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ABSTRACT

G lobal warming is one of the biggest challenge of our times, and significant efforts are
being undertaken by academics, industries and other actors to tackle the problem. In the
agricultural field precision farming is part of the solution to environmental sustainability

and has been researched increasingly in recent years. Indeed, it has the potential to effectively
increase livestock yield and decrease production carbon footprint while maintaining welfare.
The thesis begins with a review of developments in automated animal monitoring and then
moves on to a case study of a health monitoring system for small-ruminant in South Africa.
As a demonstration and validation of the potential use case of the system, the method we
propose is then applied to another study which aims to study feline health. Lower and Middle
Income countries will be strongly affected by the changing climate and its impacts. We devise
our method based on two South African small scale sheep and goat farms where assessment of
the health status of individual animals is a key step in the timely and targeted treatment of
infections, which is critical in the fight against anthelmintic and antimicrobial resistance. The
FAMACHA scoring system has been used successfully to detect anaemia caused by infection
with the parasitic nematode Haemonchus contortus in small ruminants and is an effective way
to identify individuals in need of treatment. However, assessing FAMACHA is labour-intensive
and costly as individuals must be manually examined at frequent intervals. Here, we used
accelerometers to measure the individual activity of extensively grazed small ruminants exposed
to natural Haemonchus contortus worm infection in southern Africa over long time scales (13+
months). When combined with machine learning for missing data imputation and classification,
we find that this activity data can predict poorer health as well as those individuals that respond
to treatment, with precision up to 80%. We demonstrate that these classifiers remain robust
over time. Interpretation of trained classifiers reveals that poorer health can be predicted mainly
by the night-time activity levels in the sheep. Our study reveals behavioural patterns across
two small ruminant species, which low-cost biologgers can exploit to detect subtle changes in
animal health and enable timely and targeted intervention. This has real potential to improve
economic outcomes and animal welfare as well as limit the use of anthelmintic drugs and diminish
pressures on anthelmintic resistance in both commercial and resource-poor communal farming.
The validation of the proposed techniques with a different study group will be discussed in the
latter part of the thesis. We used the accelerometry data of indoor cats equipped with wearable
accelerometers in conjunction with their health status to detect signs of degenerative joint disease,
and adapted our machine-learning pipeline to analyse bursts of high activity in the cats. We were
able to classify high-activity events with precision up to 70% despite the relatively small dataset
adding further evidence to the viability of animal health monitoring with accelerometers.
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INTRODUCTION

Accelerometers are sensors that measure the acceleration of an object, animal, or person. They are

widely employed in wearable devices, such as smartphones and fitness trackers, to track physical

activity and movement. In recent years, machine learning (ML) has gained increasing popularity

as a subset of artificial intelligence, enabling algorithms to recognise patterns in data. Together,

accelerometers and ML are transforming wellbeing and health tracking in humans, facilitating

accurate and personalised monitoring of physical activity, sleep patterns, and other health-related

metrics. For instance, accelerometers can detect falls, a crucial feature for elderly individuals

or those with mobility impairments. ML algorithms can be trained to recognise patterns in

movement data and identify when a fall occurs, triggering alerts for emergency services or

caregivers [96] [116] [108]. Accelerometers are also valuable in monitoring motor symptoms

in Parkinson’s disease patients, with ML algorithms analyzing this data to identify patterns in

symptom progression and response to treatment [80]. As these technologies continue to advance,

we anticipate even more sophisticated applications for health and wellbeing monitoring in the

future.

There is a growing interest in applying accelerometers and ML to animal health, welfare,

and food security. They can revolutionise these fields, including animal behavior monitoring,

where accelerometers can be attached to animals to monitor their activity levels and movements.

This allows accurate monitoring of behavior and identification of potential health issues or

welfare concerns. ML algorithms can analyse this data to recognise patterns in animal behavior,

enabling targeted interventions and management practices [45]. For disease detection and

monitoring in animals, accelerometers can be used to identify potential signs of disease earlier

than traditional diagnostic methods. By monitoring changes in activity levels and behavior

patterns, machine learning algorithms allow for timely interventions and treatment [93]. They

can also be employed in precision livestock farming practices, where individual livestock are
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CHAPTER 1. INTRODUCTION

monitored and managed based on their specific needs and behavior patterns. This can enhance

animal welfare and reduce environmental impacts. By improving animal health and welfare

monitoring, accelerometers and ML contribute to ensuring food security by reducing the risk

of disease outbreaks in livestock populations and improving the efficiency of food production

[131]. Now is the opportune time to translate this approach for animal health, welfare, and food

security due to the rapid advancements in sensor technology and ML algorithms, making these

technologies more affordable and accessible.

