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Abstract

Data mining techniques allow the extraction of valuable information from heterogeneous and
possibly very large data sources, which can be either structured or unstructured. Unstructured
data, such as text files, social media, mobile data, are much more than structured data, and
grow at a higher rate. Their high volume and the inherent ambiguity of natural language make
unstructured data very hard to process and analyze. Appropriate text representations are therefore
required in order to capture word semantics as well as to preserve statistical information, e.g.
word counts. In Big Data scenarios, scalability is also a primary requirement. Data mining and
machine learning approaches should take advantage of large-scale data, exploiting abundant
information and avoiding the curse of dimensionality. The goal of this thesis is to enhance
text understanding in the analysis of big data sets, introducing novel techniques that can be
employed for the solution of real world problems. The presented Markov methods temporarily
achieved the state-of-the-art on well-known Amazon reviews corpora for cross-domain sentiment
analysis, before being outperformed by deep approaches in the analysis of large data sets. A noise
detection method for the identification of relevant tweets leads to 88.9% accuracy in the Dow
Jones Industrial Average daily prediction, which is the best result in literature based on social
networks. Dimensionality reduction approaches are used in combination with LinkedIn users’
skills to perform job recommendation. A framework based on deep learning and Markov Decision
Process is designed with the purpose of modeling job transitions and recommending pathways
towards a given career goal. Finally, parallel primitives for vendor-agnostic implementation of
Big Data mining algorithms are introduced to foster multi-platform deployment, code reuse and
optimization.
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1
About this thesis

This chapter briefly introduces the content of this work, the main problems tackled, why they are
relevant, and how the thesis is organized. Also, a list of publications that directly contribute to
this work is provided.

This work contributes to the fields of Big Data mining and machine learning, which aim
at discovering interesting, unexpected or valuable structures in large datasets. Recently data
have grown at an unprecedented scale, due to the fast development of networking, data storage,
data collection capacity, and to the spread of data sources different from traditional databases.
Such data sources, namely social media, sensors, mobile data, weblogs, and so on, essentially
are sources of unstructured data, mainly expressed in text format. The result of the growth of
unstructured information are datasets that cannot easily be managed with current methodologies
and software tools due to their large size and complexity. Such datasets represent a great
opportunity to enhance text understanding, but require approaches in order to be processed and
analyzed appropriately. This thesis introduces novel techniques to mine semantics from text in
order to improve data mining and machine learning algorithms, focusing on hot research threads,
such as:

Sentiment analysis Computational treatment of opinion, appraisals, attitudes, and emotions
towards entities, individuals, issues, events, topics and their attributes. Traditional ap-
proaches usually require a different set of labeled data anytime a new domain has to be
analyzed. Moreover, most algorithms are affected by the curse of dimensionality, which
hinders scalability and prevents from making use of the whole available information. A
possible improvement consists in designing innovative techniques for domain adaptation,
so as to pave the way for model reuse and to deal with the scarcity of labeled data, needed
to learn accurate models. Moreover, this thesis relies on existing work and carries out
an analysis on which characteristics of deep learning architectures contribute the most to
domain adaptation.

Stock market analysis Evaluation of a particular trading instrument, an investment sector, or
the market as a whole. Stock market analysis is a primary interest for finance and traders.
Differently from the classical trend analysis, this work exploits data from social media to
detect and predict stock market variations.

1



2 CHAPTER 1. ABOUT THIS THESIS

Recommender systems for job search Finding the right job is one of the most relevant social
problems, since everyone has to look for a job at least once, but possibly multiple times
in life. Job searching is a time consuming activity, and the choice of the right job is
awkward, because job satisfaction considerably affects life condition. This thesis first
starts an investigation on the use of social networks to match candidates with jobs. Then it
paves the way for an emerging research thread, introducing a framework to perform career
pathway recommendation, namely suggesting a sequence of jobs to the user so as to lead
her to a predefined career goal.

Big Data Analytics In the age of Big Data, scalable algorithm implementations as well as
powerful computational resources are required. Big Data platforms and cloud platforms
support programmers in coding algorithms, and offer optimized infrastructures for their
execution. Code portability among platforms remains an open issue due to cost of service,
technical and managerial factors. Other than discussing the problem, this thesis exploits
existing work in order to propose parallel programming primitives to implement Big Data
mining algorithms in an agnostic fashion.

1.1 Structure of this thesis
The thesis is organized in six parts.

Part I introduces the work, describing the background and motivating the thesis. The age of
Big Data is presented, including challenges, opportunities and open issues. The focus is
mainly on the research threads this thesis contributes to, namely sentiment analysis, stock
market analysis, recommender systems for job search, and Big Data Analytics.

Part II describes novel algorithms and methods for sentiment analysis, pointing out their
practical utilities in real world Big Data scenarios. The first contribution of this thesis
is introduced, namely a Markov chain method that performs both transfer learning and
sentiment classification. Also, the characteristics of deep architectures that support domain
adaptation are investigated and discussed.

Part III describes some methods based on social media mining for stock market analysis. A
Twitter-based approach exploiting noise detection techniques is introduced for the predic-
tion of Dow Jones Industrial Average variations. Moreover, based on such a prediction, a
trading protocol performing buy/sell operations is proposed to support investors.

Part IV describes new methods for job search that help people finding and getting the desired
job. A job recommendation approach based on LinkedIn users’ profiles is introduced to
match candidates with jobs. Also, a novel framework is proposed to recommend a pathway
to users towards a well-defined, possibly long term, career goal.

2



CHAPTER 1. ABOUT THIS THESIS 3

Part V introduces parallel programming primitives for vendor-agnostic implementation of Big
Data mining algorithms. Some notable data mining algorithms are implemented using such
parallel primitives. The transformation process from a vendor-agnostic implementation to
a vendor-specific platform is also shown.

Part VI draws conclusions and paves the way for future work.

1.2 List of publications
The list of publications that directly contribute to this thesis is shown below. Note that the authors
appear in alphabetical order in the papers listed below, apart from the works titled ”Transfer
learning in sentiment classification with deep neural networks”, ”Prediction and trading of Dow
Jones from Twitter: a boosting text mining method with relevant tweets identification”, and ”A
skillset-based approach to modelling job transitions and recommending career pathways”, where
the authors are listed in descending order of contribution.

• Giacomo Domeniconi, Gianluca Moro, Andrea Pagliarani, and Roberto Pasolini. Markov
chain based method for in-domain and cross-domain sentiment classification. In Pro-
ceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2015), pages 127–137.
INSTICC, SciTePress, 2015

• Giacomo Domeniconi, Gianluca Moro, Andrea Pagliarani, and Roberto Pasolini. Cross-
domain sentiment classification via polarity-driven state transitions in a markov model.
In Fred A., Dietz J., Aveiro D., Liu K., Filipe J. (eds) Knowledge Discovery, Knowledge
Engineering and Knowledge Management. IC3K 2015. Communications in Computer and
Information Science, vol 631. Springer, Cham

• Giacomo Domeniconi, Gianluca Moro, Andrea Pagliarani, Karin Pasini, and Roberto
Pasolini. Job recommendation from semantic similarity of linkedin users’ skills. In
Proceedings of the 5th International Conference on Pattern Recognition Applications and
Methods - Volume 1: ICPRAM,, pages 270–277. INSTICC, SciTePress, 2016

• Giacomo Domeniconi, Gianluca Moro, Andrea Pagliarani, and Roberto Pasolini. On deep
learning in cross-domain sentiment classification. In Proceedings of the 9th International
Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management - Volume 1: KDIR,, pages 50–60. INSTICC, SciTePress, 2017

• Andrea Pagliarani, Gianluca Moro, Roberto Pasolini, and Giacomo Domeniconi. Transfer
learning in sentiment classification with deep neural networks. In Fred A., Dietz J., Aveiro
D., Liu K., Filipe J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge
Management. IC3K 2017. Communications in Computer and Information Science. To
appear

3



4 CHAPTER 1. ABOUT THIS THESIS

• Giacomo Domeniconi, Gianluca Moro, Andrea Pagliarani, and Roberto Pasolini. Learning
to predict the stock market dow jones index detecting and mining relevant tweets. In
Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management - Volume 1: KDIR,, pages 165–172. INSTICC,
SciTePress, 2017

• Gianluca Moro, Roberto Pasolini, Giacomo Domeniconi, Andrea Pagliarani, and Andrea
Roli. Prediction and trading of dow jones from twitter: A boosting text mining method
with relevant tweets identification. In Fred A., Dietz J., Aveiro D., Liu K., Filipe J. (eds)
Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2017.
Communications in Computer and Information Science. To appear

• Gianluca Moro, Andrea Pagliarani, Roberto Pasolini, and Claudio Sartori. Cross-domain
& in-domain sentiment analysis with memory-based deep neural networks. In 10th
International Joint Conference on Knowledge Discovery, Knowledge Engineering and
Knowledge Management - Volume 1: KDIR,, 2018. To appear

• Cesare Bandirali, Stefano Lodi, Gianluca Moro, Andrea Pagliarani, and Claudio Sartori.
Parallel primitives for vendor-agnostic implementation of big data mining algorithms. In
2018 32nd International Conference on Advanced Information Networking and Applica-
tions Workshops (WAINA), pages 396–401, May 2018

• Andrea Pagliarani, Oznur Alkan, Adi Botea, Gianluca Moro, and Elizabeth Daly. A
skillset-based approach to modelling job transitions and recommending career pathways.
To be submitted to journal Expert Systems with Applications
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2
The age of big data

This chapter introduces the age of Big Data, providing the reader with a background of such a
historical and technological phase.

The reasons that brought to the widespread diffusion of data are discussed, with particular
emphasis on technological aspects. Beyond outlining the main characteristics of big data, the
challenges as well as the opportunities that such massive corpora offer are pointed out. Also, the
technologies that facilitate the growth of data are summarized, identifying their salient features
and relationships with Big Data.

After this general overview, the rest of the thesis will focus on data mining and machine
learning methods, with particular emphasis on some hot research threads, such as sentiment
analysis, stock market analysis, recommender systems for job search, and big data analytics.

2.1 What is big data?
Heterogeneous devices are pervasively present around us, such as Radio-Frequency IDentification
(RFID), tags, sensors, actuators, mobile phones, etc. These objects are equipped with some kind
of network connections, are able to interact with each other and cooperate with their neighbors
to reach common goals [AIM10]. This scenario, known as the Internet of Things (IoT), has
recently brought to a dramatic increase in the amount of data. Apart from IoT data, servers are
also filled with Web data, which arise increasingly faster from social networks, blogs, forums,
and so on.

When the Gutenberg press was invented, there was a doubling of information stock every
50 years. In 2011, a report from International Data Corporation (IDC) stated that the overall
created and copied data volume in the world was 1.8ZB (≈ 1021 B) [GR11]. As of 2012, data
volume grows by 2.5 exabytes per day, and it is more than doubling every two or three years
[Loh12, MBD+12]. Figure 2.1 illustrates the rapid global growth of data volume.

Big data have an enormous potential value for both research and business. Two premier
scientific journals, Nature and Science, opened special columns to discuss the challenges and
impacts of big data [Nat08, Sci11]. Also, issues on big data are covered in public media, such
as New York Times [Loh12], National Public Radio [Nog11a, Nog11b], and The Economist
[Cuk10, blo11]. Information extraction from big data may support the decision process of a
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Figure 2.1: The continuously increasing big data. Source: [CML14].
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large variety of organizations, from public and private enterprises to the financial sector, political
parties, etc., enabling managers to make more conscious choices.

The increasing amount of data, along with extraordinary opportunities, brings about many
challenging problems that require quick solutions. Data generation is fostered by the advances of
information technology (IT), which make really fast to produce and store data. For example, on
average, 72 hours of videos are uploaded to YouTube in every minute[JW14]. Data sources are
typically heterogenous and widely distributed, so that the rapid growth of massive data makes it
hard their gathering and integration.

The advent of cloud computing and the Internet of Things further promote the sharp growth
of data. Cloud computing provides on demand network access to a shared pool of computing
resources (e.g. networks, servers, storage, applications, and services) that can rapidly be provi-
sioned and released with minimal management effort or service provider interaction. Resource
usage is automatically controlled and optimized, and can be monitored for both the provider
and the consumer of the utilized service in order to provide transparency [MG+11]. In the
IoT paradigm, sensors all over the world are collecting and transmitting data to be stored and
processed in the cloud. In terms of quantity, such data and their mutual relations are much more
than the IT architectures and infrastructures of existing enterprises can actually deal with. Con-
sequently, storing and managing such massive heterogeneous datasets with moderate hardware
and software requirements become a challenge.

In order to disclose interesting properties and effectively support decision making, a dataset
has to be mined at different levels during the analysis, modeling, visualization, and forecasting.
Indeed, the heterogeneity, scalability, real-time, complexity, and privacy of big data pose different
challenges that cannot trivially be solved, and that often require multiple approaches to be
adequately managed.

2.1.1 The features of big data

Although people have different opinions on the correct definition of Big data, their importance
has been generally recognized. The various definitions clarify the profound social, economic
and technological connotations of big data. The common conception is that big data involve
datasets that cannot be managed, processed and analyzed by traditional hardware and software
tools within a tolerable time.

The very first definition is found in a research report by Laney in 2001, who defined challenges
and opportunities brought about by increased data with a 3Vs model that considered Volume,
Velocity, and Variety [Lan01].

Volume Data scale becomes increasingly big. Large-scale datasets are much more difficult to
process and analyze through traditional softwares and mining algorithms.

Velocity Data grow very fast, typically real-time, especially if we think about sensors data or
social media content, just to mention some. Therefore, data collection and analysis must be

9
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Figure 2.2: The four dimensions of big data according to IDC: Volume, Velocity, Variety, and
Value. Source: [CML14].

quickly and timely conducted in order to properly process data, mine interesting insights
and exploit their commercial value.

Variety Data sources are heterogeneous. Beside traditional structured data, e.g. relational
databases, semi-structured as well as unstructured data emerge, such as text, audio, video,
web content, etc.

The 3Vs model was not originally used to define big data, but many companies, including
Gartner [Bey11], IBM [ZE+11], and Microsoft [Mei11], continued to employ the ”3Vs” model
to describe big data within the following ten years.

In 2011, the global consulting agency McKinsey & Company announced big data as the
next frontier for innovation, competition, and productivity [MCB+11a]. According to their
definition, the expression ”big data” refers to datasets that could not be acquired, stored, and
managed by classic database software. This means that dataset volumes considered as big data
are continuously changing, possibly growing over time or due to technological advances.

In the same year, an IDC report defined big data as a new generation of technologies and
architectures, designed to economically extract value from very large volumes of a wide variety of
data, by enabling a high-velocity capture, discovery, and/or analysis [GR11]. The IDC definition
adds the Value dimension to the traditional 3Vs model, which turns into a 4Vs model, as shown
in Figure 2.2. Mining values from large-scale, heterogeneous, and quickly-generated datasets is
probably the most critical problem in big data scenarios.

Finally, NIST defines big data as follows: ”Big data shall mean the data of which the
data volume, acquisition speed, or data representation limits the capacity of using traditional
relational methods to conduct effective analysis or the data which may be effectively processed
with important horizontal zoom technologies”. Such a definition indicates that novel efficient as

10
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well as effective methods or technologies need to be developed and used to analyze and process
big data.

2.1.2 The value of big data

McKinsley & Company pointed out that big data may improve the productivity and competit-
iveness of enterprises and public sectors, and create benefits for customers. The value can be
obtained through research on the core industries that represent the global economy, namely the
U.S. healthcare and retail, the EU public sector administration, the global personal location data,
and the global manufacturing.

In [MCB+11a], McKinsey declared that big data could be employed to improve efficiency and
quality. The U.S. medical industry may exceed USD 300 billion, thus reducing the expenditure
for the U.S. healthcare by over 8%; retailers may improve their profit by more than 60%; the
developed economies in Europe could save over EUR 100 billion.

In [GMP+09], Google found that during the 2009 flu pandemic, entries frequently sought
at its search engines were different than usual, and the usage frequencies of the entries were
correlated to the influenza spreading in both time and location. Analyzing big data, Google
found 45 search entry groups that were closely related to the outbreak of influenza, and included
them in mathematical models to forecast the spreading of influenza in terms of both time and
location.

According to a well-known survey [CML14], data has nowadays become an important
production factor that could be comparable to material assets and human capital. As multimedia,
social media, and IoT are developing, enterprises will collect more information, leading to an
exponential growth of data volume. Big data will have a huge and increasing potential in creating
values for businesses and consumers.

2.1.3 Open challenges

The enormous increase of data induces challenges on data collection, storage, management,
processing and analysis. Traditional relational database management systems (RDBMSs) are no
longer adequate to handle the huge volume and heterogeneity of big data. Indeed, RDBMSs are
increasingly using more expensive hardware, and they only deal with structured data.

Some solutions have been proposed in literature to meet different requirements. Cloud
computing provides an efficient and elastic infrastructure, facilitating resource upgrading or
downgrading. Distributed file systems [HKM+88] and NoSQL [Cat11] databases offer storage
and management for very large datasets. Big data applications can be developed based on
these technologies or platforms, but several challenges should be taken into account during
development and deployment. Challenges and opportunities, broadly discussed in [ABB+11,
LJ12, CDN11], are summarized in a survey by Chen et al. [CML14], who identified the following
aspects:
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Data representation Data representation consists in finding the most appropriate format for
data analysis and user interpretation. It should reflect the different levels of heterogeneity
datasets have in structure, type, organization, granularity, semantics, and accessibility. Ef-
ficient representation allows exploiting information richness and mining valuable insights.

Redundancy reduction and data compression Redundancy reduction and data compression
are useful techniques to reduce the cost of a system, in particular from the computational
point of view. Such approaches are especially relevant for datasets with high level of
redundancy, and only if values are not affected by the process. A misapplication of
reduction and compression techniques may entail a loss of information.

Data life cycle management Data life cycle management is a policy-based approach to manage
the data flow of an information system throughout its life cycle, i.e. from creation and
initial storage to obsolescence and deletion. Such mechanisms are required, since storage
systems could not support the massive data that are generated by sensors, social media,
and other data sources.

Analytical mechanism A well-devised analytical procedure is necessary to timely process large-
scale heterogeneous data. Differently from RDBMSs, which typically are not scalable
and are employed in the processing of structured data, non-relational databases have
shown advantages in the processing of unstructured data. Compromise solutions are often
required that integrate the benefits of RDBMSs and non-relational databases. In-memory
databases as well as sample data based on approximate analysis are hot research topics.

Data confidentiality Data confidentiality is among the most critical topics to date, in particular
after General Data Protection Regulation [gdp18] has been approved in EU and the
scandal that involved Cambridge Analytica [Cad17] came out. Big data service providers
frequently rely on third party data analysis tools to deal with their limited storage and
computational capacity. This data processing increases the potential safety risks, since
sensitive information may be present within data. Proper preventive measures should be
taken to protect sensitive data and ensure its safety.

Energy management Energy management has recently drawn attention with the increase of
data volume and analytical demands. The processing, storage, and transmission of massive
datasets bring about more power consumption; as a consequence, efficient energy manage-
ment and control mechanisms are needed.

Expendability and scalability Algorithms should be able to process increasingly expanding
and more complex datasets. Scalability and the capability to seamlessly learn from new
examples are key characteristics that big data algorithms should have.

Cooperation Cooperation is required to fully exploit the potential of big data, because of its
interdisciplinariety. A comprehensive big data network architecture is advisable to help
experts cooperating in order to reach common analytical objectives.

12
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Figure 2.3: Main components of cloud computing. Source: [CML14].

2.2 Related technologies

The phenomenon of Big Data is facilitated by other outstanding technologies, including cloud
computing, IoT, data mining and machine learning. Such technologies support the evolution
of large-scale data and contribute to the extraction of relevant information from massive het-
erogeneous data sources. These recent advances are briefly introduced, giving special attention
to their relationships with big data, so as for readers to gain a deeper understanding of current
technological trends.

2.2.1 Cloud computing

Cloud computing is an IT paradigm that enables ubiquitous access, usually over the Internet, to a
shared pool of configurable resources and higher-level services that can rapidly be provisioned
with minimal management effort.

The macro components of cloud computing are shown in Figure 2.3. Cloud computing allows
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using huge distributed computing and storage resources with minimal concentrated management.
Big data can be subject to computationally intensive operations, and make use of the storage
capacity of cloud systems. The distributed storage technology based on cloud computing can
effectively manage big data, whereas the parallel computing capacity can improve the efficiency
of collecting and analyzing big data thanks to cloud computing.

Although cloud computing and big data are closely related technologies, they have different
purposes. The former is a new way to conceive an IT architecture, whereas the latter impacts
on the decision-making process. As a consequence, the target customers of cloud computing
are Chief Information Officers (CIO) focusing on IT solutions, whereas the target customers of
big data are Chief Executive Officers (CEO) focusing on business. In spite of having different
objectives, the evolution of these two technologies is positively correlated, because the growth of
cloud computing from virtualized technologies provides the necessary infrastructure for big data
processing.

2.2.2 IoT
The name Internet of Things (IoT) refers to the spread of embedded systems, devices, machines
that are connected with each other through some kind of communication media, e.g. NFC,
Bluetooth, the Internet, etc. Mobile devices, electrical appliances, public facilities are examples
of such systems that are able to collect and transfer data, as shown in Figure 2.4. Devices are
typically provided with sensors and actuators, respectively to perceive and affect the state of the
environment wherein they are located. Different kinds of data can be gathered through sensors,
such as location data (e.g. latitude, longitude, distance), environmental data (e.g. temperature,
humidity, pressure), traffic data, and so on.

Different IoT devices exist that are used for disparate purposes; consequently, the collected
data are typically heterogeneous. The IoT data are also unstructured and redundant, because
values are periodically sensed and transmitted in raw form. Moreover, their physical nature
makes sensors producing data that are inherently affected by noise.

According to HP, the quantity of sensors will reach one trillion by 2030 and then the IoT data
will become the most important source of big data [CML14]. A report from Intel pointed out
that the IoT data have three features that conform to the big data paradigm:

• abundant terminals generating masses of data;

• data generated by the IoT are usually semi-structured or unstructured;

• the IoT data are useful only when they are analyzed.

Despite their relatedness, the diffusion of the IoT is mainly due to the effective integration of
big data and cloud computing. The IoT is a fundamental factor in the growth of data that will
be a great opportunity for the application and development of big data, which in turn will boost
research advances in the IoT.
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Figure 2.4: Data acquisition equipment in IoT. Source: [CML14].

2.2.3 Data mining and machine learning

Data mining is an interdisciplinary subfield of computer science, providing techniques and
methodologies that allow the discovery of interesting, unexpected or valuable structures in large
datasets [WFHP16]. Data mining takes advantage of statistical techniques, information retrieval,
and machine learning for data processing and analysis.

Machine learning (ML) is a branch of artificial intelligence (AI) that focuses on the devel-
opment of computer programs that can access data and automatically learn from them, without
being explicitly programmed [Alp09]. Learning from examples allows machines performing
complex tasks without human intervention, sometimes with better performance. The general ML
workflow can be seen in Figure 2.5.

Machine learning tasks and algorithms are generally divided in several categories depending
on the type of learning process:

Supervised learning Supervised learning entails the use of past labeled examples to learn a
model that is able to predict future events. In particular, a function is inferred from a
known training set, then applied in order to make predictions about the events of interest
(i.e. the output values).

Unsupervised learning Unsupervised learning is used when the information used to train the
model is unlabeled. Unsupervised approaches try to find a function that extracts a hidden
structure from unlabeled data, without figuring out the right output.
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Figure 2.5: The ML process. Source: [Rok12].

Semi-supervised learning Semi-supervised algorithms make use of both labeled and unlabeled
data to train a model. They are particularly useful when few labeled data are available and
labeling new examples is a costly task.

Reinforcement learning Reinforcement learning is a learning method based on trial and error
search and delayed reward. Basically, an agent interacts with the environment, performing
actions and receiving real-valued rewards. Such rewards are reinforcement signals that are
used by agents to identify their ideal behavior, that is, the policy that maximizes future
rewards.

Conventional machine learning techniques have a limited ability to process raw data. For
decades, constructing a pattern recognition or machine learning system required careful engin-
eering. Considerable domain expertise was needed to design a feature extractor that transformed
raw data (e.g. the pixel values of an image) into a suitable internal representation or feature
vector from which the learning subsystem, often a classifier, could detect or classify patterns in
the input [LBH15].

With the advent of representation learning methods as deep learning, the representations
needed to perform complex tasks are automatically learned from data. The huge amount of
information available in big data, and the computational support provided by cloud computing,
accelerate the progress of machine learning algorithms and architectures. More accurate func-
tions, better describing phenomena of interest, can be extracted by mining massive datasets with
the help of cloud resources.
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3
Sentiment analysis

This chapter gives an overview of sentiment analysis, which is the first text mining topic this
thesis contributes to in Part II. Readers are provided with a background of the task, including its
rationale, main analytical techniques, and utility in real world scenarios.

Specifically, the task is introduced, emphasizing the aspects that make it a compelling research
thread and pointing out its practical implications. Afterwards, some notable sentiment analysis
techniques that are relevant to this thesis are described, namely feature selection, sentiment
classification, and transfer learning in cross-domain tasks.

3.1 Introduction
Sentiment Analysis (SA), also known as Opinion Mining (OM), is the computational study of
people’s opinions, appraisals, attitudes, and emotions toward an entity (surveys are in [LZ12,
Liu12, PL+08, VC12, MHK14]). The entity can represent individuals, events, or topics, which
are most likely to be covered by reviews. Although some researchers stated that OM and SA
have slightly different notions [TP12], the former extracting and analyzing people’s opinion
about an entity while the latter identifying the sentiment expressed in a text then analyzing it, the
two expressions can mostly be considered as interchangeable.

Sentiment analysis is a challenging, but very useful task in practice. Understanding people’s
opinions about products, services, brands and so on is of valuable importance for operational as
well as strategic business decisions. Companies always want to know customers’ opinions about
their products and services to identify what people are looking for, to establish which features to
add next, or to find the reason behind a complaint.

As illustrated in Figure 3.1, sentiment analysis can be considered a classification process.
There are three main classification levels in sentiment analysis, namely document-level, sentence-
level, and aspect-level. Document-level sentiment analysis aims at classifying an opinion
document as expressing a positive or negative opinion or sentiment. The assumption is that
a document is a basic information unit that discusses about only one topic. Sometimes this
hypothesis is too restrictive, since opinions on different entities can be expressed in a document.
However, a document-level analysis is very useful to identify the overall sentiment orientation,
or polarity, of a plain text.
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18 CHAPTER 3. SENTIMENT ANALYSIS

Figure 3.1: Sentiment analysis process on product reviews. Source: [MHK14].

In order to classify the polarity of each sentence, sentence-level sentiment analysis si required.
The first-step is to identify whether a sentence is subjective or objective. In case it is subjective,
sentence-level sentiment analysis will determine its sentiment orientation. However, Wilson et al.
[WWH05] pointed out that subjective expressions do not necessarily have a polarity (i.e. they
can also be neutral).

Liu [Liu12] argued that there is no fundamental difference between document and sentence
level classifications, because sentences are just short documents. Classifying text at the document
level or at the sentence level does not require to extract opinions on all aspects of the entity
involved. In case detailed opinions about specific aspects of entities are needed, aspect-level
sentiment analysis is involved. The first step is to identify the entities and their aspects. The
opinion holders can give different opinions for different aspects of the same sentence, e.g. ”The
actors of the movie are very good, but I don’t like the plot.”

The data sets used for sentiment analysis primarily are from product reviews, whose sources
typically are review sites. However, sentiment analysis is not only applied on product reviews but
also on stock market [YWCC13, HLN13], news articles [XPC12], or political debates [MV12].
For example, people’s opinions on certain election candidates or political parties can be identified
within a political debate. The election results can also be predicted from political posts. Social
networks and micro-blogging sites are considered a very good source of information because
people freely share and discuss opinions about a certain topic.

In order to build a model that is able to identify the sentiment orientation of a plain text, a set
of documents is required. Text representation methods are applied to map raw data into a more
suitable representation, for instance the bag-of-words model, where documents are transformed
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into a document-term matrix [ZJZ10], whose entries are functions of the word occurrences in
documents. Before such a transformation, documents are generally denoised using standard pre-
processing steps, such as word tokenization, case folding, number removal, stopwords removal.
Stemming [Por80] as well as lemmatization [PLM+04] are sometimes applied.

3.2 Techniques
Many applications and enhancements on sentiment analysis have been proposed in the last few
years. Techniques can be divided into logically different subareas, namely Feature Selection
(FS), Sentiment Classification (SC), Emotion Detection (ED), Building Resources (BR), and
Transfer Learning (TL). Feature selection approaches allow to identify and choose only the
features that are supposed to be promising for classification. Sentiment classification copes
with the problem of automatically organizing a corpus of documents into a predefined set of
categories, or classes, according to their polarity, e.g. positive, negative, neutral. Emotion
detection aims at extracting and analyzing emotions in sentences, which could be either explicit
or implicit. Building resources consists in creating lexica, corpora in which opinion expressions
are annotated according to their polarity, sometimes relying on dictionaries. Transfer learning
and cross-domain classification are concerned with analyzing data from one domain and then
using this knowledge in a heterogeneous target domain.

Feature selection, sentiment classification, and transfer learning will be further discussed in
this section, pointing out their rationale, operations, and practical utilities, and reviewing the
main related research advances. On the other hand, the contributions of this thesis based on such
techniques will be introduced in Part II.

3.2.1 Feature selection
Bag-of-words models are inherently affected by the curse of dimensionality [Bel13], because
every term in the analyzed corpus becomes a feature of the model. As a consequence, the
representation also suffers from the data sparsity problem, which affects both model efficiency
and effectiveness. To address these issues, only the most relevant features are selected. Examples
of features that usually support the identification of sentiment are [AZ12]:

Terms presence and frequency These features are individual words or word n-grams, and their
frequency counts. Binary weighting as well as term frequency weights can be used to
indicate the relative importance of features [MS11].

Parts of speech (POS) Part-of-speech tagging maps each word to a part of speech (e.g. nouns,
attributes, verbs, etc.). Attributes foster opinion detection and discovery, because they
frequently are polarity-bearing terms (e.g. good, bad). However, nouns (e.g. disaster,
miracle), verbs (e.g. accomplish, fail), conjunctions (e.g. but) and negations (e.g. not) can
also help to identify the polarity.
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Opinion words and phrases Opinion words are terms (i.e. parts of speech) commonly used to
express opinions, such as good or bad, love or hate, great or awful. Some phrases may
express opinions without using opinion words, e.g. cost me an arm and a leg.

Negations Negations are particular parts of speech that may change the sentiment orientation,
e.g. not good is more similar to bad than good.

Feature selection methods can be divided into lexicon-based methods and statistical methods.
The former require human annotation: they usually start with a small set of ”seed” words, which
are then expanded through synonym detection or online resources to obtain larger lexica. On
the other hand, the latter are fully automatic approaches, widely used in sentiment analysis.
Examples of statistical feature selection approaches are:

Point-wise Mutual Information (PMI) Point-wise mutual information provides a formal way
to represent the mutual information between features and classes. The point-wise mutual
information Mi(w) between word w and class i depends on their co-occurrence. The
expected co-occurrence of class i and word w is given by F(w) ·Pi, whereas the true
co-occurrence is given by F(w) · pi(w). The mutual information is given by the following
equation:

Mi(w) = log
(

F(w) · pi(w)
F(w) ·Pi

)
= log

(
pi(w)

Pi

)
(3.1)

Mi(w) is greater than 0 when word w is positively correlated to class i, whereas Mi(w) is
less than 0 in case of a negative correlation.

Yu et al. [YWCC13] extended PMI by developing a contextual entropy model to expand
a set of seed words. Such a model discovers other words similar to the seed words, by
comparing the contextual distribution between each couple of words using an entropy
measure. Considering both co-occurrence strength and contextual distribution is beneficial
for sentiment classification, because it allows acquiring more useful emotion words and
fewer noisy words.

Chi-square
(
χ2) Chi-square statistic between word w and class i is defined as in [AZ12]:

χ
2
i =

n ·F(w)2 · (pi(w)−Pi)
2

F(w) · (1−F(w)) ·Pi · (1−Pi)
(3.2)

where n is the total number of documents in the collection, pi(w) is the conditional
probability of class i for documents that contain w, Pi is the global fraction of documents
containing class i, and F(w) is the global fraction of documents that contain word w.

Applications of chi-square include contextual advertising, to identify ads that are positively
correlated with a blogger’s personal interests [FC11], and stock market data, where
feedback features obtained by capturing market feedback are used as a part of the feature
selection process [HLN13].
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Latent Semantic Indexing (LSI) Latent semantic indexing is a feature transformation method
that maps the text space to a new axis system, which is a linear combination of the
original features [DDF+90]. This goal is achieved through Principal Component Analysis
techniques as Singular Value Decomposition (SVD) [Jol11], an unsupervised method
that determines the axis-system that retains the greatest level of information about the
variations in the underlying attribute values.

Other statistical methods exist apart from those just mentioned, including information gain and
Gini index [AZ12], Hidden Markov Models (HMMs) and Latent Dirichlet Allocation (LDA).
The last two techniques have been used in [DS12] to separate the entities in a review document
from the subjective expressions that describe those entities in terms of polarities, and combined
in [GSBT05] to simultaneously model topics and syntantic structures within a corpus.

One of the most challenging tasks where feature selection plays an important role is irony
detection. For this purpose, Reyes and Rosso [RR12] defined a feature model in order to represent
part of the subjective knowledge within reviews, and tried to describe salient characteristics
of irony. Six categories of features were taken into account to model irony, such as n-grams,
POS-grams, funny profiling, positive/negative profiling, affective profiling, and pleasantness
profiling. Using naı̈ve bayes, support vector machine, and decision tree as sentiment classifiers,
they achieved good results in terms of accuracy, precision, recall, and F-measure.

3.2.2 Sentiment classification

In general, text classification copes with the problem of automatically organizing a corpus of
documents into a predefined set of categories or classes, which usually are the document topics,
like for instance sport, politics, cinema and so on. Sentiment classification is a particular text
classification task that distinguishes documents based on their polarity. The polarity, or sentiment
orientation, of a plain text is typically denoted by either a label (e.g. positive, negative, or
possibly neutral) or a numeric value (e.g. a score from 1 to 5).

This supervised approach learns a classification model from a training set of documents,
labeled according to their sentiment orientations, in order to classify new unlabeled documents,
whose polarities have to be discovered. The more new documents reflect the peculiarity of the
training set, the more the classification of the test set will be accurate. Generally, the parameters
of the learning algorithm adopted can be tuned on a validation set of documents, labeled as the
training set, in order to maximize the performance on the test set.

The semantic comprehension of natural language text is arduous, because of its intrinsic am-
biguity and context dependence. Both word polarity, namely its positive or negative orientation,
and relationships among words have to be taken into account to properly understand the meaning
of a sentence. The task becomes even more challenging when document-level understanding is
required, namely when the overall document polarity has to be discovered.

The typical approach to sentiment classification assumes that both the training set and the
test set deal with the same topic. For example, a model is learned on a set of board game reviews
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and applied to a distinct set of reviews, but always about board games. This modus operandi,
known as in-domain sentiment classification, guarantees optimal performance provided that
documents from the same domain are semantically similar. Nevertheless, the implicit assumption
in-domain classification relies on is to have labeled documents from the same domain of the
text set whose sentiment orientation has to be found. Unluckily, given that most documents are
usually unlabeled, the in-domain approach is often inapplicable in practice. Tweets, blogs, fora,
chats, emails, public repositories, social networks are sources of unsupervised data that could
bear opinions, but no information is available on whether such opinions are positive, negative or
neutral.

A really simple solution to the absence of labeled data is to manually pre-classify documents,
so as to have enough labeled data to train an in-domain sentiment classifier. This method is
expensive and not scalable with very large text sets; therefore, it cannot be used in big data
scenarios.

This is the reason why cross-domain solutions are needed, where a model can be reused
across different domains. A deeper discussion on cross-domain sentiment classification and
transfer learning techniques will be provided in Section 3.2.3.

Sentiment classification techniques

Sentiment classification techniques, whose overview can be found in Figure 3.2, can be distin-
guished according to the approach used. Macro categories are machine learning approaches,
lexicon-based approaches and hybrid approaches [MF11].

The Machine Learning (ML) approach relies on ML algorithms that treat sentiment analysis as
a text classification task, where the polarity of plain text is identified by means of syntactic and/or
linguistic features. The lexicon-based approach, which includes dictionary-based and corpus-
based methods, relies on a sentiment lexicon, that is a collection of known and precompiled
sentiment terms. The hybrid approach simply is the combination of the previous two. Lexicon
having a well-known polarity is frequently used together with traditional machine learning
algorithms.

In a sentiment classification task, we have a set of training instances D = {X1,X2, . . . ,Xn},
where each example is labeled with a sentiment orientation, which can be either a score or a
nominal tag identifying the polarity. Classification algorithms first learn a mapping function
from instances to classes, then are used to predict a label for each new unlabeled example. The
approach just mentioned is an example of supervised learning, which is applicable anytime
enough labeled training instances are available to train a robust model.

Many supervised classifiers are used in sentiment analysis. A first category are probabilistic
classifiers, which use mixture models for classification, assuming that each class is a component
of the mixture. Each mixture component is a generative model that provides the probability of
sampling a particular term for that component.

Probabilistic classifiers, sometimes referred as generative classifiers, include Naı̈ve Bayes,
Bayesian Network, and Maximum Entropy Classifier. Naı̈ve Bayes computes the posterior
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Figure 3.2: Sentiment classification techniques. Source: [MHK14].
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probability of a class, based on the distribution of the words in the document. Each feature of
the model is assumed to be conditionally independent of others. On the other hand, bayesian
network assumes that the features are fully dependent, specifying a complete joint probability
distribution over all variables. Maximum entropy classifier encodes labeled feature sets to vectors.
The encoded vector is used to compute weights for each feature that can then be combined to
determine the most likely label for a feature set. This classifier is parameterized by a set of
weights, which is used to combine the joint features that are generated from a feature-set by an
encoding.

