

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

PH.D. THESIS
IN

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

A RECONFIGURABLE AND EXTENSIBLE

EXPLORATION PLATFORM FOR FUTURE

HETEROGENEOUS SYSTEMS

MIRKO GAGLIARDI

TUTOR: PROF. ALESSANDRO CILARDO

COORDINATOR: PROF. DANIELE RICCIO

XXXI CICLO

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE
DIPARTIMENTO DI INGEGNERIA ELETTRICA E TECNOLOGIE DELL’INFORMAZIONE

Abstract

Accelerator-based –or heterogeneous– computing has become increasingly
important in a variety of scenarios, ranging from High-Performance Com-
puting (HPC) to embedded systems. While most solutions use sometimes
custom-made components, most of today’s systems rely on commodity high-
end CPUs and/or GPU devices, which deliver adequate performance while
ensuring programmability, productivity, and application portability. Unfor-
tunately, pure general-purpose hardware is affected by inherently limited
power-efficiency, that is, low GFLOPS-per-Watt, now considered as a pri-
mary metric. The many-core model and architectural customization can
play here a key role, as they enable unprecedented levels of power-efficiency
compared to CPUs/GPUs. However, such paradigms are still immature and
deeper exploration is indispensable.

This dissertation investigates customizability and proposes novel solutions
for heterogeneous architectures, focusing on mechanisms related to coher-
ence and network-on-chip (NoC). First, the work presents a non-coherent
scratchpad memory with a configurable bank remapping system to reduce
bank conflicts. The experimental results show the benefits of both using a
customizable hardware bank remapping function and non-coherent memo-
ries for some types of algorithms. Next, we demonstrate how a distributed
synchronization master better suits many-cores than standard centralized
solutions. This solution, inspired by the directory-based coherence mech-
anism, supports concurrent synchronizations without relying on memory
transactions. The results collected for different NoC sizes provided indica-
tions about the area overheads incurred by our solution and demonstrated
the benefits of using a dedicated hardware synchronization support. Fi-
nally, this dissertation proposes an advanced coherence subsystem, based
on the sparse directory approach, with a selective coherence maintenance
system which allows coherence to be deactivated for blocks that do not re-
quire it. Experimental results show that the use of a hybrid coherent and
non-coherent architectural mechanism along with an extended coherence
protocol can enhance performance.

The above results were all collected by means of a modular and customiz-
able heterogeneous many-core system developed to support the exploration
of power-efficient high-performance computing architectures. The system is
based on a NoC and a customizable GPU-like accelerator core, as well as
a reconfigurable coherence subsystem, ensuring application-specific config-
uration capabilities. All the explored solutions were evaluated on this real

� iv

heterogeneous system, which comes along with the above methodological
results as part of the contribution in this dissertation. In fact, as a key
benefit, the experimental platform enables users to integrate novel hard-
ware/software solutions on a full-system scale, whereas existing platforms
do not always support a comprehensive heterogeneous architecture explo-
ration.

Preface

The results and research activities presented in this dissertation have been
published in scientific conferences or journals during my Ph.D studentship:

• Cilardo, A., Flich, J., Gagliardi, M. and Gavila, R.T., 2015, Au-
gust. Customizable heterogeneous acceleration for tomorrow’s high-
performance computing. In High Performance Computing and Com-
munications (HPCC), 2015 IEEE 7th International Symposium on
Cyberspace Safety and Security (CSS), 2015 IEEE 12th International
Conferen on Embedded Software and Systems (ICESS), 2015 IEEE
17th International Conference.

• Cilardo, A., Gagliardi, M. and Donnarumma, C., 2016, November. A
Configurable Shared Scratchpad Memory for GPU-like Processors. In
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing.

• Cilardo, A., Gagliardi, M. and Passaretti, D., 2017, November. NoC-
Based Thread Synchronization in a Custom Manycore System. In
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing.

• Gagliardi, M., Fusella, E. and Cilardo, A., 2018, July. Improving Deep
Learning with a customizable GPU-like FPGA-based accelerator. In
2018 14th Conference on Ph. D. Research in Microelectronics and
Electronics (PRIME).

• Zoni, D., Cremona, L., Cilardo, A., Gagliardi, M. and Fornaciari, W.,
2018. PowerTap: All-digital power meter modeling for run-time power
monitoring. Microprocessors and Microsystems.

• Cilardo, A., Gagliardi, M., Scotti, V. Lightweight hardware support
for selective coherence in heterogeneous manycore accelerators. In
2019 Conference on Design, Automation ans Test (DATE). Ongoing
peer review.

Contents

1 Introduction 1
1.1 Methodology . 4

1.2 Thesis Structure . 4

2 Technical Background 6
2.1 Parallelism in CPU and the ILP Wall 6

2.1.1 Very Long Instruction Word 7

2.1.2 Multiprocessor and Thread-Level Parallelism 8

2.2 Computational Intense Accelerators: GPUs 9

2.2.1 GPU Architecture . 11

2.2.2 GPU Programming Model 11

2.2.3 NVIDIA Architecture 12

2.2.4 The Programming Model 13

2.3 Heterogeneous Computing in HPC 15

2.4 Open-source and FPGA-based Accelerators 15

2.5 Network-on-chips . 17

2.5.1 Real on-chip Networks 18

2.6 Cache Coherence . 19

2.6.1 Incoherence Issues . 19

2.6.2 Coherence States . 21

2.6.3 Coherence Transactions 23

2.6.4 Snooping . 24

3 Baseline Many-Core Exploration Platform 26
3.1 Tile Overview . 27

3.2 Design principles . 28

3.3 Core microarchitecture . 28

3.4 Networking System . 36

3.4.1 Router . 36

Contents � vii

3.4.2 Network Interface . 38

4 Configurable Coherence Subsystem 40

4.1 Cache Hierarchy . 40

4.1.1 Architectural Details 41

4.2 Load/Store unit . 42

4.3 Cache Controller . 45

4.3.1 Stage 1 . 46

4.3.2 Stage 2 . 47

4.3.3 Stage 3 . 48

4.3.4 Stage 4 . 48

4.3.5 Protocol ROM . 49

4.4 Directory Controller . 49

4.4.1 Stage 1 . 50

4.4.2 TSHR Signals . 51

4.4.3 Stage 2 . 51

4.4.4 Stage 3 . 51

4.4.5 Protocol ROM . 51

5 Exploring Customization 53

5.1 Motivations . 53

5.2 Related Works . 54

5.3 Convolutional Layer . 54

5.4 Evaluation . 56

5.5 Conclusions . 59

6 Customizable Shared Scratchpad Memory 60

6.1 Motivations . 60

6.2 Related Works . 61

6.3 Architecture . 62

6.3.1 SPM interface and operations 63

6.3.2 Remapping . 64

6.3.3 Implementation details 65

6.3.4 Integration consideration in the baseline GPU-like core 66

6.4 Evaluation . 67

6.4.1 Methodology . 67

6.4.2 Kernels . 67

6.4.2.1 Matrix Multiplication 67

6.4.2.2 Image Mean Filter 5× 5 68

6.5 Conclusion . 69

� viii Contents

7 Distributed Thread Synchronization 71
7.1 Motivations . 71
7.2 Related Works . 73
7.3 Centralized solution vs distributed synchronization master . . 74
7.4 Architecture . 76

7.4.1 Barrier Core . 77
7.4.2 Synchronization Core 78
7.4.3 An example of synchronization 79

7.5 Implementation . 80
7.6 Evaluation . 82

7.6.1 Simulation . 82
7.7 Conclusions . 85

8 Selective coherence in many-core accelerators 86
8.1 Motivations . 86
8.2 Related Works . 88
8.3 Proposed solution . 90

8.3.1 Networking Infrastructure and Synchronization Support 90
8.3.2 Accelerators . 91
8.3.3 Coherence sub-system 91
8.3.4 Selective coherence deactivation 93
8.3.5 Extended MSI protocol 94

8.4 Experimental evaluation . 96
8.4.1 Implementation Overhead 98

8.5 Conclusions . 98

Conclusion 101

Bibliography 101

List of Figures

2-1 Superscalar, fine MT, coarse MT and SMT (credits [39]) . . . 8

2-2 CPU vs GPU . 10

2-3 Architecture of a modern GPU (credits NVIDIA) 11

2-4 Shifting from multi-core to heterogeneous systems. 14

3-1 The nu+ many-core overview. 27

3-2 Overview of the core microarchitecture 28

3-3 Baseline hardware router. 37

3-4 Overview of the Network Interface design. 38

4-1 The nu+ coherence sub-system overview. 41

4-2 Load/store unit detailed view. 42

4-3 Cache Controller overview. 45

4-4 MSHR entry overview. 47

4-5 Default MSI protocol implemented at the Cache Controller
level. 49

4-6 Directory Controller overview. 50

4-7 TSHR entry. 51

4-8 Default MSI protocol on the directory side. 52

5-1 Speedup over naive scalar single-thread implementation on
16× 16, 32× 32, and 64× 64 input images with 3× 3, 5× 5,
and 7× 7 filter kernels. 56

5-2 Speedup over single-thread implementation when varying the
number of threads on 16×16, 32×32, and 64×64 input images
with 3× 3, 5× 5, and 7× 7 filter kernels. 57

5-3 The speedup achieved using scratchpad memory when vary-
ing the number of threads on 16 × 16, 32 × 32, and 64 × 64
input images with 3× 3, 5× 5, and 7× 7 filter kernels. 58

� x List of Figures

6-1 High-level generic GPU-like core with scratchpad memory. . . 62
6-2 SPM design overview. 63
6-3 This figure shows how addresses are mapped onto the banks.

Takes into account that the memory is byte addressable and
that each word is four byte. In the case of generalized cyclic
mapping the remapping factor is 1. 64

6-4 LUTs and FFs occupation of the FPGA-based SPM design
for a variable number of banks 65

6-5 LUTs and FFs occupation of the FPGA-based SPM design
for a variable number of lanes 66

7-1 Typical many-core mesh-based with 64 tiles 74
7-2 Simplified execution flow and synchronization points. 75
7-3 FSM of Barrier Core. 78
7-4 Overview of the Synchronization Core. 79
7-5 Synchronization messages, 64 bits each. The Account mes-

sage is sent to the master, when a thread hits the barrier from
the core side. The Release message is sent by the synchro-
nization master to all the involved cores when all the Account
messages are collected. 80

7-6 Example of barrier synchronization 81

8-1 Detail of a processing tile in the proposed solution for hetero-
geneous systems. This figure highlights the Cache Controller
and the extension for noncoherent region support. The CC
mainly relies on the distributed directory, on an extended
coherence protocol which resides in its embedded protocol
ROM, and on a local bypass which allows the CC to directly
access the forward virtual network interface of the network
infrastructure. 92

8-2 Detail of the Region look-up table. 93
8-3 Extended MSI protocol used in the Cache Controller. Only

the noncoherent states are reported. 95
8-4 a) Total number of FLITs flowing through the network-on-

chip. b) Dynamic power consumption of the networking in-
frastructure. 96

8-5 a) Number of cycles for each kernel in coherent and non-
coherent configurations. b) Total number of data misses of
the whole system, with 8 accelerators. 97

List of Tables

2-1 Coherence stable states. 21
2-2 Coherence transactions. 23

6-1 Matrix Multiplication results. 69
6-2 Image Mean Filter 5x5. 70

7-1 Differences in hops count between a centralized master syn-
chronization and a distributed counterpart. 76

7-2 Comparison of the resource requirements between the dis-
tributed and centralized approaches 83

7-3 Time of a single synchronization operation involving all cores 84
7-4 Time of multiple independent synchronization operations tak-

ing place concurrently. 84

8-1 Resources occupation on a Virtex-7 2000T XC7V2000T FPGA,
in term of LUTs, FFs, and BRAMs. 98

CHAPTER 1

Introduction

Today many sectors, such as digital signal processing, scientific computing,
computer graphics, and other application areas, have evolved to the point
where their functionality requires performance levels that are not attainable
on traditional CPU-based systems.

Advancements of processors are largely driven by Moore’s Law, which pre-
dicts that the number of transistors per silicon area doubles every 18 months
[53]. While Moore’s Law is expected to continue for a few years, computer
architects are moving along a fundamental shift in how the large amounts
of available transistors are used to increase performance. Historically, per-
formance improvements of microprocessors came from both increasing the
frequency at which the processors run, and by increasing the amount of
work performed in each cycle.

This increasing need for resource- and power-efficient computing has stim-
ulated the emergence of compute platforms with moderate or high levels of
parallelism, like GPU, SIMD, and manycore processors in a variety of appli-
cation domains [61]. Furthermore, the ultimate technologies now allow de-
signers to place CPU, GPU and DSP elements onto a single System on Chip
(SoC). This allows smaller devices, reduces cost and saves power, moreover
on-chip communication uses far less energy than off-chip connections.

These factors have led to the use of heterogeneous computing, with spe-
cialized accelerators that complement general purpose CPU, and act as co-
processors for parallel workloads, to provide both power and performance
benefits. Accelerator-based –or heterogeneous– computing has become in-
creasingly important in a variety of scenarios [64], ranging from High-
Performance Computing (HPC) to embedded systems. In particular, mod-
ern many-core systems are based on a considerable number of lightweight

� 2 Chapter 1. Introduction

processor cores typically connected through a Network-on-Chip (NoC) [10],
providing a scalable approach to the interconnection of parallel on-chip sys-
tems. To maximize resource and power efficiency, accelerator architectures
tend to rely on parallelism to improve performance, with multi/many-core
accelerators being today commonplace.

The main issue of heterogeneous computing model is that a program-
mers can only choose proprietary parallel programming languages. Existing
programming toolkits have either been limited to a single product fam-
ily, limiting the application (and the developers skills) on a specific vendor
platform. Running the application on another system means to rewrite it.
These limitations make it difficult for a developer to achieve the full com-
pute power of heterogeneous computing model and a parallel code developer
must well know the accelerator structure on which their application will be
running. To gain the full benefits of this integration, separate components
need shared access to the data they process. Getting these diverse accel-
erators to work as a team is no easy task. We need a unique model that
presents these features in a manner comprehensible to mainstream software
developers, supported by their already existing development environments
and by future and current hardware accelerators.

In most heterogenous computing platforms the memory on the accelerator
is completely separate from host memory, hence parallel software developers
are forced to manage main memory within their own application programs,
and all data movement between host memory and device memory must be
managed by the programmer through platform specific function and libraries
that explicitly move data between the separate memories. Therefore, in an
accelerator-targeted region, the programmers must orchestrate the execu-
tion by allocating memory on the accelerator device, initiating data transfer,
sending the code to the accelerator, passing arguments to the compute re-
gion, queuing the device code, waiting for completion, transferring results
back to the host, and deallocating memory. The concept of separate host
and accelerator memories is very apparent in low-level accelerator program-
ming languages such as CUDA or OpenCL, in which routine calls for data
movement between the memories can dominate user code and a programmer
cannot be unaware of memory structure. Knowing the specific accelerator
structure has become an important requirement for the programmers.

An ideal heterogenous computing model should allow programmers to cre-
ate applications capable of using accelerators, with data movement between
the host and accelerator implicit and managed by the compiler, without
explicit accelerator startup and shutdown. An application designed for this
model should be compatible for a wide assortment of data-parallel and task-
parallel architectures and not restricted to a specific vendor platform (e.g.

� 3

CUDA). At last, a heterogenous computing model should take into account
the need to reduce system power consumption, even for devices that get
their power from the wall.

Such motivations gave birth to the Horizon 2020 MANGO project, which
aims at exploring deeply heterogeneous accelerators for use in high-performance
computing systems running multiple applications with different Quality of
Service (QoS) levels. The main goal of the project is to exploit customization
to adapt computing resources to reach the desired QoS. For this purpose, it
explores different but interrelated mechanisms across the architecture and
system software. Along its path, the project involves different, and deeply
interrelated, mechanisms at various architectural levels, from the heteroge-
neous computing cores, up to the memory architecture, the interconnect, the
run-time resource management, power monitoring and cooling, also evalu-
ating the implications on programming models and compilation techniques.
Modern high-performance computing applications present a gap between
the applications demand and the underlying architecture. Enabling a deeper
customization of architectures to applications will eventually lead to com-
putation efficiency, since it allows the computing platform to approximate
the ideal system, featuring a fine-grained adaptation, or customization, used
to tailor and/or reserve computing resources only driven by the application
requirements.

Finally, in such scenarios, coherent shared memory could be an important
facility [51] acting as a key enabler for programmer-friendly models exposed
to the software as well as for the effective adaptation of existing paral-
lel applications. However, unlike general-purpose architectures, hardware-
managed coherence poses a major challenge for accelerators, due to the cost
of the coherence infrastructure as well as the possible limitations in terms
of scalability and performance. Full implementation of standard coherence
protocols can induce significant overheads even when there is essentially
no data sharing, e.g. when handling a nonshared block eviction. In fact,
in many workloads a significant fraction of blocks are private to a single
processing unit requiring in principle no coherence maintenance [37, 20].

While such problems have been widely investigated in the area of con-
ventional homogeneous architectures, existing solutions do not always fit
heterogeneity, moreover many-core accelerator-based systems pose special
requirements and constraints, requiring further exploration of both hard-
ware and software techniques.

� 4 Chapter 1. Introduction

1.1 Methodology

This dissertation is placed in the framework of the MANGO H2020 project,
and shares its main motivations. The main goal is to define and pose a
methodology for exploring novel solutions targeting heterogeneous systems.
Future many-cores require exploration over new infrastructures typical of
this novel paradigm (such as NoCs and sparse directories), which involves
both hardware and software mechanisms in order to exploit scalability and
higher efficiency, with customization has key-enablers to achieve such desir-
able features.

This work leverages on a baseline heterogeneous platform, developed in
the framework of the MANGO project, to evaluate novel solutions proposed
in this dissertation. This system, called nu+, is an open-source NoC-based
platform compliant with modern heterogeneous system trends. The plat-
form aims to be highly modular, deeply customizable, meant to be easily
extendible on both hardware and software levels, essential features for ar-
chitectural exploration. This full-system enables us to better understand
application-specific requirements through hardware customization, and also
to evaluate the proposed solutions on a real system, running significant
kernels extracted from typical workloads.

The dissertation proposes novel solutions suitable for improving perfor-
mance in heterogeneous-based accelerators. The mechanisms described in
this dissertation come from an exploration phase using significative applica-
tion classes, such as deep learning-based algorithms, running on our baseline
platform, which helped us to underline application-specific requirements and
ideal configurations. In such phase, we identified bottlenecks and possible
improvements, focusing on coherence- and NoC-related aspects. Each pro-
posed solution has been integrated on both software and hardware levels
in our baseline heterogeneous platform for validating and testing them in a
real system. Such approach also captures realistic results, implementation
issues, and pitfalls not possible with typical simulation-based evaluation
methods.

1.2 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 presents the
background on modern heterogeneous systems, NoC-based interconnection
infrastructures, and an overview of cache coherence problem in many-core
systems. Chapters 3 and 4 discuss the baseline platforms, methodology, and
software tools used for evaluations. Chapter 5 presents a first exploration
study exploiting application-based customizations and aiming to underline

1.2 Thesis Structure � 5

promising performance enhancer in the context of heterogeneous accelera-
tors. Chapter 6 develops a non-coherent fast scratchpad memory for GPU-
like accelerators. Chapter 7 presents a novel synchronization mechanism
suitable for many-cores. Chapter 8 discusses the benefits of a coherence
subsystem with non-coherent regions support for NoC-based many-cores.
Finally the Conclusion chapter recapitulates the contributions and results.

CHAPTER 2

Technical Background

During the last years Field Programmable Gate Arrays and Graphics Pro-
cessing Units have become increasingly important for high-performance
computing. In particular, a number of industrial solutions and academic
projects are proposing design frameworks based on FPGA-implemented
GPU-like compute units.

This Chapter presents an overview of parallelism in CPUs, GPUs and
GPU-like architectures, network-on-chip, cache coherence issue in distributed
architectures, along with related work and existing techniques. The scope
and the amount of related work is large, so we focus on the aspects most
fundamental and related to the research in this dissertation. Section 2.3
presents background on heterogeneous computing in HPC and develops
modern problem. Sections 2.1 and 2.2 present parallel techniques and ar-
chitectures, raging from vector processors to GPUs. Section 2.4 considers
future trends for many-core and custom accelerators. Section 2.6 develops
coherence techniques developed for prior NoCs many-core systems.

2.1 Parallelism in CPU and the ILP Wall

A processor that executes every instruction sequentially, where instruction
i + 1 is fetched when instruction i is complete, may use processor resources
inefficiently, potentially leading to low performance. The performance can
be improved by executing different sub-steps of sequential instructions si-
multaneously (technique named pipelining), or even executing multiple in-
structions entirely simultaneously as in superscalar architectures (VLIW).

2.1 Parallelism in CPU and the ILP Wall � 7

Pipelining is the first and most used solution. All current processors use
pipelining to overlap the execution of instructions and improve performance.
It is an implementation technique whereby multiple instructions are over-
lapped in execution. Such a solution takes advantage of parallelism that
exists among the actions needed to execute an instruction. This poten-
tial overlap among instructions is called instruction-level parallelism (ILP),
since different instructions can be evaluated in parallel. A processor has dif-
ferent components, an instruction must pass through all these components
to execute. When a stage has done instruction passes to the next and the
previous component is unused. In pipelining all processor components are
active every clock cycles. Each instruction must pass through all pipeline
stages, and in each stage serves a different instruction.

Pipelining can be convenient if its overhead is not very big, which arises
from the combination of pipeline register delay and clock skew. The pipeline
registers add setup time, which is the time that a register input must be
stable before the clock signal that triggers a write occurs, plus propagation
delay to the clock cycle. Clock skew, which is maximum delay between when
the clock arrives at any two registers, also contributes to the lower limit on
the clock cycle. Furthermore stages should have similar speed, otherwise
this technique does not benefit.

Historically, pipelining has been the key implementation technique used to
make fast CPUs [39], although structural/data hazards and control depen-
dencies force to stall the pipeline, significantly decreasing the final through-
put. Modern architectures rely on more sophisticated hardware solutions to
increase performance. Further improvement can be achieved by introducing
multiprocessors, thread-level parallelism, and SIMD architectures.

2.1.1 Very Long Instruction Word

Superscalar processors use multiple, independent functional units, each clock
cycle just one of them is really busy, the others are idle. To keep the func-
tional units busy, there must be enough parallelism in a code sequence to
fill the available operation slots. VLIW processors, on the other hand, issue
a fixed number of instructions formatted either as one large instruction or
as a fixed instruction packet with the parallelism among instructions explic-
itly indicated by the instruction. VLIW processors are inherently statically
scheduled by the compiler. VLIW instructions are usually at least 64 bits
wide, and on some architectures are much wider, in instance if a VLIW pro-
cessor supports five parallel operations, the instruction would have a set of
fields for each functional unit, e.g. 16–24 bits per unit, yielding an instruc-
tion length of between 80 and 120 bits. To combat this code size increase,

� 8 Chapter 2. Technical Background

Figure 2-1: Superscalar, fine MT, coarse MT and SMT (credits [39])

clever encodings are sometimes used. For example, there may be only one
large immediate field for use by any functional unit. Another technique is
to compress the instructions in main memory and expand them when they
are read into the cache or are decoded.

Superscalar CPUs use hardware to decide which operations can run in
parallel at runtime, while in VLIW CPUs the compiler decides which oper-
ations can run in parallel in advance. Because the complexity of instruction
scheduling is pushed off onto the compiler, complexity of the hardware can
be substantially reduced.

This type of processor architecture is intended to allow higher perfor-
mance without the inherent complexity of some other approaches.

2.1.2 Multiprocessor and Thread-Level Parallelism

Thread-level parallelism (TLP) is an higher-level parallelism and it is log-
ically structured as separate threads of execution. A thread is a separate
process with its own instructions and data. A thread may represent a pro-
cess that is part of a parallel program consisting of multiple processes, or
it may represent an independent program on its own. It allows multiple
threads to share the functional units of a single processor in an overlapping
fashion. To permit this sharing, the processor must duplicate the indepen-
dent state of each thread.

Thread-level parallelism is an important alternative to instruction-level
parallelism primarily because it could be more cost-effective to exploit than
instruction-level parallelism. There are many important applications where
thread-level parallelism occurs naturally, as matrix multiplication.

2.2 Computational Intense Accelerators: GPUs � 9

There are three main approaches to multithreading, shown in Figure 2-
1. The first one is fine-grained multithreading switches between threads on
each instruction, causing the execution of multiple threads to be interleaved.
This interleaving is often done in a round-robin fashion, skipping any threads
that are stalled at that time. To make fine-grained multithreading practical,
the CPU must be able to switch threads on every clock cycle. One key
advantage of fine-grained multithreading is that it can hide the throughput
losses that arise from both short and long stalls, since instructions from
other threads can be executed when one thread stalls. A disadvantage
of fine-grained multithreading is that it slows down the execution of the
individual threads, since a thread that is ready to execute without stalls
will be delayed by instructions from other threads.

On the other hand, coarse-grained multithreading was invented as an
alternative to fine-grained multithreading. Coarse-grained multithreading
switches threads only on costly stalls, such as level 2 cache misses. This
change relieves the need to have threadswitching be essentially free and is
much less likely to slow the processor down, since instructions from other
threads will only be issued when a thread encounters a costly stall.

At last, Simultaneous Multithreading (SMT) is a variation on multi-
threading that uses the resources of a multiple-issue, dynamically scheduled
processor to exploit TLP at the same time it exploits ILP. The key insight
that motivates SMT is that modern multiple-issue processors often have
more functional unit parallelism available than a single thread can effec-
tively use. Furthermore, with register renaming and dynamic scheduling,
multiple instructions from independent threads can be issued without re-
gard to the dependences among them; the resolution of the dependences can
be handled by the dynamic scheduling capability. In the SMT, TLP and
ILP are exploited simultaneously, with multiple threads using the issue slots
in a single clock cycle. Ideally, the issue slot usage is limited by imbalances
in the resource needs and resource availability over multiple threads.