Accelerometer data can be analysed using various techniques, including digital signal pro-

cessing (DSP) and machine learning (ML). DSP involves applying mathematical algorithms to

the raw accelerometer data to extract relevant features such as frequency, amplitude, and phase.

These features can then be used to identify specific types of motion, such as walking, running,

or jumping. DSP techniques have been widely used in activity-tracking applications, such as

pedometers and fitness trackers, to estimate the number of steps taken, distance travelled, and

calories burned. In recent years, the use of ML techniques for accelerometer data analysis has be-

come increasingly popular. ML algorithms can automatically learn and extract complex patterns

from large datasets, without the need for manual feature extraction. This makes ML particularly

useful for applications where the underlying patterns may be difficult to characterise using

DSP techniques alone. For example, ML algorithms have been used to classify different types of

physical activities, such as walking, cycling, and climbing stairs, based on accelerometer data.

Human and animal activity tracking is one area where accelerometers and ML have been widely

used. For example, wearable devices with built-in accelerometers have been used to monitor

the physical activity levels of individuals and to track their sleep patterns. These data can be

used to identify risk factors for chronic diseases such as obesity and diabetes and to develop

personalised health interventions. In animal activity tracking, accelerometers have been used to

study the behaviour of a wide range of species, from birds and bats to elephants and whales. ML

algorithms have been used to analyse the accelerometer data and identify specific behaviours,

such as flying, diving, or feeding. This information can be used to better understand the ecology

and behaviour of the animals and to develop conservation strategies. In summary, accelerometers

are sensors that measure acceleration and output data in the form of electrical signals. DSP and

ML techniques can be used to analyse accelerometer data and extract useful information about

motion, behaviour, and activity levels. Accelerometers and ML are widely used in human and

animal activity tracking applications, with the potential for a wide range of other applications in

industry, healthcare, and research.

1.1 Livestock farming

Agriculture is one of the building blocks of modern human civilisation. From the early stages of

the development of our specie, cultivating and controlling access to food has historically been a
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fundamental priority in the success of a nation; a regular diet that includes meat has been key to

producing stronger and healthier people. The first sign of livestock farming can be traced over

10,000 years ago when pigs, sheep and cattle were domesticated. We can define "livestock farming"

as the culture of animals for human consumption of said animal or any of their consumable

derivative products. Depending on the region of the world the raised animals may include, dairy

cattle, pigs, sheep, goats, horses, mules, buffalo and camels. The raising of birds for meat and egg

consumption is classified as Poultry farming [63](Fig. 1.1). In modern times, the growing world

population alongside urbanisation and income growth are some of the main factors which explain

why the consumption of meat has increased in the developing and developed world alike. The

developing world experienced a 70 million metric tons increase in the demand for meat between

the beginning of the 1970s and the mid-1990s which was a 3 fold increase compared to the

demand in the developed world [29]. The demand is closely tied to the human population growth,

it is expected to observe a continued increase in meat demand. However, livestock production has

a significant impact on the environment, contributing to greenhouse gas emissions, deforestation,

and water pollution [46]. Achieving the goal of ’net-zero’ emissions from livestock production

is extremely difficult due to the complex nature of the industry and the high demand for meat.

While reducing meat consumption in the developed world is necessary, it may not be feasible

in many parts of the world where alternative sources of protein are limited. Instead, efforts

should focus on promoting more efficient and sustainable meat production in the developing

world through better animal management practices, reducing waste, and improving feed quality.

This can help to reduce the environmental impact of livestock production while ensuring that

people in these regions have access to important sources of protein. Such growth will continue to

affect the lives of many and present numerous challenges for livestock farming.

From old methods in livestock management to modern precision farming technologies, the era

greatly influences preferred practices. This is particularly notable in the developed world, where

accessing the latest technologies is more affordable. For example, in the developed world the

efficiency of the production of beef has drastically improved thanks to the use of scientific methods

to evaluate optimal housing and equipment management [19] [82] [75]. Offspring production

also benefits while various fertility checks, preventative medicine, protection against insects

and parasites, and diet monitoring are some of the methods that have allowed better yield [127].