A second category of classifiers are linear classifiers, such as Support Vector Machine and
Neural Network. Support vector machine aims at determining the linear separators in the search
space that can best divide classes. SVM is particularly suitable for text data because of the
sparse nature of text, in which few features are irrelevant, but they tend to be correlated with
one another and generally organized into linearly separable categories [Joa96]. SVM can also
divide nonlinearly separable instances. Relying on kernel functions, data are mapped from
the original feature space into a new space where the classes can be linearly separated with a
hyperplane [Aiz64]. On the other hand, a neural network consists of many neurons where the
neuron is the basic unit. Neurons can compute a function of their inputs, which typically are
word frequencies as well as a set of weights. Neural networks can be composed of many layers
to deal with nonlinear surfaces, where the outputs of the neurons in the earlier layers feed into
the neurons in the later layers. Neural networks are trained by back-propagating errors over
different layers [RHW86]. Researchers have already been employed neural networks for text
data [RS99, NGL97], and also compared support vector machines and artificial neural networks
[MVN13].

A third category of classifiers are decision trees, which recursively decompose the training
data space according to conditions on the attribute values [Qui86]. The condition may be the
presence or absence of some words, or a value interval for some attributes. The division of the
data space is done recursively until the leaf nodes are eventually reached. The main difference
among decision tree approaches is the criterion used to split data, for example single attribute
[LR94], similarity-based multi-attribute and discriminant-based multi-attribute [CRS03]. The
decision tree implementations in text classification tend to be small variations on standard
packages such as ID3 and C4.5.

The last category of classifiers are rule-based classifiers, which label data according to a
predefined set of rules. The left hand side typically represents a condition on the feature set,
whereas the right hand side represents the class. The two most frequently used criteria to generate
rules are support and confidence [ML98].

Beyond the just mentioned approaches, meta classifiers are also used to learn more robust
models. Among the most known meta classifiers methods there are bagging [Bre96], which
generates multiple versions of a predictor and uses them to get an aggregate predictor, and
boosting [FS97], which iteratively learns weak classifiers with respect to a distribution until a
strong classifier is eventually obtained.

In any of the algorithms discussed, a large number of labeled training documents is needed
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to learn a robust sentiment classifier. When labeled data are unavailable, either unsupervised
techniques or transfer learning approaches are employed to identify the sentiment orientation of
a set of documents. Transfer learning techniques will be discussed in Section 3.2.3.

Among the unsupervised methods, Turney [Tur02] introduced an algorithm to evaluate
mutual information between the given sentence and two words taken as reference: ”excellent”
and ”poor”. Furthermore, Taboada et al. [TBT+11] built a dictionary of words annotated with
both their semantic polarities and their weights, also including intensification and negation.
These are examples of lexicon-based techniques.

The lexicon-based approach is the other primarily used approach for sentiment classification.
It basically consists in finding a set of opinion words, which can help identifying the sentiment
orientation of documents.

For this purpose, a first commonly used strategy is the dictionary-based [KH04, HL04]. A
small set of opinion words with known orientations is manually constructed, then synonyms and
antonyms are added by searching in well-known corpora as WordNet [Mil95] or in thesaurus
[MDD09]. The newly found words are iteratively added, and the process stops when no new
words are found. The main drawback of the dictionary-based strategy is its inability to find
opinion words with domain and context specific orientations. To solve this problem, the corpus-
based strategy is adopted.

Corpus-based methods generally depend on syntactic patterns or patterns that occur together,
along with a seed list of opinion words to find other opinion words in a large corpus. Although
this approch can help finding domain and context specific opinion words, it is not as effective as
the dictionary-based if used alone, because it is hard to have a huge corpus covering all English
words.

Natural language processing (NLP) techniques are often used with the lexicon-based approach
to find syntactical structures and mining semantic relations [BG04]. Such techniques have been
employed for the identification of tense and time expressions [MP12], to analyze sentences by
means of a dependency parsing [DCG13], and as a pre-processing stage before the application
of a lexicon-based sentiment analysis algorithm [MRCZ12].

Most methods usually employed hybrid approaches to take advantage of both the machine
learning and the lexicon-based approaches. For example, Dave et al. [DLP03] draw on in-
formation retrieval methods for feature extraction, and to build a scoring function based on
words found in positive and negative reviews. In [TWC08, QZHZ09], a dictionary containing
commonly used words in expressing sentiment is employed to label a portion of informative
examples from a given domain. These instances reduce the labeling effort and allow using the
labeled documents as a training set to learn a supervised classifier. Melville et al. [MGL09]
showed that lexical information about associations between words and classes can be exploited
and refined for specific domains by means of training examples to enhance accuracy.

Finally, term weighting could also foster sentiment classification, as shown by some re-
searchers that propose different term weighting schemes. Notable examples are a variant of
the well-known tf-idf [PT10], a supervised scheme based on both the importance of a term
in a document and the importance of a term in expressing sentiment [DLY14], the usage of
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regularized entropy in combination with singular term cutting and bias term in order to reduce
the over-weighting issue [WG14].

3.2.3 Cross-domain and transfer learning

Cross-domain learning is a very attractive research thread that paves the way for the use of
large-scale unsupervised data. Basically, a model is learned on a labeled source domain, then
used to classify the polarity of a distinct unlabeled target domain. For example, let us suppose to
have learned a model on a set of reviews about movies, and now to be interested in understanding
people’s thoughts about kitchen appliances, whose reviews unfortunately are not labeled. A
manual categorization of the unlabeled reviews can be a time-consuming solution, infeasible with
large-scale text sets. Instead of manually labeling the kitchen appliances’ reviews and building a
model from scratch, we want to exploit a model that is already available.

The rationale behind the cross-domain approach is the fact that it allows for model reuse:
a model is built once, and used multiple times. The reusability of a model is relevant for
both research and business, since collecting, labeling, processing and analyzing data can really
be time-consuming tasks, which hinder scalability in big data scenarios. However, the test
documents may not reflect the regularities of the training set due to the heterogeneity of language.
For example, if a movie review is likely to include terms like amusing or boring, a kitchen
appliance review is more plausible to contain clean or broken. Hence, a transfer learning phase
is typically demanded to bridge the inter-domain semantic gap.

Transfer learning generally entails learning knowledge from a source domain and using
it in a target domain. Specifically, cross-domain methods are used to handle data of a target
domain where labeled instances are only available in a source domain, similar but not equal to
the target one. While these methods are used in image matching [SMGE11], genomic prediction
[DMMP16] and many other contexts, classification of text documents by either topic or sentiment
is perhaps their most common application.

Two major approaches can be distinguished in cross-domain classification [PY+10]: ”in-
stance transfer” directly adjusts source instances to the target domain, while ”feature representa-
tion transfer” maps features of both domains to a different common space. The most popular
transfer learning methods are clustering algorithms and approaches that make use of feature
expansion and external, sometimes hierarchical, knowledge bases. These techniques, employed
in conjunction with standard text classification algorithms, lead to good results in sentiment
classification [TWC08, QZHZ09, MGL09]. Nevertheless, a tuning of parameters is necessary to
ensure adequate effectiveness, because the parameter values that yield optimal accuracy with a
text set do not usually produce analogous best results with different corpora. Parameter tuning is
a bottleneck anytime a new text set has to be classified. Defining algorithms that are not affected
(or slightly affected) by such a problem represents an open research challenge.

With reference to text categorization by topic, transfer learning has been fulfilled in different
ways, for example by clustering together documents and words [DXYY07], by extending
probabilistic latent semantic analysis to unlabeled instances [XDYY08], by extracting latent
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words and topics, both common and domain specific [LJL12], by iteratively refining target
categories representation without a burdensome parameter tuning [DMPS14a, DMPS14b].

Many transfer learning methods have also been proposed for cross-domain sentiment classi-
fication. Aue and Gamon [AG05] tried some approaches to customize a classifier to a new target
domain: training on a mixture of labeled data from other domains where such data are available,
possibly considering just the features observed in target domain; using multiple classifiers trained
on labeled data from diverse domains; including a small amount of labeled data from target.
Bollegala et al. [BWC13] suggested the adoption of a thesaurus containing labeled data from
source domain and unlabeled data from both source and target domains. Blitzer et al. [BDP07]
discovered a measure of domain similarity contributing to a better domain adaptation. Pan
et al. [PNS+10] advanced a spectral feature alignment algorithm which aims to align words
belonging to different domains into same clusters, by means of domain-independent terms. Such
clusters form a latent space which can be used to improve sentiment classification accuracy of
a target domain. He et al. [HLA11] extended the joint sentiment-topic model by adding prior
words sentiment, thanks to the modification of the topic-word Dirichlet priors. Feature and
document expansions are performed through adding polarity-bearing topics to align domains.
Zhang et al. [ZHL+15] proposed an algorithm that transfers the polarity of features from the
source domain to the target domain with the independent features as a bridge. Their approach
focused not only on the feature divergence issue, namely different features are used to express
similar sentiment in different domains, but also on the polarity divergence problem, where
the same feature is used to express different sentiment in heterogeneous domains. Franco et
al. [FSCTR15] used the BabelNet multilingual semantic network to generate features derived
from word sense disambiguation and vocabulary expansion that can help both in-domain and
cross-domain tasks. Bollegala et al. [BMG16] modeled cross-domain sentiment classification as
embedding learning, using objective functions that capture domain-independent features, label
constraints in the source documents and some geometric properties derived from both domains
without supervision.
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4
Stock market analysis

It is no mistery that stock market analysis is a primary interest for finance, and has historically
attracted interest from shareholders as well as academia. Understanding the market trend allows
investors choosing the best trade-off strategy between risk minimization and profit maximization.

This chapter gives an overview of the problem, focusing on the techniques used for analysis
and prediction rather than on the financial point of view. In particular, several renowned
approaches for stock market forecasting are discussed, emphasizing the predictive potential of
social media. Driven by such existing researches, a novel Twitter-based method for stock market
prediction and trading will be proposed in Part III.

4.1 Introduction
The Efficient Market Hypotesis (EMH), proposed by Fama [Fam65], states that prices of financial
assets are managed by rational investors who rely on new information, i.e. news. Since news
is not predictable, neither is the stock market, which generally follows a random walk trend,
according to past studies [KAYT90, FAM91]. The EMH was confuted by Malkiel [Mal03], who
provided evidences that market prices reflect all the available information. Moreover, several
studies showed that the trend of the stock market does not follow a random walk model and can
be predicted in some way [LM88, BM92], for example applying mining techniques to market
news [GE01, SC06], to past prices [LWD+11], or even to financial reports [LLKC11].

Many approaches to stock market analysis and prediction have been proposed over time,
from time series prediction to textual news analysis and social network analysis. In this chapter,
we start from traditional approaches to stock market prediction, then we review methods based
on text and news analysis, and finally we summarize the most recent works using social network
information to forecast the market prices.

4.2 Traditional approaches
Initially, the scientific researches were based on the Efficient Market Hypothesis (EMH) [Fam65],
according to which the prices of traded assets reflect all relevant information available at any
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time. In such a financial market model, neither technical prediction analysis of future prices
based on the study of past prices, nor fundamental analysis studying the evolution of the business
value, allow an investor to achieve higher profits than those that another investor would get with
a randomly selected portfolio of stocks, with the same degree of risk.

The EMH is divided into three basic levels, namely ”weak”, ”semi-strong” and ”strong”. The
weak form implies that the market is efficient, reflecting all market information at a given time.
According to this hypothesis, past rates of return on the market have no effect on future rates.
The weak form invalidates the rules used by traders to buy/sell a stock. The semi-strong form
incorporates the weak version with the addition that the information is immediately reflected in
the price, becoming available to the public. Given this assumption, a trader cannot exploit new
information to get advantages over and above the market. Finally, the strong form incorporates
the previous hypotheses by assuming that the market reflects not only public information, but also
private information. As a consequence, no investor would be able to profit the average investor
even if she was given new information. Based on the EMH hypothesis, several researches
[KAYT90, FAM91, Mal96] argued that the financial market, being driven by news, evolves in
an unpredictable way according to the random walk theory.

In the last decades, a great amount of works refused the unpredictability hypothesis (a com-
plete overview is given in [Mal03]), showing that stock price series follow a random behavior
only in short periods of time, whereas they are predictable in general [LM88, BM92, QR07]. Re-
search in behavioral finance [BT03, Mal03] has shown that investors give different psychological
interpretations to new information. Tetlock [Tet07] studied the correlation between commu-
nication media and the market, showing that a media’s high pessimism predicts a downward
pressure on the market, increasing the market trading volume. Moreover, the EMH assumes
that the stock market is driven by news, which are unpredictable. However, in an experiment
conducted by Lebaron et al. [LAP99], an artificial stock market, driven by simulated commercial
agents, was created to study the behaviour of decision-making processes of traders based on
the timely introduction of information. It emerged from the analysis that, if the information
is assimilated slowly, thus having a longer time horizon, the simulations look like the actual
behavior of shareholders. In other words, the experiment highlighted a time-lag between the
arrival of new information and the reaction of investors in the stock market, so that news can be
analyzed during this time frame and used to make predictions.

Motivated by such an interesting discovery, many researchers focused their studies on stock
market prediction. Two major approaches exist: the first uses features derived from technical
analysis, based on the history of stock index prices; the second predicts trends by means of related
news and textual information. While surveys of such approaches are provided by Atsalakis and
Valavanis [AV09], and by Mittermayer [Mit04] respectively, next section will focus on the latter.
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4.3 Methods based on text and news analysis

Thomas and Sycara [TS00] predicted the stock prices by integrating textual information from web
bulletin boards into trading rules derived by genetic algorithms, based on the trading volumes of
the stocks concerned as well as on the number of messages posted on the web bulletin. Lavrenko
et al. [LSL+00] proposed to predict the intra-day stock price movements of a company stock
by analyzing the contents of real-time news stories related to that company. Schumaker and
Chen [SC06, SC09] investigated on 9,211 financial news articles and more than 10 million stock
quotes covering S&P 500 index during a period of five weeks. They used supported vector
machines to estimate a stock price 20 minutes after the release of some news, getting the best
results when the model is composed of both article terms and the index price at the release of
the news. Mittermayer and Knolmayer [MK06b] introduced NewsCATS (News Categorization
and Trading System) to predict stock price trends immediately after the publication of press
releases. Their approach consists of three phases: (i) automatically pre-processing of incoming
press releases, (ii) categorizing them into different news types and (iii) deriving trading rules
for the corresponding stock. Fung et al. [FYL05] proposed a framework to predict the real-time
movements of stock prices by analyzing news stories. The authors selected the positive training
documents by means of χ2, and combined them with the stock trends using a support vector
machine. Several other papers pointed out the potential of financial news articles to create
prediction models (a survey is in [MK06a]). For instance, Wuthrich et al. [WCL+98] predicted
stock price movements by counting the occurrences of predefined keywords in financial articles.
Gidofalvi and Elkan [GE01] divided the stock price time series around the publication of a
news article into windows of influence. During the learning phase, the documents are labeled
according to a three-category model corresponding to increase, decrease or unchanged of price
within the influence window. The first 1000 word features according to mutual information are
automatically extracted, then a Naı̈ve Bayes classifier is trained on them. Li et al. [LWD+11]
experimented different training methods and different lag times to understand the impact of
news: news article only, ex ante prices only, and a naı̈ve combination of news article and
ex ante prices called multi-kernel learning (MKL). The tests were conducted with lag times
from 5 to 30 minutes, and the best performance was achieved after 20 minutes from the news
publication. Lin et al. [LLKC11] advanced a method called Hierarchical aglomerative and
Recursive K-means clustering (HRK), in which qualitative and quantitative features are used to
analyze financial reports. Moreover, the authors combined K-means and hierarchical clustering
to detect clusters and improve quality of the prototypes of such financial reports. The prototypes
made the proposed method noise tolerant and let it avoid overfitting problems. The experimental
evaluation showed that HRK outperforms SVM and Naı̈ve Bayes algorithms. Similarly, Zhai
et al. [ZHH07] combined the information of news articles with technical indicators to predict
the daily price movements of a stock. Lee [Lee09] developed a SVM-based model with hybrid
feature selection and supported sequential forward search to predict the NASDAQ trends. Other
researchers employed blog posts to predict stock market behaviour by determining the correlation
between activities on Internet message boards, and stock volatility and trading volumes [AF04].
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Gilbert and Karahalios [GK10] created an index of the US national mood, called ”anxiety index”,
by exploiting over 20 million posts from the LiveJournal website. They noted that, when this
index increases significantly, the S&P 500 ends the day marginally lower than expected. A
comparative survey of artificial intelligence applications in finance is reported in [Bah10].

4.4 Methods based on social media

Social media are a pervasive global phenomenon, constantly increasing in the last decade.
Facebook, Twitter, LinkedIn, Xing are among the most popular examples. They are huge data
sources where users can insert information and opinions about various topics.

Since text and news have already been proved to help stock market analysis [Mit04, MK06a],
researchers have started investigating whether social media can support prediction, being a
valuable source of unstructured data. One of the most analyzed social networks is Twitter,
which is very dense of informative content, because users must be very concise when expressing
opinions, due to the fact that tweets cannot be longer than 140 characters.

4.4.1 The predictive value of Twitter

Twitter is a well-known American online news and social networking service on which users
post and interact with messages known as ”tweets”. Twitter has over 330 million users and an
average of 500 million tweets posted every day, offering the opportunity to access this stream of
global posts. Considered the huge amount of data available, Twitter represents a huge knowledge
base providing information about the most disparate topics.

Many research fields related to text mining have taken advantage of this source of information.
For instance, sentiment analysis benefits from tweets due to the intrinsic nature of the information
posted by users. Plenty of articles have been written on sentiment analysis and the study of
tweet polarization [PP10, TBP11, AXV+11, KBQ14, KS12, BMMP13, MCMVULMR14]. It
can be argued that such a knowledge base can provide an indication of the public mood. Indeed,
the emotional state, as the prerogative of a single human being, propagates to social status as
a feature of all individuals. This phenomenon was studied by Bollen et al. [BMP11], who
found that events in the social, political, cultural and economic sphere do have a significant,
immediate and highly specific effect on various dimensions of the public mood extracted from
Twitter. They speculated that a large-scale mood analysis can provide a solid platform to model
collective emotive trends in terms of their predictive value with regards to existing social as
well as economic indicators. This predictive feature of Twitter mood has been used to forecast
different phenomena, for example the sales of a movie [AH10], the public opinion on a particular
brand [GSZ13], the political alignment of Twitter users [CRF+11, CGR+11], the results of
elections [GA12].
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4.4.2 Twitter-based stock market prediction

Many approaches in literature applied sentiment analysis techniques to tweets in order to create
forecast models for the stock market. Bollen et al. [BMZ11] measured collective mood states
(positive, negative, calm, alert, sure, vital, kind and happy) through sentiment analysis applied
to more than 9 million tweets posted in 2008. Tweets were filtered by some generic sentiment
expressions (e.g. ”I’m feeling”) that were not directly related to stock market. The authors
analyzed tweets by two mood tracking tools: Opinion Finder (OF) [WHS+05], which classifies
tweets as positive or negative, and Google-Profile of Mood States (GPOMS), which measures
mood in six dimensions. They found that the calm mood profile yields the best prediction result
for Dow Jones Industrial Average (DJIA) with accuracy of 86.7% in the prediction of daily
directions in december. Furthermore, they showed how a tweet aggregation in a 3-day period
ensures better prediction on the daily DJIA. Similarly, Chyan et al. [CHL12] used the calm
score of tweets extracted from June and December 2009, achieving accuracy of 75% in a 20-day
prediction of Dow Diamonds ETF (DIA). Accuracy increased up to 80% by adding a quantitative
feature related to the previous DIA value.

An analysis similar to Bollen’s one was conducted by Mittal and Goel [MG12]. The authors
employed the same dataset used in [CHL12] for a multi-class classification, considering only
calm, happy, alert and kind as mood dimensions. Furthermore, four learning algorithms (i.e.
Linear Regression, Logistic Regression, SVMs and SOFNN) are used to learn and exploit the
actual predictions; among the algorithms, SOFNN-based model performed best, achieving nearly
76% of accuracy. Oliveira et al. [OCA13] compared six different and popular sentiment analysis
lexical resources (Harvard General Inquirer, Opinion Lexicon, Macquarie Semantic Orientation
Lexicon, MPQA Subjectivity Lexicon, SentiWordNet, Emoticons) to evaluate the usefulness
of each resource for stock prediction. Sprenger et al. [STSW14] used sentiment analysis on
stock-related tweets collected during a six-month period. To reduce noise, they selected tweets
containing cashtags (i.e. $) of S&P 100 companies. Each message was classified by a Naı̈ve
Bayes method trained with a set of 2,500 tweets. The outcome of such an analysis showed that
sentiment indicators are associated with abnormal returns, and message volume is correlated
to the trading volume. Similarly, Rao and Srivastava [RS14] associated a polarity to each day,
considering the number of positive and negative tweets via sentiment1401, and testing DJIA and
NASDAQ-100 indexes in a 13-month period between 2010 and 2011. Mao et al. [MCB11b]
surveyed a variety of web data sources (Twitter, news headlines and Google search queries)
and tested two sentiment analysis methods for the prediction of stock market behavior. They
found that their Twitter sentiment indicator and the frequency of financial terms on Twitter are
statistically significant predictors of daily market returns.

Other approaches do not use sentiment analysis to make predictions. For example, Mao et
al. [MWWL12] analyzed with a linear regression model the correlation between the Twitter
predictor and stock indicators at three levels (i.e. stock market, sector and single company
level). The authors discovered that the daily number of tweets mentioning S&P 500 stocks was

1http://help.sentiment140.com/
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significantly correlated with S&P 500 daily closing price. Accuracy of about 68% was obtained
in a 19-day test for stock market and sector level prediction, and about 52% for company stock.
Porshnev et al. [PRS13] created different types of features: to a ”basic” bag-of-words of the
previous day tweets, they added features regarding the number of tweets containing the words
hope, worry or fear (Basic&HWF), or the words happy, loving, calm, energetic, fearful, angry,
tired and sad (Basic&8emo). Training a support vector machine model on such datasets over
a 7-month period in 2013, they got a maximum baseline accuracy of 65.17% for DJIA, 57%
for S&P 500 and 50.67% for NASDAQ. In a different way, Ruiz et al. [RHC+12] extracted
two types of features, one concerning the overall activity on Twitter and the other measuring
the properties of an induced interaction graph. They found a correlation between these features
and changes in S&P 500 price and volume traded. Zhang et al. [ZFG11] found high negative
correlation (0.726, significant at level p < 0.01) between Dow Jones index and the presence of
some words in tweets, such as hope, fear, and worry. A quantitative analysis is made by Mao et
al. [MWW13]: using Twitter volume spikes in a 15-month period (from February 2012 to May
2013), they trained a bayesian classifier to assist S&P 500 stock trading, showing that it may lead
to a substantial profit. Arias et al. [AAX13] showed through extensive testing that the prediction
of stocks or indexes can improve by adding Twitter-related data (either in terms of volume or
public sentiment) to non-linear time series (support vector machines or neural networks).
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5
Recommender systems for job search

Job searching, also known as job hunting or job seeking, refers to the process people looking for
a job perform in order to find it. On the other hand, finding the right employee is a key aspect for
enterprises, which continuously have to recruit professionals according to their current needs.
Both tasks are sides of the same general problem, namely allowing communication between
companies and potential applicants for the sake of establishing an employment relationship.

Recommender Systems (RSs) are software tools and techniques that provide suggestions
for items that are most likely of interest to a particular user [AT05, RRS15]. The word item
refers to what is recommended, from movies to products, to jobs. The increased amount of
digital information available in the age of Big Data has changed the way companies conduct
their business, and also the way they employ candidates.

E-recruitment platforms spread in the recent years to address the challenge of recruiting
the appropriate person. Simultaneously, this has become an opportunity for job seekers, who
typically publish their profiles on job portals. Looking for a job is a tough, often tedious, task
that everyone eventually has to face. Each year, millions of persons engage in job search for
several reasons, including accidental job loss, come back to work, completion of job training, or
the desire to pursue new career opportunities. Consequently, a large volume of job postings as
well as user profiles is available online, and can be exploited to improve the matching between
candidates and jobs.

Job recommender systems aim at suggesting jobs as pertinent as possible to candidates’
profiles. The best fit may depend on aspects that are hard to measure, such as personal char-
acteristics, social skills, preference for the job location, and so on. For these reasons, studies
investigating job search behavior have recently proliferated, and many approaches have been
proposed to match candidates with jobs.

In this chapter, an overview of recruitment systems and job recommendation systems is given,
briefly describing challenges as well as research advances. Additionally, an emerging research
thread is introduced, that is Career Pathway Recommendation (CPR), whose goal is to help a
user achieving a career goal, possibly far into the future. The most convenient path towards the
goal will be suggested to the user.
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5.1 Recruitment systems

Recruitment, or recruiting, refers to the process of identifying and selecting suitable candidates for
jobs within an organization. Such a process has been extensively studied in the human resources
area [MWH94, AVdV01], and recruitment systems have been built accordingly [Lee07, ELW08],
which are used by human resources departments to select candidates fitting the profiles enterprises
are looking for.

In recent times, e-recruitment platforms have emerged to foster the recruiting process using
the increased amount of web information [TBW08], especially collected from social networks,
such as LinkedIn, Facebook, Twitter, Xing [ZESD14, Fle15]. These platforms have led job
seekers to publish their curricula on job portals. For each posted job, thousands of resumes are
received by companies; consequently, a huge volume of job descriptions and candidate resumes
are becoming available online. Curricula and profiles can be exploited by recommender systems
to match candidates with jobs using various approaches, including collaborative filtering, content-
based filtering, knowledge-based and hybrid approaches [WHF07]. However, e-recruiting
platforms are usually based on boolean search and filtering techniques that cannot sufficiently
capture the complexity of a person-job fit as selection decisions [MKWW06].

Davison et al. [DMB11] pointed out that LinkedIn provides more accurate information
compared to Facebook because everybody in a person’s network can easily contradict her
assertions. This can be among the reasons why Zide et al. [ZESD14] defined LinkedIn as the
world’s largest professional network. In addition to its reliability, LinkedIn also offers recruiter
accounts aiming to support the recruiting process, so that about 94% of recruiters use it [Kas15].
Instead, the same trend does not hold among social media job seekers, where only 40% makes
use of this network, although members are sometimes notified of possibly interesting job offers.
LinkedIn professional secrecy does not allow us a complete understanding of the techniques
used to recommend job positions. Anyway, analyzing some public profiles and the relative
recommended job positions, we noted that there are often wrongly retrieved (i.e. not interesting)
offers because of homonymy. This issue could make the job seeking process less effective, more
manually conducted and time consuming.

While some works focused on the human resource aspect of the recruitment process [Bue14,
PCG11], others proved the benefit of machine learning approaches for job placement. For
instance, Min and Emam [ME03] used rules created by a decision tree in order to manage the
recruitment of truck drivers. Buckley et al. [BMJM04] presented an automated recruitment
and screening system, showing conservative savings of 6 to 1 ratio due to reduced employee
turnover, reduced staffing costs and increased hiring process efficiency. Chi [Chi99] applied
principal component analysis to establish jobs that can adequately be performed by various types
of disabled workers. A dataset of 1,259 occupations was used, summarized in 112 different
jobs; 41 available skills were analyzed with principal component analysis, finding five principal
factors, namely occupational hazard, verbal communication education and training, visual acuity,
body agility, and manual ability. Finally, the 112 job titles were classified into 15 homogeneous
clusters, creating useful data to expand both the counselor and counselee perspectives about
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job possibilities, and job requirements through the five principal factors. Zhu et al. [ZZX+16]
used unsupervised learning techniques to discover recruitment market trends based on large-
scale recruitment data. Specifically, their sequential latent variable model is able to capture the
sequential dependencies of corporate recruitment states, and to automatically learn the latent
recruitment topics.

5.2 Job recommendation systems
Since manual searches are onerous and tedious, job recommendation systems help automating
job search, suggesting the most appropriate job to a given candidate [AOY12]. Researchers have
identified some requirements (Figure 5.1) that should be borne in mind when recommending
candidates for a given job [MKWW06, MWK08, Kei07]:

1. The matching between candidates and jobs depends on skills and abilities that individuals
should have.

2. The recommendation process is bidirectional, meaning that both the preferences of the
recruiter and of the candidate should be taken into account.

3. Recommendations should be based on the candidate attributes, as well as the relational
aspects in the working place.

Therefore, job recommendation is a bidirectional task, where the job with the highest match-
ing degree should be recommended to a job seeker, and the job seeker with the highest matching
degree should be recommended to a job. Candidates and jobs should be ranked according to
some criteria, which are supposed to affect or are related to the employee performance on the job.
Malinowski et al. [MKWW06] proposed a bilateral people-job recommender system to match
applicants with job opening profiles, assuming that both data are available. In order to perform
the matching, a supervised probabilistic model estimates the probability that an applicant likes a
job. Differently, Paparrizos et al. [PCG11] recommended job positions to applicants based only
on the job history of other employees. Starting from an individual who was currently employed
in an institution, they aimed at predicting the next institution where the individual would have
been employed. The authors relied on preceding job positions, fields of education, educational
experiences, also taking into account start and finish dates. Qin et al. [QZX+18] proposed a
neural network method to link persons and jobs. Recurrent neural network was used to build a
word-level semantic representation for both job requirements and job seekers’ experiences. In
particular, ability-aware attention strategies were designed to measure the different importance
of job requirements for semantic representation, and the different contribution of each job exper-
ience to an ability requirement was also measured. Yi et al. [YAC07] introduced a structured
relevance model to match resumes and jobs. Almalis et al. [ATK14] introduced a content-based
approach to quantify the suitability of a candidate employee for a specific job position.
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Figure 5.1: Model of system requirements for candidates/job recommendation. Source: [AOY12].

Other existing works [KR14, CBVS14] focused on the academic degree of students, aiming
to predict both their academic performance at early stage of their curricula and their placement
chance, using supervised classifiers like SVMs or neural networks. Zhang et al. [ZYN14]
designed a collaborative filtering method that takes advantage of background information such as
students’ resumes, recruiting information, and users’ applications to jobs. Rafter et al. [RBS00]
introduced an online job finder engine that uses a collaborative filtering algorithm with some
user preferences, and mined server logs of web recruitment platforms to get an appropriate user
representation. Buettner [Bue14] introduced a recommender system based on social network
information, relying on three fit measures related to candidates. The first, called organization fit,
is a macro-perspective compatibility between an employee’s personality and an organization’s
culture; the second, called group fit, focuses on a user’s social interactions; the third, called
job fit, is a micro-perspective matching between a candidate’s abilities or preferences, and job
demands. A similar goal was pursue by Gupta and Garg [GG14], who used candidate profile
matching as well as preserving their job preferences to develop a job recommender.

User profiling is one of the major flaws of job recommendation approaches, because such data
are hard to retrieve, select and handle. In general, the concept of candidate profiles is relevant
to properly estimate a candidate’s performance on jobs [SWNF12, PCG11]. Such profiles may
contain:

• Personal information about the candidate, such as name, age, gender, location.

• Information about the candidate’s job history, including details on the company as well as
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job start and finish dates.

• Information about educational experiences, including school and university names, degrees,
and possibly other details.

For the sake of building profiles, Chi [Chi99] used a set of 41 skills, falling in three major classes,
that are required education and experience, physical demands, and task environment. Hong et
al. [HZWS13] performed an user grouping in distinct clusters and different recommendation
strategies according to users’ characteristics. Other researchers [Bue14, GG14] used information
related to companies, users, user preferences and social interactions. Rubin et al. [RBB02]
showed the importance of extracurricular activities as a users’ skills indicator. Furthermore, they
pointed out that corporate recruiters and talent pool managers would benefit from a tool that
allows the systematic categorization and valuing of extracurricular and contextual activities.

While the just described job recommendation approaches use features related to the current
and past experiences, either in employment or education, in Chapter 10 a method that relies on a
candidate’s skillset will be introduced, where skillsets will be mined from LinkedIn, and used to
represent both candidates and jobs. Thanks to this homogeneous representation, this approach
will provide a prediction of the best job in relation to a user’s capabilities and knowledge.

5.3 Career pathway recommendation systems
Career Pathway Recommendation (CPR) generalizes the idea of job recommendation. Instead
of a single job only, a sequence of jobs can be recommended that identifies a career pathway
either consistent with the user’s job history or targeting a specific career goal. While job
recommendation strives to suggest the most appropriate job for a given candidate, the purpose
of CPR is to discover a pathway that leads a candidate towards her career goal, dealing with
uncertainty, e.g. about alternative career choices, the likelihood that the application to a job
succeeds, and so on.

Career pathway recommenders can be applied to use cases where job recommenders would
inherently fail. Let us say for example that a job is exactly what a candidate is looking for, but
she does not have an adequate profile to get the job. A job recommender can choose whether to
recommend the job or not. If it is able to capture that the candidate’s profile is not appropriate, it
will not recommend the job, but the candidate will never know about a job she would have been
very interested in. If it recommends the job, it will be leading the candidate towards a failure.
Consequently, the candidate might lose confidence in herself, or even stop pursuing her career
goal. On the other hand, a career pathway recommender will recommend a policy that eventually
leads the user towards her goal, minimizing the intermediate career steps while simultaneously
improving the user’s profile and increasing the likelihood that the user succeeds when applying
for her career goal. In other words, a career pathway recommender will take the career goal into
account, and will help the user finding a pathway to it rather than recommending it when the
user’s application is very likely to fail.
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Despite the fact that many approaches have been proposed for job recommendation, little
effort has been made to the problem of recommending a pathway that leads users towards a career
goal. Elayidom et al. [EIA11] proposed a decision tree based approach which helps students
choosing a good branch that may fetch them placement in either rural or urban sectors. In other
works [ASE14, RHN+14], the epithet career pathway recommendation is used with a different
meaning. The authors employed it alluding to a branch of potentially interesting jobs rather than
to a sequence of jobs aiming at achieving a final goal. Mimno and McCallum [MM08] analyzed
the text of a corpus of resumes and their job transitions to mine latent skills that make up each
job description and modeling career path trajectories. Differently from their work, where the
past job history of all users is used to learn general path trajectories, the approach that will be
presented in Chapter 11 provides a personalized recommendation for each user based on her
profile.

On the other hand, some researchers focused on factors that can affect talent career steps. Li
et al. [LGZ+17] analyzed two critical issues in talent management, namely turnover and career
progression, showing that they can effectively be predicted through a survival analysis, which
considers sequences of time intervals. Xu et al. [XYY+16] created a job transition network
where vertices stand for organizations and a directed edge represents the talent flow between
two organizations for a time period. Talent circles including the organizations with similar talent
exchange patterns may be detected from such a network, and their characteristics can be used
for talent recruitment and job recommendation. Xu et al. [XYX+15] tried to discover the job
change motivations as well as correlations between professional and daily life. The authors used
the career mobility and daily activity patterns at the individual level to assess to what extent such
data can be predictors of a job change. Xu et al. [XZZ+17] introduced a data driven approach
for modeling the popularity of skills based on the analysis of large-scale recruitment data. After
having used a large corpus of job postings to build a job skill network, they created a topic model
that integrates different criteria of jobs (e.g. salary, company size) and the latent connections
within skills to effectively rank the skills based on their popularity.

The career pathway recommendation problem can be formulated as a Markov Decision
Process (MDP) [Put14]. MDP-based systems have already been proved useful for product
recommendation [SHB05], where the goal is recommending a product given any sequence of
user purchases. In career pathway recommendation the goal is somewhat related, and the MDP
allows extracting an optimal sequence of jobs (i.e. policy) considering every possible career
evolution. Differently from product recommendation, where the recommendation of an item
increases its probability to be bought, the recommendation of a job does not affect the probability
for a user to get it.
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6
Big Data Analytics

This chapter focuses on the analytic process, putting the emphasis on what is needed to properly
perform an analysis. As the reader might expect, the focus is not only on the algorithms, but also
on Big Data mining platforms. In particular, a description of the main characteristics of such
platforms is provided, such as computational resources, storage, together with advantages and
drawbacks.

The rationale is to provide readers with some background knowledge that helps understanding
the possibilities that big data offer along with the challenges that programmers have to face when
conducting an analysis. Specifically, the large variety of platforms available makes it hard to
decide which solution fits best the current requirements. Because of this awkward choice and the
continuously changing requirements, porting algorithms to different platforms is often needed.

In order to reduce the development time of algorithms, which typically need to be rewritten
from scratch, parallel programming primitives for platform-independent algorithm implementa-
tion will be introduced in Part V.

6.1 Introduction
In the age of Big Data, the traditional data analytics may not be able to handle such large
quantities of data. The data are not only large, but also heterogeneous, composed of various
data types, and even including streaming data [R+11]. They come from sensors, devices, third
parties, Web applications, and social media, and they are typically delivered at various speeds
and frequencies.

In order to analyze such big and heterogeneous data, we can rely on advanced analytic tools
based on predictive analytics, data mining, statistics, artificial intelligence, natural language
processing, and so on. Big data analytics consists in the application of advanced analytic
techniques to very big data sets.

Big data analytics is a compelling business opportunity. Through exploratory and detailed
analysis of big data, an organization can get insights on their customers, markets, products,
operations, which can be used for business advantage. However, dealing with big heterogeneous
data and advanced analytic techniques is not trivial. In particular, two main problems should be
tackled in order to support the analytic process:
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• High performance platforms should be developed to efficiently conduct a data analysis.

• Suitable mining algorithms should be designed to get useful insights from large-scale data.

The rest of this chapter describes the characteristics of Big Data platforms as well as the
enhancements in Big Data mining algorithms.

6.2 Platforms
High performance hardware platforms are becoming increasingly important for the analysis of
big data, and choosing the right hardware/software platforms is crucial if the user’s requirements
have to be satisfied in a reasonable amount of time [SR15]. Since many platforms exist with
different characteristics, the choice of the most suitable platform requires an in-depth knowledge
of all viable alternatives.