2.2 Computational Intense Accelerators: GPUs

There is an enormous difference in the design philosophies between CPUs
and GPUs, as shown in Figure 2-2. The design of a CPU is optimized for
sequential code performance, it uses a sophisticated control logic to allow
many mechanism that optimize general purpose code execution. Some of
these mechanisms are branch prediction that reduce pipe stalls, or large
cache memories that reduce the instruction and data access latencies of

� 10 Chapter 2. Technical Background

Figure 2-2: CPU vs GPU

large complex applications.

Neither control logic nor cache memories contribute to the peak calcula-
tion speed. The new general-purpose, multicore microprocessors typically
have four large processor cores designed to deliver strong sequential code
performance.

In contrast, the many-core paradigm focuses more on the execution through-
put of parallel applications, and typically general-purpose processors (espe-
cially the GPUs) uses all the logic for calculation elements, in fact the GPU
vendors ever looks for ways to maximize the chip area and power budget
dedicated to floating-point calculations. Reaching the highest calculation
speed peak and optimizing for the execution throughput of massive num-
bers of threads are the GPUs main goal. This many-core processors do not
have efficient branch or caching mechanism like the CPUs, as a result, much
more chip area is dedicated to the floating-point calculations. The hundred
core in a GPU allows it to have performance, in term of FLoating point
Operations Per Second (GFlops), extremely higher that CPUs.

The many-cores began as a large number of much smaller cores, and the
number of cores doubles with each generation following Moore’s law [71].

It should be clear now that a GPU is oriented as numeric computing
accelerators, in fact it will not perform well on some tasks on which a CPU
is designed to perform well [47].

An application should use both CPUs and GPUs to execute to the best,
the sequential parts on the CPU and numerically intensive parts on the
GPUs. This is why the CUDA (Compute Unified Device Architecture)
programming model [69] and OpenCL (Open Computing Language) [75]
are designed to support joint CPU and GPU execution of an application.

2.2 Computational Intense Accelerators: GPUs � 11

Figure 2-3: Architecture of a modern GPU (credits NVIDIA)

2.2.1 GPU Architecture

The main modern GPU element is an array of highly threaded computa-
tional unit called Streaming Multiprocessors (SMs). Each SM has a number
of single computational core called Streaming Processors (SPs) that share
control logic and instruction cache. SPs in the same SM can share data with
shared memory embed in the SM. SMs communicate among them through
global memory. Figure 2-3 shows an overview of a modern GPU.

Each GPU currently comes with a large global memory of graphics double
data rate (GDDR) DRAM with a size of many gigabytes. These GDDR
DRAMs differ from the system DRAMs on the CPU motherboard in that
they are essentially the frame buffer memory that is used for graphics [47].
For graphics applications, they hold video images, and texture information
for three-dimensional (3D) rendering, but for computing they function as
very-high-bandwidth, off-chip memory, though with somewhat more latency
than typical system memory.

2.2.2 GPU Programming Model

Hardware without a programming model that supports developers is useless.
Many parallel programming languages and models have been proposed in
the past several decades and they can be divided in two categories: message
passing and shared memory.

For the first category, the most widely used is the Message Passing Inter-

� 12 Chapter 2. Technical Background

face (MPI) for scalable cluster computing. MPI is a model where computing
nodes in a cluster do not share memory [66], all data sharing and interaction
must be done through explicit message passing.

For the second category there are many programming model used. The
most famous is CUDA, it provides shared memory for parallel execution in
the GPU. As for CPU and GPU communication, CUDA currently provides
very limited shared memory capability between the CPU and the GPU.
Programmers need to manage the data transfer between the CPU and GPU
with specific CUDA functions, this is a big problem because programmers
need to well know the GPU memory hierarchy that they are using. The
most appreciable CUDA feature is to achieve much higher scalability with
simple, low-overhead thread management and no cache coherence hardware
requirements.

Another shared memory programming model is OpenMP for shared-
memory multiprocessor systems [22]. OpenMP supports shared memory,
so it offers the same advantage as CUDA in programming efforts; however,
it main problem is that this model can not scale beyond a couple hundred
computing nodes due to thread management overheads and cache coherence
hardware requirements.

More recently, several major industry players, including Apple, Intel,
AMD/ATI, and NVIDIA, have jointly developed a standardized program-
ming model called OpenCL [76]. Similar to CUDA, the OpenCL program-
ming model defines language extensions and runtime APIs to allow pro-
grammers to manage parallelism and data delivery in massively parallel
processors. OpenCL is a standardized programming model in that applica-
tions developed in OpenCL can run without modification on all processors
that support the OpenCL language extensions and API.

2.2.3 NVIDIA Architecture

GPU computing is not meant to replace CPU computing. Each approach
has advantages for certain kinds of software. CPUs are optimized for general
purpose applications where most of the work is being done by a limited
number of threads, especially where the threads exhibit high data locality,
a mix of different operations, and a high percentage of conditional branches.
CPUs gives great importance to branch prediction and data caching.

GPU design aims at the other type of problems: applications with mul-
tiple threads that are dominated by longer sequences of computational in-
structions. Hence, the main distinction between GPUs and CPUs is that
the first is computationally intensive oriented and the second is control-flow
intensive oriented. So, GPUs and CPUs resolve different types of problems,

2.2 Computational Intense Accelerators: GPUs � 13

and one can not be complete without the other.

The state of the art in GPU design is represented by NVIDIA’s next-
generation CUDA architecture. The performance and scalability are the
main proprieties of all NVIDIA GPUs. Fermi is not the newest NVIDIA
architecture, but it is one of the most important, all the next-generation
NVIDIA GPUs have a Fermi-like architecture. Fermi’s strength relies in
the simple partitioning of a computation into fixed sized blocks of threads
in the execution configuration.

The Fermi architecture has 512 CUDA cores are organized in 16 Stream-
ing Multiprocessor (SMs) of 32 cores each. The GPU has six 64-bit memory
partitions, for a 384-bit memory interface, supporting up to a total of 6 GB
of GDDR5 DRAM memory. A host interface connects the GPU to the
CPU via PCI-Express. The GigaThread global scheduler distributes thread
blocks to SM thread schedulers [58]. Each SM is independently responsi-
ble for scheduling its internal resources, cores, and other execution units to
perform the work of the threads in its assigned thread blocks.

Distributing work to the streaming multiprocessors is the job of the Giga-
Thread global scheduler. Based on the number of blocks and number of
threads per block defined in the kernel execution configuration, this sched-
uler allocates one or more blocks to each SM. How many blocks are assigned
to each SM depends on how many resident threads and thread blocks a SM
can support [30].

Each SM contains a scheduler and dispatcher, a set of core units, registers
file and L1 cache, 16 load /store units and 4 Special Function Units. Each
SM is divided in four columns: the two SP columns on the right handle
32-bit integer and floating point, the third column handles load/store op-
erations, and the last column handles “special functions” including square
roots and transcendentals.

The SM can mix 16 operations from the first column with 16 from the
second column or 16 from the load/store column or with four from the SFU
column, or any other combinations the program specifies. 64-bit floating
point consumes both SP columns. This means an SM can issue up to 32
single-precision (32-bit) floating point operations or 16 double-precision (64-
bit) floating point operations at a time [58].

2.2.4 The Programming Model

The complexity of the Fermi architecture is managed by a multi-level pro-
gramming model that allows software developers to focus on algorithm de-
sign rather than the details of how to map the algorithm to the hardware,
thus improving productivity.

� 14 Chapter 2. Technical Background

CPU CPU

CPU CPU

CPU DSP

GPU FPGA

Cache Coherence

Shared Virtual Memory

Heterogeneity

Customizability

Network-on-chips

Figure 2-4: Shifting from multi-core to heterogeneous systems.

In NVIDIA’s CUDA software platform, as well as in the industry-standard
OpenCL framework, the computational elements of algorithms are known
as kernels [69]. Once compiled, kernels consist of many threads that exe-
cute the same program in parallel. In an image-processing algorithm, for
example, one thread may operate on one pixel, while all the threads on a
whole image.

Multiple threads are grouped into thread blocks containing up to 1,536
threads. All of the threads in a thread block will run on a single SM, so
within the thread block, threads can cooperate and share memory. Thread
blocks can coordinate the use of global shared memory among themselves
but may execute in any order, concurrently or sequentially. Thread blocks
are divided into warps of 32 threads. Just like a thread block for the Giga-
Thread scheduler, a warp is the basic unit for scheduling work inside a SM.
Because each warp is by definition a block of SIMD threads, the scheduler
does not need to check for dependencies within the instruction stream [30].

Conditionals statements can greatly decrease performance inside an SM.
Fermi architecture GPUs utilizes predication to run short conditional code
segments efficiently with no branch instruction overhead. Predication re-
moves branches from the code by executing both the if and else parts of
a branch in parallel, which avoids the problem of mispredicted branches
and warp divergence. The compiler replaces a branch instruction with
predicated instructions only if the number of instructions controlled by the
branch condition is less than or equal to a certain threshold. If the code
in the branches is too long, the nvcc compiler inserts code to perform warp
voting to see if all the threads in a warp take the same branch.

2.3 Heterogeneous Computing in HPC � 15

2.3 Heterogeneous Computing in HPC

Current trends in HPC are increasingly moving towards heterogeneous plat-
forms, i.e. systems made of different computational units, with specialized
accelerators that complement general purpose CPUs, including DSPs or
graphics processing units, co-processors, and custom acceleration logic (as
shown in Figure 2-4), enabling significant benefits in terms of both power
and performance. Historically, HPC has never extensively relied on FPGAs,
mostly because of the reduced support for floating-point arithmetic, as FP-
GAs are tipically fixed-point oriented. Furthermore, designing an FPGA-
based hardware accelerator is challenging at the programmability level, as
it requires the developer to be a highly-skilled hardware designer knowing
low-level hardware description languages such as VHDL or Verilog. Conse-
quently, most high-performance architectures only use custom components
for very specific purposes, if any, while they mostly rely on general-purpose
compute units such as CPUs and/or GPUs, which deliver adequate perfor-
mance while ensuring programmability and application portability. How-
ever, unfortunately, pure general-purpose hardware is affected by inherently
limited power-efficiency, that is, low GFLOPS-per-Watt, now considered as
a primary metric. The other historical problem with FPGAs is programma-
bility. Designing a complex architecture on FPGA, as mentioned above,
requires a highly-skilled hardware designer. To overcome this limitation,
Altera and Xilinx are bringing the GPU programming model to the FPGA
domain. The Altera SDK for OpenCL [1] makes FPGAs accessible to non-
expert users. This toolkit allows a user to abstract away the traditional
hardware FPGA development flow, effectively creating custom hardware on
FPGAs for each instruction being accelerated. Altera claims that this SDK
provides much more power-efficient use of the hardware than a traditional
CPU or GPU architecture. On other hand, similar to the Altera SDK for
OpenCL, Xilinx SDAccel [84], enables traditional CPU and GPU develop-
ers to easily migrate their applications to FPGAs while maintaining and
reusing their OpenCL, C, and C++ code. Driven by these innovations,
FPGAs are becoming increasingly attractive for HPC applications, offering
a fine grained parallelism and low power consumption compared to other
accelerators.

2.4 Open-source and FPGA-based Accelerators

Well-known RISC softcore processors Xilinx’s MicroBlaze [86] and Altera’s
Nios II [56] are widely used, providing efficient sequential architectures, op-

� 16 Chapter 2. Technical Background

timized for the reconfigurable devices of their respective designers. Both
softcores come along with a software development toolchain with an exten-
sive library base for fast application development, both based on the GNU
tools. However, these processors do expose a small degree of customizabil-
ity, although the largest part of the design is fixed. Moreover, they are not
open source and in many situations require costly licenses to be used.

For these reasons, academic and industrial research is focusing on GPU-
like paradigms to introduce some form of programmability in FPGA de-
sign. In the last years, a few GPU-like projects have appeared. Many
of them targets FPGA, since they represent the most suitable evaluation
platform, and recently a valid concurrent to ASIC GPUs. Recently Altera
and Xilinx, the two prominent FPGA manufacturers, focused on overcom-
ing FPGA floating-point limitations. In particular, Altera, now part of
Intel Corporation, has developed a new floating-point technology (called
Fused Datapath) and toolkit (DSP Builder) intended to achieve maximum
performance in floating-point design implementing on Altera FPGAs [2].
As matter of facts, Altera new Stratix 10 series claims to achieve up to
10 tera floating point operations per second (TFLOPS) of single-precision
floating-point performance making these devices the highest performance
DSP devices with a fraction of the power of alternative solutions like GPUs
[6].

On the other hand, Xilinx is putting the same effort on the 7-Series and
Ultrascale FPGAs and All Programmable SoCs are highly power efficient
and high-performance oriented. The parallelism and customizable architec-
ture inherent in the FPGA architecture is ideal for high-throughput process-
ing and software acceleration. With the UltraScale family of FPGAs, Xilinx
continues to provide customers the best performance-per-watt solutions in
the market, enabling design performance goals to be met within the power
budget of the application [85]. In many real appication, Ultrascale results
in up to 25% lower power consumption than the competing 20nm FPGA.

Microsoft researchers are working on advancing cloud technologies, named
Catapult, and are using the Arria 10 FPGAs that ideally has 1 TFLOPs, and
up to ideal 40 GFLOPS-per-Watt [60]. Actually Catapult equips a Stratix
V, that consumes no more than 25W of power, meanwhile the GPGPU
solutions require up to 235W of power to operate for the same workload.

Kingyens and Steffan [46] propose a softcore architecture inspired by
graphics processing units mostly oriented to FPGAs. The architecture sup-
ports multithreading, vector operations, and can handle up to 256 concur-
rent thread.

Nyami/Nyuzi [11] is a GPU-like RISC architecture inspired by Intel Larrabee.
The Nyami HDL code is fully parameterizable and it provides a flexible

2.5 Network-on-chips � 17

framework for exploring architectural tradeoffs. The Nyami project pro-
vides a LLVM-based C/C++ compiler and can be synthesized on FPGA.

Guppy [4] (GPU-like cUstomizable Parallel Processor prototYpe) is based
on the parameterizable soft core LEON3. Guppy main feature is to supports
CUDA-like threads in a lock-step manner to emulate the CUDA execution
model.

FlexGrip [7] is a soft-core directly inspired by the NVIDIA G80 architec-
ture. The architecture is described in VHDL and targets a Xilinx Virtex 6.
This soft-core completely supports CUDA, it is able to run many application
compiled with the nvcc compiler. The main core is strictly coupled with
a Xilinx MicroBlaze which handles host communication and the soft-core
initialization.

The University of Wisconsin-Madison MIAOW [8] (Many-core Integrated
Accelerator Of Wisconsin) developed an open-source RTL implementation
of the AMD Southern Islands GPGPU ISA. MIAOW main goal is to be flex-
ible and to support OpenCL-based applications, and how control flow opti-
mization can impact GPU-like accelerators performance. The system relies
on a host CPU, which configures this GPU-like core and also dynamically
manages shared resource, assigning them to different threads workgroup.

The Maven Vector-Thread Architecture [49], developed by Berkeley Uni-
versity, is a vector-SIMD microarchitecture, which posed the basis for their
next architecture called Hwacha [50]. This soft-core is an implementation
of the RISC-V ISA, an open-source instruction set based on the RISC prin-
ciples that can be freely used for fast microarchitecure design. The hearth
of the project is a single-issue in-order Rocket core, strictly coupled with a
SIMD accelerator.

2.5 Network-on-chips

Network-on-chips (NoCs) are an emerging interconnection model in mod-
ern architectures, born as a novel solution to the bandwidth and latency
bottleneck of tradition shared buses infrastructures.

A network-on-chip is mainly composed of three elements, hereafter sum-
marized. The first is the link which physically connects the nodes (or tiles)
and actually implements the real communication. A physical link is com-
posed of a set of shared wires, that connect two adjacent routers of the
network. Links might be equipped with one or more logical or physical
channels and each channel is composed of a separate set of wires. At the
link level is defined the concept of flit, short for flow control unit [62], which
flows through physical links. Often, flits are the atomic units that form a

� 18 Chapter 2. Technical Background

stream. In some cases, they are further divided into smaller phyts, that
better match the physical link width.

The second block is the router, which implements the communication pro-
tocol, and routes packets over the physical links. A router receives packets
from a shared links and, according to the header in each packet, it sends the
packet to right output link, splitting it into multiple flits. A NoC router is
composed of a number of input ports (connected to shared NoC channels),
a number of output ports (connected to possibly other shared channels),
a switching matrix connecting all input ports to all output ports, and a
local port to access the IP core connected to this router [39]. At the router
level is defined the concept of packet, which consists of a head flit that
contains the destination address, body flits and a tail flit that indicates the
end of a packet. In addition to this physical connection infrastructure, the
router also implements logic blocks dedicated to the flow control policies,
that define the overall strategy for flowing data though the NoC.

The flow control policy characterizes the packet movement along the NoC
and as such it involves both global (NoC-level) and local (router-level) is-
sues. Routers typically use a distributed control, where each router makes
decisions locally. Virtual channels (VCs) are an important concept re-
lated to the flow control. Those multiplex a single physical channel over
several logically separate channels (so called virtuals) with individual and
independent buffer FIFOs. The main goal of a VC implementation is to
improve performance and to avoid deadlocks, optimizing the physical chan-
nel usage [10]. To reduce the buffering requirements, routers implement
a flit-based flow control mechanisms exist. Widely-adopted is the worm-
hole flow control, which allocates buffers on a flit granularity, a flit can be
forwarded as soon as it arrives, there is no need to wait the whole packet.
Hence, a packet composed of many flits can potentially span several routers,
which might result in many idle physical links.

The third and last block is the network interface (NI) or adapter. This
element interconnects the NoC IP, such as cores, or coherence actors, to the
NoC router. At the NI level is defined the application messages, which is
decomposed in multiple packets by the NI and injected to the NoC router.

2.5.1 Real on-chip Networks

In the last years, HPC-oriented projects based on network-on-chip are in-
creasing. The Tilera TILE64 processor [9] is a multicore targeting the high-
performance demands of a wide range of applications. This architecture
supports a shared memory space across 64 tiles. It deeply leverages on four
mesh networks to track coherence.

2.6 Cache Coherence � 19

The Kalray MPPAR-256 is a many-core processor that integrates 256 user
cores and 32 system cores, which targets embedded applications whose, as
media processing, traditionally numerical kernels, and time-triggered con-
trol systems. The cores are distributed across 16 compute clusters of 16+1
cores [23], organized in a 2D torus network. Each cluster owns its private
address space, while communication and synchronization among different
cores is ensured by data and control Networks-on-Chip.

The Intel TeraFLOPS [27] is a research prototype that is targeted at
exploring future processor designs with high core counts, implementing up
to 80 tiles in a single network-on-chip. Different tiles communicate using
using the Message Passing Interface (MPI).

The IBM Cell [41] architecture is meant to target a power-efficient gaming
systems, but that are general enough for other domains as well. The Cell
is a product that is in most game consoles, such as Sony PS3. It consists
of one IBM 64-bit Power Architecture core and 8 Synergistic Processing
Elements (SPEs), each of them are SIMD-based. These nine nodes are
interconnected with an on-chip network, called Element Interconnect Bus
(EIB), which overlays bus access semantics on four ring networks.

The STNoC [35] is a prototype architecture and methodology from ST Mi-
croelectronics, which aims to replace the STBus in MPSoCs. It is targeted
towards the unique demands of MPSoCs on the on-chip network fabric:
automated synthesis of network design, compatibility with heterogeneous,
diverse IP blocks from other vendors and prior knowledge of traffic demands.
It has been applied to the Morpheus chip targeting 90nm, with eight nodes
on the on-chip network connecting an ARM9 core, an array of ALUs, a
reconfigurable array, embedded FPGA, and memory controllers.

The Aethereal [34] is a NoC proposed by Philips, implemented in a syn-
chronous indirect topology with wormhole switching, and contention-free
source routing algorithm based on time division.

2.6 Cache Coherence

2.6.1 Incoherence Issues

Traditional architectures are based on a baseline system model which in-
cludes a single multicore processor chip and off-chip main memory. When
shifting toward multi- and many-cores processor-chip consists of multiple
cores, often with both multi-threading and SIMD supports, each of which
has its own private data cache, while a last-level cache (LLC) is shared by all
cores, and it is considered a “memory-side cache”. The LLC, also referred as
memory controller, is logically in front of the memory and serves to reduce

� 20 Chapter 2. Technical Background

the average latency of memory accesses and increase the memory effective
bandwidth, without introducing a further level of coherence issues. The
cores and the LLC communicate with each other over an interconnection
network.

In such scenarios, engineers and hardware designers have to deal with the
possibility of incoherence, which arises because in modern architectures
there exist multiple active entities, such as processors or DMA engines,
with shared resources, that can read and/or write concurrently to caches
and memory. This happens even in the simpliest multi-core system, which
has only two concurrent cores with private data caches that share the same
main memory.

A simple example with two cores (namely c0 and c1) would better explain
the incoherence problem. Let assume that a memory location A stores
the value x, and then both cores load this value from memory into their
respective data caches. First, c0 turns whit some operations the value at
memory location A to y, and stores the result into its cache. The other core
has no idea that the value of A has been modified by c0, thus this makes
the other core copy of A in its cache inconsistent and, thus, incoherent.
To prevent incoherence, the system must implement a cache coherence
protocol to regulate the actions of concurrent cores such that c1 cannot
observe the old value of x at the same time that c0 observes the new value
y, furthermore it is completely impractical to provide direct access from
one processor to the cache of another core. The practical alternative is to
transfer the updated value of A over to the other processor in case it is
needed [26].

Modern coherence protocol are based on the single-writer multiple-reader
(SWMR) invariant [74]. This poses the basis of modern coherence: for any
memory location, at any given moment in time, there is either a single core
that may write it (and that may also read it) or some number of cores that
may read it (but none of them can write it). Thus, there is never a time
when a given memory location may be written by one core and simultane-
ously either read or written by any other cores [74].

Given the coherence basic definition, coherence protocols are highly in-
fluenced by the implemented cache features, such as the given write policy.
When a cache line is modified, the result for the system after this point ought
be the same as if there were no cache at all and the main memory location
itself had been modified. This can be implemented in two ways or write
policies, namely write-through, or write-back cache implementations.

The write-through cache is the simplest way to implement cache co-
herency and ease the protocol itself. Whenever a cache line is written to, the
processor immediately also writes the corresponding line into main mem-

2.6 Cache Coherence � 21

ory. This ensures that the main memory and cache are in sync at any
time. The cache content could simply be discarded whenever a cache line
is replaced, heavily simplifying the coherence protocol during evictions and
replacements. However, this write policy is simple but not really fast. A
program which, for instance, modifies a local variable over and over again
would create a lot of traffic over the bus through the main memory even
though the data is likely not used anywhere else.

The write-back policy is more sophisticated. The processor does not
immediately write the modified cache line back into main memory. Instead,
the cache line is marked as dirty. Whenever a dirty cache line is dropped
from the cache, due a replacement or an explicit eviction, the dirty bit states
that the processor ought to write the data back at that time instead of just
discarding the content. Write-back caches significantly perform better that
write-through, resulting in a much less traffic flooding over the bus through
the main memory. However, the coherence protocol have to deal with this
policy becoming more complicated.

2.6.2 Coherence States

A commonly used approach to cache coherence encodes a permission to
each block stored in the cache controller. Before a processor completes
a load or a store, it must hit in the cache and the requested block must
hold the appropriate permissions. If a processor stores to a block that is
cached by other processors, it must acquire store permission by revoking
read permission from other caches, in the respect of the SWMR invariant.

State Permissions Meaning

Modified (M) read and write
The cache line is dirty.
It is the only copy.

Shared (S) read only
The cache line is not modified
and might be shared.

Invalid (I) none
The cache line is invalid,
and not cached.

Exclusive (E) read and write
The cache line is not dirty
and has no other sharers.

Owned (O) read only
The processor is the owner of a block,
and it is responsible for responding to
coherence requests for that block.

Table 2-1: Coherence stable states.

Permissions in a cache are reflected by a coherence state stored in the
cache info for a block. Typical cache coherence states, used in most existing
protocols [77], are summarized in Table 2-1. The baseline protocol uses

� 22 Chapter 2. Technical Background

just three of the listed states, namely MSI, which represents the minimum
set that allows multiple processors to simultaneously read a block line, or
to denote that a single processor holds write permission. Other protocols,
such as MOSI or MOESI, use the O and E states, but they are not as basic. In
particular, E and O are used to implement protocol-level optimizations.

Initially all cache lines are empty and marked as Invalid. If data is loaded
into the cache for writing the cache changes to Modified, the state for that
block shifts from I to M (I→M). If the data is loaded for reading the new state
depends on whether another shares or/and the protocol has no E state, the
new state is Shared (I→S). Otherwise, if there is no sharers and the protocol
supports the E state, the block line turns into the Exclusive state (I→E).

When a processor has a cache line in Modified state and a second actor
requests to read from the this cache line, the first processor has to send the
content of its cache to the second processor and then it downgrades the line
state to Shared (M→S), losing the write permission. The data sent to the
second processor is also received and processed by the memory controller
which might store the content in memory.

On the other hand, if the second processor wants to write to the cache
line the first processor sends the cache line content and marks the cache line
locally as Invalid (M→I), forcing the first processor to load back the cache
line updated (if still needed) from the new owner. The M→I transition is
highly expensive in term of time, and for write-through caches we also have
to add the time it takes to write the new cache line content to the LLC or
the main memory, further increasing the cost.

If a cache line is in the Shared state and the local processor reads from
it no state change is necessary and the read request can be fulfilled from
the cache. If the cache line is loaded and in state Shared, and the processor
locally writes it, the loaded cache line can be used as well but the state
changes to Modified (S→M). It also requires that all other possible copies of
the cache line among the sharers are marked as Invalid (S→I) in compliance
with the SWMR invariant. Therefore the write operation has to be announced
to the other sharers via an coherence message over the bus.

