mainly on gridpoint models (e.g. Hunt, 1974b), although 

Fishbourne (1980) also studied the implementation of a spectral model on the 

DAP. For global gridpoint models, the choice of grid and how it is mapped to 

the DAP is very important. Hunt (1974b) applied the Meteorological Office's 

global forecast model at that time to the DAP. The model grid had a varying 

number of longitude points on each latitude. Mapping the grid to the PEs was 

not straightforward, the finite difference calculations and hence the DAP 

FORTRAN were more complicated than with the latitude-longitude grid in the 

gridpoint model of Fishbourne (1980). However, Fishbourne (1980) found that 

the Fourier filtering required at polar latitudes for a latitude-longitude grid was 

costly. The studies described in chapter 4 all showed the gridpoint method to 

be well suited to the DAP. The local nature of the finite difference calculations 

resulted in models that used the DAP array efficiently and with low routing 

overheads. 

In contrast, the T42 spectral model of Fishbourne (1980), also described in 

chapter 4, was seen to be inefficient on the DAP. The CPU time was 10 times 
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that of an equivalent gridpoint model. As the Legendre transforms accounted 

for 83% of the execution time, substantial improvements in the CPU time of 

this model required significantly improved Legendre transform algorithms. 

In chapter 5, new parallel Legendre transform algorithms for the DAP were 

developed. Different storage arrangements of the Legendre polynomials and 

their derivatives were considered and it was found that the best algorithms 

resulted from data mappings that made the most efficient use of processor 

memory, but did not involve packing the data. 

Legendre transform algorithms that did not use the symmetry property of 

the Legendre polynomials were developed first. Compared to the algorithms 

used by Fishbourne (1980), the inverse Legendre transform was faster by a 

factor of 1.9, the direct transform was faster by a factor of 3.3. The inverse 

transform has a number of inefficiencies related to the triangular nature of the 

spectral truncation. It was pointed out that improvements can be made by 

programming the algorithm in the DAP assembly language to take advantage 

of the idle processors. In comparison, the direct transform made efficient use 

of the DAP array by computing the two products in the transform concurrently. 

This was possible because of the efficient way in which the Legendre 

polynomials and their derivatives were stored in the same array. 

Toe algorithms and data mappings were then altered to enable the use of 

the symmetry property of the Legendre polynomials. This resulted in a 

speedup of 1.6 for the inverse transform and 1.4 for the direct transform over 

the original nonsymmetric algorithms, as well as halving the storage 

requirements of the Legendre data. Again, programming the symmetric inverse 

transform in the DAP assembly language would improve the algorithm. 

The relationships between the spectral and Legendre data mappings and 

the efficiency of the algorithms were pointed out. That is, at each stage of 

the algorithm, certain restrictions on the data mapping applied if that stage 

was to be efficient. The mappings of the real spectral coefficients and the 

Legendre data were shown to be important to the execution time of the 

routines, whereas the imaginary coefficients' mapping had a negligible effect. 

The development of these algorithms illustrates the strong relationship 

between the storage mapping and the efficiency of the algorithm for the DAP. 
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Chapter 6 described a T42 spectral shallow-water model implemented on 

the DAP, using the Legendre transform algorithms developed in chapter 5. The 

CPU time per step of this model was a factor of 2.3 less than that of the T42 

spectrall shallow-water mode! of Fishbourne (1980). This was mainly due to 

the superior Legendre transform algorithms but the FFTs of the model were 

also faster. This makes the spectral method appear to be more suited to the 

DAP than Fishbourne's results implied. 

The lack of a fast I/O facility and the limited amount of processor memory 

were put forward as the main reasons for the DAPs at Edinburgh University 

being generally unsuitable for multi-level and high resolution spectral models, 

even though the results of chapter 6 showed that the DAP is potentially suited 

to high resolution models. The latest generation DAP from AMT has both 

these requirements. 

In chapter 7, a finite element model was implemented on the DAP to study 

the suitability of this technique, in contrast with the gridpoint and spectral 

methods. The finite element model was shown to be efficient in its use of 

processors and storage, more so than the spectral model. On average, the 

finite element model kept 97% of the processors busy doing useful work 

compared to 64% for the spectral model. Therefore its performance rate of 

13.lMflops was more than the 8.7Mflops for the spectral model. The gridpoint 

shallow-water models of Fishbourne (1980) had a performance rate of 

1 OMfiops. 

Parallel algorithms to construct the matrices arising from the finite element 

approximations were derived. The most efficient method of solving the 

system of simultaneous equations was also studied. The hybrid Jacobi 

iterative routine in the DAP subroutine library was found to give the best 

performance, although a preconditioned conjugate gradient algorithm was 

developed that took almost the same CPU time. The finite element model was 

designed so that tridiagonal matrix equations resulted. This was important as 

it allowed the use of existing, efficient algorithms to solve them. Based on the 

efficient use of resources, it was concluded that the finite element method is 

better suited to the DAP than the spectral method, although each is applied to 

different types of meteorological modelling problems. 