The essential feature every platform incorporates is scalability, namely the capability to grow
and manage an increased demand in a reasonable amount of time. The big data platforms can be
divided according to the following two types of scaling:

Horizontal scaling (scale out): the workload is distributed across many independent machines
to improve the processing capability. Multiple instances of the operating system are
typically running on separate machines.

Vertical scaling (scale up): involves installing new hardware typically within a single server,
e.g. more processors, more memory and faster hardware. It usually involves a single
instance of an operating system.

Horizontal scaling increases the performance in small steps, reducing the financial investment
required to upgrade. Moreover, the system can scale out as much as needed, without any
theoretical limitation. On the other hand, software has to handle the data distribution and has
to deal with parallelism. Few software frameworks are available that can take advantage of
horizontal scaling.

Vertical scaling is very handy to set up, because managing and installing hardware within a
single machine is straightforward. Differently from horizontal scaling, most of the software can
easily take advantage of vertical scaling. However, a substantial financial investment is required
to scale up a machine. To handle future workloads, the user typically invests more than what is
required for the current processing needs. This is due to the limited space and the number of
expansion slots available in a single machine, which limit vertical scaling.

6.2.1 Horizontal scaling platforms
The most known platforms based on horizontal scaling are peer-to-peer networks [MKL+02,
SW05], Apache Hadoop [Had09] and Spark [ZCF+10].
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Peer-to-peer networks

Peer-to-peer networks are a decentralized and distributed network architecture where the nodes in
the network (i.e. peers) serve and consume resources, typically through message passing. While
broadcasting messages is cheap, the aggregation of data and results is much more expensive.

The standard communication paradigm of peer-to-peer networks is Message Passing Interface
(MPI), which has several desirable features: the ability to preserve the state of the computation;
the hierarchical master/slave paradigm to support dynamic resource allocation where the slaves
have large amounts of data to process; the barrier mechanism to synchronize processes at a
certain point of the computation. On the other hand, MPI does not include a fault tolerance
mechanism, so that a single node failure in a peer-to-peer network can cause the entire system to
shut down. Since the enforcement of fault tolerance is completely transferred to the user, MPI is
no longer widely used.

Hadoop

Hadoop is an open source framework for storing and processing large datasets using clusters
of commodity hardware. Hadoop can scale up to thousands of nodes, and it is also fault
tolerant, differently from MPI and peer-to-peer networks. The Hadoop platform contains various
components (Figure 6.1), whose most important are a distributed file system (HDFS) [B+08]
and a resource management layer (YARN) [VMD+13]. The former is used to store data across
cluster of machines while providing high availability and fault tolerance, whereas the latter
schedules the jobs across the cluster.

Figure 6.1: Hadoop Stack showing different components. Source: [SR15].

The programming model used in Hadoop is MapReduce [DG08], according to which a task
is broken into two parts, namely mappers and reducers. The former read the data from HDFS,
process them, and generate intermediate results, which are then aggregated by the latter to
generate the final output to be written to HDFS.

Some wrappers have been developed for MapReduce to foster the source code development,
including Apache Pig by Yahoo! [ORS+08] and Hive by Facebook [TSJ+09]. One of the major
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drawbacks of MapReduce is its inefficiency in running iterative algorithms, because MapReduce
is not designed for iterative processes. A few approaches have been developed to circumvent this
limitation [BHBE10, EPF08, PR12], which however introduce additional levels of complexity
in the source code.

Spark

Spark is a next generation paradigm for big data processing developed by researchers at the
University of California in Berkeley. Spark is able to perform in-memory computations, so
as to allow data to be cached in memory, eliminating the Hadoop’s disk overhead limitation
for iterative tasks. Generally, it is up to 100x faster than Hadoop MapReduce when data fit in
memory, and up to 10x faster when data reside on disk. Spark can run on Hadoop Yarn manager,
use HDFS, and support Java, Scala and Python, making it a general and versatile engine for
large-scale data processing that may run on different systems.

6.2.2 Vertical scaling platforms

The most famous vertical scaling platforms include High Performance Computing Clusters
(HPC) [B+99], Field Programmable Gate Arrays (FPGA) [BFRV12], Multicore processors
[BBL11] and Graphics Processing Unit (GPU) [OHL+08].

HPC clusters

HPC clusters, sometimes referred as supercomputers, are machines with thousands of cores.
Depending on requirements, they can have a different kind of disk organization, cache, commu-
nication mechanism, and so on. HPC clusters typically use MPI as the communication scheme,
but fault tolerance is not a big deal here due to the top quality hardware employed, which makes
failures extremely rare. Such top quality hardware is optimized for speed and throughput; as
a consequence, the initial cost of deployment is very high. HPC clusters are not as scalable as
Hadoop or Spark clusters, because the cost of scaling up such a system is much higher, but they
are still able to process terabytes of data.

FPGAs

FPGAs are specialized hardware units that are custom-built for specific applications, and can
be highly optimized for speed, e.g. orders of magnitude faster than other platforms. They are
programmed using Hardware Descriptive Language (HDL) [TM08] at a higher development
cost because of the customized hardware. In spite of being useful for a variety of real world
applications, in particular network security [CCS11], the speed of multicore processors is recently
reaching closer to that of FPGAs.
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Multicore processors

Multicore processors refer to one machine having dozens of processing cores, which typically
have shared memory but only one disk. Recently, CPUs have gained internal parallelism,
the number of cores per chip and the number of operations that a core can perform have
significantly increased, and multiple CPUs are allowed within a single machine, supporting
algorithm acceleration. The parallelism in CPUs is mainly achieved through multithreading,
where a task is broken down into threads, which are executed in parallel on different CPU cores,
sharing the same memory. A high-level support to multithreading is provided by most of the
programming languages through libraries.

GPUs

Graphics Processing Unit (GPU) is a specialized hardware designed to accelerate the creation of
images in a frame buffer intended for display output. Although GPUs were originally used just
for video and image editing, general-purpose computing on graphics processing units (GPGPU)
[ND10] has recently arisen.

A GPU has large number of processing cores, e.g. 3,000+, and has its own high throughput
DDR5 memory, which is many times faster than a DDR3 memory. A GPU usually has two
levels of parallelism: it contains multiprocessors (MPs) and within each multiprocessor there
are several streaming processors (SPs). A GPU-based program breaks down into threads that
execute on SPs, then these threads are grouped to form blocks that run on a MP. Each thread
within a block can only communicate and synchronize with other threads in the same block,
accessing a small portion of shared cache memory and a larger portion of global main memory.
Since inter-block communication is not allowed, any task needs to be broken into blocks that can
run independently of others.

Nvidia has recently launched Tesla series of GPUs for high performance computing, and
the CUDA framework to make GPU programming accessible to software programmers. Con-
sequently, GPUs have been used in the development of faster machine learning algorithms based
on the CUDA framework. Beyond the advantages, GPUs also have drawbacks. First, they have a
limited memory, not suitable to handle terabytes of data; when data exceed the size of memory,
the disk access becomes a bottleneck. Second, few algorithms are easily portable to GPUs,
because of the way in which the task is required to be broken into blocks.

CPUs vs GPUs

The processing power of GPUs is much higher than CPUs (i.e. 3,000+ processing cores with
1,000Tflops of processing power for a GPU, compared with tens of processing cores with
10Gflops of processing power for a CPU). The main drawbacks of CPUs are their limited number
of processing cores and their dependence on the system memory for data access, which is the
major bottleneck. GPU avoids this by using a DDR5 memory, much faster than a DDR3 memory
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used in a system. Moreover, in order to accelerate the data access, GPU uses a high speed cache
for each multiprocessor.

6.3 Algorithms
Along with high performance platforms that support the data analytic process, suitable mining
algorithms are also required to effectively retrieve valuable information from big data. In this
section, a brief overview is given of the main challenges involving the creation of Big Data
mining algorithms. The main challenges concerning data mining are represented by the big
data volumes, distributed data distributions, and by complex and dynamic data characteristics
[WZWD14].

In particular, distributed, heterogeneous, sparse, uncertain, incomplete, and multi-source
data are pre-processed and blended into a unique, consistent data source. After pre-processing,
complex and dynamic data are mined to get insights, which are fed back to the pre-processing
stage and are useful to refine the model and parameters. Information sharing is essential
throughout the process.

Mining methods have been adapted to Big Data scenarios in several ways, for example intro-
ducing parallel implementations of traditional knowledge discovery and data mining algorithms
[CBZ09], designing data mining mechanisms from a multi-source perspective [WZ03], and
proposing frameworks for mining high-speed data streams [DH00], which cannot effectively be
analyzed by means of static knowledge discovery methods.

Discovering knowledge from massive data typically entails heterogeneous data sources,
where data may come as streams. Differently from single-source mining methods, a multi-source
data mining mechanism should take into account all these characteristics of data coming from
multiple sources, that are large-scale, heterogeneous, and real-time.

Wu et al. [WZ03] proposed the theory of local pattern analysis, which is an alternative to
aggregating data into a single source, usually infeasible in practice due to transmission costs
and privacy concerns. Knowledge evolution is a common phenomenon in real world systems,
that are characterized by frequent changings. In the knowledge discovery process, concept
drifting aims at analyzing target concept changes as well as context changes in data streams.
According to different types of concept drifts, knowledge evolution can take forms of mutation
drift, progressive drift, and data distribution drift, based on single features, multiple features, and
streaming features [WYD+13].

6.3.1 Local learning and model fusion for multiple information sources

Big Data applications typically involve many autonomous sources with decentralized controls.
A Big Data mining system should not consider these autonomous sources separately to avoid
ending up with partial and biased models. Although the aggregation of such data sources would
be desirable, it is infeasible in practice due to transmission costs and privacy concerns. A partial
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solution to this issue is to allow information exchange among different data sources in order to
achieve a global goal.

The global mining goal can be reached with a two-step process, including local mining and
global correlation, at data, model, and knowledge levels. At the data level, each autonomous
source can compute statistics based on local data, then share the result with the other sources in
order to achieve a global view of data distribution. At the model level, each autonomous source
can analyze local data to discover local patterns, whose sharing with other sources can bring
to the synthesis of new global patterns [WZ03]. At the knowledge level, correlation between
the different local models is analyzed, so as to discover the mutual relevance between the data
sources and to create robust global decision models.

6.3.2 Mining from sparse, uncertain and incomplete data

Data sparsity is one of the major problems that affect data processing and understanding.
Generally, it is a consequence of data dimensionality, where a high number of dimensions may
bring data to have an unclear distribution. Since most mining algorithms are affected by the
so called ”curse of dimensionality” [KM11], dimensionality reduction techniques, e.g. feature
selection, feature transformation, are used to mitigate the problem.

When data are affected by errors or some source of randomness, we talk about uncertain data.
Data produced by physical devices, for instance GPS data, are inherently uncertain, because the
precision is limited due to technological constraints. The major challenge is that each object is
represented as an interval rather than as a single value, so most existing data mining algorithms
cannot directly be applied. Common solutions involve the estimation of model parameters taking
the data distributions into consideration [WZ08].

Incomplete data refers to data field values that can be missing because of the malfunction
of a sensor, a policy that allows to skip some values, some privacy constraints, and so on. Data
mining algorithms usually handle missing values by ignoring such fields, but improved models
could be produced by replacing missing values with more significant data. For this purpose, the
major approaches consist in filling entries with the most frequently observed values, or building
learning models to predict possible values for each data field, based on the observed values of a
given instance [Efr94].

6.3.3 Mining complex and dynamic data

The growth of Big Data is driven by the increase in volume of complex data, such as Web
documents, social networks, communication networks [Bir12]. Complex data offer compelling
opportunities, as witnessed for example by the considerable amount of researches that used
Twitter for sentiment analysis and stock market prediction, as discussed in Section 4.4.

Making use of complex data is challenging due to scalability issues, because each node in a
network is potentially connected with all the others. Several researchers have already faced this
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problem, for example to find communities and trace their dynamically evolving relationships
[Cen10], or to discover outliers in social networks [BMBL09].

Big Data complexity can be seen in different aspects, such as heterogeneous data types,
intrinsic semantic associations in data, and relationship networks among data. Data types are
extremely heterogeneous: apart from the traditional relational databases, also texts, hypertexts,
images, audios, videos, etc. emerge and spread out in the age of Big Data. Traditional data
models, such as key-value stores, big tables, document databases, and graph databases, are not
able to handle complexity in an efficient as well as effective way. Intrinsic semantic associations
can typically be found in texts, images, videos on the Web, whose discovery may help to improve
the performance of systems like search engines or recommendation systems. However, describing
semantic features and building association models are challenging tasks due to the heterogeneity
of big data sources. Finally, examples of relationship networks are the Web, where the pages
linking to each other via hyperlinks form a complex network, the social relationships between
persons in social networks, the sensor networks, and so on. To deal with complex relationship
networks, emerging research efforts have begun to address the issues of structure-and-evolution,
crowds-and-interaction, and information-and-communication [WZWD14].
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Part II

Algorithms and Methods for Sentiment
Analysis
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7
Markov techniques for transfer

learning and sentiment analysis

This chapter introduces novel methods to identify the sentiment orientation of text documents,
possibly reusing models learned on different domains. In particular, such approaches are able
to discover the polarity of a plain text in traditional in-domain contexts, and can automatically
handle knowledge transfer across heterogeneous domains, supporting model reuse.

All the proposed techniques rely on strong mathematical foundations, since they are based
on the well-known Markov chain theory, which is applied in a wide range of topics, such as
computer science, speech recognition, game theory, sports, physics, medicine, and so on.

7.1 Markov chain
In order for readers to properly understand the remaining of this chapter, a very short introduction
to Markov chains is given, briefly describing their working principles as well as their applications.

7.1.1 Introduction
A Markov process is a stochastic process that satisfies the Markov property, namely each state
of the process only depends on the previous one, whereas it is statistically independent of all
other states [Ser09]. A Markov chain is a type of Markov process that is characterized by a
discrete state space. More precisely, a Markov chain is a stochastic model describing a sequence
of possible events in which the probability of each event depends only on the state attained in
the previous event [Gag17]. This property is sometimes referred as memorylessness. Markov
chains can be represented by graphs, whose nodes represent the discrete state space and whose
transitions represent the probability to move from one state to another.

For example, in Figure 7.1 the transition probabilities between different weather conditions
are modeled as a Markov chain, whose states are Cloudy, Sunny and Rainy. According to the
figure, if weather is Cloudy there are a probability of 0.4 that it will become Sunny, a probability
of 0.4 that it will become Rainy, and a probability of 0.2 that it will stay Cloudy. More formally,
P(Sunny|Cloudy) = 0.4, P(Rainy|Cloudy) = 0.4, P(Cloudy|Cloudy) = 0.2. As can be noted,
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Figure 7.1: Example of transition probabilities between different weather conditions.

there is no evidence of how much time is required for transitions to occur. Time can be defined as
either discrete or continuous, but the most relevant aspect is to establish the transition probability
between subsequent time steps.

Careful readers can find further details and properties of Markov chains in [Lam12].

7.1.2 Markov theory applications

Markov chain theory has been successfully applied in several text mining contexts, such as
information retrieval, sentiment analysis, text classification.

Markov chains are particularly suitable for modeling hypertexts, which can be seen as graphs
where pages or paragraphs represent states and links represent state transitions. Such an approach
may help in information retrieval tasks, because it allows discovering the possible presence of
patterns when humans search for information in hypertexts [Qiu93], performing link prediction
and path analysis [Sar00] or, even, defining a ranking of Web pages just dealing with their
hypertext structure, regardless of information about page content [PBMW99].

Markov chains, in particular hidden Markov chains, have also been employed to build
information retrieval systems where query, document or both are expanded, then the most
relevant documents with respect to a given query are retrieved [MS94, MLS99], possibly in a
spoken document retrieval context [PLL12] or in the cross-lingual area [XW00]. Anyhow, to
fulfil these purposes, Markov chains are exploited to model term relationships. Specifically, they
are used either in a single-stage or in a multi-stage fashion, the latter just in case indirect word
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relationships need to be modeled [CNB07].
The idea of modeling word dependencies by means of Markov chains is also applied

in sentiment analysis. Indeed, hidden Markov models (HMMs) find out opinion words (i.e.
words expressing sentiment) [LHZ10], possibly trying to correlate them with particular topics
[MLW+07, JO11]. Typically, transition probabilities and output probabilities between states
are estimated by using the Baum-Welch algorithm, whereas the most likely sequence of top-
ics and related sentiments is computed through the Viterbi algorithm. The latter also fosters
Part-of-speech (POS) tagging, where Markov chain states not only model terms but also tags
[JHS09, NY03]. In fact, when a tagging is demanded for a sequence of words, the goal is to find
the most likely sequence of tags for that sequence of words.

Following works focus on text classification, where a widespread approach based on Markov
models consists in building a HMM for each different category. The idea is, for each given
document, to evaluate the probability of being generated by each HMM, finally assigning to
that document the class corresponding to the HMM maximizing such a probability [YB08,
XSH+06, VID, YB13]. Beyond directly using HMMs to perform text categorization, they can
also be exploited to model inter-cluster associations. For instance, words in documents can be
clustered for dimensionality reduction purposes, and each cluster can be mapped to a different
Markov chain state [LD13]. Another interesting application is the classification of multi-page
documents where, modeling each page as a different bag-of-words, a HMM can be exploited
to mine correlation between the documents to be classified (i.e. pages), by linking concepts in
different pages [FSV02].

7.2 A Markov method for cross-domain sentiment classifica-
tion

This section introduces a novel method inspired by Markov chain theory, specifically designed
for cross-domain sentiment classification, but also suitable for in-domain tasks. Such a method
offers a mechanism to accomplish transfer learning from a source to a target domain, dealing
with the heterogeneity of language and paving the way for effective model reusability.

7.2.1 Overview
The basic idea is to model semantic information looking at term distribution within a corpus. To
accomplish this task, the corpus of documents is represented as a graph characterized by a node
for each term and a link between each pair of co-occurring terms. In such a way, a semantic
network is molded, where information flows allowing transfer learning from source specific
terms to target specific ones. Similarly, categories are added to graph nodes in order to model
semantic information between source terms and classes.

The semantic graph is implemented by using a Markov chain, whose states represent both
terms and classes, modeling state transitions as functions of the term(-class) co-occurrences in
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documents. The terms in Markov chain belong to either the source domain or the target domain,
whereas connections with class states are available only for source terms. This mathematical
model is appropriate to spread semantic information throughout the network by performing steps
(i.e. state transitions) within the Markov chain. The simultaneous existence of terms belonging
to the source domain, terms belonging to the target domain, and categories, allows both transfer
learning and sentiment classification. The proposed approach can be split into three main stages,
namely, the text pre-processing phase, the learning phase and the classification phase. The
last two phases are the most innovative parts, since they accomplish both transfer learning and
sentiment classification by means of only one abstraction, that is, Markov chain.

For the first time, a Markov chain is used as a sentiment classifier rather than being just
employed in a support task as part-of-speech (POS) tagging. Moreover, considering categories
as Markov chain states is a novelty with reference to text classification, where the most common
approach consists in building different Markov chains (e.g. one for each category) and evaluating
the probability that a test document is being generated by each of them.

7.2.2 Text pre-processing

The first stage of the algorithm is text pre-processing. Starting from a corpus of documents
written in natural language, the goal is to transform it in a more manageable, structured format.

Initially, standard techniques are applied to the plain text, such as word tokenization, punc-
tuation removal, number removal, case folding, stopwords removal and the Porter stemming
algorithm [Por80]. It should be noted that stemming supports sentiment classification, because
words with the same morphological root are likely to be semantically similar.

The representation used for documents is the common bag-of-words, that is, a term-document
matrix where each document d is seen as a multiset (i.e. bag) of words (or terms). Let
T = {t1, t2, ..., tk}, where k is the cardinality of T , be the dictionary of terms, which typically
includes all terms in the corpus to be analyzed. In each document d, each word t is associated to
a weight wd

t , usually independent of its position inside d. More precisely, wd
t only depends on

term frequency f (t,d), that is, the number of occurrences of t in document d, and in particular,
represents relative frequency r f (t,d), which is computed as follows:

wd
t = r f (t,d) =

f (t,d)
∑

τ∈T
f (τ,d)

(7.1)

After having built the bags of words, a feature selection process is performed to tackle the
curse of dimensionality. In fact, the larger is the dataset to be analyzed the higher k tends to be.
Feature selection allows retaining only the most promising terms for the classification process.
Moreover, choosing only a small subset of terms cuts down the computational burden required
by the learning and classification phases.

Feature selection is essential, and may considerably affect the effectiveness of the whole
method. Thus, it is critical to pick out a feature set as good as possible to support the classification
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process. For this purpose, some feature selection approaches, which will be presented below, are
experimented.

Feature selection variants

The first feature selection method employed for experimentation is based on document frequency,
d f (t), defined as:

d f (t) = |{d : t ∈ d}| (7.2)

Each term with d f higher than an established threshold is selected.
The second alternative consists in selecting only the terms included in a list (i.e. an opinion

wordlist) of commonly used words to express sentiment, regardless of their frequency, their
document frequency or other aspects. Such words are just terms with well-known polarities. The
opinion wordlist used here has been proposed in [Liu12]. It contains 2,003 positive words and
4,780 negative words in plain English.

The previously presented feature selection methods are both unsupervised. Another viable
option that exploits the knowledge of class labels is described straight away. First of all, a
supervised scoring function is used in order to find the most relevant features with respect to
their ability to characterize the categories. Such a function is either information gain (IG) or
chi-square (χ2), defined as in [DMPS15]. The ranking obtained as output is used to select the
best n features as well as to change term weighting within documents. In fact, this score s(t) is a
global value, stating the relevance of a certain word t, whereas relative frequency, introduced by
Equation (7.1), is a local value that only measures the relevance of a word within a particular
document. Therefore, these values can be combined into a novel, different term weighting to be
used for the bag-of-words representation, so that the weight wd

t comes to be

wd
t = r f (t,d) · s(t) (7.3)

Thus, according to Equation (7.3), both factors (i.e. the global relevance and the local
relevance) are taken into account.

7.2.3 Learning phase

The learning phase is the second stage of the method. As in any categorization problem, the
primary goal is to learn a model from a training set, so that a test set can be classified accordingly.
Though, the mechanism should also allow transfer learning in cross-domain tasks.

The basic idea consists in modeling term co-occurrences: the more words co-occur in
documents the more their connection should be stronger. This scenario can be represented as
a graph whose nodes are words and whose edges represent the strength of their connections.
Considering a corpus of documents D = {d1,d2, ...,dN} and a dictionary T = {t1, t2, ..., tk},
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A = {ai j} is the set of connection weights between the term ti and the term t j. Each ai j can be
computed as follows:

ai j = a ji =
N

∑
d=1

wd
ti ·w

d
t j

(7.4)

The same strategy could be followed to find the polarity of a given word, unless having an
external knowledge base which states that a word is intrinsically positive, negative or neutral.
Co-occurrences between words and classes are modeled for each document whose polarity is
given. Again, a graph whose nodes are either terms or classes and whose edges represent the
strength of their connections is suitable to represent such relationships. In particular, given that
C = {c1,c2, ...,cM} is the set of categories and B = {bi j} is the set of edges between a term ti
and a class c j, the relationship between a term ti and a class c j is strengthened if ti occurs in
documents belonging to the set D j = {d ∈D : cd = c j}.

bi j = ∑
d∈D j

wd
ti (7.5)

Careful readers may have noted that the graph representing both term co-occurrences and
term-class co-occurrences can easily be interpreted as a Markov chain. Graph vertices can simply
be mapped to Markov chain nodes and graph edges can be split into two directed edges, i.e. the
edge linking states ti and t j is split into one directed edge from ti to t j and another directed edge
from t j to ti. Moreover, for each state a normalization step of all outgoing arcs is enough to
satisfy the probability unitarity property. Finally, Markov property holds because each state only
depends on directly linked states, since co-occurrences of just two terms (or a term and a class)
at a time are taken into account.

Now that the basic idea behind the method has been introduced, readers can figure out
how the learning phase is performed. A subset of common terms between source and target
domains is supposed to exist, which acts as a bridge between domain specific terms, allowing
and supporting transfer learning. Such common terms are the key to let information about classes
flow from source specific terms to target specific terms, exploiting term co-occurrences, as shown
in Figure 7.2.

It should be pointed out that the just described transfer learning process is not an additional
step to be added in cross-domain problems; on the contrary, it is implicit in the Markov chain
mechanism, and it is also performed for in-domain tasks. Obviously, if both the training set and
the test set are from the same domain, it is likely that most terms in the test documents already
have a polarity.

Apart from transfer learning, the proposed Markov chain method also fulfils the primary goal
of the learning phase, that is, building a model that can be subsequently used for the classification
phase. Markov chain can be represented as a transition matrix (MCTM), composed of four
logically distinct submatrices, as shown in Table 7.1. It is a (k+M)× (k+M) matrix, having
current states as rows and future states as columns. Each entry represents a transition probability,
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Figure 7.2: Transfer learning from movie-specific terms to kitchen appliance-specific terms
through common terms. Source: [DMPP].

which is computed differently depending on the type of current and future states (term or class),
as will be described below.

t1, ..., tk c1, ...,cM
t1, ..., tk A

′
B
′

c1, ...,cM E F

Table 7.1: The Markov chain transition matrix (MCTM) is composed of four submatrices,
representing the transition probabilities that, starting from a current state (i.e. row), a future state
(i.e. column) is reached. Both current states and future states can be either terms or classes.

Let Dtrain and Dtest be the subsets of corpus D chosen as the training set and the test set
respectively. The set A, whose entries are defined by Equation (7.4), can be rewritten as

ai j = a ji =

0, i = j

∑
d∈Dtrain∪Dtest

wd
ti ·wd

t j
, i 6= j (7.6)

and the set B, whose entries are defined by Equation (7.5), can be rewritten as

bi j = ∑
d∈D j

train

wd
ti (7.7)

where D j
train = {d ∈ Dtrain : cd = c j}. The submatrices A

′
and B

′
are the normalized forms of

Equation (7.6) and Equation (7.7), computed so that each row of Markov chain satisfies the
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probability unitarity property. Instead, each entry of the submatrices E and F looks like as
follows:

ei j = 0 (7.8)

fi j =

{
1, i = j

0, i 6= j
(7.9)

Note that E and F deal with the assumption that classes are absorbing states, which can never
be left once reached.

7.2.4 Classification phase

The last step of the algorithm is the classification phase. The aim is classifying the test set by
using the model learned in the previous step. According to the bag-of-words representation, a
document dt ∈Dtest to be classified can be expressed as follows:

dt = (wdt
t1 , ...,w

dt
tk ,c1, ...,cM) (7.10)

wdt
t1 , ...,w

dt
tk is the probability distribution representing the initial state of the Markov chain

transition matrix, whereas c1, ...,cM are trivially set to 0. The initial hypothesis is to be in many
different states (i.e. every state ti so that wdt

ti > 0) at the same time. Then, simulating a step inside
the Markov chain transition matrix, a posterior probability distribution is obtained not only over
terms, but also over classes. In such a way, estimating the posterior probability that dt belongs to
a certain class ci, the most likely label ci ∈ C could be assigned to dt . The posterior probability
distribution after one step in the transition matrix, starting from document dt , is:

d∗t = (wd∗t
t1 , ...,w

d∗t
tk ,c

∗
1, ...,c

∗
M) = dt×MCT M (7.11)

where dt is a column vector having size (k+M) and MCT M is the Markov chain transition
matrix, whose size is (k+M)× (k+M). The category that will be assigned to dt is computed as
follows:

cdt = argmax
i∈C∗

c∗i (7.12)

where C∗ = {c∗1, ...,c∗M} is the posterior probability distribution over classes.
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7.2.5 Computational complexity
The computational complexity of the method is determined by the learning phase and the
classification phase. Regarding the learning phase, the computational complexity overlaps with
the time needed to build the Markov chain transition matrix, say time(MCT M), which is

time(MCT M) = time(A)+ time(B)+

+time(A
′
+B

′
)+ time(E)+ time(F) (7.13)

Remember that A and B are the submatrices representing the state transitions having a term as
the current state. Similarly, E and F are the submatrices representing the state transitions having
a class as the current state. The expression time(A

′
+B

′
) denotes the temporal length of the

normalization step, necessary in order to observe the probability unitarity property. On the other
hand, E and F are simply a null and an identity matrix, requiring no computation. Thus, since
time complexity depends on these factors, all should be estimated.

The only assumption we can do is that in general |T |>> |C |. The time needed to compute A

is O( |T |
2

2 · (|Dtrain|+ |Dtest |)), which in turn is equal to O(|T |2 · (|Dtrain|+ |Dtest |)). Regarding
transitions from terms to classes, building the submatrix B requires O(|T | · |C | · |Dtrain|) time. In
sentiment classification problems, it can also be assumed that |D |>> |C | and, as a consequence,
the previous time becomes O(|T | · |Dtrain|). The normalization step, which has to be computed
one time only for both A and B, is O(|T | ·(|T |+ |C |)+ |T |+ |C |)=O((|T |+1) ·(|T |+ |C |)),
which can be written as O(|T |2) given that |T |>> |C |. Furthermore, building the submatrix E
requires O(|T |2) time, whereas for submatrix F O(|T | · |C |) time is needed, which again can
be written as O(|T |) given that |T |>> |C |. Therefore, the overall complexity of the learning
phase is

time(MCT M)' time(A) =

= O(|T |2 · (|Dtrain|+ |Dtest |)) (7.14)

In the classification phase, two operations are performed for each document to be categor-
ized: the matrix product in Equation (7.11), which requires time(MatProd), and the maximum
computation in Equation (7.12), which requires time(Max). Hence, as can be seen below

time(CLASS) = time(MatProd)+ time(Max) (7.15)

the classification phase requires a time that depends on the previous mentioned factors. The mat-
rix product can be computed in O((|T |+ |C |)2 · |Dtest |) time, which can be written as O(|T |2 ·
|Dtest |) given that |T |>> |C |. On the other hand, the maximum requires O(|C | · |Dtest |) time.
Since the assumption that |T |>> |C | still holds, the complexity of the classification phase can
be approximated by the calculus of the matrix product.
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Lastly, the overall complexity of the algorithm, say time(Algorithm), is as follows:

time(Algorithm) = time(MCT M)+ time(CLASS)'
' time(MCT M) = O(|T |2 · (|Dtrain|+ |Dtest |)) (7.16)

7.2.6 Experimental setup
The Markov chain method has been implemented in a framework entirely written in Java. The
algorithm performance has been compared with Spectral feature alignment (SFA) by Pan et
al. [PNS+10] and Joint sentiment-topic model with polarity-bearing topics (PBT) by He et al.
[HLA11]. Pan et al. advanced a spectral feature alignment algorithm which aims to align words
belonging to different domains into same clusters, by means of domain-independent terms. These
clusters form a latent space which can be used to improve the sentiment classification accuracy
on a target domain. He et al. extended the joint sentiment-topic model by adding prior words
sentiment, thanks to the modification of the topic-word Dirichlet priors. Feature and document
expansions are performed through adding polarity-bearing topics to align domains.

A common benchmark corpus is used in order to compare results, namely, a collection of
Amazon reviews about Book (B), DVD (D), and Electronics (E). Each domain contains 1,000
positive and 1,000 negative reviews written in plain English. The text pre-processing phase
described in Section 7.2.2 is applied to convert plain text into a bag-of-words. Then, before
the learning phase and the classification phase introduced in Section 7.2.3 and Section 7.2.4
respectively, a feature selection is performed in accordance with one of the alternatives presented
in Section 7.2.2. The goodness of results is measured by means of accuracy, averaged on 10
different source-target splits.

The approaches that will be compared below only differ in the applied feature selection
method: document frequency, the opinion wordlist and the supervised feature selection technique
with term ranking in Markov chain. Performance with every feature selection method is shown
and compared with the state of the art.

7.2.7 Markov chain performance with different feature selection methods
In the first experiment, as shown in Figure 7.3, the only parameter to be set is the minimum
document frequency d f that a term must have in order to be selected. In other words, setting the
minimum d f to n means that terms occurring in less than n documents are ruled out from the
analysis. This parameter has been varied from 25 to 100 with step length equal to 25. Each line
in Figure 7.3 represents the trend for a specific source-target couple, namely, B→ D, D→ B, B
→ E, E→ B, D→ E, E→ D. An extra line showing the average accuracy is also shown.

The accuracy decreases on average when the minimum document frequency increases. This
outcome is probably due to the fact that document frequency is an unsupervised measure;
therefore, considering smaller feature sets (i.e. higher d f values) turns out not to be effective for
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Figure 7.3: Cross-domain classification by varying the minimum d f to be used for feature
selection. Source: [DMPP15].
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the classification of target documents. Unsupervised methods do not guarantee that the selected
features help to discriminate among categories and, as such, a bigger dictionary could support
the learning phase. Moreover, accuracy is lower anytime E is considered, supposedly because
E is a completely different domain with respect to B and D, which instead have more words in
common. The selection of the best feature set possible is really important in order to support
knowledge transfer across domains.

An alternative to unsupervised methods consists in using as a dictionary the wordlist created
by Bing Liu. No parameter needs to be tuned in this case, but Porter stemmer has to be applied
to the wordlist so that the terms within documents match those in the wordlist. Comparing the
algorithm performance when using opinion words as features with that achieved using terms
having a minimum d f = 25 (Figure 7.4), readers can note that the former outperforms the latter
on average. This outcome suggests that transfer learning is fostered by features having stronger
sentiment orientations. In such a case, the algorithm achieves better performance.

The wordlist by Bing Liu only contains opinion words, that are general terms with predefined
polarities. Nevertheless, there may be other words, possibly domain-dependent, fostering the
classification process. For this purpose, supervised techniques can be exploited to select the
features to be used as a dictionary. It should be remarked that, to enhance the transfer learning
capability of the method, information about sentiment should flow from source to target terms.

With reference to supervised feature selection techniques, two experiments are presented: in
the former (Figure 7.5), features are selected by means of chi-squared (χ2), varying the number
of selected features from 250 to 1,000 with step length 250; in the latter (Figure 7.4), the two
supervised feature selection techniques mentioned in Section 7.2.2 are compared. Figure 7.5
reveals that there is no relevant variation on average by increasing the number of features. On
one hand, this means that 250 words are enough to effectively represent the source-target couple,
reminding that these are the best features according to the supervised method used. On the other
hand, this proves that the Markov-based algorithm produces stable results by varying the number
of features to be selected.

Figure 7.4 shows that the usage of a supervised feature selection technique is better on
average than selecting just well-known opinion words. This outcome confirms the ability of
the Markov chain method in performing transfer learning. Furthermore, the same configuration,
where 250 features are selected by using χ2 scoring function, also achieves better accuracy than
using IG for feature selection (Figure 7.4). Summing up, the Markov chain method achieves
its best performance on the Amazon corpus by selecting the best 250 features by means of χ2

scoring function.

7.2.8 Comparison with the state of the art

Table 7.2 shows a comparison between the Markov chain method, referred as MC, Spectral feature
alignment [PNS+10] and Joint sentiment-topic model with polarity-bearing topics [HLA11],
namely SFA and PBT. The accuracy is comparable, despite both SFA and PBT perform better on
average. On the other hand, it deserves to be noted that MC only requires 250 features, whereas
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Figure 7.4: Cross-domain classification by comparing some feature selection methods, such as
the unsupervised minimum document frequency d f , the opinion wordlist by Bing Liu, and the
supervised information gain IG and chi-square χ2 scoring functions. A minimum d f = 25 is set
regarding the unsupervised method. Instead, the best 250 features are selected in accordance
with the supervised scoring functions. Source: [DMPP15].
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Figure 7.5: Cross-domain classification by varying the number of features to be selected in a
supervised way. χ2 scoring function is used in order to select features. Source: [DMPP15].

64



CHAPTER 7. MARKOV TECHNIQUES FOR TRANSFER LEARNING AND SENTIMENT
ANALYSIS 65

PBT needs 2,000 features and SFA more than 470,000, the size of datasets being equal. Since
the computational complexity of all approaches quadratically grows with the number of features,
the convergence of the proposed algorithm is supposed to be faster, although this hypothesis
cannot be proved unless the other methods will be implemented.

Similar considerations can be done for in-domain tasks, as can be seen in Table 7.3. Readers
should note that nothing needs to be changed in the Markov chain method to perform an in-
domain sentiment classification, whereas other works use traditional classifiers completely
bypassing the transfer learning phase.

Domain(s) MC SFA PBT
B→ D 76.92% 81.50% 81.00%
D→ B 78.79% 78.00% 79.00%
B→ E 74.80% 72.50% 78.00%
E→ B 71.65% 75.00% 73.50%
D→ E 79.21% 77.00% 79.00%
E→ D 73.91% 77.50% 76.00%

Average 75.88% 76.92% 77.75%

Table 7.2: Cross-domain sentiment classification results, compared with other works.

Domain(s) MC SFA PBT
B→ B 76.77% 81.40% 79.96%
D→ D 83.50% 82.55% 81.32%
E→ E 80.90% 84.60% 83.61%

Average 80.39% 82.85% 81.63%

Table 7.3: In-domain sentiment classification results, compared with other works.

7.3 Variants of the Markov chain method
This section illustrates two variants of the method based on Markov chain theory described in
Section 7.2.

The first modification considers documents as aggregates of sentences rather than as a whole
block. The idea is that sentences are not guaranteed to bear the same sentiment orientation
of the document within they are. Thus, classification can be performed sentence by sentence,
then results can be combined in order to assign the final label to the document. The second
modification aims at classifying the sentiment orientation of documents through polarity-bearing
terms, which are those that contribute the most to the classification process. The idea is that a
state transition is a function of the terms capability of predicting categories, whereas according
to the method introduced in Section 7.2, they are only proportional to the semantic relationships
between terms.
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7.3.1 Document splitting into sentences
The first variant that will be illustrated considers the granularity of sentences rather than whole
documents. The rationale is that documents can be composed of many sentences, possibly
characterized by different sentiment orientations. It is not seldom to encounter documents
expressing positive/negative opinions about a list of aspects, then ending with an overall opposite
sentiment summarized in few words. Examples of the underlying behavior are ”My car’s steering
wheel always vibrates because of [. . . ] the seat is not so comfortable [. . . ] but in general I like
my car.” or even ”I read that book. Characters are well described, their psychological profile
is meticulously portrayed. However, the plot is definitely boring and I always fall asleep while
reading!”