On the other hand, if the cache line is in the Shared state and another
core requests it for reading nothing has to happen to the other sharers. The
requestor updates its state to Shared and load the data in the cache, while
the main memory contains the current data and the local state is already
Shared.

The Exclusive state shares the same feature of the Shared state, although
it has a substantial difference: a local write operation does not have to be
announced on the bus. The local cache is known to be the only one holding
this specific cache line. This can be a huge advantage so the processor will

2.6 Cache Coherence � 23

try to keep as many cache lines as possible in the Exclusive state instead
of the Shared state. The latter is the fallback in case the information is
not available at that moment. The Exclusive state can also be left out
completely without causing functional problems. It is only the performance
that will suffer since the E→M transition is much faster than the S→M one.

2.6.3 Coherence Transactions

Most protocols have a similar set of transactions, because the basic goals of
the coherence controllers are similar, summarized in the Table 2-2 hereafter:

Transaction Effects

get Shared (getS) The processor requires the block for reading.
get Modified (getM) The processor requires the block for writing.

Upgrade (Upg)
The processor upgrades the block line state
from a read only state to read and write.

put Shared (putS) The processor evicts the block from Shared.
put Modified (putM) The processor evicts the block from Modified.
put Exclusive (putE) The processor evicts the block from Exclusive.

put Owned (putO) The processor evicts the block from Owned.

Table 2-2: Coherence transactions.

Transaction messages flow over the bus after processors requests. E.g.,
if a processor’s read request misses in its cache, the block is in the Invalid
state, the processor issues a getS coherence request over the bus to obtain
data for read permission. According to the coherence protocol, the processor
must obtain the most up-to-date data to that block and ensures that write
permission is revoked from other processors. Consequently, any processor
in one of states M, O, or E must supply the data and have to shift into a state
with read-only permission (such as O or S). However if no processor has this
block in read-write or read only state (namely M, O, S, or E), then the data
should be fetched from the main memory.

On the other hand, if a processor misses in its cache for a write, or the
block is not in state M or E, the processor issues a getM coherence request.
The coherence protocol must obtain the most recently stored data to that
block, like in the getS case, but also ensures all sharers drop the read
permission for that block. If the requestor already holds the data in read-
only permission, a possible optimization implements an Upg message that
only invalidates other sharers caches and there is no need to retrieve the
data.

� 24 Chapter 2. Technical Background

2.6.4 Snooping

The snooping protocols is the most traditional and widely-used coher-
ence protocol, its simplicity make it perfect for few number of cores. It
is based on the idea that all coherence actors observe (or snoop) all flow-
ing coherence requests over the shared system bus in the same order and
consequently “do the right thing” according to the protocol to maintain co-
herence. Fundamental is that all requests to a given block arrive in order, a
snooping system enables the distributed coherence controllers to correctly
update the finite state machines that collectively represent a cache block
state. Often, snooping protocols rely on a shared single bus which eases the
request ordering, connecting all components to an electrical, or logical, set
of wires. Such buses ought to provide atomicity such that only one message
appears on the bus at any time and that all actors observe the same message
[33].

A processor of a snooping protocol broadcasts requests to all coherence
controllers, including its own. As stressed before, the ordered broadcast en-
sures that every coherence controller observes the same series of coherence
requests in the same order, which guarantees that all coherence controllers
correctly update the interested cache block state. With all coherence mes-
sages broadcast on a bus and with message arrivals ordered the same way
for all nodes, coherence controllers at each node implement a state machine
to maintain proper coherence permissions and to potentially respond to a
request with data. E.g., when a processor requires a block for writing, it
sends a getM request on the bus. As soon as the request appears on the
bus, all other nodes snoop their caches. If the tag exists in a processor
cache in state S, the coherence state is changed to I in order to revoke read
permission, forcing the processor to load back the data updated, and the
data can be fetched from the LLC. If a processor cache contains a tag in
state with exclusive access or/and write permission (such as M, E, or O), it
is responsible to provide the most up-to-date date, inhibiting the LLC re-
sponse, and then sending data on the bus before invalidating its cache tag
and updating the state to I. The LLC response inhibition is an important
function in a bus-based protocol, which states when the memory controller
should not respond with data that is modified in a processor’s cache, often
this functionality is provided by a shared line on the bus.

Replacements in a bus-based snooping protocol are straightforward. Copies
in read only states (such as E and S states) can be silently replaced, drop-
ping the state and by taking no further actions. To write back dirty data
to the LLC, the node must initiate a writeback transaction that contains
the data and is accepted by the LLC. The atomic nature of the bus ensures

2.6 Cache Coherence � 25

that racing coherence requests are ordered with respect to the writeback
operation.

CHAPTER 3

Baseline Many-Core
Exploration Platform

This Chapter presents the baseline heterogeneous system used in this dis-
sertation to evaluate, test and validate our proposed solutions. The nu+
many-core is a modular and deeply customizable system based on a regular
mesh network-on-chip of configurable tiles, designed to be an extensible and
parametric platform from the ground up suitable for exploring advanced ar-
chitectural solutions. Developed in the framework of the MANGO FETHPC
project, the main objective of nu+ is to enable resource-efficient HPC based
on special-purpose customized hardware. This led to a modular design and
an instruction layout that exposes enough freedom to extend both the stan-
dard set of instructions and the baseline nu+ hardware design, hereafter
discussed. This project aims to pose a fully customizable and easy to ex-
tend many-core system, suitable for the exploration of both software and
hardware advanced solutions for tomorrow’s systems. The following Chap-
ters describe the baseline many-core system in a top-down way, starting with
an overview of the nu+ tile. The current Chapter focuses on the baseline
multi-threaded core, the hearth of the calculation part, and on the NoC-
based networking subsystem, while the next Chapter details the coherence
subsystem.

3.1 Tile Overview � 27

MEMORY CONTROLLER

I/
O

 C
O

N
T

R
O

L
L

E
R

L2
DIRECTORY

CONTROLLER

CACHE

CONTROLLER

NU+

CORE

NETWORK INTERFACE

ROUTER

TILE

NU+

TILE

NU+

TILE

NU+

TILE

NU+

TILE

NU+

TILE

NU+

TILE

H2C

TILE

NU+

TILE

NU+

SYNCHRONIZATION

CORE

Figure 3-1: The nu+ many-core overview.

3.1 Tile Overview

Figure 3-1 captures a simplified overview of the nu+ many-core. Each nu+
tile has the same basic components, it provides a configurable GPU-like
accelerator meant to be used as a configurable FPGA overlay, an extendible
coherence subsystem protocol independent, and a mesh-based networking
system which routes hardware messages over the communication network.

The accelerator merges the SIMT paradigm with vector processor model.
The GPU-like model exposes promising features for improved resource effi-
ciency. In fact, it provides hardware threads executing coupled with SIMD
execution units, while reducing control overheads and hiding possibly long
latencies. This accelerator effectively exploits multi-threading, SIMD op-
erations, and low-overhead control flow constructs, in addition to a range
of advanced architecture customization capabilities, in order to enable a
high-level utilization of the underlying resources. Furthermore, each tile is
equipped with both a Cache Controller and a Directory Controller,
these handle data coherence among different cores in different tiles, pro-
viding a transparent sharing memory programming model to the software
developer.

� 28 Chapter 3. Baseline Many-Core Exploration Platform

D
E
C

O
D

E

IN
S
T
R

U
C

T
IO

N
 F

E
T
C

H

H
A

Z
A

R
D
 C

H
E
C

K
 A

N
D

S
C

O
R

B
O

A
R

D
 M

A
N

A
G

M
E
N

T

THREAD

SCHEDULER

(2)

SCOREBOARD

P
C

P
C P
C

THREAD SELECTION

(1)

THREAD INFO

S
T
A

T
U

S

S
T
A

T
U

S

S
T
A

T
U

S

P
C

S
T
A

T
U

S

THREAD

SELECTOR

INSTRUCTION

FETCH

(1-M)

DECODE

(1)

PC+4

PC

Thread ID

Blocked Thread

 info

REGISTER FILE

MANAGER

(2)

Thread ID

Decoded

instruction

SIMD EXECUTION

(1-32)

16 INT ALUS

O
P

E
R

A
N

D
 C

O
M

P
O

S
E
R

Op0

Op1

512

512

32

. .
 .

Res

512

IntRes[15]

32

IntRes[0]

32

. .
 .

Op0[15]

32

Op0[0]

32

. .
 .

Op1[15]

32

Op1[0]

Load

Data

512

VECTORIAL

REGISTERS

SCALAR

REGISTERS

W
R

IT
E
B

A
C

K

Res[0]

E!ective

address

Store

Data

512

L
o
a
d
/S

to
re

U
n
it

D$

I$

I$ miss

D$ miss

LSU

(3-N)

WB

(1)

VOp0

512

VOp1

512

SOp0

32

SOp1

32

R
E
G

IS
T
E
R
 F

IL
E
 M

A
N

A
G

E
R

Decoded

instruction

Thread

ID

Data selected,

thread and

instruction info

to TS

Rd0

Rd1

Wr

Rd0

Rd1

Wr

SPECIAL PURPOSE REGISTERS

Operation

POWER ESTIMATOR

POWER ESTIMATION

D$ miss

PERFORMANCE COUNTERS

. .
 .

32

. .
 .

FPURes[15]

32

FPURes[0]

. .
 .

16 FPUS

512

512

FPURes

IntRes

.

.

.

.

In
t[

0
]

In
t[

1
5

]
F

P
U

[0
]

F
P

U
[1

5
]

Figure 3-2: Overview of the core microarchitecture

3.2 Design principles

The MANGO project set a few baseline features for the GPU-like accelera-
tor, which included:

1. Support for hardware multithreading and data-level parallelism through
large-size vector/SIMD/SIMT support.

2. Multi-/many-core organization allowing non-SIMT execution.

3. Lightweight control flow constructs exposed to the programmer, such
as predication and mechanisms for optimizing diverging threads and
improving datapath utilization,

4. Hybrid memory hierarchy providing both coherent caches and non-
coherent scratch-pad memory.

5. On-tile performance counters.

Notice that, in line with the main strategic objectives of this dissertation
towards the support of broad-spectrum architecture exploration, the base-
line architecture activities described in these Chapters aimed at releasing
a platform for the instantiation and evaluation of all of the above features,
rather than focusing on the specific implementation/optimization of any of
them.

3.3 Core microarchitecture

The heart of the nu+ many-core platform is a RISC in-order core, oriented
to highly data-parallel kernels with a lightweight control infrastructure,

3.3 Core microarchitecture � 29

shown in Figure 3-2. Most of its resources are dedicated to computation-
intensive operations on massive datasets, blending together a hardware
multi-threading support with a SIMD paradigm. The baseline core im-
plementation presented in this dissertation is by default equipped with 8
hardware threads, with a SIMD capability able to compute 16 concurrent
operations each cycle, and 64 general purpose registers. Both data and in-
struction caches are n-way set-associative, with 4 ways, 128 sets each and a
data width of 512 bits by default.

All threads share the same compute units. Execution pipelines are or-
ganized in hardware vector lanes (like vector processors, each operator is
replicated L times). Each thread can perform a SIMD operation on inde-
pendent data, while data are organized in a vector register file.

The core supports a high-throughput non-coherent scratchpad memory
(SPM) corresponding to the shared memory in the NVIDIA terminology.
The SPM is divided in a parameterized number of banks based on a user-
configurable mapping function. The memory controller resolves bank colli-
sions at run-time ensuring a correct execution of SPM accesses from con-
current threads. Coherence mechanisms incur a high latency and are not
strictly necessary for many applications.

The remainder of this section focuses on the internal details of the baseline
GPU-like core and on the networking subsystem.

Thread Selection and Instruction Fetch Each hardware thread has pri-
vate internal resources such as PC, register file, and status/control registers
along with a private memory stack, although all threads share the same
compute units and L1 cache. Specific thread information, such as current
PC value, thread status, is handled by the Thread Selection unit in the
first stage, which implements an interleaved multi-threading scheduling in a
fine-grain way with a low architectural impact. The Thread Selection unit
issues an active thread to the next stage based on its information. At this
stage, an internal round robin arbiter forwards to the Instruction Fetch

the selected thread ID and its current PC value in a fair mode after every cy-
cle. The Thread Selection updates the issued thread PC value according
to the feedback signal from the Instruction Fetch, and in case of instruc-
tion cache miss the issued thread is stalled becoming no more eligible for
scheduling. Its PC value is not increased and a memory request for the
requested instruction line is issued to the main memory subsystem, which
can require up to m cycles depending on the main memory latency. When
the data is gathered back from the main memory, the Thread Selection

is notified and the previous stalled thread is reactivated. In case of instruc-
tion hit, the Instruction Fetch retrieves the requested instruction from

� 30 Chapter 3. Baseline Many-Core Exploration Platform

the cache, which flows along with the scheduled thread ID to the Decode

unit in the next cycle.

Decode stage This stage decodes fetched instruction from the Instruction
Fetch module and produces the control signals for the datapath. This stage
outputs a structure which helps modules to manage the issued instruction
which is propagated in each pipeline stage. Such structure stores informa-
tion such as PC, Thread ID, source and destinations registers. The heart of
the module is a combinatorial case switch construct which fills all the field
in that structure. If the scheduled instruction is valid, this stage asserts the
valid instruction bit and forwards the decoded instruction to the Instruction
scheduling stage.

Instruction Buffering and Dynamic Thread Scheduling Decoded instruc-
tions are stored in FIFOs allocated in the Instruction Buffering stage.
For each pending instruction, the Thread Scheduler checks data hazard,
stating which thread can be forwarded to the next stage.

The control system relies on a lightweight scoreboarding mechanism for
both data and structural hazard detection. The Thread Scheduler is the
heart of such a logic. It updates the scoreboarding system stalling threads
whenever hazards or data cache misses occur. The Thread Scheduler mod-
ule is also in charge to check Floating Point unit structural hazards, as
explained below. The FP pipeline has one output demultiplexer to the
Writeback unit and is composed by operators with different latencies. If
two concurrent operations terminate at the same time, they collide in the
output propagation.

Furthermore, this stage checks potential data hazards for the incoming
thread and updates the scoreboard consistently with the issued instruction.
At the same time, it checks if the current thread instruction raises a struc-
tural hazard on the Writeback stage. In the execution datapath different
operators have different latencies (such as dividers and multipliers), there-
fore they can collide in the writeback operation. At each clock cycle, the
Thread Scheduler issues a schedulable thread to the execution datapath
and, whenever hazards occur, it notifies back involved threads IDs to the
Thread Selector which stalls them until those conditions are no more true.

If a rollback occurs, the FIFO of the involved thread are flushed, and the
Thread Scheduler restores its scoreboard to the previous state.

Operand fetch stage Execution datapaths and register files are designed
to exploit data-level parallelism in line with the SIMD paradigm. The

3.3 Core microarchitecture � 31

Register File Manager fetches data from registers and composes operands.
Each thread has both private scalar and vectorial register files. The latter
can store up to 16 scalar data, with a total width of 512 bits in order to
satisfy the execution pipeline data throughput. Both register files are or-
ganized in compact SRAMs with two read and a write ports each, allowing
two read and a write operations during each cycle. The total number of
registers allocated is proportional to the number of threads supported. In
the default implementation each register file has 256 registers, i.e. 64 for
each thread. The control logic in this stage retrieves the right register sub-
set based on the requesting thread ID, which feeds the high part of both
read address ports. In the next cycle, operands are composed based on the
instruction decoded information and issued to the execution pipelines along
with thread and decoded information required by the computation units.

Integer Arithmetic and Floating Point unit The architecture implements
an instruction set containing instructions that operate on arrays of data.
Computational units are organized in hardware vector lanes, with each
scalar operator being instantiated 16 times. The Integer Execution unit
and the Floating Point unit share a similar organization, they both re-
ceive operands composed by the Operand Fetch organized in vectors, then
they internally decompose each vector and feeds all the ALUs and FPUs
with scalar operands.

In the Integer Execution unit, all the allocated ALUs perform the same
operation in one clock cycle. On the other hand, floating point operators
have different latencies, up to 32 clock cycles due the divider in this imple-
mentation. Such a data parallelism allows each thread to perform SIMD
operations on 16 independent data simultaneously. The Integer Execution
unit also contains the Branch Control module which handles jumps and
rollbacks, flushing the control information for the involved thread in the
pipeline when they occur and notifying the Instruction Fetch to update
the thread PC.

On the other hand, the implemented Floating Point unit supports scalar
and vectorial operations IEEE-754 standard compliant. This stage is com-
posed by different floating point operators with different latencies. Sup-
ported operators are baseline floating point units, such as adder, multiplier,
divider, and comparators. There is no subtractor since, when a subtrac-
tion is dispatched, the unit reverts the sign of the second operand in the
adder, so as to save hardware resources. All floating point operators have
a latency larger than 1. The results are ready after a latency depending on
the selected operator. All operator outputs are connected to the Writeback

through the same demultiplexer, only one result for clock cycle can be dis-

� 32 Chapter 3. Baseline Many-Core Exploration Platform

patched to the next unit. This demultiplexer is handled by a pending queue,
which selects the correct floating point output to forward. Such a queue is
a vector with a length equal to the greatest latency among all operators (in
this configuration it is set to 17 due the divider latency). When a new in-
struction is issued, the pending queue tracks this information, by storing the
incoming instruction in a location of the vector equal to the latency of the
operator (e.g. when an FP ADD is issued which has 10 clock cycles of latency,
pending queue[9] = FP ADD). The queue shifts every clock cycle, when an
instruction reaches the last position, the queue sets the demultiplexer selec-
tion port which propagates to the Writeback the right result. The decoded
instruction and the fetched mask from Operand Fetch unit are delayed by
the pending queue, in order to be forwarded to the Writeback along with
the floating point result. If two different floating point instructions termi-
nate at the same time, a structural hazard raises on the demultiplexer and
one of the results is lost. The Floating Point unit does not support struc-
tural hazard control, this is demanded to the Thread Scheduler during the
instruction issue phase.

The computational outputs from both the integer ALUs and floating-
point units are gathered and reorganized in a vectorial form, then forwarded
to the LSU module along with threads information.

Branch unit The Branch unit manages conditional and unconditional jumps,
restores scoreboards when a jump is taken, and forwards to the Rollback

Handler the new PC value, the scoreboard to restore and the current thread
ID. The scoreboard has to be restored in any case when a branch is taken:
when a jump occurs two other instructions of the same thread could have
been scheduled in the worst case. Those instructions are flushed if the
branch is taken and the Rollback Handler undoes their executions. Base
address or branch condition are stored in the first scalar register of the first
operand vector, immediate is stored in the first scalar register of second
vector. The core supports two jump instruction formats:

1. JRA: Jump Relative Address is an unconditional jump instruction, it
takes an immediate and the core will always jump to PC + immediate
location. E.g. jmp -12 → BC will jump to PC − 12 (3 instructions
backward).

2. JBA: Jump Base Address can be a conditional or unconditional jump,
it takes a register and an immediate as input. In case of conditional
jump, the input register holds the branch condition, if the condition is
satisfied BC will jump to PC+ immediate location. E.g. branch eqz

3.3 Core microarchitecture � 33

s4, -12 → BC will jump if register s4 is equal zero to PC − 12
location.

In case of unconditional jump, the input register is the effective address
where to jump.

Rollback Handler The Rollback Handler restores PCs and scoreboards
of the thread that issued a rollback. In case of jump or trap, the Branch
unit issues a rollback request to this stage, and passes the thread ID, the old
scoreboard state and the PC to restore. Furthermore, the Rollback Handler
flushes all ongoing and queued requests of this thread live in the core. Each
thread has a bit value which states when a rollback on that thread is issued.
Those bits are combinatorially connected to all flush ports of the threads
FIFOs and to each module. When one of this bit is high due a rollback,
the respectively FIFO is flushed. Dually, a module which is dealing with
the rolling back thread discards the thread result and propagates a bubble
to the next stage. In this way, a rollback issued by a thread does not affect
others.

Writeback stage The Writeback stage forwards computing results from
the execution pipelines into the core registers. Components in the execution
pipeline, such as FP or LDST unit, may have unpredictable latencies dur-
ing the instruction issue phase. Instructions issued in different cycles might
want to write in the register files at the same clock cycle. The register files
provide only 1 write port, hence only one instruction per clock cycle can
perform a write on them. The Writeback module avoids structural hazards
on register files accesses on-the-fly. This mechanism is based on a set of
queues (4 by default), one for execution module. The result from the corre-
sponding component is stored in each queue. An arbiter selects one result
in a round-robin fashion and forwards it into its destination register. Each
queue stores all the information needed for a writeback operation, such as
destination register and write mask. Each of these queue has an almost full
threshold, set equal to the number of cycles that separate the Writeback

to the Thread Scheduler which will stop issuing instructions to the spe-
cific component till this condition is true. Such a mechanism signals to
the Thread Selector when the Writeback cannot store any further pend-
ing requests, avoiding operation-loss and providing an on-the-fly structural
hazard detection solution.

Thread Controller Thread Controller manages the eligible threads pool.
This module blocks threads that cannot proceed due cache misses or haz-

� 34 Chapter 3. Baseline Many-Core Exploration Platform

ards. Dually, Thread Controller restores blocked threads when the block-
ing conditions are no more true.

A memory miss blocks the corresponding thread through the ib fifo full

signal until the data is retrieved from the main memory. Furthermore, the
Thread Controller interfaces the Instruction Cache with the main memory,
the architecture supports only one level of caching for instructions, in other
words when an instruction cache miss occurs the data is retrieved directly
from the main memory through the network. An instruction cache miss is
handled by a 3-state FSM: the first state waits for a cache miss request.
When it occurs the second state stores all the needed informations and is-
sues a memory request to the main memory through the Network Interface.
The third state waits the memory response, when the data is fetched from
the main memory it restores the blocked thread and backs to the first stage
waiting for another request. If during the memory waiting time another
cache miss occurs for the same address of another request pending, a spe-
cific queue merges those two: it queues the cache misses and also merges
requests to the same instruction address from different threads. The third
task performed is to accept the jobs from host interface and redirect them
to the thread controller.

Load Store unit The Load Store unit is organized in a n-way set-associative
write-back L1 cache strictly coupled with a light cache controller which im-
plements a simple valid/invalid coherence mechanism. Such cache controller
handles misses and memory transactions and it also provides both request
serialization and merging mechanisms in order to correctly manage con-
current requests from different threads. The cache line width matches the
internal hardware lanes capability, thus a read memory request loads 16
scalar data from main memory and stores them into a vectorial register
at once, minimizing requests and exploiting the internal parallelism of the
SIMD accelerator. On the other hand, the LSU is organized in three stages.
The first stage receives the effective address calculated by the previous stage
and, in case of data misses, it notifies the Thread Scheduler unit stalling the
thread until the data is retrieved back from the main memory. The other
two stages manage respectively coherence information and data.

Since, the Load Store unit is a fundamental component in this disserta-
tion, it is detailed in the next chapter along with the rest of the coherence
sub-system deployed.

Special Registers Control and special purpose registers are visible to the
host controller. The architecture provides a dedicated interface which al-
lows the manager to retrieve such registers in real-time during the execu-

3.3 Core microarchitecture � 35

tion without interfering with the kernel flow. The baseline implementation
is equipped with general performance counters, such as cache data misses
occurred.

Configurable Scratchpad Memory (SPM) The GPU-like core is equipped
with a fast non-coherent user-managed on-chip memories, called scratch-
pad memories (SPM). In NVIDIA architectures this memory can be used
to facilitate communication across threads, and it is hence referred to as
shared memory. Typically, scratchpad memories are organized in multiple
independently-accessible memory banks, and this SPM shares the same de-
sign principles. In particular, relying on an advanced configurable crossbar,
and extensive parameterization, the proposed SPM can enable highly par-
allel accesses matching the potential of parallelism of the GPU-like core,
dictated by its SIMD structure with L multiple lanes. The typical memory
instructions provided by a SIMD ISA offer gather and scatter operations.
Such operations are respectively vectorial memory load and store memory
accesses. If the SIMD core has a single-bank SPM with a single memory
port, the previous instructions require at least L clock cycles. This is because
the L lanes cannot access a single memory port with different addresses in
the same clock cycle.

The baseline SPM presented in this dissertation takes as input L different
addresses to provides support to the scattered memory access. In the default
configuration the SPM can handle up to 16 concurrent memory transactions
at once, one per hardware lane. Further details are provided in section 6.3

Toolchain The target architecture comes with a toolchain based on the
LLVM project and includes a custom version of the Clang front-end and a
native nu+ back-end. The Clang front-end allows users to compile C/C++
source code in a fast way and with a low memory usage. On the other
hand, the toolchain is deeply customized for exploiting the core internal
data parallelism and reaching the maximum throughput. The compiler has
a complete vision of the SIMD nature of the datapath. It supports custom
vector types, thus standard arithmetic and bitwise operators are available
for both scalar and vector operations. Furthermore, the custom version of
Clang supports ad-hoc built-in functions that are required to fully exploit
target specific features, such as thread synchronization and special SIMD
operations.

� 36 Chapter 3. Baseline Many-Core Exploration Platform

3.4 Networking System

In a many-core system, the interconnection network has the fundamental
goal of allowing various devices to communicate efficiently over the NoC. In
such systems, different actors spread all over the network, require message
exchanging. The networking system ease the message flowing, providing a
simplified interface which allows communication among different tiles.

The nu+ communication system relies on a light 2D mesh Network-on-
Chip based on hardware router flit-based whit a wormhole control flow
mechanism, which implements a XY routing. The nu+ networking system
is mainly composed of a Router and a Network Interface (NI). In the
default configuration the network provides 4 virtual channels, 3 of them are
required by the coherence protocol, while the last is shared between the
synchronization and boot mechanisms.

3.4.1 Router

The networking system works under the assumption that no flit can be lost.
In order to avoid such situations routers are equipped with buffers, that
eventually stall neighbours in case of full output buffers. This mechanism
along with a back-pressure control flow ensures that no packet is drop.

