
ABSTRACT

Title of Dissertation: ON EFFICIENT GPGPU COMPUTING
FOR INTEGRATED HETEROGENEOUS
CPU-GPU MICROPROCESSORS

Daniel Gerzhoy
Doctor of Philosophy, 2021

Dissertation Directed by: Professor Donald Yeung
Department of Electrical
and Computer Engineering

Heterogeneous microprocessors which integrate a CPU and GPU on a single

chip provide low-overhead CPU-GPU communication and permit sharing of on-chip

resources that a traditional discrete GPU would not have direct access to. These

features allow for the optimization of codes that heretofore would be suitable only

for multi-core CPUs or discrete GPUs to be run on a heterogeneous CPU-GPU

microprocessor efficiently and in some cases- with increased performance.

This thesis discusses previously published work on exploiting nested MIMD-

SIMD Parallelization for Heterogeneous microprocessors. We examined loop struc-

tures in which one or more regular data parallel loops are nested within a par-

allel outer loop that can contain irregular code (e.g., with control divergence). By

scheduling outer loops on the multicore CPU part of the microprocessor, each thread

launches dynamic, independent instances of the inner loop onto the GPU, boosting

GPU utilization while simultaneously parallelizing the outer loop.

The second portion of the thesis proposal explores heterogeneous producer-

consumer data-sharing between the CPU and GPU on the microprocessor. One

advantage of tight integration – the sharing of the on-chip cache system – could im-

prove the impact that memory accesses have on performance and power. Producer-

consumer data sharing commonly occurs between the CPU and GPU portions of

programs, but large kernel sizes whose data footprint far exceeds that of a typical

CPU cache, cause shared data to be evicted before it is reused.

We propose Pipelined CPU-GPU Scheduling for Caches, a locality transforma-

tion for producer-consumer relationships between CPUs and GPUs. By intelligently

scheduling the execution of the producer and consumer in a software pipeline, evic-

tions can be avoided, saving DRAM accesses, power, and performance. To keep

the cached data on chip, we allow the producer to run ahead of the consumer by

a certain amount of loop iterations or threads. Choosing this ”run-ahead distance”

becomes the main constraint in the scheduling of work in this software pipeline, and

we provide a method of statically predicting it.

We assert that with intelligent scheduling and the hardware and software mech-

anisms to support it, more workloads can be gainfully executed on integrated het-

erogeneous CPU-GPU microprocessors than previously assumed.

ON EFFICIENT GPGPU COMPUTING
FOR INTEGRATED HETEROGENEOUS CPU-GPU

MICROPROCESSORS

by

Daniel Gerzhoy

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2021

Advisory Committee:
Professor Donald Yeung, Chair/Advisor
Professor Bruce Jacob
Professor Ankur Srivastava
Professor Manoj Franklin
Professor Alan Sussman

Acknowledgments

Thank you to all the people who made this possible. First, thank you to my

advisor Donald Yeung for guiding my research. I am a better engineer having worked

under you. Thanks to Ankur Srivastava for being a great professor to TA and grade

for, and a good mentor and advisor on top of that. Thanks to my entire panel for

passing me! And thanks to the entire staff and faculty of the ECE department at

Maryland, and all other staff across the university as well.

Thanks to my peers who worked with my during my time in grad school.

Thanks to Mike Zuzak for helping me in my first year get started on research,

and providing the seed for the beginning of my work. Thanks to Xiaowu Sun for

working with me on the first half of my work, we made a great team. To Devesh

Singh and Candace Walden, thanks for helping me broaden my horizons with our

reading group, and generally just cooperating with lab management with me. It’s

sad my final year with you guys was so remote, but I wish you all the best of luck.

Thank you to my friends and family for keeping me sane and happy during a

challenging half-decade. To my parents Olga and Val for loving me endlessly, and

providing me with an excellent education prior to grad school. To my brother Gene

for being my role-model and pushing me to get my PhD when I was doubting.

ii

Table of Contents

Acknowledgements ii

Table of Contents iii

Chapter 1: Introduction 1
1.1 CPU-GPU Integration Trends and Consequences 1
1.2 Challenges in Optimizing for Integrated GPUs 4
1.3 Contributions . 5

Chapter 2: GPGPU Background 11
2.1 Vendors and Nomenclature . 11
2.2 Programming Model . 12
2.3 GPU Architecture . 14

Chapter 3: Nested MIMD-SIMD Parallelization 19
3.1 Nested MIMD-SIMD Parallelization 20

3.1.1 Code Examples . 24
3.1.2 Speedup Analysis . 31

3.2 Enabling Further SIMD Parallelization 33
3.3 Simulator Study Methodology . 37

3.3.1 Simulator Study Methodology 37
3.3.2 Benchmarks . 39

3.4 Simulator Study Results . 42
3.4.1 Main Result . 42
3.4.2 Performance Breakdown . 46
3.4.3 Processor Utilization and CPU Scaling 54
3.4.4 Concurrent Kernel Execution 57

3.5 Enabling Low-Latency Launch on Hardware 60
3.6 Hardware Study Methodology . 63

3.6.1 Benchmarks . 64
3.7 Hardware Study Results . 66

3.7.1 Simulator Validation . 68
3.8 Related Work . 70
3.9 Conclusions . 74

Chapter 4: Pipelined CPU-GPU Scheduling for Caches 76

iii

4.1 Background . 79
4.1.1 Heterogeneous Cache Coherence 79
4.1.2 Heterogeneous Producer-Consumer Sharing 82
4.1.3 Naive Scheduling . 85
4.1.4 Locality Aware Scheduling . 87
4.1.5 Synchronization Granularity and Control Methods 94
4.1.6 Dependency Patterns . 97

4.2 Methodology . 101
4.2.1 Model Configuration . 102
4.2.2 Driver Stack Architecture . 106
4.2.3 Workloads . 110

4.3 Results . 115
4.3.1 Main Result . 116
4.3.2 Run-Ahead Distance Sensitivity Studies 120
4.3.3 Read-Inclusivity . 139

4.4 Related Work . 145
4.5 Conclusions . 146

Chapter 5: Conclusion and Future Work 149
5.1 Future Work . 152

Bibliography 154

iv

Chapter 1: Introduction

1.1 CPU-GPU Integration Trends and Consequences

When Graphics Processing Units (GPUs) were first created, they were highly

specialized fixed-function accelerators used to perform real-time rendering and other

display-related tasks, typically located on a daughter-card or separate module (but

never on the same die as the CPU). The GPU was a separate accelerator or sub-

computing system used by the the CPU to perform graphics related tasks. As such,

the ecosystem of drivers, operating-system controls, programming techniques, and

supporting software evolved assuming the GPU was a discrete, and not co-equal

system.

As these discrete GPUs advanced, they began to replace some fixed-function

hardware with programmable shader-cores that could be used flexibly for tasks in

the graphics rendering pipeline. It then became clear to the general computing

community that the GPU and its programmable shader-cores could be used for

more than just graphics, and thus General Purpose GPU (or GPGPU) computing

was born [1]. GPGPU computing maps tasks with extremely parallel structures to

execute as ”kernels” on the GPU and ”launches” them to the discrete card using

programming interfaces like Nvidia’s CUDA. On this CPU-GPGPU machine, a Het-

1

erogeneous System, highly parallel code could under the right circumstances achieve

much more performance than that same code executing on a CPU alone. However,

though the systems were used together, the GPU had to be managed as a separate

entity.

Treating the GPU as a separate entity from a software perspective was neces-

sary until recently because these physically discrete GPUs did not provide important

ease-of-use features that CPU hardware had included for many years: cache coher-

ence and a unified virtual memory. The GPU had its own ”main” memory (modern

discrete GPUs still do for performance reasons) which was physically separate from

the CPU main memory. One could not access these addresses from CPU user-code,

and thus data had to be transferred over via explicit copy commands. Coherent

sharing of data between the CPU and GPU was enforced by the same mechanism.

NVidia introduced ”Unified Memory” in the 6th version of CUDA. This made it

possible for the GPU to integrate into the CPU’s virtual memory system, automat-

ically copying data from one physical memory to the other [2]. The integration of

the two systems with this single unified virtual address space remains the norm for

discrete GPUs to this day. It enabled more complex codes to run on the GPU, and

made easier the writing of software for it. However, the physical separation between

the two chips still remained. Though explicit copies could be eliminated, they would

implicitly be executed by the runtime system. The chips still had separate main

memories, and coherence still needed to be managed for tasks requiring complex

data-sharing.

These virtually integrated heterogeneous systems broaden the scope of codes

2

that can be launched to the GPU as kernels, but lacking physical integration they

still face some limitations. To launch a kernel to the GPU, data must be transferred

from the CPU’s physical memory over an external bus (like PCIe) to the GPU’s

physical memory. As the term ”launch” implies, there is a significant latency cost

associated with such an action, and therefore, discrete GPUs require massive or

”coarse-grained” parallelism to amortize their startup latencies and improve on the

performance of the same code executing on the CPU [3].

Since 2011, the trend for processor manufacturers has been to produce hetero-

geneous microprocessors in which a CPU and a GPU are integrated on the same die.

For example, Intel [4] and AMD [5] have done so for x86 processors, and Apple [6]

has done so for ARM-based SoCs. This physical integration provides the CPU and

GPU the ability to share physical resources like main memory and on-chip coher-

ent caches. Utilizing shared resources closely located on chip, the cores are able to

compute on data “in place” either through shared main memory or shared caches

– thus increasing the speed of communication between the cores and eliminating

unnecessary off-chip traffic.

Because integrated GPUs enjoy high-speed communications with the CPU,

the latency overhead of launching kernels to the GPU is decreased. Thus they are

capable of exploiting a finer granularity of parallelism compared to discrete GPUs.

This allows integrated GPUs to accelerate a wider range of loops. Furthermore,

a shared cache between CPU and GPU allows the cores to access the same data

blocks without extra accesses to main memory. Reduced accesses to DRAM have

the potential to decrease the energy usage of workloads running on these types of

3

chips.

The gradual integration of the GPU with the computing system that CPUs

were the center of made using the GPU simpler, less costly in terms of performance,

and gave the GPU access to shared resources.

1.2 Challenges in Optimizing for Integrated GPUs

Together, flexibility to off-load finer-grained loops coupled with enhanced data-

sharing will enable programmers to map and optimize more complex programs onto

integrated CPU-GPU heterogeneous microprocessors. As researchers try to accel-

erate more complex programs, a major challenge will be effectively parallelizing

and optimizing these irregular codes for heterogeneous microprocessors. GPUs are

typically used to accelerate large data parallel loops with regular parallelism. The

conventional approach is to parallelize such loops and schedule them as kernels onto

the GPU one at a time while a single CPU core responsible for launching the ker-

nels idles while the GPU completes the work. Any pre or post-processing done by

the CPU executes entirely before or after the GPU kernel runs. For programs that

contain large regular loops that dominate execution time and workloads meant for

discrete GPUs, this approach works well.

But for more complex programs executing on heterogeneous microprocessors,

running large regular loops one at a time on the integrated GPU can lead to poor

performance, wasted memory accesses, and/or leave potential performance gains on

the table.

4

One problem is that while complex programs do exhibit GPU-friendly loops,

the amount of parallelism can vary significantly. In many cases, individual loops may

contain only modest levels of parallelism. Such smaller loops can still be profitably

off-loaded onto integrated GPUs, especially given the low communication overheads

discussed earlier. But, they may achieve lower speedups, and if executed one at

a time, each loop cannot fully utilize the GPU’s cores [7]. Another problem is

that complex programs tend to contain code with control divergence and irregular

memory access patterns that can perform poorly on GPUs. These irregular code

regions can account for significant portions of execution time. If they are run serially

on a single CPU core, not only are the CPU cores underutilized but also Amdahl’s

law will limit the performance gains that are possible.

A second problem is wasted memory accesses caused by capacity evictions in a

shared cache. When loops are large enough, they will evict data from the cache that

they themselves accessed before they finish executing in full. If this loop produces

data that a subsequent loop consumes, this means that shared data will need to

be fetched into cache multiple times. This wastes energy on DRAM accesses, and

potentially decreases performance. These loops can be any combination or ordering

of dependent CPU loops or GPU kernels.

1.3 Contributions

This thesis makes several contributions to optimizing GPGPU computations

on integrated heterogeneous CPU-GPU microprocessors as part of two overarch-

5

ing techniques. For complex programs containing SIMD loops of smaller sizes we

increase utilization of the cores of heterogeneous microprocessors with a novel par-

allelization technnique, Nested MIMD-SIMD Parallelization. And, for programs

with larger loops that share data between CPU-GPU producers and consumers,

Pipeline Scheduling for Caches takes advantage of the coherent cache system using

a cache-aware software-hardware scheduling technique to keep shared data on-chip.

Nested MIMD-SIMD Parallelization

To solve the first problem and achieve higher performance for complex pro-

grams, it is necessary to expose greater amounts of parallelism such that the GPU

and CPU cores available in a heterogeneous microprocessor are both more fully uti-

lized. On the GPU side, given the problem of smaller regular loops, one way to boost

parallelism is to off-load multiple loops onto the GPU simultaneously when possible.

Recently, researchers have investigated concurrent kernel launch [8, 9] which makes

exposing such multi-kernel GPU parallelism possible. On the CPU side, given the

problem of serial irregular code, parallelizing the irregular code regions so they can

run on multiple CPU cores is needed to address Amdahl’s law. In other words,

heterogeneous parallelism—- or, parallelization of CPU code regions with GPU code

regions—is necessary to achieve high performance.

Chapter 3 will present a new parallelization technique which exploits nested

loop structures in which an inner regularly parallel loop is nested inside an outer

parallel region[10]. The inner loops can be gainfully accelerated and executed on

6

”Single-Instruction, Multiple Data” (SIMD) GPU cores. The outer regions, which

can either be parallel loops or exhibit task-parallelism, could contain irregular code

that performs poorly on GPUs. Thus this outer region is scheduled onto the ”Multi-

ple Instruction, Multiple Data” (MIMD) CPU cores. The technique – called nested

MIMD-SIMD parallelization – achieves the goal of providing both multi-kernel GPU

parallelism and CPU parallelism at the same time, increasing utilization of the chip.

We show this technique commonly increases performance in practice. The

nested loop structure occurs frequently in programs parallelized by OpenMP, where

complex coarse-grained parallel regions often contain smaller fine-grained parallel

loops nested within them that can be executed gainfully on the GPU [11]. And in

some cases where complex parallel code regions contain fine-grained loops with both

regular parallel and serial non-parallel portions, using ”loop fission” we can extract

these serial portions, creating regular parallel loops suitable for acceleration on the

GPU.

Because some of the SIMD regions within the outer MIMD loops are small,

they require low-latency kernel launch. While this is trivial to achieve with a simu-

lator, real hardware lacks the capability to launch kernels without significant launch

latency. For some of the smaller SIMD regions in the programs we evaluared, this

was detrimental to performance. Thus, in order to evaluate our technique on real

hardware we also implemented a low-latency launch system to bypass the uneces-

sary slowdowns imparted on kernel-launch by a GPGPU runtime system that cares

little for launch latencies.

We evaluate seven OpenMP programs on both an Intel Core i7-6700, and on a

7

cycle-accurate simulator, gem5-gpu. The technique was able to speedup performance

of the seven OpenMP programs providing a 16.1x and 8.67x speedup over sequential

computing on a simulator and a physical machine, respectively. Our technique

beats CPU-only parallelization by 4.13x and 2.40x, respectively, and GPU-only

parallelization by 2.74x and 2.26x, respectively. Compared to the next-best scheme

(either CPU- or GPU-only parallelization) per benchmark, our approach provides a

1.46x and 1.23x speedup for the simulator and physical machine, respectively.

Pipelined CPU-GPU Scheduling for Caches

To solve the problem of wasted memory accesses, Chapter 4 proposes Pipelined

CPU-GPU Scheduling for Caches. By scheduling producers and consumers together

in a pipelined fashion, whether they be CPU loops or GPU kernels, a reduction

in superfluous DRAM accesses can be achieved. The pipeline consists of a chain

of two or more producers/consumers which operate in lock-step. The amount of

computation done by each stage per ”epoch” is defined by how far ahead a producer

is allowed to execute ahead of a consumer. This ”run-ahead distance” (RAD),

determines the total cache-footprint of the epoch. If that footprint is larger than

the cache system can sustain, data will be evicted to main memory before it can

be used. When the consumer stage gets to that data, superfluous memory accesses

will occur. Pipelined Scheduling aims to keep the RAD small enough such that this

overflow does not occur, and data stays in the cache system - “in-place” - until it is

reused.

8

The lock-step operation of the pipeline requires fine-grain synchronization,

which the heterogeneous microprocessor provides. Using the GPU model created

by AMD in the new gem5 simulator, including an emulated driver upon which

the real AMD GPGPU driver-stack ROCM relies, we have created a system which

implements this lock-step pipeline in a practical and realistic way. Furthermore,

we have found and adapted seven benchmarks that exhibit this producer/consumer

data relationship using this system.

By varying the RAD, we vary the cache footprint of each producer/con-

sumer relationship, and can observe the benefits of executing these benchmarks

in a pipelined fashion. We show that decreasing the RAD below a certain threshold

drastically decreases the number of DRAM accesses the producer-consumer relation-

ship incurs. This reduces energy usage, and for consumers that are latency sensitive

(CPU consumers) this translates into a performance benefit, and consequently, fur-

ther energy usage reduction.

We evaluated seven GPGPU programs using the new gem5 cycle-accurate

APU simulator. These workloads came both from benchmark suites like Rodinia

aimed at evaluation of traditional GPGPU platforms [12], and those aiming at

evaluating modern collaborative computing models between the CPU and GPU

like HeteroMark [13]. We also evaluated one OpenMP workload evaluated in the

first module. The loop fission transformation we use to extract more parallelism

creates a producer-consumer sharing pattern that we were able to optimize using

our pipelined scheduling technique [10].

Using our technique we were achieved a maximum 27.4% reduction in total

9

DRAM energy averaged across the seven workloads we evaluated. This DRAM en-

ergy savings was a consequence of both a 30.4% reduction in superfluous DRAM

accesses, and a 26.8% reduction in execution time achieved by our techniques intel-

ligent scheduling.

The rest of this thesis is organized as follows. Chapter 2 provides background

on GPGPU architecture and programming models, useful throughout this work.

Chapter 3 presents the contributions related to the first technique we developed,

Nested MIMD-SIMD Parallelization. Chapter 4 proposes the second optimization

technique, Pipeline Scheduling for Caches. Chapter 5 concludes the thesis and

discusses future work.

10

Chapter 2: GPGPU Background

This thesis uses both software and hardware techniques to improve perfor-

mance for Heterogeneous integrated GPU microprocessors. This section will serve

to give a background on General-Purpose GPU (GPGPU) programming models,

programming interfaces, and micro-architecture.

2.1 Vendors and Nomenclature

The GPGPU ecosystem consists of a variety of vendors releasing their own

architectures, application programming interfaces (APIs), and drivers - with their

own nomenclature for each. In this thesis we utilize several platforms for qualitative

evaluations, and as such often encountered differing names for identical or similar

constructs. Table 2.1 shows the vendors, architectures and associated APIs used.

First, Nvidia’s Fermi architecture is associated with their Compute Unified Device

Vendor Architecture API SIMT Core ThreadGroup

Nvidia Fermi CUDA Streaming Multiprocessor (SM) Warp
Intel GEN9 OpenCL Execution Unit (EU) SIMD-Width
AMD GCN3 HIP Compute Unit (CU) Wavefront

Table 2.1: The GPGPU vendors, architectures, APIs, and hardware nomenclatures
used in this thesis. Note that architectures and names change with generation; these
are just examples, though they are the architectures we use in this thesis.

11

Architecture (CUDA) API. Next, Intel’s GEN GPU architecture interfaces with an

Intel-implemented version of the open source OpenCL specification by the Khronos

Group. Finally, AMD’s GCN3 architecture uses Heterogeneous-compute Interface

for Portability (HIP). Though each architecture and API is unique, they are funda-

mentally similar. This chapter will generalize the discussion of micro-architecture

and software interface, referencing specific names when it is relevant to the discus-

sion.

2.2 Programming Model

Since GPUs have unique architectures with distinct instruction set architec-

tures (ISAs) and traditionally GPUs have been located on daughter cards, GPGPU

code must be managed and executed by specialized APIs which interface with the

operating system and drivers. GPGPU software can be understood through three

fundamental constructs: GPU Kernels, Thread-blocks, and Grids.

GPU Kernels. Simply put, the primary use-case of a GPU for general-

purpose compute tasks is to parallelize a loop. Figure 2.1a shows a simple affine

loop adding two arrays together, a perfect candidate for GPU acceleration. To

execute on the GPU the loop is transformed into what is called a ”kernel,” shown

in figure 2.1b, which is akin to function in normal CPU code. However, unlike

a function in CPU code, which is as easy to execute as a branch in the CPU, a

GPU kernel must be ”launched” to the GPU via the API and system calls. Figure

2.1c shows this launch call. Depending on the implementation the launch can pass

12

for (int i = 0 ; i < i t e r a t i o n s ; i++)
C[i] = A[i] + B[i] ;

(a) Affine Loop

g l o b a l void vector add (int ∗A, int ∗B, int ∗C) {
int i = blockIdx . x ∗ blockDim . x + threadIdx . x ;
C[i] = A[i] + B[i] ;

}

(b) Kernel Code

vector add<<<nBlocks , TPB>>>(A, B, C) ;

(c) Kernel Launch

Figure 2.1: GPGPU Code Example

through software queues in both user-space and kernel-space, as well as hardware

queues on the GPU before it is executed. All of this amounts to a certain amount

of latency overhead associated with a GPU call. In order to make transforming a

loop worthwhile, the speedup gained by executing it on the GPU as a kernel, must

be greater than the latency overhead of a launch.

Thread-Blocks and Grids The iterations in the original loop are divided

into a Grid of Thread-Blocks that make up the kernel. Each individual loop itera-

tion is a thread. Thread-Blocks contain a constant number of threads during the

execution of a kernel, and the thread and block id’s that determine array indexing

are accessed through special API calls. Figure 2.2 shows this hierarchy.

13

Figure 2.2: Hierarchy of a kernel: A kernel is comprised of a grid which contains
thread-blocks, which are groups of individual threads.

2.3 GPU Architecture

Whereas a CPU is capable of executing a single complex branch-divergent

instruction stream efficiently, GPGPUs are throughput-oriented processors capa-

ble of massive parallelism for simpler less branch-divergent codes. They exhibit

high instruction-throughput, much more memory-level parallelism, and have higher

memory bandwidth requirements than CPUs. GPU kernels typically have limited

temporal locality which encourages GPU caches to be small relative to the total

number of threads GPUs are capable of executing simultaneously [14].

Compute Units. Figure 2.3 shows the structure of a GPU. GPUs are orga-

nized into groups of Compute Units (CUs). Each compute unit contains a number

of Single Instruction, Multiple Data (SIMD) functional units that are the source of

the GPUs ability to execute massive amounts of compute simultaneously. However,

GPUs are not just a SIMD architecture. Instead CUs employ a Single Instruction,

Multiple Threads (SIMT) paradigm, where individual threads execute in lock-step.

14

Figure 2.3: GPU containing Thread-block dispatcher and Compute Units (AMD
Nomenclature) . Nvidia and Intel equivalents would be ”Streaming Multiproces-
sor”(SM) and ”Execution Unit” (EU).

15

When one of these groups encounters a stall due to memory access, the CU’s SIMT

scheduler simply schedules a new group to execute while the first group waits for

the memory system to return the required data, akin to a context switch. A CU

can thus hide memory latency with extreme effectiveness, making GPGPUs very

tolerant to memory system latency. Table 2.1 presents the different names for these

SIMT cores for different vendors. Compute Units are an AMD term, Execution

Units for Intel, and Streaming Multiprocessor for Nvidia.

There are several names for the groups of threads executing in lock-step as

well. In Table 2.1 these equivalent terms are AMD wavefronts, Nvidia warps, and

Intel SIMD-widths, and they vary in size from architecture to architecture. For

simplicity we will refer to them as ”warps” in this chapter and the scheduler the

schedules them the ”SIMT Scheduler.”

Not all codes executed on the GPU are as affine and simplistic as the example

in figure 2.1. When intra-warp branch-divergence occurs, i.e. an If-Else statement

where individual threads within a warp take different paths, the warp must serialize

execution. The scheduler masks off the diverging threads, only executing the threads

that branch together simultaneously. This serialization is a serious blow to the

throughput of the GPU, and it is advisable to avoid as much as possible. However,

it is important to note that while it is a performance hit a GPU is capable of

executing such code. This is one of the things that distinguishes the GPU’s SIMT

architecture from SIMD architectures.

Each thread-block that makes up a kernel’s grid is likewise comprised of a

number of these warps, and thus a thread-block serves as a pool of warps from

16

which the CU’s SIMT scheduler may schedule work to the functional units.

The GPU also performs best when memory accesses from a single warp access

contiguous memory addresses, that way accesses to the same cache-line can be ”coa-

lesced,” reducing pressure on the cache system. When warps within a thread access

different cache lines, this is called ”memory divergence” and can impact performance

negativily, just as intra-warp control flow divergence does.