During the text pre-processing phase, documents are split into sentences using the set of
characters Tok = {., ;, !,?} as tokenizers. During this process, some exceptions may occur that
can invalidate the splitting. Only the most straightforward cases have been handled, like for
example Ph.D., Dr., websites and emails. Anyway readers should be aware that, depending on
the training set, many nontrivial cases might negatively affect the splitting.

According to this method variant, co-occurrences between terms are no longer to be evaluated
within the same document, but within the same sentence. More formally, considering each
document dz as a set of sentences dz = {pz

1, pz
2, . . . , pz

h}, Equation (7.4) can be rewritten as
follows:

ai j = a ji = ∑
d∈D

∑
p∈d

wp
ti ·w

p
t j (7.17)

Consequently, Equation (7.6) becomes

ai j = a ji =

0, i = j

∑
d∈Dtrain∪Dtest

∑
p∈d

wp
ti ·w

p
t j , i 6= j (7.18)

Similarly, the transition from a term to a class in Equation (7.5) can be rewritten as

bi j = ∑
d∈D

∑
p j∈d

wp j

ti (7.19)

where p j = {pt ∈ d : cpt = c j}. Likewise, Equation (7.7) comes to be

bi j = ∑
d∈Dtrain

∑
p j∈d

wp j

ti (7.20)

In the classification phase, Equation (7.11) and Equation (7.12) have been modified in order
to label the single sentences inside a document rather than the document itself:

p∗t = (wp∗t
t1 , . . . ,w

p∗t
tk ,c

∗
1, . . . ,c

∗
M) = pt×MCT M (7.21)
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cpt = argmax
i∈C∗

c∗i (7.22)

where pt is a column vector having size (k+M).
The output labels for each sentence are finally combined by voting in order to obtain the final

category for the document to be classified:

cd = argmax
i∈C

|cd
i | (7.23)

where |cd
i | = |{pt ∈ d : cpt = ci}|. The computational complexity is now a function of the

cardinality of sentences in the corpus, rather than of the documents cardinality as in the basic
method.

7.3.2 Polarity-driven state transitions

A second alternative, orthogonal to the previous one, has been developed to establish how much
a term should be linked with the others and with classes. For this purpose, it should be taken
into account that the probability the current state has at time t will be redistributed to other
states at time t +1. Such redistribution takes place based on co-occurrences so far, as stated by
Equation (7.6) and Equation (7.7).

Although it apparently is reasonable, this mechanism is not effective enough because the
capability of states to discriminate among categories is completely overlooked during state
transitions. Issues may occur for such a reason. For instance, if the current state is not well
polarized, not only it will not be able to distinguish among classes, but it will likely be connected
to terms having conflicting sentiment. Moreover, if a term semantically related to the current
state is not well polarized, it should not be selected as a future state because it will not be useful
for classification.

In order to solve these issues, the focus should be on what occurs during state transitions.
The intuition is that the more the current state is capable to discriminate among categories (i.e. it
is a polarity-bearing term) the more its probability will be distributed to classes. The remaining
part will be allotted among the other terms, proportionally not only to the semantic relationship
between the current state and the future state, but also to the capability of the latter to distinguish
among classes. No further expedient is required to fulfil this double goal, other than Markov
chain. In fact, the capability fi of a term ti to discriminate among categories can be defined as:

fi =
|bi+−bi−|
bi++bi−

(7.24)

where 0≤ fi≤ 1, whereas bi j has been defined by Equation (7.7). In other words, fi is the portion
of probability that ti will redistribute to classes in a proportional way to the values computed
by Equation (7.7). This means that the polarity-bearing terms are those that contribute the most

67



68
CHAPTER 7. MARKOV TECHNIQUES FOR TRANSFER LEARNING AND SENTIMENT

ANALYSIS

to the classification process. The remaining (1− fi) will be split among terms according to the
following relation:

ai j =

0, i = j

f j · ∑
d∈Dtrain∪Dtest

wd
ti ·wd

t j
, i 6= j (7.25)

Note that the transition probability depends not only on the semantic relationship among
terms, but also on the capability of the destination term to detect categories.

It deserves to be reminded that, according to Equation (7.10), when classifying a document
dt the initial state of Markov chain is represented by wdt

t1 , . . . ,w
dt
tk . Each weight wti has to

be multiplied by fi as well, since only the polarity-bearing terms should drive the sentiment
classification, spreading their probability during Markov chain state transitions. The overall
computational complexity is aligned with the basic approach shown in Section 7.2.5.

7.3.3 Analysis and results
The performance of all variants is assessed and compared with the state of the art. The text
pre-processing phase described in Section 7.2.2 is applied to convert plain text into the bag-of-
words representation, possibly splitting documents into sentences when dealing with the variant
introduced in Section 7.3.1. Before the learning and classification phases, feature selection is
performed by means of χ2, which turned out to be the best performing technique for this purpose,
as shown in Figure 7.4.

From now on, MCS will be used for the Markov chain variant characterized by splitting doc-
uments into sentences, MCP for the polarity-driven transitions one, MCSP for their combination,
whereas MCB will stand for the basic approach.

In order to compare performance with MCB, the experiment that led to the best accuracy has
been replicated. Therefore, the training set is composed of 1,600 documents and the test set of
400 documents. The best 250 features are selected during text pre-processing by means of χ2

scoring function. The goodness of results is measured by means of accuracy, averaged on 10
random source-target splits, and evaluated for each particular source-target combination, namely
B→ D, D→ B, B→ E, E→ B, D→ E, E→ D, even including in-domain configurations, such
as B→ B, D→ D, E→ E.

As can be noted in Figure 7.6, both the variants relying on sentence splitting (i.e. MCS and
MCSP) do not perform well. The reason for this outcome is to be found in the learning phase,
where the polarity of each sentence should be taken into account, as stated by Equation (7.19).
However, only the sentiment orientation of the whole document is available in the Amazon
corpus, whereas the polarity at the sentence level is not available. Each sentence in a training
document was supposed to have the same sentiment of the document itself. This is a strong
assumption, definitely false in general. Such an assumption may lead to wrongly consider the
sentiment at the term level and, as a consequence, to bad performance.
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Figure 7.6: Cross-domain classification by comparing all the proposed Markov chain variants.
The best 250 features are selected in accordance with the score output by χ2. Source: [DMPP].

A qualitative comparison between MCP and MCB can be seen in Figure 7.7. The reported
examples show that polarity-driven state transitions could be helpful for the classification process
when there are some polarity-bearing terms within the document to be classified. In such cases,
the MCP classifier is much more confident with its prediction than MCB. This could also bring
(as in example B) to correctly predict test instances failed by the basic classifier.

Although MCP is able to take advantage of polarity-bearing terms, its accuracy does not
outperform that of MCB. This outcome could be explained considering that there is no constraint
that forces terms to redistribute their probability to others having the same sentiment. A document
that does not contain most terms bearing its own polarity is likely to be misclassified because,
although terms are semantically related, they separately contribute to classification. This happens
for example when a positive/negative document expresses opposite opinions about some aspects
before summarizing in few words its overall polarity. The classification phase initially assumes
to be in different states at the same time, corresponding to the terms within the document. Then,
each state evolves step by step independently of the others; state evolution is only determined by
the semantic relationships between terms, learned when training the model. Context is neglected
during classification.

Table 7.4 shows a comparison between the Markov chain based methods and other works,
namely SFA and PBT. Whereas MCS and MCSP are far away from the state of the art, MCB and
MCP achieve comparable results, despite both SFA and PBT perform better on average. On the
other side, it should be reminded that the proposed algorithms require much fewer features than
the others, i.e. 250 with respect to the 2,000 needed by PBT and the more than 470,000 needed
by SFA, the size of datasets being equal. Therefore, since the computational complexity of all
techniques quadratically grows with the number of features, the convergence of both MCB and
MCP is supposed to be dramatically faster than that of SFA and PBT. This makes the proposed
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Figure 7.7: Two examples of documents (A and B), represented as selected features with
associated weights, classified by using either MCB or MCP. Each of the rightmost boxes only
shows the 5 terms with the highest weights after the transition. Source: [DMPP].
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algorithms suitable for big data scenarios.
Lastly, similar considerations can be done for in-domain tasks. Nothing needs to be changed

in order to perform in-domain sentiment classification, whereas other works use standard
classifiers completely bypassing the transfer learning phase.

Other methods Markov chain method variants
Domain(s) SFA PBT MCS MCSP MCB MCP

Cross-domain experiments (source→ target)
B→ D 81.50% 81.00% 73.21% 70.92% 76.92% 77.95%
D→ B 78.00% 79.00% 72.91% 73.67% 78.79% 77.27%
B→ E 72.50% 78.00% 66.24% 64.45% 74.80% 72.68%
E→ B 75.00% 73.50% 65.56% 63.52% 71.65% 71.13%
D→ E 77.00% 79.00% 70.54% 70.28% 79.21% 76.58%
E→ D 77.50% 76.00% 65.15% 57.32% 73.91% 74.68%

Average 76.92% 77.75% 68.94% 66.69% 75.88% 75.05%
In-domain experiments

B→ B 81.40% 79.96% 73.72% 72.45% 76.77% 77.78%
D→ D 82.55% 81.32% 78.34% 79.60% 83.50% 82.49%
E→ E 84.60% 83.61% 77.78% 78.54% 80.90% 79.55%

Average 82.85% 81.63% 76.61% 76.86% 80.39% 79.94%

Table 7.4: In-domain and cross-domain sentiment classification performance of all the Markov
chain based methods, compared with other works.

7.4 Final remarks
In this chapter, we have introduced some techniques based on Markov theory to perform both
sentiment classification and transfer learning in cross-domain tasks. The basic algorithm aims at
building a Markov chain transition matrix, whose states represent either terms or classes, and
whose transitions depend on term co-occurrences in documents. A first variant is proposed that
aims at considering the granularity of sentences rather than perceiving documents as a whole. A
second modification affects the classification process, so that it can be driven by polarity-bearing
terms.

Experiments on a common benchmark corpus show that the proposed algorithm achieves
performance comparable with the state of the art with respect to both in-domain and cross-domain
sentiment classification. Also, the introduced techniques require less parameters to be tuned.
Finally, in spite of having a comparable computational complexity, which quadratically grows
with the number of features, much fewer terms are required to achieve good accuracy. The last
two characteristics mentioned make our Markov-based techniques suitable for the analysis of
big datasets.
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8
Deep methods to enhance text

understanding in big dataset analysis

Traditional transfer learning techniques are not appropriate for the analysis of large datasets.
In spite of their good performance with small size data, they do not scale properly with the
cardinality of datasets, principally due to computational complexity and high-dimensional text
representation.

In this chapter, an analysis of distributed text representation methods is performed, explaining
how they improve text understanding and discussing their impact on transfer learning. Another
deep learning progress is then examined, namely memory-based deep neural networks, showing
that some deep architectures are automatically able to store and preserve relevant information
in memory through time. This capability makes memory-based deep neural networks very
appropriate for both in-domain and cross-domain sentiment classification. Finally, we show how
such recent deep learning advances can be combined to have a breakthrough in cross-domain
sentiment classification.

8.1 Deep learning
Before focusing on distributed text representations and memory-based deep neural networks, we
make a brief introduction of deep learning, explaining its general characteristics, and discussing
its impact on sentiment classification.

8.1.1 Overview
Conventional machine learning techniques have been applied to a large variety of tasks, including
the identification of object in images, speech-to-text translation, information retrieval, matching
problems, and so on. However, traditional approaches have a limited ability to process raw data.
To deal with this problem, the approach used for a long time was to design a feature extractor able
to map raw data into a more suitable representation. This is effective, but has some drawbacks:
first, a feature extractor needs to be carefully engineered; and second, domain expertise is needed
in order to design it correctly.
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Figure 8.1: A general deep learning architecture.

An alternative approach is representation learning, whose goal is the automatic discovery of
a suitable representation from raw data. Deep learning techniques are representation learning
methods with multiple levels of representation, as can be seen in Figure 8.1. Each layer is
obtained by composing different modules, which generally involve the application of simple
functions. Very often these functions are non-linear, like for example the hyperbolic tangent or
the sigmoid function. Each module transforms the representation at one level into a representation
at a higher, more abstract level. The layers of deep neural networks are typically trained without
supervision, which is generally added just in the upper layer of the network. This brings to robust
data representations, independent of the task.

Basically, deep architectures are able to learn complex functions by composing simpler
functions, extracting intricate structures and patterns in high-dimensional data. There is no
need for feature engineering, because a suitable data representation is automatically learned.
Moreover, deep architectures are scalable in terms of data, because larger amount of data brings
to better representations, and they are less affected by the curse of dimensionality.
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8.1.2 The impact on sentiment classification

Thanks to such advantages, deep learning is recently having a great impact on several research
areas, such as image recognition and classification, speech processing and recognition, visual
object detection, video, audio, natural language processing, machine translation, drug discovery
and genomics [LBH15]. Here we only focus on sentiment classification, but careful readers can
find further details in [LBH15, B+09, GBCB16, Sch15].

Deep learning brought to a dramatic improvement in sentiment classification. Socher et al.
[SPW+13] introduced Recursive Neural Tensor Networks to foster single sentence sentiment
classification. Apart from the high accuracy achieved in classification, these networks are able
to capture sentiment negations in sentences due to their recursive structure. Dos Santos et al.
[dSG14] proposed a Deep Convolutional Neural Network that jointly uses character-level, word-
level and sentence-level representations to perform sentiment analysis of short texts. Kumar et
al. [KIO+16] presented Dynamic Memory Network (DMN), a neural network architecture that
processes input sequences and questions, forms episodic memories, and generates relevant an-
swers. The ability of DMNs to naturally capture position and temporality allows this architecture
achieving the state-of-the-art performance in single sentence sentiment classification over the
Stanford Sentiment Treebank proposed in [SPW+13]. Tang et al. [TQL15] introduced Gated
Recurrent Neural Networks to learn vector-based document representation, showing that the
underlying model outperforms the standard Recurrent Neural Networks in document modeling
for sentiment classification. Zhang and LeCun [ZL15a] applied temporal convolutional networks
to large-scale data sets, showing that they can perform well without the knowledge of words
or any other syntactic or semantic structures. Wang et al. [WJL16] combined Convolutional
Neural Networks (CNN) and Recurrent Neural Networks (RNN) for sentiment analysis of short
texts, taking advantage of the coarse-grained local features generated by CNN and long-distance
dependencies learned via RNN. Chen et al. [CXH+16] proposed a three-steps approach to learn
a sentiment classifier for product reviews. First, they learned a distributed representation of each
review by a one-dimensional CNN. Then, they employed a RNN with gated recurrent units to
learn distributed representations of users and products. Finally, they learned a sentiment classifier
from user, product and review representations.

Despite the recent success of deep learning in in-domain sentiment classification tasks, few
attempts have been made in cross-domain problems. Glorot et al. [GBB11] used Stacked
Denoising Autoencoder introduced in [VLL+10] to extract domain-independent features in an
unsupervised fashion, which can help transferring the knowledge extracted from a source domain
to a target domain. However, they relied only on the most frequent 5,000 terms of the vocabulary
for computational reasons. Although this constraint is often acceptable with small or medium
data sets, it could be a strong limitation in big data scenarios, where very large data sets are
required to be analyzed.
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8.2 Distributed text representation for transfer learning and
cross-domain

As already shown in Section 3.2.3, many transfer learning approaches have been proposed to
bridge the semantic gap between heterogeneous domains. Unfortunately, non-deep transfer
learning solutions have several drawbacks. First of all, they require complex human engineering,
for instance to identify polarity-bearing terms, to identify common terms that act as a bridge
between source and target, and to find the best way for knowledge transfer. A second limitation
is that they are generally based on bag-of-words representations. Bag-of-words intrinsically
loses the ordering of the words and, as a consequence, fails to capture semantics. Moreover,
bag-of-words is affected by the curse of dimensionality, because every term becomes a feature
of the model. Some transfer learning techniques rely on external knowledge bases, but often
they are not enough to align heterogeneous domains. Finally, one of the biggest problems is
that non-deep transfer learning methods require many parameters to be tuned, because the best
values for a given dataset often are not equally good for a different dataset. This is not only an
issue related to time complexity, but actually when data are unlabeled there is no way to perform
tuning and find optimal values.

On the other hand, there are several reasons why deep learning might help transfer learning.
Since deep learning is a special case of representation learning, a suitable text representation can
automatically be discovered from data. Deep methods are generally based on distributed word
representations, which are able to preserve word ordering and to capture word semantics without
supervision. In distributed word representations, terms are mapped into a low-dimensional space.
This improves scalability and paves the way for the use of large-scale data, essential in big data
scenarios.

Supported by these considerations, this section analyzes the impact of distributed text
representations on the alignment of heterogeneous domains. In particular, we investigate if, and
to what extent, deep learning algorithms can automatically bridge the inter-domain semantic gap
typical of cross-domain sentiment classification, strengthened by their ability to learn syntactic
as well as possibly hidden relationships in text. This investigation is also sustained by several
works [LM14, SPW+13, TQL15, ZL15a], which pointed out the ability of deep approaches to
learn semantic-bearing word representations, typically without supervision and independently of
domains.

To assess the potentiality of deep learning in cross-domain sentiment classification, two
approaches are compared: the Markov chain method introduced in Chapter 7, and paragraph
vectors for distributed representations of sentences and documents [LM14]. As discussed in
Chapter 7, the Markov chain approach is tailored to cross-domain sentiment classification,
where it has achieved performance comparable with the state-of-the-art on some benchmark
text sets. Paragraph vector is a well-known unsupervised deep learning method that is able to
map words into a vector space wherein semantics arises, that is, similar words are closer than
unrelated ones. Although paragraph vector has not been designed for cross-domain sentiment
classification and does not provide a transfer learning phase, its ability to learn semantic-bearing
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word representations might help bridging the inter-domain semantic gap.
To assess such an idea, in-domain experiments are firstly performed, so as to have a baseline

for cross-domain analysis. Then, the ability of both approaches to transfer knowledge across
heterogeneous domains is evaluated and discussed.

8.2.1 Methods

Here the main features of the two techniques are described, pointing out the characteristics that
may foster cross-domain sentiment classification.

Paragraph vector

Paragraph vector is an unsupervised deep learning method that aims at solving the weaknesses
of bag-of-words models. Alike bag-of-words, paragraph vector learns fixed-length feature
representation from variable-length pieces of texts, such as sentences, paragraphs, and documents.
However, bag-of-words features lose the ordering of the words and, as a consequence, they fail
to capture semantics. For example, good, robust and town are equally distant in the feature space,
despite the fact that good should be closer to robust than town from a semantic point of view.
The same issues occur to the bag-of-n-grams model. In spite of considering the word ordering in
short contexts, it suffers from data sparsity and high dimensionality.

On the other hand, paragraph vector intrinsically handles the word order representing each
document by a dense vector, which is trained to predict words in the document itself. More
precisely, the paragraph vector is concatenated with some word vectors from the same document
to predict the following word in the given context. The paragraph token can be thought of as
another word that acts as a memory, remembering what is missing from the current context. For
this reason, this model, represented in Figure 8.2, is called the Distributed Memory Model of
Paragraph Vector (PV-DM). Another way to learn the paragraph vector is to ignore the context
words in input, forcing the model to predict words randomly sampled from the paragraph. At
each iteration of the stochastic gradient descent, a text window is sampled, then a random word
is sampled from the text window and a classification task is formed given the paragraph vector.
This version of the paragraph vector, shown in Figure 8.3, is called the Distributed Bag of Words
version of Paragraph Vector (PV-DBOW). Both word vectors and paragraph vectors are trained
by means of the stochastic gradient descent and backpropagation [RHW86].

Sentiment classification requires sequential data to be handled, because the document se-
mantics is typically affected by the word order. Paragraph vector has been shown to learn a
vector representation for such sequential data, becoming a candidate technique for sentiment
classification. Readers should remember that paragraph vector learns fixed-length feature repres-
entation from variable-length pieces of texts, dealing with any kind of plain text, from sentences
to paragraphs, to whole documents. Though, this aspect is just as relevant as knowing how
many of these features are actually required to learn accurate models. Feature vectors have
dimensions in the order of hundreds, much less than bag-of-words representations, where every
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Figure 8.2: A framework to learn the Distributed Memory Model of Paragraph Vector (PV-DM).
With respect to word vectors, an additional paragraph token is mapped to a vector via matrix D.
In such a model, the concatenation or average of this vector with a context of three words is used
to predict the fourth word. The paragraph vector represents the missing information from the
current context and can act as a memory of the topic of the paragraph. Source: [LM14].

Figure 8.3: Distributed Bag of Words version of Paragraph Vector (PV-DBOW), where the
paragraph vector is trained to predict the words in a small window. Source: [LM14].
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term becomes a feature of the model. The consequence is that either bag-of-words models cannot
be used to represent very large data sets due to the huge number of features or a feature selection
is needed to reduce dimensionality. Feature selection entails information loss, beyond requiring
a tuning phase to choose the right number of features. The fact that paragraph vector is not
affected by the curse of dimensionality suggests that the underlying method is not only scalable
with large data sets, but also it entirely preserves information by increasing the data set size.

In [LM14], paragraph vector has been shown to achieve brilliant in-domain sentiment
classification results, but no cross-domain experiment has been conducted. Nevertheless, some
characteristics of paragraph vector make it suitable for cross-domain sentiment classification,
where the language is usually heterogeneous across domains. Paragraph vector is very powerful
in modeling syntactic as well as hidden relationships in plain text without any kind of supervision.
Words are mapped to positions in a vector space wherein the distance between vectors is closely
related to their semantic similarity. The capability of extracting both word semantics and
relationships in an unsupervised fashion makes it interesting to test whether paragraph vector is
able to automatically handle transfer learning. For this purpose, a comparison with the Markov
chain method will be shown later on in Section 8.2.2.

As described in [LM14], in order to use the available labeled data, each subphrase is treated
as an independent sentence and the representations for all the subphrases in the training set are
learned. After learning vector representations for the training sentences and their subphrases,
they are fed to a logistic regression to learn a predictor of the sentiment orientation. At the test
time, the vector representation for each word is frozen, and the representations for sentences
are learned using the stochastic gradient descent. Once the vector representations for the test
sentences are learned, they are fed through the logistic regression to predict the final label.

Markov chain

Alike paragraph vector, the Markov chain can handle sentences, paragraphs and documents, but it
is much more affected by the curse of dimensionality, because it is based on a dense bag-of-words
model. Feature selection is often advisable to mitigate this issue, or even necessary with very
large data sets, typically containing million or billion words. Only the k most significant terms
according to a given scoring function are kept.

Readers should recall the basic idea of the Markov chain approach, that consists in modeling
term co-occurrences: the more terms co-occur in documents the more their connection are
stronger. The same strategy could be followed to model the polarity of a given term: the more
terms are contained in positive/negative documents the more they tend to be positive/negative.
Following this idea, terms and classes are represented as states of a Markov chain, whereas
term-term and term-class relationships are modelled as transitions between these states.

Thanks to this representation, the Markov chain introduced in Section 7.2 is able to perform
both sentiment classification and transfer learning. On one hand, it can be used as a classifier
because classes are reachable from terms at each Markov chain state transition, since each edge
models a term-class relationship. On the other hand, it assumes that there exists a subset of
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common terms between the source and target domains that act as a bridge between domain
specific terms, allowing and supporting transfer learning. Dealing with such an assumption, at
each state transition in the Markov chain, sentiment information can flow from source-specific
to target-specific terms passing through a layer of shared terms (Figure 7.2). Actually, the
classification process usually works in the opposite direction, i.e. from target-specific to source-
specific terms, and goes on while the class states are eventually reached.

For instance, say that a review from the target domain only contains target-specific terms.
None of these terms is connected to the classes, but they are connected to some terms within the
shared terms, which in turn are connected to some source-specific terms. Both the shared and
source-specific terms are connected to the classes. Therefore, starting from some target-specific
terms, first the Markov chain performs transfer learning and then sentiment classification. It
should be remarked that the transfer learning mechanism is not an additional step to be added in
cross-domain tasks; on the contrary, it is intrinsic to the Markov chain algorithm.

Careful readers can find further details on the Markov chain method in Chapter 7, and on
paragraph vectors in [LM14].

8.2.2 Experimental setup
Some experiments have been performed to show whether outstanding unsupervised techniques
as the paragraph vector are suitable for cross-domain sentiment classification, despite no explicit
mechanism to manage transfer learning. Also, the underlying investigation gives users insights
into the awkward choice of the most suitable algorithm for a given problem, with reference to
the amount of data available for training.

While the Markov chain (MC) method has been implemented in a custom Java-based
framework, for paragraph Vector (PV) gensim [RS10] has been used, a Python-based open
sourced and freely available framework.1 In particular, tests have been performed by using 0.12.4
gensim release. Apart from the two main approaches compared, Naı̈ve Bayes (NB) has also been
employed as baseline for the experiments. The implementation is from the 3.9.1 software release
of the Weka [FHH+05] workbench.

In order for the results to be comparable, a common benchmark corpus has been chosen,
namely, a collection of Amazon reviews2 about Books (B), Movies (M), Electronics (E) and
Clothing-Shoes-Jewelry (J). Each domain contains plain English reviews along with their labels,
namely a score from 1 (very negative) to 5 (very positive). Focusing on binary sentiment
classification, where only positive and negative classes are considered, the five original categories
have to be transformed. The reviews with scores equal to 1 and 2 are mapped to the negative
category, those whose scores is 4 and 5 to the positive one, discarding those whose score is 3
because of their neutral sentiment orientation.

For the sake of assessing the algorithms effectiveness by varying the amount of labeled data
available to train the models, source-target partitions with three different orders of magnitude

1http://nlp.fi.muni.cz/projekty/gensim/
2http://jmcauley.ucsd.edu/data/amazon/

80

http://jmcauley.ucsd.edu/data/amazon/


CHAPTER 8. DEEP METHODS TO ENHANCE TEXT UNDERSTANDING IN BIG
DATASET ANALYSIS 81

have been tested, always preserving the source-target ratio, i.e. 80%−20%, and the balancing
between positive and negative instances. The smallest data set counts 1,600 instances as the
training set and 400 as the test set; the medium 16,000 and 4,000 respectively; and the largest
80,000 and 20,000 respectively. For each examined source-target combination, accuracy has
been chosen as the performance measure, namely, the percentage of correctly classified instances.
This is a typical choice in a balanced binary classification problem, where the same number of
instances is considered for both categories. Moreover, results have been averaged on 10 different
training-test partitions to reduce the variance, that is, the sensitivity to small fluctuations in the
training set.

In the following experiments, the Distributed Bag of Words version of Paragraph Vector
(PV-DBOW) has been used, choosing 100-dimensional feature vectors, considering 10 words in
the window size, ignoring words occurring in just one document and applying negative sampling
with 5 negative samples. Moreover, the initial learning rate has been set to 0.025, letting it
linearly drop to 0.001 in 30 epochs. For further details on the parameters, careful readers may
refer to [LM14, MSC+13]. To accomplish sentiment classification, the positive or negative
orientation of reviews has been predicted by means of a logistic classifier, whose regression
coefficients have been estimated employing the Newton-Raphson method.

Concerning the Markov chain method, experiments have been conducted on the technique
described in Section 7.2. Firstly, the relative frequency of terms in documents has been chosen
as the term weighting. Then, a subset of relevant features is selected by means of χ2 scoring
function to mitigate the curse of dimensionality, because the Markov chain method is based on
a dense bag-of-words model, as explained in Section 8.2.1. After a tiny tuning, 750, 10,000
and 25,000 terms have been chosen for the small, medium and large data sets respectively.
The Markov chain has been built including the selected terms only. As already explained
in Section 8.2.1, the more terms co-occur in reviews the more their connection are stronger.
Likewise, the more terms are in positive (negative) reviews the more they tend to be positive
(negative). For further details, readers may refer to Chapter 7.

Finally, Naı̈ve Bayes has been run with default parameters after the same feature selection
performed for Markov chain, namely, 750, 10,000 and 25,000 terms for the small, medium and
large data sets respectively by means of χ2 scoring function.

Three experiments will be shown below. The first focuses on in-domain sentiment classi-
fication, namely, where the algorithms are tested on a set of reviews from the same domain
used for model training. In this way, an evaluation can be performed of how much performance
varies with respect to the amount of training data. The second experiment focuses on cross-
domain sentiment classification, where transfer learning is usually needed to walk around the
heterogeneity of language across domains. This analysis assesses the capability of paragraph
vector to automatically bridge the inter-domain semantic gap, without providing any explicit
transfer learning mechanism. The last experiment analyzes whether or not a simple multi-source
approach positively affects the performance of paragraph vector in cross-domain sentiment
classification.
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8.2.3 In-domain analysis
The first experiment assesses the in-domain performance of the algorithms. Table 8.1 shows
an analysis of the 4 domains considered, namely Books (B), Movies (M), Electronics (E) and
Clothing-Shoes-Jewelry (J).

1.6k-0.4k 16k-4k 80k-20k
Domain(s) PV MC NB PV MC NB PV MC NB

In-domain experiments
B→ B 67.25% 79.25% 78.25% 75.40% 81.90% 63.30% 84.74% 83.84% 66.36%
M→M 79.75% 91.23% 74.50% 74.87% 82.43% 70.10% 84.11% 80.23% 71.30%
E→ E 79.25% 92.00% 79.50% 80.15% 80.72% 69.53% 85.61% 84.41% 76.41%
J→ J 75.50% 71.97% 67.50% 80.08% 83.76% 72.23% 85.25% 86.98% 73.81%

Average 75.44% 83.61% 74.94% 77.63% 82.20% 68.79% 84.93% 83.87% 71.97%

Table 8.1: Comparison between PV and MC in sentiment classification, using NB as a baseline.
Nk-Mk means that the experiment has been performed by using N*1000 instances as the training
set and M*1000 instances as the test set. X→ Y means that the model has been learned on
reviews from domain X and then applied to different reviews from domain Y.

The first outcome that catches the eye is that paragraph vector requires much more training
data than Markov chain in order to perform well, as it is even clearer by observing Figure 8.4.
Although it achieved brilliant results as stated by Le and Mikolov [LM14], it underperforms
Markov chain and performs slightly better than Naı̈ve Bayes on average when small data sets are
involved. This outcome is not completely surprising because deep learning techniques typically
require very large training sets to learn models that are able to generalize over new test instances.
On the other hand, paragraph vector scales very well in terms of accuracy when the model is
learned from very large labeled text sets. Accuracy boosts from 75.44% in the small text set to
77.63% with medium-scale data, reaching 84.93% on average in the largest. Careful readers
might have noted that, when enough training data are available, the accuracy of paragraph vector
has a low deviation from the mean in each of the four domains. This proves that paragraph vector
is a robust approach, which is effective independently of the particular domain analyzed.

Also, it is noteworthy to point out that the accuracy achieved by Markov chain is pretty stable
by increasing the amount of training data. This outcome suggests that both could be candidate
methods for the analysis of very large data sets. However, a tiny feature selection is always
demanded by Markov chain before learning the model to reduce dimensionality and let the
method be applicable to new data sets.

8.2.4 Cross-domain analysis
The second experiment is about cross-domain sentiment classification. The goal is to assess
whether paragraph vector is able to bridge the semantic gap between the source and target
domains, despite no explicit transfer learning mechanism. For this purpose, paragraph vector
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Figure 8.4: Average in-domain accuracy of the compared methods, varying the dataset size.
Source: [DMPP17b].
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has been compared with the Markov chain method in the 12 source-target configurations of the
domains considered, namely B→ E, B→M, B→ J, E→ B, E→M, E→ J, M→ B, M→ E,
M→ J, J→ B, J→ E, J→M. As in the previous experiment, Naı̈ve Bayes is used as a baseline.
The results are shown in Table 8.2 and in Figure 8.5.

1.6k-0.4k 16k-4k 80k-20k
Domain(s) PV MC NB PV MC NB PV MC NB

Cross-domain experiments (source→ target)
B→ E 70.75% 69.29% 67.50% 67.27% 71.22% 55.85% 73.24% 74.05% 58.77%
B→M 66.75% 70.85% 70.50% 80.25% 79.32% 61.15% 81.97% 79.01% 61.99%
B→ J 73.25% 79.70% 63.75% 70.60% 71.83% 53.38% 74.87% 75.99% 54.92%
E→ B 74.00% 54.00% 64.50% 78.80% 80.10% 65.43% 76.87% 79.19% 66.15%
E→M 71.50% 56.75% 70.75% 76.17% 76.20% 64.43% 76.86% 77.15% 66.06%
E→ J 82.75% 74.25% 72.00% 79.47% 80.49% 63.23% 80.80% 81.91% 73.09%

M→ B 74.75% 65.75% 65.25% 85.55% 86.05% 76.55% 85.21% 83.81% 69.05%
M→ E 71.75% 68.18% 65.25% 75.32% 77.10% 66.35% 74.79% 72.87% 63.94%
M→ J 82.25% 81.95% 63.25% 73.45% 74.86% 62.03% 76.96% 78.58% 67.26%
J→ B 66.25% 75.25% 62.50% 69.62% 80.55% 64.48% 76.53% 78.55% 65.88%
J→ E 76.50% 80.60% 75.75% 78.55% 79.76% 68.90% 80.08% 81.79% 70.88%
J→M 74.25% 81.25% 72.50% 70.77% 74.30% 63.25% 76.07% 77.93% 66.27%

Average 73.73% 71.49% 67.79% 75.49% 77.65% 63.75% 77.85% 78.40% 65.36%

Table 8.2: Comparison between paragraph vector and Markov chain in cross-domain sentiment
classification, using Naı̈ve Bayes as a baseline. Nk-Mk means that the experiment has been
performed by using N*1000 instances as the training set and M*1000 instances as the test set.
X→ Y means that the model has been learned on reviews from the source domain X and then
applied to reviews from the target domain Y.

As expected, the accuracy of the baseline algorithm is very low on average, because Naı̈ve
Bayes has no transfer learning capability. Markov chain performs much better than Naı̈ve Bayes
on average, thanks to the transfer learning mechanism described in Section 7.2 and summarized
in Section 8.2.1. Differently from the in-domain problem, where the accuracy achieved by
Markov chain is stable with respect to the dataset size, here its accuracy improves by increasing
the number of training examples, as shown by Figure 8.5. This means that Markov chain requires
large amount of training data in order to effectively transfer the knowledge extracted from the
source domain to the target domain.

The most surprising outcome is certainly the accuracy obtained by paragraph vector, which
is comparable with Markov chain on average and even higher in the analysis of the smallest
data sets. This outcome is quite astonishing if we think that paragraph vector does not provide
for a transfer learning phase. It could be explained by considering that paragraph vector is
instrinsically able to handle the word ordering, since each document is represented by a dense
vector that is trained to predict the following word within the document. During training, terms
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Figure 8.5: Average cross-domain accuracy of the compared methods, varying the dataset size.
Source: [DMPP17b].
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are mapped into a vector space where distance is related to word semantics. For example, the
distance between good and robust is less than the distance between either of such terms and town.
The fact that paragraph vector learns vector representations without any kind of supervision is
probably what could have helped more bridging the inter-domain semantic gap.

One could object that the average cross-domain accuracy in the smallest data sets is sur-
prising. In fact, while paragraph vector requires big training sets to perform well in in-domain
tasks (Section 8.2.3), it outperforms Markov chain on average in the respective cross-domain
configurations, where the two methods achieve 73.73% and 71.49% accuracy respectively. The
rationale of this outcome has to be found in the concept of supervision. Markov chain includes
a transfer learning mechanism, which relies on labeled data to transfer semantics from the
source domain to the target domain. As a consequence, when few labeled data are available,
the algorithm does not achieve high accuracy on target domains. On the other hand, paragraph
vector does not explicitly handle transfer learning and relies on an unsupervised approach to
map terms in a vector space, i.e. the feature space. For such a reason, paragraph vector is less
affected by the change of domain than Markov chain.

This experiment has shown that the ability of paragraph vector to generalize and extract
word semantics could foster cross-domain sentiment classification. This is achieved thanks to
unsupervised pre-training, which has been used to learn fixed-length vector representations of
terms. Unsupervised pre-training of deep learning algorithms, if opportunely combined with
a proper transfer learning approach, can be a breakthrough of ad hoc cross-domain sentiment
solutions in big data scenarios.

8.2.5 Multi-source training

To support the claim that deep learning and transfer learning solutions can, if combined, break
through cross-domain sentiment classification, a third experiment is performed, which evaluates
the impact of a multi-source approach on the transfer learning capability of paragraph vector.
Multi-source basically means that 3 out of 4 domains are used to train the model, which is then
tested on the remaining domain. For instance, the model is built on Books, Electronics and
Movies, and then applied to Jewelry. Such a configuration is referred as *→ J, and the others
are indicated analogously. This still is a cross-domain sentiment classification problem, because
the model is learned on labeled data from some domains but its performance is evaluated on a
different unlabeled domain. The only difference between the single-source paragraph vector
(ss-PV) and the multi-source paragraph vector (ms-PV) is that the latter relies on heterogeneous
data sources when training the model.

The rationale of such an experiment is that, training the model on heterogeneous domains,
more variability in instances can be captured and paragraph vector could automatically learn
how to handle the heterogeneity of language, enhancing its transfer learning capability and, as a
consequence, its cross-domain performance.

