662 research outputs found

    Production Optimization Indexed to the Market Demand Through Neural Networks

    Get PDF
    Connectivity, mobility and real-time data analytics are the prerequisites for a new model of intelligent production management that facilitates communication between machines, people and processes and uses technology as the main driver. Many works in the literature treat maintenance and production management in separate approaches, but there is a link between these areas, with maintenance and its actions aimed at ensuring the smooth operation of equipment to avoid unnecessary downtime in production. With the advent of technology, companies are rushing to solve their problems by resorting to technologies in order to fit into the most advanced technological concepts, such as industries 4.0 and 5.0, which are based on the principle of process automation. This approach brings together database technologies, making it possible to monitor the operation of equipment and have the opportunity to study patterns of data behavior that can alert us to possible failures. The present thesis intends to forecast the pulp production indexed to the stock market value.The forecast will be made by means of the pulp production variables of the presses and the stock exchange variables supported by artificial intelligence (AI) technologies, aiming to achieve an effective planning. To support the decision of efficient production management, in this thesis algorithms were developed and validated with from five pulp presses, as well as data from other sources, such as steel production and stock exchange, which were relevant to validate the robustness of the model. This thesis demonstrated the importance of data processing methods and that they have great relevance in the model input since they facilitate the process of training and testing the models. The chosen technologies demonstrated good efficiency and versatility in performing the prediction of the values of the variables of the equipment, also demonstrating robustness and optimization in computational processing. The thesis also presents proposals for future developments, namely in further exploration of these technologies, so that there are market variables that can calibrate production through forecasts supported on these same variables.Conectividade, mobilidade e análise de dados em tempo real são pré-requisitos para um novo modelo de gestão inteligente da produção que facilita a comunicação entre máquinas, pessoas e processos, e usa a tecnologia como motor principal. Muitos trabalhos na literatura tratam a manutenção e a gestão da produção em abordagens separadas, mas existe uma correlação entre estas áreas, sendo que a manutenção e as suas políticas têm como premissa garantir o bom funcionamento dos equipamentos de modo a evitar paragens desnecessárias na linha de produção. Com o advento da tecnologia há uma corrida das empresas para solucionar os seus problemas recorrendo às tecnologias, visando a sua inserção nos conceitos tecnológicos, mais avançados, tais como as indústrias 4.0 e 5.0, as quais têm como princípio a automatização dos processos. Esta abordagem junta as tecnologias de sistema de informação, sendo possível fazer o acompanhamento do funcionamento dos equipamentos e ter a possibilidade de realizar o estudo de padrões de comportamento dos dados que nos possam alertar para possíveis falhas. A presente tese pretende prever a produção da pasta de papel indexada às bolsas de valores. A previsão será feita por via das variáveis da produção da pasta de papel das prensas e das variáveis da bolsa de valores suportadas em tecnologias de artificial intelligence (IA), tendo como objectivo conseguir um planeamento eficaz. Para suportar a decisão de uma gestão da produção eficiente, na presente tese foram desenvolvidos algoritmos, validados em dados de cinco prensas de pasta de papel, bem como dados de outras fontes, tais como, de Produção de Aço e de Bolsas de Valores, os quais se mostraram relevantes para a validação da robustez dos modelos. A presente tese demonstrou a importância dos métodos de tratamento de dados e que os mesmos têm uma grande relevância na entrada do modelo, visto que facilita o processo de treino e testes dos modelos. As tecnologias escolhidas demonstraram uma boa eficiência e versatilidade na realização da previsão dos valores das variáveis dos equipamentos, demonstrando ainda robustez e otimização no processamento computacional. A tese apresenta ainda propostas para futuros desenvolvimentos, designadamente na exploração mais aprofundada destas tecnologias, de modo a que haja variáveis de mercado que possam calibrar a produção através de previsões suportadas nestas mesmas variáveis