A serious problem with DAP FORTRAN is that it is impossible to program a 
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model which can be run at different resolutions, because of the constraint on 

the array size. As AMT have recently announced their intention to support 

FORTRAN 8X (chapter 2) this objection to the use of the DAP for 

meteorological modelling is removed. However, the size of the DAP processor 

array will still influence the possible efficient resolutions as discussed in 

chapters 6 and 7. 

The DAP exploited the geometric parallelism in the models. That is, each 

processor represented a gridpoint, spectral coefficient or finite element node. 

The size of the processor array therefore had a strong influence on the 

domain size of the models implemented on the DAP. However, the parallelism 

available in meteorological models in a geometric sense is generally more 

than can be .  exploited by the hardware, especially for multi-level models. 

There is also further SIMD parallelism available from identical calculations 

between variables. This leads to the question of whether meteorological 

modelling is better suited to SIMD or MIMD architectures, as much SIMD 

parallelism is available in the models and MIMD programming is more 

complex. Chapter 8 reviewed the application of meteorological models to 

other parallel computers and discussed why the parametrization of physical 

processes in multi-level models requires MIMD architectures for optimum 

efficiency. However, the work undertaken with the ECMWF spectral model 

illustrates the degree of sophistication required in programming MIMD 

computers to obtain this efficiency. The effect of conditional operations in the 

parametrizations on the performance of a model on the DAP depends on the 

fraction of time spent processing with a reduced number of processors, as 

discussed in chapter 2. 

It is easier to conclude the architectures not suited to meteorological 

modelling rather than those that are. Communication and synchronization 

requirements of the models lead to the conclusion that their performance on 

distributed memory SIMD or MIMD computers, whose processing speed is 

unmatched by interprocessor communication speed, is poor relative to the 

peak performance of the computer. The same might be true for hierarchical 

memory machines where communication takes place via a shared memory. 

On the DAP, arithmetic is slower than the transfer of data between processors. 

This is not to say that modelling cannot be done on these machines, but for a 

time critical program such as a forecast model, a machine with a 
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proportionally greater processing speed (or number of processors) would be 

required. A heterogeneous architecture consisting of SIMD processors and 

MIMD processors might be more suitable. The dynamics calculations in the 

models would be done on the SIMD part whilst the physics would be done on 

the MIMD part. As far as the DAP is concerned, for the latest generation from 

AMT and taking into account future compilers, the degree of SIMD parallelism 

available in meteorological models means that DAP is a suitable computer 

architecture. This thesis has shown that the gridpoint and finite element 

methods are both able to make efficient use of the DAP. Whilst the spectral 

method is less suited by comparison, its performance is not such as to 

dismiss the DAP architecture, bearing in mind that spectral models warrant 

detailed study when implemented on other parallel computers, as described in 

chapter 8. 

There are several ways in which this research could continue. First, the 

inverse Legendre transform should be written in the DAP assembly language 

to determine the performance benefits. The next stage would be the 

development of a multi-level spectral model. This would allow the effect of 

the conditional operations in the physical parametrizations to be properly 

assessed. The additional levels would also allow the study of whether the 

additional parallelism could be exploited by the Legendre transform algorithms 

in the spectral model. Another research area would be the use of block 

floating point or reduced precision arithmetic in gridpoint, spectral and finite 

element meteorological models. Finally, in chapter 8 it was suggested that the 

spectral transforms (FFT5 and Legendre transforms) could be used as a 

benchmark for spectral models. For a finite element model, the solution of 

tridiagonal simultaneous equations would perhaps be a suitable benchmark. It 

would be worthwhile implementing these benchmarks on different parallel 

computers to enable further conclusions to be made about the suitability of 

different parallel architectures to meteorological modelling. 
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Appendix A. Code examples from the spectral model 

Appendix AJ. Inverse Legendre transform algorithms 

This section presents the DAP FORTRAN used for estimating the execution 

times of the inverse Legendre transform algorithms, derived from the Legendre 

polynomial mappings. Tl3 generic function ROUTE in the code below 

represents any of the suitable routing operations discussed in chapter 5. All 

variables are assumed to be set to zero before use. 

Latitude vertical: 

ZREAL(REAL_MASK) = FMN(,) 
ZIMAG(REAL_MASK) = ROUTE( FMN(,) ) 

DO 100 J = 1, 64 
FMR(,J) = StJMC( ZREAL * p4r(,,J) ) 

FMI(,J) = StJMC( ZIMAG * P( 11 J) ) 

100 CONTINUE 

m vertical 

ZREAL(REAL_MASK) = FMN(,) 
ZIMAG(REAL_MASK) = ROUTE( FMN(,) ) 

DO 100 M = 1, 43 
FMR(,M) = StJMC( MATR( ZREAL(,M) ) * PMN(,,M) ) 
FMI(,M) = SUMC( MATR( ZIMAG(,M) ) * PMN(,,M) ) 

100 CONTINUE 

n vertical: 

ZREAL(REAL_MASK) = FMN(,) 
ZIMAG(REAL_MASK) = ROUTE( FMN(,) ) 

DO 100 N = 1, 43 
FMR(,) = FMR(,) + MATC( ZREAL(,N) ) * PMN(,,N) 
FMI(,) = FMI(,) + MATC( ZIMAG(,N) ) * PMN(,,N) 

100 CONTINUE 
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Appendix All. Direct Legendre transform algorithms 

This section presents the DAP FORTRAN used for estimating the execution 

times of the direct Legendre transform algorithms derived in chapter 5. 