As a packet is routed through the mesh, a flit can enter a router and
leave it from any cardinal direction. It is obvious that routing flits along a
straight line cannot form a circular dependency. For this reason only turns
must be analyzed. The simplest solution is to ban some possible turns, in
a way that disallows circular dependency.

The routing protocol adopted in nu+ is the XY Dimension-Order Rout-
ing, or DOR. It forces packet to be routed first along the X axis, and then
along the Y axis. It is one of the simplest routing protocols, as it takes its
decision independently of current network status, and requires little logic
to be implemented, although offering deadlock avoidance and shortest path
routing.

The router provides 5 ports, one per cardinal direction (namely NORTH,
SOUTH, WEST, EAST) plus one which connects the router to the local
Network Interface of the tile. The router architecture implements a flit-
based flow control, a dimension-ordering routing look-ahead mechanism for
a 2D-mesh topology, and supports on-off back-pressure signals. A look-
ahead routing mechanism allows the next hop calculation one router in
advance compared with a plain version. When the packet flows in a router,
this already contains information of its next hop. This approach allows to
merge the virtual channel and switch allocation in one stage and the router

3.4 Networking System � 37

IN
P

U
T
 B

U
F
F
E
R

FLIT

MANAGER

LOOK-AHEAD

ROUTING

VC & SW

ALLOCATION

C
R

O
S
S
B

A
R

ON_OFF_OUT

P X V

FLIT_IN_GRANTED

P X FLIT_WIDTH

VALID_OUT

P

GRANTED_PORT

P X P

P X FLIT_WIDTH

P

FLIT_OUT

WR_EN_OUT
P X FLIT_WIDTH

FLIT_IN

WR_EN_IN

P

ON_OFF_IN

P X V

Figure 3-3: Baseline hardware router.

can perform resources allocation and next hop calculation concurrently. To
further reduce the pipeline depth, the crossbar and link traversal stage are
not buffered, reducing the stages at two and merging the last stage to the
first one.

Four virtual channels are required, to classify different packet types.
On/Off back-pressure signals are generated for each virtual channel. The
following rules must be ensured:

1. A flit cannot be routed on a different virtual channel.

2. Different packets cannot be interleaved on the same virtual channel.

The router is implemented in a pipelined fashion, Figure 3-3 shows the
nu+ router overview. Although three stages are presented, the last one’s
output is not buffered. This effectively reduces the pipeline delay to two
stages.

The first stage is the Input Buffer which instantiates two queues, the
first one stores flits (FQ) while the other stores only the current head flit
(HQ). Each virtual channel allocates an Input Buffer. In the flit header
are stored information required for routing and resources allocation. The
allocation unit grants access to a flit flow if the required output port of a
specific virtual channel is available, and handles the contention of virtual
channels and crossbar ports among different flows. When a flit flow wins
resource allocation, it can cross the router through the crossbar. The second

� 38 Chapter 3. Baseline Many-Core Exploration Platform

re
q

u
e

st

re
q

u
e

st
_

v
a

li
d

re
q

u
e

st
_

n
e

tw
o

rk
_

a
v

a
il

a
b

le

fo
rw

a
rd

e
d

_
re

q
u

e
st

fo
rw

a
rd

e
d

_
re

q
u

e
st

_
v

a
li

d

fo
rw

a
rd

e
d

_
re

q
u

e
st

_
co

n
su

m
e

d

re
sp

o
n

se
_

in
je

ct

re
sp

o
n

se
_

in
je

ct
_

v
a

li
d

re
sp

o
n

se
_

in
je

ct
_

a
v

a
il

a
b

le

re
sp

o
n

se
_

e
je

ct

re
sp

o
n

se
_

e
je

ct
_

v
a

li
d

re
sp

o
n

se
_

e
je

ct
_

co
n

su
m

e
d

{

h h

ARBITER

{

CU CU CU CU

V
IR

T
U

A
L

 C
H

A
N

N
E

L
 O

U
T

V
IR

T
U

A
L

 C
H

A
N

N
E

L
 O

U
T

V
IR

T
U

A
L

 C
H

A
N

N
E

L
 IN

V
IR

T
U

A
L

 C
H

A
N

N
E

L
 IN

almost_full almost_full

e
n
q
u
e
u
e

e
n
q
u
e
u
e

dequeue dequeue

h h

c
re

d
it
 o

n
/o

ff
(a

lm
o
s
t_

fu
ll
)

c
re

d
it
 o

n
/o

ff
(a

lm
o
s
t_

fu
ll
)

fl
it
 i
n

m
e
s
s
a
g
e
 o

u
t

emptyempty

e
m

p
ty

e
m

p
ty

h

enqueue enqueue
ro

u
te

r_
v
a
li
d

ro
u
te

r_
v
a
li
d

N
I_

v
a
li
d

N
I_

v
a
li
d

{ {

{ h {

c
re

d
it
 r

e
q
u
e
s
t

c
re

d
it

re
s
p
o
n
s
e
_
in

je
c
t

e
m

p
ty

e
m

p
ty

Figure 3-4: Overview of the Network Interface design.

stage is composed of three blocks: the allocator, the flit manager and the
routing logic. The allocator manages the allocation of the third stage ports,
generating a grant signal for each virtual channel allowed to proceed, con-
sidering also back-pressure signals coming from other routers. This grant is
used by the flit manager to select the winning flits, which are fed to the next
stage along with the routing informations generated by the routing block.
The third stage is the crossbar, which connects each of the 5 input ports to
each of the 5 output ports.

3.4.2 Network Interface

Cache coherence protocols are usually based on the main assumption single-
writer, multiple-reader invariant. Any nodes may have a copy of memory
in its cache to read from. When a node wishes to write to that memory
address, it ought to ensure that no other nodes are caching that address,
in the total respect of the SWMR invariant. The resulting communication
requirements for a shared memory multiprocessor consist of three kinds of
message, namely requests, responses and forwarded messages. These
do not rely on networking ordering, although sharing the same channel can

3.4 Networking System � 39

incur in protocol deadlocks [62]. E.g. a request message from the network
cannot be processed until the block receives the response from the directory.
If responses utilize the same network resources as requests, those replies
cannot make forward progress resulting in deadlock.

Virtual channels are an extensively adopted technique coupled with the
directory-based coherence protocol, solving such protocol deadlocks in net-
work design, allowing multiple virtual networks starting from a single phys-
ical channel.

The hardware router has no view of the original message, it is up to the
NI (shown in Figure 3-4) to convert the application message in a stream of
flits. It splits a packet into multiple flits and injects these into the network
and vice-versa. Specifically, in the baseline implementation, the Network
Interface provides access to the mesh at directory controller, cache controller
and service units (such as boot manager, barrier core unit, synchronization
manager). The Network Interface can be summarized as follows:

1. Conversion from packet to flits: it buffers the input application mes-
sage, and converts a packet into multiple flits. If the packet contains
data a stream of 9 flits is generated, otherwise a single Head-Tail flit
is produced. The NI also provides multicast support, sending k times
a packet in unicast to multiple destinations.

2. Packet reconstruction: the NI reads and buffers every incoming flit
from the local router, then builds back the original packet.

In the nu+ networking system the number of virtual channels is repre-
sented by the constant parameter, currently set to 4, as many as the type
of network messages: requests, responses, and forwards message for achiev-
ing coherence transaction deadlock free; and a last called service generally
used for host communication. As a given message type is associated with a
specific virtual channel, the network interface exposes a dedicated I/O port
to each of them. A component, which generates request messages, must
interface to the request NI port in order to inject its application messages
over the network. Every virtual channel has a dedicated input buffer, so
flow control is also be implemented on a virtual channel basis. This means
that every router sends to its neighbours informations regarding the status
of its buffers, for each virtual channel, implementing a on/off back-pressure
control at the virtual channels level.

CHAPTER 4

Configurable Coherence
Subsystem

Nu+ tiles are organized in a mesh configuration featuring a shared-memory
model. Logically, all processors have the same view of the memory, with
the coherence subsystem managing each line in a transparent way for the
local accelerator. Memory hierarchies use caches to improve the perfor-
mance, reducing the latency to access data, but the implementation of such
mechanisms complicate the logical and is highly error-prone. This Chapter
introduces the baseline coherence subsystem of the nu+ many-core, describ-
ing its main actors, their designs, and the how they are integrated in the
baseline tile exposed in the previous Chapter.

4.1 Cache Hierarchy

The nu+ many-core features a distributed L2 cache organization, each of
the baseline tiles allocates N banks of the L2 cache accessible from others,
while the L1 is private to the local accelerator.

Shared caches represent a more effective use of storage as there is no
replication of cache lines. However, L1 cache miss incurs additional latency
to request data from a different tile. Shared caches place more pressure
on the interconnection network as L1 misses might go onto the network,
but through more effective use of storage may reduce pressure on the main
memory.

4.1 Cache Hierarchy � 41

IN
S

T
R

U
C

T
IO

N
 V

A
L

ID
A

T
IO

N

A
N

D

O
P

E
R

A
N

D
 A

S
S

E
M

B
LY

ldst1_rollback_en

thread_id

ARBITER

Response

Forwarded requests

Response

Requests

N
E

T
W

O
R

K
 I

N
T

E
R

FA
C

E

Store misses

Load misses

F
E

TC
H

 U
N

IT

P
R

O
TO

C
O

L
 H

A
N

D
L

E
R

Evict bu!er

N
e

tw
o

rk
 M

e
ss

a
g

e
 C

o
m

p
o

se
r

ROM PROTOCOL

Scheduled Address

Ta
g

 a
n

d
 P

ri
v

ile
g

e
s

S
n

o
o

p
 R

e
q

u
e

st

H
ig

h
 P

ri
o

ri
ty

D
a

ta
, T

a
g

 a
n

d
 P

ri
v

ile
g

e
s

U
p

d
a

te
 B

u
s

MSHR Updating Entry

C
O

R
E

 I
N

T
E

R
FA

C
E

To Core Interface

(Evict Bu!er)To Core Interface

(Load/Store Bu!er)

D
a

ta
 S

n
o

o
p

 R
e

q
u

e
st

D
a

ta
 S

n
o

o
p

 R
e

a
d

 (E
v

ict/R
e

p
la

ce
m

e
n

t)

Ta
g

 a
n

d
 P

riv
ile

g
e

s S
n

o
o

p
 R

e
a

d

TAG PRIVILEGES

DATA

HIT/MISS

DETECTION

LOGIC

COHERENCE STATE

MSHRs

HIT/MISS

DETECTION

LOGIC

Addr DataStatus Tag

PseudoLRU

To
 W

ri
te

b
a

ck

Fr
o

m
 O

p
e

ra
n

d

Fe
tc

h

Figure 4-1: The nu+ coherence sub-system overview.

The Memory Controller is placed as individual node on the intercon-
nection network; with this design, the memory controller does not have to
share injection/ejection bandwidth to/from the network with accelerators.

4.1.1 Architectural Details

The coherence subsystem is composed of three components further described
in the remainder of this Chapter:

1. Load/store unit: manages L1 data cache, located at the accelerator
level.

2. Cache controller: handles L1 coherence data cache and manages co-
herence transactions.

3. Directory controller: handles L2 cache and manages coherence trans-
actions from cache controllers.

� 42 Chapter 4. Configurable Coherence Subsystem

IN
S

T
R

U
C

T
IO

N
 V

A
L

ID
A

T
IO

N

A
N

D

O
P

E
R

A
N

D
 A

S
S

E
M

B
LY

ldst1_rollback_en

thread_id

ARBITER

Tag and Privileges

 Snoop Request

H
ig

h
 P

ri
o

ri
ty

D
a

ta
, T

a
g

 a
n

d
 P

ri
v

ile
g

e
s

U
p

d
a

te
 B

u
s

To Core Interface

(Evict Bu!er)

To Core Interface

(Load/Store Bu!er)

Data Snoop Request

Data Snoop Read

(Evict/Replacement)

Ta
g

 a
n

d
 P

riv
ile

g
e

s S
n

o
o

p
 R

e
a

d

TAG PRIVILEGES

DATA

HIT/MISS

DETECTION

LOGIC To
 W

ri
te

b
a

ck

Fr
o

m
 O

p
e

ra
n

d

Fe
tc

h

Figure 4-2: Load/store unit detailed view.

Load/store unit is part of nu+ core while cache controller and directory
control are allocated at the tile level.

4.2 Load/Store unit

The Load/Store unit handles all data memory operations featuring a pri-
vate L1 n-way set-associative cache allocated at the core level. All cache
parameters are configurable, such as number of sets and number of ways. It
implements a non-blocking miss mechanism. When a memory miss occurs,
the core can still execute instruction on different data, while the Load/S-
tore unit is retrieving the data from the memory hierarchy. It interfaces
the Operand fetch and Writeback stages on the core side, dually on the bus
side it communicates with the cache controller which updates information
(namely tags and privileges) and data, as shown in Figure 4-2. Moreover,
such a module sends a signal to the instruction buffer unit which has the
purpose of stopping a thread in case of miss. Load/Store unit does not store
any information about the coherence protocol used, although it keeps track
of information regarding privileges of cached blocks. Each cache line stored,
in fact, is associated to two privileges: can read and can write that are used
to determine cache miss/hit and are updated by the Cache Controller. Fi-
nally, it should be noted that this unit does not manage addresses that
refer to the IO address space: whenever an issued request belonging to the
non-coherent memory space is directly forwarded to the Cache Controller
which will handle bypassing the coherence protocol, sending the request to
the memory controller and report the data back to the third stage.

L1 cache design has been driven by the following assumptions:

1. The module has to be protocol independent. Protocol details are
handled by the Cache Controller. The Load/Store unit associates

4.2 Load/Store unit � 43

privileges with each set line, that abstract the coherence protocol.
Each set line can be in invalid, read only mode, write only mode, or
read and write mode.

2. The module has to provide enough parallelism to support the GPU-
like core memory access rate. If a thread raises a cache miss, the
thread is not suspended, a second missing request will block it until
all pending requests are fulfilled by the Cache Controller.

3. Different memory requests from the same thread are scheduled and
served in order.

This unit is divided into three stages. The first performs a phase of
decoding and verification of the incoming memory request (to understand if
it is a word, half word or byte access), it also checks the address alignment.
Such a control is done based on memory access types (namely scalar or
vectorial) on byte, half-word and word. On the other hand, if an instruction
requires an improper address, this stage asserts a misaligned signals, which
forces the core to discard this request and raises a trap. Valid requests
from the Operand Fetch are queued in FIFOs here allocated, and presented
as pending instructions to the second stage. The first stage provides also
recycle buffers besides those FIFOs. If a cache miss occurs in the 3rd stage,
the scheduled request is forwarded back to these buffers. Pending requests
from recycle buffers compete with the normal issued load/store instruction
to be re-executed. Recycled instructions have the higher priority compared
to other pending operations. Such high-priority buffers are necessary to
satisfy the third assumption. Finally, a pending instruction for each thread
is forwarded in parallel to the next stage. When the second stage accepts
an instruction from the i-th thread, it asserts the i-th bit of the dequeuing
mask. The i-th bit of this mask is connected to the dequeue port of the i-th
FIFO, and the instruction is popped from its queue.

The second stage arbiters the FIFOs in the first stage, also allocates L1
cache tag and privilege information. This stage receives as many parallel
requests from the core as the number of threads. A pending request is se-
lected from the pool of pending requests from the previous stage. A thread
is chosen by a round-robin arbiter, although recycled instructions have the
highest priority. When a memory request is scheduled, this stage forwards
to the next stage the scheduled request, tag and privileges relative to the
requesting address, fetching these information from the tag and info caches.
Tags and information caches are organized as a SRAMs equipped with 2
read ports and 1 write port. A second reading port is provided in order to
facilitate Cache Controller snooping operation over cache tags and infor-

� 44 Chapter 4. Configurable Coherence Subsystem

mation. The implemented SRAMs provides a read-first mechanism, in the
worst scenario the Cache Controller updates tag or privileges of the same ad-
dress that is requested by an already scheduled operation. With a read-first
policy, the operation retrieves the right information. Furthermore, when-
ever a cache miss occurs, this stage stalls the corresponding thread until the
data is retrieved back from the main memory. This stage does not updates
the cache information itself, this is up to the Cache Controller which has
a preferential port and through this it sends data and commands to the
second stage.

The Cache Controller sends different commands to the Load/Store unit
and they are handled in this stage:

1. In case of CC INSTRUCTION, the stage 2 allocates in cache a
new block line, updating information with new privileges, dirty bytes
mask, and tags, while data are propagated to the 3rd stage where the
data cache is physically allocated.

2. In case of CC UPDATE INFO from the cache controller, stage
2 updates an existing cache set in a give way. In such a case, only
information are updated, nothing is propagated to the 3rd stage, since
it is not necessary to update the data cache. The privileges and the
cache tag are updated with the values provided by the cache controller.
It also indicates which way must be updated being responsible for the
pseudo-LRU.

3. In case of CC UPDATE INFO DATA from the cache controller,
stage 2 receives an update command for an existing set, but in such
cases data are also updated. Stage 2 propagates to the 3rd stage
the request address, its information (privileges and tags), and data
provided by the cache controller.

4. Finally, in case of CC EVICT command from the CC, stage 2 notifies
to the data cache that the data must be replaced, and an eviction
operation take place. Block information, along with data and tag, are
propagated from the Load/store unit to the Cache Controller, which
will handles the placing back into the main memory.

The third stage detects if a cache miss or hit occurs, also allocates the
data cache, which is a SRAM with 2 read ports and 1 write port. When an
instruction is issued, this stage checks privileges and tags and asserts the
miss output bit consequently. If a miss occurs the instruction is forwarded
back to the recycle buffer in the first stage and this module dispatches a

4.3 Cache Controller � 45

PROTOCOL ROM

COHERENCE STATE
HIT/MISS

DETECTION

LOGIC

Addr DataStatus Tag

PSEUDO LRU

Response

Forwarded requests

Response

Requests

N
E

T
W

O
R

K
 I

N
T

E
R

FA
C

E

Store misses

Load misses
F

E
TC

H
 U

N
IT

P
R

O
TO

C
O

L
 H

A
N

D
L

E
R

Evict bu!er

N
E

T
W

O
R

K
 M

E
S

S
A

G
E
 C

O
M

P
O

S
E

R

PROTOCOL ROM

Scheduled Address
Ta

g
 a

n
d

 P
ri

v
ile

g
e

s
S

n
o

o
p

 R
e

q
u

e
st

H
ig

h
 P

ri
o

ri
ty

D
a

ta
, T

a
g

 a
n

d
 P

ri
v

ile
g

e
s

U
p

d
a

te
 B

u
s

MSHR Updating Entry

C
O

R
E

 I
N

T
E

R
FA

C
E

D
a

ta
 S

n
o

o
p

 R
e

q
u

e
st

Ta
g

 a
n

d
 P

riv
ile

g
e

s S
n

o
o

p
 R

e
a

d

Miss/Hit

 from LDST

COHERENCE STATE

MSHRs

HIT/MISS

DETECTION

LOGIC

Addr DataStatus Tag

PSEUDO LRU

Figure 4-3: Cache Controller overview.

miss request to the Cache Controller. In case of load hit the output valid
signal is asserted, and data is forwarded to the Writeback module of the
core, along with the instruction that originated the memory request. The
Writeback strips the instruction using it to retrieve the destination regis-
ter. In case of store hit, the load/store unit have the can write permission
on the block address, the third stage updates data cache and no requests
are forwarded to the Cache Controller. In case of store/load miss the out-
put miss signal is asserted, the request is both recycled and propagated to
the Cache Controller. Furthermore, in such cases the requesting thread is
stalled, saving it ID in a sleeping queue, which tracks inactive threads.

Finally, during eviction or replacement operations, the set is updated with
the new value, and its old content is sent to the Cache Controller, which
handles the data writing back.

4.3 Cache Controller

The Cache Controller handles coherence on the core side, manages the
L1 data and info caches in the Load/Store unit, and dispatches coherence
transactions over the network when required.

Pending requests from the core are store in the Core Interface module
which has separate FIFOs for each type of request, namely load, store,
and eviction. Dually, the Network Interface module (described in section
3.4.2) provides an interfacing port for each type of incoming transaction

� 46 Chapter 4. Configurable Coherence Subsystem

from the network, such as forwarded, and response coherence messages.
The component is composed of 4 stages, summarized as follow:

• Stage 1: schedules a valid pending requests, it can be from the local
core or from the network.

• Stage 2: stores coherence status cache and manages the miss status
holding registers (MSHR).

• Stage 3: processes a request in compliance with loaded coherence
protocol.

• Stage 4: prepares coherence transactions to flow over the network.

An overview of the Cache Controller and its stages are depicted in the
Figure 4-3. The component has been realized in a pipelined fashion in order
to serve multiple requests at the same time with a reduced latency. The
design of the presented Cache Controller has been driven by the following
assumptions, that eased the component implementation:

1. Transactions involve only memory blocks.

2. Only requests from the local core (load, store, replacement, flush) can
allocate MSHR entries.

3. Info regarding cache blocks in non-stable state are stored in MSHR
otherwise in L1 cache.

4. Two requests on the same block cannot be issued in a pipelined mode,
in such cases the first might modify the MSHR entry after two clock
cycles, while the second request may read a not up-to-date entry.

4.3.1 Stage 1

Memory requests either come from the core (due load/store misses) or the
network (such as forward and response coherence requests), the first stage
arbiters all these pending requests. It first checks which is schedulable by
checking the protocol ROM, which stores the adopted coherence protocol
details. The protocol might stall any request, and, of course, this decision
is made on the base of the requesting memory block state. E.g. the core
issued a store miss request for block in the S state, allocating an MSHR
entry which states that this block is in state SMa waiting for all ACKs from
other sharers. While in this state, further load/store requests to this block
are stalled until the block transits in stable state.

4.3 Cache Controller � 47

Defined all the eligible requests, a fixed priority arbiter selects one of them
and forwards it to the next stage the selected request. The arbiter has a
fixed priority in order to match coherence needs, such as response messages
are always scheduled when pending. The selected request is forwarded to
the snooping bus (detailed in the next subsection) and to the next stage.

4.3.2 Stage 2

As said above, the Cache Controller has a privileged bus through both tags
and data caches in the Load/Store unit (referred as snooping bus from
now onward). Such a bus eases the task of managing caches, it also allows
to check if a scheduled request has been already satisfied from previous
transactions. When a memory request is issued from the Load/Store unit
to the Cache Controller, it is stored in the interface FIFO along with the
other pending requests. Being multi-threaded, the core might issue several
requests to the same memory block. The Cache Controller checks through
the snooping bus if the missing conditions are still true before processing
the request itself.

This stage gathers all the needed information to process the current re-
quest, fetching the non-stable state from the MSHR if the request refers to
a block already pending in the miss status holding registers, or fetching the
stable state from the Coherence State SRAM allocated if the MSHR has
no entry regarding that memory block. An MSHR entry is organized as
follow:

Figure 4-4: MSHR entry overview.

• Valid: states the validity of the entry.

• Address: pending request memory address.

• Thread ID: requesting thread ID.

• Wakeup Thread: wakes the thread up when transaction is over.

• State: actual line non-stable state.

• Waiting for eviction: asserted for replacement requests.

• Ack count: remaining ACKs to receive from sharers, when needed.

� 48 Chapter 4. Configurable Coherence Subsystem

• Data: data associated to request. Note that entry’s Data part is stored
in a separate memory in order to ease the lookup process.

If a block is pending in the MSHR, its current state is retrieved from the
MSHR which holds the most up-to-date state. All the information along
with the corresponding MSHR entry (if any) and data are passed to the
next step.

4.3.3 Stage 3

The third stage processes the current request in compliance with the proto-
col ROM, which states for the current request and state the actions to take.
The Cache Controller design has kept been as generic as possible, in fact the
protocol ROM outputs atomic actions, such as allocate/deallocate/update
the MSHR, update caches in the Load/Store unit, send a message over the
network, or start a replacement operation.

Caches maintenance is accomplished using commands described in Section
4.2 through a dedicated bus which injects those commands in the second
stage of the Load/Store unit.

Furthermore, this stage handles the MSHR allocated in the second stage.
An entry is allocated when a cache line state turns into a non-stable state,
meaning that the Cache Controller cannot fulfil the request itself and for-
wards it to the Directory Controller, waiting for the response. Dually, a
MSHR entry is deallocated a pending line state backs to stable state, usu-
ally when the corresponding response is received; meaning that the block
is stable in the data cache and no further action are required. Finally, a
MSHR entry is updated whenever a pending line shifts from its non-stable
state to another non-stable one. This is the case of MIa→SIa. The pend-
ing line was in MIa state after an explicit putM request, while a fwd-getS

is scheduled. Each condition is represented by a signal that is properly
asserted by protocol ROM.

4.3.4 Stage 4

The last stage provides an interface with the network and builds the coher-
ence transaction which will flow over the network-on-chip. When a request
requires info or data from another coherence actor, this stage bridges the
Cache Controller with the Network Interface module. The type of the co-
herence message, the info, and the message destination are specified by the
protocol ROM. E.g. after a store miss on non-cached block, the last stage
builds a getM packet and forwards it over the request virtual channel.

4.4 Directory Controller � 49

Figure 4-5: Default MSI protocol implemented at the Cache Controller
level.

4.3.5 Protocol ROM

This module stores the current coherence protocol adopted. Figure 4-5
shows the baseline MSI adopted in this dissertation. The choice to im-
plement the protocol as a separate ROM has been made to ease further
optimizations or changes to the baseline protocol. It takes in input the cur-
rent state and the request type and outputs next actions. The coherence
protocol detailed in Figure 4-5 is a standard MSI adapted to the inclusive
L2. In particular a new type of forwarded request has been added, namely
recall, sent by directory controllers when a block has to be evicted from
an L2 cache. A writeback response to the memory controller follows in
response to a recall only when the block is in state M.