Table 8.3 and Figure 8.6 report the comparison between the single-source paragraph vector
and the multi-source paragraph vector in cross-domain sentiment classification. The training on
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1.6k-0.4k 16k-4k 80k-20k
Domain(s) ss-PV ms-PV ss-PV ms-PV ss-PV ms-PV

Multi-source experiments
*→ B 71.67% 76.85% 77.99% 78.22% 79.54% 81.38%
*→ E 73.00% 75.08% 73.71% 78.04% 76.04% 78.46%
*→ J 79.42% 75.15% 74.51% 78.79% 77.54% 81.05%

*→M 70.83% 76.10% 75.73% 80.73% 78.30% 82.06%
Average 73.73% 75.80% 75.49% 78.95% 77.85% 80.74%

Table 8.3: Comparison between the single-source paragraph vector (referred as ss-PV) and the
multi-source paragraph vector (referred as ms-PV) in cross-domain sentiment classification. *
→ Y means that the model has been applied to reviews from the target domain Y, after learning
on the others except from Y. Nk-Mk means that the experiment has been performed by using
N*1000 source instances as the training set and M*1000 target instances as the test set. Actually,
the number of training instances is such that there is the same number of examples from each of
the source domains.

multiple heterogeneous domains allows paragraph vector learning better semantic-bearing word
representations than using a single domain only. It is pretty easy to see that ms-PV outperform
ss-PV on average, achieving accuracy from 2% to 3% higher independently of the dataset size.
This proves that even a simple gimmick as the multi-source approach is effective to increase the
accuracy of paragraph vector in cross-domain tasks, despite it has not been designed to explicitly
handle transfer learning. Furthermore, the outcome supports the claim that combining deep
learning techniques as paragraph vector with more advanced transfer learning solutions could
break through cross-domain sentiment classification.

8.2.6 Final remarks

This section has shown to what extent methods to learn distributed text representation without
supervision can support cross-domain sentiment classification, enhancing transfer learning so as
to bridge the semantic gap between heterogeneous domains.

The outcome of such an investigation shows that paragraph vector needs very large training
sets to learn accurate word and paragraph representations. Once enough data are available to
train the model, it achieves accuracy comparable with the Markov chain method introduced
in Chapter 7. This not only occurs in in-domain tasks but also in cross-domain experiments,
although no explicit transfer learning mechanism is provided by paragraph vector.

An approach is finally proposed, where a model is learned on multiple source domains,
then applied to a different target domain. The multi-source paragraph vector outperforms the
single-source paragraph vector, suggesting that transfer learning can be fostered by capturing
more variability in instances. Such preliminary results suggest that a combination of deep
learning and transfer learning techniques could bring to a breakthrough of ad hoc cross-domain
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Figure 8.6: Average cross-domain accuracy of the compared methods, when training on multiple
source domains, and varying the dataset size. Source: [DMPP17b].
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solutions in big data scenarios.

8.3 Fine-tuning of memory-based deep neural networks for
transfer learning

In this section, the investigation started in Section 8.2 is expanded, assessing whether memory-
based neural networks are beneficial for cross-domain tasks. In particular, Gated Recurrent Unit
(GRU) is added to the previous analysis, where distributed text representation techniques as
paragraph vector have been compared with ad hoc transfer learning and cross-domain solutions
as the Markov chain method introduced in Section 7.2. Furthermore, fine-tuning on target
instances is also examined to evaluate to what extent it can enhance the transfer learning ability
of memory-based deep neural networks.

Readers can find the main features of paragraph vector and Markov chain in Section 8.2.1,
whereas a brief description of gated recurrent unit will be presented below.

8.3.1 Gated recurrent unit

Gated Recurrent Unit (GRU), proposed by Cho et al. [CVMG+14], is an evolution of Long Short-
Term Memory (LSTM), presented by Hochreiter and Schmidhuber [HS97]. Long short-term
memory is a deep architecture that has been introduced to overcome the vanishing (or blowing up)
gradient problem [Hoc98] that affects recurrent nets when signals are backpropagated through
long time sequences. Indeed, long short-term memory can learn to bridge time intervals in excess
of 1,000 discrete time steps without loss of short time lag capabilities, by enforcing constant
error flow through internal states of special units. LSTM units are memory cells composed
of different gates, namely input gate, output gate, and forget gate. The input gate of a unit u
allows protecting the memory contents stored in j from perturbation by irrelevant inputs. The
output gate of u allows protecting other units from perturbation by irrelevant memory contents
stored in j. The forget gate of u allows forgetting the memory contents that are no longer
relevant. A LSTM unit is able to decide whether to keep the existing memory content via the
gates. If a relevant feature from an input sequence is detected, the unit is able to preserve this
information over a long distance. This property makes long short-term memory suitable for
capturing long-distance dependencies.

Gated recurrent unit extends long short-term memory by making each recurrent unit adapt-
ively capture dependencies of different time scales. A gated recurrent unit is similar to the LSTM
unit, but it only presents two gates, as shown in Figure 8.7. The activation of a gated recurrent
unit is ruled by an update gate, which controls how much information from the previous hidden
state will carry over to the current hidden state. A reset gate allows the hidden state to drop any
information that is found to be irrelevant later on in the future. As each hidden unit has separate
reset and update gates, it will learn to capture dependencies over different time scales.
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Figure 8.7: An illustration of a GRU. The update gate z selects whether the hidden state is to be
updated with a new hidden state h̃. The reset gate r decides whether the hidden state is ignored.
Source: [CVMG+14].
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LSTM based schemes have already been proved to work well for sentiment classification
[TQL15]. In this section, gated recurrent units are applied to cross-domain sentiment classifica-
tion, to assess whether they are able to automatically bridge the semantic gap between the source
and the target domains. Alike paragraph vector, gated recurrent unit is a deep architecture and
does not rely on a transfer learning mechanism. However, GRU gates, which allow each unit
working as a memory wherein relevant information can be stored and preserved, make gated
recurrent units suitable for cross-domain problems. Important domain-independent information
can be automatically extracted by gated recurrent units if trained with appropriate amount of
data.

8.3.2 In-domain analysis
The experimental protocol is the one described in Section 8.2.2. In-domain results act as a
baseline for the cross-domain analysis. Table 8.4 shows the results over the 4 domains of
Amazon reviews corpus used for the previous investigation, namely Books (B), Movies (M),
Electronics (E) and Clothing-Shoes-Jewelry (J).

1.6k-0.4k 16k-4k 80k-20k
Domain(s) PV MC GRU PV MC GRU PV MC GRU

In-domain experiments
B→ B 67.25% 79.25% 83.50% 75.40% 81.90% 73.75% 84.74% 83.84% 89.63%
M→M 79.75% 91.23% 76.75% 74.87% 82.43% 78.92% 84.11% 80.23% 79.50%
E→ E 79.25% 92.00% 80.75% 80.15% 80.72% 82.50% 85.61% 84.41% 85.24%
J→ J 75.50% 71.97% 82.25% 80.08% 83.76% 85.00% 85.25% 86.98% 84.40%

Average 75.44% 83.61% 80.81% 77.63% 82.20% 80.04% 84.93% 83.87% 84.69%

Table 8.4: In-domain comparison among the three techniques used in the analysis. Nk-Mk
means that the experiment has been performed by using N*1000 instances as the training set
and M*1000 instances as the test set. X→ X means that the model has been learned on reviews
from a domain X and then applied to different reviews from the same domain.

Gated recurrent unit achieves performance comparable with the other techniques. The
outcome is not surprising for some reasons. Firstly, GRU is a recurrent architecture, suitable for
modeling sequences of terms. Secondly, GRU is able to capture dependencies of different time
scales. Relationships among terms arise independently of how much they are distant. Finally,
GRU can store relevant information through time, working as a memory. Readers can find further
discussion on paragraph vector and Markov chain in Section 8.2.3.

8.3.3 Cross-domain analysis
The following experiment aims to compare the performance of gated recurrent unit with para-
graph vector and Markov chain for cross-domain sentiment classification. The goal is to assess
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whether the memory mechanism of gated recurrent units, which allows preserving relevant
information through time, makes them suitable for cross-domain learning.

The analysis involves all the source-target configurations of the four domains considered. The
detailed results are shown in Table 8.5, whereas the average trend across domains is represented
in Figure 8.8.

1.6k-0.4k 16k-4k 80k-20k
Domain(s) PV MC GRU PV MC GRU PV MC GRU

Cross-domain experiments (source→ target)
B→ E 70.75% 69.29% 64.00% 67.27% 71.22% 73.15% 73.24% 74.05% 78.20%
B→M 66.75% 70.85% 65.00% 80.25% 79.32% 77.75% 81.97% 79.01% 83.26%
B→ J 73.25% 79.70% 69.50% 70.60% 71.83% 77.95% 74.87% 75.99% 82.69%
E→ B 74.00% 54.00% 65.75% 78.80% 80.10% 69.50% 76.87% 79.19% 77.00%
E→M 71.50% 56.75% 64.70% 76.17% 76.20% 73.35% 76.86% 77.15% 79.28%
E→ J 82.75% 74.25% 69.15% 79.47% 80.49% 81.95% 80.80% 81.91% 85.70%

M→ B 74.75% 65.75% 59.00% 85.55% 86.05% 71.65% 85.21% 83.81% 81.21%
M→ E 71.75% 68.18% 69.50% 75.32% 77.10% 74.70% 74.79% 72.87% 79.47%
M→ J 82.25% 81.95% 68.00% 73.45% 74.86% 76.95% 76.96% 78.58% 82.32%
J→ B 66.25% 75.25% 60.50% 69.62% 80.55% 68.20% 76.53% 78.55% 77.19%
J→ E 76.50% 80.60% 77.00% 78.55% 79.76% 78.35% 80.08% 81.79% 82.19%
J→M 74.25% 81.25% 63.50% 70.77% 74.30% 72.70% 76.07% 77.93% 77.60%

Average 73.73% 71.49% 66.30% 75.49% 77.65% 74.68% 77.85% 78.40% 80.51%

Table 8.5: Comparison between gated recurrent unit, paragraph vector and Markov chain in
cross-domain sentiment classification. Nk-Mk means that the experiment has been performed
by using N*1000 instances as the training set and M*1000 instances as the test set. X → Y
means that the model has been learned on reviews from the source domain X and then applied to
reviews from the target domain Y.

The average trend is pretty clear: the more data gated recurrent unit relies on, the more it
performs well. Indeed, gated recurrent unit underperforms the other techniques with small-scale
data. Increasing the number of training instances, gated recurrent unit experienced a dramatic
growth in accuracy, becoming comparable with both paragraph vector and Markov chain with
medium-scale data, and even outperforming them with large-scale data. A reasonable explanation
for this behaviour is that its memory mechanism needs appropriate amount of data in order to
learn what is actually relevant within a review.

One might argue that, looking at in-domain results in Table 8.4, gated recurrent unit achieves
good performance even with small data sets. This means that gated recurrent unit needs few
data to capture intra-domain term relationships, whereas few facts are not enough to capture
inter-domain dependencies in absence of some explicit transfer learning mechanism. This is
reasonable. Just think that identifying the polarity-bearing terms of a single domain could be
enough to understand the overall sentiment orientation of a review, whereas the same does
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Figure 8.8: Average cross-domain accuracy of the compared methods, varying the dataset size.
Source: [PMPD].

not hold between distinct domains, because of language heterogeneity. The polarity-bearing
terms of the source domain generally differ from those of the target domain. In order to support
the knowledge transfer from source to target, the identification of relevant hidden concepts
is essential, more than finding important terms. Careful readers could argue that paragraph
vector, similarly to gated recurrent unit, does not provide a transfer learning phase, achieving
good performance with small-scale data anyway. This is true, but it should not be forgotten
that paragraph vector is able to capture word semantics without supervision [LM14]. This
feature makes paragraph vector suitable for bridging the inter-domain semantic gap, as shown in
Section 8.2.4.

The outcome of cross-domain experiments suggests that gated recurrent units are automatic-
ally able to decide which information is better to preserve even across heterogeneous domains.
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However, gated recurrent unit needs a large-scale training set in order to perform well in cross-
domain tasks. Since gated recurrent unit does not rely on explicit transfer learning mechanisms,
it requires more data to extract hidden relevant concepts to bridge the semantic gap between
distinct domains.

8.3.4 Fine-tuning for transfer learning and cross-domain

The experiments described below assess whether fine-tuning on target instances effectively
supports deep learning techniques in cross-domain sentiment classification.

Fine-tuning consists in using a labeled sample of target instances to refine a model previously
learned on a source domain. The sample should be reasonably small for both theoretical and
practical reasons. From a theoretical point of view, if the sample used for fine-tuning is too large,
the cross-domain task is converted into an in-domain problem. In such a case, where appropriate
amount of labeled target instances is available, cross-domain would be no longer needed. An
in-domain model could easily be learned in that case. On the other hand, readers already know
that cross-domain learning is essential from a practical point of view, since most real world data
are unlabeled. Finding a large labeled sample is challenging in practice, and manually labeling
it is even infeasible. Therefore, using a large sample is not a viable alternative for tuning a
pre-trained model. Only if the sample is small, categorization by human experts becomes a good
option to increase cross-domain efficacy.

Beyond being a good trade-off solution between its cost and the improvement of performance
that it guarantees, fine-tuning could be even critical for techniques that do not rely on explicit
transfer learning mechanisms. In particular, here we assess whether fine-tuning of deep neural
networks can bring to an improvement of ad hoc cross-domain solutions. For this purpose, 250
and 500 target samples have been used. The detailed cross-domain results with fine-tuning
are shown in Table 8.6, whereas the average trend is plotted in Figure 8.9 and compared with
the accuracy that paragraph vector and gated recurrent unit obtained without tuning on target
instances.

As can be seen, paragraph vector is almost unaffected by fine-tuning, regardless of the dataset
size. This behaviour is explained by the ability of paragraph vector to capture word semantics
without supervision, so it does not take advantage of further target instances. Paragraph vector
automatically handles the heterogeneity of language by discovering hidden relationships between
semantically similar words [LM14]. On the other hand, the benefits of fine-tuning dramatically
affect gated recurrent unit, which is not inherently able to align domains without supervision.
The improvement is particularly evident with small-scale data, and decreases by growing the
amount of source data employed to pre-train the model. The reason is pretty obvious. When
few training data are available, gated recurrent unit cannot capture inter-domain dependencies,
and even a small sample of target data leads to a significant boost of performance. The impact is
a bit reduced with medium-scale data, mainly for two factors. The first factor is the increased
capability of gated recurrent unit in bridging the inter-domain semantic gap without fine-tuning,
as already shown in Section 8.3.3. The second factor is that 250 and 500 instances are two orders
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1.6k-0.4k 16k-4k 80k-20k
Domain(s) PV GRU PV GRU PV GRU

Fine-tuning with 250 instances (source→ target)
B→ E 70.56% 69.00% 73.86% 74.85% 72.40% 79.05%
B→M 67.78% 68.50% 76.33% 79.45% 83.83% 84.51%
B→ J 76.67% 71.50% 71.03% 79.80% 75.16% 82.03%
E→ B 63.89% 68.50% 78.61% 70.20% 74.73% 77.83%
E→M 73.78% 67.00% 65.28% 73.85% 79.18% 80.17%
E→ J 82.22% 71.00% 79.14% 84.60% 81.14% 86.44%

M→ B 79.17% 67.50% 80.08% 72.95% 81.22% 81.22%
M→ E 73.89% 72.50% 77.33% 77.10% 74.38% 79.70%
M→ J 82.50% 75.50% 75.58% 78.85% 77.92% 82.83%
J→ B 64.17% 67.50% 74.81% 70.30% 75.22% 78.78%
J→ E 73.89% 77.50% 83.11% 78.50% 80.70% 82.51%
J→M 70.83% 68.00% 62.53% 75.25% 78.25% 79.19%

Average 73.28% 70.33% 74.81% 76.31% 77.84% 81.19%
Fine-tuning with 500 instances (source→ target)

B→ E 70.72% 70.50% 73.54% 73.95% 72.24% 78.56%
B→M 67.56% 68.00% 76.28% 79.55% 83.66% 84.07%
B→ J 76.17% 78.00% 70.53% 80.50% 74.89% 82.30%
E→ B 66.83% 69.00% 78.21% 71.85% 74.97% 77.39%
E→M 73.03% 72.50% 64.99% 76.65% 79.23% 80.82%
E→ J 81.33% 76.50% 79.02% 82.15% 81.15% 85.19%

M→ B 79.33% 69.00% 80.94% 76.55% 81.35% 81.78%
M→ E 74.61% 72.50% 77.55% 77.25% 74.34% 79.91%
M→ J 84.17% 77.50% 74.65% 79.25% 77.70% 82.33%
J→ B 66.06% 70.00% 74.42% 71.85% 75.62% 78.52%
J→ E 74.83% 78.00% 82.84% 79.55% 80.28% 83.66%
J→M 71.66% 68.50% 62.33% 76.60% 78.04% 79.59%

Average 73.86% 72.50% 74.61% 77.14% 77.79% 81.18%

Table 8.6: Comparison between gated recurrent unit, paragraph vector and Markov chain in
cross-domain sentiment classification with fine-tuning on a small set of labeled target instances.
Nk-Mk means that the experiment has been performed by using N*1000 instances as the training
set and M*1000 instances as the test set. X→ Y means that the model has been learned on
reviews from the source domain X and then applied to reviews from the target domain Y. 250
and 500 target instances have been used for tuning.
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Figure 8.9: Average accuracy achieved by the compared methods when fine-tuning on small
samples of target instances is performed to foster cross-domain sentiment classification. The
subscripts 250 and 500 are referred to the number of instances sampled from the target domain
in order to perform fine-tuning. Source: [PMPD].
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of magnitude less than the dataset size considered, whereas the small-scale data were just one
order of magnitude more than the amount used for tuning. It is obviously challenging to increase
the performance of a model pre-trained on a set of medium-scale data, by using only such a small
sample for tuning. The same two factors also affect performance improvement when large-scale
data are taken into account.

In spite of the few instances used, fine-tuning is beneficial to gated recurrent unit on average
with respect to the considered configurations. With small-scale data, the sample of 250 target
instances improves accuracy by approximately 4%, whereas doubling the tuning instances,
accuracy increases by about 2% more. With medium-scale data, the smaller sample boosts
accuracy by about 1.6%, whereas the bigger one by less than 1% with respect to the smaller.
Finally, the accuracy increases by less than 1% with respect to the configuration without tuning
when large-scale data are considered, independently of the size of the tuning sample.

The outcome of the analysis proves that fine-tuning on a small sample of labeled target data
is beneficial to deep architectures that do not have neither explicit transfer learning mechanisms
nor the capability to automatically detect semantically similar terms without supervision.

8.3.5 Final remarks
The investigation on deep learning for cross-domain sentiment classification has been carried
on by including Gated Recurrent Unit (GRU) [CVMG+14] in the analysis. Gated recurrent
unit is a deep architecture, evolution of long short-term memory, able to adaptively capture
dependencies of different time scales. Similarly to paragraph vector, it does not provide any
explicit transfer learning mechanism. Binary sentiment classification experiments have shown
that gated recurrent unit performs worse than paragraph vector and Markov chain with small
and medium-scale data sets, whereas it outperforms both when trained on large-scale data. The
outcome suggests that GRU memory units are beneficial for cross-domain, but require large-scale
data in order to learn accurate word relationships.

The impact of fine-tuning on transfer learning and cross-domain tasks has also been shown.
Fine-tuning is an explicit transfer learning mechanism, where a small sample of target instances is
used to tune the parameters of a model learned from the source domain. When tuned with samples
of target data, gated recurrent unit achieves accuracy comparable with the other methods, even
with few training data, proving that fine-tuning helps transfer learning between heterogeneous
domains. The labeled sample of target instances should be small in order for human experts to
manually label data without too much effort.

8.4 Combining memory-based deep architectures and distrib-
uted text representations for sentiment classification

This section shows massive experiments on recent deep learning advances, pointing out the
characteristics that mostly affect the identification of sentiment. In particular, memory-based
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deep neural networks are combined with distributed text representations, and their impact on
sentiment classification is assessed. Among the memory-based architectures (MemDNNs), Gated
Recurrent Unit (GRU) [CVMG+14] and Differentiable Neural Computer (DNC) [GWR+16] are
experimented. Their feature weights are initialized by means of global vectors (GloVe) [PSM14],
an outstanding technique to learn distributed word representations.

In-domain and cross-domain document-level experiments are performed; the effectiveness of
fine-tuning for cross-domain sentiment classification is assessed; document-level experiments are
performed on a huge dataset to evaluate to what extent memory-based architectures are scalable
with the amount of training data; finally, the suitability of such architectures for single-sentence
sentiment classification is assessed. As far as we know, only gated recurrent unit has recently
been applied to cross-domain sentiment classification, having been used in combination with
word embeddings for Chinese corpora [DHZ+17].

As previously stated, three techniques are taken into account by this analysis, namely gated
recurrent unit, differentiable neural computer and global vectors for word representation. The
first two are memory-based deep neural networks, whereas the last is an unsupervised approach
to learn distributed text representations. Readers can find a description of gated recurrent unit in
Section 8.3.1.

8.4.1 Differentiable neural computer

Differentiable Neural Computer (DNC), introduced in [GWR+16] as an evolution of Neural
Turing Machines (NTM) [GWD14], is one of the most innovative MemDNN techniques. Differ-
ently from previous MemDNN architectures (e.g. GRU), where the memory mechanism was
internal to the network, differentiable neural computer uses an external memory to represent and
manipulate complex data structures. The neural network can selectively address the external
memory, both to read from and write to it, allowing iterative modification of memory content.
This makes differentiable neural computer able to learn complex tasks straight away from data,
such as finding the shortest path or inferring the missing links in graphs, and answering synthetic
questions designed to emulate reasoning in natural language. Figure 8.10 shows the basic
behaviour of a differentiable neural computer. It uses differentiable attention mechanisms to
define weightings, which represent the degree to which each memory location is involved in a
read or write operation. The functional units that determine and apply the weightings are called
read and write heads.

In the work it was presented [GWR+16], differentiable neural computer was only applied
to small-scale tasks. However, the authors pointed out that differentiable neural computer
should be able to seamlessly acquire knowledge and take advantage of exposure to large data
sources. This consideration, along with the ability of memory mechanisms to capture inter-
domain relationships as shown in Section 8.3.3, makes differentiable neural computer suitable
for cross-domain sentiment classification.
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Figure 8.10: In a differentiable neural computer, a recurrent controller network receives input
from an external data source and produces output. The controller also outputs vectors that
parameterize one write head (green) and multiple read heads (blue and pink). The write head
defines a write and an erase vector that are used to edit the memory matrix. Additionally, a write
key is used for content lookup to find previously written locations to edit. The read heads can use
gates called read modes to switch between content lookup using a read key (’C’) and reading out
locations either forwards (’F’) or backwards (’B’) in the order they were written. The memory
usage vector records which locations have been used so far, and a temporal link matrix records
the order in which locations were written. Source: [GWR+16].
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8.4.2 Global vectors

Global Vectors (GloVe) is a log-bilinear regression model that have been proposed by Pennington
et al. [PSM14] to learn distributed word representation. Alike other methods for learning vector
space representation of words, GloVe is able to capture fine-grained syntactic and semantic
regularities in an unsupervised fashion, just using vector arithmetic, and solves the data sparsity
problem of dense bag-of-words models. GloVe combines the advantages of global matrix
factorization and local context window methods: as the former, it efficiently leverages statistical
information by training only on the nonzero elements in a word-word co-occurrence matrix; as
the latter, it achieves great performance on word analogy, similarity and named entity recognition
tasks.

Since unsupervised information extracted by means of distributed word representation fosters
the alignment of heterogeneous domains, as shown in Section 8.2, GloVe is a candidate technique
for the initialization of the feature weights used by MemDNN architectures.

8.4.3 The impact of labeled training data on memory-based networks

The first experiment checks to what extent the amount of labeled training data affects MemDNN
performance. For a matter of comparison with the previous analyses (Section 8.2 and Section 8.3),
the same experimental protocol has been carried out. Source-target partitions of three different
orders of magnitude have been tested, preserving 80%− 20% as the source-target ratio, and
balancing positive and negative examples. The small-scale dataset has 1,600 labeled instances as
the training set and 400 unlabeled instances as the test set; the medium-scale 16,000 and 4,000
respectively; and the large-scale 80,000 and 20,000 respectively. Naı̈ve Bayes (NB), Markov
chain (MC), Paragraph Vector (PV) and Gated Recurrent Unit with randomly initialized feature
weights (GRU) have been considered as baselines.

Figure 8.11 shows the in-domain performance of the various techniques, averaged on the 4
domains considered. As already pointed out, deep learning approaches usually do not perform
well when few training data are available. That is the reason why Markov chain outperforms the
proposed memory-based techniques with small-scale data. However, gated recurrent unit and
differentiable neural computer outperform the other approaches. It deserves attention that gated
recurrent unit with feature weights initialized by GloVe (GRUGloVe) achieves higher accuracy
with respect to the gated recurrent unit whose features have been initialized with random weights
(GRU). Increasing the amount of labeled training data, differentiable neural computer obtains
astonishing performance. Its accuracy is 90.08% with medium-scale data, meaning that 16,000
training examples are enough for the memory mechanism of differentiable neural computer to
capture relevant information. Different considerations should be done for gated recurrent unit,
whose performance does not increase considering medium-scale data. With large-scale data, the
accuracy of differentiable neural computer continues to grow, reaching 91.24%. This outcome
makes it interesting to evaluate to what extent the performance of differentiable neural computer
can increase. For this purpose, an in-domain test with a huge dataset will be shown later on in
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Section 8.4.5. Finally, it may be noted that the performance of gated recurrent unit also improves.
A reasonable explanation is that the memory mechanism of gated recurrent unit is automatically
able to decide which information is relevant to classification, if trained with large amount of data.

A cross-domain evaluation of the same techniques can be seen in Figure 8.12. The plot
displays the accuracy averaged on the 12 source-target configurations of the 4 domains considered.
Differentiable neural computer dramatically outperforms all the other techniques regardless of
the dataset size. It should be noted that it exceeds by more than 9% the accuracy of Markov
chain, which is a non-deep method that was specifically developed to accomplish both transfer
learning and sentiment classification. The reason of this outcome resides in several combined
factors that lead to semantic comprehension of text. The first factor is the usage of distributed
representation to encode text. In particular, GloVe has been employed for text representation and
feature weights initialization of both gated recurrent unit and differentiable neural computer. As
pointed out by Pennington et al. [PSM14], GloVe combines the advantages of two model families
in literature for learning word vectors, namely matrix factorization methods and local context
window methods. This means that GloVe also inherits the benefits of paragraph vector, which
is able to discover hidden relationships between semantically similar words. The unsupervised
information extracted by GloVe aids the alignment of heterogeneous domains. The second
factor is the memory mechanism of differentiable neural computer. Once enough training
data are available, memory-based deep architectures are automatically able to capture domain-
independent information and preserve it in memory through time. The third factor are deep neural
networks. In particular, differentiable neural computer is one of the most powerful mechanisms
to emulate reasoning and inference problems in natural language. The combined effect of these
three factors led to a dramatic improvement of the state of the art in cross-domain sentiment
classification. Comparing in-domain and cross-domain results, it could be noted that the accuracy
of differentiable neural computer is perfectly aligned by looking at small-scale data, whereas
cross-domain performance is slightly worse by increasing the dataset size.

Apart from the astonishing performance of differentiable neural computer, careful readers
may have noted the contribution of GloVe representation, looking at gated recurrent unit. As
expected, GloVe initialization of the feature weights leads to a substantial increasing of the
accuracy with small-scale data, which jumps from 66.30% of GRU to 74.14% of GRUGloVe,
about 8%. Comparing in-domain and cross-domain experiments, the combined effect of GloVe
representation and memory mechanisms can be seen. The former plays a key role to align
heterogeneous domains when few labeled data are available as the training set. The latter is
automatically able to extract relevant inter-domain concepts as the amount of labeled training
data increases.

8.4.4 Fine-tuning for cross-domain sentiment classification

The second analysis aims at assessing whether fine-tuning is beneficial for memory-based deep
neural networks performance. As already pointed out, fine-tuning is the practice of using a
labeled sample of target instances to refine a model previously learned on a source domain. The
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Figure 8.11: Average in-domain accuracy of the compared methods. Source: [MPPS18].
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Figure 8.12: Average cross-domain accuracy of the compared methods. Source: [MPPS18].
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sample is usually small (e.g. hundreds instances) for two main reasons. On one hand, if a large
set of labeled instances was available, it would be advisable to learn an in-domain sentiment
classifier rather than a cross-domain one. On the other hand, if a large set of labeled instances
was not available, the only viable alternative would be to let a team of human experts pre-classify
some instances. Manual categorization becomes infeasible as too many instances are required
to be labeled. Therefore, fine-tuning on a small sample of labeled target instances generally
is a good trade-off between its cost and the expected improvement of performance. To further
investigate the performance, fine-tuning has been experimented by using 250 and 500 labeled
target samples respectively.

Figure 8.13 shows the effect of fine-tuning on MemDNN architectures. Gated recurrent unit
takes a slight advantage of fine-tuning. With reference to small-scale data, accuracy increases
from 74.14% to 74.84% using 250 target instances to 75.77% using 500 target instances. It
should be noted that GRU performance is much more affected by the GloVe feature weights
initialization than by fine-tuning. Indeed, gated recurrent unit with GloVe initialization and
no fine-tuning outperforms gated recurrent unit with random initialization and fine-tuning on
500 labeled target instances. As the dataset size increases, the contribution of fine-tuning
diminishes, until eventually vanishing with large-scale data. A different behaviour is observed
for differentiable neural computer. Fine-tuning only impacts on accuracy when performed on
500 target instances with reference to the small-scale dataset. It is quite obvious that, when few
training data are available, even a small sample can considerably affect performance. Gated
recurrent unit is a clear evidence of such a behaviour. However, DNC250 does not lead to a
performance improvement, because differentiable neural computer is a very robust technique,
almost unaffected by noise. The attention mechanism to address the external memory makes
DNC less sensitive to noise than GRU, whose memory units are internal to the network. As a
consequence, differentiable neural computer is less prone than gated recurrent unit to altering
memory content. In other words, it is unlikely that differentiable neural computer stores irrelevant
information in memory. 250 target instances are not relevant enough for differentiable neural
computer, and are considered as noise by the network. The same considerations apply to
experiments with medium-scale and large-scale data, where both 250 and 500 target instances
do not affect performance.

8.4.5 Large-scale document sentiment classification

The third experiment is an in-domain sentiment classification task on a huge dataset. This
analysis let us understand to what extent MemDNN architectures with the GloVe feature weights
initialization are suitable as sentiment classifiers in big data scenarios. Here MemDNN ar-
chitectures are compared with many sentiment classification techniques, in particular several
variants of Character-level Convolutional Neural networks (CharCNN), proposed in [ZL15b]
and empirically explored in [ZZL15].

For result comparison purposes, two very large datasets have been constructed. The former
deals with binary in-domain sentiment classification, where the goal is to distinguish positive
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Figure 8.13: Average accuracy achieved by the compared methods when fine-tuning on small
samples of target instances is performed to foster cross-domain sentiment classification. The
subscripts 250 and 500 represent the number of labeled target instances utilized for fine-funing.
Source: [MPPS18].
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and negative instances. The latter aims at identifying the full score assigned to instances (i.e.
from 1 to 5). So that is a fine-grained in-domain sentiment classification task. The binary dataset
contains 1,800,000 training samples and 200,000 testing samples for each polarity sentiment.
The fine-grained contains 600,000 training samples and 130,000 testing samples for each of the
five classes. In both datasets, samples have been taken in equal proportion from the 4 domains
considered. Differently from the previous experiments, review title has also been considered,
together with review content.

Model Binary Fine-grained
BoW 90.40% 54.64%

BoW Tf-Idf 91.00% 55.26%
n-grams 92.02% 54.27%

n-grams Tf-Idf 91.54% 52.44%
Bag-of-means 81.61% 44.13%

LSTM 93.90% 59.43%
Lg. w2v Conv 94.12% 55.60%
Sm. w2v Conv 94.00% 57.41%

Lg. w2v Conv. Th. 94.20% 56.25%
Sm. w2v Conv. Th. 94.37% 57.50%

Lg. Lk. Conv 94.16% 54.05%
Sm. Lk. Conv 94.15% 56.34%

Lg. Lk. Conv. Th. 94.48% 57.61%
Sm. Lk. Conv. Th. 94.49% 56.81%

Lg. Full. Conv 94.22% 59.11%
Sm. Full. Conv 94.22% 59.12%

Lg. Full. Conv. Th. 94.49% 59.46%
Sm. Full. Conv. Th. 94.34% 59.47%

Lg. Conv 94.49% 58.69%
Sm. Conv 94.50% 59.47%

Lg. Conv. Th. 95.07% 59.55%
Sm. Conv. Th. 94.33% 59.57%

GRUGloVe 94.07% 59.55%
DNC 95.51% 61.45%

Table 8.7: Accuracy achieved by the compared methods on very large datasets constructed from
the Amazon reviews corpus. Binary and fine-grained refer to 2-class and 5-class in-domain
sentiment classifications respectively. CharCNN variants are prefixed with Lg. or Sm., as in
[ZZL15]. The best accuracy is in bold.

Apart from the several variants of CharCNN, results have also been compared with other
methods, including Long Short-Term Memory networks (LSTM), Bag-of-means [LKW15]
and some Bag-of-words (BoW) based configurations. Careful readers can find further details
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on these methods along with their parameters in [ZZL15]. Table 8.7 shows the accuracy of
MemDNN methods and the state-of-the-art techniques. Gated recurrent unit achieves comparable
performance with the other methods, being slightly more accurate than long short-term memory.
This outcome is not surprising, since gated recurrent unit is an evolution of long short-term
memory, but both have a built-in memory mechanism. On the other hand, the accuracy of
differentiable neural computer is astounding. It outperforms all the other techniques with
reference to both binary and fine-grained configurations. In the fine-grained task, accuracy
is almost 2% higher than the previous methods. This outcome is significant in a multinomial
classification problem, where predicting the correct class is challenging. To the best of our
knowledge, it is the first time that a method achieves accuracy higher than 60% on the Amazon
reviews corpus with reference to a fine-grained sentiment classification task.

8.4.6 Single-sentence sentiment classification

While the previous experiments deal with document sentiment classification, the last one focuses
on single-sentence sentiment classification. The benchmark corpus used for the analysis is the
Stanford Sentiment Treebank (SST), which was introduced by Socher et al. [SPW+13]. The
treebank is built on a corpus of movie review excerpts, composed of 11,855 sentences, half of
which are positive and half negative. The sentences have been parsed with the Stanford parser
[KM03] into 215,154 syntactically plausible phrases. Each phrase has been annotated by 3
human experts into 5 possible categories, namely negative, somewhat negative, neutral, somewhat
positive and positive. Similarly to the Amazon reviews corpus, neutral phrases are discarded in
binary sentiment classification tasks. According to the work by Socher et al. [SPW+13], 8,544
sentences are used as the training set, 1,101 as the validation set, and 2,210 as the test set.

In the last few years, plenty of techniques have been applied to the Stanford sentiment
treebank. Socher et al. [SPW+13] presented Recursive Neural Tensor Networks (RecNTN)
in the same work they introduced the treebank, and compared their algorithm on the SST
with Naı̈ve Bayes with unigram features (NB), Naı̈ve Bayes with unigram and bigram features
(BiNB), Support Vector Machine with unigram and bigram features (SVM), Recursive Neural
Networks (RNN) [SPH+11] and Matrix-Vector RNN (MV-RNN) [SHMN12]. Kalchbrenner
et al. [KGB14] proposed Dynamic Convolutional Neural Network (DCNN), comparing its
performance on the Stanford sentiment treebank with Max Time-Delay Neural Networks (Max-
TDNN) [CW08], and a Neural Bag-of-Words (NBoW) model. Dos Santos and Gatti [dSG14]
introduced Character to Sentence Convolutional Neural Network (CharSCNN) and applied it
to the treebank. A variant of CharSCNN has been trained by using word embeddings only
(SCNN). Other two variants of the previous, referred as CharSCNN ph. and SCNN ph., have
been trained by exploiting phrases representations in addition to sentence representation. Kim
[Kim14] experimented some variants of Convolutional Neural Networks (CNN-rand, CNN-
static, CNN-non-static, CNN-multichannel) on the Stanford sentiment treebank. Le and Mikolov
[LM14] applied to the treebank logistic regression on top of their Paragraph Vector (PV) for
distributed word representation. Finally, Multiplicative Recurrent Neural Network (DRNN)
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[IC14], Constituency Tree-LSTM (CT-LSTM) [TSM15], and Dynamic Memory Network (DMN)
[KIO+16] have also been applied to the Stanford sentiment treebank.

Model Binary Fine-grained
NB 81.80% 41.00%

BiNB 83.10% 41.90%
SVM 79.40% 40.70%

RecNTN 85.40% 45.70%
Max-TDNN 77.10% 37.40%

NBoW 80.50% 42.40%
DCNN 86.80% 48.50%
RNN 82.40% 43.20%

MV-RNN 82.90% 44.40%
SCNN 82.00% 43.50%

CharSCNN 82.30% 43.50%
SCNN ph. 85.50% 48.30%

CharSCNN ph. 85.70% 48.30%
CNN-rand 82.70% 45.00%
CNN-static 86.80% 45.50%

CNN-non-static 87.20% 48.00%
CNN-multichannel 88.10% 47.40%

PV 87.80% 48.70%
DRNN 86.60% 49.80%

CT-LSTM 88.00% 51.00%
DMN 88.60% 52.10%

GRUGloVe 84.13% 45.89%
DNC 85.22% 46.78%

Table 8.8: Accuracy achieved by the compared methods on the Stanford sentiment treebank. Bin-
ary and fine-grained refer to 2-class and 5-class in-domain sentiment classifications respectively.
The best accuracy is in bold.

Table 8.8 shows the comparison between the MemDNN architectures and the mentioned
methods. Gated recurrent unit and differentiable neural computer achieve comparable per-
formance in both binary and fine-grained configurations. The accuracy of differentiable neural
computer is just about 1% higher than the accuracy of gated recurrent unit. They perform
similarly to most of the other techniques, but are not definitely the best methods for single-
sentence sentiment classification. This is probably due to the absence of a specific mechanism
to take sentence syntax into account, and to the small amount of training data, which is an
obstacle to the performance of both gated recurrent unit and differentiable neural computer. Just
look at the in-domain experiment on the Amazon reviews (Figure 8.11), where they have been
outperformed by Markov chain with small-scale data. One might argue that the treebank has
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8,544 instances, but we should not forget that they are single-sentences, not whole and usually
longer reviews (i.e. documents) as in the Amazon corpus. The best algorithm turns out to be
dynamic memory network, which performs better than the other techniques in both binary and
fine-grained configurations. This is not surprising, since dynamic memory network includes a
memory mechanism to store and preserve relevant information through time and has also been
proved to work well with single-sentences [KIO+16].