Latitude vertical: 

AMR(,) = AMR(,) 
ANI(,) = AMI(,) 
BMR(,) = BMR(,) 
BMI(,) = BMI(,) 
DO 100 3 = 1, 6 

F(PMN_MASK) 
F(DQ_MASK) 
FMNR(,) 
F(PMN_MASK) 
F(DQ_MASK) 
FMNI (,) 

100 CONTINUE 
FMN (REAL_MASK) 
FMN(IMAG_MASK) 

• MATR( HJ() 
• MATR( HJ() ) 
• MATR( HJ() 
• MATR( HJ() ) 

4 
= MATC( ANI(,J) 
= ROUTE( MATC( BMR( ,J) 
= FMNR(,) + F(,) * PMN(,,J) 
= MATC( AMR(,,J) 
= ROUTE( MATC( BMI(,J) 
= FMNI(,) + F(,) * p(,,J) 

ROUTE( FMNR ) + FMNR 
= ROUTE( FMNI ) - FMNI 

m vertical: 

MP1 = 44 
A2'1R(,) = AMR(,) 
AMI(,) = AMI(,) 
BMR(,) = BMR(,) 
BMI(,) = BMI(,) 
DO 100 M = 1, 4 

F(PMN_MASK) 
F(DQ_MASK) 
FMNR(M,) 
F(PMN_MASK) 
F(DQ_MASK) 
FMNI(M, 

100 CONTINUE 
FMN(REAL_MASK) 
FMN ( IMAG_MASK) 

• MATR( HJ() 
• MATR( HJ() ) 
• MATR( HJ() 
• MATR( HJ() ) 

3 
= MATR( AMI(M,) ) 
= ROUTE( MATR( BMR(MP1-M.) 
= SUMC( F(,) * PMN(,,M) 
= MATR( A1R(M,) 
= ROUTE( MATR( BMI(MP1-M,) ) 
= SUMC( F(,) * PMN(,,M) 

= ROUTE( FMNR ) + FMNR 
= ROUTE( F4NI ) - FMNI 

n vertical: 

AMR(,) = AMR(,) * MATR( HJ() 	) 
AMI(,) = 	Al'41(,) * MATR( HJ() 	) 
BMR(,) = BMR(,) * MATR( HJ() 	) 
BMI(.) = BMI(,) * MATR( HJ() 	) 
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FR(,) 	= A141(,) 
FR(DL_MASK) = ROUTE( BMR(,) ) 
FI(,) = AMR(,) 
FI(DL_MASK) = ROUTE( BMI(,) ) 
DC 100 N = 1, 43 

FMNR(,N) = StJMC( FR(,) * PMN(,,N) ) 
FMNI(,N) = SUMC( FI(,) * P4(,,N) 
IF ( N.NE.21 ) GO TO 5 

FR(DL1_MASK) = AMI(,) 
FI(DL1_MASK) = AMR(,) 

5 	IF ( N.NE.42 ) GO TO 100 
FR(43,) = AMI(43,) 
FI(43,) = AMR(43,) 

100 CONTINUE 
FMN (REAL MASK) = ROUTE( FMNR (,) ) + FMNR (,) 
FMN ( IMAG_MASK) = ROUTE( FMNI (..) ) - FMNI (,) 

Appendix Aill. Symmetric Legendre transform algorithms 

This section presents the DAP FORTRAN for the inverse and direct 

Legendre transforms using the symmetry property of the Legendre 

polynomials. This was used for estimating and measuring the execution time 

of the algorithms. 

Inverse Legendre transform: 

AMWORK1 (REAL_MASK) = AMFMN (,) 
AMWORK2(REAL_MASK) = REVC( REVR( AMFMN(,) ) ) 

DO 100 N = 1, 23 
N2 = 2 * N 
N2P1 = N2 + 1 
AM(,) 	 = MATC( AMWORK1(,N2) ) 
AN( ALTC(32) ) = MATC( AMWORK1(,N2P1) ) 
AMFM(,,1) 	= AMFM(,,1) + AM(,) * PMN(,,N) 

AM(,) 	 = MATC( AMWORK2(,N2) ) 
AM( ALTC(32) ) = MATC( AMWORK2(,N2P1) ) 
AMFM(,,2) 	= AMFM(,,2) + A14(,) * PMN(,,N) 