Thread-block Dispatcher. Each thread-block is scheduled to an individual

compute unit by a dispatcher unit whose job it is to decide where each block goes and

how many get to execute per CU. A block may only be dispatched to a CU if there

is room for it. The SIMT scheduler has a limited number of slots, i.e. the number of

warps it can context switch between. Additionally, the CU has a limited number of

shared physical resources like registers and shared memory. Each kernel has unique

usage characteristics determined by the code and compiler. The dispatched takes

into account these differences to schedule the blocks.

Memory System. A GPU’s memory system must be able to keep up with

the extreme memory-level parallelism of the CUs. Discrete GPUs have specially de-

signed high-bandwidth DRAM [15], and high-bandwidth low-capacity caches. Each

compute unit can have several different types of caches. Instruction caches are often

shared by multiple CUs owing to the limited number of instructions needed across

the GPU.

Early GPGPU had only explicitly managed scratch-pad memories to act as

caches with coherence likewise manually managed by the programmer. Scratch-pad

memories live on as explicitly managed ”Local” memory (Local in the context of

17

a single thread-block). However, modern GPUs access ”global memory” through

a coherent cache hierarchy shown in the figure. We go into detail about GPU

coherence as it relates to our work in chapter 4.

18

Chapter 3: Nested MIMD-SIMD Parallelization

This chapter presents our parallelization scheme for heterogeneous micropro-

cessors based on nested parallelism: Nested MIMD-SIMD Parallelization. We exploit

the features of modern heterogeneous microprocessors that integrate a GPU with a

CPU, to map more complex codes compared to the traditionally massively parallel

codes that have run on GPUs in the past. By utilizing low-cost communication pro-

vided by the GPU’s on-chip proximity to the CPU, we enable smaller SIMD loops

to be gainfully executed on the GPU as kernels. Concurrent kernel launch feeds

multiple the GPU work from multiple parallel CPU threads, increasing the spatial

utilization of the GPU for SIMD loops too small to fill the GPU on their own. Our

technique benefits codes with larger SIMD loops and substantial CPU work by al-

lowing the parallel CPU threads to take turns running kernels on the GPU, while

they themselves execute their code, increasing the temporal utilization of the GPU.

The rest of this Chapter follows as so: Section 3.1 introduces our nested

MIMD-SIMD parallelization technique. Then, Section 3.2 presents a loop fission

transformation that exposes more opportunities to offload kernels onto the GPU.

Section 3.3 discusses the experimental methodology of our simulation study, with

Section 3.4 presenting the simulation results. Section 3.5 presents a low-latency

19

launch system we developed in order to realize our technique on real hardware.

Next, Sections 3.6 and 3.7 provide the methodology and results, respectively, of

hardware study. Finally, Section 3.8 discusses related work, and Section 3.9 con-

cludes the chapter.

3.1 Nested MIMD-SIMD Parallelization

The kinds of workloads traditionally used to evaluate GPU performance spend

the majority of their time on massive data parallel loops [12, 16], with comparatively

little code outside of these data parallel regions that make up a significant portion

of execution time. These loops are off-loaded or ”launched” to the GPU as GPU

”kernels”, incurring a latency overhead. On discrete GPU platforms, this launch

latency overhead is high and thus the kernels must have massive parallelism in

order for the reduction in execution time achieved by running on the GPU to be

larger than the overhead. These massively parallel GPU kernels fully utilize all of

the thread-contexts of the GPU, and thus can be launched sequentially, i.e.one at

a time, onto the GPU.

Figure 3.1a illustrates this single-loop SIMD parallelization scheme wherein

the program starts running code serially in a single CPU thread, launches a kernel

to the GPU, and stalls while that kernel executes. In traditional workloads, the

amount of time spent on the off-loaded loop, WSIMD is much larger (i.e. nthreads

in Figure 3.1a is large) than the time spent on the other code regions, WMIMD.

The large nthreads contributes to large speedups attained on the (discrete) GPU,

20

. . .

a). Single-Loop SIMD Parallelization

nthreads

W
S

IM
D

WMIMD

tim
e

cores

. . .

. . .

b). Nested MIMD-SIMD Parallelization

. . .

Thread ForkCPU Thread

Thread StallGPU Thread

cores

Figure 3.1: CPU and GPU concurrency from a). single-loop SIMD parallelization
and b). nested MIMD-SIMD parallelization. WSIMD is the amount of work in each
loop parallelized for the GPU, WMIMD is the amount of work outside of each GPU
loop, and nthreads is the number of GPU threads from each GPU loop.

as the kernel can effectively utilize the GPU’s parallel hardware. This relative

size difference between WSIMD and WMIMD means that serially executing the code

outside of the GPU loops, i.e.the CPU completes its work after the GPU finishes,

does not degrade performance much.

In this work, we make an attempt to move away from traditional GPU work-

loads with their relative simplicity and raw parallelism, to map more complex and

irregular programs. For one, the programs we investigate can contain SIMD loops

with smaller amounts of work, or small WSIMD. Normally, transforming such loops

into kernels and executing them on discrete GPUs would result in performance

degradation due to the launch overhead. On integrated GPUs that provide low-cost

communication, gainfully off-loading these finer-grained loops becomes possible.

In addition to having smaller WSIMD, these non-traditional workloads that we

target may have small-sized regular loops that when transformed into GPU kernels

will have small nthreads. Thus, individual instances of these small loops may not

21

exhibit sufficient parallelism to fully utilize the GPU. As we discuss in Chapter

2, GPUs consist of streaming multiprocessors or SMs1 that are SIMT cores that

employ hardware multithreading to schedule many threads to their many hardware

thread-contexts. If the SM is not provided enough threads by the kernel to fully

occupy all of its hardware contexts, then those contexts are left idle; in other words,

spatial underutilization occurs. Thus, under single-loop parallelization, one small

GPU kernel does not fully exploit all of the compute capability that the GPU has

available, and may leave potential gains on the table.

Another issue with traditional single-loop SIMD parallelization of the more

complex programs we are interested in is that they can spend more of their execution

time on the non-GPU portions of the code, i.e.WMIMD ≈ WSIMD. Much of code in

these more complex regions can cause intra-warp thread divergence making them ill

suited for execution on the GPU, as this will serialize the executing warps. Under

single-loop parallelization, these complex regions of code are limited by Amdahl’s

Law and gain no benefit from executing on a multi-core chip like the one we are

interested in. This leaves the CPU hardware underutilized and performance gains

from CPU multithreading unclaimed. Further, when these non-SIMD regions are

executing, the GPU is left idle until the end of the WMIMD period - in other words,

temporal underutilization occurs.

To enable gainful utilization on GPUs for more complex and irregular pro-

grams, our work explores the exploitation of different types of parallelism from

multiple code structures simultaneously– in other words heterogeneous parallelism.

1Also known as Compute Units and Execution units. See Table 2.1.

22

Our approach executes SIMD code appropriate for SIMD hardware on the GPU, in

concert with executing non-SIMD parallel code (that is, irregular, MIMD code) on

the MIMD CPU cores. One code construct that can provide such heterogeneous par-

allelism is nested parallelism. Within the more complex programs we are interested

in, we look for regular parallel loops nested within an irregular outer loop,or other

parallel structure such as a task-parallel work queue. We call our new parallelization

technique nested MIMD-SIMD parallelization.

Figure 3.1b illustrates our technique. Like Figure 3.1a, the program begins

execution serially on a host thread. When the code reaches a nested MIMD-SIMD

loop, it spawns multiple threads and schedules them to the other cores of the CPU

corresponding to the iterations of the irregular outer loop. Again, the irregularity

of these regions means that they cannot be gainfully executed in their totality on

the GPU due to characteristics like data-dependent control statements and other

irregular code structures that perform poorly on the GPU. However, when these

threads reach the SIMD regions of code nested within the MIMD outer loops, each

thread launches a kernel to the GPU, allows it to run to completion, and then

returns to executing irregular code. Such nested MIMD-SIMD parallelization can

increase the performance of heterogeneous microprocessors in two possible ways.

First, launching multiple dynamic GPU kernels from each CPU thread provides

more parallelism that boosts the GPU’s spatial and temporal utilization. Second,

the portions of the code outside of the SIMD regions (WMIMD) execute in parallel

on the multi-core CPU, where they would otherwise have been executed serially

under single-loop SIMD parallelization.

23

#pragma omp parallel for private(i, j, k, rij, d)

for (i = 0; i < np; i++) {

 for (j = 0; j < nd; j++)

 f[i][j] = 0.0;

 for (j = 0; j < np; j++) {

 if (i != j) {

 d = 0.0;

 for (l = 0; l < nd; l++) {

 rij[l] = pos[i][l] - pos[j][l];

 d += rij[l] * rij[l];

 }

 d = sqrt(d);

 pot += 0.5*((d < PI2) ? pow(sin(d), 2.0) : 1.0);

 for (k = 0; k < nd; k++) {

 f[i][k] = f[i][k] - rij[k]*((d < PI2) ?

 (2.0 * sin(d) * cos(d)) : 0.0)/d;

 }

 }

 }

 kin = kin + dot_prod(nd, vel[i], vel[j]);

}

a). MD

LOOP0, 4096 iter

LOOP2, 4096 iter

LOOP3, 3 iter

LOOP4, 3 iter

LOOP5, 3 iter

LOOP1, 3 iter

Figure 3.2: Code example from the MD bemchmark exhibiting opportunities for
nested MIMD-SIMD parallelization. Our technique schedules the parallel outer
loops (OpenMP pragmas) on CPUs, and the parallel inner loops (shaded boxes) on
GPUs.

3.1.1 Code Examples

We conducted a survey of several programs, looking for hierarchical heteroge-

neous parallelism for our technique to exploit. We found that OpenMP programs

often provide the kind of parallel code structures and characteristics that nested

MIMD-SIMD parallelization exploits. Using OpenMP, programmers can conve-

niently annotate code with compiler directives to parallelize code for CPUs and

24

b). FFT6

LOOP6, 8192 iter
LOOP7, 8192 iter

LOOP8, 13 iter

LOOP9, 1-4096 iter

LOOP10, 1-4096 iter

void cffts(complex *a, ...) {

 #pragma omp parallel for private(i)

 for (i = 0; i < n; i++) {

 fft(&a[i*n], brt, w, n, logn, ndv2);

 }

}

int fft(...) {

 for (i = 0; i < n; i++) {

 j = brt[i];

 if (i < (j-1)) {

 swap(a[j-1], a[i]);

 }

 }

 for (stage = 0; stage < logn; stage++) {

 for (powerOfW = 0; powerOfW < ndv2;

 powerOfW += spowerOfW) {

 for (i = first; i < n; i+= stride) {

 j = i + ijDiff;

 jj = a[j];

 ii = a[i];

 temp.re = jj.re * pw.re - jj.im * pw.im;

 temp.im = jj.re * pw.im + jj.im * pw.re;

 a[j].re = ii.re - temp.re;

 a[j].im = ii.im - temp.im;

 a[i].re = ii.re + temp.re;

 a[i].im = ii.im + temp.im;

 }

}

Figure 3.3: Code example from the fft6 benchmark exhibiting opportunities for
nested MIMD-SIMD parallelization. Our technique schedules the parallel outer
loops (OpenMP pragmas) on CPUs, and the parallel inner loops (shaded boxes) on
GPUs.

25

#pragma omp for private (k,m,n, gPassFlag)

for (ij = 0; ij < ijmx; ij++) {

 gPassFlag = match(...);

}

int match(...) {

 while (!matched) {

 for (j = 0; j < 9 && !flres; j++) {

 compute_values_match(...);

 }

 }

}

void compute_values_match(...) {

 LOOP14 { }, 10000 iter

 LOOP15 { }, 10000 iter

 LOOP16 { , 10000 iter

 LOOP17 { }, 1000 iter

 }

 LOOP18 { }, 10000 iter

 LOOP19 { , 1000 iter

 LOOP20 { }, 10000 iter

 }

 LOOP21 { }, 1000 iter

}

c). 330.art

LOOP12, 9 iter
LOOP11, 2480 iter

LOOP13, 9 iter

Figure 3.4: Code example from the 330.art benchmark exhibiting opportunities
for nested MIMD-SIMD parallelization. Our technique schedules the parallel outer
loops (OpenMP pragmas) on CPUs, and the parallel inner loops (shaded boxes) on
GPUs.

26

GPUs [11]. The ease of use has made OpenMP one of the most popular program-

ming environments, and so there are numerous OpenMP programs in existence.

OpenMP programs which parallelize for the GPU are a relatively recent develop-

ment compared to OpenMP for CPU parallelism, and as such there are fewer exam-

ples. Regardless, these GPU OpenMP workloads would be functionally similar to

workloads coded in CUDA et al. and would similarly be prone to the same kind of

single-loop SIMD parallelism that we wish to avoid. For these reasons, we focused on

investigating OpenMP programs for CPUs. Many of these parallel CPU programs

parallelize complex loop nest structures that would be challenging or impossible to

accelerate on GPUs. Thus, with these complex CPU workloads, we begin with only

half of the kind of parallelism we are looking for, it having been exposed by the

programmer. But, by looking more closely we find the other half, regular loops,

nested within those complex structures if they exist.

Figures 3.2, 3.3, and 3.4 present three examples of programs that exhibit nested

MIMD-SIMD parallelism, MD, FFT6, and 330.art, respectively. MD and FFT6 are

from the OpenMP source code repository [17], and 330.art is from the SPEC OMP

2001 benchmark suite [18]. In each example, we show a loop nest structure where

the outer loop is explicitly parallelized by a “#pragma omp” compiler directive.

The iterations of these outer-most loops are the source of the CPU parallelism that

we exploit in our technique– in other words the outer loop iterations are executed

in parallel on the CPU. We also show all of the loops nested within the outer loops,

labeling each of these nested loops, and indicate their iteration counts. The regular

loops with SIMD characteristics are highlighted in shaded boxes (for 330.art in

27

Figure 3.4, inside the “compute values match()” function, there are eight loops –

we omit their contents to fit them all in the figure).

The inner loops showcased in these examples have some interesting character-

istics that are relevant to our technique. First, as previously discussed, the number

of loop iterations is an important factor to consider. When a loop is transformed

into a GPU kernel, the number iterations in the loop translates directly to nthreads.

Thus, if a loop has a trivial number of iterations, like LOOP3 at three iterations,

the resulting kernel will have only 3 total threads. This will not be nearly enough

parallelism to fully utilize the thread contexts on any GPU. The GPUs we evaluate

in Sections 3.4 and 3.7 have 24,000 and 5,000 hardware thread-contexts, respec-

tively. Additionally, small thread-count will typically mean small WSIMD, so these

small loops will not have enough execution time to mitigate the impact of launch

overhead. (The relationship between nthreads and WSIMD is not a hard and fast

rule, but for the programs we evaluate, the relationship holds).

Another characteristic of the loops in these examples relevant to our discus-

sion here is irregularity. As we discuss in Chapter 2, Irregular loops, i.e.those with

control flow-divergence or memory divergence, can perform poorly on the GPU.

LOOP2 and LOOP7 in Figures 3.2 and 3.3 for instance both exhibit control-flow

divergence. LOOP2 however, is nevertheless transformed into a kernel in our eval-

uation, while LOOP7 is passed over. This is due to the number of control flow

divergences. LOOP2 will only have one thread diverge per kernel launch so that

only one warp in the entire grid will have to serialize. Meanwhile, LOOP7’s con-

trol flow divergence is data dependent, rather than iteration dependent, and thus

28

could cause many serializations to occur. Other loops in the programs we studied

exhibit memory divergence. LOOP10 in Figure 3.3 has strided array accesses, and

thus experiences some performance degradation as well, though ultimately it can be

gainfully executed on the GPU.

In summary, criteria for loops to be gainfully executed on the GPU are: enough

nthreads to fully utilize the GPU, large enough WSIMD to overcome launch latency,

minimal control-flow divergence to prevent warp-serialization, and minimal memory

divergence to minimize the number of memory requests to the cache memory system.

Programs with nested MIMD-SIMD parallelism can have many nesting levels,

with nesting occurring across function calls, and SIMD loops can be found anywhere

in the hierarchy. FFT6 and 330.art (Figures 3.3 and 3.4) are examples of this.

In FFT6, the outer loop parallelizes 8192 iterations, with each calling the “fft”

function in parallel. Inside the “fft” function, the SIMD loop is found under two

more layers of loops. In 330.art, the SIMD loops (LOOP14, LOOP15, LOOP17,

and LOOP18) are found under not one, but three layers of functions and loops.

This has a number of implications for nested MIMD-SIMD parallelization. First,

the SIMD loops (the GPU kernels) can execute multiple times in a single outer loop

thread, presenting opportunity for temporal utilization of the GPU. Second, complex

nesting structures nested within the outer loop contribute to a larger WMIMD from

Figure 3.1. Again, as evidenced by LOOP7 and LOOP12, many of these regions

contain control-flow divergence that cannot be gainfully executed on the GPU, and

therefore are part of WMIMD. Under single-loop SIMD parallelization, WMIMD

would not be parallelized, and performance gains would be limited due to Amdahl’s

29

Law. This is the WMIMD ≈ WSIMD problem alluded to in Figure 3.1.

In the OpenMP programs we evaluated, we found that parallel loops nested

within an explicitly parallelized outer loop were a fairly common feature.2 Given

that some of these parallel inner loops can be executed gainfully on the GPU for the

reasons we outline, these OpenMP programs commonly provide the kind of hetero-

geneous nested MIMD-SIMD parallelism that our technique seeks. By leveraging

CPU parallelism, we can launch multiple instances of these inner loops on the GPU

at the same time (if they have sufficiently small nthreads), increasing spatial uti-

lization of the GPU. In cases where one SIMD loop (GPU kernel) fully utilizes the

GPU’s thread-contexts, other outer loop iterations will inevitably spread out tempo-

rally, executing their SMIMD computations in parallel to the GPU’s execution of the

kernel and other CPU threads. This addresses Amdahl’s Law and also continually

feeds the GPU with work, increasing temporal utiliation.

As we uncover parallelism in these OpenMP programs, for our technique to

be successful we must carefully choose the loops that we transform into kernels and

launch to the GPU. As we have discussed, some loops have small nthreads and/or

irregular code that can cause the resultant GPU kernels to exhibit a slowdown

when executed on the GPU. However, this is difficult to quantify just by code

inspection. Whereas CPU parallelism can generally be assumed to provide linear

speedup with the number of cores utilized, GPU speedup is more complex. Launch

overhead, branch divergence, memory divergence, utilization, register usage, and

2By parallel, we mean the nested loop either has no cross-iteration dependences, or it computes
a reduction.

30

more can have significant effects on the throughput of a GPU kernel. Thus, to

determine if a loop can be gainfully executed on the GPU, it must be directly

assessed by executing it as a kernel on the GPU. This assessment could be performed

statically or dynamically. For example, a dynamic assessment may employ inspector-

executor techniques to decide at runtime whether or not to off-load (the program

could compile two versions of the loop: one CPU loop, and one GPU kernel launch).

Dynamic assessment could save programmer effort, be more adaptable to changes at

runtime, and be more modular across varying architectures. In our work, we employ

a static approach. We manually determine which inner loops to launch to the GPU

as kernels and do not adapt at runtime.

3.1.2 Speedup Analysis

We also wish to quantify the potential speedups of nested MIMD-SIMD par-

allelization. With the CPU and GPU working in concert, their individual speedups

will combine. Let us consider an OpenMP region’s execution time, T , when exe-

cuted fully on a single CPU thread (i.e.no CPU or GPU parallelism), that we wish

to speed up with our technique. Assume that applying MIMD parallelism to the

OpenMP region (the outer loop) will result in a speedup of SMIMD. Next, let us

assume that the execution time of the SIMD loop(s) inside the region is a fraction of

the serial execution time: fSIMD (fSIMD is related to WSIMD

WSIMD+WMIMD
from Figure 3.1,

but is based on execution time rather than computational work). Then, if we apply

SIMD parallelism to the fSIMD, we assume we will achieve SSIMD speedup. By

31

applying the combination of the two types of parallelism, i.e.nested MIMD-SIMD

parallelization, we can estimate overall speedup as:

Speedup =
T(

T×(1−fSIMD)+
T×fSIMD
SSIMD

SMIMD

) =
SMIMD

(1− fSIMD) + fSIMD

SSIMD

(3.1)

To combine the two speedups into one, the above equation is similar to Amdahl’s

Law. Just as Amdahl’s Law applies speedup to only the portion of the code that is

parallel, the unsimplified equation applies SSIMD to only the fraction of the execu-

tion time spent on SIMD code, fSIMD. (resulting in the execution time of single-loop

SIMD parallelism). Then, given that GPU accelerated execution time SMIMD is ap-

plied.

Equation 3.1 is not perfect at predicting the speedup of our technique; instead

serves as an upper bound estimate of speedup. As we have discussed, our technique

boosts GPU utilization by launching multiple kernels dynamically from multiple

CPU threads. Equation 3.1 takes this into account via the multiplication of SMIMD

with the entirety of 1

(1−fSIMD)+
fSIMD
SSIMD

. However, this assumes that all of the kernels

from each CPU thread can fit onto the GPU, which is not always the case. For

example, two kernels with nthreads greater than the number of available hardware

thread contexts on the GPU would cause contention for those contexts if launched

simultaneously– simply put, the GPU will be full. However, if fSIMD is low enough

that the GPU is not always occupied during one thread’s execution, other threads

may fill that time with their kernels, boosting temporal utilization and overcoming

32

the spatial contention caused by too high of an nthreads value. Another issue

that may cause deviation from the ideal of Equation 3.1 is contention for cache

resources. When the working sets from multiple threads of execution combine,

this can sometimes cause thrashing if the combined working sets are too large. In

our evaluation, we see examples of these deviations from the estimated speedup.

Nevertheless, the above equation still provides valuable intuition on the expected

gains.

3.2 Enabling Further SIMD Parallelization

In our study of OpenMP workloads to identify nested MIMD-SIMD paral-

lelism, we came across some examples where all of the nested loops in the region

were serial, i.e. they had cross-iteration dependences, and thus could not execute

on the GPU. In some cases, this was the point at which we would move on to

other workloads. In others, however, while a nested loop had some cross-iteration

dependences, it also had regular data parallel computations independent of those

dependent computations. One potential reason for this is that arrays are ubiqui-

tous, and computations on them are often SIMD in nature–i.e., the same operation

is performed on every array element. A programmer may, if he or she has no in-

tention of parallelizing the SIMD computations, write a single loop that combines

the SIMD and serial computations (after all, one loop is easier to write than two).

We can extricate the regular parallel computations from the serial ones, creating two

separate loops. This loop fission results in both MIMD and SIMD parallelism for

33

 for (j = 1; j <= m; j++) {

(1) f -= gh;

(2) t = hh - g - gh;

(3) if (f < t) f = t;

(4) DD[j] -= gh;

(5) t = HH[j] - g - gh;

(6) if (DD[j] < t) DD[j] = t;

(7) hh = p + matrix[(int)ia[i]][(int)ib[j]];

(8) if (hh < f) hh = f;

(9) if (hh < DD[j]) hh = DD[j];

(10) if (hh < 0) hh = 0;

(11) p = HH[j];

(13) HH[j] = hh;

(14) if (hh > maxscore) maxscore = hh;

 }

 for (j = 1; j <= m; j++) {

 DD[j] -= gh;

 t = HH[j] - g - gh;

 if (DD[j] < t) DD[j] = t;

 hh = p + matrix[(int)ia[i]][(int)ib[j]];

 p = HH[j];

 HH_temp[j] = hh;

 // HH[j] = hh; (value coalescing)

 }

 for (j = 1; j <= m; j++) {

 f -= gh;

 t = hh - g - gh;

 if (f < t) f = t;

 hh = HH_temp[j];

 // hh = HH[j]; (value coalescing)

 if (hh < f) hh = f;

 if (hh < DD[j]) hh = DD[j];

 if (hh < 0) hh = 0;

 HH[j] = hh;

 if (hh > maxscore) maxscore = hh;

 }

Figure 3.5: Loop fission performed on an inner loop from the 358.botsalgn bench-
mark. The transformation produces a regular parallel loop (shaded box) that can
be off-loaded to the GPU, and a serial loop that remains on the CPU.

our technique to exploit.

To carry out loop fission, we identify the code statements that do and do not

participate in the loop-carried dependences within the loop and separate them into

two groups. We then copy the loop header from the original loop to each of these

groups, and form two new loops, one SIMD and one serial, each which performs the

same number of iterations as the original loop. Loop fission has been used before

to extract parallelism from non-parallel loops [19], sometimes for vectorization

purposes [20]. Our technique similarly extracts code meant to be transformed into

34

GPU kernels and launched to the GPU. In our work, we perform this transformation

manually.