4.4 Directory Controller

nu+ many-core supports a sparse directory coherence mechanism, the L2
cache is an n-ways set-associative memory strictly inclusive. The L2 is
equally distributed over the tiles, each equipped with a directory controller
which is the default home node for the given L2 subset. The Directory

Controller handles coherence requests from cache controllers, tracks all
sharers node in case block line in S state, and manages the writing back of
a memory line into the main memory in case of block eviction or explicit
recall.

Figure 4-6 shows an high level overview of this component. As the Cache
Controller, this module tracks pending requests on the transaction status
handler register (TSHR). Furthermore, the Directory Controller design is
similar to the cache controller one, featuring a protocol ROM to be highly

� 50 Chapter 4. Configurable Coherence Subsystem

A
rb

it
e

r
Requests

Responses

C
o

h
e

re
n

ce
 M

e
ss

a
g

e
s

Responses

M
e

m
o

ry
 M

e
ss

a
g

e
s L

2
 C

a
ch

e

TA
G

TSHR

Protocol ROM

NOC Ejection Interface

PRLU

L
2

 C
a

ch
e

D
A

TA

H
it

/M
is

s

scheduled address

4 ways
lru way

hit way

block

M
e

ss
a

g
e

 H
a

n
d

le
r

scheduled message
Fwd requests

Responses

C
o

h
e

re
n

ce
 M

e
ss

a
g

e
s

Requests

M
e

m
o

ry
 M

e
ss

a
g

e
s

NOC Injection Interface

hit

0

1

almost fulll

Figure 4-6: Directory Controller overview.

protocol-independent. This component interfaces the Network Interface
both on the forward and response output ports, while it is connected to
the request and the response port in input. The remainder of this section
details internal stages of this component.

4.4.1 Stage 1

The first stage schedules a pending request from the network. Note that,
this component receives request only from the NI, even the local core com-
municate with it through the common network interface. The first stage
allocates the tag and coherence state cache, both updated by the last stage,
but read in this one. A fixed priority arbiter checks the schedulability of
each pending request on the basis of the current state of the requesting line,
the coherence operation on it, and the protocol loaded in the ROM. The
writing back requests have the highest priority, followed by the responses
and finally coherence requests. The scheduled request is passed to the sec-
ond stage along with tags, block state, and the TSHR entry (if any).

Scheduling a request message might allocates resources, hence in order to
issue such a requests the arbiter checks the following conditions:

1. TSHR is not full.

2. The network interface is available on the forwarding channel, a request
might require to send a forwarded message.

3. The next stage is not busy.

4.4 Directory Controller � 51

4.4.2 TSHR Signals

The Transaction Status Handling Register tracks cache block information
whose coherence transactions are pending. When a line is tracked in the
TSHR its state is both non-stable and the up-to-date.

Figure 4-7: TSHR entry.

A TSHR entry is organized as follows:

• Valid: the entry is valid.

• Address: block line address.

• State: actual coherence state.

• Sharers list: list of block sharers (one-hot codified).

• Owner: ID of the current block owner if the directory is not.

4.4.3 Stage 2

The second stage implements the miss/hit logic, and in case of replacement
the pseudo LRU mechanism. It also allocates the L2 data cache, which is
organized as a SRAM with a single read and a single write ports. Finally,
this stage propagates the read data along with the hit/miss result to the
next one. The scheduled request and TSHR information from stage 1 are
propagated as part of the output as well.

4.4.4 Stage 3

The last stage processes the incoming request in compliance with the current
coherence protocol, taking action on the basis of the protocol ROM outputs,
generating forwarded messages and updating both the TSHR and the L2
cache if required.

4.4.5 Protocol ROM

This module stores the current coherence protocol loaded in the directory
controller. Figure 4-8 shows the default version used in this dissertation.
The organization of such table is the same of the cache controller one in
section 4.3.5. The baseline coherence protocol, on the directory side, has

� 52 Chapter 4. Configurable Coherence Subsystem

Figure 4-8: Default MSI protocol on the directory side.

been augmented with a new state N, which indicates the block is not cached
in the L2 and has to be fetched from the main memory. Such a state has
been necessary for a main reason: the implemented L2 has a finite size, it
cannot track every memory line, while the stable state I tracks that the
block is cached only in the L2 which is the most up-to-date version. Two
non-stable states have been added in order to fully support the additional
state:

1. State MN A: issued after a replacement in the L2 of a block in state
M. The directory controller is waiting for data from owner in order to
write it back into the main memory. Further requests on the same
block are stalled until data has been received from owner and sent to
the main memory.

2. State NS D: issued after a load request for a non-cached block. The
directory controller is waiting for data coming from the main memory.
Further requests on the same block are stalled until data has been
fetched and sent back to requestor(s).

CHAPTER 5

Exploring Customization

Starting from the introduced baseline many-core, this Chapter investigates
the adoption of different architectural features, i.e. SIMD paradigm, mul-
tithreading, and non-coherent on-chip memories for Deep Learning ori-
ented FPGA-based accelerator designs. The scope of the Chapter is to
explore different architectural solutions, and to outline their impacts. The
main goal here is to exploit the baseline GPU-like core features, described
in Chapter 3, proving that architectural customization plays a key role, as
it enables unprecedented levels of resource-efficiency compared to GPUs.

5.1 Motivations

An ever increasing number of challenging applications are being approached
using Deep Learning, obtaining impressive results in a variety of different
domains. However, state-of-the-art accuracy requires deep neural networks
with a larger number of layers and a huge number of different filters with
millions of weights. GPU- and FPGA-based architectures have been pro-
posed as a possible solution for facing this enormous demand of computing
resources. This class of algorithms well suit both thread-level and SIMD
parallelization, making them a perfect starting point for an exploration
study.

� 54 Chapter 5. Exploring Customization

5.2 Related Works

The emerging wave of the Big Data [42] is paving the way for the widespread
adoption of Deep Learning techniques in diverse application domains in-
cluding image recognition [38], sound processing [68], medical systems [28],
gaming [72], and others. However, despite the huge potential of Deep
Learning, most of these algorithms rely on a large number of performance-
hungry convolutions limiting the usability of these techniques. In addition,
Deep Neural Networks (DNNs) require a training phase that is a very com-
pute intensive task. For instance, training a popular architecture like, e.g.
GoogLeNet [78], can easily take several days on a standard GPU. Because
of these requirements, the applicability of Deep Learning is becoming in-
creasingly performance- or power-constrained.

Not surprisingly, the industry and academia are continuously introduc-
ing new architectures dictating the evolution of Deep Learning techniques.
First-generation solutions consist of large-scale distributed systems com-
prised of tens of thousands of CPU cores [24]. However, the growing de-
mand for high-parallel energy-efficient architectures has led to an increasing
interest in GPUs and FPGAs [14, 29, 87]. For example, many entries in the
annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [67]
use GPUs and FPGAs to implement DNNs. Custom accelerators and FP-
GAs are an attractive alternative and provide an intermediate point be-
tween Application-Specific Integrated Circuits (ASIC) and standard GPUs,
enabling higher efficiency even compared to high-end GPUs [55]. In addi-
tion, the higher flexibility allows their use in different compute problems.
There is thus a tradeoff between power-hungry high-performance GPUs and
energy-efficient application-specific solutions.

5.3 Convolutional Layer

Deep Learning is a class of machine learning algorithms using convolutional
neural networks (CNN) which are inspired by the behavior of optic nerves.
Deep Learning gives state-of-the-art accuracy for many computer vision
tasks, such as image classification and image search engine in data centers.

CNN employs a feedforward process for recognition and a backward path
for training. Consequently a typical CNN is composed of multiple compu-
tation layers, and the output y is the sum of multiple different convolutions
between the input x and the filter k:

y[n] = x[n] · k[n] =
∑
k

x[n] · k[n− k]

5.3 Convolutional Layer � 55

This Chapter focuses on the exploration of different architectural fea-
tures in a custom GPU-like accelerator targeted at convolution operations.
In fact, these account for over 90% of the processing in CNNs for both
inference/testing and training [15].

The pseudo code of a convolution with a K ×K filter with no stride, bi-
dimensional input and output matrices, respectively of N ×N and M ×M
where M = N −K, can be written as in the following listing:

for(row = 0; row < M; row++)

for(col = 0; col < M; col ++)

for(krow = 0; krow < K; krow ++)

for(kcol = 0; kcol < K; kcol ++)

y[row][col] += k[krow][kcol] *

x[row + krow][col + kcol];

This scalar single-thread version of the convolution algorithm has been
adapted to the target GPU-like architecture exploiting both thread and
data level parallelism. Output matrix row calculations are equally spanned
across all threads, i.e., for each thread, the outer loop starts with the thread
ID (thid) and increments by the number of threads (thnumb). On the
other hand, both input and output matrices are organized in target specific
vector types, becoming vectors of vectors. Such an organization results in a
distribution of the M column partial results on the M hardware lanes; each
thread calculates M partial results every cycle. The vectorization makes the
second cycle unnecessary. The inner cycle, however, scrolls the input matrix
in the scalar version. This can be replaced by a vectorial shift operation
supported by the target architecture on the input row, which shifts each
scalar element inside the hardware vector by n positions. The resulting
pseudo code of the algorithm optimized for a GPU-like accelerator, can be
written as in the following listing:

for(row = thid; row < M; row += thnumb)

for(krow = 0; krow < K; krow ++)

for(kcol = 0; kcol < K; kcol ++) {

y[row] += k[krow][kcol] *

x[row + krow];

x[row + krow] = x[row+krow] << 1;

}

� 56 Chapter 5. Exploring Customization

5.4 Evaluation

The following experiments are carried out on a proFPGA MB-4M FPGA
board by ProDesign, equipped with one Xilinx Virtex-7 2000T XC7V2000T
FPGA. The convolution algorithm showed above was written in C and run
on the baseline GPU-like accelerator described in Chapter 3, exploiting all
its features.

The convolutions were performed on 16× 16, 32× 32, and 64× 64 input
images with filter kernels of size between 3×3 and 7×7. The first set of ex-
periments assesses speedup over a naive scalar single-thread implementation
and estimate the performance boost of the SIMD paradigm. Figure 5-1
depicts the results. By sweeping the size of the input image from 16× 16 to
64× 64, we observe a great increase in the effective acceleration (up to 5×).
This is due to the higher number of multiply-add operations that need to
be performed. Unsurprisingly, small input images with filter kernels of size
7×7 have a reduced speedup due to the unbalanced sizes of the images and
the filter causing a suboptimal use of the hardware lanes.

E
x
ec

u
ti

o
n
 t

im
e

im
p
ro

v
em

en
t

0

1

2

3

4

5

32×32 64×6416×16

filter sizes:
3×3

7×7
5×5

imput sizes

Figure 5-1: Speedup over naive scalar single-thread implementation on
16× 16, 32× 32, and 64× 64 input images with 3× 3, 5× 5,
and 7× 7 filter kernels.

Then, in a second set of experiments the benefits of using multi-threading
are evaluated. Figure 5-2 shows the speedup over a single-thread implemen-
tation. Two threads ensure a speedup between 1.3× and 2×, while a higher
number of threads leads to better performance (up to 3.5×). However, this
trend is not constant since in case of small images and/or small filters, a
higher number of threads may be useless. This is because hardware multi-
threading involves some overhead for handling the different stacks (one for
each thread) and for thread scheduling and synchronization. For instance,
in case of a 16 × 16 input image and filters with a size of 3 × 3 and 7 × 7,

5.4 Evaluation � 57

the optimum number of threads is respectively two and six. This is because
convolutions performed on a 16× 16 input image with filter kernels of size
7× 7 require 2.6 more arithmetic operations than in case of 3× 3 filters.

E
x
ec

u
ti

o
n
 t

im
e

im
p
ro

v
em

en
t

1,00

1,25

1,50

1,75

2,00

21

filter sizes:
3×3

7×7
5×5

threads
4 6 8

E
x
ec

u
ti

o
n
 t

im
e

im
p
ro

v
em

en
t

1,0

1,5

2,0

2,5

3,0

21

filter sizes:
3×3

7×7
5×5

threads
4 6 8

E
x
ec

u
ti

o
n
 t

im
e

im
p
ro

v
em

en
t

1,00

1,75

2,50

3,25

4,00

21

filter sizes:
3×3

7×7
5×5

threads
4 6 8

(a)

(b)

(c)

Figure 5-2: Speedup over single-thread implementation when varying the
number of threads on 16 × 16, 32 × 32, and 64 × 64 input
images with 3× 3, 5× 5, and 7× 7 filter kernels.

Finally, in the last set of experiments explore the benefits of using a
non-coherent scratchpad memory. The results in terms of speedup
over an accelerator with a standard memory subsystem are summarized in
Figure 5-3.

In case of smaller filters, we observe better results since there is a lower
need to swap data between the scratchpad and the main memory. In general,

� 58 Chapter 5. Exploring Customization

the achieved speedup scales up with the number of threads up to 1.75×. This
is due to the higher efficiency of the scratchpad memory, which does not
implement the coherence functionalities of traditional cache memories, as
well as the lower number of cache misses when using the scratchpad memory
(up to 30%).

E
x
ec

u
ti

o
n
 t

im
e

im
p
ro

v
em

en
t

1,00

1,25

1,50

1,75

2,00

3×3
filter sizes

5×5 7×7(a)

(b)

(c)

threads:
1

4
2

6
8

E
x
ec

u
ti

o
n
 t

im
e

im
p
ro

v
em

en
t

1,00

1,25

1,50

1,75

2,00

3×3
filter sizes

5×5 7×7

threads:
1

4
2

6
8

E
x
ec

u
ti

o
n
 t

im
e

im
p
ro

v
em

en
t

1,00

1,25

1,50

1,75

2,00

3×3
filter sizes

5×5 7×7

threads:
1

4
2

6
8

Figure 5-3: The speedup achieved using scratchpad memory when varying
the number of threads on 16× 16, 32× 32, and 64× 64 input
images with 3× 3, 5× 5, and 7× 7 filter kernels.

5.5 Conclusions � 59

5.5 Conclusions

This Chapter investigated various architectural features for the definition
of an innovative GPU-like accelerator highly suitable for tomorrow’s Deep
Learning and HPC-oriented workloads. In particular, we evaluated how
those features impact the performance of convolutions, the dominant op-
eration in Deep Learning applications. Experimental results on a Xilinx
Virtex-7 FPGA show that the SIMD paradigm and multi-threading can
lead to an improvement in the execution time up to 5× and 3.5×, respec-
tively. An interesting enhancement up to 1.75× can be obtained using a
non-coherent memory. However exploiting parallelism through SIMD or
multi-threading requires major modification of the plain algorithm, while
the non-coherent support does not.

In details, thread level parallelism and SIMD operation achieve a great
increase in the acceleration efficiency reaching respectively a speed-up of
3.5× and 5× over a scalar single-thread implementation of the convolution
algorithm. The use of non-coherent on-chip memory can further enhance
performance to some extent, due to the increased locality and lower number
of cache misses.

In conclusions, the findings exposed in this Chapter are impactful for
driving the evolution of this dissertation towards improved specialization
and workload-specific customizability.

CHAPTER 6

Customizable Shared
Scratchpad Memory

Following the results of the previous exploration, the current Chapter fo-
cuses on non-coherent scratchpad memories, studying their impact and
proposing a novel solution for reducing banks conflict which highly affects
performance in these type of memories. The baseline SPM, hereafter de-
tailed, has been extended with a hardware remapping mechanism and fully
integrated at core level, providing a first proof of extendibility of the nu+
platform.

6.1 Motivations

This dissertation strongly focuses on architectural customization which can
play a key role in future complex architectures, as it enables unprecedented
levels of power-efficiency compared to CPUs/GPUs. This is the essential
reason while very recent trends are putting more emphasis on the potential
role of FPGAs, beyond very special-purpose acceleration. On the other
hand, recent FPGA families, such as the Xilinx Virtex-7 or the Altera
Stratix 5, have innovative features, providing significantly reduced power,
high speed, lower materials cost, and reconfigurability [48]. Due to these
changes, in the very recent years many innovative companies, including
Convey, Maxeler, SRC, Nimbix [61], have introduced FPGA-based hetero-
geneous platforms used in a large range of HPC applications, e.g. mul-
timedia, bioinformatics, security-related processing, etc. [70, 61, 18], with

6.2 Related Works � 61

speedups in the range of 10x to 100x.

This Chapter explores the adoption of a deeply customizable non-coherent
scratchpad memory system for FPGA-oriented accelerator designs. At the
heart of the proposed architecture is a multi-bank parallel access memory
system developed on the baseline GPU-like processors described in chapter
3. The baseline SPM has been enhanced with a dynamic bank remapping
hardware mechanism, allowing data to be redistributed across banks accord-
ing to the custom access pattern of the kernel being executed, miminizing
the number of conflicts and thereby improving the ultimate performance of
the accelerated application.

In particular, relying on an advanced configurable crossbar, on a hardware-
supported remapping mechanism and extensive parameterization, the pro-
posed architecture can enable highly parallel accesses matching the potential
of current HPC-oriented FPGA technologies. The remainder of the Chap-
ter describes the main insights and innovations enabled by dynamic bank
remapping mechanism as well as the key role that hardware customization
along with selective non-coherent solutions, such as scratchpad memories,
might play for tomorrow’s high-performance computing applications.

6.2 Related Works

As in standard platforms, in GPU-like processors data movement and mem-
ory access is particularly critical for performance. Cache hierarchy has been
the traditional way to alleviate the memory bottleneck. However, cache
coherence mechanisms are complex and not needed in some applications.
Many modern parallel architectures utilize fast non-coherent user-managed
on-chip memories, also known as scratchpad memories. Existing open
source GPU-like core projects provide limited hardware support for shared
scratchpad memory and particularly for the problem of bank conflicts, a ma-
jor source of performance loss with many parallel kernels. Since NVIDIA
Fermi family [57], commercial GPUs are equipped with this kind of memo-
ries. In NVIDIA architectures this memory can be used to facilitate com-
munication across threads, in this case is also referred as shared memory.
Typically, scratchpad memories are organized in multiple independently-
accessible memory banks. Therefore, if all memory accesses request data
mapped to different banks, they can be handled in parallel. Bank con-
flicts occur whenever multiple requests are made for data within the same
bank [30]. If N parallel memory accesses request the same bank, the hard-
ware serializes the memory accesses, causing an N -times slowdown [19].
In this context, a dynamic bank remapping mechanism, based on specific

� 62 Chapter 6. Customizable Shared Scratchpad Memory

In
s
tr

u
c
ti
o

n

F
e

tc
h

In
s
tr

u
c
ti
o

n

D
e

c
o

d
e

Register File

L
o

a
d

/S
to

re

U
n

it
S

P
M

W
ri

te
b

a
c
k

Figure 6-1: High-level generic GPU-like core with scratchpad memory.

kernel access pattern, may help minimize bank conflicts.

Bank conflict reduction has been addressed by several scientific works
during the last years. A generalized memory-partitioning (GPM) framework
to provide high data throughput of on-chip memories using a polyhedral
mode is proposed in [82]. GPM allows intra-bank offset generation in order
to reduce bank conflicts. Memory partitioning adopted in these works are
cyclic partitioning and block partitioning, as presented in [13].

In [17] the authors address the problem of automated memory partitioning
providing the opportunity of customizing the memory architecture based
on the application access patterns and the bank mapping problem with a
lattice-based approach.

While bank conflicts in shared memory is a significant problem, existing
GPU-like accelerators [11, 8, 4, 46] lack bank remapping mechanisms to
minimize such conflicts.

6.3 Architecture

The following sections describe the baseline scratchpad memory design, its
interface with the GPU-like core, and how it has been extended with the
dynamic bank remapping mechanism.

6.3 Architecture � 63

S
e

ri
a

liz
a

ti
o

n
 L

o
g

ic

A
d

d
re

s
s
 R

e
m

a
p

p
in

g
 U

n
it

In
p

u
t

In
te

rc
o

n
n

e
c
t

O
u

tp
u

t
In

te
rc

o
n

n
e

c
t

C
o

lle
c
to

r
U

n
it

B
a

n
k

0

B
a

n
k

1

B
a

n
k

B
-1

A
0

A
1

A
L-1

Din
0

Din
1

Din
L-1

BI
0

BI
1

BI
L-1

BO
0

BO
1

BO
L-1

BI
0

BI
1

BI
L-1

BO
0

BO
1

BO
L-1

BO

Din

BO

Din

BO

Din

Dout

Dout

Dout

Dout
0

Dout
1

Dout
L-1

Dout
0

Dout
1

Dout
L-1

Figure 6-2: SPM design overview.

6.3.1 SPM interface and operations

Figure 6-1 depicts a block diagram of the SPM in the context of the base-
line GPU-like core architecture of chapter 3. The GPU-like core has a
SIMD structure with L multiple hardware lanes. These lanes share the
same control unit, hence in each clock cycle they execute the same instruc-
tion, although on different data. Every time a new instruction is issued, it
is propagated to all execution lanes, each taking the operands from their
corresponding portion of a vectorial register file addressed by the instruc-
tion. The typical memory instructions provided by a SIMD ISA offer gather
and scatter operations. Such operations are respectively vectorial memory
load and store memory accesses. If the SIMD core has a single-bank SPM
with a single memory port, the previous instructions require al least L clock
cycles. This is because the L lanes cannot access a single memory port with
different addresses in the same clock cycle.

The baseline SPM, depicted in Figure 6-2, can be regarded as an FSM
with two states: Ready and Busy. In the Ready state, the SPM is ready to
accept new memory requests. In the Busy state, the SPM cannot accept any
request as it is still processing the previous one, so in this state all input re-
quests will be ignored. The Address Mapping Unit computes in parallel the
bank index and the bank offset for each of the L memory addresses coming
from the processor lanes. Bank index in the figure denotes the index of the
bank to which the address is mapped. Bank offset is the address of the word
into the bank. The Address Mapping Unit behaviour can be changed at run
time in order to change the relationship between addresses and banks. This

� 64 Chapter 6. Customizable Shared Scratchpad Memory

Figure 6-3: This figure shows how addresses are mapped onto the banks.
Takes into account that the memory is byte addressable and
that each word is four byte. In the case of generalized cyclic
mapping the remapping factor is 1.

is a key feature in that it allows the adoption of the mapping strategy that
best suits the executed workload. The Serialization Logic Unit performs the
conflict detection and the serialization of the conflicting requests. Whenever
an n-way conflict is detected, the Serialization Logic Unit puts the SPM in
the busy state and splits the requests into n conflict-free requests issued
serially in the next n clock cycles. When the last request is issued, the
Serialization Logic Unit put the SPM in the ready state. Notice that for
the Serialization Logic Unit, multiple accesses to the same address are not
seen as a conflict, as in this occurrence a broadcast mechanism is activated.
This broadcast mechanism provides an efficient way to satisfy multiple load
requests for the same constant parameters. The Input Interconnect is an
interconnection network that steers source data and/or control signals com-
ing from a lane in the GPU-like processor to the destination bank. Because
the Input Interconnect follows the Serialization Logic Unit, it only accepts
one request per bank. Then, there are the B memory banks providing the
required memory elements. Each memory bank receives the bank offset, the
source data, and the control signal from the lane that addressed it. Each
bank has a single read/write port with a byte-level write enable signal to
support instructions with operand sizes smaller than word. Furthermore,
each lane controls a bit in an L-bit mask bus that is propagated through
the Input Interconnect to the appropriate bank. This bit acts as a bank en-
able signal. In this way, we can disable some lanes and execute operations
on a vector smaller than L elements. The Output Interconnect propagates
the loaded data to the lane that requested it. Last, there is a Collector
Unit which is a set of L registers that collect the results coming from the
serialized requests outputting them as a single vector.

6.3.2 Remapping

As mentioned above, the mapping between addresses and banks can be
changed at run time through the Address Mapping Unit. The technical

6.3 Architecture � 65

literature presents essentially three mapping strategies: cyclic and block
mapping [13, 82]. These strategies are summarized in Figure 6-3.

Cyclic mapping assigns consecutive words to adjacent banks (Bank B−1
is adjacent to Bank 0). Block mapping maps consecutive words onto consec-
utive lines of the same banks. The block-cycle mapping is a hybrid strategy.
With B = 2b banks, W = 2w bytes in a word, and D = 2d words in a single
bank, a scratchpad memory address is made of w + b + d bits. Figure 6-3
shows a cycling remapping, which can be easily obtained by repartitioning
the memory address. The Address Mapping Unit described in this work
implements a generalization of cyclic mapping, which we call generalized-
cyclic mapping. By adopting this strategy, many kernels generating conflicts
with cyclic mapping, change their pattern by accessing data on the memory
diagonal, thereby reducing the number of conflicts.

6.3.3 Implementation details

L
U

T
s

0

0.8

1.7

2.5

3.3

4.2

5

32 644

Banks number

8 12816

10
4

.

F
F

s

2.3

2.4

2.5

2.6

2.7

2.8

3.0

32 644

Banks number

8 12816

10
3

.

Figure 6-4: LUTs and FFs occupation of the FPGA-based SPM design
for a variable number of banks

The proposed configurable scratchpad memory was described in HDL and
synthesized for a Xilinx FPGA device. In particular, the design has been
implemented using Xilinx Vivado on a Xilinx Virtex7-2000t FPGA (part
number xc7v2000tflg1925-2). Figure 6-4 reports the SPM occupation in
terms of LUTs and Flip-Flops (FFs) for a variable number of banks. On
the other hand, Figure 6-5 reports the SPM occupation in terms of LUTs
and Flip-Flops (FFs) for a variable number of lanes. Increasing the number
of banks heavily affects LUTs occupation, while the number of lanes mostly
affects the FF count.

� 66 Chapter 6. Customizable Shared Scratchpad Memory
L

U
T

s

0

1.3

2.6

4

5.3

6.6

8

32 644

Banks number

8 12816

10
4

.

F
F

s

0

0.5

1.0

1.5

2

32 644

Banks number

8 12816

10
4

.