100 CONTINUE 
AN(,) 	 = REVC( AMFM(,,1) ) 
AM( ALTC ( 32)  ) = -AM(,) 
AMFM (, , 1) 	= AMFM (, , 1) + AM(,) 
AMFM( ALTC(32).AND..NOT.ALTR(1),1 ) = -AMFM(,,1) 
AM(,) 	 = REVC( ANFM(,,2) ) 
AM( ALTC(32) ) = -AM(,) 
AMFM(,,2) 	= AMFM(,,2) + A14(,) 
AMFI4( ALTC(32).AND..NOT.ALTR(1),2 ) = -AMFM(,,2) 
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Direct Legendre transform: 

AM(,) 	 = REM AMBM(,,1) ) 
AMBM( LMEAST, 1 ) = -AMBM(,) 
AM( LMWEST ) 	= -AM(,) 
AMBM( 11 1) 	= AM(,) + ANBM(,,1) 

AM(,) 	 = REM AMBM(,,2) ) 
AMBM( LMEAST, 2 ) = •-AMBM(, , 2) 
AM( LMWEST ) 	= -AM(,) 
AMBM(,,2) 	= AM(,) + AMBM(,,2) 

= REM AMAM(,,1) ) 
AMAM( LMEAST,1 ) = -AMAN(,,1) 
AM( LMWEST ) 	= -AM(,) 
AMAM(,,1) 	= AM(,) + AMAM(,,1) 

AM(,) 	 = REVC( AMAM(,,2) ) 
AMAM( LMEAST,2 ) = -AMAI4(,,2) 
AM( LMWEST ) 	= -AM(,) 
A4M(,,2) 	= AM(,) + AMAM(,,2) 

AM( 11 1) 	 = REVR( AMAM(,,1) ) 
AM(,,2) 	 = REVR( AMAM(,,2) ) 
AMFMR (,) 	 = AMAM ( , , 1) 
AMFMI(,) 	 = AMAM(,,2) 
AMFMR ( LMDL2 1 ) = AMBM (, , 2) 
AMFMI( LMDL21 ) = AMBM(,,1) 
DO 100 N = 1, 10 

N2 = 2 * N 
N2P1 = N2 + 1 
AM(,) = AMFMR(,) * PMN( , ,N) 
CALL SUM2C( AM, AMWR(,N2), AMWR(,N2P1) 
AM(,) = AMFNI (,) * PMN ( , , N) 
CALL StJM2C( AM, AMWI(,N2), ANWI(,N2P1) 

100 CONTINUE 
AMFMR ( LMDL4 1 ) = AMBM (, , 2) 
AMFMI( LMDL41 ) = AMBM(,,1) 
DO 200 N = 11, 20 

N2 = 2 * N 
N2P1 = N2 + 1 
AM(,) = AMFMR(,) * PMN(,,N) 
CALL SUM2C( AM, AMWR(,N2), AMWR(,N2P1) 
AM(,) = AMFMI(,) * p(,,N) 
CALL SUM2C( AM, AMWI(,N2), AMWI(,N2P1) 

200 CONTINUE 
AMFMR(42,) = AMBM(42,,2) 
AMFMR(43,) = ANBM(43,,2) 
AMFMI(42,) = AMBM(42,,1) 
AMFMI(43,) = AMBM(43,,1) 
DO 300 N = 21, 22 

N2 = 2 * N 
N2P1 = N2 + 1 
AM(,) = AMFMR(,) * PMN(,,N) 
CALL SUM2C( AM, ANWR(,N2), AMWR(,N2P1) ) 

= AMFMI(,) * 
CALL SUM2C( AM, AMWI(,N2), A14WI(,N2P1) 

300 CONTINUE 
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M4FMN ( REAL _MASK ) = ANWR (,) + REVC ( REVR ( SHEP  ( AMWR, 19 ) ) 

AI4FMN( IMAG_MASK ) = SHEP( AMWI ,19 ) - REM REVR( AMWI ) ) 
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Appendix B. Accuracy of the finite element scheme for the diffusion term 

This appendix presents the proof of the accuracy of the finite element 

scheme used for the diffusion term in the finite element model of chapter 7, 

r,-.,l .,;.I, ,-,s,s • ,+ spacing ... 	- ..... - directions. Tile 	 of 
on  a 	.,.. 	 ..  

Cullen (1976) is used. 

Consider the equation, 

	

w = Lu 
	 (1) 

where L is the differential operator acting on u. Define a projection, p, such 

that pu and pw are the representations of u and w on the finite element grid 

i.e. the numbers held in the computer. If the finite element form of L is written 

as L then, as shown by Cullen (1976), the spatial error E is given by, 

E = (Lp - pL)u (2) 

This is the difference between the finite element solution and the analytical 

solution Eq.(1) projected onto the finite element grid. 