Analysis of the weather is also taken into account as calving events are arranged to correspond to

the seasons which offer higher-quality pastures. Furthermore, artificial insemination permits the

production of large quantities of genetically fit animals [63]. In recent years precision farming

technologies such as accelerometry monitoring with animal-mounted sensors and automatic

video monitoring have emerged and can also contribute to better production outcomes. For

example, Qiao et al [119] successfully developed an accurate camera-based cattle identification

software that can facilitate the non-intrusive monitoring of cattle applicable to precision farming

and surveillance for automated productivity, health and welfare monitoring, and veterinary
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research such as behavioural analysis, disease outbreak tracing, and more. Similarly, Sheep

and Goat farming has seen the advent of sensor-based monitoring systems for animal behaviour

monitoring. Pork production in an industrialised nation is often mechanised which reduces the

need for expensive labour. It is commonplace for large-scale commercial producers to use indoor

slotted floor farms with various environmental control such as air temperature and self-feeders.

While the demand in the developing world is growing at a fast pace, in practice the use of

state-of-the-art precision farming techniques is generally not feasible unless new affordable

technologies were to be developed, which is what this thesis aims to explore. This contrast

explains the different sets of challenges faced by developed and developing countries. Indeed,

while the developing countries still face high livestock mortality rates [39] due to poor health

management practices and limited access to modern disease control, which often lead to serious

problems such as antibiotic resistance, the developed world faces much lower moralities rates not

only because of better overall practices but also thanks to the assistance of advanced technologies

and medical treatment.
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Figure 1.1: Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs,
chickens and ducks in 2010. World map of the geographic distribution of different farm
animals, source [48].

1.2 Environmental sustainability and net-zero

Climate change is a significant challenge for the livestock farming industry as it contributes to

greenhouse gas emissions that can exacerbate the effects of global warming. Livestock farming

is a significant contributor to greenhouse gas emissions, accounting for around 18% of all an-

thropogenic greenhouse gas emissions worldwide [107]. The primary source of greenhouse gas

emissions from livestock farming is enteric fermentation, which occurs during digestion in the

stomachs of ruminant animals such as cows, sheep, and goats. Additionally, manure management,

feed production, and transportation of livestock and feed also contribute to greenhouse gas emis-

sions. Climate change can also have indirect effects on livestock farming, including changes in

weather patterns, increased frequency of extreme weather events, and changes in the availability

of water and other resources. These changes can impact animal health and welfare, and also

affect the productivity of farms and the availability and cost of feed and other inputs. To address
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the challenge of climate change in the context of livestock farming, various strategies can be

employed, such as improving animal nutrition and genetics [100], reducing waste and improving

manure management, and using renewable energy sources. Additionally, there is growing inter-

est in developing alternative protein sources, such as plant-based and cell-based meats, which

have a lower environmental impact than traditional livestock farming [139]. Flexitarian diets

are plant-based diets that emphasise the consumption of whole grains, fruits, vegetables, and

legumes, while allowing for limited amounts of animal products. While such diets can provide

health benefits and help reduce the environmental impact of food production [98], it may not be

realistic or feasible in all parts of the world.

In low and middle income countries (LMICs) and regions with limited resources, there may be

several factors that make it difficult to transition to a flexitarian diet [135]. One of the primary

reasons is that the climate and soil may not be conducive to growing a diverse range of crops. In

some areas, the soil may be too acidic, nutrient-poor, or contaminated with pollutants, making it

difficult to grow crops that are essential for a plant-based diet. Furthermore, certain regions may

experience droughts or flooding, making it difficult to consistently produce crops. In addition,

access to fresh produce and other plant-based foods may be limited in LMICs. This can be due to

a lack of infrastructure, such as refrigeration or transportation, or limited access to markets that

sell fresh produce. In some areas, food insecurity may also be a major concern, which can make it

difficult to prioritise a plant-based diet. Finally, cultural and societal factors may also play a role

in making it difficult to transition to a flexitarian diet. In some regions, meat consumption is an

important part of cultural traditions, and it may be challenging to convince people to shift their

dietary habits. Additionally, there may be a lack of education about the benefits of plant-based

diets, and people may not have the resources or knowledge to prepare and cook plant-based meals.

In conclusion, while a flexitarian diet can be beneficial for health and the environment, it may not

be a realistic option for everyone. In LMICs and regions with limited resources, factors such as

soil quality, access to fresh produce, food insecurity, and cultural and societal factors may make it

difficult to transition to a plant-based diet.

1.3 Subsistence and resource-poor farming

Delgado et al. (1999c) popularised the term "Livestock revolution" which defines the accelerated

growth in the demand for livestock-based products (for example, meat, milk, eggs etc...) in the

developing world. The root of this "revolution" is the fast increasing human population, rising

incomes, advancing urbanisation and change in the diet habits in the developing part of the

world. This phenomenon has profound implications for human health, the environment and the

economic outcome of the concerned region.

