21 research outputs found

    Extreme Learning Machine Based Non-Iterative and Iterative Nonlinearity Mitigation for LED Communications

    Full text link
    This work concerns receiver design for light emitting diode (LED) communications where the LED nonlinearity can severely degrade the performance of communications. We propose extreme learning machine (ELM) based non-iterative receivers and iterative receivers to effectively handle the LED nonlinearity and memory effects. For the iterative receiver design, we also develop a data-aided receiver, where data is used as virtual training sequence in ELM training. It is shown that the ELM based receivers significantly outperform conventional polynomial based receivers; iterative receivers can achieve huge performance gain compared to non-iterative receivers; and the data-aided receiver can reduce training overhead considerably. This work can also be extended to radio frequency communications, e.g., to deal with the nonlinearity of power amplifiers

    Link level performance evaluation and link abstraction for LTE/LTE-advanced downlink

    Get PDF
    Els objectius principals d'aquesta tesis són l'avaluació del rendiment a nivell d'enllaç i l'estudi de l'abstracció de l'enllaç pel LTE/LTE-Advanced DL. S’ha desenvolupat un simulador del nivell d'enllaç E-UTRA DL basat en la tecnologia MIMO-OFDM. Es simulen els errors d'estimació de canal amb un model d'error de soroll additiu Gaussià anomenat CEEM. El resultat d'aquest simulador serveix per avaluar el rendiment a nivell d'enllaç del LTE/LTE-Advanced DL en diferents entorns . La idea bàsica dels mètodes d'abstracció de l'enllaç és mapejar el vector de SNRs de les subportadores a un valor escalar, l'anomenada ESNR, la qual és usada per a predir la BLER. Proposem un innovador mètode d'abstracció de l'enllaç que pot predir la BLER amb bona precisió en esvaïments multicamí i que inclouen els efectes de les retransmissions HARQ. El mètode proposat es basa amb l'estimació de la informació mútua entre els bits transmesos i els LLRs rebuts.The main objectives of this dissertation are the evaluation of the link level performance and the study of link abstraction for LTE/LTE-Advanced DL. An E-UTRA DL link level simulator has been developed based on MIMO-OFDM technology. We simulate channel estimation errors by a Gaussian additive noise error model called CEEM. The result of this simulator serves to evaluate the MIMO-OFDM LTE/LTE-Advanced DL link level performance in different environments. The basic idea of link abstraction methods is to map the vector of the subcarrier SNRs to a single scalar, the ESNR, which is then used to predict the BLER. We propose a novel link abstraction method that can predict the BLER with good accuracy in multipath fading and including the effects of HARQ retransmissions. The proposed method is based on estimating the mutual information between the transmitted bits and the received LLRs.Postprint (published version

    Récepteur itératif pour les systèmes MIMO-OFDM basé sur le décodage sphérique : convergence, performance et complexité