8.4.7 Final remarks
In this section, an investigation on recent deep learning advances has been carried out, em-
phasizing the characteristics that mostly affect the identification of sentiment. In particular,
memory-based deep neural networks have been combined with techniques to learn distributed
text representations, in order to exploit the advantages of both. To enhance the cross-domain
effectiveness of sentiment classifiers built upon memory-based deep neural networks, fine-tuning
has been performed on a small set of labeled target instances. Fine-tuning, GloVe word rep-
resentation, and the ability of MemDNNs to capture relevant sequential information, aid the
inter-domain alignment and bring to outstanding cross-domain document classification results.

The memory-based classifiers have also been employed on very large data sets (e.g. million
instances), assessing their document-level performance in an in-domain configuration. Binary
and fine-grained experiments have been carried out. The outcome has been compared with several
variants of character-level convolutional neural networks. The classifier based on differentiable
neural computer outperforms the state of the art with reference to both binary and fine-grained
configurations, whereas gated recurrent unit with GloVe feature weights initialization achieves
comparable performance with most techniques.

The experimented MemDNN methods can be applied to any text, whatever its length and
structure. For this reason, single-sentence sentiment classification has also been performed, using
the Stanford sentiment treebank as a benchmark dataset. The accuracy achieved by memory-
based deep neural networks is comparable with the state-of-the-art methods in both binary and
fine-grained settings.
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9
Methods for DJIA index prediction

As discussed in Chapter 4, stock market prediction was historically accomplished either via trend
analysis, that is, monitoring stock price variations through time, or via financial news analysis.
More recently, researchers leveraged information extracted from social media, in particular
Twitter, to design new forecast models for the stock market.

In this chapter, a novel approach is introduced that exploits data from Twitter to identify
threads that significantly affect the Dow Jones Industrial Average (DJIA) index. Intuitively, the
method is based on training an intermediate classifier on millions of tweets posted in the first
seven months in 2008. Analyzing the results of this first classification, a pruning scheme is
created that is based on four groups of tweets depending on the classification outcome, namely
true and false positives, and true and false negatives. The training set is subsequently transformed
by removing irrelevant tweets, considered as noise. This technique is applied both to individual
tweets and to tweet aggregations considered as training instances, then used to setup a trading
strategy.

9.1 Background

In order for readers to better understand the methods for DIJA index prediction we will introduce
below, this section gives an overview of noise detection methods. On the other hand, some
approaches that use Twitter for stock market analysis have already been discussed in Section 4.4.2,
pointing out that Twitter can really be useful for prediction purposes.

9.1.1 Noise detection

Noise detection is a topic of interest since the dawn of information retrieval. There is a large
literature regarding the detection of noise in data mining and especially in data clustering,
although they sometimes refer to slightly different tasks, for instance outlier detection, novelty
detection, anomaly detection and so on. Some methods have also been applied to text mining,
generally for the recognition of noisy features [SR11] or for novelty detection [MS03], i.e. the
discovery of unknown data that a machine learning system has not yet been trained with.
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In a vector space model representation, noise removal can be addressed at two levels: at the
feature level and at the instance level. With reference to the former, useless and non-informative
words are removed: normally this problem is addressed with a lists of stopwords and feature
selection schemes [Yan95, GM04]. With reference to the latter, non-informative documents
are removed, which can potentially hinder the classification model. Noise detection techniques
can ideally be used here without considering the textual nature of features. In literature, large
amount of methods exist, for example K-nearest neighbors [KN98, RRS00], neural networks
[BJC98, MNS05], decision trees [SR90, Joh95], support vector machines [TD99, SHX02] and
bayesian networks approaches [BHMY99, DS07] can be used. In-depth descriptions of such
techniques have been reported in some surveys [CBK09, MS03].

9.2 Detecting and mining relevant tweets

The spread of social networks and micro blogging enables people to share opinions and moods,
creating very large and constantly updated textual corpora. Sentiment analysis techniques seek
to extract emotional states or opinions expressed in each text document and create a collective
social emotional state.

Can the trend of social emotional state predict the macroscopic evolution of global events
such as some economic indicators? Recent studies have answered affirmatively to this question.
In particular, Liu et al. [LHAY07] used a Probabilistic Latent Semantic Analysis (pLSA) model
extracts sentiment indicators on blogs that predict future sales, Mishne et al. [MDR+06] showed
how the movie sales can be predicted through assessments of blog sentiments; similarly, Asur
and Huberman [AH10] showed how public sentiment about movies expressed on Twitter can
actually predict box office receipts. Gruhl et al. [GGK+05] assessed the predictability of book
sales using online chat activities. But all that glitters is not gold: Gayo-Avello [GA12] criticized
some literature on this topic, showing results that are unpredictable, for instance the prediction
of an election. Indeed, tweet analysis can help understanding the political popularity, but has not
consistently been able to predict the results so far.

Some works have recently studied the correlation between sentiment extracted from Twitter
and socio-cultural phenomena [BMP11], such as the popularity of brands [GSZ13], and the
correlation between public mood on Twitter and Dow Jones Industrial Average (DIJA) [BMZ11].
Differently from previous works that predict the DIJA trend by computing people sentiment
or mood from their opinions expressed through tweets, a simpler method is introduced here,
based on mining techniques and text similarity measures for the characterization and detection
of relevant tweets with respect to increments or decrements of DJIA. In particular, as far as the
selection of tweets is concerned, our method includes a noise detection approach to filter out
irrelevant tweets for DJIA prediction.
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Figure 9.1: Daily closing values of DJIA prices, and splits of the benchmark dataset. Source:
[DMPP17a].

9.2.1 Benchmark text set

The same set of tweets posted in 2008 and used by Bollen et al. [BMZ11] is employed. It
includes ten million tweets posted by approximately 2.7M users from January 1th to December
19th 2008. Following the pre-processing applied by Bollen et al., only tweets in English that
contain explicit statements of the author’s mood state are taken into consideration, i.e. those
that contains one of this expressions ”i feel”, ”i am feeling”, ”i’m feeling”, ”i dont feel”, ”I’m”,
”Im”, ”I am”, and ”makes me”. Tweets containing links or addressing the content to other users
are removed. Tweets are tokenized in single words, and emoticons are also taken into account
(Table 9.1), using three different tokens as done by Oliveira et al. [OCA13].

Token Emoticons

emotHappy :) :-) :D :-D (: (-:
emotSad :( :-( :’( :’-( ): )-: )’: )-’: D: D-:
emotHeart < 3

Table 9.1: Emoticons treated and related tokens.

Figure 9.1 shows the daily closing values of DJIA index. In comparison with the work by
Bollen et al., a much smaller training set is considered in order to rely on a wider test set to
properly evaluate the models’ prediction capability. The benchmark dataset has been split into
i) a training set including the first seven months of the year (from January 2nd to July 31st) to
create the prediction models; ii) a validation set with two months, August and September, to tune
the models and apply noise detection; iii) a test set with the latest three months, from October
1st to December 19th, larger than in [BMZ11], where only 19 days in December (15 of opening
stock market) have been used.
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Figure 9.2: Diagram of the DJIA prediction process through tweets aggregation. In this example,
the system predicts the DJIA trend for 2008/03/28 using the aggregated tweets posted in the
previous four days (i.e. l = 0 and a = 3). Source: [DMPP17a].

9.2.2 Vector space model construction

Tweets are grouped according to the publication date and provide the information base to generate
future predictions on the stock market. As shown in the experiments by Bollen et al [BMZ11],
the highest correlation between social mood and DJIA is obtained by grouping tweets of several
days and shifting the prediction for a certain time lag. Thus it becomes interesting to evaluate
the accuracy of predictions considering the following parameters in the forecasting model:

• Lag (l): temporal translation from the forecast date, l = 0 means the day before prediction.

• Aggregation (a): number of days to be aggregated in order to make a prediction, a = 0
means only one day.

As a simple example, assume that we consider l = 1 and a = 2. To make a prediction on day
t, tweets published in the days t − 2, t − 3 and t − 4 will be considered. The range of days
considered for the prediction of day t will be: [t−1− l−a, t−1− l].

According to the two previous parameters, the tweets related to the prediction of a given
day (in the previous example, the tweets in t − 2, t − 3 and t − 4) are collected in a single
bag-of-words. Given the high number of tweets available, a dimensionality reduction technique
is required. Once the tweets have been selected, stopwords are removed, stemming is performed,
terms are weighted using tf-idf, and only n f of them (i.e. those with the highest weights) are
selected.

At the end of each day d, from the mentioned aggregation of tweets, the method predicts
the sign of the difference between the unknown DIJA closing price at day d +1 and the known
closing price at day d. The proposed DJIA prediction process is summarized in Figure 9.2.
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9.2.3 Detecting noisy tweets

Twitter provides a great deal of information, but it is necessary to understand what is useful for a
given analysis and what is not. Therefore, a noise detection method is proposed here to define
which tweets are useful for DJIA prediction. The idea can be summarized in few steps:

1. Once the data representation has been created, as described in Section 9.2.2, a classification
model is trained and applied on the test set.

2. Four prototypes can be created, one for each possible classification outcome, namely
true positive (TP), true negative (TN), false positive (FP) and false negative (FN). Each
prototype is a bag-of-words that includes all the test instances, i.e. tweets of the a days
before each prediction.

3. The prototypes are used to discover the noisy tweets within the dataset. Such a method
is applied at two different levels: i) at the tweet level, and ii) at the instance level. The
former consists in removing from the dataset those tweets with cosine similarity less than
a threshold τg with respect to the good prototypes (TP and TN), or greater then a threshold
τb with respect to the bad prototypes (FP and FN). The latter consists in removing from
the training set instances similar to the bad prototypes.

4. A new prediction model is trained on the cleaned dataset, using the training and validation
set, then it is used for the classification of test instances.

9.2.4 Experimental evaluation

The effectiveness of the prediction is tested by varying i) the classification algorithm: decision
trees and support vector machines have been used, relying on Weka [FHH+05] implementations
(i.e. J48 and SMO respectively); ii) the number n f of features (i.e. words) selected in the dataset;
iii) the aggregation a; iv) the lag l parameters on the data cited above.

Before the application of the noise detection method, a simple prediction model is tested,
based on the vector space model described in Section 9.2.2. Table 9.2 and Table 9.3 show the
best results obtained by the two supervised algorithms varying the respective parameters. A first
noteworthy aspect is the aggregation parameter, that gives best results with three days gathered.
This outcome confirms the analysis by Bollen at al. [BMZ11], meaning that there is strong
correlation between the information extracted in the last few days and the outcome of a market
trading day. In other words, the stock market seems to be affected by the information, events,
moods of the previous days. Also, the best accuracy obtained by the decision tree model is
notable: with just 500 features, it has achieved f-Measure of about 80%. From now on, tests will
be performed using the best combination of parameters shown in Table 9.2 and Table 9.3.

Once the best model has been identified, the noise detection method is applied in order to
clean the dataset. The idea is to analyze the predictions made on the test set in order to define
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Aggr Lag n f feat fMeasure
3 0 500 0.799
3 1 2000 0.736
3 0 1000 0.700
0 2 500 0.668
0 2 2000 0.660
2 2 500 0.657
3 2 2000 0.653

Table 9.2: Tuning a decision tree.
Aggr Lag n f feat fMeasure

2 1 1000 0.682
1 2 2000 0.668
3 2 1000 0.649
2 1 2000 0.649
1 3 2000 0.643
0 2 2000 0.642
2 1 500 0.642

Table 9.3: Tuning a support vector machine.

four groups of predictions, and use them to find useful tweets, or tweet aggregations, in the
dataset.

First, the test set is divided based on the prediction outcome. Among the tested instances,
only the predictions where the confidence of the classifier is at least 90% have been selected,
so as to retrieve only the surest among them. The selected instances are then grouped based
on the outcome (i.e. TP, TN, FP, FN). In order to assess the assumptions and the quality of the
groupings made, cosine similarity has been calculated both between instances of the same group
and between belonging to different groups. The instances belonging to the same group were
supposed to have high similarity, whereas dissimilarities were supposed to arise by comparing
instances of different groups. The comparisons are shown in Table 9.4; the main diagonal
contains those between instances belonging to the same group. It should be noted that such
similarities are significantly greater than in the other comparison. This outcome supports the
hypotheses underlying the noise detection method introduced in Section 9.2.3.

The first noise detection experiment has been made comparing the single tweets within
the dataset (both training and validation sets) with the four prototypes created aggregating the
instances of the four groups of predictions analyzed above. A double experiment has been
conducted: i) keeping only the tweets similar to the two good prototypes, i.e. the tweets whose
cosine similarity with respect to TP or TN overcomes a threshold τg; ii) discarding all the tweets
similar to the bad prototypes, i.e. the tweets whose cosine similarity with respect to FP or FN
overcomes a threshold τb. Figure 9.3 shows the obtained results in both experiments, varying
the thresholds. Unfortunately, the results do not show an improving trend by using this noise
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TP TN FP FN
TP 0.819 0.828 0.779 0.772
TP 0.823 0.914 0.776 0.738
FP 0.779 0.776 0.848 0.770
FN 0.772 0.738 0.77 0.912

Table 9.4: Comparison between instances (i.e. aggregated tweets) belonging to the different four
groups (i.e. true positives, true negatives, false positives, false negatives). Each cell represents
the average cosine similarity computed over all the respective couples of instances.

detection technique.
A further proposal to detect and remove noise is based on the idea that some training instances,

such as outliers or noisy tweets, could compromise the accuracy of the prediction model. In this
experiment, the instances similar to the bad prototypes that could negatively affect the model have
been removed from the training set of the final classification model. Figure 9.4 shows the results
obtained with the best tuning using both a decision tree and a support vector machine, varying
the threshold τ of the noise detection algorithm. Results show a noteworthy improvement using
the noise detection method. In particular, using the decision tree, we achieve f Measure = 0.889,
which corresponds to a 10% improvement with respect to the results obtained in tests without the
training set cleaning techniques. Similar considerations can be done when using a support vector
machine. In this case, the improvement is even greater, since we started from f Measure = 0.682
and, with a 27% improvement, we obtain a maximum of f Measure = 0.867 when using the
noise detection algorithm. Analyzing the results obtained by the best model, we found that the
f Measure related to the prediction of a positive market day is 0.848, whereas that related to the
prediction of a negative day is 0.912. The precision of predictions on the validation set is 88.9%,
that is higher than the precision obtained by Bollen at al. in [BMZ11], i.e. 86.7%.

A fair comparison with the work of Bollen et al. can actually be done considering the same
test set they used, i.e. the 19 trading days in December 2008. Using such a test set and training
our method with the first 11 months of the year, a perfect classification (100%) of the 19 trading
days is achieved, showing a sharp improvement with respect to the 86.7% obtained by Bollen et
al.

9.3 A trading protocol for DIJA
This section assesses the return on investment (ROI) achieved by trading Dow Jones Industrial
Average (DIJA) according to the Twitter-based method introduced in Section 9.2.

9.3.1 Protocol
The accuracy of a predictive regression model can be measured in different ways, such as
computing RMSE (Root Mean Square Error), evaluating the error in Dow Jones points, or using
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(a) Mantaining tweets similar to the good prototypes.

(b) Discarding tweets similar to the bad prototypes.

Figure 9.3: Noise detection experiments at the tweet level. Source: [DMPP17a].
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(a) Decision tree supervised model.

(b) SVM supervised model.

Figure 9.4: Noise detection experiments at the instance level. Source: [DMPP17a].
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the sign of the difference among consecutive closing prices. As pointed out in Section 9.2.2,
we chose the last option. Indeed, what is ultimately important to measure the effectiveness of
a prediction model is its capability of correctly driving trading actions to buy/sell shares. If
the market is predicted to rise, the trading protocol receives a signal to buy from the prediction
model, whereas a sell signal occurs when a drop is predicted. Sell/buy actions are performed
without predefined rise/drop thresholds.

In our simple trading protocol, each buy/sell trade is conducted at the market opening value of
each day d, and the forecast of DJIA movements consists in predicting the sign of the difference
between the unknown closing price of day d, closing(d)unknown, and the known closing price of the

previous day, closing(d−1)
known. The action is taken as follows:

action at opening(d) =

{
buy if closing(d)unknown− closing(d−1)

known > 0

sell otherwise
(9.1)

The trading protocol performs at most one action per day according to Equation (9.1). In
each buy action, the whole capital is spent, including the possibly achieved gains (i.e. all in).
At the first buy signal from the prediction model, the entire initial capital is invested, and any
new subsequent buy signal is treated as a hold command. When a sell signal is received, the
investment held is sold (i.e. all out), and subsequent sell signals are ignored until another buy is
emitted. The protocol iterates in this manner until a stop signal occurs. To stop the protocol, it is
sufficient to perform sell actions independently of the sign predicted by the model.

Gain/loss performance is measured by means of the standard Return On Investment (ROI)
[OM06], which is defined as

ROI =
Revenue a f ter Investment−Cost o f Investment

Cost o f Investment
(9.2)

where Cost o f Investment is the amount of initial capital before the first trading action,
and Revenue a f ter Investment is the amount achieved after the sale. For instance, a cost of
investment equal to 1 at the opening value of day d, means that we have bought shares spending
1 (no matter the currency). If we sell the shares for 1.1 when the first sell signal occurs, ROI
becomes 1.1−1

1 = 0.1, which means that we got a 10% profit. The sum of each ROI over the
trading period is the percentage gain on the investment.

9.3.2 Experiments
Experiments have been performed comparing three prediction models: a random predictor of
the DJIA rise/drop, and the two prediction models described in Section 9.2. Readers should
recall that the model without the removal of noisy tweets achieved f-Measure equal to 79.9%,
whereas discarding noisy tweets f-Measure reached 88.9%. We have performed the trading
actions according to the protocol described in Section 9.3.1. The trading period coincides with
the test interval of the prediction, i.e. from October to December 2008.
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The performance of the three experiments has been measured according to the return on
investment (ROI) described in Section 9.3.1. Table 9.5 reports the total ROI achieved by the
above mentioned prediction models over the three months used as the testing period.

Prediction Model Type ROI Std.Dev.
Random -0.097 0.138
No noise removal 0.562
Noise removal 0.840

Table 9.5: Total return on investment (ROI) in the three months used as the testing period. Three
prediction models have been used: random trading actions, trading without removing noisy
tweets, and trading with noise removal.

The random prediction model, which conducts completely random buy/sell trading actions,
has been executed 10,000 times, changing the random generator seed. On average, it achieves a
10% loss with a 14% standard deviation.

Our first prediction model, trained without the removal of noisy tweets, gains 56%, whereas
the second one, trained removing noisy tweets from the training set as described in Section 9.2.3,
gains 84%. Standard deviation has not been computed for the two latter results, as there are not
random choices and experiments do not need to be repeated. As far as we know, both results
outperform the state-of-the-art in trading with DJIA [OM06], even with respect to more recent
advanced approaches based on deep learning and recurrent neural networks [FM18, BYR17]. In
order to get an annual ROI, the above mentioned gains should be multiplied by four as they have
been accumulated over a period of just three months.

Figure 9.5 reports the ROI time series produced by the three models over the test period, i.e.
the last three months in 2008. The ROI time series of the random prediction model is always
negative, and some days the loss exceeds 10%. The prediction model without noise removal
initially has a slight loss, then it almost constantly increases. The prediction model with noise
removal does not produce gains in the first week, then it grows really faster with respect to the
two previous models.

9.4 Final remarks
In this chapter, we have developed a text mining method for the prediction of DJIA trend based
on knowledge extracted from ten million tweets emitted within a year. The method recognizes
and filters out irrelevant tweets that represent noise and would negatively affect the prediction
accuracy. This is obtained by means of a noise detection technique, which acts both at the tweet
level and at the instance level (i.e. aggregation of tweets).

Comparing the method with the same tweets dataset and DJIA trends used in [BMZ11], our
simple classification model based on the vector space model has achieved about 80% accuracy.
Applying the noise detection method, irrelevant tweets are filtered out from the training set,
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Figure 9.5: Time series of the return on investment (ROI) of three prediction models: random,
without noise removal, with noise removal. The test period spans three months, i.e. from October
to December 2008. Source: [MPD+].

and accuracy grows up to 88.9%, outperforming both our base classifier and the best prediction
method based on social network posts proposed in [BMZ11].

Finally, a trading protocol has been added in order to perform buy/sell operations on the basis
of the prediction methods proposed. The trading experiments show the total return on investment
(ROI) from the initial capital. The values without and with noise removal are 56% and 84%
respectively, considering three months as the test period.
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10
A skillset-based job recommender

In this chapter, a job recommendation approach is introduced, where the best job is suggested
to a given candidate based on the semantic similarity between skills extracted from LinkedIn
users. A job clustering is first proposed to find and group semantically similar jobs. Based on
this clustering, a novel method is introduced to match candidates with jobs. The basic idea is to
discover similarity between different job positions, and then to find out their latent associations
with people’s skills.

As far as we know, the most similar work with respect to our proposal and used data is
by Bastian et al. [BHV+14], who constructed a folksonomy of skills and implemented a skill
recommender system. In particular, their goal was to analyze the users’ skillsets extracted from
LinkedIn with the aim of helping users into profile skill filling. The authors pointed out the
feasibility as well as the practical utility of job recommendation based on LinkedIn users’ skills,
without further discussion and detailed analysis.

10.1 Building a hierarchy of job positions
This section explains how LinkedIn public profiles can be used to build a hierarchical clustering
of jobs. Hierarchical clustering aids to build a folksonomy (i.e. a user-defined taxonomy) of
jobs. Such a folksonomy is useful to correlate distinct job positions, whereas only each person’s
job history is normally available. Therefore, a good job clustering is an important first step
for systems that match candidates with jobs, namely job recommendation systems as well as
recruitment systems.

10.1.1 Methodology
We describe here the process used to perform a clustering of job positions. We consider a set
U = {u1,u2, . . .} of user profiles (hence just profiles), where each of them can be considered as
the description of a specific person.

To each profile u is associated a set S(u) of skills, representing the competencies that a
specific person claims to have. The same skill may be associated to more than one profile. The
set containing all the distinct skills is denoted by S = {s1,s2, . . .}.
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To each profile u is also associated the current job position of user u, denoted by p(u). Since
different users can perform the same job at the same time, many profiles can be associated with
the same current job position. We denote by P = {p1, p2, . . .} the set containing all the distinct
job positions.

We are interested in obtaining a folksonomy of the possible job positions (hence just positions)
from the available data. For this purpose, we perform a hierarchical clustering of positions in P .

A structured representation of the possible positions is needed in order to measure their
mutual distances. We extract a vector-based representation, where skills are used as features.
Specifically, from the set U of known profiles, we build a |S |× |P| matrix C counting the
co-occurrences between skills and positions within them. Values in C are computed as follows:

ci, j =
∣∣u ∈U : si ∈ S(u)∧ p j = p(u)

∣∣ (10.1)

In practice, ci, j is the number of profiles having both si among skills and p j as position. Each
position is then represented as a weighted mix of different skills, according to those possessed
by persons employed in that job.

Intuitively, skills within the set S can be semantically similar to each other or they can

even be synonyms: for example, “ms office” can be considered as strictly related to “ms word”,
while they are both quite unrelated to “psychology”. Also, the same skill can be expressed with
different names, e.g. “ms word” rather than just “word”, or in different languages, e.g. “human
resources” rather than “selezione del personale”, which is the Italian translation of “human
resources”. The vector-based representation of positions can be improved by augmenting for
each position (i.e. vector) the relevance of the skills (i.e. features) related to those explicitly
included in the mix. This aspect has already been addressed in text analysis, where correlations
usually exist between terms (i.e. features) appearing throughout text documents (i.e. vectors).
A well-known technique to deal with such a problem is Latent Semantic Analysis (LSA),
which employs Singular Value Decomposition (SVD) to obtain a lower-rank approximation of a
term-document matrix [DFL+88].

Equivalently, we apply LSA to the skill-position matrix C to obtain a transformed matrix C′.
We first decompose C into three factors.

C = U ·Σ ·VT (10.2)

U and V are orthogonal matrices with eigenvectors of C, while Σ is a diagonal matrix with
eigenvalues. These matrices define a latent vector space, where skills and positions are repres-
ented by rows of U and V, while values in Σ indicate the importance of each dimension in this
space: lower values are supposed to represent dimensions mostly yielding noise instead of valid
information. Setting all values of Σ to 0 except for the r highest ones, and multiplying back
the three components, we obtain the transformed matrix C′, which is a denoised approximation
of C with rank r. For the r parameter, we choose the minimum value for which the sum of
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retained eigenvalues is at least 50% of the total. The transformed matrix C′, as the original one
C, contains for each position pk a column vector pk that represents the job itself.

The distance between two distinct job positions is computed as the inverse of their cosine
similarity.

d(pa, pb) = 1− cos(pa,pb) = 1− pa ·pb

||pa|| · ||pb||
(10.3)

The mutual distances between positions are finally given as input to a complete-linkage agglom-
erative clustering algorithm, which extracts a dendrogram of the positions. Such a dendrogram
has the form of a binary tree with positions as leaves.

10.1.2 Experimental setup
The methodology described in Section 10.1.1 to extract a hierarchy of job positions has been
tested on a set of data extracted from LinkedIn. Operations have been carried out by custom
software based on both Java and the open source R environment for statistical analysis.

The dataset used as a benchmark has been extracted from publicly accessible LinkedIn
profiles of users from Italy: for each profile, the skillset declared by its owner, and the current
job position have been considered. Skills and positions are specified by users as free text: some
of them occur in many profiles, but most skills are only present in a few or just one profile, due
e.g. to typos or uncommon names. The presence of different languages in the dataset constitutes
another issue: many Italian users filled in the profile in their native language, whereas others
used English to target a wider audience. Due to these aspects, the same actual skill or position
can be found multiple times with different names.

We started from a preliminary dataset containing 51,000 profiles as a training set and 37,000
as a test set. The former initially included 2,410 distinct positions: as some of them consisted
only of punctuation (e.g. “?”) or were not actual jobs (e.g. “mr.”), we have removed them
from the set P of admissible positions. Consequently, the training and test profiles having an
inadmissible job as the current position have also been removed. In a second pre-processing
step, we have removed the training profiles declaring less than three skills, in order to improve
the quality of the knowledge base. This led to the removal of some positions and skills, which
did not occur anymore in the training set. For consistency, we have also removed them from
the test set, consequently deleting profiles having any of the removed positions. After such
pre-processing operations, two disjoint groups of profiles suitable as the training and test sets are
obtained. The former is used to compute similarities between skills and positions, and to build
the hierarchy. The latter is used to evaluate the performance of the recommendation method that
will be discussed in Section 10.2.

The final dataset is composed of 42,056 training profiles and 30,639 testing profiles; it
contains 6,985 unique skills, 2,241 distinct positions, and at least 3 skills for each profile. The
distributions of skills and positions are both highly skewed: for example, the most frequent
position is “studente” (Italian translation of student) with 1,693 training profiles and 1,383 test
ones, whereas other jobs have only one representative profile.
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10.1.3 Job hierarchy
In order to infer a hierarchy of job positions from the training profiles, the method described in
Section 10.1.1 has been applied. The goal is to obtain a consistent folksonomy where similar
occupations are grouped and well separated from unrelated ones.

Due to the absence of a compatible gold standard, it is not possible to quantitatively evaluate
the correctness of the inferred hierarchy. Therefore, we browsed through the obtained tree to
check whether the obtained clusters are reasonable. We report in Figure 10.1, Figure 10.2 and
Figure 10.3 some examples of the hierarchy, also showing the bottom-most binary splits between
elements. Since job positions have both English and Italian names, a translation of the latter is
provided in figures for readers’ convenience.

Readers may note in Figure 10.1 and Figure 10.2 that the clustering algorithm mostly
succeeds in outlining groups of related job positions. As the relatedness among jobs has been
inferred by using their co-occurrences with skills within users’ profiles rather than just lexically
similar words, similar occupations are effectively grouped into the same cluster, although they
are expressed with different terms. Analogously, the same positions with distinct English and
Italian names are mostly successfully grouped. This outcome suggests that jobs can be frequently
identified based on the skills of the users having such positions.

On the other hand, the clustering may also produce heterogeneous groups, including unrelated
jobs, as can be seen in Figure 10.3. This outcome can be due to singularities in the co-occurrences
between skills and positions within the training set. Job positions associated to an adequate
number of profiles and skills have a consistent representation, whereas others that rarely occur in
profiles are mostly associated with unrelated skills. For example, “personal trainer” has been
considered similar to occupations dealing with computer networks. While it appears illogical,
the cause can be found in the profiles used to infer the taxonomy. Two out of nine training
profiles having “personal trainer” as the current position, declare IT and telecommunications-
related skills such as “linux” and “tcp/ip”. If no other occupation with sufficient occurrences is
significantly similar to “personal trainer”, this position will be grouped with unrelated jobs that
share a significant part of their skillset with “personal trainer”. Another example is “panettiere”
(Italian translation of “baker”), which is found as the current employment in two training profiles
only. While one of them explicitly includes “bakery” among the abilities, the other skills in both
profiles are unrelated, mostly very generic, such as “teamwork” and “problem solving”, which
can equally be linked to other uncommon positions.

Summing up, the hierarchy successfully delineates groups of similar job positions, although
few clusters of unrelated occupations may also be produced.

10.2 Job recommendation
In this section, a novel method for job recommendation is proposed, which exploits the clustering
of job positions illustrated in Section 10.1 to recommend the most appriopriate jobs to a given
candidate.
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0.6 0.5 0.4 0.3 0.2 0.1 0.0

impiegata amm.va
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Figure 10.1: A part of the hierarchy containing legal jobs. Source: [DMP+16].
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Figure 10.2: A part of the hierarchy containing jobs related to mental health care.

132



CHAPTER 10. A SKILLSET-BASED JOB RECOMMENDER 133

1.0 0.8 0.6 0.4 0.2 0.0

independent telecommunications professional

security

telecommunications professional

personal trainer

computer networking professional

network manager

network engineer

network specialist

cassiere

capotreno

operatrice telefonica

naturopata

panettiere

professionista nel settore media radiotelevisivi

retail professional

[TV/radio media professional]
[baker]

[naturopathy specialist]

[telephone operator]

[train conductor]

[cashier]

Figure 10.3: A part of the hierarchy containing heterogeneous jobs. Source: [DMP+16].
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10.2.1 Methodology

Other than extracting a consistent hierarchy of positions, the knowledge of a set of profiles can
be used to infer the most advisable job positions for any other profile ue, whose skillset S(ue)
is given. In other words, a job recommendation system can be produced, where the best jobs
are suggested to users according to their skillsets. While the current positions in profiles are
assumed to be correct (i.e. the best possible), it should be noted that multiple positions can be
recommendable given a skillset. Therefore, a job recommender could possibly suggest a set
containing the most likely job positions.

In our recommendation method, both positions and profiles are represented as comparable
vectors, and the jobs with the most similar vectors are selected for each profile The skillset S is
used as the feature set. For each profile, a ranking of job positions is output, whose only the first
k items are usually considered.

Each profile ue is simply represented by a binary vector ue, whose values are 1 in corres-
pondence of skills known by the user, and 0 elsewhere.

Regarding the vectors of job positions, we reuse the results of position clustering: one option
is to use the columns of the original skill-position co-occurrences matrix C; another is to use its
low-rank approximation C′, computed by means of LSA as described in Section 10.1.1.

In both cases, we compare the user’s skillset ue with each column p j by means of cosine
similarity. For a given number k of positions to be recommended, we return the set Rk(ue) of k
positions whose vectors are most similar to ue. Such positions represent the recommendation for
ue.

10.2.2 Results

Job recommendation is performed using the same pre-processing and partitions (Section 10.1.2)
employed to build the hierarchy of job positions. Specifically, we compute job recommendations
for profiles of the test set, hereby denoted by Utest, comparing the output of our method with the
known one.

For the experimental evaluation, we consider the current occupation of each user as the correct
answer that should be given by the recommender, ignoring further information. Readers should
consider that the identification of such a specific job position is very hard for the recommender.
As discussed above, due to the use of free text, many synonyms and misspelled variants may
be used to denote the same job, but they will actually be considered as distinct elements in P .
The recommender may also suggest a ”wrong” job, different from the actual one, but requiring
a very similar skillset. Although in such a case the recommendation is considered as wrong, it
will probably be reasonable in a practical use case. Ultimately, persons can be practicing jobs
that are unrelated to their skills. These aspects may introduce outliers and potential errors in
both training and test data, which negatively affect accuracy and are detrimental for quantitative
evaluations.

The algorithm outputs the k most appropriate job positions. The actual position of a test
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profile could either be among the recommended or not, and we want to evaluate how frequently
the recommender hits the actual positions of test profiles, varying the value of k. For k ranging
from 1 to 50, we evaluated the recall@k, i.e. the ratio of test profiles w.r.t. their total for which
the actual position is among the top k recommendations.

R@k =
|u ∈Utest : p(u) ∈ Rk(u)|

|Utest|
(10.4)

root

CA

pa

pr

0

1

2

3

4

Figure 10.4: Illustration of hierarchcal recall: gray nodes in the tree are clusters, white nodes are
single job positions (i.e. leaves), numbers on the right indicate the depth of the tree.

As discussed above, recommended positions can possibly be reasonable, in spite of being
different from the one actually declared by the user’s profile. Indeed, positions that are similar
to the target one are usually good recommendations. We can leverage the previously computed
hierarchical clustering of positions to evaluate how much a recommended position is close to
the actual one. For this purpose, we use hierarchical recall (hR), proposed by Silla and Freitas
[SF11]: given an actual position pa and a single recommendation pr, hR is the ratio between the
depth (i.e. the distance from the root, denoted here by ∆) of their deepest common ancestor (CA)
and that of pa. For example, in the case depicted in Figure 10.4, hR is 2/4 = 0.5, as the actual
position is found at depth 4 and the deepest common ancestor between it and the recommended
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position is at depth 2. In case of k recommendations for the same profile, the maximum hR is
considered; for the whole test set of profiles, the mean is computed.

hR@k =
1
|Utest| ∑

u∈Utest

max
r∈Rk(u)

∆(CA(p(u),r))
∆(p(u))

(10.5)
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Figure 10.5: Trends of recall (solid lines) and hierarchical (dashed lines) recall for values of k
from 1 to 50. Source: [DMP+16].

The recommendations of job positions for test profiles have been computed using both the
described approaches, i.e. representing positions either with the original co-occurrences matrix
C or with its low-rank approximation C′ obtained by means of latent semantic analysis. In both
cases, we compared recommendations with actual positions to compute traditional recall and
hierarchical recall for values of k from 1 to 50. Table 10.1 reports the values that recall assumes
for some specific k, whereas the plot in Figure 10.5 summarizes all the measurements.
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Original matrix LSA matrix
k R@k hR@k R@k hR@k
1 0.050 0.252 0.082 0.296
5 0.123 0.428 0.202 0.474
10 0.172 0.513 0.280 0.549
20 0.228 0.602 0.367 0.640
50 0.316 0.718 0.502 0.763

Table 10.1: Recall and hierarchical recall for some k values.

Skills (alphabetical order) Known position Top 5 recommendations
blogging, e-commerce, facebook, responsabile (1) marketing manager
marketing communications, customer service (2) sales manager
marketing strategy, social media, (customer service (3) titolare (owner)
social media marketing, manager) (4) export manager
social networking (5) agente di commercio (sales agent)
apache, arch linux, centos, cisco it system (1) system administrator
nexus, cisco switches, dns, f5 bigip, administrator (2) it manager
netbackup, network administration, (3) network administrator
radware, red hat linux, sophos, trend (4) system engineer
micro, vmware, vmware esx, vsphere (5) senior system engineer
adults, mental health, psychology, psychologist (1) psicologa (psychologist, woman)
psychotherapy (2) psicoterapeuta (psychotherapist)

(3) psicologa psicoterapeuta (woman)
(4) psicologo (psychologist, man)
(5) psicologo psicoterapeuta (man)

Table 10.2: Example of test profiles with skills, known positions and recommendations. English
translations of Italian position names are reported in italic.

Comparing the results achieved with the two matrices, the usage of latent semantic analysis
always appears to be beneficial for the recommendation. Indeed, it improves the representation
of jobs according to their statistically estimated relatedness, and accuracy increases consequently.
Therefore, the following analysis focuses on the LSA matrix.

Obviously, the accuracy grows as the number k of recommendations to be output increases,
because it is more likely to hit the exact position or a very similar one. However, a smaller set of
good recommendations can often be more valuable in practice than a larger one, which could
more likely include improper elements. Looking at the traditional recall, readers can see that a
single recommendation for each profile exactly matches the actual occupation in just 8.2% of
the test cases. As the number of recommendations grows, the known position is more likely to
be hit: this happens in about one case every five when k = 5, one every four when k = 8 and one
every two when k = 50.

Comparing the traditional recall with hierarchical recall for equal values of k, the latter is
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superior by a consistent gap, ranging between 21% and 27%. This outcome suggests that in
many cases where the actual position is not recommended, at least one of the recommended jobs
is very similar.

This phenomenon can also be observed by manually comparing recommendations with
known positions. Table 10.2 shows, for some test profiles, both the actual known position and
the recommended jobs. It should be noted that, although the method fails in getting the right
occupation within the very top recommendations, the recommended jobs are anyway quite
similar to it or even synonyms. In practical use cases, such recommended positions still are valid
and reasonable for the given skillset.

10.3 Final remarks
In this chapter, we have introduced a novel job recommendation approach based on latent
semantic analysis, evaluating its performance by means of a hierarchical job clustering, which is
useful to correlate heterogeneous jobs. The basic idea of the method is to discover job similarities,
then to find out their latent associations with users’ skills.

For a matter of comparability, both people and jobs are represented as vectors of skills. The
algorithm starts from a skill-position matrix built from training data and expanded by applying
latent semantic analysis. Afterwards, cosine similarity between people and positions in the
skill-position matrix is computed for each test instance. Thus, since the algorithm outputs how
much jobs fit people’s skills, an ordered list of the recommended jobs can be built according to
their similarity with each person’s skillset.