Livestock farming in resource-poor (RP) communities presents multiple challenges. Sheep

and goat farming in developing countries suffers from tremendous economic losses from a variety
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of diseases, including parasitic helminth infections [39]. Optimal helminth management is

imperative for a farmer to achieve, but is complex and especially difficult without access to expert

help.

1.3.1 Helminth infection in small ruminants

Helminth infection is a leading cause of death in livestock farming, especially in poor tropical

regions of the world, where the combination of recurrent rainfall and poor husbandry management

causes significant economic loss in those regions [39]. The life of most Helminth species starts

with the female laying up to 10,000 eggs depending on the specie [125] inside the host animal,

which will be passed out in the faeces. The development of the egg into larvae is dependent on

exogenous factors such as the moisture and the living bacteria in the faeces, dry conditions reduce

the chances of development of the juvenile larvae. While grazing, ruminants ingest larvae that

can complete their development inside the animal where they can feed on its blood and produce

new eggs.

The gastrointestinal nematode Haemonchus contortus (H. contortus) has a particularly heavy

impact on small ruminants in tropical and subtropical regions, as these regions provide a

favourable environment for its development. Each female H. contortus produces up to 10,000

eggs per day [125], and these develop into infective larvae in a few days under warm and moist

conditions. Re-infection can result in high parasite burdens and acute disease outbreaks often

leading to death, especially among young animals [51]. The disease is primarily the result of

blood-feeding by adult worms in the abomasum, leading to anaemia, protein loss, and associated

consequences for health, growth and fertility [13]. The economic loss due to helminth infection in

sheep and goat production is substantial, for example, an estimated $40 million per annum in

the Kano area of northern Nigeria and $26 million per annum in Kenya [39].

Rainfall plays a pivotal role in the life cycle and development of Haemonchus contortus

parasites. Because the life cycle of Haemonchus contortus involves a free-living stage in the envi-

ronment, where larvae develop within the faecal matter, rainfall is crucial as it creates a conducive

environment for the survival and movement of the larvae, allowing them to migrate onto pasture

where they can be ingested by grazing animals during foraging [104] [105] [11]. Precipitation

events, contributes to the sporadic distribution of infective larvae on pasture, increasing the risk

of exposure for susceptible hosts. Temperature and seasons also have significant influence over

the life cycle of Haemonchus contortus parasites [78]. Warmer temperatures generally accelerate

larval development, promoting a faster transition from one stage to another. In contrast, colder

temperatures can slow down this process. During warmer seasons, the environment becomes

more favorable for larval survival on pasture, increasing the risk of infection for grazing animals.

In colder seasons, the opposite occurs, with decreased larval survival [126]. Consequently, under-

standing the interplay between rainfall, temperature patterns and parasite development is vital

for implementing effective parasite control strategies in livestock management.
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Although multiple worm control strategies for RP farmers exist [52], including chemical

dewormers, vaccination, anthelmintic drugs, grazing management, specific diets and ethnoveteri-

nary remedies, they all require high manual labour and other expenses [89, 144]. In addition,

widespread use of anthelmintic drugs has led to the high prevalence of anthelmintic resis-

tance (AR) in countries such as South Africa [141, 145, 147]. This is due to farmers relying on

anthelmintics as the sole method of control against helminth infection, and poor practices such as

treating the entire herd when only a few individuals are affected. Although helminth infections

are curable, they are common and have high ongoing costs relative to other diseases due to the

complexity and operational difficulties of effective and sustainable management [114]. Indeed,

farmers in Sub-Saharan Africa rank helminths as the most important disease in small ruminants,

in spite of more visible (e.g. ectoparasitic) and ostensibly more damaging (e.g. foot and mouth

disease virus) pathogens [113].

1.4 Companion animal health

Companion animal health refers to the overall health and well-being of pets, including dogs,

cats, and other domestic animals that are kept as companions. This includes physical health,

such as nutrition, exercise, and disease prevention, as well as mental and emotional health, such

as socialisation, behaviour, and stress management. Physical health is an important aspect of

companion animal health. Proper nutrition and exercise are essential for maintaining a healthy

weight and preventing obesity, which can lead to a range of health problems such as diabetes,

heart disease, and joint problems [14] [69]. Regular veterinary check-ups and preventative care,

such as vaccinations and parasite prevention, can also help maintain a pet’s physical health

and prevent diseases. Mental and emotional health are also important for companion animals.

Socialisation with other pets and people, as well as training and positive reinforcement, can

help prevent behavioural issues and promote mental well-being. Stress management techniques,

such as environmental enrichment and relaxation training, can also help pets cope with stress

and anxiety [28]. Healthy companion animal health can improve the quality of life for both the

pet and its owner [44]. By maintaining physical and mental health through proper nutrition,

exercise, and stress management, as well as utilising emerging technologies and veterinary care,

pets can live happy, healthy lives with their owners.