Figure 3.5 illustrates our loop fission transformation. In the figure, we show

a code example taken from the 358.botsalgn benchmark which is part of the SPEC

OMP 2012 benchmark suite [21]. The left half of the figure shows the original,

untouched, serial loop that is nested inside an OpenMP parallel region (the rest of

the OpenMP loop is not shown). This loop computes the result of two arrays “DD”

and “HH.” “DD” can be computed entirely in parallel since its computations (lines

#4 and #6 of Figure 3.5) have no loop carried dependences. The computation of

“HH,” on the other hand, is on the whole serial. The first part of its computation

which produces the temporary scalar “hh” (line #7) is parallel. The conditional

update of that initial value (line #8) is serial because it depends on “f,” which in

turn depends on all previously computed “hh” values (lines #2 and #3). Thus,

even though it has parallel computations, on the whole this loop is serial.

The right half of Figure 3.5 shows the result of the loop fission transforma-

tion: two loops. The first loop, in a shaded box, is a regular data-parallel loop

now amenable to kernel transformation and execution on the GPU. It contains the

computation of “DD” and the parallel portion of “HH.” The loop below it is the

serial loop that must be executed on the CPU. Notice that there is an additional

array called “HH temp.” Since we split the computation of the “HH” into two parts,

parallel and serial, the intermediate result (that of the parallel portion of the com-

putation) must be communicated from one loop to another. We use “HH temp” for

this purpose.

35

Unfortunately, there is no free lunch. Using a temporary array to enable

parallelism increases the overall data footprint of our two new loops when compared

to the original loop. Previous work [22] has proposed value coalescing which can

eliminate this extra memory overhead. Value coalescing utilizes free array elements

already in the loop structure to communicate intermediate values rather than using

a new array. For example, in Figure 3.5, once used in the parallel loop, each “HH”

array element (“HH[j]”) can be used to pass the intermediate value to the serial

array instead of the temporary array, eliminating the memory overhead. The two

commented lines of code in Figure 3.5 illustrate this value coalescing optimization.

Though it is a good tool to have, value coalescing cannot always be applied.

The cases where it cannot be must utilize temporary arrays to pass data between

parallel and serial loops generated by loop fission. Fortunately, the benefits of

GPU acceleration outweighed the added overhead from the temporary array for the

benchmarks we evaluate in Section 3.4, and the loop fission transformation was

profitable. In general though, profitability of loop fission should be evaluated on a

case-by-case basis.

Finally, we note that the temporary variable resultanting from the loop fission

transformation we present here constitutes a producer-consumer relationship be-

tween the parallel loop (the producer) and the serial loop (the consumer). Once the

parallel loop is transformed into a kernel, this relationship becomes heterogeneous.

In Chapter 4, we evaluate how heterogeneous producer-consumer data sharing such

as this can utilize the shared cache system of an integrated heterogeneous CPU-

GPU microprocessor efficiently to communicate shared data on-chip. Indeed, one

36

of the benchmarks we evaluate for nested MIMD-SIMD parallelism, 372.SmithWa

[21], is used to evaluate the locality transformation we discuss in Chapter 4.

3.3 Simulator Study Methodology

The rest of this chapter presents the results of our quantitative evaluation of

our nested MIMD-SIMD parallelization technique. First, we perform an evaluation

using the cycle accurate gem5-gpu simulator [23], and gain a deep understanding

of our technique’s performance. We follow that with an evaluation on a physical

machine, demonstrating that our technique also works on a real integrated CPU-

GPU platform.

3.3.1 Simulator Study Methodology

CPU GPU

Number of cores 4 Number of SMs 16
Clock rate 2.6 GHz Clock rate 900 MHz
Issue width 8 Number of SPs per SM 32
Issue queue size 64 Warp size 32
Reorder buffer size 192 Maximum warps per SM 48
L1 I/D cache (private) 32 KB/64 KB L1 cache (private per SM) 128 KB
L2 cache (private) 2 MB L2 cache (shared by all SMs) 2 MB

Main Memory

Each channel 64-bit, 1.848 GHz, DDR3
Total bandwidth, 4 channels 110 GB/s

Table 3.1: Simulation parameters used in the experiments. The modeled heteroge-
neous microprocessor resembles an Intel integrated chip containing a Core i7 CPU
and an Iris Pro Graphics 580 GPU.

Table 3.1 presents the configuration we use for the gem5-gpu simulator. We

model a heterogeneous CPU-GPU chip with four out-of-order superscalar CPU cores

37

and a 2-level cache hierarchy. The GPU contains 16 streaming multiprocessors

(SMs), each with a warp size of 32 threads, at 48 maximum warps per SM, leading

to 16∗32∗48 = 24, 576 concurrent thread-contexts in total. We employ the “fusion”

configuration in which the CPU and GPU enjoy a unified shared address space visible

from both types of cores. Coherence is also maintained between the CPU and GPU

L2 caches by a MOESI cache coherence protocol, and all the cores share a DDR3

main memory system.

The configuration in 3.1 was chosen to be similar to an Intel heterogeneous

microprocessor–e.g. a Core i7 CPU with an Iris Pro Graphics 580 GPU [24]. How-

ever, gem5-gpu models Nvidia GPU micro-architecture, so slight differences occur.

The simulator executes C code on the CPU and CUDA code on the GPU. Though

execution of OpenCL code was possible, the implementation in gem5-gpu was less

mature than that of CUDA, limiting what we could do with it. For example, the

OpenCL implementation did not support “fusion” mode for unified shared address-

ing which is important to the accurate evaluation of integrated CPU-GPU micro-

processors.

As we have discussed, low-latency kernel launches are important to gainful

acceleration of regular loops as kernels on the GPU. To this end we made a few

modifications to the simulator to support low latency launches. We set the launch

latency to 4.5 µs, a fairy aggressive target reported in the literature [25]. We also

consider even lower launch latencies for benchmarks with higher launch latency

sensitivity.

We also modifed the simulator to support simultaneous GPU kernel launches

38

from different CPU threads. As previously discussed, our technique boosts spatial

utilization of the GPU by launching multiple kernels from multiple CPU threads,

and an inability to do so would be detrimental to performance. We examine the

effects of this concurrent kernel launch in Section 3.4.4.

Benchmark Suite Input # SIMD Lines Changed Sim

MD OMP repo 4096 1 69 1.65
FFT6 OMP repo 8192 1 60 1.83
330.art OMP2001 ref 4 158 3.15
358.botsalgn OMP2012 ref 2 191 4.82
359.botsspar OMP2012 ref 3 92 60.4
367.imagick OMP2012 ref 1 38 21.4
372.smithwa OMP2012 ref 1 68 1.47

Table 3.2: OpenMP programs used in the experimental evaluation. Simulated in-
struction counts, labeled “Sim,” are reported in billions.

3.3.2 Benchmarks

Using our modified gem5-gpu simulator, we evaluate nested MIMD-SIMD par-

allelization. We surveyed several OpenMP benchmarks across different benchmark

suites to identify those benchmarks that exhibit the nested parallel structures our

technique targets. About half the benchmarks we surveyed exhibited such nested

parallel structures. This yielded seven benchmarks, which are listed in Table 3.2.

The benchmarks are MD and FFT6 from the OpenMP source code repository,

330.art from the SPEC OMP 2001 suite, and 358.botsalgn, 359.botsspar, 367.imag-

ick, and 372.smithwa from the SPEC OMP 2012 suite. Input sizes of N = 4096

particles and N = 8192 points were used for MD and FFT6, respectively. For all of

the SPEC benchmarks, the ref inputs were used.

39

The gem5-gpu simulator we used runs in system emulation mode, where stubs

of system calls are used rather than a full operating system. So, we manually ported

the OpenMP pragmas appearing in our benchmarks to pthreads, and then linked

the pthread code against the M5 threads library [26] which provides pthreads com-

patibility in system emulation mode. We did this for the most important OpenMP

region from each benchmark. (In many benchmarks, there is only one OpenMP re-

gion). Most of the time, the OpenMP region we ported is a loop with load-balanced

iterations. For these benchmarks, we statically partitioned the loops across the

M5 threads. One exception is 359.botsspar which performs blocked LU decompo-

sition on a sparse matrix. If different parts of the matrix are statically assigned to

threads, then load imbalance can occur depending on the fill pattern of the matrix.

For 359.botsspar, we instead created a work queue, and dynamically distributed

work to the M5 threads. (This emulates the OpenMP code for 359.botsspar which

uses dynamic scheduling across the threads). The outer parallel region in 359.botss-

par is the most irregular across all our benchmarks, and is the closest to exhibiting

task-level parallelism.

After we created pthreads versions of our benchmarks, we examined the loops

nested within the OpenMP regions to identify those with regular parallelism. (As

described in Section 3.1). In the case of two of the benchmarks we evaluated,

we extracted regular parallelism from otherwise irregular loops with our loop fission

transformation from Section 3.2. In Table 3.2, the column labeled “# SIMD” reports

the number of regular data parallel loops identified for each benchmark, including

those uncovered via loop fission.

40

From here, we transformed these regular loops, written in C, to kernels, writ-

ten in CUDA. We then compiled the C and CUDA code with GCC and NVCC,

respectively, and linked them together with NVCC. In all cases we used the highest

level of optimization possible. The “Lines Changed” column in Table 3.2 reports

the lines of CUDA and C code added to the OpenMP region.

Finally, we ran the compiled benchmarks on our modified gem5-gpu simulator.

We fast-forwarded to the parallel OpenMP region we are interested, in which we

collected detailed statistics. The last column of Table 3.2 reports the number of

instructions (in billions) executed during detailed simulation.3

For MD and 367.imagick, we were able to simulate the entire OpenMP re-

gion, but for other benchmarks, the OpenMP regions were too large to simulate to

completion within a reasonable timeframe. Instead, for the rest of the workloads

we chose a representatiuve portion of each OpenMP region to simulate. For FFT6,

330.art, 358.botsalgn, and 372.smithwa, each iteration of the OpenMP outer loop

performs very similar computations for every iteration of the loop. So, for those

benchmarks we simply simulated several iterations from the beginning of the loop.

For 359.botsspar, the openMP region performs partial pivoting and sub-matrix elim-

ination underneath the pivot element. Unfortunately, the computation is different

for different pivots, in particular affecting the amount of work done by the GPU

relative to the CPU, i.e. fSIMD. We identified the pivot for which the fSIMD

is representative of the OpenMP region as a whole, and simulate the computation

3These instruction counts correspond to executing the simulated portion of the OpenMP region
on a single CPU thread.

41

Figure 3.6: Normalized execution time for no parallelization (Serial), CPU paral-
lelization (MIMD), single-loop SIMD parallelization (SIMD), and nested MIMD-
SIMD parallelization (MIMD+SIMD).

associated with that pivot alone.

3.4 Simulator Study Results

This section presents the results of the simulator study we performed to evalu-

ate nested MIMD-SIMD parallelization. It begins by presenting the main results in

Section 3.4.1, and follows with a detailed performance breakdown in Section 3.4.2

to better understand the results. Next, we evaluate how scaling the number of CPU

cores in our configuration impacts our gains in Section 3.4.3. Finally, in Section

3.4.4 we determine the impact that concurrent kernel launch has on our technique’s

performance.

3.4.1 Main Result

Figure 3.6 presents the main results from our simulator-based evaluation. In

the figure, we first show the results of four execution schemes applied to each of

our seven benchmarks, and the averages of those. First, the “Serial” bars show the

42

execution time of each benchmark without any parallelism. That is, the regular

inner-loops executing serially on the CPU, and the outer OpenMP loops executing

sequentially on one thread. We normalize each benchmark’s results in Figure 3.6

to this result, and thus the “Serial” bars all have the value of 1.0. We follow

this by successively applying three parallelization schemes, the “MIMD” bars show

the result of applying CPU-only parallelization, the “SIMD” bars show the result

of applying GPU-only parallelization (single-loop SIMD parallelization from 3.1),

and finally the “MIMD+SIMD” bars show the result of our nested MIMD-SIMD

parallelization technique.

The “MIMD” bars in Figure 3.6 reflect the original OpenMP parallelization

performance of each benchmark (translated to pthreads for the simulator), i.e. CPU-

only parallelism. Most of the “MIMD” bars show a normalized exection time near

0.25. The speedup for these “MIMD” bars compared to the “Serial” is reported in

Table 3.3 under the “SMIMD” column. The Table shows the benchmarks achieve

between 3.63x and 4.03x speedup (FFT6 achieves a slight superlinear speedup due

to the increased cache capacity that comes with scaling). On average “SMIMD” is

3.87x, close to the perfect linear speedup one would expect from four CPU cores.

These results show how the original programs were well suited to being parallelized

with OpenMP, as they achieve good performance on a multicore CPU.

Next, the results of single-loop SIMD parallelization, i.e.launching GPU ker-

nels from a single CPU thread, show that this parallelization scheme can achieve

good speedup as well. In Figure 3.6, the “SIMD” bars report execution time of

the single-loop SIMD case normalized to the serial case. On average we achieve a

43

Figure 3.7: Normalized execution time assuming user-level kernel launch (0.1 µs
latency). The “Average” bars include the other 5 benchmarks from Figure 3.6.

70.8% reduction execution time and a 3.43x speedup reported in Table 3.3. However,

these results are not as consistent across individual benchmarks as the CPU-only

parallelization results. For MD, 359.botsspar, and 367.imagick, there are very large

gains–between 89.3% and 96.5% reduction in execution time compared to the “Se-

rial” bars. For the other benchmarks, however, the gains are more modest and show

between 9.8% and 39.3%reduction, with 358.botsalgn actually showing an increase

in execution time of 16.2%. What these results tell us is that in general, exploiting

single-loop SIMD parallelization in OpenMP programs is beneficial, but that the

complex nature of these codes may cause variability in GPU performance across

different benchmarks.

One of the sources of this variability is sensitivity to kernel launch latency. As

we discussed in section 3.1, some of the loops in our OpenMP benchmarks exhibit

a small WSIMD. It is therefore crucial for the gainful execution of these loops as

kernels on the GPU that the system have a lower kernel launch latency. The results

in Figure 3.6 assume our baseline launch latency of 4.5 µs [25]. While this is an

44

aggressively low launch latency, it is still unfortunately too high for FFT6 and

358.botsalgn which are the two most latency sensitive benchmarks in our study.

Figure 3.7 shows the result of a much more aggressive 0.1 µs launch latency. To

simulate this, we set the system-call handler delay in the simulator to zero, leaving

only the CUDA library launch stub. In Figure 3.7, the “SIMD” bars show an

improved 28.7% execution time reduction (compared to only 18.8% in Figure 3.6),

and 358.botsalgn’s execution time increase turns into an execution time decrease of

12.8%. (The other benchmarks do not benefit from a 0.1 µs launch latency). This

increases the average speedup from 3.43x in Figure 3.6 to 3.55x in Figure 3.7.

Finally, we combine both types of parallelization, SIMD and MIMD, with our

nested MIMD-SIMD parallelization technique. The bars labeled “MIMD+SIMD” in

Figures 3.6 and 3.7 report normalized execution time when the nested GPU loops are

off-loaded in parallel from multiple CPU threads simultaneously. The last column

in Table 3.3 labeled “Actual” reports the speedup of the “MIMD+SIMD” bars over

the “Serial” bars.

In Figure 3.6, we see our nested MIMD-SIMD parallelization scheme achieves

large gains, providing execution time reductions between 75.1% and 98.3% compared

to the “Serial” bars. Specifically, Table 3.3 reports our nested MIMD-SIMD paral-

lelization scheme provides 27.4x, 10.47x, and 57.1x speedup for MD, 359.botsspar,

and 367.imagick, respectively. For 330.art and 372.smithwa, our technique provides

4.01x and 4.89x speedup, respectively. And for FFT6 and 358.botsalgn, we provide

4.50x and 3.32x speedup, respectively. As before, the last two benchmarks are the

most sensitive to kernel launch overhead. When using a 0.1 µs launch latency, as

45

is done in Figure 3.7, these speedups increase to 4.63x and 4.13x, respectively, as

reported in Table 3.3. On average, nested MIMD-SIMD parallelization (assuming

0.1 µs launches for FFT6 and 358.botsalgn) provides a 16.1x speedup over the serial

execution time.

These results show that not only does nested MIMD-SIMD parallelization pro-

vide large speedups, but that it also beats CPU-only and GPU-only parallelization

schemes by leveraging MIMD parallelism on the CPU and SIMD parallelism on

the GPU simultaneously. In particular, nested MIMD-SIMD parallelization outper-

forms CPU-only parallelization (the MIMD bars in Figures 3.6 and 3.7) by 4.13x on

average, and outperforms GPU-only parallelization (the SIMD bars) by 2.74x on av-

erage. Notice, in Figures 3.6 and 3.7, nested MIMD-SIMD parallelization is always

the best parallelization scheme (except for 358.botsalgn in Figure 3.6 due to launch

latency sensitivity), but the next-best scheme is benchmark dependent. For MD,

359.botsspar, and 367.imagick, the next-best scheme is single-loop SIMD paralleliza-

tion, but for the other benchmarks, the next-best scheme is OpenMP parallelization.

Averaged across all the benchmarks, our nested MIMD-SIMD parallelization scheme

beats the next-best scheme by 45.8%.

3.4.2 Performance Breakdown

This section presents detailed results to break down and better understand the

gains of nested MIMD-SIMD parallelization that were observed in our simulation

study. First, Figure 3.8 isolates the benefits of transforming regular inner loops in

46

Bench SMIMD SSIMD fSIMD UpperB Actual CPU GPU

MD 3.70 9.19 0.99 33.9 27.4 0.12 0.43
FFT6 4.03 2.85 0.32 5.09 4.63 0.71 0.038
art 3.63 52.1 0.12 4.09 4.01 0.99 0.0031
botsalgn 3.99 2.72 0.38 5.24 4.13 0.67 0.011
botsspar 3.87 9.40 0.98 30.5 10.5 0.12 0.40
imagick 4.00 22.4 0.99 85.2 57.1 0.018 0.98
smithwa 3.90 22.3 0.55 8.19 4.89 0.95 0.16

average 3.87 17.3 0.62 24.6 16.1 0.51 0.29

Table 3.3: SMIMD, SSIMD, and fSIMD parameters for our benchmarks. The UpperB
and Actual columns report upper-bound and actual speedup, respectively, of nested
MIMD-SIMD parallelization. The last two columns report CPU and GPU utiliza-
tion. (Parameters for FFT6 and botsalgn reflect the results shown in Figure 3.7).

our OpenMP regions into kernels, and executing them on the GPU. In other words,

it shows if a loop can be gainfully executed on the GPU. To determine these benefits,

we individually measure the execution time of the original regular loops on the CPU,

that is, excluding the rest of the OpenMP regions outside of these loops. We then

individually measure the execution time of the resultant kernels on the GPU and

compare the results to the original loop, resulting in the per-kernel performance

gain. The “Serial” and “SIMD” bars in Figure 3.8 show this per-kernel gain, with

the “SIMD” bars normalized to the “Serial” bars. Notice, 330.art, 358.botsalgn,

and 359.botsspar contain multiple regular loops inside their OpenMP regions; these

are measured and presented separately. In Table 3.3, the “SSIMD” column reports

the per-kernel speedup (for the benchmarks with multiple kernels, it reports the

time-weighted average per-kernel speedup). Second, the vertical labels in Figure 3.8

report nthreads from Figure 3.1–i.e., the number of threads that occupy the GPU

each time the kernel is launched from a single CPU thread. Lastly, the fourth column

of Table 3.3 reports fSIMD from Equation 3.1–i.e., the fraction of end-to-end serial

47

Figure 3.8: Normalized execution time for individual off-loaded loops running on
a single CPU thread (Serial) and on the GPU (SIMD). Vertical labels indicate
nthreads for each kernel. (Results for FFT6 and botsalgn’s kernels assume a 0.1 µs
launch latency).

execution time of the overall OpenMP region that is spent in the regular loop(s).

These results separate our benchmarks into four categories based on how our

method works to improve their performance. As we discussed in Section 3.1, our

nested MIMD-SIMD parallelization technique boosts performance by launching mul-

tiple kernels from multiple CPU threads to the GPU. This boosts spatial and tem-

poral utilization of the GPU, while simultaneously parallelizing complex code on

the CPU. The four categories are based on how dominant the spatial and temporal

utilization aspects of our technique are for each benchmark.

3.4.2.1 Category 1: Spatial Utilizers

First, The MD and 367.imagick benchmarks comprise the category of spatial

utilizers. Both MD and 367.imagick contain a single kernel for which the GPU

achieves a large gain, as shown in Figure 3.8. Table 3.3 reveals these kernels enjoy

a 9.19x and 22.4x speedup, respectively. Moreover, Table 3.3 also shows virtually

48

all of the time is spent in these kernels: fSIMD = 0.99 in both benchmarks. This

is why the two benchmarks’ “SIMD” bars in Figure 3.6 perform so well: the large

per-kernel speedup translates directly into end-to-end performance gains because

of the large fSIMD. The figure also reports MD and 367.imagick’s kernels have

nthreads = 4,096 and 12,000, respectively. In comparison, our simulated GPU from

Table 3.1 can support up to 24,576 threads. This means that multiple GPU kernels

from each of these benchmarks can fit onto the GPU at one time. Because fSIMD

is so high in both benchmarks there is very little delay between kernel launches,

and therefore each CPU thread will have a GPU kernel launched at any given

time. For 367.imagick, we expect 2 simultaneous kernels since its nthreads is about

half the number of available GPU hardware threads. This is why in Figure 3.6

the performance of nested MIMD-SIMD parallelization exceeds the performance of

single-loop SIMD parallelization by roughly 2x. For MD, a smaller nthreads of

4,096 would ostensibly permit the maximum 4 kernels (launched from the 4 CPU

threads) to run on the GPU. Unfortunately, the high frequency of kernel launches

in MD creates contention for the GPU’s hardware launch queue which limits the

number of simultaneous kernels. Nevertheless, Figure 3.6 still shows a 2.58x speedup

for nested MIMD-SIMD parallelization over single-loop SIMD parallelization.

3.4.2.2 Category 2: Temporal Utilizers

This second category is comprised of one benchmark, 372.smithwa, which is

a temporal utilizer. 372.smithwa has a large per-kernel speedup, 22.3x–as shown

49

in Table 3.3–that is diminished by a smaller fSIMD, 0.55–also shown in Table 3.3.

For 372.smithwa, we used loop fission to extract regular parallelism, Loop fission

tends to result in smaller fSIMD because it introduces a serial loop executed on

the CPU that is comparable in size to the SIMD loop it exposes for the GPU.

This results in reasonably good (single loop) “SIMD” bars in Figure 3.6. Notably,

372.smithwa’s nthreads is over one million, as its label in Figure 3.8 reports. So,

even a single kernel can fill all of the GPU’s thread contexts. For nested MIMD-

SIMD parallelization, this means that kernel launches from each CPU thread will

serialize with the kernel launches from the other threads, because the GPU is full. In

other words– 372.smithwa cannot increase spatial utilization by launching multiple

simultaneous kernels because the GPU is fully spatially utilized by a single CPU

thread’s kernel launch. Fortunately, this serialization has the side effect of staggering

the execution of the CPU threads. What this means is that the CPU threads will

end up taking turns completely filling the GPU, i.e.the kernel launches spread out

in time on the GPU, increasing the GPU’s temporal utilization. Also, the fSIMD of

0.55 means that 45% of the execution time of the serial case is complex CPU code.

Under nested MIMD-SIMD parallelization, this CPU code is parallelized as well, so

both types of parallelism are being exploited. These reasons explain 372.smithwa’s

performance under nested MIMD-SIMD parallelization in Figure 3.6.

50

3.4.2.3 Category 3: Spatial and Temporal Utilizers

FFT6, 330.art, and 358.botsalgn comprise the third benchmark category –

those benchmarks that boost both spatial and temporal utilization. In this category,

Figure 3.8 shows the per-kernel gains are mixed. 330.art exhibits very strong per-

kernel performance (kernel art-3, which is 330.art’s most dominant kernel by far,

achieves a 76.4x speedup) but the other two benchmarks exhibit more modest per-

kernel performance. Table 3.3 shows 358.botsalgn’s per-kernel speedup is 2.72x

(averaged over its two kernels, which achieve 2.66x and 2.81x speedup), while FFT6’s

per-kernel speedup is 2.85x.

Another issue is that Table 3.3 also shows these benchmarks’ fSIMD is small,

between 0.12 and 0.38. Both FFT6 and 330.art exhibit smaller fSIMD due to sig-

nificant amounts of code outside of their inner SIMD loops. For 358.botsalgn, like

372.smitha, we used loop fission to expose the nested SIMD loops, resulting in

smaller fSIMD. Due to their smaller fSIMD, the per-kernel gains for FFT6, 330.art,

and 358.botsalgn are diminished by Amdahl’s Law. This is why these benchmarks

exhibit the lowest single-loop SIMD performance in Figures 3.6 and 3.7. On the

bright side, nested MIMD-SIMD parallelization still performs well. Because fSIMD

is small, these benchmarks spend a lot of time in the outer OpenMP loops, so they

benefit significantly from CPU parallelization. On top of that, the GPU also con-

tributes some gain. Similar to MD, Figure 3.8 shows these benchmarks have an

nthreads (between 550 to 10,000) that is smaller than the 24,576 threads the GPU

can handle– in other words, the GPU has the spatial capacity to handle multiple

51

instances of these kernels. However, the smaller fSIMD results in a lower kernel

launch frequency, so kernels may also spread out in time on the GPU instead,

boosting temporal utilization. This is particularly evident for 330.art, which having

10,000 threads per kernel, may only launch roughly two kernels at any given time.