    Get PDF
    Recently, iterative processing has been widely considered to achieve near-capacity performance and reliable high data rate transmission, for future wireless communication systems. However, such an iterative processing poses significant challenges for efficient receiver design. In this thesis, iterative receiver combining multiple-input multiple-output (MIMO) detection with channel decoding is investigated for high data rate transmission. The convergence, the performance and the computational complexity of the iterative receiver for MIMO-OFDM system are considered. First, we review the most relevant hard-output and soft-output MIMO detection algorithms based on sphere decoding, K-Best decoding, and interference cancellation. Consequently, a low-complexity K-best (LCK- Best) based decoder is proposed in order to substantially reduce the computational complexity without significant performance degradation. We then analyze the convergence behaviors of combining these detection algorithms with various forward error correction codes, namely LTE turbo decoder and LDPC decoder with the help of Extrinsic Information Transfer (EXIT) charts. Based on this analysis, a new scheduling order of the required inner and outer iterations is suggested. The performance of the proposed receiver is evaluated in various LTE channel environments, and compared with other MIMO detection schemes. Secondly, the computational complexity of the iterative receiver with different channel coding techniques is evaluated and compared for different modulation orders and coding rates. Simulation results show that our proposed approaches achieve near optimal performance but more importantly it can substantially reduce the computational complexity of the system. From a practical point of view, fixed-point representation is usually used in order to reduce the hardware costs in terms of area, power consumption and execution time. Therefore, we present efficient fixed point arithmetic of the proposed iterative receiver based on LC-KBest decoder. Additionally, the impact of the channel estimation on the system performance is studied. The proposed iterative receiver is tested in a real-time environment using the MIMO WARP platform.Pour permettre l’accroissement de débit et de robustesse dans les futurs systèmes de communication sans fil, les processus itératifs sont de plus considérés dans les récepteurs. Cependant, l’adoption d’un traitement itératif pose des défis importants dans la conception du récepteur. Dans cette thèse, un récepteur itératif combinant les techniques de détection multi-antennes avec le décodage de canal est étudié. Trois aspects sont considérés dans un contexte MIMOOFDM: la convergence, la performance et la complexité du récepteur. Dans un premier temps, nous étudions les différents algorithmes de détection MIMO à décision dure et souple basés sur l’égalisation, le décodage sphérique, le décodage K-Best et l’annulation d’interférence. Un décodeur K-best de faible complexité (LC-K-Best) est proposé pour réduire la complexité sans dégradation significative des performances. Nous analysons ensuite la convergence de la combinaison de ces algorithmes de détection avec différentes techniques de codage de canal, notamment le décodeur turbo et le décodeur LDPC en utilisant le diagramme EXIT. En se basant sur cette analyse, un nouvel ordonnancement des itérations internes et externes nécessaires est proposé. Les performances du récepteur ainsi proposé sont évaluées dans différents modèles de canal LTE, et comparées avec différentes techniques de détection MIMO. Ensuite, la complexité des récepteurs itératifs avec différentes techniques de codage de canal est étudiée et comparée pour différents modulations et rendement de code. Les résultats de simulation montrent que les approches proposées offrent un bon compromis entre performance et complexité. D’un point de vue implémentation, la représentation en virgule fixe est généralement utilisée afin de réduire les coûts en termes de surface, de consommation d’énergie et de temps d’exécution. Nous présentons ainsi une représentation en virgule fixe du récepteur itératif proposé basé sur le décodeur LC K-Best. En outre, nous étudions l’impact de l’estimation de canal sur la performance du système. Finalement, le récepteur MIMOOFDM itératif est testé sur la plateforme matérielle WARP, validant le schéma proposé

    Timing and Frequency Synchronization in Practical OFDM Systems

    No full text
    Orthogonal frequency-division multiplexing (OFDM) has been adopted by many broadband wireless communication systems for the simplicity of the receiver technique to support high data rates and user mobility. However, studies also show that the advantage of OFDM over the single-carrier modulation schemes could be substantially compromised by timing or frequency estimation errors at the receiver. In this thesis we investigate the synchronization problem for practical OFDM systems using a system model generalized from the IEEE 802.11 and IEEE 802.16 standards. For preamble based synchronization schemes, which are most common in the downlink of wireless communication systems, we propose a novel timing acquisition algorithm which minimizes false alarm probability and indirectly improves correct detection probability. We then introduce a universal fractional carrier frequency offset (CFO) estimator that outperforms conventional methods at low signal to noise ratio with lower complexity. More accurate timing and frequency estimates can be obtained by our proposed frequency-domain algorithms incorporating channel knowledge. We derive four joint frequency, timing, and channel estimators with different approximations, and then propose a hybrid integer CFO estimation scheme to provide flexible performance and complexity tradeoffs. When the exact channel delay profile is unknown at the receiver, we present a successive timing estimation algorithm to solve the timing ambiguity. Both analytical and simulation results are presented to confirm the performance of the proposed methods in various realistic channel conditions. ..

    Iterative Detection for Overloaded Multiuser MIMO OFDM Systems

    Get PDF
    Inspired by multiuser detection (MUD) and the ‘Turbo principle’, this thesis deals with iterative interference cancellation (IIC) in overloaded multiuser multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. Linear detection schemes, such as zero forcing (ZF) and minimum mean square error (MMSE) cannot be used for the overloaded system because of the rank deficiency of channel matrix, while the optimal approach, the maximum likelihood (ML) detection has high computational complexity. In this thesis, an iterative interference cancellation (IIC) multiuser detection scheme with matched filter and convolutional codes is considered. The main idea of this combination is a low complexity receiver. Parallel interference cancellation (PIC) is employed to improve the multiuser receiver performance for overloaded systems. A log-likelihood ratio (LLR) converter is proposed to further improve the reliability of the soft value converted from the output of the matched filter. Simulation results show that the bit error rate (BER) performance of this method is close to the optimal approach for a two user system. However, for the four user or more user system, it has an error floor of the BER performance. For this case, a channel selection scheme is proposed to distinguish whether the channel is good or bad by using the mutual information based on the extrinsic information transfer (EXIT) chart. The mutual information can be predicted in a look-up table which greatly reduces the complexity. For those ‘bad’ channels identified by the channel selection, we introduce two adaptive transmission methods to deal with such channels: one uses a lower code rate, and the other is multiple transmissions. The use of an IIC receiver with the interleave-division multiple access (IDMA) to further improve the BER performance without any channel selection is also investigated. It has been shown that this approach can remove the error floor. Finally, the influence of channel accuracy on the IIC is investigated. Pilot-based Wiener filter channel estimation is used to test and verify how much the IIC is influenced by the channel accuracy