To simplify the analysis, consider the one-dimensional case only on a 

uniform grid, 

3 	3u 	 (3) 
I 

	

aY 	ay 

where u and Ke are assumed to be of the form, 

	

= e 	 Ke = e'' 	 (4) 

and y is a normalized coordinate with e=kAz i1tx with 

The projection of u and Ke onto the finite element grid is given by, 

pu = 	(6)exp(iOy1), 

PK e  = 

with 4 j  as the piecewise linear basis functions. The projection factor a, is 

given by Eq.(3.5.24). The analytical solution to Eq.(3) using Eq.(4) is given by, 
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f = -e(O+1p)expi(8+4))y] 	
(6) 

The computer representation of this is, 

p1= - 	e(e+(O+R)exp[i(e+P)Y11c 	
(7) 

The finite element scheme for Eq.(3) follows from the two-dimensional case 

and is, 

( 1 1 3)(f_ + 4f + f.) = (K1+1 + K1)(u1 - 	- (K + K1)(U - u11 ) 	( 8) 

If the numerical solution of f is written as, 

f Ipu = 	
(9) 

and Eq.(5) is substituted into Eq.(8) to solve for a , then, 

-3[ 1 - cose + cosR - cos(e+p)] 	 (10) 

2 + cos(e+iR) 

From Eq.(2), the error is therefore, 

E 	jct(e)ci()B(e,i) + e(e--)(e-1-)1 exp[i(e+4')y 1 1 4 	(11) 

The error of the finite element scheme is therefore proportional to, 

e (e+)(e+) 
+ 1 	

(12) 

at each node. Expanding this as e and i$i tend to 0 and using the result from 

Cullen (1976) that, 

a(k) = 1 + k 2 /12 + 	 as k-. 0 

the leading error term is found to be 6/6. Thus, on a regular grid the 

scheme is second order accurate. 
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Appendix C. Calculation of finite element matrices 

This appendix details the algorithms used to calculate the finite element 

matrix for the product term. The procedure for an irregular grid, 

semi-irregular grid and an improved algorithm following Staniforth and 

Beaudoin (1986) are presented. 

Appendix C.I. Product term on an irregular grid 

Consider the implementation of Eq.(7.7.3) on the DAP. The first stage is the 

calculation of the products on all the nodes. By redefining the half-integer 

values as, 

= ILL,1  + tik+lf 
	 (13) 

= H V11  + Vk+1I ) 

and the products as, 

= 
	 (14) 

then, 

= Pk+,I 

= 
	 (15) 

which can be used to remove multiplications in the calculation of the 

half-integer products and the multiplication by 2 and 4 in Eq.(7.7.3). 

As the DAP array matches the model domain, matrix notation can be used 

to express the operations on the nodes. The multiplications are written 

explicitly to show that they are DAP FORTRAN multiplications and not matrix 

multiplications in the mathematical sense. 

To compute the products, the half-integer values are first formed by, 

= I  + smwL) 

= 0.5 * ( ,g + sENPc ) 

338 



Z  =u+sHwPc :) 

V Z  = 0.5 * (+ SHWP( ) 

where 	 utiOns of DAP FORTRAN are written explicitly where they 

are required. Unused elements of the matrices are set to zero, 

i(64,i) = 0 	for I = 1,...64 

UZ (i,64) = 0 

v(64,I) = 0 

v(i,64) = 0 

before the remaining half-integer values are computed by, 

XZ = 	+ sHWP() 

= 0.5 * 	+ sHwPc) ) 

Ukz (i,64) = v(i,64) = 0 	for I = 1,...64 

The products are computed by, 

o =u x =x =X 

P=  =u 
Z =z =Z 

liz = xz * £ , 

The mapping expressions for these products are, 

p11 	( k, 1) + { k+1, 1+1 } 	for k, I = 0.....63 

Pk+,I 	( k+, 	k+1, 1+4 ) 
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P+4 : 	( k, 1+ 22L 	k+1, 1+1 } 	 (16) 

Pk+I+4 : ( k+, 1+12 ) + k+1, 1+1 } 

and the constant matrix, A. is set by, 

A 1  = 	Az / 36 	
(17) 

for which the mapping expression is, 

A: 	(k,1)(k+1,1+1) 	
(18) 

Using these mapping expressions it is straightforward to write the operations 

for the contributions from each element to include the correct shifts. First, 

some intermediate results are formed. The overbars are dropped for 

convenience. The operations required are, 

Q=&+SHSPC) 

+&xz 
	 (19) 

= =z -I- SHSP( 2 ) 

so that the elemental contributions are, 

= SHSP(SHEPU)) * [' + SHEP() 

£2 = SHEP(4) * [:& simiPW) I 

£3 = sHsP(4) * [+ £ 1 	 (20) 

£=4 I+1 

The matrix for the integral is then formed by, 

£= 	 i=1,2,3,4 	 (21) 

The total operation count is therefore eleven multiplications and seventeen 
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additions in matrix mode. 