    Anomaly-based fault detection in wind turbine main bearings

    Get PDF
    Renewable energy is a clean and inexhaustible source of energy, so every year interest in the study and the search for improvements in production increases. Wind energy is one of the most used sources of energy, and therefore the need for predictive maintenance management to guarantee the reliability and operability of each of the wind turbines has become a great study opportunity. In this work, a fault detection system is developed by applying an anomaly detector based on principal component analysis (PCA), in order to state early warnings of possible faults in the main bearing. For the development of the model, SCADA data from a wind park in operation are utilized. The results obtained allow detection of failures even months before the fatal breakdown occurs. This model requires (to be constructed) only the use of healthy SCADA data, without the need to obtain the fault history or install additional equipment or sensors that require greater investment. In conclusion, this proposed strategy provides a tool for the planning and execution of predictive maintenance within wind parks.</p

    Automated and intelligent hacking detection system

    Get PDF
    Dissertação de mestrado integrado em Informatics EngineeringThe Controller Area Network (CAN) is the backbone of automotive networking, connecting many Electronic ControlUnits (ECUs) that control virtually every vehicle function from fuel injection to parking sensors. It possesses,however, no security functionality such as message encryption or authentication by default. Attackers can easily inject or modify packets in the network, causing vehicle malfunction and endangering the driver and passengers. There is an increasing number of ECUs in modern vehicles, primarily driven by the consumer’s expectation of more features and comfort in their vehicles as well as ever-stricter government regulations on efficiency and emissions. Combined with vehicle connectivity to the exterior via Bluetooth, Wi-Fi, or cellular, this raises the risk of attacks. Traditional networks, such as Internet Protocol (IP), typically have an Intrusion Detection System (IDS) analysing traffic and signalling when an attack occurs. The system here proposed is an adaptation of the traditional IDS into the CAN bus using a One Class Support Vector Machine (OCSVM) trained with live, attack-free traffic. The system is capable of reliably detecting a variety of attacks, both known and unknown, without needing to understand payload syntax, which is largely proprietary and vehicle/model dependent. This allows it to be installed in any vehicle in a plug-and-play fashion while maintaining a large degree of accuracy with very few false positives.A Controller Area Network (CAN) é a principal tecnologia de comunicação interna automóvel, ligando muitas Electronic Control Units (ECUs) que controlam virtualmente todas as funções do veículo desde injeção de combustível até aos sensores de estacionamento. No entanto, não possui por defeito funcionalidades de segurança como cifragem ou autenticação. É possível aos atacantes facilmente injetarem ou modificarem pacotes na rede causando estragos e colocando em perigo tanto o condutor como os passageiros. Existe um número cada vez maior de ECUs nos veículos modernos, impulsionado principalmente pelas expectativas do consumidores quanto ao aumento do conforto nos seus veículos, e pelos cada vez mais exigentes regulamentos de eficiência e emissões. Isto, associada à conexão ao exterior através de tecnologias como o Bluetooth, Wi-Fi, ou redes móveis, aumenta o risco de ataques. Redes tradicionais, como a rede Internet Protocol (IP), tipicamente possuem um Intrusion Detection Systems (IDSs) que analiza o tráfego e assinala a presença de um ataque. O sistema aqui proposto é uma adaptação do IDS tradicional à rede CAN utilizando uma One Class Support Vector Machine (OCSVM) treinada com tráfego real e livre de ataques. O sistema é capaz de detetar com fiabilidade uma variedade de ataques, tanto conhecidos como desconhecidos, sem a necessidade de entender a sintaxe do campo de dados das mensagens, que é maioritariamente proprietária. Isto permite ao sistema ser instalado em qualquer veículo num modo plug-and-play enquanto mantém um elevado nível de desempenho com muito poucos falsos positivos

    Proactive Interference-aware Resource Management in Deep Learning Training Cluster