Figure 6-5: LUTs and FFs occupation of the FPGA-based SPM design
for a variable number of lanes

The proposed SPM has been validated with the Verilator RTL simulator
tool [73]. It compiles synthesizable Verilog, SystemVerilog, and Synthesis
assertions into a C++ behavioural model (called the verilated model), ef-
fectively converting RTL design validation into C++ program validation.
In addition, a cycle accurate event-driven emulator written in C++ was
developed for verifying the proposed design. The SPM verilated model and
the SPM emulator are integrated in a testbench platform, that provides the
same inputs to the emulator and the verilated model. The test platform
realized compares the outputs from the two models at every simulation cy-
cle, checking if the verilated model and the emulator generate the same
responses. Notice that the Verilator tool supports the HDL code coverage
analysis feature, which helped us create a test suite with full coverage of the
SystemVerilog code.

6.3.4 Integration consideration in the baseline GPU-like core

The presented SPM, as previous explained, has a variable and unpredictable
latency, this feature can be a potential issue in GPU-like architecture inte-
gration. At issue time, before the operand fetch, the control unit is unaware
of the effective latency of a scratchpad memory instruction and can not de-
tect possible Writeback structural hazard. To avoid this problem, the core
supports a dynamic on-the-fly structural hazard handler at Writeback stage,
exhaustively described in Section 3.3.

6.4 Evaluation � 67

6.4 Evaluation

The experimental evaluation was essentially meant to demonstrate to which
extent the amount of bank conflicts can be reduced by changing the param-
eters in the proposed configurable scratchpad memory. In particular, to this
end, the following experiments assess how simultaneous memory accesses,
as well as the bank remapping feature may affect the total bank conflict
count.

6.4.1 Methodology

As first step, few kernels have been identified that have potentially highly
parallel memory accessed and that might benefit from the non-coherent
memory support. For example, there are many collection of benchmarks
such as PolyBench [63].

Next, each of those kernels are rewrote to increase the kernel memory
access parallelism, as this chapter aim was to study how conflicts vary with
a variable number of parallel memory requests, and how a non-coherent
memory can impact on performances.

Then, the access patterns for each kernel has been studied and extracted,
running them on the developed scratchpad emulator. Emulator cycle accu-
racy grants a perfectly emulate timings per-cycle accesses. With the same
inputs, the scratchpad memory and its emulator evolve in the same lock-step
fashion.

Last, the emulator response, in terms of total bank conflict, are collected
for all the memory accesses issued by the kernel, through a counter that
increments when a bank conflict occurs. This experiment has been repeated
for different remapping functions identified for the specific kernel as well as
for a variable number of banks.

6.4.2 Kernels

6.4.2.1 Matrix Multiplication

Square matrix-matrix multiplication is a classic bank conflict sensitive al-
gorithm. In this benchmark, I evaluated the square matrix access patterns
and how the configurable parameters influence the scratchpad bank conflict
count.

The code has been rewrote so as to maximize the exploitation of the
available number of lanes in the target model of GPU-like processor. The
inner cycle, shown in Listing 6.1, calculates which memory address will
be accessed by each lane for both matrices. Experiments are run with

� 68 Chapter 6. Customizable Shared Scratchpad Memory

Listing 6.1: Matrix Multiplication parallelized on hardware lane number.

for (int i = 0 ; i < DIM; ++i)
for (int j = 0 ; j < DIM; ++j)

for (int k = 0 ; k < DIM/numLane ; ++k)
for (int l ane = 0 ; lane < numLane ; lane++){

accessA [index] [l ane] = (i ∗DIM + k∗numLane + lane)∗4 ;
accessB [index] [l ane] = ((k∗numLane + lane)∗DIM + j)∗4 ;

}
index++;

a fixed square matrix size DIM = 128. The number of hardware lanes
is numLane = [4, 8, 16, 32] while the number of banks is numBanks =
[16, 32, 64, 128, 256, 512, 1024]. The function bank remapping is (Entry · c+
Bank)
mod (NUMBANK) with c = [1, 2, 4, 8, 16].

The total SPM size is kept constant at BANKnumber×ENTRY per Bank =
2×DIM2, so that SPM can store both matrices completely. Results in Ta-
ble 6-1 show that bank remapping has a greater impact than the other pa-
rameters. A remapping coefficient c = 1 drastically reduces bank conflicts,
even with a limited number of banks, while adding little resource overhead
compared to a solution relying on a large number of parallel banks.

6.4.2.2 Image Mean Filter 5× 5

Mean filtering is a simple kernel to implement image smoothing. It is used
to reduce noise in images. The filter replaces each pixel value in an image
with the mean value of its neighbors, including itself. In this study a 5× 5
square kernel is used.

Listing 6.2: Image Mean Filter 5x5.

#define OFFSET(x , y) (((x)∗DIM + y)∗4)

for (int i = 2 ; i < DIM − 3 ; ++i)
for (int j = 2 ; j < DIM − 3 ; ++j) {

for (int w1 = −W1; w1 <=W1; w1++){
for (int w2 = −W2; w2 <= W2; w2++){

a = baseA . getAddress () + OFFSET(i+w1 , j+w2) ;
l = (w1 + 2)∗5 + (w2 + 2) ;
accessA [index] [l] = a ;

}
}

index++;
}

6.5 Conclusion � 69

Lanes Banks
Remapping factor

No Remap 1 2 4 8

4

16 262146 131072 262146 262146 262146
32 262146 0 0 131072 262146
64 262146 0 0 0 0
128 262146 0 0 0 0
256 131072 0 0 0 0
512 0 0 0 0 0
1024 0 0 0 0 0

8

16 183505 131073 183505 183505 183505
32 183505 0 65536 131073 183505
64 183505 0 0 0 65536
128 183505 0 0 0 0
256 131073 0 0 0 0
512 65536 0 0 0 0
1024 0 0 0 0 0

16

16 109230 91756 109230 109230 109230
32 109230 32768 65538 91756 109230
64 109230 0 0 32768 65538
128 109230 0 0 0 0
256 91756 0 0 0 0
512 65538 0 0 0 0
1024 32768 0 0 0 0

32

16 61696 58256 61696 61696 61696
32 59768 32769 45878 54615 59768
64 59768 0 16384 32769 45878
128 59768 0 0 0 16384
256 54615 0 0 0 0
512 45878 0 0 0 0
1024 32769 0 0 0 0

Table 6-1: Matrix Multiplication results.

Listing 6.2 shows the parallelized version of the mean filter. This ker-
nel have a fixed square matrix size DIM = 128 and a fixed number of
lanes numLane = 30. The total scratchpad memory is kept constant at
BANKnumber × ENTRY perBank = DIM2. Then, we evaluated the
bank conflicts for a variable number of banks and for two bank remapping
functions: no remap and (Entry · 5 + Bank) mod (NUMBANK). The
results are shown in Table 6-2. As in the case of the matrix multiplication
kernel, the remapping function has the largest impact on the bank conflict
count.

6.5 Conclusion

This Chapter presented a configurable GPU-like oriented scratchpad mem-
ory with bank remapping supports, fully synthetizable on FPGAs. Various

� 70 Chapter 6. Customizable Shared Scratchpad Memory

Banks No Remap Remap

16 7565 1722
32 7565 0
64 7565 0
128 7565 0
256 0 0
512 0 0
1024 0 0

Table 6-2: Image Mean Filter 5x5.

architectural aspects like the number of banks, the number of lanes, the
bank remapping function, and the size of the total memory are parame-
terized. Reconfigurability helped explore architectural choices and assess
their impact. This Chapter described the SPM design in HDL and exten-
sively validated it. A software cycle accurate and event-driven emulator of
our SPM component has been also developed to support the experimental
evaluation with real code.

Through two case studies, a matrix multiplication and a 5 × 5 image
mean filter, the experimental results showed the performance implications
with different configurations and demonstrated the benefits of both using
a customizable hardware bank remapping function over other architectural
parameters and non-coherent memories for some kind of algorithms.

CHAPTER 7

Distributed Thread
Synchronization

Traditional hardware synchronization mechanisms rely on centralized mas-
ters, which incur in poor scalability and do not fit many-core architectures.
This Chapter proposes a novel thread synchronization mechanism which re-
lies on a distributed master and on a lightweight control unit to be deployed
within the nu+ tile described in Chapter 3.

Moreover, this solution does not rely on memory access for exchanging
synchronization information since it uses hardware-level messages, which
has traditionally been a major bottleneck for such solutions.

Furthermore, the presented solution supports multiple barriers for dif-
ferent application kernels possibly being executed simultaneously, desirable
feature in modern many-core systems.

7.1 Motivations

The increasing need for resource- and power-efficient computing over the last
decade has stimulated the emergence of compute platforms with moderate
or high levels of parallelism, such as GPU, SIMD, and many-core processors
in a variety of application domains [61].

In particular, many-core systems are based on a considerable number
of lightweight processor cores typically connected through a Network-on-
Chip (NoC) [10, 16], providing a scalable approach to the interconnection
of parallel on-chip systems. In fact, on-chip connectivity has been attracting

� 72 Chapter 7. Distributed Thread Synchronization

much interest during the last years, also including recent developments at
the physical technology level [31, 32].

While early NoCs, like the Epiphany mesh-based interconnect [59], used
a flat cache-less memory model, caching and related coherence management
has become a crucial feature in today’s NoCs needed to improve performance
and preserve programmability in many-core systems.

Examples of modern many-core solutions include an integrated 80-tile
NoC prototype architecture, based on an on-chip 2D mesh topology, pro-
posed by Intel [80], and the Tilera TILE64 processor [83], based on three-
wide VLIW compute cores with 64-bit instruction words as well as a scalable
2D mesh network with support for coherent shared memory, where each core
can directly access any other cache through the interconnect. The Tilera
NoC infrastructure in fact provides five different networks for different uses,
including one dedicated to memory transactions.

Being targeted at parallel applications, these systems are expected to
provide some form of support for thread synchronization, e.g. barrier prim-
itives. Existing solutions use a variety of hardware- or software-based tech-
niques. The work in [40] describes some synchronization algorithms im-
plemented in software, that rely on a message passing infrastructure and
different NoC topologies. In [3] the authors implemented a dedicated G-line
net dedicated to barriers. This solution is limited to ASIC architectures
and requires a wire for each tile. In [52], the authors support thread syn-
chronization in a packet-switched manycore NoC by relying on two types of
links.

This chapter specifically explores the adoption of a distributed and NoC-
based synchronization mechanisms. At the heart of the proposed approach is
a distributed synchronization master inspired by the directory-based coher-
ence scheme. Relying on the distributed approach as well as the lightweight
three-staged synchronization client on the core side, the proposed architec-
ture can support multiple synchronizations for different application kernels
running concurrently. The remainder of the Chapter describes the main
insights in this approach, the resulting architecture and the way it han-
dles multiple synchronizations concurrently, as well as the advantages of
the distributed mechanism.

The rest of the chapter is organized as follows. Section 7.2 summarizes
previous techniques for supporting barrier synchronization in manycore ar-
chitectures. Section 7.4 describes the baseline manycore system as well
as the synchronization hardware introduced by this work. Section 7.5 de-
scribes the implementation of the barrier function, while in section 7.6 it
is evaluated with a synthetic benchmark both in a central and distributed
configuration for different NoC sizes.

7.2 Related Works � 73

7.2 Related Works

Barrier synchronization is a common primitive used to separate in time
different phases of a parallel application. Efficient support for barrier syn-
chronization in manycore systems is of paramount importance because of
its role in parallel code.

Culler and Gupta in [21] address this problem for shared-memory mul-
tiprocessors. They present a software solution, which relies on hardware
atomic instructions and memory coherence. The solution uses a lock vari-
able and a counter keeping track of all the cores that have hit the synchro-
nization point.

Indeed, the literature offers various software-based barrier solutions. Hoe-
fler and Rehm [40] present a study on software barrier algorithms combining
both shared memory and message passing techniques. The authors im-
plement typical barrier synchronization algorithms, such as Butterfly and
Combining tree, and analyze message overheads and the required memory
for each of them.

The results in [81] show that software barriers, even when based on hard-
ware message passing, incur considerable overheads causing NoC resources
to stay underutilized, unlike hardware barriers. As a consequence, many
NoC-based techniques have been proposed in the last years. In [3], the au-
thors implement a hard-wired barrier mechanism called G-line net. Each
core has a dedicated wire connected to the barrier master. Synchroniza-
tion is established as soon as each core asserts its line. This technique uses
multidrop connectivity and the S-CSMA collision detection in order to pro-
vide a flow control mechanism (EVC), enhancing performance in terms of
latency and power consumption. Such a solution does not require memory
accesses, and provides fast synchronization compared to software solutions.
However, the approach may lack scalability and supports only one barrier
at a time.

The authors of [79] propose a communication unit in a NoC-based sys-
tem, relying on a barrier controller and a communication unit that enable
synchronization operations. The control unit is integrated into a general
NoC switch and communicates with a centralized master located in the net-
work. The paper proposes an efficient control mechanism, but it still relies
on a centralized master resulting in limited scalability. Similarly, [88] in-
troduces a synchronization architecture, called the Synchronization State
Buffer (SSB), which is a small buffer attached to the memory controller of
each memory bank. It records and manages the states of active synchronized
data units to support and accelerate word-level fine-grain synchronization.
The SSB solution has been implemented in the context of the 160-core IBM

� 74 Chapter 7. Distributed Thread Synchronization

MEMORY CONTROLLER

I/
O

 C
O

N
T

R
O

L
L

E
R

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 32 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Figure 7-1: Typical many-core mesh-based with 64 tiles

Cyclops-64 chip architecture.

The authors of [52] propose a novel thread synchronization technique rely-
ing on packet-switching mechanisms in a NoC-based manycore system. The
interconnection system provides two physical links used in the protocol in
order to avoid deadlocks. The work introduces a synchronization-operation
buffer (SB), which enqueues and manages the requests issued by the proces-
sors. The mechanism uses a spin lock implementation, requiring a constant
number of network transactions and memory accesses per lock acquisition.
Note that the approaches described above do not support concurrent bar-
riers if different application kernels are running in separate sub-regions of
the manycore system.

7.3 Centralized solution vs distributed synchronization
master

In this section is discussed the potentially of a “distributed” approach over
a standard “centralized” solution. Let consider a generic many-core sys-
tem composed by 64 tiles, each equipped with a multi-threated processing
element, for a total of 256 threads in the system. The tiles communicate
through hardware messages flowing over a 2D mesh on-chip network, as
shown in Figure 7-1. Let analyze and understand the load of the synchro-
nization mechanism over the network of such a configuration.

7.3 Centralized solution vs distributed synchronization master � 75

1 64 65 128 129 192 193 256

1 2 3 4

1

RUN

END

... Hardware Thread

Execution Flow

Barrier Barrier Barrier Barrier

Barrier

1

BarrierBarrier Synch. Barrier

Figure 7-2: Simplified execution flow and synchronization points.

At the software layer, the user runs a parallel application which uniformly
spreads its elaboration over 256 hardware threads divided in 4 groups. Each
thread performs its computation and then synchronizes with the others
within its group, in order to build the partial result. A second level of syn-
chronization is required to synchronize all the thread groups, in order to
produce the final result. Figure 7-2 shows the execution flow and highlights
the synchronization points. When a thread hits a barrier point, a synchro-
nization transaction starts, where the thread first sends a hardware message
to the synchronization master over the network, then blocks its execution
until an explicit release from the master arrives.

In a standard centralized synchronization mechanism, the system would
have a single synchronization master, most-likely placed in a tile near the
center of the mesh in order to minimize the average number of hops (where
passing a router counts as one hop) required for a synchronization message
to reach the master. In the worst possible case, the threads will hit the
synchronization point at the same time, starting 256 concurrent transac-
tions. Their messages flow to the master which could be busy dealing with
another synchronization, or such messages could be delayed due the con-
gestion in routers around the master. This leads to a major bottleneck: a
single synchronization master congests the network slowing down the overall

� 76 Chapter 7. Distributed Thread Synchronization

Metrics Size Centralized Distributed

HC barr. 1 240 160
HC barr. 2 320 160
HC barr. 3 320 160
HC barr. 4 400 160
Avg. HC 320 160
Max. HC 8 4
Max num. Req 64 16

HC in the table stands for “Hop Counts”.

Table 7-1: Differences in hops count between a centralized master synchro-
nization and a distributed counterpart.

execution time. Furthermore, a centralized master ought to keep track of
ongoing synchronization transaction memorizing information in local hard-
ware structures and local memories. The more the cores are the bigger such
structures would be, resulting in a poor scaling up for a growing number of
cores.

On the other hand, such architectures would benefit of a distributed syn-
chronization master where each tile could be elected as synchronization mas-
ter. In the above scenario, each thread group elects the most appropriate
tile independently, most-likely inside the synchronization group, resulting in
a better networking balance and a lower delay in message exchanging. Fur-
thermore, a distributed master spreads its resources, such as local buffers,
over all the tiles, helping the system in scaling up with the number of cores.

Next, these two scenarios are compared in term of average hops count
over the network-on-chip required for a synchronization transaction for each
barrier, using the above example where 256 synchronization transactions are
issued concurrently.

Table 7-1 shows the hops count (in average) over the network in both
the centralized and the distributed approaches. As expected, the different
loads over the network is evident: the central approach counts the dou-
bles of number of hops needed in the average compared to its distributed
counterpart.

7.4 Architecture

The proposed synchronization mechanism has been integrated in the base-
line many-core system presented in chapters 3 and 4.

The main idea behind the proposed solution is to provide a distributed ap-

7.4 Architecture � 77

proach inspired by such a directory-based system. The architecture aims to
eliminate centralized synchronization masters, resulting in a better message
balancing across the network with the constraint that the synchronization
architecture needs to be parametrized in the number of parallel barriers that
we can have at same time. Combining a distributed approach, hardware-
level messages, and a fine-grain control, the solution supports multiple bar-
riers simultaneously from different core subsets. This is often required by
modern application programming interfaces, such as openMP, that support
multi-platform shared memory multiprocessing programming. Coherence
does not affect the overall performance, since the system provides a dedi-
cated virtual network exclusively used for synchronization.

The remainder of this section describes the main components of the pro-
posed synchronization hardware and how it has been integrated into the
baseline many-core system.

7.4.1 Barrier Core

The Barrier Core manages the synchronization on the core side, and each
core in each tile is equipped with one of this module. Each thread in a pro-
cessing core can issue a barrier request through a specific barrier instruction
introduced into the processor ISA. When this happens (from now onward
we will refer to this event as a thread hitting a barrier or a synchronization
point), the Barrier Core sends an Account message to the Synchronization
Core, and stalls the requesting thread until a Release message from the
master arrives. The synchronization master sends a Release per core even
if more threads are stalled on the same synchronization point. The synchro-
nization master has no information about stalled threads, which is left to
the Barrier Core inside the GPU-like core. When a core receives a Release

message, its Barrier Core module checks which threads are stalled on that
specific barrier and releases all of them.

The mechanism described above in hardware is implemented through the
FSM in Figure 7-3. The Barrier has to ensure that all instruction before
are committed and all data are written in memory. When, the instruction
barrier synchronization is executed from the hardware thread the Barrier
Core goes in the Check Core state. This state is essential for ensuring that
all instructions already scheduled have been committed, it blocks the follow-
ing instruction when a barrier is issued, and prepares to send the Account

message as soon as all previous instructions are committed. When this
happens, the Barrier Core transits into the Send Account state. Here the
Barrier Core acquires the channel and sends the message to relative Syn-
chronization core, turning into the Wait Release state until the Release

� 78 Chapter 7. Distributed Thread Synchronization

Idle

Check

 Core
wait Barrier

instruction

 Barrier instruction

 detect & stall

Thread Schedule

Start

Wait Commit instruction

previous to Barrier

Send

Account

Send Account

Message

Wait Net

 available

Unlock Thread

Schedule

All instructions are

committed

Wait

Release

Wait Release

 Message

Figure 7-3: FSM of Barrier Core.

message is received which closes the barrier and resumes the normal execu-
tion.

7.4.2 Synchronization Core

The Synchronization Core is the key component of the proposed solution.
This module acts as the synchronization master, but unlike other hardware
synchronization architectures, it is distributed all over the tiles in the many-
core system. As explained above, the Barrier Core module selects a specific
Synchronization Core based on the barrier ID set by the first message of
barrier. In this way, the architecture spreads synchronization messages all
over the manycore. By using this approach, the synchronization master
is no longer a network congestion point. In this solution is programmer’s
duty selecting an ID and the exact numbers of synchronizing threads for
each barrier. The first message is responsible for the setup, physically this
mechanism is implemented in the Synchronization core. Figure 7-4 shows
a simplified view of the Synchronization Core.

The module is made of three stages: the first stage selects and schedules
the Account requests, it ensures the atomicity of the barrier operation for
the updating of the counter in the stage 2. The selected request steps into
the second stage, which strips the control information from the message. In
the last stage, the stripped request is finally processed. The first Account

request received initializes the barrier structures, namely it sets a counter
with the number of involved threads. On the other hand, if the request is an

7.4 Architecture � 79

N
e
tw

o
rk In

te
rfa

ce

Barrier_Sync_core

Barrier_Sync_Stage_1

Arbiter

FIFO

Release

Barrier_Sync_Stage_2

 Select

 Account

 /Setup

Message

BRAM_read

AND

 Setup_tmp

Account_tmp

Logic Process

Logic Process

B
a
rr

ie
r_

Id

address_in value_out

message_info

BRAM_write

Barrier_Id(address)

mask_barrier

mask_barrier
 Update

Setup/Account_tmp

 by message_ info

generate message

if AND =1 and

update Setup_tmp

and Account_tmp

BRAM

value_in

address_write

Account_message

Setup_message

Release_

message

Account_request

Setup_request

message_release

Barrier_Sync_Stage_3

Figure 7-4: Overview of the Synchronization Core.

Account message on a barrier already initialized, the counter is decremented
by 1. When the counter hits 0, all the involved cores have reached the
synchronization point, and the master sends a multicast Release message to
all involved cores. Refer to Figure 7-5 for the format of the synchronization
messages.

7.4.3 An example of synchronization

Let consider a many-core system featuring 8 processing tiles, as shown in
Figure 7-6. A parallel kernel is executed, which involves all tiles and 2
threads per tile. On the kernel side, two groups of threads are working on
different data. The first group (from now onward referred to as group 0)
is composed by 4 tiles with ID 0, 1, 2, and 3. Dually, the second group
(group 1) is composed of the remaining tiles, namely 4, 5, 6, and 7. After a
computational phase, each group requires its own synchronization point, and
each group has a total of 8 threads to synchronize. Barrier IDs are chosen
by the developer and encoded in the GPU-like core barrier instructions.
Each group has an exclusive barrier ID which helps the architecture handle
concurrent synchronizations.

When a thread hits the synchronization point, it stalls its execution,
waits for all previous instructions to commit, and the Barrier Core in its
tile sends an Account message to the elected synchronization master. Each

� 80 Chapter 7. Distributed Thread Synchronization

Type

(01)

Type

(10)

Account

Release

Memory Block

 for Barrier

01

01

Counter

Barrier ID

Tile SourceBarrier ID

M+1 2

64(!it_size)

64(!it_size)

2M+T+1

01

T+1T+2

One-hot Tile Mask

T+1T+N+1

 is
Setup

Counter

T+2

M+T+N+1 M+T+2

Figure 7-5: Synchronization messages, 64 bits each. The Account mes-
sage is sent to the master, when a thread hits the barrier from
the core side. The Release message is sent by the synchro-
nization master to all the involved cores when all the Account
messages are collected.

tile is also equipped with a Synchronization Core module which could be a
synchronization master. In this example, cores elect their master in tile T
using a simple module operation on ID values: T = ID mod TileNumber,
but any election mechanisms can be used. In this example, group 0 targets
as synchronization master tile T 3, dually group 1 elects tile T 5 as master.

When a Synchronization Core receives the first Account message, it reg-
isters the barrier ID and initializes the associated counter to the value of
the expected threads. Further, Account messages with the same barrier ID
to the master decrement the counter by 1. When this counter hits 0, all
involved cores are at the synchronization point, and the master sends to
each of them a Release message by multicast.

When the Release message arrives, the Barrier Core releases all involved
threads and resumes their execution flows. Figure 7-6 highlights the mes-
sages exchanged by all the involved tiles and depicts the time-line of this
example.

7.5 Implementation

The core back-end and the front-end have been extended in order to pro-
vide a C-level support to such a synchronization. On the back-end side,
the processor ISA has been extended with ad-hoc instructions (so called
barrier). On the front-end side, an intrinsic operation has been added,
called builtin nuplus barrier(Id Barrier, Counter - 1). The syn-
chronization components rely on a private virtual channel added in the
networking system, which routes all synchronization messages. The base-
line many-core system already provided virtual channels but, as observed
above, the hardware coherence support tends to flood the network infras-

7.5 Implementation � 81

TILE
 0

TILE
 1

TILE
 2

TILE
 3

TILE
 4

TILE
 5

TILE
 6

TILE
 7

 account message(Id,S,C)

release message(Id)

Execution
Synchronization Core

Execution of Threads
in the Tile

Release Message

Account Message

Single Thread’s
Execution Flow

Waiting

 account message(Id,S,C)

release message(Id)

Id : Barrier Id
 S : Tile Source
 C : Counter’s value

Figure 7-6: Example of barrier synchronization

tructure with data and coherence messages, and could easily impact the
synchronization mechanism performance.

Furthermore, each Synchronization Core handles a fixed range of barriers,
and for this implementation the following the Equation 7-1 expresses the re-
lationship between the numbers of threads in the many-core system and the
maximum numbers of barriers concurrently live in the whole architecture:

BarrierMax = Kconst × (TileMax × ThreadperT ile) (7-1)

Equation 7-1 states that BarrierMax (maximum number of barriers con-
currently live in the many-core), increases with the global number of threads
in the system. Importantly, Kconst changes with the type of benchmark, as
it increases with the number of synchronization operations. In the current
implementation, both Kconst and ThreadperT ile are tied to 4, so that each
Synchronization Core handles 16 barrier simultaneously.