The use of technology, such as machine learning and accelerometers, is increasingly being

used to monitor and improve companion animal health [3] [101]. These technologies can provide

valuable insights into a pet’s behaviour and activity levels, allowing pet owners and veterinarians

to detect potential health problems early and develop effective strategies for improving the pet’s

health and well-being. In part thanks to increasing owner awareness, the companion animal

market is also a growing market which presents many business opportunities [65].
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1.5 Accelerometery

In 1915 Albert Einstein described the general theory of relativity which explains how Gravity

affects the physical world [38]. On Earth gravity is defined as "The total force acting on a body

at rest on the earth’s surface is the result of gravitational force and the centrifugal force of the

earth’s rotation and is called gravity". The nominal "average" value at Earth’s surface, known as

standard gravity is, by definition, 9.80665m/s2, which is also the change of velocity or acceleration

of a free-falling object. Isaac Newton’s second law of motion defines acceleration as the amount of

force needed to move each unit of mass with the equation a = F/m where a is the acceleration, F

the force and m the mass. Accelerometers are devices which measure the acceleration they are

subjected to.

Accelerometers are devices which measure the physical acceleration experienced by an object

in its own coordinate system. Although different types of accelerometers exist, they all follow

the same principle. In a closed casing, a reference mass attached to the spring will move if

subject to external forces, the effect of the moving mass on the system can then be measured. A

common type of mechanical accelerometer includes Piezoelectric accelerometers [83] in which the

enclosed mass comes in contact with a piezoelectric material i.e. a material which accumulates

electric charge when exposed to mechanical stress (Fig. 1.2). Capacitive accelerometers use the

change in the distance of two metal plates as the mass moves which gives a measurement of

their capacitance. Seismometers are a kind of accelerometer which use a pen attached to the

moving mass, when an earthquake strikes, as the mass moves and bounces back in the casing

the trace left by the pen registers the earthquake forces. Mechanical accelerometers are rarely

used in common consumer electronics due to their physical size requirements. Instead, Micro

electro-mechanical system (MEMS) accelerometers are more commonly used for a variety of

applications ranging from fitness monitoring to video game controllers [5].

Figure 1.2: Schematic of a basic piezoelectric accelerometer. Image taken from source [68].

MEMS accelerometers output signals that represent the acceleration along one or more axes.

The output is typically in the form of a voltage or current, which is proportional to the acceleration

along the sensing axis. This analogue signal is then converted into a digital signal using an
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analogue-to-digital converter (ADC). The digital signal is usually a binary code that represents

the amplitude of the analogue signal at a particular point in time. A 3-axis accelerometer works

by measuring the acceleration along three mutually perpendicular axes, typically labelled X, Y,

and Z. The sensing element of a 3-axis accelerometer consists of a small proof mass suspended by

one or more springs. The proof mass is mounted on a set of movable plates that are capacitively

coupled to stationary plates. When the accelerometer experiences acceleration along one or more

of the sensing axes, the proof mass moves relative to the stationary plates, causing a change in

capacitance. This change in capacitance is detected and converted into a voltage signal, which is

amplified and then digitised by an ADC. The digital output of a 3-axis accelerometer consists of

three streams of binary data, each representing the acceleration along one of the three axes. The

data is typically sampled at a fixed rate, such as 100 Hz or 1 kHz, and each sample includes the

acceleration values for all three axes. This data can be further processed to extract features such

as velocity, displacement, or orientation, depending on the application. In many cases, the 3-axis

accelerometer data is combined with other sensor data, such as a magnetometer or gyroscope

data, to provide a more complete picture of the motion or orientation of the object being measured.

For example Kathpalia et al used a 3-axis accelerometer to enhance the location accuracy of a car

global positioning system by predicting driving parameters [73].

1.6 Digital signal processing

The science of Digital signal processing (DSP) allows the processing of such signals in order

to maximise the intrinsic information content. The time domain refers to data measured with

respect to time, it shows how a signal changes over time while the frequency domain shows the

frequency components of the signal across multiple frequencies. The time-frequency domain

allow us to describe the evolution of the frequencies within a signal or time series over time. In

practice switching to the frequency domain gives us a different perspective of the data which

might reveal characteristics which were not obvious in the time domain. Techniques such as the

Fast Fourier transform (FFT) [103] and the Continuous Wavelet Transform (CWT) [53], [26] are

staple techniques for digital signal analysis in the time and time-frequency domains respectively,

and can be used for accelerometry data analysis and interpretation.