    Get PDF
    Deep Learning (DL) applications are growing at an unprecedented rate across many domains, ranging from weather prediction, map navigation to medical imaging. However, training these deep learning models in large-scale compute clusters face substantial challenges in terms of low cluster resource utilisation and high job waiting time. State-of-the-art DL cluster resource managers are needed to increase GPU utilisation and maximise throughput. While co-locating DL jobs within the same GPU has been shown to be an effective means towards achieving this, co-location subsequently incurs performance interference resulting in job slowdown. We argue that effective workload placement can minimise DL cluster interference at scheduling runtime by understanding the DL workload characteristics and their respective hardware resource consumption. However, existing DL cluster resource managers reserve isolated GPUs to perform online profiling to directly measure GPU utilisation and kernel patterns for each unique submitted job. Such a feedback-based reactive approach results in additional waiting times as well as reduced cluster resource efficiency and availability. In this thesis, we propose Horus: an interference-aware and prediction-based DL cluster resource manager. Through empirically studying a series of microbenchmarks and DL workload co-location combinations across heterogeneous GPU hardware, we demonstrate the negative effects of performance interference when colocating DL workload, and identify GPU utilisation as a general proxy metric to determine good placement decisions. From these findings, we design Horus, which in contrast to existing approaches, proactively predicts GPU utilisation of heterogeneous DL workload extrapolated from the DL model computation graph features when performing placement decisions, removing the need for online profiling and isolated reserved GPUs. By conducting empirical experimentation within a medium-scale DL cluster as well as a large-scale trace-driven simulation of a production system, we demonstrate Horus improves cluster GPU utilisation, reduces cluster makespan and waiting time, and can scale to operate within hundreds of machines

    Prediction of poor health in small ruminants and companion animals with accelerometers and machine learning

    Get PDF
    Global warming is one of the biggest challenge of our times, and significant efforts are being undertaken by academics, industries and other actors to tackle the problem. In the agricultural field precision farming is part of the solution to environmental sustainability and has been researched increasingly in recent years. Indeed, it has the potential to effectively increase livestock yield and decrease production carbon footprint while maintaining welfare. The thesis begins with a review of developments in automated animal monitoring and then moves on to a case study of a health monitoring system for small-ruminant in South Africa. As a demonstration and validation of the potential use case of the system, the method we propose is then applied to another study which aims to study feline health. Lower and Middle Income countries will be strongly affected by the changing climate and its impacts. We devise our method based on two South African small scale sheep and goat farms where assessment of the health status of individual animals is a key step in the timely and targeted treatment of infections, which is critical in the fight against anthelmintic and antimicrobial resistance. The FAMACHA scoring system has been used successfully to detect anaemia caused by infection with the parasitic nematode Haemonchus contortus in small ruminants and is an effective way to identify individuals in need of treatment. However, assessing FAMACHA is labour-intensive and costly as individuals must be manually examined at frequent intervals. Here, we used accelerometers to measure the individual activity of extensively grazed small ruminants exposed to natural Haemonchus contortus worm infection in southern Africa over long time scales (13+ months). When combined with machine learning for missing data imputation and classification, we find that this activity data can predict poorer health as well as those individuals that respond to treatment, with precision up to 80%. We demonstrate that these classifiers remain robust over time. Interpretation of trained classifiers reveals that poorer health can be predicted mainly by the night-time activity levels in the sheep. Our study reveals behavioural patterns across two small ruminant species, which low-cost biologgers can exploit to detect subtle changes in animal health and enable timely and targeted intervention. This has real potential to improve economic outcomes and animal welfare as well as limit the use of anthelmintic drugs and diminish pressures on anthelmintic resistance in both commercial and resource-poor communal farming. The validation of the proposed techniques with a different study group will be discussed in the latter part of the thesis. We used the accelerometry data of indoor cats equipped with wearable accelerometers in conjunction with their health status to detect signs of degenerative joint disease, and adapted our machine-learning pipeline to analyse bursts of high activity in the cats. We were able to classify high-activity events with precision up to 70% despite the relatively small dataset adding further evidence to the viability of animal health monitoring with accelerometers

    Bio-Inspired Computer Vision: Towards a Synergistic Approach of Artificial and Biological Vision