On the core side, when a barrier instruction is decoded, the control unit
waits until all previous instructions are committed (in the Writeback stage),
then it stalls the requesting thread, and fetches the barrier into the Barrier
Core module in the execution stage. This component sends an Account

message to the designated Synchronization Core, and waits until a Release

message arrives. The Synchronization Core has been integrated at the tile

� 82 Chapter 7. Distributed Thread Synchronization

level. It is connected to the network interface (NI) of the processor tile and
dispatches messages on the synchronization virtual channel.

7.6 Evaluation

In this section, the performance of the proposed solution are evaluated in
terms of clock cycles and area overhead. Next, the presented solution is
compared with a standard synchronization mechanism based on a central-
ized master. The distributed solution will not be compare with any software
approach [52], since this work does not require memory accesses or atomic
instructions, and thus incurs a significantly lower latency. A major fea-
ture introduced by the proposed solution is the support for multiple barrier
synchronizations from different application kernels being executed simulta-
neously on different subsets of cores.

7.6.1 Simulation

For timing evaluation, the system has been evaluate for different NoC sizes
by using a cycle-accurate simulator. Instructions and data memory misses
can heavily affect the performance measurement due to their overheads. In
order to obtain a qualitative measurement of the synchronization mecha-
nism, all instructions and data are preloaded in the cache memories of all
the cores.

The architecture has been successfully synthesized on a Xilinx Virtex-7
xc7v2000tflg1925-1 FPGA both with a standard centralized configuration
and with our distributed approach. Table 7-2 summarizes the resource re-
quirements of the two approaches for different NoC sizes. The area per
tile occupied by the Barrier Core tends to be constant. This module is
not influenced by the NoC parameters such as the number of tiles or spe-
cific topologies. The distributed approach incurs area costs increasing with
the number of tiles, although it can support a larger number of barriers,
which can involve selected sub-groups of threads, with a resource overhead
distributed uniformly across the tiles.

The proposed architecture and the centralized solution are simulated in
the same environment with the same parameters. Both run the same ker-
nel made of a sequence of calls to the synchronization intrinsic provided by
the compiler, as explained in Section 7.5. The time performance is evalu-
ated by averaging out the synchronization times of all the involved threads.
Each core has been equipped with a 64-bit performance counter which is
initialized when it detects a barrier operation, and stopped when the release
message from the master is received.

7.6 Evaluation � 83

Barrier Core

NoC (size) LUT Flip-Flop BRAM

2x2 60 64 0

4x2 62 72 0

4x4 68 80 0

8x4 68 88 0

8x8 74 96 0

Centralized Synchronization Core

NoC (size) LUT Flip-Flop BRAM

2x2 216 337 0

4x2 335 478 1

4x4 545 736 1

8x4 1210 1210 2

8x8 1730 2124 5

Distributed Synchronization Core (per Tile)

NoC (size) LUT Flip-Flop BRAM

2x2 148 140 0

4x2 191 179 0

4x4 241 519 0

8x4 347 754 0

8x8 459 1100 3

Table 7-2: Comparison of the resource requirements between the dis-
tributed and centralized approaches

Synchronization of the whole manycore system: The first experiment
runs a kernel which involves all processing cores instantiated in the many-
core, comparing the approach based on a centralized synchronization mas-
ter with our distributed solution. Table 7-3 summarizes the clock cycles
required by the synchronization for different NoC sizes. As observed, the
two approaches reach the same results, due the limited size of the network
and the absence of concurrent synchronizations. Changing the position of
the synchronization master does not affect performance.

� 84 Chapter 7. Distributed Thread Synchronization

NoC Size Centralized Distributed

2x2 34 34
4x2 47 45
4x4 79 81
8x4 150 153

Average clock cycles per thread

Table 7-3: Time of a single synchronization operation involving all cores

NoC Size Centralized Distributed

2x2 34 34
4x2 35 32
4x4 37.8 30
8x4 46.1 30

Average clock cycles per thread

Table 7-4: Time of multiple independent synchronization operations taking
place concurrently.

Synchronization with concurrent kernels: The proposed architecture sup-
ports multiple barrier synchronizations from different application kernels
being executed simultaneously on different subsets of cores. The maximum
number of distinct barriers supported is N/2, where N is the number of
threads instantiated in the system. The second experiment compares the
number of clock cycles needed to synchronize all the subsets, running the
maximum number of supported barriers in parallel, assuming that the de-
veloper parallelizes the kernel on sets of consecutive tiles.

Table 7-4 summarizes the results of this study. The centralized solution
lacks scalability, even for small NoC configurations, and the final count
is highly dependent on the position of the synchronization master. On
the other hand, the distributed approach requires the same clock count
for the smallest NoC, but results in improved scalability as the NoC size
is increased. Furthermore, the proposed solution does not rely on a fixed
master, as this is chosen based on the barrier ID, hence by the user or
possibly by the compiler.

7.7 Conclusions � 85

7.7 Conclusions

This Chapter presents a novel distributed synchronization mechanism based
on hardware successfully integrated into the baseline custom many-core de-
scribed in Chapters 3 and 4, proving its flexibility and its suitability for
hardware exploration.

The novel solution proposed in this Chapter relies on a distributed mas-
ter and on a lightweight control unit on the core side, providing a synchro-
nization mechanism through hardware-level message exchange without any
memory access overhead. Moreover, this solution supports multiple barriers
for different application kernels executed simultaneously on different subsets
of cores. The results collected for different NoC sizes provided indications
about the area overheads incurred by our solution and demonstrated the
benefits of using a dedicated hardware synchronization support. Moreover,
such mechanisms are fundamental when dealing with non-coherent memo-
ries on many-core system, focus of the next Chapter.

CHAPTER 8

Selective coherence in
many-core accelerators

Modern architectures, to maximize resource and power efficiency, tend to
rely on parallelism to improve performance, with multi/many-core accel-
erators being today commonplace. In this dissertation, we demonstrated
that in such scenarios, shared memory and hardware customization are im-
portant facilities acting as a key enabler for programmer-friendly models
exposed to software developers as well as for the effective adaptation of ex-
isting parallel applications. In chapter 5, we explored the benefit of a non-
coherent scratchpad memory local to the processing element. This chapter
aims to extend that concepts to suite many-cores, exploring design beneficts
and tradeoffs for non-coherence in many-core systems.

In particular, the baseline coherence sub-system, presented in chapter 4,
and the related hardware infrastructure are augmented with a mechanism
allowing coherence to be selectively deactivated, so as to match the spe-
cific application access patterns and minimize the coherence-related over-
head in terms of communication and energy, a fundamental requirement for
accelerator-based systems.

8.1 Motivations

Common wisdom says that coherence support provided through hardware
mechanism does not scale when moving to many-core architecture. Instead,
tomorrow’s systems will communicate with software-managed coherence,

8.1 Motivations � 87

strictly coupled with scratchpad memories and message passing support.
In [51], authors firmly refuse such arguments and defend the deployment
of hardware coherence in future systems, providing a scalability analysis
on a on-chip coherence protocol which combines known techniques, such as
share caches and explicit eviction notifications. Authors’ main outcomes
show that the costs on-chip coherence grow slowly with the core number,
pointing out that hardware coherence is here to stay.

In a traditional Modified/Shared/Invalid-based coherence protocol (de-
scribed in chapter 2), the directory tracks all blocks indistinctly even when
it has a single sharer. In real systems, where the directory is set-associative
and inclusive, a new transaction can arise a directory entry eviction which
invalidates all the copies in all L1 caches. Moreover, if the owner is still work-
ing with the evicted block, such an invalidation generates a further memory
request for the evicted block which will probably cause a new replacement
in the directory, leading to a further performance loss and network flood-
ing. This scenario is dramatically expensive in terms of messages over the
network and in terms of performance. In case of private data, these oper-
ations are counter-productive work. Furthermore, the evicted data might
be loaded back into the L1 unchanged, and in the meanwhile the core stays
idle.

Enlarging the size of directory caches, of course, can mitigate this prob-
lem, but it negatively impacts directory access latency and area require-
ments. Moreover, a significant fraction of the memory blocks used by paral-
lel applications are private, thus accessed only by one processor [37, 20]. The
scenario is even worse in heterogeneous systems. Deploying hardware-based
coherence support in such architectures is challenging and highly error-
prone. However, selective hardware coherence can enable new classes of
applications through low network-overhead and application specific grain
data sharing [64].

In this chapter, a novel hardware coherence system for heterogeneous
accelerators is described, with customizable granularity and noncoherent
region support optimization, meant to be protocol independent. This so-
lution has been developed in hardware because future systems will continue
to implement coherence support in hardware [51]. The proposed hardware
solution aims to be flexible and to significantly reduce the messaging over-
head due coherence transactions. The implementation extends the tradi-
tional MSI protocol with optimizations for private data. The proposed
extension keeps into account that private data require no coherence mainte-
nance, which often induces substantial overheads at the directory level and
in terms of messages flowing through the network. The baseline nu+ co-
herence maintenance system has been augmented in order to distinguishes

� 88 Chapter 8. Selective coherence in many-core accelerators

private and shared data, avoiding unnecessary coherence operations and op-
timizing indirection latencies for private data. When a memory request to a
private data occurs, the Cache Controller forwards it to the LLC, bypassing
the directory controller which is totally unaware of the current transaction.
This extension deeply leverages on a new state, called U detailed in section
8.3, which keeps the block alive in the L1 cache and marks it as noncoher-
ent, at the same time the directory has no entry regarding that block.

This proposed solution is oriented to modern heterogeneous many-core
systems with a NoC-based communication infrastructure and strictly cou-
pled with a sparse directory mechanism. In such architectures, optimizing
network traffic, reducing the directory indirection latencies, and minimizing
the directory utilization represent important goals for tomorrow’s heteroge-
neous systems.

8.2 Related Works

Traditional coherence mechanisms operate on the same assumption: all
blocks may be shared at any time, although this is an unlikely scenario
in modern workloads. In [45], Kelm et al. propose Cohesion a hybrid solu-
tion which allows switching from a hardware coherence maintenance scheme
to a software model, and vice versa. Both the employed software model
(presented in [44]) and the hardware counterpart have been explored in a
1024-core homogeneous architecture [43]. Their solution deeply relies on a
global coherence table, placed within the LLC, which tracks the coherence
approach to use and the block-level granularity. The experimental platform
has a clustered multi-stage organization with a multi-layer interconnection
system which allows this information to be propagated through lower level
caches. Furthermore, a custom protocol allows the system to safely jump
from a coherence scheme to the other, modifying the table at run-time while
keeping the lower level caches in a consistent state.

A number of works in the literature target small/medium-scale on-chip
multi-processor (CMP) systems based on snooping coherence protocols, e.g.
resorting to coarse-grain coherence to reduce the generated traffic.

In [54] each core keeps track of sharing information with a coarse granu-
larity, dividing the memory space into regions, where a region is defined as
a contiguous memory area whose size is a power of 2. The shared memory
bus ensures that this information, albeit replicated in each core, is always
kept consistent. Since cores are aware of the exclusive ownership of blocks
in a given memory region, they can reduce the number of requests that are
dispatched through broadcast over the memory bus. This results in a traffic

8.2 Related Works � 89

reduction along with a cache energy saving in the tag look-up phase. How-
ever, this does not solve the false sharing problem: multiple cores accessing
different part of the same memory block still compete for its ownership, gen-
erating increased coherence traffic. Furthermore, this solution extensively
uses broadcasting, which scales poorly with the number of tiles. Similar con-
siderations can be made for [12], where a table called Region-Coherence

Array is deployed to track the memory region’s coherence state. In con-
trast with [54], this solution contains precise information and thus requires
stricter constraints on the size of the data structures.

Demetriades et al. [25] propose Stash Directory a solution which ex-
tends the traditional sparse directory and aims to increase performance by
avoiding any invalidation block from the directory that refers to a private
block. In fact, in inclusive directories most of the block evictions invalidate
private blocks, resulting in a dramatic performance degradation. Moreover
for such blocks, coherence maintenance is unnecessary. Stash Directory

tracks private blocks and forces the eviction of the directory entry without
invalidating the corresponding cache block, which stays alive. Our solution
shares the same motivation and basic observations.

Other works propose coherence protocols targeted at optimizing private
blocks. In [65], the authors propose a novel protocol exploiting the fact that
in many workloads a large fraction of blocks either are private to a core or
are shared by different cores in read-only mode. Such blocks do not strictly
require coherence information. Only shared and written blocks need to be
tracked. The work aims to eliminate both the traditional coherence invalida-
tion/update scheme and the costly sharer-tracking mechanism which limits
the scalability. The authors present a new protocol, named SWEL after its
states, which aims to overcome the directory storage overhead, the need for
indirection as well as the traditional protocol complexity. This solution does
not track sharer in any structure resulting in a better scalability, although
it relies on a broadcast-based invalidation mechanism in order to retrieve
all copies of memory blocks from the sharers, which is well known for its
poor performance and network overhead.

Other solutions aim to reduce the directory size by redefining the gran-
ularities of the coherence regions. SCT [5] supports a dual-grain coherence
tracking system which tracks private regions by observing cores’ memory
requests and keeping only one entry at the directory level for any number
of blocks in that region.

Cuesta et al. [20] aim to improve the efficient use of the memory in the
directory. The authors propose a mechanism that classifies memory block,
dividing them into private and shared data, and provides coherence support
only for shared blocks. Both classification and coherence maintenance are

� 90 Chapter 8. Selective coherence in many-core accelerators

done at a page granularity by the operative system, which considers every
new page loaded private by default. This solution requires changes into the
operative system, although no dedicated hardware is required.

Power et al. work, Heterogeneous System Coherence, focuses on sup-
porting hardware coherence on CPU-GPU-centric heterogeneous systems [64].
Their study highlights coherence bottlenecks in future high-bandwidth het-
erogeneous systems, showing that limited directory resources are a signifi-
cant bottleneck in common CPU-GPU systems. They redesigned the tradi-
tional directory in a region-based fashion and optimized the bus traffic due
to coherent transactions, resulting in reduced directory congestion.

The following sections provide the technical detail of the methodology
and the corresponding hardware architecture. Importantly, unlike typical
works dealing with coherence in homogeneous processors, the approach has
not only been demonstrated in simulation. Rather, the technique has been
embodied in a fully-fledged many-core accelerator, also featuring hardware
multithreading and vector instructions as well as a comprehensive software
toolchain, available as an RTL model and emulated on a large-scale FPGA-
based platform attached to a CPU-based HPC host.

8.3 Proposed solution

This section discusses the designed solution, illustrating the networking in-
frastructure. Next, the extension to the baseline hardware coherence system
and its implementation are presented, detailing the selective coherence de-
activation mechanism and the extended coherence protocol for enhancing
private data maintenance.

8.3.1 Networking Infrastructure and Synchronization Support

The solution has been developed in the context of the heterogeneous many-
core accelerators depicted in chapter 3. The baseline network-on-chip-based
design composed of heterogeneous tiles organized in a 2D mesh topology,
has been augmented with the distributed synchronization support exposed
in chapter 7.

A virtual channel is totally dedicated to service message flows, such as
synchronization commands, host requests, and configuration messages. In
particular, the many-core system supports a distributed synchronization
mechanism based on hardware barriers, which allows accelerators in different
tiles to synchronize, supporting up to 16 concurrent synchronizations. Such
a synchronization support is an essential feature when dealing with non-
coherent regions. Explicit synchronization points help the different cores to

8.3 Proposed solution � 91

gather all the partial result blending them in the final outcome.

8.3.2 Accelerators

On the accelerator-level, few extensions have been made. As shown in
chapter 3, the core is organized in N hardware lanes (or SIMD vectors),
each capable of both integer and floating-point operations on independent
data. Correspondingly, each thread is equipped with a vector register file,
where each register can store up to N scalar data in order to satisfy the
execution pipeline data throughput. Such a data parallelism allows each
thread to perform SIMD operations on N independent data simultaneously.
In this chapter, this architecture employs N = 16 lanes, computing 16
operations on 32-bit data concurrently. The accelerator supports an n-way
set-associative write-back L1 caching system, and a load/store unit tightly
interconnected with the cache controller. The load/store unit is independent
of the adopted coherence protocol. For each cached block it stores two
permission bits, namely can read and can write, which are updated by the
cache controller and used by the accelerator to detect a cache hit or miss.
In this configuration, the cache line width matches the internal hardware
lanes capability, thus a read memory request loads 16 scalar data from main
memory and stores them into a vector register at once, matching the number
of hardware lanes physically allocated.

Finally, each core has be enhanced with a byte-level dirty mask for each
private cache block, which is evaluated when the cache line is flushed back
to the LLC. This mask is attached to the message and the LLC proceeds
to update just the dirty part of the cached value. Such a mechanism allows
multiple cores to work on non-overlapping portions of the same memory
blocks without incurring any data loss and unneeded contentions, providing
an effective solution to false sharing problem. The synchronization infras-
tructure still allows different tiles to agree on the same memory layout, when
working concurrently on the same region. The design is independent of the
specific software coherence protocol used. A dirty bitmask is always tracked
for each noncoherent block. When the block flushes back to the LLC (which
happens in the case of an explicit flush or an eviction from the L1 cache),
the mask is attached to the message and the LLC proceeds to update just
the dirty part of the cached value. This provides an effective solution to the
false sharing problem.

8.3.3 Coherence sub-system

This section details the novel solution (Figure 8-1), and how the baseline
coherence system has been extended in each tile to support selective co-

� 92 Chapter 8. Selective coherence in many-core accelerators

GPU-LIKE ACCELERATOR

LDSTD
$
1

TILE CONTROL

 REGISTERS

REGION TABLE

S E V

NOC ROUTER
LOCAL PORT

NETWORK INTERFACE

TSHR
PROTOCOL
 ROM

SPARSE DIRECTORY
 CONTROLLER

DISTRIBUTED

 L2

FO
R

W
A

R
D

V
IR

T
U

A
L

C
H

A
N

N
E
L

R
E
S
P

O
N

S
E

V
IR

T
U

A
L

C
H

A
N

N
E
L

MSHR

PROTOCOL
 ROM

R
E
G

IO
N

H
IT

/M
IS

S

FO
R

W
A

R
D

V
IR

T
U

A
L

C
H

A
N

N
E
L

R
E
S
P

O
N

S
E

V
IR

T
U

A
L

C
H

A
N

N
E
L

R
E
Q

U
E
S
T

V
IR

T
U

A
L

C
H

A
N

N
E
L

CACHE
CONTROLLER

Figure 8-1: Detail of a processing tile in the proposed solution for hetero-
geneous systems. This figure highlights the Cache Controller
and the extension for noncoherent region support. The CC
mainly relies on the distributed directory, on an extended co-
herence protocol which resides in its embedded protocol ROM,
and on a local bypass which allows the CC to directly access
the forward virtual network interface of the network infras-
tructure.

herence. Each tile deploys a coherence maintenance infrastructure along
with the accelerator. Since the design targets scalable heterogeneous sys-
tems, the chosen coherence protocol is directory-based: each tile provides
a sparse directory model directly connected to a shared L2 cache. The
L2 cache is distributed all over the mesh, implementing a sparse directory
model, resulting in a dramatic area reduction compared to a full-map direc-
tory model [36]. On the other hand, the cache controller handles the local
core’s memory requests, providing the basic support for the directory-based
coherence protocol. The cache controller turns the core’s basic operations,
such as load and store misses, into directory-based requests over the net-
work. Furthermore, the cache controller handles responses and forwarded
requests coming from the network, updating the block state in compliance
with the given coherence protocol, while the accelerator is totally unaware

8.3 Proposed solution � 93

R
E
G

IO
N
 T

A
B

L
E

C
O

N
T
R

O
L

 L

O
G

IC

REGION TAGS

REGION HIT/MISS

L
O

A
D
/S

T
O

R
E
 R

E
Q

U
E
S
T

T
IL

E
 C

R
 -

 R
E
G

IO
N
 T

A
B

L
E
 I

N
T
E
R

F
A

C
E

Figure 8-2: Detail of the Region look-up table.

of it. Both the cache controller and the directory controller have been de-
signed with flexibility in mind, and their architectures are bound to no
specific coherence protocol. Each is equipped with a configurable protocol
ROM, which provides a simple means for coherence protocol extensions,
as it precisely describes the actions to take for each request based on the
current block state.

Finally, for coherence maintenance a noncoherent memory region table
has been added, which is local and private for each tile, hence no traffic is
generated when table queries occur. The granularity of a memory region is
configurable. It is set to 4 MB in the default configuration. Further details
are presented in Section 8.3.4. The directories are totally unaware of private
blocks, and no extension is required in the directory controller, so an existing
design can be used. This architectural choice is key for future coherence
sub-systems, since it can improve directory entries utilization and directory
indirection avoidance. The hardware support described so far comes with
an extended MSI protocol which expressly represent noncoherent regions,
further described in Section 8.3.5.

8.3.4 Selective coherence deactivation

This solution aims to deactivate coherence in a selective way when un-
necessary. This is achieved by using a noncoherent memory region table,
which tracks the start and end addresses of noncoherent memory regions.
The number of entries and the region granularity are both parameterizable
at design time. The location of the table impacts the overall system per-
formance. A single global table (which can be distributed uniformly in the

� 94 Chapter 8. Selective coherence in many-core accelerators

design, as in [45]) ensures that at any given time the tiles agree on a common
memory layout. On the other hand, the operations which can be performed
on it (updates, queries, etc.) cause additional pressure on the interconnec-
tion system, along with the additional latency required to reach a remote
tile. In the proposed solution, each tile is equipped with a private table,
minimizing the table access latency. Consequently, operations on the table
generate no additional traffic over the network-on-chip. Using private tables
might lead to unwanted behaviours: the system could transit in a inconsis-
tent state if multiple tiles access the same memory region using a different
coherence mechanism. It is the programmer’s duty to avoid this scenario,
either statically at compile time or at run-time using the synchronization
primitives provided by the architecture.

Table access is offered to the accelerator as a control register access, as
shown in Figure 8-2. Control registers are placed at the tile level and are
used to offer a flexible configuration and debugging infrastructure. They
are directly connected to cores, which can perform both read and write
operations on them. A given register is directly mapped to the region ta-
ble interface, allowing entry allocation/modification from the accelerator
side during run-time. Furthermore, when an accelerator requests a memory
access, if the requested address lies within any of the configured noncoher-
ent regions, the local cache controller is notified that this is a noncoherent
memory access.

8.3.5 Extended MSI protocol

The plain MSI coherence protocol has been extended to support noncoher-
ent memory blocks. The cache controller is the only coherence actor aware
of the noncoherent memory blocks: the directory controller is completely by-
passed in case of noncoherent accesses and thus it allocates no entry during
noncoherent transactions. The proposed protocol is depicted in Figure 8-3
in a simplified diagram which involves both the new noncoherent states and
the transient states.

The cache disabling mechanism is abstracted away from the cache con-
troller: every request coming from the local accelerator is tagged with a
coherence bit, according to the region table look-up result. When a block is
in the invalid state I, the first access will determine which coherence mech-
anism will be applied on it. If the access is a noncoherent load, the read
request is forwarded directly to the LLC while the block is in the transient
state IUd waiting for the data. The noncoherent state, namely U, is applied
to this block when data are received. All the subsequent reads or writes will
always result in a cache hit and no additional traffic is required to track the

8.3 Proposed solution � 95

UW
IUd

UWUdU

I

NON-COHERENT

LOAD
NON-COHERENT

STORE

W
ITH

O
U
T

FETC
H
IN

G D
A
TA

DATA FROM

LLC

REPLACEMENT/

EVICTION
DATA FROM

LLC

T
R

A
N

S
IT

 I
N
 I
 A

N
D
 S

E
N

D
S
 W

B
T
O
 L

L
C

WAINTING

DATA

WAINTING

DATA

Figure 8-3: Extended MSI protocol used in the Cache Controller. Only
the noncoherent states are reported.

block status. On the other hand, if the first access is a noncoherent store,
the request always results in a hit, the block transits into the noncoherent
write state, namely UW, and no memory block is fetched form the LLC. In
such cases, a bit-mask is used to keep track of which bytes of the block are
dirty: further loads to that parts will result in a hit. This approach comes
from the observation that store-first noncoherent blocks are usually used to
track either the output of the computations or the memory stack of a core
(which is also private), so there is no need to fetch their previous value.
This significantly reduces the overall network traffic, since no message is
generated during these operations. If a noncoherent load request occurs for
a block in the UW state, the cache controller checks the dirty bit-mask. If
the request address offset is marked as dirty, the data is retrieved from the
local cache and no coherence state transition happens. On the other hand,
if the requested data is not marked as dirty, it needs to be fetched from the
LLC, so the cache controller sends the request over the network-on-chip and
moves the block state from UW to the transient state UWUd. As soon as the
data is received, the block transits into state U.

Notice that solution does not rely on broadcasting for blocks eviction,
thereby improving performance and network efficiency.

� 96 Chapter 8. Selective coherence in many-core accelerators
F

L
IT

s
n

u
m

b
er

 (
n

o
rm

al
iz

ed
)

0

0.2

0.4

0.6

0.8

1.1
Non-Coherent

Coherent

km
ea
ns

m
mm

t
m
s

lud tdc
t

co
nv

0.80

0.85

0.90

0.95

1.00

1.05
Non-Coherent

Coherent

km
ea
ns

m
mm

t
m
s

lud tdc
t

co
nv

N
et

w
o

rk
 p

o
w

er
 c

o
n

su
m

p
ti

o
n

b)a)

Figure 8-4: a) Total number of FLITs flowing through the network-on-
chip. b) Dynamic power consumption of the networking in-
frastructure.

8.4 Experimental evaluation

The evaluation reported in this section has been performed on a 4× 4 mesh
featuring 14 accelerators uniformly distributed over the mesh network, a
memory controller tile and a host-communication tile. Each accelerator
deploys 8 hardware threads and 16 hardware lanes. Threads in the same
accelerator share the same L1 cache and network access interface. The nu-
merical evaluations are carried out on a proFPGA MB-4M FPGA board by
ProDesign, equipped with one Xilinx Virtex-7 2000T XC7V2000T FPGA.