A FFT is a mathematical algorithm used to transform a time-domain signal into its frequency-

domain representation. It does this by decomposing a complex signal into a sum of sinusoidal

waves of varying frequencies and amplitudes. This transformation is useful because it allows the

identification of the frequency components of a signal, which can reveal important information

about the signal’s characteristics, such as its dominant frequencies, periodicity, or spectral content.

The FFT is widely used in digital signal processing, image processing, audio processing, and

other applications where signal analysis is required. It is called "fast" because it can perform

the transformation much more quickly than the traditional Fourier transform [18] by exploit-
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ing symmetries and avoiding redundant calculations. Analysis of the frequency component of

accelerometry signal via spectrogram has been extensively used to assess the state of mechanical

systems and can successfully be used to monitor the remaining usable lifespan of the mechanical

systems such as bearings and gas turbines, for example.

The FFT is more appropriate for stationary signals. Because activity data is not stationary,

i.e. it changes over time, for example, the activity at day time will differ from the activity at night

time as animals sleep, it is often appropriate to focus on the CWT which is a time-frequency

transform that allows the analysis of a signal into different time and frequency resolution. The

Continuous Wavelet Transform (CWT) pioneered by Ingrid Daubechies [26] decomposes a signal

using Wavelets of different scales and locations. The core principle of this transform is to slide

a wavelet across the input signal for a set of different wavelet properties, at every time step or

location the Wavelet is multiplied by the signal for every Wavelet scale selected, and the "sliding

multiplying" process is called the convolution of the signal with the Wavelet, convolution of two

functions, is combining them in such a way that tracks their interaction throughout time. The

wavelet transform can extract local frequency and time information simultaneously. By choosing

a Wavelet shape that matches the feature of interest in the input signal the CWT is a powerful

tool to detect localised events, see Fig 1.3 for examples.

For a signal or time series f which changes over time t, φ∗ the complex conjugate of the

wavelet φ, s is the scale parameter which is defined as the inverse of the frequency of φ

(1.1) F(τ, s)= 1p|s|
∫ +∞

−∞
f (t)φ∗

(
t−τ

s

)
dt

A – Mexican hat B – Morlet

Figure 1.3: Wavelets. Illustration of two common continuous wavelets, the Mexican hat wavelet
(A) and the Morlet wavelet (B).

A Wavelet Ψ(t) can be scaled and/or shifted. Scaling expands or shrinks Ψ(t) in time and

also changes its frequency, with s a positive scaling factor Ψ( t
s ) is a scaled wavelet, s is inversely
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proportional to frequency such that the wavelet frequency is defined by Feq = C f
sδt where C f is the

central frequency of the wavelet, which is the frequency of the approximated sine wave that fits

the wavelet best([50]), s is the scale and δt the sampling interval. For example, scaling a wavelet

by a factor of 2 results in dividing its frequency by 2. A stretched wavelet can capture the slowly

varying changes in a signal (i.e the low-frequency components) while a compressed wavelet can

capture the abrupt changes (i.e the high-frequencies). By constructing different scales we can look

for multiple different frequencies in a signal. Shifting a wavelet means delaying or advancing

it in time along the original signal time axis, it can be described. The CWT scales and shifts

a wavelet across a signal to obtain its time-frequency representation and outputs coefficients

that are function of frequency (or scale as it is inversely proportional to scale) and time. For k a

shifting factor, s a scaling factor, x(t) a time-domain signal and Ψ a Wavelet function, the CWT of

x can be calculated with the formula:

(1.2) CWT(k, s)= 1
|ps |

∫ −∞

+∞
x(t)Ψ(

t−k
s

)dt

To give some examples, Ayaz et al [8] used the CWT of the signal outputted by accelerometers

measuring the vibration of electric motors to assess the level of damage of the hardware. A

wavelet is a wave-like oscillation localised in time, a wavelet has two main properties, scale i.e.,

how dilated or compressed the wavelet is and location. Silva et al [133] used accelerometer data

analysis with CWT for early fault detection of gas turbines by detecting rubbing elements. A

demonstration of the CWT on animal activity date is given in Fig 1.4.

Figure 1.4: CWT of activity data. While the figure on the left shows a 7-day-long sheep ac-
tivity signal after pre-processing and centering, the figure on the right shows its CWT, the low
frequencies (bottom of y-axis) from the day/night cycle are clearly visible as well as the higher
frequencies of activity.
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1.7 Supervised machine learning

The term "Machine Learning" was popularised in 1959 by Arthur Samuel, it is the ensemble of

computing techniques in which algorithms use data to automatically perform a task the most

optimally without being directly programmed to do so.