LinkedIn has been taken as the reference scenario to evaluate the method because of its
widespread use, crawling real public profiles from which people’s skills and current job positions
can easily be inferred. Differently from other approaches [Chi99, MKWW06, PCG11], the
proposed method does not require to manually collect data, since large-scale data both in terms of
job positions and skills are already available on social networks. Finally, it should be noted that
neither the hierarchical job clustering nor the job recommendation algorithm require parameters
to be tuned. This makes the approach easy to use, and profitable in real and big data scenarios.
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11
Modeling job transitions and

recommending career pathways

Traditional job recommendation and recruitment systems focus on finding a match between
candidates and jobs, based on a set of relevant characteristics, including users’ requirements
and competencies, job requirements, and possibly other constraints. This chapter provides
a mechanism to match candidates with jobs that takes uncertainty about career choices into
account.

A skillset-based approach is advanced to build a job graph from raw job postings, where
job relationships are modeled in terms of skills. Then, the job graph, a candidate’s past job
history and career goal, and possibly other constraints, are given as input to a Career Pathway
Recommendation (CPR) algorithm based on Markov Decision Process (MDP), which is able to
recommend a personalized optimal policy for the candidate to reach her career goal.

The main steps of the approach, which will be carefully described below, can be seen
in Figure 11.1. In order to preserve word order and to extract word semantics, a distributed
representation of the words in job postings is learned without supervision. A clustering of job
postings is performed to group similar jobs. A set of relevant terms (i.e. skills) is extracted for
each cluster, and a skillset-based job graph is built accordingly.

When a candidate asks for a career pathway recommendation, her job history is exploited to
build her profile in terms of skills. Then, the candidate’s career goal is mapped to a state of the
job graph, i.e. goal state. The candidate’s profile, the goal state, and the job graph are used to
create an MDP, which takes into account the possible choices that the candidate could perform
to reach her career goal. An optimal policy can be extracted from the MDP and recommended to
the candidate, along with the skills that the candidate will acquire during the intermediate career
steps.

11.1 Modeling job transitions
This section introduces a mechanism to build a job graph from job-related information, so as
to mine relationships between distinct jobs and to model the likelihood to move from one job
to another. Such a mechanism relies on skills that are mined without supervision combining
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Figure 11.1: A schematic representation of the approach used to build a job graph and to exploit
it for career pathway recommendation. Source: [PAB+].
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the skip-gram model with a clustering algorithm, and then used to model job transitions. In
particular, a clustering of job postings is used to mine similar jobs, which are encoded as word
vectors and learned through the skip-gram model, so as to extract word semantics and discover
phrases in text without supervision [MCCD13, MSC+13].

The most relevant terms of each cluster, which represent the required skillset by jobs in
that cluster, are used to express the likelihood to move from one cluster to another, i.e. the
likelihood that an application for a job in a cluster succeeds, given that the current job is in
another cluster. Modeling job transitions paves the way for an emerging research thread, that
is career pathway recommendation. A novel MDP-based career pathway recommender will be
introduced in Section 11.2.

11.1.1 Clustering of similar jobs

The idea behind the construction of a job graph is to discover the characteristics and the
relationships among jobs. On one hand, knowing the main features of a job allows candidates
understanding whether they are ready to apply for it, along with the skills they need to strengthen
in order to increase the likelihood to succeed in their application. On the other hand, identifying
similar jobs is useful to provide candidates with many options to meet their profiles.

Let us assume to have a corpus of job postings in text format. Since the main goal is to extract
job similarity, a semantic-bearing word representation is required. The advent of deep learning
has brought very powerful techniques for text encoding, named distributed representations (aka
word vectors), alternative to the bag-of-words model. Among those, local context window
methods, such as the skip-gram model and the continuous bag-of-words model [MCCD13], have
been proved to solve the main drawbacks of bag-of-words model, which loses the ordering of
words and ignores their semantics. Word vectors have desirable algebraic properties, e.g. king
- man + woman results in a vector very close to queen [MSC+13]. Moreover, the skip-gram
model is able to discover phrases in text, e.g. computer engineer rather than just the words
computer and engineer. These properties make the skip-gram model suitable to encode words in
job postings. The whole job posting can finally be encoded as a paragraph vector, proposed by
[LM14] to learn fixed-length representations of variable-length text.

Once a distributed text representation has been learned, the main features of job postings
can be mined. Job postings usually include job-related information, typically unstructured or
semi-structured, such as job title, description, requirements, location, salary, and so on. Let
J = { j1, j2, . . . , jn} be the set of job postings, which are initially considered to be different.
However, distinct job postings can refer to the same topic, e.g. computer scientist and software
engineer refer both to the IT world. It may also happen that similar jobs are described using
lexically different terms, e.g. ”SW engineer who is very good at programming” and ”programmer
with a strong software development background” are very related from a semantic point of view,
despite the fact that they do not share any word. A clustering of job postings can be performed
to cope with such frequent situations, so as to form semantically similar groups. Formally,
each job posting j ∈J will be assigned to a cluster ci ∈ C , where C = {c1,c2, . . . ,ck},k ≤ n
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is the set of clusters. After job postings have been clustered, the H most important terms
S ci = {sci

1 ,s
ci
2 , . . . ,s

ci
H} can be retrieved from each cluster ci. These terms represent the skillset

that characterizes all jobs within the given cluster. In other words, they can be seen as the
required skillset in order to get a job within the given cluster. Several techniques exist that aim at
extracting relevant terms from unstructured data, including Latent Dirichlet Allocation (LDA),
Latent Semantic Analysis (LSA), and Term frequency - Inverse document frequency (TfIdf).
Such techniques can create job clusters C as well as the skillsets S = {S c1,S c2, . . . ,S ck}
that characterize them.

11.1.2 Building a job graph
From a theoretical point of view, a job graph could also be built straight away from single jobs
J , rather than from job clusters C , i.e. J = C when each job posting forms a standalone
cluster. However, building the job graph from job clusters is beneficial, because semantically
similar jobs are already grouped and denoted with the same skillset, and they can be considered
as equivalent career steps. To clarify this aspect, let us consider computer programmer and
application developer as examples of job positions. Although they are syntactically different,
they are likely to refer to the same job, or at least to semantically similar jobs, whose skillsets are
similar. Identifying their similarity is very important in terms of career recommendation. If they
were considered as different, a computer programmer position could be recommended as the
next career step to an application developer, and vice versa, although that recommendation will
not be useful in terms of career progression. This will not happen if they are considered as the
same job. Both the computer programmer and the application developer will end up with more
useful recommendations, such as for instance software analyst or project manager. Moreover,
considering computer programmer and application developer as the same job, if a recommender
system suggests the former as the right job for a given candidate, she will automatically know
that the latter is as good as the former.

After having pointed out the advantages of job clustering, let us describe how it can be used,
together with the skillset characterizing each job cluster, to build a job graph. A job graph
G = (C ,L ) is a directed graph, whose nodes (aka states or vertices) represent job clusters C
and whose transitions represent the likelihood to get a job in cluster c j ∈ C , starting from cluster
ci ∈ C . The basic assumption here consists in modeling both vertices and transitions in terms of
skills. As previously stated, each cluster ci is associated with and characterized by a set of terms
S ci = {sci

1 ,s
ci
2 , . . . ,s

ci
H}. In other words, S ci can be considered as the required skillset to get a

job j ∈ ci. The state transition matrix is denoted by L = {li j},L ∈ [0,1]k×k, where li j is the
likelihood of getting a job in node c j, given that the current job is in node ci. This probability
may depend on several factors, such as the different importance of skills, time and geographical
constraints, just to mention some. Without loss of generality, here skills have been considered
equally relevant, and other constraints have been ignored in order to keep the approach as simple
as possible. Other ways to compute probabilities can easily be plugged in. The likelihood li j
only depends on skillsets S ci and S c j . In order to provide a more precise definition, let us
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define the overlapping factor Oi j between a source node ci and a destination node c j:

Oi j =
|S ci ∩S c j |
|S c j | (11.1)

Note that Oi j ∈ [0,1], and, in general, Oi j 6= O ji. In particular, Oi j = 0 when no skill in S ci

is required by jobs in c j, and Oi j = 1 when all required skills by jobs in c j are already in S ci .
Trivially, Oii = 1. The likelihood li j of getting a job in node c j, given that the current job is in
node ci, is a function of the overlapping factor Oi j. Let us assume the probability exponentially
increases with the overlapping factor, which is reasonable if the skills are equally relevant and
other constraints are disregarded. Under this assumption, the likelihood li j can be expressed as
follows:

li j = f (Oi j) =
eOi j −1

e−1
(11.2)

Relying on Equation (11.2), the job graph is fully connected, because li j is computed for
each i, j = 1,2, . . . ,k. However, a threshold lthr can be added to avoid less likely state transitions
and to speed up computation, especially when a large number of clusters is considered and when
very unlikely transitions exist.

11.2 MDP-based career pathway recommendation
In this section, a general framework for career pathway recommendation is introduced. Such a
framework is based on a sound mathematical theory, namely Markov Decision Process (MDP).
It provides a personalized recommendation to each user, given an user’s profile, a career goal,
possibly far off in the future, and the structure of the job graph described in Section 11.1.

MDPs are suitable for recommending a career pathway, because they are able to model
uncertainty and rewards, both at the goal state and along the way. These capabilities are
very important for a career pathway recommender. Rewards allow ranking career alternatives,
identifying their goodness. However, it may happen that the job that apparently is the best option
at some point of the pathway cannot be reached, or that such a job is not the global best option,
in spite of being the local best. Modeling uncertainty allows dealing with such unexpected
situations.

11.2.1 Recommendation requirements
The job graph described in Section 11.1 can be exploited by a pathway recommender to suggest
an optimal policy for a user to reach her career goal. Careful readers may have noted that
the job graph is unique, independent of users. In order to provide a user with a personalized
recommendation, her past job history is required. Let us hypothesize the user u has performed
m jobs in her history J u so far, i.e. J u = ju

1→ ju
2→ . . .→ ju

m. Job history J u can be used
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to build a profile of user u, which expresses the skills u has learned in her history. This can
be achieved by mapping each job ju

i ∈J u performed by u to a cluster c ∈C, computing the
similarity between ju

i and all clusters C , and assigning to ju
i the most similar cluster c∈C . Since

c is associated with a skillset S c, user u, who performed a job within cluster c, can be assumed
to have acquired all the skills required by that job, i.e. S c. Iterating the same procedure over all
past jobs J u, the user’s profile Pu will be:

Pu = {(su
1,o(s

u
1,u)),(s

u
2,o(s

u
2,u)), . . . ,(s

u
z ,o(s

u
z ,u))} (11.3)

where o(s,u) computes how much user u reinforced skill s. The o function simply counts the
occurrences of s in the m skillsets S ci corresponding to the jobs J u performed by u. One could
object that a user who performed a job has not necessarily acquired every skill characterizing
it. This is true, since it may depend on how many years the user has performed the job for, and
possibly on other factors that can be taken into account when mapping user history to her skillset.
However, these variables are beyond the scope of this work and will be disregarded for a matter
of simplicity.

Rather than focusing on computing a user profile, we use user profiles as an input to our
main contribution. Although the user’s profile is conceptually different with respect to the states
of the job graph, which are independent of the user, they can still be compared, since they are
both expressed in terms of skills. The cluster wherein a candidate is most likely to get a job
can be found by computing the similarity between candidate’s skillset Pu and each cluster
c ∈ C . Similarity is obtained by summing the ranks of skills that are both in Pu and S c. For
instance, the similarity between Pu = {(programmer, 4),(computer, 2),(technology, 3)} and
S c = {technology, computer, software} is equal to 5. The cluster with highest score is that
wherein the candidate is most likely to get a job.

The last missing information to recommend a career pathway is the user’s career goal. If the
job graph was not large, the user could inspect it and directly choose the state she aims to reach,
but this is not true in general, and may depend on the amount of data used to build the job graph.
Moreover, in real world the user is more likely to provide a plain text description of her career
goal, e.g. in her CV, or to clearly state which is the job she aims at. Under this assumption, the
selection of the career goal state cu

g ∈ C becomes identical to mapping a job to the most similar
cluster. Therefore, the similarity between candidate’s career goal gu and all clusters C can be
computed, selecting the most similar cluster cu

g ∈ C as the goal state. Note that it may happen
that the user’s current state coincides with the goal state, in which case no career pathway is
needed.

11.2.2 MDP recommender
Given a job graph G, a user’s profile Pu and a goal state cu

g ∈ C in the job graph, the career
pathway recommendation problem can be formulated as a Markov Decision Process (MDP). An
MDP is a four-tuple: 〈S,A,R,T 〉, where S is a set of states, A is a set of actions, R is a reward
function that assigns a real value to each action a ∈ A taken from state si ∈ S and ending in
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state s j ∈ S, T is a function that provides the transition probability between pair of states given
an action. In an MDP, the decision-maker’s goal is to behave so as to maximize the reward.
An optimal policy is computed among all possible policies, and it corresponds to the one such
that the reward will be maximized. In the CPR context, an optimal policy corresponds to the
sequence of jobs that a user should try to get in order to reach her career goal.

It should be noted that both transition probabilities and rewards are broad concepts. Several
factors may be taken into account for their definition, including salary, geographical constraints,
and so on. Here we define them in terms of skills for simplicity, but other formulas can easily be
plugged in. Let us see how the job graph, the user’s profile, and the goal state in the job graph
can be exploited to create an MDP. The user’s profile Pu becomes a state s0 ∈ S of the MDP.
The subscripts used for MDP state representation denote the job graph states wherein the user
has got a job so far. For example, a user is in state s{0,4,8} ∈ S if she has got at least one job in
cluster c4 ∈ C and at least one job in cluster c8 ∈ C . When the user is in state s{0,4,8}, she will
be acquired both the skills in S c4 and in S c8 , so the order in which she got the jobs is irrelevant.
The job graph states C can be considered as the set of actions A available to the user. The user is
free to apply for a job in whatever state of the job graph. Let us say that the user currently is
in state sCur ∈ S, her profile is Pu

Cur, and she takes an action ai ∈ A, i.e. she applies for a job
in cluster ci ∈ C . In case the application fails, neither the MDP state nor the user’s profile will
change. In case it succeeds, the user will reach a new career state sCur∪i, and her profile will be
updated according to the following formula:

Pu
Cur∪i = Pu

Cur∪S ci (11.4)

The rationale is that when the user gets a job in ci, she will learn all the skills characterizing jobs
in ci. The skills already owned by the user will be strengthened, whereas new skills will be added
to her profile. The success or failure of the application depends on the likelihood lPu

Cur→i ∈ [0,1]
for a user whose profile is Pu

Cur to get a job in cluster ci, which is computed exactly as for the
job graph. This means that for each state sCur ∈ S and action ai ∈ A, the transition probability to
move to a state sNext ∈ S will be computed as follows:

t(sCur,ai,sNext) =


lPu

Cur→i if sNext = sCur∪i

1− lPu
Cur→i if sNext = sCur

0 otherwise

(11.5)

The reward obtained by the user when she applies for a job in ci depends on the application
outcome and on the amount of skills required by the goal state cu

g that u would acquire in case
of a successful application. More precisely, let us define the benefit bg

Pu
Cur→i ∈ [0,1] for a user

whose current profile is Pu
Cur to get a job in cluster ci with respect to her career goal state cu

g as
follows:

bg
Pu

Cur→i = 1− |(S
cg \Pu

Cur)\S ci|
|S cg \Pu

Cur|
(11.6)
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The more skills ci and cu
g share among those that u does not own the higher the benefit for u to

get a job in cluster ci. Trivially, the benefit to get a job in the career goal state will be maximum,
whereas the benefit to get a job in the current career state will be 0. The reward a user in state
sCur ∈ S will get when she lands in state sNext ∈ S after choosing action ai ∈ A can be computed
as follows:

r(sCur,ai,sNext) =



0 if g ∈ sCur

M if g ∈ sNext

bg
Pu

Cur→i if sNext = sCur∪i,

i 6= g, i /∈Cur
−ε if sNext = sCur

0 otherwise

(11.7)

where sg ∈ S represents the fact that the user has been able to reach her career goal state cu
g ∈ C ,

M >> 1 is a large positive integer, and ε << 1 is a small positive real. The rationale is that
the reward will be very large, i.e. M, as soon as the user is able to reach her goal, thereafter no
transition will be allowed. Otherwise, the reward depends on how much a new job will help the
user reaching her career goal, e.g. how many skills required by the career goal and currently
not owned by the user will be acquired through that job, or more generally, the reward can also
reflect salary and other factors. The negative reward is given to avoid two undesirable behaviours
of the user: applying for a job with a negligible likelihood to succeed, and applying for a job that
has already been performed. Both behaviours are not beneficial in terms of career evolution, and
will result in the user being stuck in the same career state. Trivially, the reward of unfeasible
transitions is equal to 0.

The MDP process can be solved for example using the policy-iteration algorithm [How64],
and an optimal policy can be extracted accordingly. The sequence of actions that maximizes
reward corresponds to the recommended career steps for a user u whose initial profile is Pu

and whose career goal is cu
g. The skillsets Pu

Cur at each state corresponds to the evolution of the
user’s profile during the pathway.

11.3 Experimental evaluation
The experiments aim at validating to what extent the MDP-based approach is able to recommend
a pathway to users having a well-defined career goal. The analysis is performed on a publicly
available corpus, which has previously been employed for a Kaggle competition on job recom-
mendation.1 Since the original task is different from the purpose of this work, we use just a
subset of the data, including job postings and users’ job histories. The former comprise job title,
description and requirements expressed in natural language, whereas the latter the sequence of
jobs each user has performed. It should be noted that the users’ past jobs are just names, such

1https://www.kaggle.com/c/job-recommendation/data
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as software engineer, software analyst, project manager, and do not match with those in job
postings.

The job postings are used to build the job graph. Standard text pre-processing techniques are
applied, including tokenization, case folding, and lemmatization. Distributed representations of
words and job postings are learned, relying on the gensim [RS10] implementation of paragraph
vectors.2 We use the distributed bag-of-words version of paragraph vectors, training word vectors
in skip-gram fashion. The dimensionality of feature vectors is set to 100 after a tiny tuning,
whereas the other parameters are left to their default values. Careful readers may find further
details on parameters in the original papers [MCCD13, LM14] as well as in the previously linked
gensim library. After having mapped the job postings into semantic-bearing feature vectors,
Mini-batch K-means is applied to group similar jobs, empirically finding the best number of
clusters, which is strongly dependent on data. The 30 most representative terms have been
extracted from each cluster, and considered as the required skillset to get a job in it. Then the job
graph is built as described in Section 11.1.2.

11.3.1 Evaluation protocol

Since the data are not crafted for career pathway recommendation, we design the following
strategy to evaluate our approach. Each job in the user’s history can be assigned to a cluster of
the job graph, and the corresponding skillset can be extracted accordingly. The first job in the
user’s career, ju

1, is used to build the user’s initial profile as just described, whereas the last job,
ju
m, is considered as the career goal. Our MDP-based approach will recommend a pathway from

the initial profile to the career goal, which can be compared with the natural path the user walked
(i.e. her sequence of jobs) in order to assess the goodness of our method.

Evaluation metrics should take into account to what extent the career path recommender can
be useful to the user in a real scenario. Indeed, a user might want to use the system 1) if it is
able to recommend a pathway towards her career goal, 2) if the recommended path is shorter
than the one she would walk by herself (i.e. less time is required to reach the goal), and 3) if the
recommender is able to satisfy as many desirable side conditions as possible during the pathway,
such as taking into account salary, location and other constraints.

In our evaluation protocol, the first point is satisfied by hypothesis by the user pathway, since
we are committed to consider the last job as the career goal. If the career goal was a future job
the user is aiming at, which is the most frequent use case, the user would not be guaranteed to be
able to reach the goal. On the other hand, the ability of the recommender to reach the goal state
mainly depends on the goodness of the job graph. The more the job graph represents a network
of jobs, the more the MDP-based approach is able to recommend a pathway towards the goal.
For evaluation purposes, we use different number of clusters to build the job graph, assessing
the accuracy accordingly, which is the fraction of times it is able to lead the user towards her
goal. The second point is very important, because nobody would use a system that recommends

2https://radimrehurek.com/gensim/models/doc2vec.html
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a pathway that takes forever to reach the goal. The system will be useful if the number of hops
required to reach the goal state through the recommended policy is lower than that required by
the user. More formally, let Ru be the sequence of future jobs that will be recommended to user
u, let U be the number of users, and let G be the set of good recommendations. The job history
J u of user u can be used as simulation of the future evolution. As previously explained, the
first job ju

1 of the sequence J u is used to extract the user’s profile, the last job ju
m is interpreted

as the career goal, whereas the intermediate jobs ju
2→ ju

3→ . . .→ ju
m−1 represent the pathway

walked by the user towards the goal. J u can be compared with Ru to extract G . In particular, a
recommendation can be considered to be good if |Ru|< |J u| and the last job of the sequence
Ru is the career goal. The metric based on the number of hops, NHM, will be a value in [0,1]
computed as follows:

NHM =
|G |
U

(11.8)

In case the duration of jobs was available, it would be worthwhile that the whole pathway
duration was minimized rather than the number of hops, and the metric should be adapted
accordingly. The third point mentioned above is beyond the scope of this paper, because further
constraints have not been considered for the sake of keeping the approach as simple as possible.
If constraints were added, it could also be worthy to assess whether the system is able to meet
them, although this is not the primary goal of a career pathway recommender.

11.3.2 Results
Figure 11.2 shows the Utility of the recommender, which is the ratio between NHM and the
accuracy of the recommender. The Utility represents the fraction of times the recommender
suggests a shorter pathway to the user, given that it is able to recommend a pathway that
eventually reaches the goal. Computing the Utility over all users of the analyzed corpus, it is
always over 0.8. Considering that the average pathway length of the analyzed users is 4.23, the
outcome is particularly valuable, because it is hard to optimize an already short pathway. The
Utility is almost constant by increasing the number of clusters used to build the job graph, but
some deviations may occur depending on the likelihood to move from one cluster to another,
which affects the optimal policy computed by the MDP-based recommender. Since in our
simulation, for a matter of simplicity, the likelihood to get a job in a cluster only depends on the
overlapping factor, results can either positively or negatively be affected by variations in the job
graph structure.

The second experiment we performed only takes into account the users whose pathway length
is at least 10, so as to evaluate the performance of the MDP-based recommender in reaching long
term goals. The results in Figure 11.3 show that the accuracy of the recommender and NHM
generally grow with the number of clusters. When few clusters are employed, the job graph is not
appropriately represented and the recommender struggles to identify the career goal. Increasing
the number of clusters, performance improves because jobs are better represented and it is easier
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Figure 11.2: The Utility of our system varying the number of clusters employed to build the job
graph. Source: [PAB+].
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Figure 11.3: The accuracy and NHM of our system for users who performed at least 10 jobs.
Source: [PAB+].
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to recognize the goal. However, readers may have noted that accuracy decreases when the job
graph is constructed with 50 clusters. This outcome depends again on the way we computed
likelihood in the simulation. Relying for simplicity on the overlapping factor to compute
likelihood and setting lthr to 0.2 to avoid unlikely transitions and speed up computation, some
connections between states can possibly be removed, and the recommender can be prevented
from reaching the career goal. In a real world scenario, where the likelihood also depends
on other constraints, such as for example salary and location, the MDP-based recommender
will benefit from larger number of clusters. Careful readers may have noted that when the
recommended pathway succeeds to reach the goal, it is almost always shorter than the pathway
walked by the user. Indeed, accuracy and NHM overlap regardless of the number of clusters,
meaning that the Utility always approaches 1. The outcome proves the ability of the MDP-based
recommender in reaching long term goals, recommending a pathway that is both safer and shorter
than that the user would walk.

In a real world scenario, it is advisable to choose a number of clusters that maximizes NHM.
This means that the system is able to recommend a shorter pathway towards the goal than the
user is able to do, which is even safer because all possible pathways have been explored by the
MDP. The right number of cluster can be established by following the evaluation protocol we
presented here, then a pathway towards a future career goal can be recommended. Anyway it
is worthwhile to remember that for each user a different MDP has to be built, and the possible
MDP states are 2|C | to take into account the possible career evolutions. For example, with 10
clusters we have to build and solve an MDP with 210 ≈ 103 states for each user, with 20 clusters
the MDP has 220 ≈ 106 states, with 30 clusters 230 ≈ 109 states, and so on. Therefore, the right
choice may also depend on computational constraints.

11.4 Final remarks

This chapter has introduced a skillset-based approach to model job transitions and build a job
graph, which is independent of information about candidates. The job graph is then used in
combination with a candidate’s job history and career goal to create a Markov Decision Process,
whose solution provides the candidate with an optimal policy (according to a model built for the
problem) to follow in order to eventually achieve her career goal.

MDPs are suitable for recommending a career pathway, because they are able to model
uncertainty and rewards, both at the goal state and along the way, dealing with unexpected
situations. Similar jobs are mined by a clustering of job postings, and the most relevant terms
of each cluster are used to express the likelihood to move from one job cluster to another. The
MDP-based method can easily be customized to comply with changing requirements or to take
advantage of further available information. Beyond providing a recommendation inherently
aware of contingencies in career evolutions, our method helps users achieving their career goal
in an optimized manner. The recommended pathway is generally shorter than the one the user
would walk. Also, the method is flexible to define optimality, e.g. it could involve minimizing
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the intermediate career steps, or strengthening the user’s profile recommending intermediate
career steps so that the user can learn skills required by her career goal.
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12
Towards vendor-agnostic

implementation of big data analytics

In the age of Big Data, scalable algorithm implementations as well as powerful computational
resources are required, as previously discussed in Chapters 2 and 6. For data mining and data
analytics the support of big data platforms is becoming increasingly important, since they provide
algorithm implementations with the resources needed for their execution. However, choosing the
best platform might depend on several constraints, including but not limited to computational
resources, storage resources, target tasks, service costs. Sometimes it may be necessary to switch
from one platform to another depending on the constraints. As a consequence, it is desirable to
reuse as much algorithm code as possible, so as to simplify the setup in new target platforms.
Unfortunately each big data platform has its own peculiarity, especially to deal with parallelism.
This impacts on algorithm implementation, which generally needs to be modified before being
executed.

This chapter introduces functional parallel primitives to define the parallelizable parts of
algorithms in a uniform way, independent of the target platform. Primitives are then transformed
by a compiler into skeletons, which are finally deployed on vendor-dependent frameworks. The
procedure proposed aids not only in terms of code reuse but also in terms of parallelization,
because programmer’s expertise is not demanded. Indeed, it is the compiler that entirely manages
and optimizes algorithm parallelization.

12.1 Background
Under the explosive increase of global data, the term ”big data” is mainly used to describe
enormous datasets. Big data typically includes masses of unstructured data that need more
efficient analysis in comparison with traditional datasets [CML14]. Among the four phases of
the big data value chain, which includes data generation, data acquisition, data storage, and data
analysis, this chapter focuses on the last one. Big data analysis consists in designing appropriate
mining algorithms to find useful insights from big data [TLCV15]. Data mining algorithms are
pivotal for big data analysis in terms of computational cost, memory requirement, and accuracy of
results. They are generally tailored to specific problems, such as clustering [FAT+14, XLGC12],
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classification [TvdS13, RML14] and frequent pattern mining [LLH12, LMJ14]. Differently
from the data mining design for specific problems, machine learning algorithms can be used
for different mining and analysis problems, because they are typically employed as the search
algorithm of the required solution [WFHP16]. Since most machine learning algorithms can be
used to find an approximate solution for optimization problems, they can be employed for those
data analysis problems that can be formulated as optimization problems.

Machine learning algorithms need to be scalable in order to deal with large amount of
data. Furthermore, powerful computational resources are generally required. The support of
big data analytics platforms is therefore advisable to provide whatever is needed for algorithm
execution. Many platforms have been developed so far to provide such a support, as already
stated in Section 6.2. Apache Hadoop [Had09] is an open source framework for storing and
processing large datasets using clusters of commodity hardware. Hadoop is designed to scale up
to hundreds of nodes, and it also is fault tolerant. The programming model used in Hadoop is
MapReduce [DG08]. Some wrappers have been developed for MapReduce to foster the source
code development, including Apache Pig by Yahoo! [ORS+08] and Hive by Facebook [TSJ+09].
One of the major drawbacks of MapReduce is its inefficiency in running iterative algorithms,
because MapReduce is not designed for iterative processes. Spark [ZCF+10] is a next generation
paradigm for big data processing. Spark is able to perform in-memory computations, so as
to allow data to be cached in memory, eliminating the Hadoop’s disk overhead limitation for
iterative tasks. A remarkable alternative to Spark is Stratosphere [ABE+14], an open-source
software stack for parallel data analysis that brings together a unique set of features that allow
expressive, easy, and efficient programming of analytical applications at very large scale.

Careful readers may find further details on Big data mining platforms and algorithms in
Chapter 6.

12.2 Parallel programming primitives

This section introduces parallel primitives that support non-expert programmers in the defini-
tion and implementation of vendor-agnostic big data mining algorithms, preventing platform
lockdowns. Each primitive represents a highly abstract parallelization paradigm, which can be
used in the parallelizable sections of agnostic code. The primitives will then be processed by a
compiler in order to be deployed on specific target platforms, as will be shown in Section 12.4.

The idea is that code can be reused among platforms and that programmers do not have
to take care of optimizing the parallel code fragments. Programmers should just identify the
parallelizable fragments of code and manage high-level parallel primitives, whereas the choice
of a specific lower-level paradigm, the code conversion into vendor-specific target environments
and the optimization of parameters are handled by the compiler.

The primitive-based implementation of several algorithms is shown below, including cluster-
ing, classification, association rule ming and page ranking techniques.
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12.2.1 Primitives definition
Three high-level parallel primitives are shown, called data parallel region,
data parallel region with reduction and task independent region. These primitives cover the
parallel paradigms currently supported by the compiler, but others can easily be introduced as
the compiler will be extended.

The first parallel primitive, whose signature is

data parallel region(items, f unc,∗args)

returns a collection with the objects in items transformed according to the function func, which
returns the transformed version of the object given as input. An arbitrary number of arguments,
args, can additionally be passed to func. In a sequential execution, the result is equivalent to a
list comprehension, a construct used to encapsulate actions which must be executed on each item
of a collection. In a parallel execution, this permits to distribute the computation of an operation,
applying it on different, distributed subsets of the input data. Basically, this function allows to
exploit parallelism for operations that perform one-to-one transformation of objects.

Listing 12.1: Sequential implementation of data parallel region.
def data_parallel_region(data, func, *args):

return [func(x, *args) for x in items]

In many cases where data parallel region is used, additional operations are also required to
aggregate the items of the resulting collection into a single one, according to some specific logic.
To address this need, a second parallel primitive is introduced, data parallel region with reduction,
whose signature is

data parallel region with reduction(items, f unc,reduce f unc,∗args)

That is logically equivalent to the direct application of an aggregation function to the results of a
data parallel region call on a function func. The data parallel region with reduction primitive
is defined as follows:

Listing 12.2: Sequential implementation of data parallel region with reduction.
def data_parallel_region_with_reduction(items, func, reduce_func, *

args):
return reduce_func([func(x, *args) for x in items])

The last parallel primitive presented is task independent region, whose signature is

task independent region(data, f unc list,arg list)

It applies a list of functions to the input data, and returns a collection containing the results of
the single functions. A list of arguments is included if required by some of the functions. This
primitive allows distributing the computation of such functions, so as to apply them on the input
data simultaneously.
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Listing 12.3: Sequential implementation of task independent region.
def task_independent_region(data, func_list, arg_list):

result = {}
length = len(funcList)-1
for i in range(length):
if params[i]:

result[func_list[i].__name__]=func_list[i](data, params[i])
else:

result[func_list[i].__name__]=func_list[i](data)
return result

12.3 Agnostic implementations of data mining algorithms based
on parallel primitives

This section shows some examples of well-known data mining algorithms, implemented using
the parallel primitives defined in Section 12.2.1. The algorithms that will be shown below are
the following:

k-means is a partitioning clustering technique, which is able to split the instances of a data set
into k non-overlapping groups, minimizing intra-cluster distance as well as maximizing
inter-cluster distance [MAC67, Llo82]. The algorithm basically samples k initial centroids,
either randomly or by means of a heuristic technique. Each point of the dataset is assigned
to one of the k partitions defined by the centroids. Then, the centroid of each partition is
computed, according to the points assigned to it. Afterwards, k new partitions are created,
and the procedure iterates until the algorithm eventually converges. The algorithm is
guaranteed to converge in a finite number of steps.

C4.5 is an algorithm for supervised learning of decision tree-based classifiers [Qui93]. Starting
from a root, each intermediate node of the decision tree points to other nodes according to
the value of a single feature, until a leaf node indicating the instance class is eventually
reached. C4.5 algorithm works by selecting the single feature within training data that
better discriminates instances of different classes; it then creates a node based on such a
feature, splits the dataset into groups according to its value, and recursively runs the same
procedure on these groups.

Apriori is a data mining algorithm for frequent itemset finding over transactional databases
[AS+94]. Basically, each transaction is seen as an itemset. Given a threshold thr, it finds
the item sets that are subsets of at least thr transactions in the database. The algorithm
iteratively generates candidates, i.e. it extends subsets one item at a time, and tests groups
of candidates against the data. The process goes on while new candidates can be generated.
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The frequent itemsets determined by Apriori can be used for applications as market basket
analysis, whose goal is finding association rules in the database that highlight some trends.

PageRank is an algorithm for ranking pages of a hypertext, according to the number and
importance of referring pages. The algorithm was designed to statically rank web pages
using their hyperlink structure only, thus it is independent of search queries [BP98]. The
set of hyperlinked pages is modeled as a graph (V,E), where each vertex v ∈V is a page
and E is the binary relation

{(u,v) ∈V ×V : page u contains a hyperlink to page v}.
The rank Pv of a page v depends on the sum of weighted votes from referring pages, in
which each referring page u has exactly one weighted vote. The weight of u’s vote is
computed as page rank Pu divided by the number of referrals Ou on the page. The sum of
votes is multiplied by a damping factor d and summed to its unit complement divided by
the number of pages:

Pv =
1−d
|V | +d ∑

(u,v)∈E

Pu

Ou
v ∈V (12.1)

yielding an eigensystem of equations in the variables Pv, v ∈V . To solve Equation (12.1),
PageRank computes the ranking vector P until the L1-norm of the difference between
consecutive iterations is smaller than a predefined threshold thr.

12.3.1 k-means
K-means algorithm has a relatively simple procedural description. As discussed above, the
main loop of the algorithm entails assigning each data point to a cluster and computing new
cluster centres from such assignments: these two steps can be straightforwardly defined by few
primitives, where input data are the points to be clustered.

Given a dictionary C that maps cluster keys to respective centres, the ASSIGN(C)(i,x)
function must associate to each data point x the identifier of its cluster.

ASSIGN(C) = x 7→ {(x,argminc∈keys(C)Distance(x,C(c))︸ ︷︷ ︸
key of cluster with nearest centre

)} (12.2)

Then, we create a set G of clusters, each constituted by an identifier and a set of points belonging
to it. For each of them, the CENTROID(c,Ac) function computes its new centre.

CENTROID(Xc) = {(c,
1
|Xc| ∑

x∈Xc

x)} (12.3)

K-means algorithm can then be defined as the iterative application of these functions, with
the addition of a procedure for the initialization of centroids and the verification at each step of
the termination conditions.
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Algorithm 1 Pseudocode definition of k-means algorithm.
procedure KMEANS(X ,k)

C0← INITCENTROIDS(k,x)
i← 0
while i = 0∨Ci 6=Ci−1 do

Ai←{ASSIGN(Ci,x) : x ∈ X}
∀c : Gi(c)←{x : (c,x) ∈ Ai}
∀c : Ci(c)← CENTROID(Gi(c))
i← i+1

return Ci

Listing 12.4: Vendor-agnostic definition of k-means.
import math
import random

def distance(a, b):
"""Computes euclidean distance between two vectors"""
return math.sqrt(sum([(x[1]-x[0])**2 for x in zip(a,b)]))

def kmeans_init(data, k):
"""Returns initial centroids configuration"""
return dict(enumerate(random.sample(data, k)))

def kmeans_assign(p, centroids):
"""Returns the given instance paired to the key of the nearest

centroid"""
comparator = lambda x: distance(x[1], p)
nearest = min(centroids.items(), key=comparator)
return {nearest[0]: (1, p)}

def kmeans_aggregate(aggrs):
"""Aggregates partial vector sums to compute centroids"""
totals = {}
for aggr in aggrs:
for (c, (nb, sb)) in aggr.items():

if c in totals:
(na, sa) = totals[c]
totals[c] = (na+nb, map(sum, zip(sa, sb)))

else:
totals[c] = (nb, sb)

return totals
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def kmeans_centroid(cluster_point, cluster_size):
"""Returns the centroid (mean point) of the given instances"""
return cluster_point/cluster_size

def kmeans(data, k):
"""Clusters data in k groups and returns their centroids"""
centroids = kmeans_init(data, k)
iteration = 0
while iteration == 0 or previousCentroids != centroids:
previousCentroids = centroids
sums = data_parallel_region_with_reduction(data, kmeans_assign,

kmeans_aggregate, centroids)
centroids = {}
for x in sums.items():

centroids[x[0]] = data_parallel_region(x[1][1], kmeans_centroid
, x[1][0])

iteration += 1
return centroids

12.3.2 C4.5

C4.5 algorithm can be expressed in a recursive divide-and-conquer fashion: for each non-leaf
node of the tree, the dataset is split into disjoint and exhaustive groups according to the value
of a feature. The same procedure is then applied to such groups to obtain an equal number of
subtrees. The construction of disjoint subtrees can proceed in parallel.

For each group, starting from the whole dataset corresponding to the root node, the branching
feature must be defined. In order to pick the one yielding the most homogeneous groups in terms
of class labels, we compare them by means of information gain.