Appendix C.lt. Product term on a semi—irregular grid 

Consider the implementation of Eq.(7.7.10) on the DAP. 	It is a 

computational advantage to redefine the products, p, to be, 

= ( Uiç  + Uk+I )( V ,1  + V+.1 ) 

= (uk, , + tik+lI  + U I .I. l  + uk+ll+l)(vk,I + Vk+l, + 	+ vk+1I+1) (22) 

similar to the irregular grid, so that, 

= 4Pk+,I 
	 (23) 

= 

where the products, p, are given by Eq.(7.7.4). Substituting into Eq.(7.7.10) then 

gives, 

FkI= (z_1/36)[ ikkI  + Ykk.t-4  + 

	

+ 2 Pk+I + 	 + *k+,I_ I 

+ (LxL/36)[ YkP  + 	 + 2Pk4I 	
(24) 

	

+ 2Pk+I + 	 + Pk+I+4 I 

The first stage in calculating Eq.(24) is again the calculation of the 

products, except that there are no multiplications by J necessary, saving 3 

matrix multiplies. The next stage is to evaluate the contributions from each 

grid element. However, since there is a regular spacing in the z direction, the 

contribution from the two elements at the same level can be evaluated 

together. That is, first compute, 

= MATC(X) * ,+ 0.5 * ( i + sHsP(i) ) 	 (25) 

= MATC(X') 
* 	+ 0.25 * 	+ SHSP(& XZ) ) 
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where the vector x' is defined by, 

 

,en e\duud te we  matrix uy, ,  

 

The total operation count is now 10 multiplications and 13 additions in matrix 

mode. 

The above procedure can be optimized further as the vector x' is not equal 

to 1 only at k=0 and 63. Thus, the factor of 0.5 at these points can be 

performed by two multiplications in vector mode, replacing the matrix multiply 

and the MATC call. The saving in time is small at 0.18msecs but there is also 

no need to store the vector f. 

Nearly all of the DAP array is used during these calculations. The 

calculation of the half-integer nodes uses all the array. The calculation of the 

products uses all but 1 row or column. For the products at the nodes at the 

mid-point of each rectangle, 1 row and column are unused. As the resulting 

matrix F in Eq.(7.7.10) has an entry for each node, all the processors are 

performing useful work for Eq.(25) and Eq.(27). 

Appendix C.11l. Further improvements 

Following Staniforth and Beaudoin (1986), the DAP algorithm for an 

irregular grid is as follows. First compute the half-integer sums, 

= £ + SHNP(,,) 

i x  = .L+ SHNPL 

= + sHwPc 

iz = £+ SHWP( 
	

(28) 

ixz = x + sHWP() 

ixz = x + SHWP(,) 
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Unused elements of these matrices are set to zero as before. The next stage 

is the computation of the products, different from before, 

£ = u * V * MATC (Ax + sRP (Ax)) /6 1 

= 	* £ * MATC[ ( + smp())/6] 

- *_ * 
£ =x £ 	MATC[Ax/12 1 	 (29) 

P. XZ = 	
* 	* MATC Ax/12 I 

Then some intermediate results are calculated by, 

A = MATR[ Az/12 I * 	+ SHSPAXZ + 	) ) 	
(30) 

=&+iX -1-  SHSP() 

The final matrix is given by, 

£ = A + SHEP(4) + MATR[ (Az + SHRP(Az)/6 I * B 	 (31) 

The terms in square brackets represent values that can be precomputed and 

stored. The operation count is now 10 multiplications and 12 additions. 

For a semi-irregular grid, the required changes to the algorithm steps in 

Eq.(29), Eq.(30) and Eq.(31) are straightforward. New constants are defined and 

two multiplications are removed. 
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A spectral meteorological model 
on the ICL DAP 

Glenn CARVER 

Department of Meteorology, The University, Edinburgh, United Kingdom EH9 3JZ 

Abstract. The key points to the implementatibn of a meteorological spectral model on the ICL Distributed Array 
Processor (DAP) are presented. Spectral models involve transforming the variables between spectral and 
gridpoint space and these spectral transforms comprise of Legendre and fast Fourier transforms. 

The storage format of the data is discussed and the algorithms used for the Legendre transforms presented. 
Timings of these algorithms are compared with those from a serial machine. 

Keywords. DAP, meteorology, spectral, Legendre transforms. 

1. Introduction 

The ICL DAP is a SIMD machine [7] comprising a 64 by 64 array of 1-bit processing 
elements (PEs) and 2 Mbytes of memory. Whilst this architecture seems ideally suited to finite 
difference techniques [2,8], the spectral method [3,5] is preferred in Meteorology for modelling 
the atmosphere over the globe for its superior accuracy. In this method, the model variables are 
expanded as a truncated set of spherical harmonics defined by 

Ymn(X, 	= e lm Pmn (t) 

where m is the number of waves around a latitude circle, n is the total wavenumber, X is the 
longitude and a = sin 0 where 0 is the latitude. The mfl  are normalised Legendre polynomials. 

The most common form of truncation is known as triangular truncation because of the 
shape of the retained modes in spectral or wavenumber space. Figure 1 illustrates this for a 
triangular truncation at wavenumber 5, denoted by T5. 

The expansion coefficients of each variable are functions of time only. The model equations 
are written so that these expansion coefficients are integrated forward in time. However, it has 
been found more efficient to evaluate non-linear terms by first transforming to a collocation 
grid in physical space to form the products and then transforming back to spectral space. These 

n 

t 
x+x+x+x+x+x 

X+X+(+X+X 

x+x+x+x 
X+(+X 

X +x 
Fig. 1. Spectral coefficients for triangular 
truncation at wavenumb-r 5 (T5). Crosses 
denote coefficients where I m I + n is even, 

M 	pluses where Im)+n is odd. 