Supervised ML is a type of ML in which an algorithm is trained to learn a mapping between

input and output variables, based on a labelled dataset. In other words, the algorithm is given

examples of inputs and their corresponding desired outputs, and it learns to generalise from

these examples to predict the outputs for new, unseen inputs. To train a supervised ML model, a

dataset is divided into two parts: a training set and a test set. The training set contains a set

of input-output pairs, and the goal is to learn a mapping from the inputs to the outputs. The

algorithm is presented with the input-output pairs one at a time, and it adjusts its internal

parameters to minimise the difference between its predicted output and the true output. This

process is known as optimisation, and it typically involves minimising a loss function that

quantifies the difference between the predicted and true outputs. Once the model has been

trained on the training set, it is evaluated on the test set to measure its performance on new,

unseen examples. The test set contains input-output pairs that were not used in training, and the

model’s predictions for these examples are compared to the true outputs. The model’s performance

is usually assessed using metrics like AUC, accuracy, or precision. Supervised ML can be used for

a wide range of tasks, including classification, regression, and sequence prediction. Examples

of classification tasks include image recognition, spam detection, and sentiment analysis, while

examples of regression tasks include price prediction, weather forecasting, and stock market

analysis. Sequence prediction tasks include natural language processing, speech recognition,

and time series forecasting. Some common algorithms used in supervised ML include decision

trees, random forests, support vector machines (SVM), k-nearest neighbours (k-NN), and neural

networks. These algorithms vary in their complexity, scalability, and interpretability, and the

choice of algorithm depends on the nature of the problem, the size of the dataset, and the desired

performance.

1.7.1 Support vector machine

As an example, the Support Vector Machine [15] (SVM) is a commonly use supervised ML

technique to solve classification problems. For a set of points we wish to classify, each point is

represented by a feature vector x in a finite linear D dimension space such that x ∈RD . Because

in many real-world cases data points often cannot be separated in a simple linear space, we

map the previous space to a more complex non-linear higher M dimensional space φ such that

φ :RD →RM and φ(x) ∈RM SVM aims to find a decision boundary (DB) which separates best the

points into their respective classes, this separator is defined as a M−1 dimension hyper-plane H
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such that,

(1.3) H = wTφ(x)+b = 0

where w and b are the hyper-plane hyper-parameters, w is called the weights and b is the bias.

The distance of the hyper-plane H from a point vector x0 is defined as dH such that:

(1.4) dH(φ(x0))= |wTφ(x)+b|
||w||2

the SVM algorithm goal is to find the hyper-plane that has the maximum margin from the closest

points we wish to classify, in other words the goal is to maximise the minimum distance (figure

1.5), for n data points this optimisation problem can be written as:

(1.5) w∗ = argmax
w

[min
n

dH(φ(xn))]

For a binary (there are two classes of data points) classification problem, substituting a class 1

point into the DB equation 1.3 will output a > 0 value while a class 2 will give a < 0 value,

(1.6) wTφ(x)+b > 0, x ∈ class1wTφ(x)+b < 0, x ∈ class2

The predicted class of a point x is correct or incorrect depending on the value of the product of

the DB equation and the actual data point class y, for n data points,

(1.7) yn[wTφ(x)+b]=
{

≥ 0, correct

< 0, incorrect

In the case of a perfectly separable dataset, H separate all points correctly,

(1.8) w∗ = argmax
w

[
min

n

yn[wTφ(x)+b]
||w||2

]
= argmax

w

1
||w||2

[
min

n
[wTφ(x)+b]

]
We can normalise (re-scale) the inner term which represent the distance of the closet point to the

DB,

(1.9)
[
min

n
[wTφ(x)+b]

]
= 1

this can be done by multiplying the weights w and bias d by a constant c which keeps the

direction of the vectors in H which won’t change the sign of the output of the equation 1.3.

(1.10) w∗ = argmax
w

1
||w||2

We can convert the last step 1.10 into a minimisation problem and introduce the half for math-

ematical convenience, this gives the equation known as the Primal formulation of SVM for

perfectly separable data.

(1.11)
w∗ = argmin

w
1
2 ||w||2

yn[wTφ(x)+b]≥ 1∀n
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In real-world scenarios, the assumption that every point in the dataset is separable is almost

never met. Instead of aiming for perfect classification of each point, we allow the algorithm

to make some incorrect classifications. This is done by introducing for each data point a slack

variable ξ, for a correctly classify data point ξ = 0 while for a incorrectly classified data point

ξ> 1.