Afterwards, we need to define the groups into which the dataset of the current node is split:
such groups correspond to the possible values of the selected feature. While a discrete feature
has a finite number of possible values, for continuous features a small number of ranges covering
the set of possible values needs to be selected, and branches have to be created accordingly. In
either case, this operation can be encapsulated in a SELECTRANGES function.

For each selected range, the subset of instances having the value of the branching feature
within that range is selected, and the whole procedure is applied on it recursively. Single subtrees
yielded by each call are finally merged as branches of a single node, returned by the procedure.

The algorithm termination is guaranteed by checking for base cases at the algorithm start. If
all current instances are labeled with the same class, a leaf pointing to that class is returned.
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Algorithm 2 Pseudocode definition of C4.5 algorithm.
procedure C4.5(X)

if ∃k : c(x) = k∀x ∈ X then
return LEAF(k)

bestFeature← argmax f∈features(X)INFORMATIONGAIN(X , f )
R← SELECTRANGES(bestFeature,X)
branches← /0
for all r in R do

Sv←{x ∈ X : x[bestFeature] ∈ r}
Tv← C4.5(Sv)
branches← branches ∪{(v,Tv)}

return COMPOSITE(bestFeature,branches)

Listing 12.5: Vendor-agnostic definition of C4.5
class TreeLeaf:

"""Leaf of a decision tree"""
def __init__(self, label):
self.label = label

def classify(self, data):
return self.label

class TreeNode:
"""Internal node of a decision tree"""
def __init__(self, feature, branches):
self.feature = feature
self.branches = branches

def classify(self, data):
for (values, subtree) in self.branches:

if data[self.feature] in values:
return subtree.classify(data)

else:
raise Exception(’unexpected value’)

def ranges(data, feature): # discrete values are assumed
"""Returns ranges of possible values of the given feature"""
return [[x] for x in set([d[feature] for d in data])]

def infogain(data, feature, target):
"""Computes information gain on the given feature"""
# omitted for brevity
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def c45_select(features, target, data):
"""Selects the feature to be used for branching"""
featGains = [(f, infogain(data, f, target)) for f in features]
return max(featGains, key=lambda x: x[1])[0]

def c45_branch(data, features, target):
"""Constructs a single branch"""
return (data[0], c45_subtree(features, target, data[1]))

def c45_subtree(features, target, data):
"""Constructs a decision tree from the given data"""
# test whether all instances have the same class label
onlyLabel = data[0][target]
for x in data[1:]:
if x[target] != onlyLabel:

break
else:
return TreeLeaf(onlyLabel)

# otherwise, split instances on the best feature
f = c45_select(features, target, data)
subdata = [(r, []) for r in ranges(data, f)]
for x in data:
for (r, s) in subdata:

if x[f] in r:
s.append(x)

branches = data_parallel_region(subdata, c45_branch, features,
target)

return TreeNode(f, branches)

12.3.3 Apriori

In Apriori algorithm, apart from the initialization procedure INIT1ITEMSETS, which is tailored to
find the frequent 1-itemsets, three main functions can be identified to carry out frequent itemsets
finding, candidates generation and subsets finding.

Given a set Ck of candidate itemsets and a support threshold thr, the FINDFREQUENTITEM-
SETS function finds the frequent itemsets among the candidates, namely those whose support
overcomes the threshold.

FINDFREQUENTITEMSETS = (Ck, thr) 7→ {c | c ∈Ck∧ count[c]≥ thr} (12.4)

The GENERATECANDIDATES function generates the candidate frequent itemsets for step k, given
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the frequent itemsets for step k−1.

GENERATECANDIDATES = (Lk−1) 7→ {a∪{b} | a ∈ Lk−1∧b /∈ a} (12.5)
−{c | {s | s⊆ c∧|s|= k−1} 6⊆ Lk−1}

Finally, the INCREMENTSUBSETSSUPPORT function finds all the candidate itemsets that are in
the transactional database X and increments their support.

Algorithm 3 Pseudocode of the INCREMENTSUBSETSSUPPORT function.
procedure INCREMENTSUBSETSSUPPORT(Ck,X)

for all x ∈ X do
Cx←{c | c ∈Ck∧ c⊆ x}
for all c ∈Cx do

count[c]← count[c]+1

Algorithm 4 Pseudocode definition of Apriori algorithm.
procedure APRIORI(X , thr)

C1← INIT1ITEMSETS(X)
L1← FINDFREQUENTITEMSETS(C1, thr)
k← 2
while Lk−1 6= /0 do

Ck← GENERATECANDIDATES(Lk−1)
INCREMENTSUBSETSSUPPORT(Ck,X)
Lk← FINDFREQUENTSUBSETS(Ck, thr)
k← k+1

return
⋃

k Lk

Listing 12.6: Procedural definition of Apriori
import itertools

def combinations(items, size):
return [frozenset(x) for x in itertools.combinations(items, size)]

def apriori_candidates(allitems, n, sets):
"""Generates candidate n-itemsets from (n-1)-itemsets"""
return {x: 0 for x in [a.union([b]) for a in sets for b in allitems

if b not in a] if all([(frozenset(c) in sets) for c in
combinations(x, n-1)])}

def apriori_initcounts(tx, n, candidates):
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"""Counts occurrences of the candidate itemsets in data"""
return {s: 1 for s in combinations(tx, n) if s in candidates}

def apriori_sumcounts(counts):
"""Sums occurrences of itemsets"""
total = {}
for p in counts:
for c in p:

if c in total:
total[c] += p[c]

else:
total[c] = p[c]

return total

def apriori_frequent(candidates, thr):
"""Returns candidates with a minimum frequency"""
return [c for (c, n) in candidates.items() if n >= thr]

def apriori(data, thr):
"""Returns frequent itemsets among given data"""
allitems = frozenset([x for t in data for x in t])
candidates = [frozenset([x]) for x in allitems]
counts = data_parallel_region_with_reduction(data,

apriori_initcounts, apriori_sumcounts, 1, candidates)
frequent = apriori_frequent(counts, thr)
result = frequent
k = 2
while len(frequent) > 0:
candidates = apriori_candidates(allitems, k, frequent)
counts = data_parallel_region_with_reduction(data,

apriori_initcounts, apriori_sumcounts, k, candidates)
frequent = apriori_frequent(counts, thr)
result.extend(frequent)
k += 1

return result

12.3.4 PageRank

PageRank consists of an initialization phase, which computes outdegrees for, and assigns equal
initial ranks to all pages, and a main loop, which computes the power iteration that solves the
eigensystem by recomputing new values for all ranks, using Equation (12.1). Algorithm 5 is a
pseudocode definition of PageRank. Outdegree computation is performed by the OUTDEGREES
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Algorithm 5 Pseudocode definition of PageRank algorithm.
procedure PAGERANK(V,E, thr,d)

O← OUTDEGREES(V,E)
P←{〈v, |V |−1〉 : v ∈V}
k← 1
while k = 1∨L1NORM(P′,P)≥ thr do

W ← INWEIGHTS(E,P,O)
P′← P
P←{〈v,(1−d)/|V |〉 :6 ∃u(u,v) ∈ E}∪{〈v,(1−d)/|V |+dw〉 : 〈v,w〉 ∈W}
k← k+1

function, defined by

OUTDEGREES = (V,E) 7→ {〈v,c〉 : c = |{〈v,u〉 : (v,u) ∈ E}|,v ∈V}. (12.6)

Ranking P is initialized straightforwardly by assigning equal values 1/|V | to all pages. The main
loop iterates as long as the L1-norm difference, computed as

L1NORM = (P′,P) 7→ ∑
〈v,r〉∈P
〈v,r′〉∈P′

|r′− r|, (12.7)

is larger than thr. In the loop body, aggregate weights of incoming edges are computed by the
following function:

INWEIGHTS =

〈E,P,O〉 7→ {〈v,w〉 : w = |{〈v,r/c〉 : 〈u,r〉 ∈ P,〈u,c〉 ∈ O,(u,v) ∈ E}|}. (12.8)

Current ranks are then saved to compute the loop condition. Updated ranks are obtained as a
linear combination of unity and the weights above, assuming zero weight for pages having no
ingoing edge.

Listing 12.7 is a procedural definition of PageRank. Outdegrees are computed first by
associating a unit count with a page for each edge originating in the page, then by grouping all
unit values associated with the same page, and finally by summing the units for each page. The
rank dictionary is initialized as a sequence of |V |−1 values, where |V | is the number of pages.
In the main loop, ingoing edges are processed. For each edge, its weighted vote is computed
as the ratio between the current rank of the referring page and its outdegree associated with the
destination edge, thereby mapping λe.〈e1,Pe0/Oe0〉) to the edge list E. Then, a sum reduction
is applied to group weighted votes by page. Finally, the new ranks of the current iteration are
computed: the damping factor d is multiplied by the votes, and its complement is added by
mapping λv.〈v0,(1−d)/|V |+dv1〉 to the output of the last reduction. Note that the resulting
pairs only involve pages which have some ingoing edge; the remaining pages should take the
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rank (1−d)/|V | by Equation (12.1). Therefore, the rank dictionary is reinitialized with values
(1−d)/|V |, then updated using the new ranks. The last lines of the procedure recompute the
L1-norm of the residual and update the rank dictionary.

Listing 12.7: Procedural definition of PageRank
def sum_by_key(pairs):

totals = {}
for (k, v) in pairs:
if k in totals:

totals[k] += v
else:

totals[k] = v
return totals

def pagerank_votes(edge, p, outdegrees):
return (edge[1], p[edge[0]] / outdegrees[edge[0]])

def pagerank_newp(v, n, d, aggr_votes):
if v in aggr_votes:
return (v, (1-d)/n+d*aggr_votes[v])

else:
return (v, (1-d)/n)

def first_lambda(x):
return (x[0],1)

def second_lambda(v, p, new_p):
return abs(p[v]-new_p[v])

def custom_sum(lst):
accumulator = 0
for element in lst:
accumulator += element

return accumulator

def pagerank(vert, g, thr, d):
"""Return the page rank of vertices of graph (vert, g)."""
n = len(vert)
outdegrees = data_parallel_region_with_reduction(g, first_lambda,

sum_by_key)
p = {v: 1/n for v in vert}
k = 1
while k == 1 or l1_norm_diff >= thr:
aggr_votes = data_parallel_region_with_reduction(g,
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pagerank_votes, sum_by_key, p, outdegrees)
new_p = dict(data_parallel_region(vert, pagerank_newp, n, d,

aggr_votes))
l1_norm_diff = data_parallel_region_with_reduction(vert,

second_lambda, custom_sum, p, new_p)
p = new_p
k = k + 1

return p

12.4 From vendor-agnostic implementation to vendor-specific
platforms

This section describes an approach to compile the vendor-agnostic parallel programming primit-
ives introduced in Section 12.2 into vendor-specific platforms. Basically, a compiler takes as
input the algorithm definition based on the parallel primitives, processes it, and produces the
necessary execution and deployment skeletons according to a suitable parallel computational
pattern. Parallel computational patterns derive from the general design pattern definition. They
represent reusable and portable solutions to parallelization problems, where computation and the
data required for their execution need to be distributed among computing nodes.

12.4.1 Compiling primitives into skeletons
The incarnation of skeletons is addressed by a code compiler, developed following a code-
based approach and introduced in [DMDE17]. In order to deploy an application on a target
environment, the programmer either rewrites or develops from scratch her code starting from a
set of parallel primitives, as those presented in Section 12.2.1. Such primitives are then mapped
to a set of skeletons according to a suitable parallel pattern, which are filled by the skeleton-based
compiler according to a set of pre-defined rules. In particular, the compiler is composed of:

• a parser to produce the algorithm’s Abstract Syntax Tree (AST)

• a skeleton filler to alter the AST according to the primitives and the derived parallelization
paradigms

• an unparser to produce the output skeleton

• a set of rules, bound to the chosen pattern, guiding the skeleton filling

The parser and the skeleton filler represent the executive core of the compiler. The parser
takes the algorithm written in Python as input, and generates its abstract syntax tree representation.
The tree nodes represent the key constructs of the chosen programming language, and are used
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to define the rules that are at the base of the compiler. The algorithm is annotated with micro-
functions that are recognized by the parser and that trigger a separate set of rules. The rules
depend not only on the specific functions encountered, but also on the target pattern used for
the execution skeletons, and on the target services/platforms for which appropriate deployment
templates need to be constructed.

On the other hand, the skeleton filler deals with the automatic transformation of the syntactic
tree, according to the triggered rules. The filler transforms the original syntax tree by moving,
rearranging or creating nodes, which are then appended to a new tree. At the end, the produced
AST is ready to be unparsed in order to obtain the desired skeletons. The skeletons produced by
the filler are grouped into three categories:

Main Scripts The main scripts represent the entry point of the execution process managed by
the skeleton. They contain the sequential code that cannot be distributed, and the calls to
the secondary scripts. The libraries required to execute the sequential code and to call the
secondary scripts are also imported at the beginning of the main scripts. If the sequential
code contains calls to locally defined functions or procedures, they need to be declared in
this script.

Secondary Scripts The secondary scripts contain the code that will be executed in parallel on
different computational nodes. As for the main scripts, the required libraries and function
declarations are reported at the beginning. The number of produced scripts depends on the
selected pattern.

Deployment Templates The deployment templates contain information on the characteristics
of the computational nodes the filled skeletons will be executed on. Such characteristics
are derived from the declarative model or are left to the user to be completed.

The skeleton filling rules represent the knowledge base on which the compiler works to
enact the transformations of the original code. The rules are pattern specific, as different
patterns require different transformations and secondary scripts. However, they are completely
independent of the algorithm, as the parser treats the same micro-function in the same way,
whichever is the algorithm wherein they are used. This means that we have specific rules for the
implementations of MapReduce, BagOfTasks, Producer-Consumer, and so on.

Figure 12.1 provides a step-by-step description of the rules enforced by the compiler when
a data parallel region primitive is identified and the MapReduce pattern is applied. Each of
the steps composing the diagram represents a transformation occurring to the AST of an empty
skeleton, which is filled by moving nodes from the AST representation of the original sequential
code, annotated with the primitive. As an instance, consider the step highlighted in Figure 12.2.
In this step, the nodes containing the definition and implementation of the sequential micro-
function to be executed in parallel are moved by the compiler from the algorithm code to a
Reduce script, where the execution will actually take place.
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Figure 12.1: Description of the rules enforced by the compiler to transform a data parallel region.
Source: [BLM+18].

Figure 12.2: The node containing the micro-function definitions is migrated to a Reduce script.
Source: [BLM+18].
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12.5 Spark implementation of k-means based on parallel prim-
itives

This section presents a complete example of the parallel primitives usage, and shows the entire
process from writing the agnostic code based on the parallel primitives to its deployment on a
target platform. Among the algorithms discussed in Section 12.3, k-means has been chosen as a
usage example, dealing with a clustering problem.

K-means clustering has been applied to a custom data set. In particular, data have been
generated by means of the make classification function included in scikit-learn1, a well-known
Python library. In order to code the algorithm, the parallelizable operations have been iden-
tified, represented as functions and passed as parameters to the parallel primitives, as shown
in Section 12.3.1. Python has been used as the programming language, due to its widespread
employment for data analysis and due to its large support in terms of library packages. The
algorithm code, based on the parallel primitives, has been transformed by the compiler, and then
deployed on a Spark cluster.

As shown in Section 12.3.1, the parallelizable sections consist of the ASSIGN phase, which
pairs the analyzed instance with the nearest centroid, and of the CENTROID phase, where the
recomputation of centroids takes place. The first parallelizable section has been coded within the
kmeans assign function.

Listing 12.8: Implementation of the kmeans assign function.
def kmeans_assign(p, centroids):

comparator = lambda x: distance(x[1], p)
nearest = min(centroids.items(), key=comparator)
return {nearest[0]: (1, p)}

The outcome needs to be further processed by an aggregation function, named kmeans aggregate.

Listing 12.9: Implementation of the kmeans aggregate function.
def kmeans_aggregate(aggrs):

totals = {}
for aggr in aggrs:
for (c, (nb, sb)) in aggr.items():

if c in totals:
(na, sa) = totals[c]
totals[c]=(na+nb, map(sum, zip(sa, sb)))

else:
totals[c] = (nb, sb)

return totals

Such functions have been passed as arguments to data parallel region with reduction, as func
and reduce func respectively.

1http://scikit-learn.org/
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Listing 12.10: data parallel region with reduction call in the k-means code.
sums = data_parallel_region_with_reduction(data, kmeans_assign,

kmeans_aggregate, centroids)

The second parallelizable section has been coded within the kmeans centroid function.

Listing 12.11: Implementation of the kmeans centroid function.
def kmeans_centroid(cluster_point, cluster_size):

return cluster_point/cluster_size

This function has been used in conjunction with data parallel region.

Listing 12.12: data parallel region call in k-means code.
for x in sums.items():

centroids[x[0]] = data_parallel_region(x[1][1], kmeans_centroid , x
[1][0])

The compiler automatically transforms the primitives in parallel code for the target platform.
In this example, k-means has been compiled in order to be executed on a Spark cluster. The
following listing shows the compiled code for data parallel region with reduction, which calls
kmeans assign and kmeans aggregate.

Listing 12.13: Compiled code for the data parallel region with reduction.
f = lambda j: kmeans_assign(j, centroids)
sums = mydata.map(f).reduce(kmeans_aggregate)

The data parallel region with reduction function call is compiled using the parallel com-
putation structures provided by Spark. The func function is included in a lambda expression
because of the presence of additional arguments, and then passed to the Spark map function.
The need of a lambda expression is automatically detected by the compiler, and it is used to pass
additional arguments as input to func. The reduce func is directly passed as an argument to the
Spark reduce function.

The following listing shows the compiled code for data parallel region, which calls the
kmeans centroid function.

Listing 12.14: Compiled code for the data parallel region.
for x in sums.items():
f = lambda j: kmeans_centroid(j, x[1][0])
centroids[x[0]] = x[1][1].map(f).collect()

Likewise data parallel region with reduction, the data parallel region function call is com-
piled using the parallel computation structures provided by Spark. Again, the func function is
put in a lambda expression, and passed to the Spark map function. The result is finally extracted
with a collect operation.
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12.6 Experimental results
Soundness and performance checks have been made on the algorithm respectively to assure output
consistency and to measure the differences in performance between the compiled distributed code
and a manually written k-means implementation for the same target platform. The plain algorithm
implementation for Spark has been written directly using some parallel Spark constructs, without
the parallel primitives.

The soundness check aims to validate the output, which has to be consistent in both the
manually written and the compiled algorithm. For this purpose, some test scripts have been
created to choose the input data and to compare the outputs. Ordering operations have been
applied to the output in order to enforce results comparability. The final ordered output has been
saved to a file, which has then been compared using Linux di f f command. The performance
check aims to measure the differences in performance between the manually written and the
compiled algorithms. A collection of tests has been used to define measures to better understand
the optimization level of the compiled code.

12.6.1 Dataset description
In order to perform experiments and to adequately assess whether the code written using the
parallel primitives is sound and scalable, two kinds of datasets have been used: a freely available,
widely known dataset and some generated data sets. The former has been used for the soundness
check, since the performance check requires much larger data sets. Given that freely available
large data sets are hard to find, some data have been generated in order to assess the algorithm’s
performance.

The dataset chosen to check the soundness of the compiled algorithm is the widely known
iris dataset2. The generated sets share the iris dataset structure, but have a larger number of
instances, features and classes. They have been generated using the make classification function
of the scikit-learn Python package. Data sets with increasing dimensions have been used, starting
from 10,000 instances and growing to 100,000 and 1 million.

12.6.2 Performance check
The performance check aims to measure whether the compiled algorithm is as efficient as a
manually optimized code. For this purpose, the elapsed time between the algorithms’ start and
termination has been measured and compared. The measure has been taken by using the time
function of the time Python module.

The performance check has been performed on large generated data sets, to measure the
scalability of the compiled algorithm. The tests have been conducted on data sets with 5 features
and an increasing number of instances, starting from 10,000 and growing to 100,000 and 1
million. The number of slices used to parallelize the data is proportional to the data set cardinality

2https://archive.ics.uci.edu/ml/datasets/iris
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(e.g. 50, 500 and 5,000 respectively). The dataset with 10,000 instances and divided into 50
slices is referred as the small dataset; analogously, the others are referred as the medium and the
large respectively. The two versions of k-means have been tested on a cluster with an increasing
number of worker nodes, starting from 2 and growing to 4, and 6. Each node has 4GB of RAM
and 2 CPU.

Table 12.1 shows how the elapsed time of the compiled version of k-means scales with
respect to the number of computational nodes and the number of instances used. The times
shown in the table represent the average of the same experiment on 3 different runs.

# workers Small Medium Large
2 47.22 312.52 2,881.83
4 22.65 202.52 1,779.22
6 21.06 165.29 1,333.02

Table 12.1: Scalability of the compiled version of k-means with respect to the number of workers.

Table 12.2 shows the comparison between the manual and the compiled k-means respectively.
Again, the average elapsed time on 3 runs has been taken.

Algorithm Small Medium Large
Manual k-means 22.89 163.18 1,315.04

Compiled k-means 21.06 165.29 1,333.02

Table 12.2: Elapsed time comparison between the manual and the compiled version of k-means.

The compiled version of k-means does not add a noticeable delay, compared to the manually
written version. As can be seen in the experiment with 6 workers, which is the most affected by
parallelization, the algorithms scale similarly by varying the dataset size.

12.7 Final remarks
This chapter has presented parallel programming primitives to define the parallelizable parts of
algorithms in a uniform way, independent of existing analytic services. The rationale of this
approach is to boost the development of big data analytics, fostering code reuse among different
platforms and simplifying code optimization.

Programmers just have to identify parallel code fragments and encapsulate them into some
parallel primitives, whereas parallellism as well as optimization are out of their duties. Paral-
lelization is carried out by a compiler that is able to transform agnostically written code in a
fully optimized, ready to be deployed application, tailored for a specific target platform. The
compiler takes the algorithm definition as input, processes it, produces the necessary execution
and deployment skeletons, choosing a suitable parallel computational pattern, and tuning the
parameters of algorithms.
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13
Results achieved and future work

This chapter summarizes the most remarkable contributions of this thesis, and outlines ongoing
and possible future work.

13.1 Methods for sentiment analysis
The first notable contribution of this thesis is the introduction of Markov chain techniques
for sentiment analysis. In particular, our Markov chain introduced in Chapter 7 is able to
perform both sentiment classification and transfer learning in cross-domain tasks. To the best
of our knowledge, it is the first time that a Markov chain is used as a classifier for sentiment
classification rather than for a support task as part-of-speech (POS) tagging.

Our Markov chain includes both terms and classes. The relationships between terms allow
knowledge transfer from the source terms to the target terms, through the terms that are shared
among domains. The relationships between terms and classes denote terms with a sentiment
orientation that can be used for classification. Considering classes as Markov chain states is
a novelty with reference to classification tasks, where the most common approach consists in
building different Markov chains (e.g. one for each category) and evaluating the probability that
a test document is being generated by each of them.

Also, we have proposed a variant of this basic approach that copes with sentences rather
than considering each document as a whole (Section 7.3.1). A second variant has also been
introduced so that the classification process is driven by polarity-bearing terms, which are able
to discriminate among classes (Section 7.3.2).

Apart from the former variant, both the basic approach and the latter variant achieve accuracy
comparable with the best methods in literature. Less parameters need to be tuned with respect to
the state of the art, and less features are required to obtain such performance. These advantages
make our Markov chain approach particularly appealing in big data scenarios, where scalability
is as essential as effectiveness. Also, since our algorithm only relies on term co-occurrences, it
can easily be applied to other languages.

The second remarkable contribution of this thesis is an investigation on deep learning for
cross-domain sentiment classification. Paragraph vector, which is an unsupervised technique
to learn distributed text representation that was not designed to perform knowledge transfer,
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achieved comparable performance with our Markov chain in cross-domain tasks. The major
outcome is that deep approaches to learn distributed text representations are able to extract
domain-independent knowledge in an unsupervised fashion, so as to bridge the inter-domain
semantic gap. This result suggests that a breakthrough of ad hoc cross-domain sentiment solutions
can be obtained by combining distributed text representation and transfer learning techniques.
Since paragraph vector can learn fixed-length feature representation from variable-length pieces
of texts, and it is not affected by the curse of dimensionality, the breakthrough will also involve
big data scenarios.

The suitability of distributed text representations as paragraph vector for transfer learning
is confirmed by a really simple multi-source approach, where knowledge is extracted from N
heterogeneous domains and the resulting model is applied to a different target domain. Using
knowledge from multiple source domains is a naı̈ve approach to enhance transfer learning;
anyway, accuracy increases by about 2-3% on average independently of the dataset size. This
outcome supports our belief that the breakthrough will also involve big data context, where very
large data sets are required to be analyzed.

Memory-based deep neural networks as gated recurrent unit have been added to the investig-
ation later on. With reference to cross-domain tasks, gated recurrent unit performs poorly with
small-scale data (e.g. 2,000 instances), achieves accuracy comparable with the other techniques
with medium-scale data (e.g. 20,000 instances), and even outperforms them with large-scale
data (e.g. 100,000 instances). The outcome suggests that gated recurrent unit needs many
instances to learn bridging the inter-domain semantic gap. Once such instances are available, it is
automatically able to align heterogeneous domains without explicit transfer learning mechanisms.
This ability is supposedly due to GRU gates, which allow each unit working as a memory wherein
relevant information can be stored and preserved through time.

Moreover, fine-tuning of a pre-trained model on a small sample of labeled target instances has
been attempted to assess its impact on cross-domain as an explicit transfer learning mechanism.
Paragraph vector does not take advantage of fine-tuning, since it is able to capture word semantics
as well as word relationships without supervision. On the other hand, fine-tuning is beneficial to
gated recurrent unit, because it acts as a transfer learning mechanism. The less training examples
have originally been used to train the model on the source domain, the higher impact fine-tuning
has on performance. As expected, greater amount of tuning data (e.g. 500 reviews rather than
250) brings to better performance with small-scale data. The impact of this factor decreases by
augmenting the dataset cardinality, until eventually vanishing with large-scale data.

Strengthened by this first results, recent memory-based deep neural networks have been
combined with word embeddings, a de facto standard in deep learning. Among the deep memory-
based methods, gated recurrent unit and differentiable neural computer have been experimented.
While in the former the memory mechanism is a part of the network structure, the latter is
able to address and manage an external memory. Such an ability makes DNC one of the most
innovative deep learning techniques, able to emulate reasoning and inference problems in natural
language. Global vectors (GloVe) have been used in combination with both architectures for the
initialization of their feature weights.
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Experiments on the Amazon reviews corpus have shown that differentiable neural computer
with GloVe dramatically outperforms state-of-the-art techniques for cross-domain sentiment
classification. Transfer learning from a source domain to a target domain is supported by
distributed word representations with small-scale datasets, and by memory mechanisms as the
dataset size increases. Fine-tuning on a small sample of target instances is more useful to gated
recurrent unit than differentiable neural computer, as the latter is less sensitive to noise, and few
target samples are not enough to be relevant. Differentiable neural computer with GloVe feature
weights achieves new state-of-the-art performance both in binary and fine-grained classifications
on very large datasets built on the same Amazon reviews corpus. Finally, differentiable neural
computer and gated recurrent unit achieve comparable performance with many techniques in
single-sentence in-domain sentiment classification on the Stanford sentiment treebank. Small-
scale training data and the absence of a mechanism to deal with sentence syntax are probably the
reasons that prevent DNC from reaching the state-of-the-art performance.

13.2 Methods for stock market analysis

We have investigated whether the DJIA trend in a trading day is affected by the content of tweets
posted in the previous days. In literature, some works have already tackled such a problem.
However, in order to predict the stock market trend, they employed complex techniques to
understand the semantic content of text documents. The aim of our work was to use a simple
method, based on the well-known vector space model representation, and on a supervised
classifier. We have also introduced a noise detection technique, both at the tweet level and at
the instance level (i.e. aggregation of tweets), in order to filter out from data a large corpus of
irrelevant tweets.

We have tested and compared the method on the same tweets dataset and DJIA trends in
2008 used by Bollen et al. [BMZ11]. Results have shown that even a simple classification
model based on the vector space model achieves good accuracy, very close to 80%. Also, the
noise detection technique introduced in Section 9.2.3 is able to identify the irrelevant tweets and
instances, thus noise, in the training data. Our noise detection boosts accuracy, which achieves
88.9%, outperforming both our base classifier and the best prediction method based on social
network posts illustrated in [BMZ11].

Moreover, we have added a trading protocol whose buy/sell operations are driven by the
above mentioned prediction method. The test period used to compute the return on investment
(ROI) is just three-month long. The ROI without and with the removal of noisy tweets are 56%
and 84% respectively. Both results outperform previous DJIA trading approaches, such as stock
market methods based only on the historical time series of DJIA prices [OM06], and recent
advanced deep learning proposals [FM18, BYR17].
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13.3 Recommendation methods for job search

This thesis has also introduced a novel algorithm for job recommendation, based on known
co-occurrences between skills and potential job positions, which are exploited and elaborated
through latent semantic analysis to discover hidden relationships. We have shown how the
same data can be used to build a folksonomy of related job positions by means of a hierarchical
clustering.

The methods have been tested using a set of public profiles extracted from LinkedIn, naturally
subject to noise and inconsistencies; only some trivial pre-processing steps have been applied to
denoise such data. Nonetheless, a hierarchical clustering has been produced where most groups
actually include related job positions. Concerning recommendation, a quantitative experimental
evaluation trivially based on real job positions has shown promising results. In half cases, the
actual user occupation is suggested among the top 50 recommended positions out of more
than 2,000 possibilities. When the exact job is not hit, synonyms and similar occupations are
generally suggested. Such a recommendation system can potentially aid both individuals seeking
for occupations, whose abilities can effectively be endorsed, and recruiters, who have to evaluate
the best candidates for specific jobs. Apart from the number of recommendations to be returned,
the method has no parameter to be set. The absence of parameters to be tuned, and the large
amount of data available on LinkedIn, make our method suitable for real world big data scenarios.

Another contribution of this thesis is the introduction of an MDP-based approach to recom-
mend a personalized career pathway to a user, given her profile and career goal, and possibly
other requirements. Career pathway recommendation, intended as the problem of finding the
most likely sequence of jobs leading a user towards her career goal, is an emerging research
thread that can be seen as a generalization of job recommendation. While a job recommender
takes a snapshot of a user’s profile and a job, and decides whether they match or not, a career
pathway recommender knows the job the user is looking for, and iteratively recommends jobs in
order to refine the user’s profile until eventually the user is able to reach her goal.

A corpus of job postings has been used to mine relationships between jobs, and to build a
job graph accordingly, where the likelihood to move across different clusters of jobs is defined.
The job graph is unique, independent of users, and represents a network of jobs along with
the relationships between them. Afterwards, the job graph has been used in combination with
user-specific information, i.e. the user’s profile and career goal, to build a Markov Decision
Process (MDP) whose solution provide the user with a personalized pathway to follow in order
to reach her career goal. Relying on the MDP theory, the recommended pathway is intrinsically
the safest one, since every possible career evolution is considered.

The experiments showed that our framework is able to recommend a pathway that generally
leads the user towards her career goal quicker than the user can do, provided that the job graph is
generated with the right number of clusters. The contribution of the MDP-based recommender
is particularly evident for long term career goals, where users are unlikely to find optimized
pathways. We claim that our framework is general, and more complex formulas can easily be
plugged in to take other factors into account, other than users’ profiles.
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13.4 Boosting the development of big data analytics
The last contribution of this thesis is the introduction of parallel primitives to implement big data
mining algorithms in a vendor-agnostic fashion. Such primitives can simplify the implementation
of algorithms, speeding up the development of big data analytics. Algorithms written by means
of these primitives can then be compiled into skeletons, which are finally deployed on vendor
platforms. The proposed approach supports code reuse, as code is written once and compiled by
need for each target platform without additional effort. The compiler, introduced in [DMDE17],
handles the transformation from a vendor-agnostic implementation to a vendor-specific code,
managing and optimizing algorithm parallelization. Therefore, programmers’ expertise in
parallel programming is not required.

A practical example has been shown, emphasizing the advantages of this approach with
respect to traditional vendor-specific implementations. The experimental evaluation has not only
shown that such a transformation is feasible, but also that it produces optimized code, which can
be executed as fast as manually written platform-specific code independently of the dataset size.

13.5 Ongoing and future work

13.5.1 Improvement of the Markov techniques for sentiment analysis
With reference to the Markov chain variant that deals with sentences (Section 7.3.1), a threshold
can be introduced that establishes to what extent a sentence is likely to have the same polarity
of the document wherein it appears. Another viable improvement consists in changing the way
sentence labels are folded together to output the final category for the test document. Moreover,
when a review is long, the final part usually bears the same sentiment of the entire text, because it
contains a summary of the author’s opinion. On the contrary when it is short, it is likely that the
author immediately summarizes her opinion without using terms bearing conflicting sentiment.
In both cases, taking only the last few sentences into account could be profitable. A further
alternative is to use document splitting into sentences just to limit co-occurrences among terms
rather than to affect the connections between terms and classes.

With respect to the Markov chain variant providing polarity-bearing state transitions (Sec-
tion 7.3.2), there is no constraint that forces terms to redistribute probabilities to others having
the same sentiment orientation. The inclusion of such a constraint may bring to a performance
improvement.

In addition to the specific aspects proposed to enhance the performance of particular variants,
further considerations need to be done. Transfer learning needs to be strengthened in order to
improve the effectiveness in cross-domain tasks, for instance by increasing the number of steps
in the Markov chain transition matrix, which might foster the classification phase. The algorithm
could also suffer from the assumption to be in different states at the same time, made when a
test document is required to be classified. In fact, since the step-by-step evolution of each state
is independent of the others, context ends up to be overlooked. Ngrams, grammatical relations
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among terms, or distributed word representations can be viable alternatives to take context into
account. Other than enhancing algorithm effectiveness, performance in a 3-class setting (i.e.
adding the neutral category) could also be tested. Finally, due to their generality, our Markov
methods can be applied as is for text categorization by topic.

13.5.2 Enhancing deep learning approaches for sentiment analysis
Deep learning approaches have achieved outstanding performance in the identification of the
sentiment orientation of a plain text. A possibility to improve transfer learning for cross-
domain sentiment classification consists in combining the advantages of traditional machine
learning techniques, as the Markov chain method introduced in Chapter 7, with distributed
text representation methods, as paragraph vector and GloVe. On one hand, distributed text
representations are able to learn word semantics without supervision; on the other hand, Markov
chain provides a transfer learning mechanism to bridge the gap between the source and target
domains for cross-domain sentiment classification.

Dynamic Memory Network (DMN) might also be added to the investigation, since it is
provided with a memory mechanism, but it also performs well in single-sentence classification.
It would be interesting to better understand the reason behind its behavior.

With reference to single-sentence classification, a mechanism to explicitly handle sentence
syntax might be really useful in absence of a large amount of labeled training data. Finally,
this study can be extended to cope with other emerging text classification problems where large
datasets are completely unlabeled, such as for threads of conversational messages in social
networks and discussion forums [DSM+16].

13.5.3 Expanding the investigation on stock market analysis
As future work on stock market analysis, we plan to further investigate possible correlations
among different market indexes and stock options, expanding the analysis to other sources of
unstructured text streams. In this context, the heterogeneity of multi-domain text sources may be
taken into account and leveraged with novel cross-domain and transfer learning methods, such
as [DMMP16, DMPS14b] and those presented in Chapter 7 and Chapter 8.

13.5.4 Improving the performance of job recommendation
One potential direction for further research on job recommendation is to devise a method that fits
even better to a recruitment system, for example by swapping the roles of profiles and positions,
so that a set of recommended candidates can be obtained for a given occupation. Another
goal is to increase the accuracy of the job recommender introduced in Chapter 10. This goal
can be fulfilled by testing other machine learning methods, as nearest neighbour classifiers, or
even exploiting the generated hierarchy. Also, the vector representations of profiles, skills and
positions could possibly be improved, for example by borrowing suitable weighting schemes

182



CHAPTER 13. RESULTS ACHIEVED AND FUTURE WORK 183

from text categorization [DMPS15]. Finally, we consider to test clustering and recommendation
with more extended datasets, enlarging the number of profiles and including further information,
such as a user’s job history and education, and job description and requirements.

13.5.5 Enhancing the effectiveness of career pathway recommendation
We are currently performing further experiments on the approach introduced in Chapter 11.
Mini-batch K-means can be compared with other clustering algorithms as well as with topic
modeling techniques as Latent Dirichlet Allocation [BNJ03]. A simple heuristic can be used to
recommend a career pathway in place for an MDP. Also, the number of representative skills of
each cluster can be tuned.

Apart from these comparative evaluations, in order to enhance the effectiveness of the
whole method, we plan to add further knowledge and constraints that can be exploited by
the recommender to provide a more precise recommendation. Constraints may include salary,
location, job duration, and so on. For instance, a user may want to reach her goal without
performing jobs whose salary is lower than a threshold. Location could also affect the goodness
of a job for a given user, and the likelihood for the user to get that job. Moreover, job duration
can be exploited by the recommender to minimize the overall time required to reach the goal
rather than the number of career hops.

The analysis can also be fostered by building a new corpus tailored to career pathway
recommendation. Relevant information may include the user’s actual career goal, whether or not
she has been able to reach it, whether or not the reached goal actually meets her expectations,
and further user-related as well as job-related constraints. Such knowledge paves the way for
further investigation, starting from the framework and the baseline evaluation introduced in this
thesis.

13.5.6 Supporting the development of big data analytics
Future work to accelerate the development of big data mining algorithms might include the
addition of more parallel primitives, and the possibility to specify the particular computational
pattern to be used in the target platform, such as divide and conquer, tree computation, map
reduce, producer-consumer, bag of tasks, and so on.

Moreover, analytical as well as performance constraints may be introduced within the
algorithm transformation process. Examples of analytical constraints are the maximum budget
available to conduct the analysis, or the minimum number of worker nodes to be used. On the
other hand, performance constraints may include the maximum time allowed for the analysis to
be completed, the minimum tolerated accuracy, or further custom performance indicators.
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