0167-8191/88/$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland) 
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spectral transforms consist of Legendre and fast Fourier transforms (FFTs) and form a large 
part of the overall model calculations. 

To study the suitability of the DAP architecture to spectral meteorological models, a T42 
spectral shallow-water model [3], where the atmosphere is represented as a single layer of fluid, 
was implemented on the ICL DAP. For this model, the spectral transforms account for more 
than 90% of the computing time. The Legendre transforms alone account for 74%. Thus 
efficient implementation of the spectral transforms is essential if the method is to be successful 
on this type of architecture. The implementation of the FFT follows that in [6] and is not 
discussed here. 

2. Legendre transforms 

The Legendre transforms use the property 

=(1)"'Pm.n (!.Lj ) 

in order to reduce the amount of computation and the storage required for the Legendre 
polynomials and their derivatives. The model latitudes are denoted by , where j is a positive 

integer. 
The inverse Legendre transform involves first computing 

A m = 	Fmn (t)Pmn (Lj ) for lml+neven, 
' 	II 

M' 	
(1) 

Bm = Y Fmn (1)Pmn (L j ) for. jml+n odd 
nImI 

where Fm  are the spectral coefficients and M the truncation wavenumber. The symmetric 

(A m ) and antisymmetric (Bm ) Fourier coefficients are then combined to give the final Fourier 

coefficients by 

Fm(fLj) = Am(Pj) + Bm(!Ij), 	Fm (Lj ) = Am(Lj) - Bm (ij ). 	 (2). 

The symmetric and antisymmetnc spectral coefficients are illustrated in Fig. 1. 
The direct Legendre transform required by the model takes the general form 

- 	even: 

J/2 	 dPmn 
+j(Hm (LL j )±Hm (Lj ))Pmn , 	(3) Fm (t)= 	(Gm (!Lj) Gm (I2j ))  

j1 	
dp 

- ImI+n odd: 

J/2 	 dPmn 
Fmn(t) = 	( Gm (Lj ) + Gm(Lj)) d& + 

( Hm (ij ) - Hm(tLj))Pmn 
j=1 

where J is the number of model latitudes (64 at T42 resolution) and Gm  and H. are the 
Fourier coefficients obtained from non-linear products evaluated on the grid in physical space. 
The weights associated with this Gaussian quadrature equation are assumed to have been 
incorporated into the Fourier coefficients. It is clearly a computational advantage to store the 
Legendre polynomials and their derivatives. 
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3. Storage of data 

The different representations of a variable during the spectral transforms, spectral, Fourier 
and gridpoint, have differing degrees of freedom [5). The storage requirements are such that it 
is not possible, in general, to achieve optimum use of the DAP store for the three representa-
tions. Whilst it is possible to utilise 100% of the PE array in gs -idpoint space for the T42 model, 
the spectral coefficients only occupy 46% of their matrix. On the other hand, a higher resolution 
of T62 would achieve 98% for the spectral coefficients but 75% for the gridpoint data (although 
a simple packing scheme could increase this to 90%). 

The percentage use of the PE array by the spectral coefficients could be increased by 
packing them. For example, several variables could be held in one matrix using the long vector 
storage format [4]. However, this introduces additional overhead in unpacking and in any case 
the storage for the spectral coefficients is small compared to that of the Legendre polynomials. 

3.1. Storage of the spectral coefficients 

The spectral coefficients are stored in the DAP in the same way that they appear in Fig. 1. 
Since the model variables are real, only positive values of m need to be stored as the negative 
values are their complex conjugate. The imaginary parts are stored in the same matrix as the 
real parts where their mapping is obtained for efficiency by builtin DAP FORTRAN functions. 
A matrix transpose or the reversal of rows and columns is suitable, the latter is used in the 
model. This storage format can be expressed as 

Fmn  real: 	(m, n) —(m+1, n±2), 	
(4) 

F... imaginary: (m,n)—*(64—m,63—n). 

This mapping expression is read as, for example, the (m, n)th real coefficient is found at the 
element in row m + 1, column n ± 2 of the DAP matrix. 

In order to achieve vectorisation of the Legendre transforms for the implementation of a 
spectral model on a vector machine, it has been found necessary to store the spectral 
coefficients in a 'diagonal-wise' manner [1], where coefficients along diagonals of m + n odd or 
even are stored consecutively. A similar approach could be used for the DAP implementation 
where diagonals are stored down columns of the PE array. This could be expressed as 

Fmn  real: 	(m, n) —(m±1, n—m±1), 

F,..,, imaginary: (m, n)—.(64—m,64—n±m). 

A different storage format for the em,,  and their derivatives is necessary in this case but the 
code for the Legendre transforms remains the same apart from minor changes to some routing 
operations. 