But because it has such a low fSIMD (0.12), it spreads these kernel launches out

temporally in addition to spatially, on the GPU. Thus, for these benchmarks the

GPU has the capacity, both spatially and temporally, to support kernel launches

from multiple CPU threads.

3.4.2.4 Category 4: SIMD Dominant

Finally, 359.botsspar comprises the last benchmark category. Similar to MD,

Figure 3.8 shows significant per-kernel gains for 359.botsspar, and Table 3.3 shows

fSIMD = 0.98. This is why 359.botsspar achieved such excellent single loop SIMD

parallelization performance in Figure 3.6, in accordance with Amdahl’s Law. No-

tice our nested MIMD-SIMD parallelization technique achieves very little gain over

single-loop SIMD parallelization in Figure 3.6. To explain this, we again look to

the spatial and temporal utilization of this benchmark. Like 372.smithwa, one of

its kernels, botsspar-3, has enough threads (251K) to fully spatially utilize the GPU

by itself. This would not be an issue if fSIMD were low, and the kernels could

spread out temporally, but that is not the case. Its two other kernels, botsspar-1

and botsspar-2, have a much smaller thread count at 501 threads each. These ker-

nels can and, to some extent, do boost the GPU’s spatial utilization. However, the

52

problem is these kernels are dominated by the larger kernel, which accounts for 85%

of the execution time. Although multiple botsspar-1 and botsspar-2 kernels can

overlap in the GPU, there is only a small opportunity for this since most of the time

is spent in the botsspar-3 kernel. For 359.botsspar, the main thing that matters is

GPU performance on individual botsspar-3 kernels The benchmark is dominated by

SIMD performance, with a small amount of spatial and temporal GPU utilization

boosting.

3.4.2.5 Upper-Bound Speedup

From the SMIMD, SSIMD, and fSIMD values in Table 3.3, we compute the

upper-bound speedup for each benchmark using Equation 3.1. This result is shown

in the column labeled “UpperB” in Table 3.3 alongside the “Actual” columns which

report the speedup of the simulated result. We confirm that the upper-bound

speedup is always higher than the actual speedup. As we discussed in Section 3.1,

Equation 3.1 does not model the contention for the GPU’s hardware resources–in

particular, the contention for the 24,576 thread-contexts our simulation models. In

benchmarks where contention is limited through either the exploitation of spatial

or temporal capacity, Equation 3.1 is a good predictor of actual speedup. (The

benchmarks of category two, FFT6, 330.art, and 358.botsalgn comprise this group).

MD has some limited contention as we discussed above but still, the benchmark

is able to have close to 3 simultaneous kernels. So, the average error between the

upper-bound and actual speedups for these four benchmarks is only 15.6%.

53

In the case of 359.botsspar and 372.smithwa, significant contention for GPU’s

thread contexts occurs. As discussed above, only a single instance of the large kernel

from these two benchmarks (kernels botsspar-3 and smithwa from Figure 3.8) can

run simultaneously. 359.botsspar’s two smaller kernels (botsspar-2 and botsspar-2)

may be able to fit simultaneously, eeking out an improvement over the single loop

SIMD case and some of the contention in 372.smithwa is ameliorated by its kernels

spreading out temporally, but in neither case do these improvements overcome the

contention fully. Finally, 367.imagick is similarly limited by the GPU’s hardware

thread contexts, though to a lesser degree. At 12,000 threads, two instances of this

benchmark’s kernel can run simultaneously. Unlike 330.art above, the fSIMD for

367.imagick is very high (.99), and it cannot spread out temporally like 330.art can.

Thus, for these three contention limited benchmarks, there is a large stall component

(CPU threads waiting for the GPU) that is not modeled in Equation 3.1. As a result,

we see large errors in Table 3.3 of 192%, 67.5%, and 49.2% when comparing the

upper-bound and actual speedups for 359.botsspar, 372.smithwa, and 367.imagick,

respectively.

3.4.3 Processor Utilization and CPU Scaling

The last two columns of Table 3.3, “CPU” and “GPU”, report the extent to

which our nested MIMD-SIMD parallelization technique utilizes both types of cores

in the heterogeneous microprocessor. For the CPU utilization, we report the fraction

of time the CPU is busy averaged over the 4 CPU cores. For the GPU, we account

54

Figure 3.9: Impact of scaling to 8 CPU cores.

for both the spatial and temporal elements of the utilization by taking the average

of the fractional occupancy of the GPU’s thread contexts at every cycle. Because

execution on the GPU blocks the off-loading CPU thread’s forward progress, and

because the GPU may not be fully spatially utilized for any given kernel exection,

the sum of the two statistics is usually less than or equal to 1.0. 372.smithwa is

the one exception to this rule, as the kernel instances spread out temporally on

the GPU, so too do the regions of code executing in parallel on the CPU, keeping

both occupied more often. These results naturally vary with fSIMD: when fSIMD

is large, GPU (SIMD) utilization is higher and CPU utilization is lower, whereas

when fSIMD is small, the opposite is true. However, the relationship does not follow

directly because fSIMD is computed based on the serial (CPU-only) execution time

whereas the utilization is computed over parallel (CPU and GPU) execution and

includes GPU spatial underutilization. In general, these results show that the CPU

is more fully utilized than the GPU on the benchmarks we studied.

55

Given that GPU utilization is lower than CPU utilization, we tried increas-

ing the number of CPU cores to 8 while keeping the GPU the same to see if

we could improve performance further. Figure 3.9 hows the result of this exper-

iment for MD, 367.imagick, and 372.smithwa. In the figure, we plot the same

“Serial,” “MIMD,” and “MIMD+SIMD” bars from Figure 3.6 (the latter have

been renamed to “MIMD4” and “MIMD+SIMD4”), but we also plot “MIMD8” and

“MIMD+SIMD8” which increase the number of CPU cores to 8 for the correspond-

ing experiments. (The GPU configuration remains unchanged from Table 3.1).

First, unsurprisingly, the MIMD8 bars in Figure 3.9 provide roughly another

2x speedup compared to the MIMD4 bars, further demonstrating the effectiveness of

(CPU-only) OpenMP parallelization in our benchmarks already discussed for Fig-

ure 3.6. More interestingly, the MIMD+SIMD8 bars show that our nested MIMD-

SIMD parallelization technique continues to scale for both MD and 367.imagick,

providing an additional 1.38x and 1.50x speedup, respectively, over MIMD+SIMD4.

Increasing the number of CPU cores not only speeds up the CPU computation, it

also increases the off-load frequency. As reported in Table 3.3, the GPU utiliza-

tion for MD is only 43%; this leaves room for more kernels from the additional

four threads, resulting in performance gains. 367.imagick is the only benchmark for

which the GPU is already fully utilized at 4 CPU cores (98% GPU utilization in

Table 3.3). As such, a net performance gain from launching more GPU kernels to an

already full GPU is unexpected. However, the larger number of simultaneous GPU

kernels increases the GPU’s working set size, which, although it increases cache-miss

frequency, allows for a higher degree of memory latency tolerance overall. In other

56

words, although we are not able to exploit any more TLP on the GPU, improved

MLP (latency tolerance) improves performance for 367.imagick.

Lastly, for 372.smithwa, the GPU is also underutilized (only 16% busy accord-

ing to Table 3.3), so like MD we get scaling from MIMD+SIMD4 to MIMD+SIMD8,

but the gain is not that large and the same performance can be achieved by the

(CPU-only) MIMD8 bar. As previously mentioned, 372.smithwa is one of the bench-

marks for which we performed loop fission; this results in a producer-consumer data

relationship between the fissioned GPU kernel and the CPU loop where a significant

amount of data is communicated between the CPU and the GPU. At 4 CPU cores,

the data is small enough to fit into the GPU’s cache and therefore the communica-

tion happens on chip. At 8 cores, the cache footprint becomes too large, and the

data spills to DRAM. The CPU must then wait a longer latency for the data to be

fetched from DRAM, and since the CPU is a latency intolerant architecture, it loses

performance.

In chapter 4 we study this heterogeneous producer-consumer relationship in

detail, and propose a new optimization to improve perfomrance. 372.smithwa is one

of the workloads used to evaluate the new technique that we propose.

3.4.4 Concurrent Kernel Execution

When there are sufficient GPU thread contexts available, and contention does

not occur, nested MIMD-SIMD parallelism can result in multiple kernel instances

executing on the GPU simultaneously– in other words, GPU spatial utilization is

57

Figure 3.10: Impact of concurrent kernel execution.

increased. In order to evaluate to what extent our technique benefits from increased

spatial utilization we re-run the experiments of Section 3.4.1 but turn concurrent

kernel scheduling off. Specifically, we rerun “MIMD+SIMD” result, without ker-

nel concurrency. Consequently, if two kernels launched from parallel CPU threads

arrive at the GPU simultaneously, we serialize them –i.e., each kernel runs to com-

pletion before we allow the next kernel to start. The “One-at-a-time” bars in Fig-

ure 3.10 show this result. These bars show execution time normalized to the original

“MIMD+SIMD” bars from before, which are labeled as “Concurrent” in this Figure.

Figure 3.10 shows that a lack of concurrent kernel execution degrades per-

formance for MD and 367.imagick significantly. This comes at no surprise since

these benchmarks made up the “spatial utilizers” category from Section 3.4.2; a

lack of concurrent kernel execution effectively blocks any boost to spatial utilization

58

that our nested MIMD-SIMD technique could provide. Therefore, for the second

category, “temporal utilizers,” comprised solely of 372.smithwa, it is similarly un-

surprising that one-at-a-time scheduling makes no difference. 372.smithwa has one

kernel with an nthreads that completely utilizes the GPU on its own, so multiple

instances of the kernel will never execute concurrently regardless.

Skipping to the final category from Section 3.4.2 for now, 359.botsspar simi-

larly has a kernel with a very large nthreads that will dominate the GPU’s thread

contexts, and serialize kernel execution. However, it also has two smaller kernels

that will be able to concurrently execute at times when the larger kernel is not

executing. This results in a slight degradation from one-at-a-time scheduling in

Figure 3.10.

Finally, we come to the category of spatial and temporal utilizers, which in-

cludes FFT6, 330.art, and 358.botsalgn. These workloads have smaller nthread, so

there would be space on the GPU for concurrent execution to occur. Indeed, these

benchmarks experience a slight degradation from one-at-a-time scheduling, though

much less than MD and 367.imagick. This is because these benchmarks have a small

fSIMD. The smaller the fSIMD, the less frequently kernels will be launched from

each CPU thread, reducing the chances that kernel launches will collide and serial-

ize under one-at-a-time scheduling. Overall, these results show how our technique

can benefit the performance of of the workloads we evaluated by boosting spatial

utilization of the GPU when those workloads launch GPU kernels from multiple

threads at the same time.

59

3.5 Enabling Low-Latency Launch on Hardware

With a detailed understanding of our technique’s performance characteristics

in the fully controllable simulation platform, Gem5-gpu, we now set out to show how

Nested MIMD-SIMD Parallelization could be practically and gainfully utilized on a

real hardware platform. However, one of the major challenges in realizing speedup

on real hardware is the high latency penalty for launching GPU kernels on standard

platforms.

As we have discussed earlier in this Chapter, a low launch-latency is necessary

to gainfully offload small SIMD loops for some OpenMP programs. The drastic

performance improvement for the FFT6 and botsalgn benchmarks between Figure

3.6 (4.5 µs) and Figure 3.7 (0.1 µs) showed this fact quantitatively. Standard Kernel

launches can have latencies of 100µs or more, depending on the kernel and the

system. This is far in excess of the modest 4.5 µs we show in the Figure 3.6. Clearly

this would not be suitable for FFT6 and botsalgn.

Large launch latencies are a consequence of the CPU needing to communicate

the parameters of a kernel with the GPU through layers of runtime and operating

system queues. Figure 3.11 shows this datapath. For traditional, massively parallel,

GPGPU programs executed on discrete GPU platforms, this is a relatively small

issue. The launch latency is amortized over the long-running kernel, and for discrete

GPUs it must travel across a PCI-express bus which adds its own latency. In an

integrated CPU-GPU Heterogeneous Microprocessor, however, we eliminate this

long I/O latency and communicate through the on-chip cache. Thus, the latency

60

Figure 3.11: Normal kernel launch datapath. The workload running on the CPU
calls a kernel launch from the runtime system, which loads parameters into GPU
memory via system calls in the operating system layer. The kernel begins executing
after 100s of µs

added by the operating system is untenable, and must somehow be eliminated.

To bypass the operating system, we take advantage of modern heterogeneous

processors’ ability to enforce memory consistency and coherence between the CPU

and GPU [27]. This is achieved using C++ atomic memory accesses, which trigger

a fence, updating memory locations in both the CPU and GPU’s caches. With this

capability, we implement a GPU launch daemon and lightweight custom runtime

system similar to the ”Instant Mode” mechanism proposed in previous work [28].

This entails a special ”launch daemon” kernel launched by the main thread

ahead of the execution of the MIMD loop we are interested in, incurring the normal

launch latency cost once. The launch daemon runs on the GPU for the full duration

of the MIMD loop, and can be used many times to execute work on the GPU. Upon

launch it enters a loop that atomically polls a communication buffer, waiting for

a trigger to inform it that work is available (i.e.a kernel launch) or for the signal

to exit. The launch daemon kernel contains all of the code of the normal kernel

61

Figure 3.12: Kernel Launch Via Launch Daemon. The workload running on the
CPU calls C++ atomics to populate a communication buffer located in coherent
on-chip memory. The daemon polls this buffer waiting for parameters to be loaded
triggering kernel execution. This datapath bypasses the operating system, and takes
14.8µs on average.

wrapped in the polling loop, executing the correct GPU code with the correct pa-

rameters. Figure 3.12 shows the datapath through which the CPU uses this atomic

communication buffer to directly write the parameters the kernel needs to execute

and then trigger that execution. All of this atomic communication bypasses any

operating system calls, software queues, and normal kernel launch runtime layers,

significantly reducing launch latency from 100µs down to 14.8µs on average for the

workloads we evaluated.

Our ability to implement such a simple workaround to drastically reduce

launch latency goes to show that the extremely high cost of launches inherent to

normal GPGPU runtime systems is unnecessary and in cases like our technique,

detrimental to performance. Our launch daemon is practical and improves perfor-

mance under real conditions; it is valuable in its own right. However, architects and

system designers should be motivated to find a better way for CPUs to communi-

62

CPU GPU

Number of cores 4 Number of SMs 24
Clock rate 3.4-4.0 GHz Clock rate 350-1150 MHz
ISA x86+AVX512 ISA GEN Assembly

Warp size 32
32/32 KB Max warps per SM 7

L1 I/D cache (private) 256 KB L1/2 cache N/A
L2 cache (private) L3 I cache (shared) 768 KB

L3 D cache (shared) 1.5 MB

Last-Level Cache (shared by CPU and GPU) 8 MB

Main Memory

Each channel 64-bit, 2.133 GHz, DDR4

Table 3.4: Hardware parameters for the physical Intel Core i7-6700 with an HD
Graphics 530 integrated GPU. Although the CPU cores have AVX512 instructions,
we do not exploit them in our experiments.

cate with GPUs for such a fundamentally important mechanism like kernel launch.

With an improvement to their integration in this space, GPUs could be more akin

to ”co-processors” to the CPU, complementing their increasing importance in the

computing ecosystem.

3.6 Hardware Study Methodology

Our physical machine study is performed on an Intel Core i7-6700 whose pa-

rameters are listed in Table 3.4. This chip is largely similar in architecture to the

one simulated in the above study, with the major distinction being a total of 5,376

concurrent threads possible in the GPU, considerably fewer than the 24.5K threads

in the simulated GPU, and a shared last-level cache between the GPU and CPU.

For the simulation study, our GPU kernels were implemented in CUDA. But

the integrated Intel GPU in our physical machine only works with OpenCL. Hence,

we ported all of our benchmark kernels to OpenCL 2.0. Unfortunately, we found the

63

kernel launch latency using the standard software queue interface in our OpenCL

implementation incurs an overhead of at least 100µs. Because the performance of

our benchmarks is highly sensitive to the launch latency, we had to address this

issue before we could achieve performance gains on the physical machine.

With the GPU launch daemon we describe in Section 3.5, the launch latency

reduces from 100µs down to 14.8µs on average. This is a significant improvement,

but is still higher than the 4.5µs baseline (and 0.1µs aggressive) launch latency

assumed for the simulation study. Normal launch latencies were measured using

built-in OpenCL event statistics. Latencies for the low-latency launch mechanism

were measured by executing a ”Null” kernel many times, and measuring how long

full execution took, including the execution of the launch daemon. Essentially,

the workload would load parameters to trigger the launch daemon and the launch

daemon would enter its execution phase, but would then immediately return to

polling the communication buffer without executing any of the ”payload” code.

Each workload had unique numbers and sizes of parameters, and thus their launch

overhead would vary.

3.6.1 Benchmarks

The same benchmarks listed in Table 3.2 are used for our physical machine

study. We ported these benchmarks’ CUDA kernels to OpenCL, added our launch

daemon mechanism, and compiled the resulting C++/OpenCL code with GCC and

Intel’s OpenCL SDK using the highest level of optimization possible.

64

Unfortunately, we had trouble porting 358.botsalgn. This benchmark is the

most sensitive to launch latency due to the small size of its GPU kernels. Although

we were able to get performance gains on 358.botsalgn with a 0.1µs launch latency

(see Section 3.4), the 14.8µs launch latency on our physical machine resulted in sig-

nificant performance degradation. We were unable to get performance gains on the

physical machine for 358.botsalgn by simply translating our CUDA implementation

to OpenCL.

Upon closer examination of the 358.botsalgn code, we found a software trans-

formation that can mitigate high launch latency. In each outer loop iteration of

358.botsalgn, multiple kernels are launched to the GPU. These kernels are actu-

ally independent and can execute concurrently. (This is not generally true across

our benchmarks, but occurs in 358.botsalgn). In the CUDA implementation for

our simulator, we only exploit concurrent kernels across CPU threads; each CPU

thread still executes all of its kernels serially which exposes the launch latency at

every kernel launch. We modified the 358.botsalgn code so that each CPU thread

launches multiple independent kernels concurrently, stalling only after all launched

kernels complete. This hides much of the launch latency and provides even more

kernel-level parallelism for the GPU to exploit. With this software optimization, the

single-loop SIMD parallelization scheme for 358.botsalgn speeds up by 2.10x, and

our nested MIMD-SIMD parallelization scheme speeds up by 2.32x on the physical

machine. In our performance evaluation below, we assume 358.botsalgn uses this

software transformation.

65

Figure 3.13: Normalized execution time for no parallelization (Serial), CPU par-
allelization (MIMD), single-loop SIMD parallelization (SIMD), and nested MIMD-
SIMD parallelization (MIMD+SIMD) on the physical machine.

3.7 Hardware Study Results

Figure 3.13 presents the results from our physical machine study. In the figure,

the “Serial,” “MIMD,” “SIMD,” and “MIMD+SIMD” bars are identical to the

corresponding bars from Figure 3.6, except they report the execution time on the

physical machine rather than the simulator. All execution times are normalized to

each benchmark’s “Serial” bars.

Comparing the ”MIMD” and ”Serial” bars in Figure 3.13, we see the same

behavior for CPU parallelization as in the simulator study: all of the ”MIMD” bars

are near 0.25, providing a speedup of 3.76x (compared to 3.87x on the simulator)

averaged across all the benchmarks. Thus, CPU parallelization is essentially as

effective on the real hardware as it is on the simulator.

Figure 3.13 also shows single-loop SIMD parallelization (the “SIMD” bars)

performs well on the physical machine, too. Like our simulator results, the per-

formance shown by the “SIMD” bars in Figure 3.13 varies across the benchmarks.

These benchmarks show a similar pattern of results. In particular, since we have

66

much less control over the launch latency of the hardware, the benchmarks sensitive

to launch latency (ff6 and 358.botsalgn) do worst than the others, even account-

ing for the smaller sized GPU. Overall, however, single-loop SIMD parallelization

achieves a 3.30x speedup over serial execution.

Similarly, the “MIMD+SIMD” bars in Figure 3.13 show our parallelization

scheme performs well on the physical machine, but not as well as on the simulator.

Averaged across all benchmarks a 8.67x speedup is achieved. Moreover, our paral-

lelization scheme outperforms CPU-only parallelization by 2.4x on average, and it

outperforms GPU-only parallelization by 2.3x on average. Except for 358.botsalgn

where CPU-only parallelization is slightly better, and for 359.botsalgn where GPU-

only parallelization is slightly better, nested MIMD-SIMD parallelization is the best

scheme. Averaged across all the benchmarks, nested MIMD-SIMD parallelization

beats the next-best scheme by 1.23x. But on the simulator, the speedup over se-

rial is 16.0x (instead of 8.67x) and the speedup over the next-best scheme is 1.47x

(instead of 1.23x).

One reason why the simulator results are better is because the GPU in our

physical machine supports less parallelism than the GPU in our simulator (5,376

threads versus 24,576 threads). At the same time, the physical machine’s CPU runs

faster (between 3.4 GHz to 4.0 GHz) compared to the simulator’s CPU (2.6 GHz).

Both tend to reduce the relative gain for off-loading computations from the CPU

onto the GPU. Also, the physical machine’s higher launch latency is a contributor,

especially for benchmarks with a small WSIMD. This is the reason for the poorer

performance in 358.botsalgn on the physical machine compared to the simulator.

67

Figure 3.14: Normalized execution time for the MIMD-SIMD parallelization tech-
nique running on two configurations of the simulator and the physical machine.
The first simulator configuration follows Table 3.1 while the second is closer to the
physical machine’s configuration.

(Even with a software optimization for 358.botsalgn, the “SIMD” bar is 6% worse

than the “Serial” bar in Figure 3.13). Lastly, the simulator employs more total last-

level cache (10 MB) compared to the physical machine (8 MB); and, the simulator’s

cache memories, including the GPU’s caches, all run at 2 GHz. On the physical

machine, the GPU shared L3 cache runs at the speed of the GPU which ranges

from 350 MHz to 1150 MHz. This increases the time that the CPU must wait for

GPU results to be transferred to the CPU after a GPU kernel has completed.

Figure 3.13 demonstrates our parallelization scheme can provide real perfor-

mance gains on actual systems. And, taken together, Figures 3.6/3.7 and 3.13 show

our approach can be effective across different platforms with varying hardware ca-

pabilities.

3.7.1 Simulator Validation

In this section, we compare our physical machine results against our simulation

results from Section 3.4 in detail. As discussed in Section 3.7, our simulations result

in a higher speedup for our nested MIMD-SIMD parallelization technique than do

68

the results from the physical machine. In Figure 3.14 we show the “MIMD+SIMD”

bars from the simulator results (“Sim1” in the figure) and the hardware results

(“HW” in the figure), side by side. For FFT6 and 358.botsalgn the “Sim1” bars

use the low-latency launch results from Figure 3.7. The bars retain their original

normalization to their respective “Serial” bars from their original figures, so rather

than a comparison of absolute execution times, we are comparing the relative gains

achieved on the two platforms. In almost every benchmark, the simulator shows a

larger gain (smaller normalized execution time) compared to the physical machine.

Averaged across all the benchmarks, the difference between the Sim1 and HW bars

is 36%.

In order to close try and gap between the simulation results and the hardware

measurements, we adjusted the simulation parameters to more closely match (where

possible) the physical machine’s specification. Firstly, we reconfigured the simulator

to have the same number of total thread-contexts as the physical machine, 5,376.

Second, we increased the CPU’s clock rate to 3.4GHz, and decreased the speed of all

the caches down to 1 GHz. Lastly, we reduce the CPU’s private L2s and the GPU’s

shared L2 to 1.5 MB each, totally 7.5 MB, in order to more closely match the physical

machine’s 8 MB LLC. Unfortunately, there were differences between the simulator

configuration and the hardware’s specification that we could not correct. Namely,

that the physical machine has a shared LLC through which the CPU and GPU’s L2s

may pass data. The simulator does not support a shared cache above the CPU and

GPU’s L2s in the cache hierarchy, though it does enforce coherence between the two.

As we mention in Section 3.6 we were unable to find documentation on the physical

69

machine’s coherence protocol, so there are likely differences in coherence enforcement

between the simulator and the physical machine that will affect performance.

The bars labeled “Sim2” in Figure 3.14 report the normalized execution time

for nested MIMD-SIMD parallelization on the reconfigured simulator. For MD,

FFT6, 359.botsspar, and 367.imagick, the Sim2 bars more closely matched the HW

bars than did the Sim1 bars, i.e.the new configuration improved agreement between

the simulator and the physical machine. For 330.art and 358.botsalgn, the Sim2 bars

diverged slightly further away from the HW bars, but for 372.smithwa, they diverged

significantly more. One possible reason for the more significant disagreement of the

372.smithwa result is the increased GPU-to-CPU data traffic resultant of the loop

fission transformation we use to extract parallelism for 372.smithwa, and the large

size of this data. It is however difficult to tell without a concrete understanding

of the hardware’s coherence protocol. Overall, the difference between Sim2 versus

HW improved slightly, 32% down from 36% difference between Sim1 and HW. To

improve the agreement of the simulation and the physical machine further, it would

be necessary to address the fundamental functional limitations of the gem5-gpu

simulator that we outlined above.