    Turbo Equalization: An Overview

    Full text link

    Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Novel multiuser detection and multi-rate schemes for multi-carrier CDMA

    Get PDF
    A large variety of services is [sic] expected for wireless systems, in particular, high data rate services, such as wireless Internet access. Users with different data rates and quality of service (QoS) requirements must be accommodated. A suitable multiple access scheme is key to enabling wireless systems to support both the high data rate and the integrated multiple data rate transmissions with satisfactory performance and flexibility. A multi-carrier code division multiple access (MC-CDMA) scheme is a promising candidate for emerging broadband wireless systems. MC-CDMA is a hybrid of orthogonal frequency division multiplexing (OFDM) and code division multiple access (CDMA). The most salient feature of MC-CDMA is that the rate of transmission is not limited by the wireless channel\u27s frequency-selective fading effects caused by multipath propagation. In MC-CDMA, each chip of the desired user\u27s spreading code, multiplied by the current data bit, is modulated onto a separate subcarrier. Therefore, each subcarrier has a narrow bandwidth and undergoes frequency-flat fading. Two important issues for an MC-CDMA wireless system, multiuser detection and multi-rate access, are discussed in this dissertation. Several advanced receiver structures capable of suppressing multiuser interference in an uplink MC-CDMA system, operating in a frequency-selective fading channel, are studied in this dissertation. One receiver is based on a so-called multishot structure, in which the interference introduced by the asynchronous reception of different users is successfully suppressed by a receiver based on the minimum mean-square error (MMSE) criterion with a built-in de-biasing feature. Like many other multiuser schemes, this receiver is very sensitive to a delay estimation error. A blind adaptive two-stage decorrelating receiver based on the bootstrap algorithm is developed to combat severe performance degradation due to a delay estimation error. It is observed that in the presence of a delay estimation error the blind adaptive bootstrap receiver is more near-far resistant than the MMSE receiver. Furthermore, a differential bootstrap receiver is proposed to extend the limited operating range of the two-stage bootstrap receiver which suffers from a phase ambiguity problem. Another receiver is based on a partial sampling (PS) demodulation structure, which further reduces the sensitivity to unknown user delays in an uplink scenario. Using this partial sampling structure, it is no longer necessary to synchronize the receiver with the desired user. Following the partial sampling demodulator, a minimum mean-square error combining (MMSEC) detector is applied. The partial sampling MMSEC (PS-MMSEC) receiver is shown to have strong interference suppression and timing acquisition capabilities. The complexity of this receiver can be reduced significantly, with negligible performance loss, by choosing a suitable partial sampling rate and using a structure called reduced complexity PS-MMSEC (RPS-MMSEC). The adaptive implementation of these receivers yields a superior rate of convergence and symbol error rate performance in comparison to a conventional MMSEC receiver with known timing. All the above receiver structures are for a single-rate MC-CDMA. Three novel multi-rate access schemes for multi-rate MC-CDMA, fixed spreading length (FSL), coded FSL (CFSL) and variable spreading length (VSL), have been developed. These multi-rate access schemes enable users to transmit information at different data rates in one MC-CDMA system. Hence, voice, data, image and video can be transmitted seamlessly through a wireless infrastructure. The bit error rate performance of these schemes is investigated for both low-rate and high-rate users