    Get PDF
    To appear in CVIUStudies in biological vision have always been a great source of inspiration for design of computer vision algorithms. In the past, several successful methods were designed with varying degrees of correspondence with biological vision studies, ranging from purely functional inspiration to methods that utilise models that were primarily developed for explaining biological observations. Even though it seems well recognised that computational models of biological vision can help in design of computer vision algorithms, it is a non-trivial exercise for a computer vision researcher to mine relevant information from biological vision literature as very few studies in biology are organised at a task level. In this paper we aim to bridge this gap by providing a computer vision task centric presentation of models primarily originating in biological vision studies. Not only do we revisit some of the main features of biological vision and discuss the foundations of existing computational studies modelling biological vision, but also we consider three classical computer vision tasks from a biological perspective: image sensing, segmentation and optical flow. Using this task-centric approach, we discuss well-known biological functional principles and compare them with approaches taken by computer vision. Based on this comparative analysis of computer and biological vision, we present some recent models in biological vision and highlight a few models that we think are promising for future investigations in computer vision. To this extent, this paper provides new insights and a starting point for investigators interested in the design of biology-based computer vision algorithms and pave a way for much needed interaction between the two communities leading to the development of synergistic models of artificial and biological vision

    The 8th International Conference on Time Series and Forecasting

    Get PDF
    The aim of ITISE 2022 is to create a friendly environment that could lead to the establishment or strengthening of scientific collaborations and exchanges among attendees. Therefore, ITISE 2022 is soliciting high-quality original research papers (including significant works-in-progress) on any aspect time series analysis and forecasting, in order to motivating the generation and use of new knowledge, computational techniques and methods on forecasting in a wide range of fields

    Real-Time Sensor Networks and Systems for the Industrial IoT

    Get PDF
    The Industrial Internet of Things (Industrial IoT—IIoT) has emerged as the core construct behind the various cyber-physical systems constituting a principal dimension of the fourth Industrial Revolution. While initially born as the concept behind specific industrial applications of generic IoT technologies, for the optimization of operational efficiency in automation and control, it quickly enabled the achievement of the total convergence of Operational (OT) and Information Technologies (IT). The IIoT has now surpassed the traditional borders of automation and control functions in the process and manufacturing industry, shifting towards a wider domain of functions and industries, embraced under the dominant global initiatives and architectural frameworks of Industry 4.0 (or Industrie 4.0) in Germany, Industrial Internet in the US, Society 5.0 in Japan, and Made-in-China 2025 in China. As real-time embedded systems are quickly achieving ubiquity in everyday life and in industrial environments, and many processes already depend on real-time cyber-physical systems and embedded sensors, the integration of IoT with cognitive computing and real-time data exchange is essential for real-time analytics and realization of digital twins in smart environments and services under the various frameworks’ provisions. In this context, real-time sensor networks and systems for the Industrial IoT encompass multiple technologies and raise significant design, optimization, integration and exploitation challenges. The ten articles in this Special Issue describe advances in real-time sensor networks and systems that are significant enablers of the Industrial IoT paradigm. In the relevant landscape, the domain of wireless networking technologies is centrally positioned, as expected

    Big Data mining and machine learning techniques applied to real world scenarios

    Get PDF
    Data mining techniques allow the extraction of valuable information from heterogeneous and possibly very large data sources, which can be either structured or unstructured. Unstructured data, such as text files, social media, mobile data, are much more than structured data, and grow at a higher rate. Their high volume and the inherent ambiguity of natural language make unstructured data very hard to process and analyze. Appropriate text representations are therefore required in order to capture word semantics as well as to preserve statistical information, e.g. word counts. In Big Data scenarios, scalability is also a primary requirement. Data mining and machine learning approaches should take advantage of large-scale data, exploiting abundant information and avoiding the curse of dimensionality. The goal of this thesis is to enhance text understanding in the analysis of big data sets, introducing novel techniques that can be employed for the solution of real world problems. The presented Markov methods temporarily achieved the state-of-the-art on well-known Amazon reviews corpora for cross-domain sentiment analysis, before being outperformed by deep approaches in the analysis of large data sets. A noise detection method for the identification of relevant tweets leads to 88.9% accuracy in the Dow Jones Industrial Average daily prediction, which is the best result in literature based on social networks. Dimensionality reduction approaches are used in combination with LinkedIn users' skills to perform job recommendation. A framework based on deep learning and Markov Decision Process is designed with the purpose of modeling job transitions and recommending pathways towards a given career goal. Finally, parallel primitives for vendor-agnostic implementation of Big Data mining algorithms are introduced to foster multi-platform deployment, code reuse and optimization
    corecore