3.8 Related Work

Research into the performance benefits of heterogeneous microprocessors has

been conducted before. Daga et al. [29] and Spafford et al. [30] evaluate AMD’s

Fusion architecture [5]. They both examine how CPU-GPU integration in the Fusion

70

architecture addresses the communication bottlenecks faced by discrete systems [3].

However, they only consider traditional GPU workloads, such as the SHOC [1] and

HPC Challenge [31] benchmark suites. They do not look for new and potentially

more complex codes that become enabled by CPU-GPU integration.

The work by Arora et al. [32] recognizes that heterogeneous microprocessors

are capable of handling a wider range of programs, so they consider a mix of tradi-

tional GPU workloads (Rodinia [12]) as well as benchmarks from the SPEC CPU

2000/2006 suites [33]. The latter contain more irregular codes exhibiting a variety

of data parallel loops, which is also the focus of this portion of the thesis. How-

ever, Arora is concerned mainly with CPU performance, observing that CPUs will

execute much more serial code as parallel loops are off-loaded onto the GPU. This

chapter and the research it is based on in contrast concerns itself with the perfor-

mance of both types of cores, CPU and GPU, with a new parallelization technique

that leverages the different cores in concert.

Besides studying the benefits of heterogeneous microprocessors, several re-

search efforts have developed parallelization techniques to make more effective use

of both CPU and GPU cores simultaneously. The research presented in this chap-

ter was published in ACM Transactions on Architecture and Code Optimization

(TACO, 2019) [10]. This work in turn was based on our own prior work [34] that

first introduced the idea of mapping nested parallelism to integrated CPU-GPU

chips. Compared to the first paper [34], this chapter presents a number of addi-

tional contributions made in the TACO paper [10]. The second phase of research

added loop fission for extracting SIMD portions from serial loops, the experimental

71

evaluation (using both the cycle-accurate simulator and the physical machine) was

completely new, and the low-latency launch system used for the physical machine

study.

Preceeding our work, several researchers have proposed scheduling iterations

from the same data parallel loop across both CPU and GPU cores [35–37]. As

we showed in this chapter, however, such homogeneous parallelism from a single

thread cannot keep the GPU (let alone both the CPU and GPU) fully utilized

given the smaller loops that can be extracted from more complex loops, a lack in

both the spatial and temporal dimensions of utilization. Exploiting homogeneous

parallelism from a single loop only also means that the other cores of the CPU go

unutilized. Heterogeneous parallelism on the other hand uses multiple CPU cores

simultaneously. Thus our approach exposes greater parallelism for both the GPU

and CPU.

Wende et al. [38] demonstrate a CPU-GPU parallelization scheme on the

GLAT molecular thermodynamics code. Similar to our work, their approach ex-

tracts parallelism from different loops for execution on CPU and GPU cores. But

whereas they identify distributed parallel loops, we exploit nested parallel loops.

More importantly, their study is specific to a single benchmark only. In contrast, we

look at a greater number of benchmarks. We also argue that our approach will be

relevant for many irregular codes parallelized using OpenMP, which encompasses a

very large number of programs.

Our work is also related to dynamic parallelism. Modern GPUs allow a threads

within a GPU kernel to launch another GPU kernel [39]. Researchers have devel-

72

oped several parallelization schemes around this idea of internal kernel launches,

including dynamic thread block launch (DTBL) [7], nested parallelism in CUDA

(CUDA-NP) [40], and lazy nested parallelism (LazyNP) [39]. In DTBL, the child

threads are dynamic instances of the original kernel launched by the CPU–i.e.,

the parallelism occurs within recursive code. In CUDA-NP and LazyNP, the child

threads belong to parallel loops nested within the original kernel launched by the

CPU. Like our parallelization scheme, CUDA-NP and LazyNP also exploit nested

parallelism. However, DTBL, CUDA-NP, and LazyNP only schedule loops on the

GPU. This Homogeneous parallelism only takes advantage of the GPU, leaving the

CPU under-utilized. Our nested MIMD-SIMD parallelization technique also runs

on the CPU, supporting MIMD loops that would otherwise perform poorly on the

GPU, or code with task-level parallelism which cannot run on GPUs.

In addition to these parallelization schemes, there has also been work that

focuses primarily on new kernel launch mechanism. Our technique requires multi-

kernel launch, or in other words: kernel launches from multiple threads. Prior work

has investigated mechanisms for off-loading multiple simultaneous kernels onto the

GPU [8, 9], either from a single CPU thread or from multiple CPU threads. While

our techniques rely on these mechanisms, our main focus is on identifying the parallel

idioms–e.g., nested parallel loops–that give rise to multiple simultaneous kernels.

Previous research has focused more on the launch mechanisms themselves.

Finally, instead of using the GPU to accelerate regular inner loops as we pro-

pose in our work, it is also possible to do so via SIMD instruction extensions available

in today’s CPUs [41], like SSE and AVX. SIMD instruction extensions have lower

73

overhead than GPU kernel launches, so they do not incur the off-loading costs that

exist in our techniques. However, SIMD instruction extensions cannot exploit as

much parallelism due to the much narrower datapath in the CPU compared to the

massively parallel (even in integrated chips, by comparison) GPU. It is possible to

combine nested MIMD-SIMD parallelization with SIMD instruction extensions, us-

ing the latter for smaller inner loops that are the most sensitive to kernel launch

overhead. This could provide even higher performance than our techniques applied

alone. In this research, we focused on understanding nested MIMD-SIMD paral-

lelization by itself. We leave its combination with SIMD instruction extensions for

future work.

3.9 Conclusions

This portion of the thesis presented Nested MIMD-SIMD Parallelization, a

new parallelization technique that leverages both the CPU and GPU in Heteroge-

neous integrated CPU-GPU microprocessors. Given the increasing ubiquity of these

types of chips in low-power devices like mobile phones, we argue that traditional

parallelization paradigms are not sufficient to fully utilize all of the hardware fea-

tures provided by these chips. This includes both the heterogeneity of the cores

and the low-cost communication between the cores afforded to them by an on-chip

coherent cache.

We show that seven OpenMP benchmarks contain a mix of MIMD parallelism

suitable for the multi-core CPU and SIMD parallelism suitable for the GPU, with

74

the SIMD regions nested within the MIMD regions. In some cases we use ”loop

fission” to extract SIMD parallel regions from non-SIMD regions, creating two sep-

arate loops. In all cases we transform the benchmarks’ SIMD regions into GPU

kernels, and with low-latency kernel launch concurrently launch multiple instances

of them on the GPU from multiple CPU threads. In this way we increase spatial

and temporal utilization of the GPU, while at the same time utilizing the CPU for

computations when the GPU is not executing.

We conducted an in-depth evaluation of these seven benchmarks on a cycle

accurate simulator with an aggressively sized GPU, as well as a real physical machine

with a more modest sized GPU. For the real machine we implemented a low-latency

launch system that enabled us to gainfully execute fine-grained SIMD loops on the

GPU.

On the simulator our results show that exploiting nested MIMD-SIMD paral-

lelism provides a 16.1x speedup over serial execution. On the physical machine, the

gain of this technique drops slightly, to 8.81x speedup. The drop is primarily due

to the modest size of the real hardware compared to the simulated chip. Our paral-

lelization scheme beats CPU-only parallelization by 4.13x and 2.40x on the simulator

and physical machine, respectively. Compared against the next-best scheme (either

CPU-only or GPU-only parallelization) across all our workloads, nested MIMD-

SIMD parallelization provides speedups of 1.46x and 1.27x on the simulator and

physical machine, respectively. Thus we demonstrate that this technique is viable

for a range of heterogeneous microprocessors with varying capabilities.

75

Chapter 4: Pipelined CPU-GPU Scheduling for Caches

One of the most potentially salient features of integrated heterogeneous micro-

processors is the coherent cache system. In typical multi-core CPU computing, the

cache system serves as an important sharing resource between the cores who may

access the same data, with the hardware coherence system facilitating this sharing

by taking the burden of managing coherence from the programmer.

Contemporary GPU hardware has some coherence mechanisms, though due

to the lack of temporal locality in GPUs, it often has limited usefulness. GPUs can

often exacerbate the challenges in designing scalable coherence systems as part of

large server-scale compute systems [42].

Heterogeneous chips, found more often than not in mobile devices, are archi-

tected at a smaller scale than chips meant for server or workstation use – containing

fewer cores of both types and thus less cache. At this smaller scale, tightly integrated

coherence is quite practical. Since the integration of GPUs onto heterogeneous chips,

research has been done into how to include the GPU in the cache system with some

success. Modern chips such as the Intel Core series and AMD Fusion APUs, for

example, provide cache coherence between the CPU and GPU cores [24, 42, 43].

As we showed in Chapter 3 the reduced overhead of launching work to the

76

GPU that integration provides more work will find its way from the CPU to the

GPU. In cases where only a portion of the work gets GPU acceleration, this leaves

the CPU and GPU in the position where they must collaborate. Indeed, bench-

mark suites like Chai and Hetero-Mark present collaboration models where CPUs

and GPUs work together in a variety of ways [13, 44]. Even traditional GPU bench-

mark suites like Rodinia present workloads where the two types of cores collaborate,

migrating computation from the CPU to the GPU and back. Data dependencies

in this computation migration cause Producer-Consumer data sharing, where data

is passed between stages of computation that have migrated to the CPU or GPU

[12, 16].

The status quo of the computation migration and resulting producer-consumer

sharing in many of these workloads is for the producer to run its work to completion,

followed by the consumer finishing out the computation, in-effect: serial scheduling.

In a system without a coherent shared cache, this works well enough. But in a

system with a coherent LLC this execution pattern results in redundant and wasted

DRAM accesses when the cache footprint of the producer is larger than the size

of the LLC, which is often the case. The producer loads the shared data into the

cache system, and then evicts the same shared data before completion. Then when

the consumer accesses the shared data, it must read it from main memory rather

than from the LLC. This extra DRAM access wastes energy, and increases response

latency slowing down latency intolerant CPU consumers.

To exploit the coherent LLC of heterogeneous microprocessors and retain

shared data ”in-place” in the cache system, we propose Pipelined CPU-GPU Schedul-

77

ing for Caches. This locality transformation schedules the producer and consumer

stages concurrently to increase temporal reuse of shared data. We can exploit the

fact that while GPU kernels are massively parallel, they still typically access a

dataset in a linear streaming fashion with the first thread-blocks executed con-

suming and producing at the beginning of the dataset, and the last thread-blocks

executed at the end of the dataset. Since the same is true for the iterations of a

CPU loop, we can overlap CPU and GPU execution, creating a software pipeline in

which a consumer is fed the data it needs as it is produced, on-chip and in-place.

Previous work has exploited pipelined CPU-GPU for increased parallelism [45].

But this kind of pipeline also allows us to control how far ahead of the consumer

the producer runs. By tuning this ”run-ahead” distance to be small enough, we

can fit the data shared by the producer and consumer into the cache system of

the heterogeneous microprocessor. Thus, the communication between the CPU

and GPU happens on-chip, improving performance, and reducing energy spent on

DRAM accesses - increasing overall efficiency.

The contributions of this work are:

• A qualitative analysis of how Producer-Consumer sharing utilizes the cache

system under both naive and pipelined schedules.

• A realistic control scheme using industry standard protocols.

• A simulator study showing that our technique improves performance and

power for seven workloads, on average reducing the number of DRAM ac-

cesses by 30.4% , execution time by 26.84% , and saving 27.4% total DRAM

78

energy.

The rest of this chapter is organized as follows: Section 4.1 will heterogeneous

cache coherence, heterogeneous applications, and explore naive scheduling, illustrat-

ing how it fails to exploit the coherent LLC. We then present how pipeline scheduling

corrects this deficiency. Section 4.2 describes the experimental methodology used

for our quantitative simulation study. Section 4.3 presents the results of said study.

Section 4.4 discusses related work. Finally, Section 4.5 concludes the chapter.

4.1 Background

4.1.1 Heterogeneous Cache Coherence

Homogeneous multiprocessors (those containing no GPU cores, only CPU

cores) have enjoyed hardware managed coherence for many years now [42]. This

coherence mechanism is a well understood, highly performant, and very convenient

abstraction to a programmer. Most programmers need not worry about managing

coherence and can write efficient code without much hassle. Heterogeneous cache

coherence and GPU code are a different story.

In the early days of GPGPU coding, with discrete GPUs, the GPU and CPU

had separate address spaces and any data had to be explicitly copied between a CPU

pointer and a GPU pointer, a significant burden to the programmer. Modern GPUs

implement shared virtual memory (SVM), enabling ”zero-copy” buffer transfers,

through page-locked memory allocated specially at runtime [2].

Hardware mechanisms that fully implement the kind coherence found in homo-

79

geneous systems are difficult to achieve in heterogeneous systems. Firstly, keeping

the many private caches in a GPU coherent is a problem of scale. The more coherent

cores in the protocol, the more expensive it is to implement. This can be mitigated

by keeping only a few, or even just one private GPU cache coherent and requiring

that the GPU writes through this private cache rather than keeping dirty data that

only writes back on eviction and needs to be probed and invalidated. Secondly, dif-

ficulty stems from the divergent access patterns of the CPU and GPU. GPUs tend

to have and extremely high throughput and as a result access significantly more

memory than the CPU in the same amount of time. If the CPU and GPU share an

LLC the GPU will completely thrash the CPU’s data, leaving the CPU to access

that data from main memory - something for which the latency intolerant CPU will

suffer.

With this access heterogeneity in mind, proposals for heterogeneous coherence

in the literature suggest ways to limit the GPU’s access to shared caches (i.e.the

LLC) [42, 46, 47]. Though implementation details of heterogeneous coherence pro-

tocols are sparse, due to intellectual property concerns, these mechanisms certainly

exist. For instance, AMD and Intel both implement coherence, including system-

wide atomic access on their integrated CPU-GPU microprocessors [5, 24]. LLCs in

these heterogeneous coherence protocols are generally non-inclusive, and avoidance

strategies like dis-allowing the GPU and CPU to cache the same blocks or allowing

the GPU to bypass the LLC entirely, are used to manage the different coherence

and consistency models of heterogeneous systems [42, 46, 47]. This strategy would

the the GPU from thrashing the LLC by limiting data sharing through the cache

80

system. It would also however, cause producer-consumer sharing between the GPU

and CPU to occur entirely off-chip, an undesirable result. For the evaluation of

our technique, which thoughtfully schedules work on the GPU and CPU in order to

avoid interference that is detrimental to performance, the coherence protocol allows

the CPU and GPU to share the LLC and manage the data therin.

Caching Considerations and Speculative DRAM Access. Another

avoidance method in the context of CPU-GPU coherence is victim caching [48]. An

victim-cache LLC will only store data when it is written back (evicted) or written-

through from the cores. To avoid polluting the LLC a GPU cache may choose not

to write back clean cache lines. Considered in isolation this should be an effective

strategy considering the GPU’s limited reuse. However, avoiding using the LLC in

this manner may incur an LLC miss for the CPU should it need that cache line later,

and thus a performance degradation if the cache line comes from DRAM. Should the

CPU attempt to access the cache line before the line is evicted from the GPU’s L2

the data can be snooped from there instead of DRAM for a reduced latency penalty.

However, the LLC may speculatively access the DRAM in parallel to probing the

other caches in order to reduce access time for the latency sensitive CPU. While nor-

mally effective at reducing latency, in such a case the speculative access is wasted,

unnecessarily draining energy [49]. Such wasted speculative DRAM accesses could

be avoided by ensuring LLC hits. Read-only data shared between the cores or even

write-after-read data could be loaded into the LLC the first time it is accessed from

DRAM. Subsequent accesses, assuming no capacity evictions, would be LLC hits.

Speculative DRAM accesses in combination with exclusivity and a write-back

81

policy can also affect the data path in the other direction, CPU to GPU. Even if

the CPU’s L2 cache will eventually write back a resident line to the LLC, with an

exclusive LLC an access from the GPU would incur a miss and speculative DRAM

access. In this case the inefficiency of the missed speculative DRAM access is more

pronounced - the latency tolerant GPU would not have cared about getting the block

faster. In this case the combination of an exclusive cache and speculative DRAM

access do disservice to the memory system. L2 cache capacity, as well as associativity

may have an effect on this phenomenon. By reducing total or set capacity, the L2

would be more likely to evict the shared block to the LLC before the GPU reads

it, at which time it would be an LLC hit. A final more drastic solution might be

to treat accesses from the GPU and CPU differently, not speculatively accessing

DRAM for the GPU. This solution however would likely require adding significantly

more state to the directory controller.

Rather than avoiding the shared cache because of the inherent data-access

heterogeneity of GPGPU and CPU codes, in section 4.1.4 we will demonstrate how to

thoughtfully execute them concurrently such that they benefit from cache-coherence,

while not stepping on each other’s toes. In the following section we discuss GPGPU

workloads and their data-sharing characteristics.

4.1.2 Heterogeneous Producer-Consumer Sharing

As GPGPU computing increasingly became a more important tool for many

fields interested in high-performance computing, to evaluate the performance of the

82

evolving architecture, GPU benchmark suites such as Rodinia [12] and Parboil [16]

came into being. Developed at a time when the CPU and GPU were more loosely

coupled, benchmarks from these suites primarily evaluate the raw throughput of the

GPU. Though they place less importance on collaboration between the two types

of core, they do often include CPU work or I/O done by the CPU that causes data

migration between the CPU and GPU at a course granularity. In other words: as

computation migrates from one core to the other the CPU or GPU produces data

that the other core then consumes – producer-consumer data sharing.

Recently, several benchmark suites which take advantage of modern GPU

memory features found in integrated GPGPU systems, such as system-wide coher-

ence and atomic memory accesses, have been released. Hetero-Mark [13], Hetero-

Sync [50], and Chai [44] all recognize the importance of collaboration between the

CPU and GPU in a more tightly coupled system and many of these benchmarks

also exhibit computation migration and Producer-Consumer data sharing.

The common thread between both the older and newer cohorts of GPGPU

benchmarks is a lack of care for how the shared data gets from the producer to the

consumer when the computation migrates. Ideally, in a integrated GPU system with

a shared Last-Level-Cache (LLC), data would efficiently migrate on-chip. However,

these applications schedule the computation migration naively: the producer runs

to completion followed by the consumer. As data-footprint of most GPGPU kernels

far outstrips the size of the cache system, the produced data spills out to DRAM

before it can be consumed.

83

#define TPB 256 // Threads−per−b l o c k == Block S i z e

g l o b a l void GPU Producer (int ∗A) {
int i = b l o ckS i z e () ∗ blockId () + threadId () ;
A[i] = . . . ; // Write to A

}

void CPU Consumer(int ∗A, int i t e r s) {
for (int i = 0 ; i < i t e r s ; i++) {

. . . = A[i] ; //Read from A
}

}

void main () {
// Tota l GPU Threads == CPU I t e r a t i o n s
int nThreads = 1048576;

//Number o f GPU t h r e a d b l o c k s
int nBlocks = nThreads/TPB;

// Array o f s i z e 4MB
int ∗ A = malloc (nThreads ∗ s izeof (int)) ;

//Launch producer k e r n e l to GPU
GPU Producer<<<nBlocks , TPB>>>(A) ;

// Blocks on GPU k e r n e l comple t ion
dev iceSynchron ize () ;

CPU Consumer(A) ;
}

Figure 4.1: Producer Consumer Sharing Code Example

84

GPU Cache CPU Cache

To DRAM
1a

2a

3a

4a

(a) Shared data evicted from LLC before
rereference.

GPU Cache CPU Cache

To DRAM
1b

2b

3b

(b) Shared data Hits in LLC at rereference.

Figure 4.2: Shared Data Communication Pattern

Figure 4.3: Naive Serial Scheduling

4.1.3 Naive Scheduling

Figure 4.1 shows an example of an application exhibiting producer-consumer

sharing. The GPU Producer kernel writes an integer array A, and subsequently the

CPU Consumer function reads it. The number of threads (nThreads) in the kernel

is 1,048,576 (1M), and writes one integer per thread. It has a total cache footprint

of 4 MB. The loop inside CPU Consumer has the same number of iterations as the

GPU has threads, reading the same 4 MB of data.

85

In this example the producer is naively scheduled to execute after the producer

completes its work, demonstrating worst-case temporal-reuse. Figures 4.3 and 4.2a

show the consequences of this naive scheduling in a system with a 2 MB shared LLC

with a Least-Recently Used replacement policy.

During time t0 the kernel executes the first 1024 thread-blocks of the com-

putation. 1a○ represents the compulsory miss that reads a cache-block

B from the DRAM into the GPU’s private cache. Next, at 2a○, the

kernel writes the data through to the LLC. At this point the producer

has finished with B, and the consumer may now read it. However, the

GPU continues to execute and during time t2 the 2 MB LLC reaches

capacity B is evicted at 3a○ before the consumer stage can read it.

This pattern of evictions and compulsory repeats for all the blocks

until the CPU consumer stage begins executing at time t4. Here,

4a○ represents the DRAM access needed to fetch the block that was

evicted at 3a○. Not only is this a redundant read of the same cache-line

B from DRAM a waste of energy, but for the latency sensitive CPU it

decreases performance; the CPU wastes cycles stalling for memory to

arrive from DRAM, rather than from the lower latency on-chip LLC.

86

4.1.4 Locality Aware Scheduling

Let us now consider a solution to what is effectively a capacity

miss problem. We could of course increase the size of the LLC to

accommodate the entire cache footprint of the GPU kernel. This way,

when the GPU completes execution and the computation migrates to

the CPU, the data the CPU consumer needs is still on chip. Obviously

this unsophisticated solution is not the right answer, but it leads us

to consider a better solution: scheduling the consumer to execute as

data becomes available for it, before the LLC reaches capacity and

must evict the desired data.

We can accomplish this by controlling at a finer granularity how

many thread-blocks execute and synchronizing them with their asso-

ciated CPU loop iterations to keep the temporal reuse-distance of the

shared data small. With this finer granularity scheduling, a producer

Figure 4.4: Locality Aware Fine-grained Serial Scheduling

87

runs ahead of a consumer by a certain distance. This ”run-ahead dis-

tance” (RAD) affects the amount of data that a producer generates

before a consumer begins to use that data, and the amount of data the

consumer is allowed to use. With a sufficiently small run-ahead dis-

tance producer-consumer data migrates efficiently on-chip. In figures

4.4 and 4.5 the same producer-consumer pair are split into subsets

according to the RAD. The blocks labeled G0-3 and C0-3 are the sub-

set of GPU thread-blocks that produce data and CPU iterations that

consume that same data, respectively. These form a software pipeline

with the producer stage’s output feeding into the consumer stage’s

input.

First Pass: Locality Aware Serial Pipeline Scheduling

With the stages divided to reduce the size of their cache foot-

prints, a first-pass scheduling method is to execute the producer and

consumer sections that consume the same data one after the other,

switching back and forth between the two to fully process all cache-

lines before they are evicted from the cache. Figures 4.4 and 4.2b

show the effects of this method for the same code example in figure

88

2.1.

The RAD is chosen such that all of the data from both the pro-

ducer and consumer fit in the LLC. The footprints per-threadblock of

each stage can be calculated as the sum of both the shared data and

exclusive data together:

Fstage = Sexclusive + SShared (4.1)

Then calculating the footprint as a function of RAD:

Fstage(RAD) = Fstage ∗RAD (4.2)

For the RAD in figure 4.4, 1024 blocks, the footprints of each sub-

division G0-3 and C0-3 of the stages are 1 MB each.

For Locality-Aware Serial Pipeline Scheduling, in order for no

capacity evictions to occur the footprint from both the producer and

consumer must be considered. The simple example in figure 2.1 has

no exclusive data. If there were other data arrays accessed by either

stage, they would need to be accounted for as well, and the RAD

89

would be sized for the larger of the two footprints:

FSerialP ipe = Max(FProducer, FConsumer) (4.3)

Using these equations, with an run-ahead-distance of 1024 thread-

blocks (equaling 256*1024 threads), we can calculate that in figure

4.4, 1024 GPU thread-blocks (256k threads) and 256k CPU iterations

together have a cache footprint of 1MB. Equaling to half the size of

the 2MB LLC.

With this RAD, at time t0, the GPU executes the subset of

thread-blocks G0 equal to the RAD. As before, 1b○ represents the com-

pulsory miss, and 2b○ the write-through from the GPU’s private cache

to the LLC. Next, at time t1 things change: the data the CPU must

read has not yet been evicted and 3b○ represents an LLC hit by the

CPU. The data stayed on-chip throughout the time it was active, and

can now that it has been consumed, can be freely evicted. Not only

was a DRAM access and its associated energy drain saved, but be-

cause the CPU is latency sensitive the CPU consumer stage receives

an execution time reduction owing to the lower latency of access from

90

the LLC than from main memory. This execution time reduction com-

pounds with the access energy savings, reducing the total background

energy of the main memory.