The performance of the system has been evaluated on a set of common
parallel workloads. The output computations have been uniformly spread
among 8 accelerators that perform the same computations occurring in the
same number of memory accesses. When a thread hits the end of the ker-
nel, it signals to the host-communication tile the kernel termination. When
all these messages from all the running cores are gathered by the host-
communication tile, the kernel is finished and the results are ready in the
main memory. Each workload is executed in both modes: (1) using a tra-
ditional MSI coherence support, and (2) employing the proposed optimiza-
tions. In the latter configuration, the noncoherent regions overlap with the
kernel input and output data.

First, the impact of the proposed solution has been measured on the net-
work traffic in terms of the total number of FLITs processed by the routers.
Figure 8-4a shows the results. By overlapping the noncoherent regions with
the kernel data section, we observe a remarkable saving in terms of FLITs
flowing over the network (up to 77% less in the convolution workload).
This is due to the lower number of unnecessary coherence requests sent to

8.4 Experimental evaluation � 97
K

er
n
el

 c
y

cl
es

 (
n
o

rm
al

iz
ed

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Non-Coherent

Coherent

km
ea
ns

m
mm

t
m
s

lud tdc
t

co
nv

0

0.2

0.4

0.6

0.8

1.1
Non-Coherent

Coherent

km
ea
ns

m
mm

t
m
s

lud tdc
t

co
nv

K
er

n
el

 m
is

se
s

(n
o

rm
al

iz
ed

)

b)a)

Figure 8-5: a) Number of cycles for each kernel in coherent and non-
coherent configurations. b) Total number of data misses of
the whole system, with 8 accelerators.

the involved directory controllers, resulting in both a considerable reduc-
tion of the indirection latencies and limited transactions overhead caused
by false sharing.

Then, an evaluation of the impact of the proposed mechanism at the
core level has been conducted in terms of total kernel cycles required for
the workload completion, and the number of data misses occurred dur-
ing the computation. These results are shown in Figure 8-5b and Fig-
ure 8-5a. The number of data cache misses drops in all the presented
workloads, almost up to 80% in the dct, and about 85% in the kmeans

workload, while in convolution, matrix multiplication, and marching

squares these numbers stay constant. Furthermore, in dct, fft, and
kmeans these reductions are more prominent due to the distribution of the
data. Such kernels are deeply affected by false sharing due the granularity
of the memory blocks. In these cases, different threads concur for different
data placed within the same memory blocks, resulting in coherence main-
tenance which generates unnecessary network messages when running with
plain MSI coherence support. In terms of kernel duration, a reduction can
be observed in most of the presented workloads, up to 25% for matrix

transpose. In three cases, the proposed solution has a marginal impact,
namely convolution, fft, and marching squares. Although both work-
loads generate less FLITs, the memory layout for noncoherent data, and
the accelerators’ multithreading support hide the potential improvement.

Finally, the dynamic power reduction has been evaluated at the network-
ing infrastructure level. Figure 8-4b shows the results. All explored work-
loads experience a power reduction, up to 5% less in the matrix transpose

workload case. These results are directly correlated to the previously ex-

� 98 Chapter 8. Selective coherence in many-core accelerators

Hardware Implementation Overhead

Solutions LUT Flip-Flop BRAM

proposed 24045 46308 0

plain 20888 43197 0

Table 8-1: Resources occupation on a Virtex-7 2000T XC7V2000T FPGA,
in term of LUTs, FFs, and BRAMs.

posed results, namely the reduction of flits and directory activity.

8.4.1 Implementation Overhead

This section compares the hardware overhead per tile in the new coherence
maintenance solution versus a plain version which provides no support for
either multi-grain blocks, selective coherence deactivation, or private data
optimizations. In both cases the miss status holding register (MSHR) in
the Cache Controller and the transaction status holding register (TSHR)
in the Directory support 32 pending transactions, while the Region Table
has 128 entries. Table 8-1 shows the occupation values on the Virtex-7
2000T XC7V2000T FPGA in term of LUTs, FFs, and BRAMs. The novel
coherence maintenance system incurs an overhead of 13% in terms of LUTs
and 6% for the FFs compared to the plain counterpart.

8.5 Conclusions

This chapter described a novel and scalable architectural solution which
selectively supports noncoherent regions for heterogeneous NoC-based sys-
tems. In particular, it evaluated how the proposed solution can impact the
performance of common parallel workloads. Experimental results showed
that the use of a hybrid coherent and noncoherent architectural mechanism
along with an extended coherence protocol can enhance performance. This
combination lowers the overall network-on-chip traffic of a 4× 4 mesh, and
significantly decreases cache misses. Furthermore, the kernel duration is
positively affected in most workloads along with the overall dynamic power
consumption of the networking subsystem. In conclusions, the findings of
our work may be particularly impactful for driving the long-term evolution
of current heterogeneous architectures, especially NoC-based manycore ac-
celerators, towards improved specialization and workload-specific customiz-
ability.

Conclusion

The transition to heterogeneous systems places great focus and impor-
tance on system exploration for underlining future trends. Widely investi-
gated traditional solutions in the area of general-purpose architectures, do
not fits heterogeneity, moreover new architectural trends, such as many-core
and NoC-based systems pose special requirements and constraints, requiring
further exploration of both hardware and software techniques.

This dissertation explores future heterogeneous architecture features and
requirements, exploiting customizability, and running kernel extracted from
modern HPC-based workloads. This work highlights major limitation of
existing general purpose solutions, and also places emphasis on hybrid hard-
ware/software techniques tailored on application-oriented requisites as new
key-enabler to exploit scalability and higher efficiency.

The contributions of this dissertation are as follows. First, we explored
how customization impacts performance, using a deep learning kernel as
a case study for evaluating different hardware configurations of our base-
line platform, as well as identifying major features, such as selective coher-
ence, which might benefit many-core systems. Second, we presented a non-
coherent scratchpad memory with a configurable bank remapping system
to reduce bank conflicts. The experimental results showed the performance
implications with different configurations and demonstrated the benefits of
both using a customizable hardware bank remapping function over other
architectural parameters and non-coherent memories for some kind of algo-
rithms. Next, we demonstrated how a distributed synchronization master
better suits many-cores than standard centralized solutions. The proposed
solution, inspired by the directory-based coherence mechanism, supports
concurrent synchronizations without relying on memory transactions. The
results collected for different NoC sizes provided indications about the area
overheads incurred by our solution and demonstrated the benefits of using
a dedicated hardware synchronization support. Finally, we proposed an ad-
vanced coherence subsystem, based on the sparse directory approach, with
a selective coherence maintenance system which allows coherence to be de-
activated for blocks that do not requiring it. Experimental results showed
that the use of a hybrid coherent and non-coherent architectural mechanism
along with an extended coherence protocol can enhance performance.

All the results of this dissertation were collected on a custom heteroge-
neous system, developed in the framework of the MANGO H2020 project.
Leaveraging on a real system captures realistic behaviours, implementation

� 100 Chapter 8. Selective coherence in many-core accelerators

issues, and pitfalls which are not possible with typical simulation-based eval-
uation methods. This open-source heterogeneous system comes along with
the above methodological results as part of the contribution of this disser-
tation. The platform is highly modular, deeply customizable, meant to be
easily extended on both hardware and software levels. Such features make
it suitable for architectural exploration of large-scale high-performance sys-
tems.

During the MANGO project, the baseline GPU-like core, enhanced with
the above selective coherence subsystem and the customizable scratchpad
memory, has been widely tested and validated by successfully running com-
plex applications, provided by the project partners, in the context of multi-
media and medical imaging. As of today, the nu+ core has been integrated
into the MANGO infrastructure, being part of a sophisticated heterogeneous
system running on an FPGA-based cluster.

From a programming perspective, all the proposed solutions rely on soft-
ware builtins and programmer’s explicit commands. Future work could aim
to ease the final user’s duty, making these mechanisms transparent to the fi-
nal user, blending hardware monitors and compiler ad-hoc extensions. Such
a solution might give a standard programmer-friendly model, automatizing
all the custom or target-specific features. In the case of the proposed coher-
ence subsystem, such a mechanism could allow the compiler to automati-
cally map specific memory blocks into the non-coherent memory space, with
the programmer totally unaware of the non-coherent mechanisms. Finally,
further investigation in the context of heterogeneous systems is required, to
exploit the full potential of modern mechanisms, such as selective coherence,
and application-driven hardware customizability.

References

[1] The altera sdk for open computing language (opencl).

[2] An independent analysis of altera’s fpga floating-point dsp design flow.
In By the staff of Berkeley Design Technology, Inc.

[3] J. L. Abellán, J. Fernandez, and M. E. Acacio. Efficient hardware bar-
rier synchronization in many-core cmps. IEEE Transactions on Parallel
and Distributed Systems, 23(8):1453–1466, 2012.

[4] A. Al-Dujaili, F. Deragisch, A. Hagiescu, and W.-F. Wong. Guppy: A
gpu-like soft-core processor. In Field-Programmable Technology (FPT),
2012 International Conference on, pages 57–60. IEEE, 2012.

[5] M. Alisafaee. Spatiotemporal coherence tracking. In Proceedings of the
2012 45th Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 341–350. IEEE Computer Society, 2012.

[6] Altera. Stratix 10: The most powerful, most efficient fpga for signal
processing.

[7] K. Andryc, M. Merchant, and R. Tessier. Flexgrip: A soft gpgpu for
fpgas. In Field-Programmable Technology (FPT), 2013 International
Conference on, pages 230–237. IEEE, 2013.

[8] R. Balasubramanian, V. Gangadhar, Z. Guo, C.-H. Ho, C. Joseph,
J. Menon, M. P. Drumond, R. Paul, S. Prasad, P. Valathol, et al.
Enabling gpgpu low-level hardware explorations with miaow: an open-
source rtl implementation of a gpgpu. ACM Transactions on Architec-
ture and Code Optimization (TACO), 12(2):21, 2015.

[9] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, et al. Tile64-processor: A 64-
core soc with mesh interconnect. In Solid-State Circuits Conference,

� 102 References

2008. ISSCC 2008. Digest of Technical Papers. IEEE International,
pages 88–598. IEEE, 2008.

[10] T. Bjerregaard and S. Mahadevan. A survey of research and practices
of network-on-chip. ACM Computing Surveys (CSUR), 38(1):1, 2006.

[11] J. Bush, P. Dexter, T. N. Miller, and A. Carpenter. Nyami: a syn-
thesizable gpu architectural model for general-purpose and graphics-
specific workloads. In Performance Analysis of Systems and Software
(ISPASS), 2015 IEEE International Symposium on, pages 173–182.
IEEE, 2015.

[12] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Improving multiprocessor
performance with coarse-grain coherence tracking. In ACM SIGARCH
Computer Architecture News, volume 33, pages 246–257. IEEE Com-
puter Society, 2005.

[13] S. Chatterjee, J. R. Gilbert, F. J. Long, R. Schreiber, and S.-H. Teng.
Generating local addresses and communication sets for data-parallel
programs. Journal of Parallel and Distributed Computing, 26(1):72–
84, 1995.

[14] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, et al. Dadiannao: A machine-learning supercomputer. In
Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 609–622. IEEE Computer Society, 2014.

[15] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works. IEEE Journal of Solid-State Circuits, 52(1):127–138, 2017.

[16] A. Cilardo and E. Fusella. Design automation for application-specific
on-chip interconnects: A survey. Integration, the VLSI Journal, 52:102–
121, 2016.

[17] A. Cilardo and L. Gallo. Improving multibank memory access paral-
lelism with lattice-based partitioning. ACM Transactions on Architec-
ture and Code Optimization (TACO), 11(4):45, 2015.

[18] A. Cilardo and N. Mazzocca. Exploiting vulnerabilities in crypto-
graphic hash functions based on reconfigurable hardware. IEEE Trans-
actions on Information Forensics and Security, 8(5):810–820, 2013.

References � 103

[19] B. W. Coon, M. Y. Siu, W. Xu, S. F. Oberman, J. R. Nickolls, and
P. C. Mills. Shared memory with parallel access and access conflict
resolution mechanism, Jan. 31 2012. US Patent 8,108,625.

[20] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato. Increas-
ing the effectiveness of directory caches by deactivating coherence for
private memory blocks. In 38th Annual Int. Symposium on Computer
Architecture (ISCA), pages 93–103, June 2011.

[21] D. Culler, J. P. Singh, and A. Gupta. Parallel computer architecture:
a hardware/software approach. Gulf Professional Publishing, 1999.

[22] L. Dagum and R. Enon. Openmp: an industry standard api for shared-
memory programming. Computational Science & Engineering, IEEE,
5(1):46–55, 1998.

[23] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Léger, B. Orgogozo,
J. Reybert, and T. Strudel. A distributed run-time environment for the
kalray mppa R©-256 integrated manycore processor. In ICCS, volume 13,
pages 1654–1663, 2013.

[24] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le, et al. Large scale distributed deep
networks. In Advances in neural information processing systems, pages
1223–1231, 2012.

[25] S. Demetriades and S. Cho. Stash directory: A scalable directory
for many-core coherence. In High performance computer architecture
(hpca), 2014 ieee 20th Int. Symposium on, pages 177–188. IEEE, 2014.

[26] U. Drepper. What every programmer should know about memory. Red
Hat, Inc, 11:2007, 2007.

[27] M. Eldred and W. Hart. Design and implementation of multilevel
parallel optimization on the intel teraflops. In 7th AIAA/USAF/-
NASA/ISSMO Symposium on Multidisciplinary Analysis and Opti-
mization, page 4707, 1998.

[28] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun. Dermatologist-level classification of skin cancer with
deep neural networks. Nature, 542(7639):115, 2017.

[29] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and
Y. LeCun. Neuflow: A runtime reconfigurable dataflow processor

� 104 References

for vision. In Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011 IEEE Computer Society Conference on, pages 109–
116. IEEE, 2011.

[30] R. Farber. CUDA application design and development. Elsevier, 2011.

[31] E. Fusella and A. Cilardo. Lighting up on-chip communications with
photonics: Design tradeoffs for optical noc architectures. IEEE Circuits
and Systems Magazine, 16(3):4–14, 2016.

[32] E. Fusella and A. Cilardo. H 2 onoc: A hybrid optical–electronic noc
based on hybrid topology. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 25(1):330–343, 2017.

[33] J. R. Goodman. Using cache memory to reduce processor-memory
traffic. ACM SIGARCH Computer Architecture News, 11(3):124–131,
1983.

[34] K. Goossens, J. Dielissen, and A. Radulescu. Æthereal network on chip:
concepts, architectures, and implementations. IEEE Design & Test of
Computers, 22(5):414–421, 2005.

[35] M. D. Grammatikakis, R. Locatelli, G. Maruccia, L. Pieralisi, and
M. Coppola. Design of cost-efficient interconnect processing units: Spi-
dergon STNoC. CRC press, 2008.

[36] A. Gupta, W.-D. Weber, and T. Mowry. Reducing memory and traffic
requirements for scalable directory-based cache coherence schemes. In
Scalable shared memory multiprocessors, pages 167–192. Springer, 1992.

[37] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive
NUCA: near-optimal block placement and replication in distributed
caches. ACM SIGARCH Computer Architecture News, 37(3):184–195,
2009.

[38] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[39] J. L. Hennessy and D. A. Patterson. Computer architecture: a quanti-
tative approach. Elsevier, 2011.

[40] T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm. A survey of barrier
algorithms for coarse grained supercomputers. 2004.

References � 105

[41] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D. Shippy. Introduction to the cell multiprocessor. IBM journal
of Research and Development, 49(4.5):589–604, 2005.

[42] K. Kambatla, G. Kollias, V. Kumar, and A. Grama. Trends in big data
analytics. Journal of Parallel and Distributed Computing, 74(7):2561–
2573, 2014.

[43] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy,
A. Mahesri, S. S. Lumetta, M. I. Frank, and S. J. Patel. Rigel: an
architecture and scalable programming interface for a 1000-core accel-
erator. In ACM SIGARCH Computer Architecture News, volume 37,
pages 140–151. ACM, 2009.

[44] J. H. Kelm, D. R. Johnson, S. S. Lumetta, M. I. Frank, and S. J. Patel.
A task-centric memory model for scalable accelerator architectures. In
Parallel Architectures and Compilation Techniques, 2009. PACT’09.
18th International Conference on, pages 77–87. IEEE, 2009.

[45] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel.
Cohesion: a hybrid memory model for accelerators. In ACM SIGARCH
Computer Architecture News, volume 38, pages 429–440. ACM, 2010.

[46] J. Kingyens and J. G. Steffan. The potential for a gpu-like overlay
architecture for fpgas. International Journal of Reconfigurable Com-
puting, 2011, 2011.

[47] D. B. Kirk and W. H. Wen-mei. Programming massively parallel pro-
cessors: a hands-on approach. Newnes, 2012.

[48] I. Kuon and J. Rose. Measuring the gap between fpgas and asics.
IEEE Transactions on computer-aided design of integrated circuits and
systems, 26(2):203–215, 2007.

[49] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and
K. Asanović. Exploring the tradeoffs between programmability and
efficiency in data-parallel accelerators. In ACM SIGARCH Computer
Architecture News, volume 39, pages 129–140. ACM, 2011.

[50] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanović,
and K. Asanović. A 45nm 1.3 ghz 16.7 double-precision gflops/w risc-v
processor with vector accelerators. In European Solid State Circuits
Conference (ESSCIRC), ESSCIRC 2014-40th, pages 199–202. IEEE,
2014.

� 106 References

[51] M. M. Martin, M. D. Hill, and D. J. Sorin. Why on-chip cache coherence
is here to stay. Communications of the ACM, 55(7):78–89, 2012.

[52] M. Monchiero, G. Palermo, C. Silvano, and O. Villa. Efficient synchro-
nization for embedded on-chip multiprocessors. IEEE Transactions on
very large scale integration (VLSI) systems, 14(10):1049–1062, 2006.

[53] G. E. Moore. Cramming more components onto integrated circuits.
Proceedings of the IEEE, 86(1):82–85, 1998.

[54] A. Moshovos. Regionscout: Exploiting coarse grain sharing in snoop-
based coherence. ACM SIGARCH Computer Architecture News,
33(2):234–245, 2005.

[55] C. Murphy and Y. Fu. Xilinx all programmable devices: A superior
platform for compute-intensive systems. Xilinx White Paper, 2017.

[56] I. Nios. Processor reference handbook, 2009.

[57] C. Nvidia. Nvidia’s next generation cuda compute architecture: Fermi.
Comput. Syst, 26:63–72, 2009.

[58] F. NVidia. Nvidia’s next generation cuda compute architecture.
NVidia, Santa Clara, Calif, USA, 2009.

[59] A. Olofsson. Epiphany-v: A 1024 processor 64-bit risc system-on-chip.
arXiv preprint arXiv:1610.01832, 2016.

[60] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S.
Chung. Accelerating deep convolutional neural networks using special-
ized hardware. Microsoft Research Whitepaper, 2, 2015.

[61] K. Paranjape, S. Hebert, and B. Masson. Heterogeneous computing in
the cloud: Crunching big data and democratizing hpc access for the
life sciences. Intel Corporation, 2010.

[62] L.-S. Peh and N. E. Jerger. On-chip networks. Morgan & Claypool
Publishers, 2009.

[63] L.-N. Pouchet. Polybench: The polyhedral benchmark suite. URL:
http://www. cs. ucla. edu/pouchet/software/polybench, 2012.

[64] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D. Hill,
S. K. Reinhardt, and D. A. Wood. Heterogeneous system coherence
for integrated CPU-GPU systems. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 457–
467. ACM, 2013.

References � 107

[65] S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubramonian.
SWEL: Hardware cache coherence protocols to map shared data onto
shared caches. In Procs of the 19th Int. Conference on Parallel archi-
tectures and compilation techniques, pages 465–476. ACM, 2010.

[66] R. Rabenseifner, G. Hager, and G. Jost. Hybrid mpi/openmp par-
allel programming on clusters of multi-core smp nodes. In Parallel,
Distributed and Network-based Processing, 2009 17th Euromicro Inter-
national Conference on, pages 427–436. IEEE, 2009.

[67] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of Computer
Vision, 115(3):211–252, 2015.

[68] J. Salamon and J. P. Bello. Deep convolutional neural networks and
data augmentation for environmental sound classification. IEEE Signal
Processing Letters, 24(3):279–283, 2017.

[69] K. E. Sanders J. Cuda by example: an introduction to general-purpose
gpu programming., 2010.

[70] S. Sarkar, T. Majumder, A. Kalyanaraman, and P. P. Pande. Hardware
accelerators for biocomputing: A survey. In Circuits and Systems (IS-
CAS), Proceedings of 2010 IEEE International Symposium on, pages
3789–3792. IEEE, 2010.

[71] R. R. Schaller. Moore’s law: past, present and future. Spectrum, IEEE,
34(6):52–59, 1997.

[72] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484–489, 2016.

[73] W. Snyder, P. Wasson, and D. Galbi. Verilator. Direct search methods:
then and now, 2007.

[74] D. J. Sorin, M. D. Hill, and D. A. Wood. A primer on memory consis-
tency and cache coherence. Synthesis Lectures on Computer Architec-
ture, 6(3):1–212, 2011.

[75] J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming
standard for heterogeneous computing systems. Computing in science
& engineering, 12(1-3):66–73, 2010.

� 108 References

[76] J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming
standard for heterogeneous computing systems. Computing in science
& engineering, 12(1-3):66–73, 2010.

[77] P. Sweazey and A. J. Smith. A class of compatible cache consistency
protocols and their support by the ieee futurebus. In ACM SIGARCH
Computer Architecture News, volume 14, pages 414–423. IEEE Com-
puter Society Press, 1986.

[78] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, A. Rabinovich, et al. Going deeper with convolu-
tions. Cvpr, 2015.

[79] Y.-L. Tseng, K.-H. Huang, and B.-C. C. Lai. Scalable mutli-layer bar-
rier synchronization on noc. In VLSI Design, Automation and Test
(VLSI-DAT), 2016 International Symposium on, pages 1–4. IEEE,
2016.

[80] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Fi-
nan, P. Iyer, A. Singh, T. Jacob, et al. An 80-tile 1.28 tflops network-
on-chip in 65nm cmos. In IEEE International Solid-State Circuits Con-
ference, ISSCC 2007, Digest of Technical Papers, San Francisco, CA,
USA, pages 98–99. IEEE, 2007.

[81] O. Villa, G. Palermo, and C. Silvano. Efficiency and scalability of bar-
rier synchronization on noc based many-core architectures. In Proceed-
ings of the 2008 international conference on Compilers, architectures
and synthesis for embedded systems, pages 81–90. ACM, 2008.

[82] Y. Wang, P. Li, and J. Cong. Theory and algorithm for generalized
memory partitioning in high-level synthesis. In Proceedings of the 2014
ACM/SIGDA international symposium on Field-programmable gate ar-
rays, pages 199–208. ACM, 2014.

[83] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal. On-chip
interconnection architecture of the tile processor. IEEE micro, (5):15–
31, 2007.

[84] L. Wirbel. Xilinx sdaccel: a unified development environment for to-
morrows data center. The Linley Group Inc, 2014.

[85] Xilinx. Proven power reduction with xilinx ultrascale fpgas.

References � 109

[86] I. Xilinx. Microblaze processor reference guide. reference manual, 23,
2006.

[87] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Optimizing
fpga-based accelerator design for deep convolutional neural networks.
In Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 161–170. ACM, 2015.

[88] W. Zhu, V. C. Sreedhar, Z. Hu, and G. R. Gao. Synchronization
state buffer: supporting efficient fine-grain synchronization on many-
core architectures. In ACM SIGARCH Computer Architecture News,
volume 35, pages 35–45. ACM, 2007.

	Introduction
	Methodology
	Thesis Structure

	Technical Background
	Parallelism in CPU and the ILP Wall
	Very Long Instruction Word
	Multiprocessor and Thread-Level Parallelism

	Computational Intense Accelerators: GPUs
	GPU Architecture
	GPU Programming Model
	NVIDIA Architecture
	The Programming Model

	Heterogeneous Computing in HPC
	Open-source and FPGA-based Accelerators
	Network-on-chips
	Real on-chip Networks

	Cache Coherence
	Incoherence Issues
	Coherence States
	Coherence Transactions
	Snooping

	Baseline Many-Core Exploration Platform
	Tile Overview
	Design principles
	Core microarchitecture
	Networking System
	Router
	Network Interface

	Configurable Coherence Subsystem
	Cache Hierarchy
	Architectural Details

	Load/Store unit
	Cache Controller
	Stage 1
	Stage 2
	Stage 3
	Stage 4
	Protocol ROM

	Directory Controller
	Stage 1
	TSHR Signals
	Stage 2
	Stage 3
	Protocol ROM

	Exploring Customization
	Motivations
	Related Works
	Convolutional Layer
	Evaluation
	Conclusions

	Customizable Shared Scratchpad Memory
	Motivations
	Related Works
	Architecture
	SPM interface and operations
	Remapping
	Implementation details
	Integration consideration in the baseline GPU-like core

	Evaluation
	Methodology
	Kernels
	Matrix Multiplication
	Image Mean Filter 55

	Conclusion

	Distributed Thread Synchronization
	Motivations
	Related Works
	Centralized solution vs distributed synchronization master
	Architecture
	Barrier Core
	Synchronization Core
	An example of synchronization

	Implementation
	Evaluation
	Simulation

	Conclusions

	Selective coherence in many-core accelerators
	Motivations
	Related Works
	Proposed solution
	Networking Infrastructure and Synchronization Support
	Accelerators
	Coherence sub-system
	Selective coherence deactivation
	Extended MSI protocol

	Experimental evaluation
	Implementation Overhead

	Conclusions

	Conclusion
	Bibliography