    Channel estimation for SISO and MIMO OFDM communications systems.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2010.Telecommunications in the current information age is increasingly relying on the wireless link. This is because wireless communication has made possible a variety of services ranging from voice to data and now to multimedia. Consequently, demand for new wireless capacity is growing rapidly at a very alarming rate. In a bid to cope with challenges of increasing demand for higher data rate, better quality of service, and higher network capacity, there is a migration from Single Input Single Output (SISO) antenna technology to a more promising Multiple Input Multiple Output (MIMO) antenna technology. On the other hand, Orthogonal Frequency Division Multiplexing (OFDM) technique has emerged as a very popular multi-carrier modulation technique to combat the problems associated with physical properties of the wireless channels such as multipath fading, dispersion, and interference. The combination of MIMO technology with OFDM techniques, known as MIMO-OFDM Systems, is considered as a promising solution to enhance the data rate of future broadband wireless communication Systems. This thesis addresses a major area of challenge to both SISO-OFDM and MIMO-OFDM Systems; estimation of accurate channel state information (CSI) in order to make possible coherent detection of the transmitted signal at the receiver end of the system. Hence, the first novel contribution of this thesis is the development of a low complexity adaptive algorithm that is robust against both slow and fast fading channel scenarios, in comparison with other algorithms employed in literature, to implement soft iterative channel estimator for turbo equalizer-based receiver for single antenna communication Systems. Subsequently, a Fast Data Projection Method (FDPM) subspace tracking algorithm is adapted to derive Channel Impulse Response Estimator for implementation of Decision Directed Channel Estimation (DDCE) for Single Input Single Output - Orthogonal Frequency Division Multiplexing (SISO-OFDM) Systems. This is implemented in the context of a more realistic Fractionally Spaced-Channel Impulse Response (FS-CIR) channel model, as against the channel characterized by a Sample Spaced-Channel Impulse Response (SS)-CIR widely assumed by other authors. In addition, a fast convergence Variable Step Size Normalized Least Mean Square (VSSNLMS)-based predictor, with low computational complexity in comparison with others in literatures, is derived for the implementation of the CIR predictor module of the DDCE scheme. A novel iterative receiver structure for the FDPM-based Decision Directed Channel Estimation scheme is also designed for SISO-OFDM Systems. The iterative idea is based on Turbo iterative principle. It is shown that improvement in the performance can be achieved with the iterative DDCE scheme for OFDM system in comparison with the non iterative scheme. Lastly, an iterative receiver structure for FDPM-based DDCE scheme earlier designed for SISO OFDM is extended to MIMO-OFDM Systems. In addition, Variable Step Size Normalized Least Mean Square (VSSNLMS)-based channel transfer function estimator is derived in the context of MIMO Channel for the implementation of the CTF estimator module of the iterative Decision Directed Channel Estimation scheme for MIMO-OFDM Systems in place of linear minimum mean square error (MMSE) criterion. The VSSNLMS-based channel transfer function estimator is found to show improved MSE performance of about -4 MSE (dB) at SNR of 5dB in comparison with linear MMSE-based channel transfer function estimator

    Transmission strategies for broadband wireless systems with MMSE turbo equalization