In the reverse case of a CPU producer with a GPU consumer,

performance characteristics are different. The latency tolerant GPU

would not receive an execution time reduction from the on-chip data

migration. Instead, the benefit of keeping data on-chip would be solely

DRAM access energy savings.

Second Pass: Locality Aware Parallel Pipeline Scheduling

The next logical step in the optimization of this kind of producer-

consumer pipeline relationship is to execute the stages in parallel as

shown in figure 4.5. Not doing so would be foolish considering that

no dependencies (at least in this simple example) exist between non-

correlating blocks (i.e.GPU thread index correlate to CPU iteration).

Because of both stages are executing at the same time, to guarantee

no capacity contention for the LLC, the sum of the footprints of the

91

producers and consumers must be considered:

FParallelP ipe =

Stages∑
FStage(r) = FProducer(r) + FConsumer(r) (4.4)

Thus with the same RAD of 1024 thread-blocks, the maximum foot-

print of the parallel pipeline during any given time step in figure 4.5

is 2MB, the size of the LLC. Because the RAD and thus the data

footprint are sized to 2 MB, data passes between the producer and

consumer through the cache in the same way as in figure 4.4. 3a○, 3b○,

and 3c○ correlate to their counterparts in figure 4.2b and 4.4 as the

compulsory miss by the producer, write-through, and LLC hit by the

consumer, respectively. Thus same reduction in DRAM accesses, and

latency are achieved - with their associated energy savings. Along

with these savings, the execution time reduction that results of paral-

lelizing the software pipeline further decreases the background energy

usage of the DRAM.

Finally we note that this software pipeline is not limited to one

producer-consumer pair. It can be extended to chains of producers

and consumers of both types, introducing complexity in the sharing

92

Figure 4.5: Locality Aware Fine-grained Pipeline Scheduling

patterns we will discuss in section 4.1.6.

Optimal Run-ahead Distance Determining the optimal RAD

can be achieved by a simple profiling of the stages. Given some kind of

helpful compiler directive like those in OpenMP [11], a compiler could

detect arrays indexed by the main loop variable i.e.the full global id of

the kernel including the block offset and thread id. During execution

the OMP (or other) run-time system would take into account the size

of the cache, and calculate a Run-ahead Distance:

RAD =
LLCSize

FPipe
(4.5)

This equation serves as a good starting point to calculate an optimal

run-ahead distance. However as we will discuss in section 4.1.6, access

patterns and private L2 sizes complicate calculating the perfect value.

93

In 4.3.2 we conduct a run-ahead distance sensitivity study to explore

the effects of these access patterns on the energy and execution time

savings our technique achieves.

4.1.5 Synchronization Granularity and Control Methods

Pipeline scheduling through the control of run-ahead distance

could be achieved by a number of means of varying complexity depend-

ing on the needs of the application space and the size of the cache-

system available. In terms of application dependence: the amount

of memory accessed per GPU thread-block (or equivalent CPU itera-

tions) plays an important role in determining how course or fine the

granularity of synchronization needs to be. A smaller cache ”footprint-

per-thread” (FPT) allows many threads to execute per stage and still

fit into cache, e.g. a courser granularity of scheduling. Stages with

a larger FPT require fewer threads to execute per synchronization

in order to fit the overall footprint into the LLC, necessitating finer-

granularity synchronization. The size of the LLC likewise affects the

synchronization granularity of the pipeline. A larger LLC gives more

room to breath and allows for a courser granularity of synchroniza-

94

tion. Conversely, a small LLC will require finer granularity synchro-

nization for the same FPT. With this relationship between application

FPT, cache size, and synchronization granularity in mind we consid-

ered where best to implement our technique. We found that for the

applications we surveyed and the sizes of LLCs in available heteroge-

neous microprocessors today, synchronizing at the GPU thread-block

granularity was sufficient.

Our implementation lies at the hardware-software interface. A

run-time system executes on the CPU, taking care of controlling the

RAD for CPU stages of the pipeline, signaling the RAD to a modi-

fied thread-block dispatcher, and synchronizing the CPU and GPU.

Normally the thread-block dispatcher schedules as much of a kernel’s

pool of thread-blocks as will fit onto the GPU. Then when the kernel

completes all of its thread-blocks, the GPU signals completion. We

modify the dispatcher to wait to schedule thread-blocks to the GPU

until it is instructed to schedule an RAD’s worth of thread-blocks. The

GPU then signals when this RAD completes. As a bonus this method

offers flexibility in terms of controlling the footprint-per-thread by

95

controlling the size of each thread-block (and thus the kernel grid) in

software. This worked well for our purposes, however thread-block size

is often difficult to change for functional or performance reasons. It

would be possible to achieve a similar kind of hardware-software inter-

face synchronization with a tweak to the wave-front (warp in Nvidia

nomenclature) scheduler inside each compute unit of the GPU. This

could offer a finer granularity of control, down to the individual thread

level without changing the kernel’s grid.

Section 4.2 will go into greater detail about the implementation

of the software runtime and hardware dispatch-control systems for our

implementation.

For applications with extreme properties that cause a FPT large

enough to require sub-thread granularity synchronization more com-

plex hardware methods could be explored. Hardware methods like

Full-empty bits have been proposed as an method of synchronization

aimed at reducing launch latencies for discrete GPUs [25]. They could

similarly be used to control the rate at which a producer-consumer pair

execute to keep them in lock-step and avoid violating data dependen-

96

cies. These however have significant hardware costs, both in redesign

and the area-overhead of adding full-empty bits to the cache. Another,

less invasive method is to use the virtual memory system and inject

full/empty bits at the page level to control the flow of the pipeline.

This method would require pre-processing of producer-consumer re-

gions to determine their data footprint, and would be unsuitable to

control-flow divergent code.

On the other side of the gulf of granularity a fully software based

solution could be used for extremely low FPT or for normal FPT

programs with large LLCs. Instead of relying on hardware, we could

use techniques like kernel fission to split kernels and overlap them

with their associated CPU iterations [51]. While the convenience and

cost of a software solution is alluring, we found that a more balanced

hardware-software interface solution was appropriate for the applica-

tions we investigated.

4.1.6 Dependency Patterns

The type of dependence between two accesses of a cache block

are fundamentally important to the performance of the cache, and

97

the functioning of the coherence protocol. In other words, the amount

of Read-Read (RR), Read-Write (RW), Write-Read (WR), and Write-

Write (WW) dependence relationships existing between producer-

consumer pairs can affect the cache performance of workloads.

In combination with these four dependence types, we also must

consider the core-type of the producer and consumer. Homogeneous

sharing, i.e. GPU-to-GPU (GG) and CPU-to-CPU (CC) may use pri-

vate L2s to communicate depending on data size and L2 slicing. Het-

erogeneous sharing, i.e. CPU-to-GPU (CG) and GPU-to-CPU (GC)

must make use of the LLC and snooping for on-chip sharing. These

together make four stage-sharing dependency types: GG, GC, CG,

and CC.

Read-Producer Patterns. Read-first patterns (RR and RW)

suffer from having an exclusive victim-cache LLC. GC RR (GPU pro-

ducer, CPU consumer, Read-Read) and GC RW sharing in particular

leave potential DRAM access savings on the table, both in terms of

energy and access latency for the latency sensitive CPU. When the

GPU reads a shared block, because the GPU’s L2 generally does not

98

write clean data back to the LLC [42], that block is lost upon evic-

tion. The CPU will then miss in the LLC and access the block from

DRAM, incurring an energy and execution time cost. However, if the

temporal locality of the two accesses of said block are close enough

because of our technique and correctly sized run-ahead distance, then

the block may yet be in the GPU’s L2 from which the CPU can snoop

it, and save on the latency of waiting for DRAM. However, the energy

cost of an LLC miss is still incurred as the controller will speculatively

access DRAM on an LLC miss. Similarly GG RR and GG RW pat-

terns, when scheduled naively or with an RAD that causes the cache

footprint to exceed the size of the L2 cache, will not cache their reads

in the LLC, leading to redundant DRAM accesses (but no slowdown).

In the case of CPU-first patterns in this category (CG RR and

CG RW, CC RR CC RW) the CPU’s L2 policy will evict clean lines

to the LLC. So in the case of RAD small enough to not overfill the

LLC yet large enough to cause blocks to be evicted from the L2, there

will be an LLC hit, eliminating any speculative read for that line.

An exclusive victim caching policy for the LLC, or in other words

99

a lack of ”read-inclusivity,” is a consequence of heterogeneous coher-

ence protocols avoiding allowing the CPU and GPU to share resources,

in fear of the GPU thrashing the CPU’s data. However with our tech-

nique, carefully controlled throttling of the GPU keeps this thrashing

from occurring, while retaining performance.

Write-Producer Patterns. Write-first CPU-producer patterns

(CG WR, CG WW, CC WR, CC WW) behave similarly to read-first

pattern as the CPU private caches have a write-back policy. The size

of the RAD relative to the CPU’s private L2 therefore has a significant

effect on when shared data ends up in the LLC. At smaller RADs, data

will stay in the the L2 and when eventually consumed will come from

there, causing a speculative (and wasted) read. Larger RADs will

evict some of the stage’s shared data (the stage’s data footprint less

the size of the L2) to the LLC where it can be consumed with no

DRAM read.

Write-first GPU-producer patterns (GC WR, GC WW, GG WR,

GG WW), do not have this issue. The GPU writes though to the

LLC, and does not suffer from private cache spilling in the way that

100

write-back caches do.

4.2 Methodology

A revitalization project has recently begun to update Gem5 and

create an active, healthy development community around it [52]. This

new Gem5 includes in it a realistic integrated GPU model developed

by AMD based on their Graphics Core Next 3 (GCN3) GPU archi-

tecture, following the guidelines in the HSA design manual [43]. Het-

erogeneous System Architecture (HSA) is a set of cross-vendor speci-

fications widely used in the industry for a variety of devices [53]. Im-

plementing the HSA standard means that the new Gem5 is far more

representative of how a real GPU’s hardware and software operate

compared to the the driver emulation done in gem5-gpu. Thus for

this phase of research we have chosen to forego using the out-dated

gem5-gpu, and switch to this new simulator.

This section describes the experimental methodology for the full

quantitative results to be discussed in 4.3. It begins with a description

of the modeling parameters used, the reasons behind them, and the

101

architecture of the cache hierarchy. It goes on to discuss the software

architecture of Gem5’s GPU driver system, and the customizations

necessary to control the GPU model with sufficient precision to achieve

our desired performance enhancements.

Next, we discuss the software run-time system created to inter-

face between the workloads we use to evaluate our technique. As

before, any workloads must first be tailored to allow them to execute

properly on the simulator. A specialized software interface written in

C++ allows users to easily encapsulate the CPU and GPU regions of

code that can be pipelined together. The interface can then be called

upon to execute the pipeline, keeping DRAM access minimization and

overall performance in mind.

Finally section 4.2.3 discusses the workloads used in our quanti-

tative evaluation of the technique.

4.2.1 Model Configuration

Table 4.1 shows the configuration we used in the evaluation of our

technique on Gem5. The terminology used for GPU attributes is that

of AMD, as outlined in Chapter 2. We based the configuration off of

102

the Ryzen 3 2XXXU series of APUs. Like the configurations from the

previous chapter, the modeled chip has 4 out-of-order cpu cores, and

a modestly sized GPU. Since gem5 does not model Dynamic Voltage

and Frequency Scaling (DVFS), we chose clock speeds for both the

CPU and GPU in the middle of the range for the Ryzen 2200U chip.

As with the previous iteration of the simulator, the GPU model

must run in Syscall Emulation mode, meaning there is no true op-

erating system. This means that system calls are spoofed inside the

simulator. This leads to some limitations which will be discussed in

section 4.2.3. The coherent cache system is however modeled with

fidelity, and we believe this to be the most important component nec-

essary to evaluate our technique’s performance accurately. DRAM

Power is modeled using libDRAMPower [54].

Cache Hierarchy. Unlike Gem5-gpu which did not model a

shared Last-Level-Cache (LLC), the GPU VIPER coherence protocol

implements an LLC through which efficient on-chip data-sharing can

be achieved [43]. Each CPU has private L1 I/D caches, with every

two CPUs grouped together in ”core-pairs” sharing an L2 cache. The

103

GPU’s Compute Units (CUs) share an L1 instruction cache known as

a Sequencer Cache (SQC), while each CU has a private L1 data cache

known as a Texture Cache per Pipe (TCP). CUs share the GPU’s L2

cache known as a Texture Cache per Channel (TCC) [43]. As our

configuration has 4 CPU cores and 3 CUs, there are 3 L2 caches in

the system.

The focal point for this work – the LLC – serves as an exclusive

victim cache for the GPU and CPU L2s, controlled by a stateless

directory-based memory controller. On LLC misses, the controller

issues a speculative access to DRAM in parallel with snooping the

L2s, reducing access latency for lines not found in the L2s. This

is beneficial to CPU performance, though marginally useful for the

latency tolerant GPU. In terms of L2 write policies, the CPU L2

caches employ a standard write-back policy to the victim cache LLC.

In contrast, the GPU L2 cache engages in avoidance strategies to

keep the GPU from thrashing the LLC. In the context of producer-

consumer sharing patterns in which the CPU and GPU collaborate;

these avoidance strategies are detrimental to performance. Specifically

104

the GPU’s stores write through to main memory unless told to use

the L3 on write-through. Since we are interested in GPU-CPU sharing

data on-chip, we enable writing to the L3. GPU fills bypass the LLC

entirely, being routed directly to the TCC and then simply invalidated

on eviction, rather than being written back to the LLC. This presents

a problem for data dependences that follow GPU reads. In section

4.1.6, we discussed in detail how the differences in writing policies

between the GPU and CPU can interact with victim caching and

speculative DRAM access to affect DRAM power and performance. In

order to combat this issue, we modified the LLC’s policy to cache reads

upon arrival from DRAM, before sending a copy to the requesting L2.

Section 4.3.3 presents the savings we achieved by doing so.

CPU GPU
Number of cores 4 Number of CUs 3
CPU Clock rate 2.95 GHz GPU Clock rate 1100 MHz
Issue width 8 SIMD Units per CU 4
Issue queue size 64 SIMD size 16
Reorder buffer size 192 Wavefront size 64
L1-I cache (private per core) 32 KB Wavefront slots 10
L1-D cache (private per core) 64 KB L1 (TCP) Size (Private/CU) 128 KB
L2 cache (shared per core-pair) 2 MB L2 (TCC) Size (Shared) 256 KB
L3 Cache (LLC) 4MB
Main Memory 8 GB DDR4 16x4 (64 bit) @ 2400 MHz

Table 4.1: Simulation parameters used in the experiments. The modeled heteroge-
neous microprocessor resembles an Ryzen 2XXXU series APU.

105

Figure 4.6: HSA Compliant Driver Stack and customizations for Gem5.

4.2.2 Driver Stack Architecture

As previously mentioned, Gem5 now models AMD’s GCN3 Ar-

chitecture. Running in tandem is AMD’s Radeon Open Compute

Platform (ROCm), which serves as the HW-SW interface between

the workloads and the GPU. Figure 4.6 shows the driver stack that

the application uses to communicate and synchronize with the GPU.

ROCm communicates from the user space to the emulated Kernel Fu-

sion Driver in kernel space (ROCk) by sending command Architected

Queuing Language (AQL) packets conforming to the HSA specifica-

106

tion through software queues that map to hardware queues on the

GPU. The emulated kernel receives the packets and sends them to

the GPU’s command processor (CP) which executes various functions

according to the packet type and sends back a completion signal when

the task has been completed.

For instance, when a user calls a kernel launch through ROCm,

it sends a kernel dispatch packet containing the location of the kernel’s

code in memory along with its parameters and an additional comple-

tion signal to the GPU command processor. The command processor

then instructs the hardware scheduler to schedule the kernel’s work-

groups (blocks) to the GPU’s compute units, and signals that the

kernel has been launched. Finally, when the last workgroup of the

kernel is completed, the GPU sends the kernel completion signal back

to user space via the kernel driver.

Custom Scheduling Controller. In order to achieve our goal

of scheduling workgroups synchronized with the CPU in a pipeline

fashion, we take advantage of a type of HSA command packet, an agent

dispatch packet, which contains fields that the CP can read in order

107

to determine what the application wants the CP to do. We then cus-

tomized the CP and hardware dispatcher to respond to two key com-

mands from the agent packet. The first command, INJECT SIGNAL,

injects a custom HIP signal created by the software interface and as-

sociates that signal with a kernel id. If the hardware dispatcher sees

that a custom signal has been injected for a particular kernel id, when

that kernel is launched with a normal kernel launch packet, it will not

schedule any workgroups for execution on the GPU.

When the application desires workgroups to execute on the GPU,

it sends the second type of command, FWD PROGRESS. This com-

mand instructs the dispatcher to execute a given number of work-

groups rather than all of the kernel’s workgroups. The number of

workgroups executed in this fashion can be varied by the application

in user space to control the cache footprint of the GPU. When the

last of these workgroups is completed, the CP sends back the custom

signal given to it from the injection command packet.

This custom scheduling method relies on the same underlying

communication protocol that the ROCm userspace layer uses to con-

108

trol the lower-level layers. However because the kind of packets we

need to send are not standard, we do not use the software layer that

comes in ROCm for anything other than launching kernels. Using

the HSA API introduces complexity to actually writing the code for

our optimization technique. Given this complexity of the underlying

control scheme, we created a software interface that abstracts much of

that complexity away from the direct view of the programmer trying

to use our optimization in a practical setting. The user need only set

wrap the producer-consumerstages with the interface class, and call

the pipeline.

Overhead. Using this interface to synchronize with the GPU

introduces a small overhead. The alternative method is to drive our

software pipeline with a new GPU kernel for every synchronization.

As we have discussed in detail, however, GPU Kernel launches are

expensive. Indeed, we measure for each benchmark we evaluate the

overhead of synchronizing with the GPU using our method and the

overhead of launching a new GPU kernel. The launch latency was at

least an order of magnitude larger than our method for every workload

109

measured.

4.2.3 Workloads

To evaluate Pipelined CPU-GPU Scheduling for Caches on the

platform we have described, we surveyed several Heterogeneous com-

puting benchmark suites and found seven suitable workloads contain-

ing producer consumer relationships between CPU loops and GPU

kernels. These workloads are listed in Table 4.2. The table lists the

workload’s name, source, input size, and ordering of the CPU and

GPU stages.

Benchmark Suite Input Stage Order

CEDT Chai 2146 x 3826 video GGCC
BE Hetero-Mark 1080p video CG
EP Hetero-Mark 8192 Creatures CGC
DWT2D Rodinia 1125x2436 image CG
Kmeans Rodinia 512K Objects, 34 Features GC
LavaMD Rodinia 1000 boxes, 100 Particles per box CG
372.smithwa OMP2012 ref - 1048576 GC

Table 4.2: Workloads used in the experimental evaluation of Pipeline Scheduling for
Shared Data Cache Locality.

From the Chai benchmark suite, we have a single benchmark

CEDT: the ”Task-Partitioning” version of Canny Edge Detection.

This benchmark is singular in that it has a chain of 4 producer/con-

sumers, two GPU stages, followed by two CPU stages. The provided

110

input for this benchmark, a clip from a cartoon, was at extremely

low resolution, 626x354. At this resolution the cache footprint of the

stages would not be large enough to fill a modern LLC. Thus, we chose

to use a clip at a more appropriate modern resolution, 2146x3926 (4K)

[44].

Hetero-Mark provides two benchmarks to our list [13]. BE: Back-

ground Extraction, in which a video is passed frame by frame from the

CPU and passed to the GPU. We use the default input for this bench-

mark, a 1080p (1920 x 1080 pixels) black & white video. The second

workload from this benchmark suite is EP: Evolutionary Program-

ming. EP has 4 distinct stages, of which the first three were amenable

to optimization with our technique. For input we have one island of

8,192 creatures, and every iteration half of the island’s creatures are

eliminated.

The Rodinia benchmark suite is often used to evaluate GPGPU

architectures and has a wide variety of benchmarks, 3 of which were

suited to our pipelining optimization. DWT2D (Discrete Wavelet

Transform) is a broadly used digital signal processing technique. The

111

first step of this program is for the CPU to perform file I/O and load

an image into memory. Then the GPU processes the image once,

and passes the result to an iterative process that runs on the GPU,

eventually producing the transform. For this benchmark, we elected

to measure only the region where file I/O and pre-processing occur,

and not the iterative part that would dominate execution time. The

reasoning for this is that file I/O and pre-processing are common op-

erations that occur in many image related workloads, and similar code

could be embedded in many applications. We believe analyzing this

case is a worthwhile endeavor. As an input, we use a 1125x2436 pixel

image, the size of an iPhone screen.

Next, from Rodinia is Kmeans. In Kmeans, a GPU stage is the

producer for a CPU stage consumer. In addition to the Write then

Read producer-consumer relation we have thus far targeted, Kmeans

features a read-read data-sharing relationship between the GPU and

the CPU. This exposes the interesting deficiency in the coherence pro-

tocol, that the LLC acts as a victim-cache for the L2s, and the GPU L2

does not write back clean blocks. We discussed this ”read-inclusivity”

112

issue in Section 4.1.6 and in Section 4.3.3 we discuss the impact it

has on Kmeans and other workloads. For input we use a generated

input file with 524,288 objects and 34 features, slightly larger than

the standard input of 494,020 to be an even multiple of 1024.

The last Rodinia benchmark that we showcase is lavaMD. In this

workload a CPU stage initializes key data structures that the GPU

then uses to perform a 3D molecular dynamics simulation. We use

the standard input of 1000 boxes, with 100 particles per box.

The last benchmark we present in this section is the 372.smithWa-

terman benchmark from SPEC OMP 2012 used to evaluate our Nested

MIMD-SIMD Parallelization technique in Chapter 3. Indeed, due to

the loop splitting technique we used to expose parallelism, data passes

between the GPU producer and the CPU consumer. Rather than us-

ing nested parallelism, we instead pipeline the GPU and CPU stages

with our new method. We use the same input as before, 1048576.

Order Matters. Table 4.2 specifies the order of the stages in

each benchmark. This is relevant because as we will show in Section

4.3, CPU consumers tend to get a significant execution time reduction

113

when compared to GPU consumers. This is because CPUs are latency

sensitive, while GPUs are latency tolerant. While there are energy

savings from the reduction in DRAM accesses in both cases, in the case

of CPU consumers, execution time reduction translates to reduced

DRAM self-refresh energy: compounding the energy savings for our

technique. Benchmarks that contain CPU consumers are: CEDT, EP,

Kmeans, and 372.smithwa.

Benchmark Criteria. The reasoning for choosing our bench-

marks is four-fold. First of all, a workload must have at least one GPU

kernel and CPU loop of roughly the same number of threads/itera-

tions that pass data between them. Many benchmarks we surveyed

were completely dominated by GPU kernels, with no shared data to

speak of. Second, the data footprint of the shared data must be a large

percentage of the total cache footprint of the stages it is passed be-

tween: optimizing for a small fraction of the data would be inefficient.

Third, the full result of the producer stage cannot be needed when the

consumer stage launches. For example, a stage that performs a reduc-

tion, where the resultant value is needed in the next stage. Finally, in

114

some cases while the previous constraints were met, the input size of

the workload was not sufficient to fill the LLC, and the workload was

hard-coded to expect an input of a particular type.

In general our technique is well suited to streaming workloads

which pass data between heterogeneous stages and access that shared

data at the same rate in terms of their iterations or threads. We

believe that these types of workloads are both relatively common from

our survey of workloads, and relatively easy to achieve when writing

new benchmarks that may take advantage of our technique.

4.3 Results

This section presents the results of a quantitative study of our

technique simulated on Gem5. We begin by presenting the overall

gains in terms of reduced DRAM accesses, execution time, and total

DRAM energy. We follow with a detailed performance breakdown by

examining the results of a run-ahead distance sensitivity study. Fi-

nally, we consider the effects of LLC read-inclusivity on our technique.

115

4.3.1 Main Result

Figure 4.7 presents the main result from our evaluation of our

technique on the simulation platform described in section 4.2. It shows

the optimal run-ahead distance (blue bars) normalized to the ”serial”

case (”1.0” red bars) where the producer execution rate is not throttled

at all. In the serial case, producers execute in their entirety before

consumers begin, referencing their full cache-footprint, and spilling

producer-consumer data out of the cache system. The optimal case

was chosen based on total DRAM energy savings, which we show

in addition to the total DRAM accesses (reads and writes), and the

execution time - all normalized to the serial case.