3.2. Storage of the Legendre polynomials and derivatives 

As with the spectral coefficients, the em,,  are not packed in order to avoid routing 
overheads, which means the amount of storage required is considerable. The most efficient 
mapping was found to be when the wavenumber m and latitude tL are mapped horizontally on 
the DAP store and total wavenumber n increases vertically down the store. The derivatives 
dPmn/d can then be stored in the same storage area 'upside down' in much the same way as 
the imaginary parts of the spectral coefficients are stored in relation to the real parts. One 
benefit of storing the derivatives in this way is that the products involving the polynomial 
values and their derivatives in the direct transform (3) can then be computed in parallel. 
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n even n odd 

Pm, n 

 

(1 

Fig. 2. Schematic illustration of the stor-
age format for the Legendre polynomials 
and their derivatives. 

The T42 resolution allows the symmetric and antisymmetnc parts of the transforms to be 
computed in parallel. To do this, the storage format of the polynomial values best suited to (4), 
is to store all even values of n in one half of the array and all the odd values in the other half. 
This mapping can be written-as 

Pmn (neven): 	{m,n,,i}—(m+l,j,in+1), 

Pm . n (fl 01 	{m,n,ii}—(m+1,65 — j,i(n+1)) 

for j=1.....32. 

A similar expression occurs for the derivatives. Figure 2 illustrates this storage arrangement. 
The total number of planes occupied is then 704 (assuming 32-bit precision) or 17% of the 

total store of the DAP. Within this area of memory the P, and the dPmn /di values together 
occupy 68%. 

4. Legendre transform algorithms 

4.1. Inverse transform 

Having defined the storage arrangement for the relevant data, the procedure to compute (1) 
and (2) is straightforward. The algorithm is parallel in m, u and symmetric and antisymmetric 
parts and sequential in n. The loop over n executes (M ± 2)/2 times and on each pass a 
column vector of spectral coefficients of n odd and even is broadcast and multiplied to the 
Legendre polynomial array. The symmetric and antisymmetric parts of the Fourier coefficients 
are then combined after the loop by simple routing. 

It can be easily seen that this algorithm is not efficient. At worst (n = 0), only 1.5% of the PE 
array is performing useful work, whilst at best (n = 42) 67% is in use. Simple packing strategies 
can be used to improve on this but at the expense of being able to compute the products in (3) 
in parallel so that there is no net gain for the model. 

4.2. Direct transform 

The direct Legendre transform algorithm has additional parallelism to the inverse transform 
in that the products involving em,,  and dP,,,.,/dp are computed in parallel. Each pass of the 
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loop over n involves multiplying the symmetric and antisymmetric parts of the Fourier 
coefficients to the array and summing along each half row to give a vector for n odd and 
even. The two products are combined at the end of the loop to give the final spectral 
coefficients. 

Unlike the inverse transform, the efficiency of this algorithm stays constant with 68% of the 
PE array performing useful work. The summation along rows was done in the model by a 
cascade sum routine written in DAP FORTRAN. However, the CPU time presented in the 
next section for the direct transform is corrected from that measured by assuming the use of an 
assembler written routine which takes the same time as the DAP FORTRAN builtin function 
that sums across all columns to give a vector result [4]. 

5. Results 

Figure 3 shows the CPU times of the Legendre transforms measured for the T42 resolution 
and estimated at other resolutions. Also shown are the times for serial versions of the 
transforms, measured on a AMDAHL 470/V8 computer. 

The DAP times for the inverse transform show the linear dependency on truncation, the 
increased slope between T42 and T62 occurs because the symmetric and antisymmetric 
components can no longer be computed in parallel. At resolutions greater than T62, additional 
work is required as the spectral and Legendre polynomial values require additional matrices of 
storage. By contrast, the serial algorithms show the cubic variation with truncation. Clearly, the 
DAP performance improves with the higher truncation; the ratio between the CPU times is 3.6 
at T42 and 5.2 at T85. The T21 resolution is too low to make effective use of the DAP 
architecture. 

Figure 3 also shows the times for the direct Legendre transform. The difference between the 
DAP and serial times is now much greater due to the additional parallelism exploited in the 
DAP algorithm. The ratio of these times is 5.6 at T42 and 8.8 at T85. 

Whilst the ratio of the direct transform time to that of the inverse transform is about 2.8 for 
the serial routines, by contrast the DAP algorithms show a much smaller ratio of about 1.4 

Fig. 3. Variation of CPU time with trun-
cation for the Legendre transform al-
gorithms. Solid curves represent the DAP 
routines, dashed curves the serial routines. 
Inverse transform times are shown with a 
cross, direct transform times with a circle. 
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(except at T85 where it is 1.7). The T85 DAP times are only rough guides as this resolution 
would require I/O during the transforms as the required space for the Legendre polynomials 
would exceed that available. 

6. Discussion 

The CPU time per step of this model is approximately 4 times that of the finite difference 
shallow-water model in (2). However, equivalent spectral and finite difference models on serial 
and vector computers tend to require approximately the same computing time. From the above 
results this would suggest the use of higher resolutions for greater efficiency, or perhaps 
multilevel models where the additional available parallelism might lead to more efficient 
transform algorithms. - 
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