    Get PDF
    This monograph details efficient transmission strategies for single-carrier wireless broadband communication systems employing iterative (turbo) equalization. In particular, the first part focuses on the design and analysis of low complexity and robust MMSE-based turbo equalizers operating in the frequency domain. Accordingly, several novel receiver schemes are presented which improve the convergence properties and error performance over the existing turbo equalizers. The second part discusses concepts and algorithms that aim to increase the power and spectral efficiency of the communication system by efficiently exploiting the available resources at the transmitter side based upon the channel conditions. The challenging issue encountered in this context is how the transmission rate and power can be optimized, while a specific convergence constraint of the turbo equalizer is guaranteed.Die vorliegende Arbeit beschäftigt sich mit dem Entwurf und der Analyse von effizienten Übertragungs-konzepten für drahtlose, breitbandige Einträger-Kommunikationssysteme mit iterativer (Turbo-) Entzerrung und Kanaldekodierung. Dies beinhaltet einerseits die Entwicklung von empfängerseitigen Frequenzbereichs-entzerrern mit geringer Komplexität basierend auf dem Prinzip der Soft Interference Cancellation Minimum-Mean Squared-Error (SC-MMSE) Filterung und andererseits den Entwurf von senderseitigen Algorithmen, die durch Ausnutzung von Kanalzustandsinformationen die Bandbreiten- und Leistungseffizienz in Ein- und Mehrnutzersystemen mit Mehrfachantennen (sog. Multiple-Input Multiple-Output (MIMO)) verbessern. Im ersten Teil dieser Arbeit wird ein allgemeiner Ansatz für Verfahren zur Turbo-Entzerrung nach dem Prinzip der linearen MMSE-Schätzung, der nichtlinearen MMSE-Schätzung sowie der kombinierten MMSE- und Maximum-a-Posteriori (MAP)-Schätzung vorgestellt. In diesem Zusammenhang werden zwei neue Empfängerkonzepte, die eine Steigerung der Leistungsfähigkeit und Verbesserung der Konvergenz in Bezug auf existierende SC-MMSE Turbo-Entzerrer in verschiedenen Kanalumgebungen erzielen, eingeführt. Der erste Empfänger - PDA SC-MMSE - stellt eine Kombination aus dem Probabilistic-Data-Association (PDA) Ansatz und dem bekannten SC-MMSE Entzerrer dar. Im Gegensatz zum SC-MMSE nutzt der PDA SC-MMSE eine interne Entscheidungsrückführung, so dass zur Unterdrückung von Interferenzen neben den a priori Informationen der Kanaldekodierung auch weiche Entscheidungen der vorherigen Detektions-schritte berücksichtigt werden. Durch die zusätzlich interne Entscheidungsrückführung erzielt der PDA SC-MMSE einen wesentlichen Gewinn an Performance in räumlich unkorrelierten MIMO-Kanälen gegenüber dem SC-MMSE, ohne dabei die Komplexität des Entzerrers wesentlich zu erhöhen. Der zweite Empfänger - hybrid SC-MMSE - bildet eine Verknüpfung von gruppenbasierter SC-MMSE Frequenzbereichsfilterung und MAP-Detektion. Dieser Empfänger besitzt eine skalierbare Berechnungskomplexität und weist eine hohe Robustheit gegenüber räumlichen Korrelationen in MIMO-Kanälen auf. Die numerischen Ergebnisse von Simulationen basierend auf Messungen mit einem Channel-Sounder in Mehrnutzerkanälen mit starken räumlichen Korrelationen zeigen eindrucksvoll die Überlegenheit des hybriden SC-MMSE-Ansatzes gegenüber dem konventionellen SC-MMSE-basiertem Empfänger. Im zweiten Teil wird der Einfluss von System- und Kanalmodellparametern auf die Konvergenzeigenschaften der vorgestellten iterativen Empfänger mit Hilfe sogenannter Korrelationsdiagramme untersucht. Durch semi-analytische Berechnungen der Entzerrer- und Kanaldecoder-Korrelationsfunktionen wird eine einfache Berechnungsvorschrift zur Vorhersage der Bitfehlerwahrscheinlichkeit von SC-MMSE und PDA SC-MMSE Turbo Entzerrern für MIMO-Fadingkanäle entwickelt. Des Weiteren werden zwei Fehlerschranken für die Ausfallwahrscheinlichkeit der Empfänger vorgestellt. Die semi-analytische Methode und die abgeleiteten Fehlerschranken ermöglichen eine aufwandsgeringe Abschätzung sowie Optimierung der Leistungsfähigkeit des iterativen Systems. Im dritten und abschließenden Teil werden Strategien zur Raten- und Leistungszuweisung in Kommunikationssystemen mit konventionellen iterativen SC-MMSE Empfängern untersucht. Zunächst wird das Problem der Maximierung der instantanen Summendatenrate unter der Berücksichtigung der Konvergenz des iterativen Empfängers für einen Zweinutzerkanal mit fester Leistungsallokation betrachtet. Mit Hilfe des Flächentheorems von Extrinsic-Information-Transfer (EXIT)-Funktionen wird eine obere Schranke für die erreichbare Ratenregion hergeleitet. Auf Grundlage dieser Schranke wird ein einfacher Algorithmus entwickelt, der für jeden Nutzer aus einer Menge von vorgegebenen Kanalcodes mit verschiedenen Codierraten denjenigen auswählt, der den instantanen Datendurchsatz des Mehrnutzersystems verbessert. Neben der instantanen Ratenzuweisung wird auch ein ausfallbasierter Ansatz zur Ratenzuweisung entwickelt. Hierbei erfolgt die Auswahl der Kanalcodes für die Nutzer unter Berücksichtigung der Einhaltung einer bestimmten Ausfallwahrscheinlichkeit (outage probability) des iterativen Empfängers. Des Weiteren wird ein neues Entwurfskriterium für irreguläre Faltungscodes hergeleitet, das die Ausfallwahrscheinlichkeit von Turbo SC-MMSE Systemen verringert und somit die Zuverlässigkeit der Datenübertragung erhöht. Eine Reihe von Simulationsergebnissen von Kapazitäts- und Durchsatzberechnungen werden vorgestellt, die die Wirksamkeit der vorgeschlagenen Algorithmen und Optimierungsverfahren in Mehrnutzerkanälen belegen. Abschließend werden außerdem verschiedene Maßnahmen zur Minimierung der Sendeleistung in Einnutzersystemen mit senderseitiger Singular-Value-Decomposition (SVD)-basierter Vorcodierung untersucht. Es wird gezeigt, dass eine Methode, welche die Leistungspegel des Senders hinsichtlich der Bitfehlerrate des iterativen Empfängers optimiert, den konventionellen Verfahren zur Leistungszuweisung überlegen ist
    corecore