By controlling the run-ahead distance, we are able to achieve an

average 30.4% reduction in DRAM accesses in the optimal case. Every

benchmark we evaluated was able to achieve a significant reduction in

DRAM accesses due to the producer-consumer communication occur-

ring on-chip and via the cache hierarchy. This reduction in memory

traffic leads to a corresponding savings in DRAM energy,

The set of benchmarks also achieved a 26.84% reduction in ex-

116

CEDT
BE

Dwt2D
Kmeans

EP
LavaMD

SmithWa
Average

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
D

R
A

M
A

cc
es

se
s

0.39

0.69

0.91

0.61

0.77
0.74

0.63
0.68

optimal serial

CEDT
BE

Dwt2D
Kmeans

EP
LavaMD

SmithWa
Average

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
ot

al
D

R
A

M
E

n
er

gy

0.39

0.80

0.92

0.54

0.74

1.03

0.65

0.72

CEDT
BE

Dwt2D
Kmeans

EP
LavaMD

SmithWa
Average

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
x
ec

u
ti

on
T

im
e

0.35

0.82
0.87

0.61
0.66

0.99

0.78
0.73

Figure 4.7: DRAM Accesses, Execution Time, and Total DRAM Energy usage of
the optimal Run-ahead Distance (Blue) normalized to the Serial Case (Red).

117

ecution time. Workloads with CPU consumer stages (CEDT, EP,

Kmeans, SmithWa) benefited strongly from a tight run-ahead dis-

tance, achieving an average 38.8% execution time reduction. Data

meant for CPU consumer stages stayed in the cache, reducing access

latency, something which the latency intolerant CPU cores benefit

from greatly. On the other hand, those workloads with GPU con-

sumers (BE, dwt2D, LavaMD) did not receive as much performance

gain, achieving a less substantial 10.9% reduction in execution time.

This is to be expected since the GPU consumers are naturally more

latency tolerant.. The speedup of this subset of benchmarks is due

primarily to software pipelining overlap, and not due to the locality

improvement from our technique. One benchmark included in this

latter set, LavaMD, achieves only a 0.74% savings in execution time

because the GPU stage’s execution time in the serial case is 52x larger

than the CPU stage’s execution time, leaving little execution time to

overlap. The other workloads have closer ratios between the stages’

execution times, between 1.1x and 4.7x. This simply means that our

technique benefits these workloads primarily through the energy ben-

118

efit that comes from a reduction in DRAM accesses, factoring into the

total DRAM energy.

To wit, we were able to achieve a 27.4% reduction in total DRAM

energy on average. This includes the energy saved from the reduction

in DRAM accesses, as well as the refresh, activation, pre-charge, and

their associated background energies. Again, we see that the GPU-

First patterns perform better than their CPU-First counterparts: a

41.3% reduction in energy on average compared to 8.8% . Notably,

LavaMD actually receives an increase in total DRAM energy com-

pared to the serial case. While the access energy (Read, Write, Activa-

tion, and PreCharge energy) goes down proportionally to the savings

in accesses, the background energies, namely precharge and activation

background energies increase when we apply our technique. LavaMD

performs a stencil calculation where each each block within the calcu-

lation accesses its neighbors and has non-contiguous data structures

to keep track of details about its neighbors. When our technique is ap-

plied, data structures for non-contiguous blocks are accesses, leading

to banks waiting in activated and precharged states for longer.

119

CEDT BE Dwt2D Kmeans EP LavaMD SmithWa
0.00

0.25

0.50

0.75

1.00

GG RR

GG RW

GG WR

GG WW

GC RR

GC RW

GC WR

GC WW

CG RR

CG RW

CG WR

CG WW

CC RR

CC RW

CC WR

CC WW

Figure 4.8: Heterogeneous producer-consumer sharing patterns for each workload.
Bars show percentage data size of each type of sharing pattern relative to the all
shared data in a workload.

4.3.2 Run-Ahead Distance Sensitivity Studies

Choosing the correct run-ahead distance is an important factor

in optimizing performance and power usage with our technique. This

section presents the results of sensitivity studies for each workload

wherein the run-ahead distance, and thus the cache-footprint of the

stages, is increased up to its limit (the ”serial” case in Figure 4.7).

Each workload is uniquely sensitive to changes in RAD depending

its footprint-per-thread (FPT, section 4.1.5) and dependency patterns.

Figure 4.8 shows for each benchmark what proportion of the total

shared data fell into the sixteen categories we outline in Section 4.1.6.

120

4.3.2.1 CEDT Sensitivity Study

Pattern Stage Footprints

S0 S1 S2 S3 TPB FPT RAD

GGCC 2 3 3 2 256 10 1639

Table 4.3: CEDT Profile. Each stage’s footprint is in bytes per thread (or bytes per
CPU iteration). Using Equation 4.5, the threads-per-block (TPB) and footprint-per-
thread (FPT) are used to calculate potentially optimal run-ahead distance (RAD)
in terms of GPU thread-blocks using 4 MB LLC size in our configuration.

Figure 4.9 presents a sweep of RAD values in number of GPU

thread-blocks (x-axis) in each plot. The optimal RAD value used

in the main result is highlighted in green and was chosen based on

normalized total DRAM energy usage.

CEDT’s profile is presented in Table 4.3. Each stage contributes

a number of uniquely accessed bytes per thread, totally to 10 bytes

for every GPU thread executed in the pipeline. With the threads-per

block(TPB) of 256 we can calculate using equation 4.5 that a poten-

tially optimal RAD will be at 1639 thread-blocks. Under the pipelined

schedule that our technique applies, CEDT must be run using a multi-

ple of 956 thread-blocks due to some dependencies caused by a stencil

calculation (this naturally excludes the maximum number of blocks,

32,026, where-in each stage is run serially). Therefore, the optimal

121

956 1912 3824 7648 15296 30592 32026
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

D
R

A
M

A
cc

es
se

s

40.0%

73.5%
67.7%

81.4% 81.4% 81.3%

100.0%

CEDT RAD Sensitivity Sweep

(a) Normalized DRAM Accesses Sensitivity

956 1912 3824 7648 15296 30592 32026
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
x
ec

u
ti

on
T

im
e

35.1%
39.7% 42.7%

51.6%

66.1%

87.2%

100.0%

(b) Normalized Execution Time Sensitivity

956 1912 3824 7648 15296 30592 32026
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
ot

al
D

R
A

M
E

n
er

gy

39.7%

54.1% 52.9%

63.9%
73.0%

87.1%

100.0%

(c) Normalized DRAM Energy Sensitivity

Figure 4.9: CEDT Run-Ahead Distance (RAD) sensitivity study. X-axis shows
RAD in GPU thread-blocks.Result of optimal RAD (Min Energy) shown in green.

122

RAD should be 956, the largest possible RAD below our predicted

value.

Figure 4.9c shows that this prediction bears out. The optimal

case for CEDT is 956 thread-blocks, with the normalized total DRAM

energy being lowest at this point. We can consider the total DRAM

accesses in Figure 4.9a to explain the optimal point. We can see that

again the optimal case is the RAD we predicted, 956 thread-blocks.

However, we can see that several larger RAD values achieve savings

(1912 and 7648 thread-blocks). This is due to the CPU L2s providing

extra space (2MB each) for the working set to reside in, keeping the

footprints of the CPU stages from evicting shared data. The rest of

the non-serial cases (15,296 and 30,592 thread-blocks) do not divide

evenly into the total number of blocks for this input, 32026. Thus,

once one epoch of the pipeline completes, the remainder will have far

fewer blocks to complete, making for a pipeline with a small cache

footprint.

The dependencies for this workload are for the most part straight-

forward, with the only dependency of note being a CC WR depen-

123

dency between the two CPU Stages, S2 and S3. The last stage, S3,

will miss in the LLC because some of the shared data has not yet

been evicted from the other CPU’s L2, causing a speculative read to

DRAM. 11% of the accesses in the optimal case are speculative reads.

4.3.2.2 BE Sensitivity Study

Pattern Stage Footprints

S0 S1 TPB FPT RAD

CG 6 6 64 12 5462

Table 4.4: BE Profile. Each stage’s footprint is in bytes per thread (or bytes per
CPU iteration). Using Equation 4.5, the threads-per-block (TPB) and footprint-per-
thread (FPT) are used to calculate potentially optimal run-ahead distance (RAD)
in terms of GPU thread-blocks using 4 MB LLC size in our configuration.

Figure 4.10 presents a sweep of RAD values for BE, up to its

maximum, 97200 (serial scheduling). Table 4.4 shows the profile of

this benchmark. It has 2 stages, a CPU and then a GPU stage that

together have a FPT of 12. Using Equation 4.5 we estimate an optimal

RAD value of 5462 thread-blocks.

In Figure 4.10c, we see that the Normalized DRAM Energy usage,

is lowest when using a RAD of 8192 thread-blocks, which is larger than

our prediction. In fact, the smaller RAD values, 1024 - 4096 thread-

blocks actually exhibit degraded performance. This is particularly

124

1024 2048 4096 8192 16384 32768 97200
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

D
R

A
M

A
cc

es
se

s
83.9% 83.7% 81.3%

69.3%

97.6% 97.5% 100.0%

BE RAD Sensitivity Sweep

(a) Normalized DRAM Accesses Sensitivity

1024 2048 4096 8192 16384 32768 97200
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
x
ec

u
ti

on
T

im
e

82.6% 82.1% 82.4% 82.3% 85.6% 88.0%

100.0%

(b) Normalized Execution Time Sensitivity

1024 2048 4096 8192 16384 32768 97200
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
ot

al
D

R
A

M
E

n
er

gy

84.5% 83.9% 83.7%
79.6%

90.5% 91.0%
100.0%

(c) Normalized DRAM Energy Sensitivity

Figure 4.10: BE Run-Ahead Distance (RAD) sensitivity study. X-axis shows RAD
in GPU thread-blocks. Result of optimal RAD (Minimum Energy) shown in green.

125

pronounced in Figure 4.10a, whichy shows the Normalized DRAM ac-

cesses. This is due to 100% of the shared data for this workload being

a CG WR case, as shown in Figure 4.8. At small RAD values, data

that the GPU consumes resides in the CPU’s L2, causing a specula-

tive read. Ultimately, the data comes from the CPU’s L2 cache via

snooping. For instance, at a RAD of 4096 thread-blocks, the CPU’s

L2 Cache footprint is 1.5 MB. At the optimal case of 8192, the foot-

print of the CPU Stage is 3 MB, leading the CPU to write back shared

data to the LLC, ultimately causing the GPU accesses to be hits.

4.3.2.3 Dwt2D Sensitivity Study

Pattern Stage Footprints

S0 S1 TPB FPT RAD

CG 3 15 256 12 911

Table 4.5: DWT2D Profile. Each stage’s footprint is in bytes per thread (or bytes per
CPU iteration). Using Equation 4.5, the threads-per-block (TPB) and footprint-per-
thread (FPT) are used to calculate potentially optimal run-ahead distance (RAD)
in terms of GPU thread-blocks using 4 MB LLC size in our configuration.

Dwt2D’s profile is reported in Table 4.5. Using Dwt2D’s FPT

of 21 bytes, we calculate an estimated optimum RAD of 911 thread-

blocks.

What we see in Figure 4.11c, is that the optimal energy usage

126

128 256 512 1024 2048 4096 5353 10706
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

D
R

A
M

A
cc

es
se

s
90.8% 90.9% 91.4% 92.5% 88.8%

97.6% 99.6% 100.0%

Dwt2D RAD Sensitivity Sweep

(a) Normalized DRAM Accesses Sensitivity

128 256 512 1024 2048 4096 5353 10706
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
x
ec

u
ti

on
T

im
e

88.9% 87.3% 87.1% 87.1% 86.0%

99.5%
92.8%

100.0%

(b) Normalized Execution Time Sensitivity

128 256 512 1024 2048 4096 5353 10706
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
ot

al
D

R
A

M
E

n
er

gy

92.5% 91.8% 92.2% 91.9% 91.9%

113.3%

97.9% 100.0%

(c) Normalized DRAM Energy Sensitivity

Figure 4.11: DWT2D Run-Ahead Distance (RAD) sensitivity study. X-axis shows
RAD in GPU thread-blocks. Result of optimal RAD (Min Energy) shown in green.

127

falls significantly below our estimate, but that the estimated RAD’s

performance is extremely close to the optimum, and thus our esti-

mate was pretty good. However, we can also see that RAD values

significantly higher than our estimate also did well.

In Figure 4.11a, we see that a RAD of 2048 actually achieves

the best access savings overall. To explain this, we must look to the

dependency pattern within Dwt2D from Figure 4.8, that is: 100%

CG WR. Dwt2D is a CPU-to-GPU benchmark in which the shared

data will first be written to the CPU’s L2 until it is evicted to the

LLC. Additionally, the GPU stage executes significantly faster than

the CPU stage at the same RAD (2.4x faster) and so during one epoch

of the software pipeline, the GPU will consume data and write its own

data to the LLC before the CPU evicts its data. This race condition

works in our favor by keeping the shared data in the CPU’s L2 until

later when the GPU cannot evict it erroneously.

4.3.2.4 Kmeans Sensitivity Study

The profile for Kmeans is shown in 4.6. It consists of a GPU

to CPU pipeline with a moderately sized FPT of 284 Bytes. Using

128

16 32 64 128 256 512 1024 2048
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

D
R

A
M

A
cc

es
se

s

52.6%
60.9%

99.2% 100.3% 100.2% 100.1% 100.0% 100.0%

Kmeans RAD Sensitivity Sweep

(a) Normalized DRAM Accesses Sensitivity

16 32 64 128 256 512 1024 2048
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
x
ec

u
ti

on
T

im
e

80.3%

60.9% 64.5% 65.7% 67.0%
72.4%

81.1%

100.0%

(b) Normalized Execution Time Sensitivity

16 32 64 128 256 512 1024 2048
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
ot

al
D

R
A

M
E

n
er

gy

57.8% 54.3%

81.5% 82.5% 83.2% 85.8%
90.2%

100.0%

(c) Normalized DRAM Energy Sensitivity

Figure 4.12: KM Run-Ahead Distance (RAD) sensitivity study. X-axis shows RAD
in GPU thread-blocks. Result of optimal RAD (Minimum Energy) shown in green.

129

Pattern Stage Footprints

S0 S1 TPB FPT RAD

GC 140 144 256 284 58

Table 4.6: Kmeans Profile. Each stage’s footprint is in bytes per thread (or bytes per
CPU iteration). Using Equation 4.5, the threads-per-block (TPB) and footprint-per-
thread (FPT) are used to calculate potentially optimal run-ahead distance (RAD)
in terms of GPU thread-blocks using 4 MB LLC size in our configuration.

Equation 4.5, we predict that the optimal RAD for Kmeans should

fall near 58 thread-blocks. Figure 4.12 presents the results of the RAD

sensitivity study conducted for Kmeans, and in Figure 4.12c we see

the optimal energy value is at 32 thread-blocks with just 54% of the

energy of the serial case (2048 thread-blocks). The next RAD step,

64 thread-blocks, sees a large jump to 82% of the total DRAM energy

in the serial case. In Figure 4.12a we see that the 64 thread-block

case achieves no DRAM access savings, and the 32 thread-block case

does, fitting with our prediction. The 16 thread-block case actually

performs better in terms of DRAM accesses than the 32 thread-block

optimal case. However, looking at the normalized execution time in

Figure 4.12b, we see that the 16 thread-block case has a large execution

time increase. This is due to increased L1 instruction cache misses in

the CPU core and overhead from the run time system, due to the

130

smaller pipe-width. This provides further motivation for predicting

the optimal RAD value.

4.3.2.5 EP Sensitivity Study

Pattern Stage Footprints

S0 S1 S2 TPB FPT RAD

CGC 4024 8024 16 256 12064 3

Table 4.7: EP Profile. Each stage’s footprint is in bytes per thread (or bytes per
CPU iteration). Using Equation 4.5, the threads-per-block (TPB) and footprint-per-
thread (FPT) are used to calculate potentially optimal run-ahead distance (RAD)
in terms of GPU thread-blocks using 4 MB LLC size in our configuration.

EP’s profile is shown in Table 4.7. EP has three stages, a GPU

stage sandwiched between two CPU stages, and has the largest FPT

of any of our workloads at 12064 bytes-per-thread. We Estimate using

equation 4.5 the optimal RAD value to be 2.7 thread-blocks, which

since we cannot split thread-blocks into smaller parts, we round this

to 3 thread-blocks.

Figure 4.13 presents the results of the sensitivity study for EP.

Indeed, we see that for the normalized DRAM energy (Figure 4.13c),

EP performs best at 3 thread-blocks. Figure 4.13a, the normalized

DRAM accesses, shows that reducing the number of thread-blocks

even further reduces extraneous DRAM accesses some more. However,

131

2 3 4 8 16 32 64
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

D
R

A
M

A
cc

es
se

s

69.5%
76.8%

85.2%
89.8%

98.4% 100.0% 100.0%

EP RAD Sensitivity Sweep

(a) Normalized DRAM Accesses Sensitivity

2 3 4 8 16 32 64
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
x
ec

u
ti

on
T

im
e

78.5%

66.0%
70.7% 70.9%

75.6%
84.9%

100.0%

(b) Normalized Execution Time Sensitivity

2 3 4 8 16 32 64
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
ot

al
D

R
A

M
E

n
er

gy

82.2%
73.6% 77.3% 77.1%

82.9%
89.3%

100.0%

(c) Normalized DRAM Energy Sensitivity

Figure 4.13: EP Run-Ahead Distance (RAD) sensitivity study. X-axis shows RAD
in GPU thread-blocks. Result of optimal RAD (Minimum Energy) shown in green.

132

Figure 4.13b - the normalized execution time - shows that at this RAD

value the performance begins to suffer, and with it goes the energy

usage as well. The performance degradation is due to blocks that

belong to the CPU instruction cache being evicted from the (inclusive)

L2, causing fetch stalls. This shows how with profiling and estimation,

we can execute our technique with an optimal RAD value.

4.3.2.6 LavaMD Sensitivity Study

Pattern Stage Footprints

S0 S1 TPB FPT RAD

CG 78.54 78.54 100 157.04 268

Table 4.8: LavaMD Profile. Each stage’s footprint is in bytes per thread (or bytes per
CPU iteration). Using Equation 4.5, the threads-per-block (TPB) and footprint-per-
thread (FPT) are used to calculate potentially optimal run-ahead distance (RAD)
in terms of GPU thread-blocks using 4 MB LLC size in our configuration.

The profile of LavaMD in Table 4.8 and the accompanying sen-

sitivity study help explain the DRAM energy increase that we see

in Section 4.3.1. First, using Equation 4.5 we calculate a potentially

optimal RAD value of 268 thread-blocks.

We see that in Figure 4.14a, which shows the normalized total

DRAM accesses, LavaMD performs close to expectations. The ob-

served optimum in terms of DRAM accesses, 250, is close to the esti-

133

50 100 200 250 500 1000
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

D
R

A
M

A
cc

es
se

s
87.0% 84.6%

75.3%
69.2%

74.0%

100.0%

LavaMD RAD Sensitivity Sweep

(a) Normalized DRAM Accesses Sensitivity

50 100 200 250 500 1000
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
x
ec

u
ti

on
T

im
e

98.6% 98.7% 98.8% 98.8% 99.3% 100.0%

(b) Normalized Execution Time Sensitivity

50 100 200 250 500 1000
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
ot

al
D

R
A

M
E

n
er

gy

106.8% 106.7% 105.9% 105.4% 103.2% 100.0%

(c) Normalized DRAM Energy Sensitivity

Figure 4.14: LavaMD Run-Ahead Distance (RAD) sensitivity study. X-axis shows
RAD in GPU thread-blocks. Result of optimal RAD (Min Energy) shown in green.

134

mate. In Figure 4.14, which presents the normalized execution time,

we see that performance is basically flat, with fluctuations in execution

time under 1%. Again, this is due to the large difference in execution

time between the CPU producer and GPU consumer stages. The GPU

kernel, when run in total, takes 52 times as long as the CPU stage,

leaving little execution time to pipeline. And, since this producer-

consumer relationship consists entirely of CG WR dependence, the

latency tolerant GPU’s performance does not improve with reduced

DRAM accesses.

Figure 4.14c reports the normalized DRAM energy for LavaMD.

Here, the observed ”optimum” is 500 at an energy increase of 3%. As

we discussed in Section 4.3.1 LavaMD includes a stencil calculation

in which there is significant reuse between GPU threads and CPU

iterations. This causes a sharp increase in the DRAM’s activation

and precharge background energies that outweigh the energy saved

from the reduction in DRAM accesses.

LavaMD shows that our technique is effective at reducing DRAM

accesses, but that for some workloads DRAM energy management may

135

be more complex.

4.3.2.7 SmithWa Sensitivity Study

Pattern Stage Footprints

S0 S1 TPB FPT RAD

GC 37 36 512 73 112

Table 4.9: SmithWa Profile. Each stage’s footprint is in bytes per thread (or
bytes per CPU iteration). Using Equation 4.5, the threads-per-block (TPB) and
footprint-per-thread (FPT) are used to calculate potentially optimal run-ahead dis-
tance (RAD) in terms of GPU thread-blocks using 4 MB LLC size in our configu-
ration.

SmithWa’s profile is reported in Table 4.9. It is another two stage

GPU-to-CPU workload with a FPT of 73 Bytes. Using Equation 4.5,

we estimate an optimal RAD value of 112 thread-blocks.

Figure 4.15 shows the results of the sensitivity study. Figure 4.15c

reports the normalized DRAM energy usage for Smithwa. Of the RAD

values we tested we observe that 65 thread-blocks, the largest RAD

not exceeding our estimate, achieves the lowest total DRAM energy

usage at 65% of the serial case (4097 thread-blocks). 33 thread-blocks

achieves a similar energy footprint, and 129 thread-blocks achieves

savings, though not as much as the 65 thread-blocks case.

This is supported by Figure 4.15a which reports the normalized

136

33 65 129 257 513 1025 2049 4097
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

D
R

A
M

A
cc

es
se

s

63.5% 63.5%
72.5%

99.7% 100.6% 100.6% 100.0% 100.0%

SmithWa RAD Sensitivity Sweep

(a) Normalized DRAM Accesses Sensitivity

33 65 129 257 513 1025 2049 4097
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
x
ec

u
ti

on
T

im
e

79.0% 78.0%
83.4%

97.6% 96.3% 97.0% 98.1% 100.0%

(b) Normalized Execution Time Sensitivity

33 65 129 257 513 1025 2049 4097
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
ot

al
D

R
A

M
E

n
er

gy

65.5% 64.9%
74.3%

99.9% 99.6% 99.7% 99.7% 100.0%

(c) Normalized DRAM Energy Sensitivity

Figure 4.15: SmithWa Run-Ahead Distance (RAD) sensitivity study. X-axis shows
RAD in GPU thread-blocks. Result of optimal RAD (Minimum Energy) shown in
green.

137

DRAM accesses for SmithWa. 33 and 65 thread-blocks, as expected,

achieve the largest savings at 64% and 63% of the serial case, respec-

tively. Meanwhile the 129 thread-blocks RAD bar achieves 72% of

the serial case. Even though the cache-footprint at this RAD value,

4.6 MB, is larger than the size of the LLC, the CPU’s L2 provides

extra space. However, only a portion of the CPU’s footprint can take

advantage of this extra space.

SmithWa’s dependency pattern as shown in Figure 4.8 consists of

22.2% GC RW and 77.8% GC WR. In order for the CPU’s writeback

L2 cache to provide extra buffer to supplement the LLC, the LLC must

be exclusive of the L2. For the overall performance of our technique,

it is important that the LLC has read-inclusivity. We will discuss

the performance implications of read-inclusivity in depth in Section

4.3.3. However, in the context of the L2 providing extra room for our

software pipeline, the 77.8% of the producer-consumer data that the

CPU stage reads will be mirrored in the LLC, with the 22.2% of the

data that the CPU writes sticking around in the CPU’s L2 until it is

written back.

138

Finally, in Figure 4.15b, the we report the normalized execution

time for SmithWa. The curve follows closely the curve of Figure 4.15a,

the normalized DRAM accesses. SmithWa’s consumer is a latency

intolerant CPU, so reducing the accesses to DRAM for its shared data

has a positive effect on performance. At the optimal RAD we achieve

a 22% execution time reduction.

4.3.3 Read-Inclusivity

The LLC in our simulation does not cache Reads as they arrive

from DRAM. Instead, data is filled into the LLC only when evicted

from the CPU’s L2 cache or when the GPU writes through to the LLC

(i.e.the LLC is managed as a victim cache). For producer-consumer

dependences where the producer is a Read, this presents a problem

that can degrade effectiveness of our technique. For one, in our simu-

lation the GPU’s L2 cache does not write back clean lines to the LLC

upon eviction. This means that data brought into the cache system

by a GPU producer’s read will not get written to the LLC, effec-

tively rendering it lost and providing no benefit to the CPU consumer

that follows it. The CPU L2’s cache in our simulation evicts clean

139

CEDT
BE

Dwt2D
Kmeans

EP
LavaMD

SmithWa
Average

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
D

R
A

M
A

cc
es

se
s

0.80 0.81

1.01

0.29

0.94

0.48

0.81

0.73

Exclusive-Caching Read-Inclusive

(a) Normalized Total DRAM Accesses

CEDT
BE

Dwt2D
Kmeans

EP
LavaMD

SmithWa
Average

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

D
R

A
M

R
ea

d
s

0.71 0.71

1.00

0.28

0.86

0.30

0.72
0.65

(b) Normalized DRAM Reads

CEDT
BE

Dwt2D
Kmeans

EP
LavaMD

SmithWa
Average

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

D
R

A
M

W
ri

te
s

1.15

1.01 1.02 1.03 1.07

1.71

1.00

1.14

(c) Normalized DRAM Writes

Figure 4.16: DRAM Accesses, DRAM Reads, and DRAM Writes of the optimal
Run-ahead Distance under a read-inclusive LLC caching policy normalized to an
exclusive LLC caching policy (Red).

140

lines to the LLC. However, Reads to a line by a consumer following a

CPU-Read producer that occur before that line has been written back

will trigger a speculative read to DRAM in our simulation. Since co-

herence for clean lines is easy to enforce, managing the LLC with a

”Read-Inclusivity” policy, i.e.filling the LLC with lines brought into

the cache system by Reads upon arrival from DRAM, makes sense.

Figure 4.16a shows the savings in DRAM accesses we achieved

with a Read-Inclusivity policy. This can be broken down into DRAM

Reads (Figure 4.16b) and DRAM Writes (Figure 4.16c). The blue

bars show the value of the optimal RAD presented in Section 4.3.1

under a read-inclusive policy normalized to the same RAD value with

an exclusive-caching policy (the red bars).

On average, read-inclusivity achieves reductions of 26.7% and

34.7% for total DRAM accesses and for DRAM reads, respectively.

A natural consequence of filling the LLC with more data is that more

blocks get evicted. Thus, read-inclusivity increases writes to DRAM

by 14.2%.

For some benchmarks, read-inclusivity is integral to the temporal

141

locality improvement our technique achieves for producer-consumer

sharing. As shown in Figure 4.8 CEDT, Kmeans, and SmithWater-

man all have significant read-first producer-consumer sharing patterns.

They achieve 20.0%, 70.5%, and 19.0% reductions, respectively. These

savings, and Kmeans’ impressive drop in particular, show the impor-

tance of read-inclusivity for our technique.

BE, EP, and LavaMD all show significant savings as well. How-

ever, these savings are due to reuse of blocks by the GPU and not

by sharing between stages (save for EP which has a small amount

of read-first transactions, outweighed by the GPU’s temporal local-

ity). Finally, DWT2D achieves a small 0.7% increase in total DRAM

accesses, having no producer-consumer temporal locality, nor typical

temporal locality in its access pattern.

Figure 4.17a shows the ultimate effect that read inclusivity has

on execution time and energy for our workloads. On average, read

inclusivity reduces execution time by 3.0% Benchmarks with primar-

ily CPU consumer patterns - Kmeans and SmithWa - achieve exe-

cution time reductions of 9.3% and 10.1%. A small fraction of EP

142

CEDT
BE

Dwt2D
Kmeans

EP
LavaMD

SmithWa
Average

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
x
ec

u
ti

on
T

im
e

0.98 1.00 1.01

0.91

0.99 1.00

0.90
0.97

Exclusive-Caching Read-Inclusive

(a) Normalized Execution Time

CEDT
BE

Dwt2D
Kmeans

EP
LavaMD

SmithWa
Average

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
ot

al
D

R
A

M
E

n
er

gy

0.91
0.95

1.01

0.52

1.02
0.98

0.84
0.89

(b) Normalized Total DRAM Energy

Figure 4.17: Execution Time and Total DRAM Energy of the optimal Run-ahead
Distance under a read-inclusive LLC caching policy normalized to an exclusive LLC
caching policy (Red).

143

and CEDT’s accesses are CPU consumers and they achieve 0.7% and

1.6% reductions, respectively. BE and LavaMD, being GPU con-

sumer pipelines, receive no execution time reduction despite signifi-

cant DRAM access reductions as a consequence of the latency toler-

ant GPU. Dwt2D actually increases in execution time slightly, a 1.2%

increase.

Figure 4.17b shows the DRAM energy benefits of Read Inclusiv-

ity. On average, by choosing this policy we achieve an 11.0% reduction

in DRAM energy usage averaged across all the workloads. Kmeans

achieves an impressive 48.2% savings, with CEDT and SmithWa fol-

lowing at 8.6% and 16.0%, respectively. BE and LavaMD get 5.3%

and 1.7% savings, respectively, from the significant reuse they exhibit.

Dwt2D again shows a slight 1.1% increase, and EP shows a 1.6% in-

crease in energy usage despite its 0.6% DRAM access reduction due

to primarily DRAM precharge background energy increasing.

144

4.4 Related Work

Hestness et al. find that pipelining benchmarks with GPU-kernel-

synchronous characteristics can increase performance in a number of

interesting ways. Indeed, they mention pipelining leads to coordinated

use of cache capacity, saving off-chip memory accesses contributing to

an increase in performance for some of their examined benchmarks.

They do not however study the effect in detail, nor focus on controlling

their pipeline width for redundant access elimination [45].

Work by Kim et al. recognizes that GPGPU workloads may

consist of multiple dependent stages that include CPU, GPU ker-

nels, I/O, and copies that constitute pipeline parallelism [55]. They

introduces several optimizations in the hardware and virtual mem-

ory system to automatically schedule GPU cooperative thread arrays

(thread-blocks in our work), based on their dependence relationships

with other stages. Rather than study integrated heterogeneous mi-

croprocessors, it investigates these pipeline optimizations for discrete

GPGPU platforms. In contrast, our work studies integrated chips, and

focuses specifically on saving energy by reducing superfluous DRAM

145

accesses.

Kayi et al., and Cheng et al. both dynamically detect producer-

consumer sharing in multiprocessors and come up with coherence pro-

tocol optimizations to programs exhibiting producer-consumer shar-

ing [56, 57]. They do not examine GPUs and the complexities they

introduce to coherence and producer-consumer sharing.

Several benchmark suites have been developed in recent years to

provide suitable programs to test heterogeneous chips. Previously re-

searchers needed to adapt CPU and Traditional GPU benchmarks to

glean insights about heterogeneous chips. These suits contain bench-

marks which exhibit sharing, producer-consumer relationships, syn-

chronization and more [13, 44, 50].

4.5 Conclusions

In this chapter we presented a novel locality transformation, Het-

erogeneous Pipeline Scheduling for Cache, to improve the DRAM ac-

cess profile and in some cases execution time profile of workloads that

contain producer-consumer data dependencies. Instead of scheduling

146

large heterogeneous producer-consumer data pipelines serially, which

cause spills of shared data out of the on-chip cache and into DRAM,

we schedule them in a software pipeline. By blocking our pipeline with

the proper size, or run-ahead distance, we are able to keep shared data

on chip. In this way we save energy from unneeded DRAM accesses,

and in some cases improve performance.

We implement our technique on gem5 with a thread-block dis-

patcher based synchronization method. Implementation of this tech-

nique for specific workloads and systems will depend on the amount

of shared cache available and the amount of data-per-thread that the

heterogeneous workloads generate. Practical implementation for a

cadre of larger data-per-thread applications or hardware with smaller

shared caches may necessitate a synchronization scheme that is able

to gainfully execute at finer granularities, with lower overhead. We

found that for the workloads we evaluated, a GPU thread-block level

of granularity allowed us to achieve performance improvements in the

aggregate.

By a simple profiling of our workloads we estimated the opti-

147

mal run-ahead distance, and observed how these estimates performed

with a run-ahead distance sensitivity study. We showed how different

access dependencies (read-write pairings) and heterogeneity can influ-

ence the DRAM access profile, execution time savings, and DRAM

energy savings. Such profiling could be performed by a compiler, pro-

viding performance hints to the run-time system controlling the soft-

ware pipeline. Facilitating automatic optimizations for heterogeneous

produce-consumer data sharing applications.

148

Chapter 5: Conclusion and Future Work

Recent trends in computing have elevated GPUs’ importance

greatly, with GPUs becoming ubiquitous in many platforms. Not

only in massive high-performance GPGPU computing rigs, but also

in lower power mobile and ”edge” devices. Traditional program-

ming paradigms associated with GPGPU computing, namely the serial

scheduling of ”embarrassingly parallel” kernels, continue to see suc-

cess in discrete GPU systems. This thesis meanwhile, explores how

GPGPU programming for integrated CPU-GPU devices in low-power

systems requires a more nuanced approach to fully utilize the het-

erogeneous hardware and efficiently parallelize more types of codes of

more varied complexity. We proposed two techniques that optimize

GPGPU programs for integrated heterogeneous CPU-GPU micropro-

cessors.

The gradual integration of CPUs and GPUs from discrete com-

149

puting entities, to parts of the same system-on-a-chip have imparted

advantages in the communication of data between CPU code and GPU

kernels. Because of the improved physical proximity of the two core

types, data that travels between them is able to stay on chip in a co-

herent cache system, reducing both the performance cost of a transfer,

and the energy cost associated with off-chip DRAM access.

First, in Chapter 3, by leveraging low-cost on-chip data communi-

cation to enable low-latency kernel launches, we are able to gainfully

execute much smaller granularities of parallelism on the GPU. Our

technique ”Nested MIMD-SIMD Parallelization” extracts fine grain

parallel ”SIMD” loops nested within complex, irregular MIMD loops

and executes them as kernels on the GPU. By launching multiple ker-

nels from unique threads and overlapping execution, we are able to

increase temporal and spatial utilization of the GPU, while simul-

taneously utilizing CPU compute resources in concert. We evaluate

our technique on both a cycle-accurate simulator, gem5-gpu, and real

hardware, showing significant speedups in each.

Second, in Chapter 4 we propose a locality transformation called

150

Pipelined CPU-GPU Scheduling for Caches, that intelligently sched-

ules heterogeneous producer-consumer compute relationships, keep-

ing their data inside the on-chip cache. By restricting producers to

only running ahead of their consumer partners by a certain distance,

and executing them as a concurrent software pipeline, we limit the

cache footprint of each stage in the pipeline. Scheduling the software

pipeline with this ”Run-ahead distance” sized appropriately reduces

the number of accesses to off-chip DRAM saving significant energy.

The improved cache locality of these accesses proves a boon to the

performance of CPU consumer stages in the pipeline, as the CPU is

sensitive to access latency. This compounds with the natural perfor-

mance improvement of overlapping computation in a software pipeline,

and decreases DRAM energy further by decreasing background DRAM

energy. We evaluate our technique with seven benchmarks on a cycle-

accurate simulator, gem5.

151

5.1 Future Work

In both of the techniques that we propose and evaluate in this

thesis, there is an element of software engineering necessary to realize

performance gains. In other words we needed to do some rewriting

of code by hand. Though much of our work was made possible by

semi-automated processes like the low-latency kernel launch daemon

in Section 3.5 and the software runtime system described in Section

4.2, we opted to forgo full automation of the coding process in favor of

a deeper understanding of the performance of our techniques. An im-

portant direction therefore of future work is to automate this process,

or make it significantly easier inside the compiler, possibly with the as-

sistance of compiler directives such as in OpenMP [11]. Compounded

with the automated compiler optimization, an lightweight runtime

system layer could manage aspects like concurrent kernel launches,

and pipeline operation.

The performance benefits of the locality transformation we pro-

pose in Chapter 4 depend on choosing a run-ahead distance that will

sufficiently limit the overall cache footprint of the pipeline, as to keep

152

producer-consumer data on chip. In this research we achieve this by

sweeping possible RAD values, and choosing the optimal RAD based

on DRAM energy usage. We also propose a static prediction that can

be calculated by profiling a workload and using Equation 4.5, some-

thing we do by hand. This profiling could be done by a compiler, and

relevant data fed to the runtime system during execution. Another,

further direction for choosing the best RAD could be to use perfor-

mance counters to track LLC miss rates and other relevant statistics

and adjusting the RAD during runtime.

153

Bibliography

[1] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith,
Philip C. Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. The
Scalable HeterOgeneous Computing (SHOC) Benchmark Suite. In Proceedings
of the 3rd Workshop on General-Purpose Computation on Graphics Processing
Units, March 2010.

[2] Mark Harris. Unified memory in cuda 6, Nov 2013.

[3] Chris Gregg and Kim Hazelwood. Where is the Data? Why You Cannot
Debate CPU vs. GPU Performance Without the Answer. In Proceedings of the
International Symposium on Performance Analysis of Systems and Software,
April 2011.

[4] Intel Corporation. Intel Sandy Bridge Microarchitecture.”, Institution=”Intel”,
Number=”http://www.intel.com. Santa Clara, CA.

[5] N. Brookwood. AMD Fusion Family of APUs: Enabling a Superior, Immersive
PC Experience. AMD White Paper. 2010.

[6] Apple Inc. A12 Bionic: The Smartest, Most Powerful Chip in a Smartphone.”,
Institution=”Apple”, Number=”https://www.apple.com/iphone-xs/a12-
bionic. Cupertino, CA.

[7] Jin Wang, Norm Rubin, Albert Sidelnik, and Sudhakar Yalamanchili. Dynamic
Thread Block Launch: A Lightweight Execution Mechanism to Support Irreg-
ular Applications on GPUs. In Proceedings of the International Symposium on
Computer Architecture, Portland, OR, June 2015.

[8] Marisabel Guevara, Chris Gregg, Kim Hazelwood, and Kevin Skadron. En-
abling Task Parallelism in the CUDA Scheduler. In Proceedings of the Workshop
on Programming Models for Emerging Architectures held in conjunction with
the Symposium on Parallel Architectures and Compilation Techniques, Septem-
ber 2009.

[9] Lingyuan Wang, Miaoqing Huang, and Tarek El-Ghazawi. Towards Efficient
GPU Sharing on Multicore Processors. Performance Evaluation Review, 40(2),
September 2012.

154

[10] Daniel Gerzhoy, Xiaowu Sun, Michael Zuzak, and Donald Yeung. Nested mimd-
simd parallelization for heterogeneous microprocessors. ACM Transactions on
Architecture and Code Optimization, 16:1–27, 12 2019.

[11] The OpenMP API Specification for Parallel Programming. Intel Corporation.
http://www.openmp.org/wp/. 2014.

[12] Shuai Che, Jeremy W. Sheaffer, Michael Boyer, Lukasz G. Szafaryn, Liang
Wang, and Kevin Skadron. A Characterization of the Rodinia Benchmark
Suite with Comparison to Contemporary CMP Workloads. In Proceedings of
the International Symposium on Workload Characterization, December 2010.

[13] Y. Sun, X. Gong, A. K. Ziabari, L. Yu, X. Li, S. Mukherjee, C. Mccardwell,
A. Villegas, and D. Kaeli. Hetero-mark, a benchmark suite for cpu-gpu col-
laborative computing. In 2016 IEEE International Symposium on Workload
Characterization (IISWC), pages 1–10, 2016.

[14] John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone, and
James C Phillips. Gpu computing. Proceedings of the IEEE, 96(5):879–899,
2008.

[15] Y. Kim, H. Kwon, S. Doo, M. Ahn, Y. Kim, Y. Lee, D. Kang, S. Do, C. Lee,
G. Cho, J. Park, J. Kim, K. Park, S. Oh, S. Lee, J. Yu, K. Yu, C. Jeon, S. Kim,
H. Park, J. Lee, S. Cho, K. Park, Y. Kim, Y. Seo, C. Shin, C. Lee, S. Bang,
Y. Park, S. Choi, B. Kim, G. Han, S. Bae, H. Kwon, J. Choi, Y. Sohn, K. Park,
S. Jang, and G. Jin. A 16-gb, 18-gb/s/pin gddr6 dram with per-bit trainable
single-ended dfe and pll-less clocking. IEEE Journal of Solid-State Circuits,
54(1):197–209, 2019.

[16] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen
Chang, Nasser Anssari, Geng Daniel Liu, and Wen mei Hwu. The Parboil
Technical Report. March 2012.

[17] OpenMP Source Code Repository. http://www.pcg.ull.es/ompscr/. 2004.

[18] SPEC OMP 2001. https://www.spec.org/omp2001/. 2001.

[19] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, San Francisco, CA, 1997.

[20] Michael Kruse and Hal Finkel. Loop Optimization Framework. Technical Re-
port 1811.00632, arXiv, November 2018.

[21] SPEC OMP 2012. https://www.spec.org/omp2012/. 2012.

[22] Michael Kruse and Tobias Grosser. DeLICM: Scalar Dependence Removal at
Zero Memory Cost. In Proceedings of the International Symposium on Code
Generation and Optimization, February 2018.

155

[23] Jason Power, Joel Hestness, Mar S. Orr, Mark D. Hill, and David A. Wood.
gem5-gpu: A Heterogeneous CPU-GPU Simulator. Computer Architecture Let-
ters, 13(1), January 2014.

[24] Intel Core i7 - 6770HQ Processor. https://ark.intel.com/products/93341/Intel-
Core-i7-6770HQ-Processor-6M-Cache-up-to-3 50-GHz.

[25] Daniel Lustig and Margaret Martonosi. Reducing GPU Offload Latency via
Fine-Grained CPU-GPU Synchronization. In Proceedings of the International
Symposium on High Performance Computer Architecture, June 2013.

[26] gem5 M5threads. https://github.com/gem5/m5threads. 2009.

[27] Neil Trevett. Opencl introduction. Khronos Group, 2013.

[28] Michael Mrozek and Zbigniew Zdanowicz. GPU Daemon: Road to Zero Cost
Submission. In Proceedings of the 4th International Workshop on OpenCL,
April 2016.

[29] Mayank Daga, Ashwin M. Aji, and Wu chun Feng. On the Efficacy of a Fused
CPU+GPU Processor (or APU) for Parallel Computing. In Proceedings of the
Symposium on Application Accelerators in High-Performance Computing, July
2011.

[30] Kyle Spafford, Jeremy S. Meredith, Seyong Lee, Dong Li, Philip C. Roth, and
Jeffrey S. Vetter. The Tradeoffs of Fused Memory Hierarchies in Heterogeneous
Computing Architectures. In Proceedings of the ACM International Conference
on Computing Frontiers, May 2012.

[31] J. Dongarra and P. Luszczek. Introduction to the HPC Challenge Benchmark
Suite. Technical report, University of Tennessee-Knoxville, 2005.

[32] Manish Arora, Siddhartha Nath, Subhra Mazumdar, Scott B. Baden, and
Dean M. Tullsen. Redefining the Role of the CPU in the Era of CPU-GPU
Integration. IEEE MICRO, November/December 2012.

[33] Standard Performance Evaluation Corporation.
http://www.spec.org/benchmarks.html. 2015.

[34] Michael Zuzak and Donald Yeung. Exploiting Multi-Loop Parallelism on Het-
erogeneous Microprocessors. In Proceedings of the 10th International Workshop
on Programmability and Architectures for Heterogeneous Multicores, January
2017.

[35] Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman, Brian T. Lewis, Chun-
ling Hu, and Keshave Pingali. Adaptive Heterogeneous Scheduling for Inte-
grated GPUs. In Proceedings of the International Conference on Parallel Ar-
chitectures and Compilation Techniques, August 2014.

156

[36] Vignesh T. Ravi and Gagan Agrawal. A Dynamic Scheduling Framework for
Emerging Heterogeneous Systems. In Proceedings of the 18th International
Conference on High Performance Computing, December 2011.

[37] Vignesh T. Ravi, Wenjing Ma, David Chiu, and Gagan Agrawal. Compiler and
Runtime Support for Enabling Generalized Reduction Computations on Hetero-
geneous Parallel Configurations. In Proceedings of the International Conference
on Supercomuting, June 2010.

[38] Florian Wende, Frank Cordes, and Thomas Steinke. On Improving the Perfor-
mance of Multi-threaded CUDA Applications with Concurrent Kernel Execu-
tion by Kernel Reordering. In Proceedings of the 2012 Symposium on Applica-
tion Accelerators in High Performance Computing, July 2012.

[39] Guray Ozen. Compiler and Runtime Based Parallelization & Optimization for
GPUs. PhD thesis, Universitat Politecnica de Catalunya (UPC), November
2017.

[40] Yi Yang and Huiyang Zhou. CUDA-NP: Realizing Nested Thread-Level Par-
allelism in GPGPU Applications. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, February 2014.

[41] Franz Franchetti, Stefan Kral, Juergen Lorenz, and Christopher W. Ueberhu-
ber. Efficient Utilization of SIMD Extensions. Proceedings of the IEEE, 93(2),
February 2005.

[42] Vijay Nagarajan, Daniel J Sorin, Mark D Hill, and David A Wood. A primer
on memory consistency and cache coherence. Synthesis Lectures on Computer
Architecture, 15(1):1–294, 2020.

[43] Anthony Gutierrez, Sooraj Puthoor, Brad Beckmann, and Tuan Ta. The amd
gem5 apu simulator: Modeling gpus using the machine isa, 2018.

[44] Juan Gómez-Luna, Izzat El Hajj, Victor Chang, Li-Wen Garcia-Flores, Si-
mon Garcia de Gonzalo, Thomas Jablin, Antonio J Pena, and Wen-mei Hwu.
Chai: Collaborative heterogeneous applications for integrated-architectures. In
Performance Analysis of Systems and Software (ISPASS), 2017 IEEE Interna-
tional Symposium on. IEEE, 2017.

[45] Joel Hestness, Stephen Keckler, and David Wood. Gpu computing pipeline inef-
ficiencies and optimization opportunities in heterogeneous cpu-gpu processors.
pages 87–97, 10 2015.

[46] Jason Lowe-Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford Beck-
mann, Mark Hill, Steven Reinhardt, and David Wood. Heterogeneous system
coherence for integrated cpu-gpu systems. pages 457–467, 12 2013.

157

[47] N. Agarwal, D. Nellans, E. Ebrahimi, T. F. Wenisch, J. Danskin, and S. W.
Keckler. Selective gpu caches to eliminate cpu-gpu hw cache coherence. In 2016
IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 494–506, 2016.

[48] N. P. Jouppi. Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers. In [1990] Proceedings.
The 17th Annual International Symposium on Computer Architecture, pages
364–373, 1990.

[49] N. Aggarwal, J. F. Cantin, M. H. Lipasti, and J. E. Smith. Power-efficient dram
speculation. In 2008 IEEE 14th International Symposium on High Performance
Computer Architecture, pages 317–328, 2008.

[50] M. D. Sinclair, J. Alsop, and S. V. Adve. Heterosync: A benchmark suite
for fine-grained synchronization on tightly coupled gpus. In 2017 IEEE Inter-
national Symposium on Workload Characterization (IISWC), pages 239–249,
2017.

[51] H. Wu, G. Diamos, J. Wang, S. Cadambi, S. Yalamanchili, and S. Chakradhar.
Optimizing data warehousing applications for gpus using kernel fusion/fission.
In 2012 IEEE 26th International Parallel and Distributed Processing Sympo-
sium Workshops PhD Forum, pages 2433–2442, 2012.

[52] Jason Lowe-Power and Matt Sinclair. Re-gem5: Building sustainable research
infrastructure, Sep 2019.

[53] Phil Rogers and A Fellow. Heterogeneous system architecture overview. In Hot
Chips Symposium, pages 1–41, 2013.

[54] Karthik Chandrasekar, Christian Weis, Yonghui Li, Benny Akesson, Norbert
Wehn, and Kees Goossens. Drampower: Open-source dram power & energy
estimation tool. URL: http://www. drampower. info, 22, 2012.

[55] Gwangsun Kim, Jiyun Jeong, John Kim, and Mark Stephenson. Automati-
cally exploiting implicit pipeline parallelism from multiple dependent kernels
for gpus. In Proceedings of the 2016 International Conference on Parallel Ar-
chitectures and Compilation, pages 341–352, 2016.

[56] L. Cheng, J. B. Carter, and D. Dai. An adaptive cache coherence protocol
optimized for producer-consumer sharing. In 2007 IEEE 13th International
Symposium on High Performance Computer Architecture, pages 328–339, 2007.

[57] A. Kayi, O. Serres, and T. El-Ghazawi. Adaptive cache coherence mechanisms
with producer–consumer sharing optimization for chip multiprocessors. IEEE
Transactions on Computers, 64(2):316–328, 2015.

158

	Acknowledgements
	Table of Contents
	 Introduction
	CPU-GPU Integration Trends and Consequences
	Challenges in Optimizing for Integrated GPUs
	Contributions

	 GPGPU Background
	Vendors and Nomenclature
	Programming Model
	GPU Architecture

	 Nested MIMD-SIMD Parallelization
	Nested MIMD-SIMD Parallelization
	Code Examples
	Speedup Analysis

	Enabling Further SIMD Parallelization
	Simulator Study Methodology
	Simulator Study Methodology
	Benchmarks

	Simulator Study Results
	Main Result
	Performance Breakdown
	Processor Utilization and CPU Scaling
	Concurrent Kernel Execution

	Enabling Low-Latency Launch on Hardware
	Hardware Study Methodology
	Benchmarks

	Hardware Study Results
	Simulator Validation

	Related Work
	Conclusions

	 Pipelined CPU-GPU Scheduling for Caches
	Background
	Heterogeneous Cache Coherence
	Heterogeneous Producer-Consumer Sharing
	Naive Scheduling
	Locality Aware Scheduling
	Synchronization Granularity and Control Methods
	Dependency Patterns

	Methodology
	Model Configuration
	Driver Stack Architecture
	Workloads

	Results
	Main Result
	Run-Ahead Distance Sensitivity Studies
	Read-Inclusivity

	Related Work
	Conclusions

	 Conclusion and Future Work
	Future Work

	Bibliography