(1.12)

argmin
w,b,ξn

1
2 ||w||2 +C

∑
n
ξn

yn[wTφ(x)+b]≥ 1−ξn∀n

ξn ≥ 0∀n

To control the amount of slack permitted for miss classification, a regularisation parameter is

employed (C). If C equals 0, the classifier faces no penalty for slack, allowing for considerable

miss classification. In this instance, the decision boundary (DB) will be linear, and there is a risk

of underfitting. On the contrary, an infinite C (C =∞) signifies that even a slight slack is heavily

penalised, resulting in a very intricate DB and potential over-fitting. 1.12 is a Convex Quadratic

optimisation problem because the objective function is quadratic in w and the constraints are

linear in w and ξ. To solve this problem we need to find φ, which is difficult to compute. The Dual

Formulation of SVM eliminates the reliance on φ by introducing the concept of a Kernel. This

formulation rephrases the same problem using a different set of variables, thanks to the method

of Lagrange Multipliers. In a general problem where x is the variable, and we aim to minimise a

function f under a set of constraints determined by a set of functions g i:

(1.13)
min

x
f (x)

g i(x)≤ 0

The problem can be rewritten as Lagrangian, where instead of having a set of variable x introduces

a new set of variables also called Lagrange Multipliers λi:

(1.14)
L(x,λi)= f (x)+

n∑
i=1

λi g i(x, )

λi ≥ 0

When we apply Lagrange Method to the SVM primal equation1.12, the Lagrangian is:

(1.15) L(w,b, {ξ}, {λn}, {αn})=
[

1
2
||w||2 +C

∑
n
ξn

]
+∑

n
[αn{1−ξn − yn[wTφ(xn)+b]}]+∑

n
λn(−ξn)

by differentiating with respect with the primal variables w, b and ξ:

(1.16)

δL
δw = w−∑

n
αn ynφ(xn)= 0⇒ w =∑

n
αn ynφ(xn)

δL
δb =∑

n
αn yn = 0⇒∑

n
αn yn = 0

δL
δξn

= C−αn −λn = 0⇒ C−αn −λn = 0
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By substituting 1.16 in 1.15 we can eliminate the primal variables and express the Dual form

of SVM:

(1.17)

max
αi

g({λn}, {α})=∑
n
αn + 1

2
∑
n
αmαn ym ynφ

T (xm)φ(xn)

αn,λn ≥ 0∀n∑
n
αn yn = 0

C−αn −λn = 0

In this form the φ dependency can be replaced with a kernel, a kernel is a function of the base

feature x which is symmetric and positive semi-definite, for a kernel k, k has two properties:

• k(xm, xn)= k(xn, xm)

•
∑
n

∑
n

vmvnk(xm, xn)≥ 0

The inner product φT (xm)φ(xn) can be represented with a kernel function such as φT (xm)φ(xn)=
k(xm, xn)

1.17 hence becomes φ independent and much easier to compute for a convex quadratic

equation solver which will output a set of weights and bias:

(1.18)

max
αi

g({λn}, {α})=∑
n
αn + 1

2
∑
n
αmαn ym ynk(xm, xn)

αn,λn ≥ 0∀n∑
n
αn yn = 0

C−αn −λn = 0

To make predictions we can use,

(1.19) wTφ(x)=∑
n
αn ynk(xn, x)
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1.7. SUPERVISED MACHINE LEARNING

Figure 1.5: Schematic of linear SVM. The DB of SVM with the largest margin. × and o denote
two-class training examples. wTx+b = 0 is the optimal hyperplane to do the separation, where w
is a weight vector and b is a bias, and an SVM training model with the largest margin 2/

p
wTw

is built. The support vectors are the samples on the dotted lines. The optimisation classification
hyperplane is determined by the solid line. Image is taken from source [85].

When the data is not linearly separable, SVMs use a kernel function to transform the

input data into a higher dimensional space where the data becomes linearly separable. One

common kernel function used in SVMs is the Radial Basis Function (RBF) kernel [149]. The

RBF kernel is a popular choice because it is capable of modelling complex, non-linear decision

boundaries between classes. The RBF kernel maps the input data to an infinite-dimensional

feature space, making it highly flexible and capable of capturing complex patterns in the data.

The RBF SVM classification algorithm has several hyperparameters that can be tuned to improve

its performance, including the regularisation parameter, the kernel coefficient, and the kernel

width. The regularisation parameter controls the trade-off between maximising the margin and

minimising the training error, while the kernel coefficient and kernel width control the shape

and scale of the DB. The optimal hyperparameters are typically found through a process of

cross-validation on a separate validation dataset.

(1.20) K(x, y)= exp(−γ||x− y||2)

where x and y are two data points, ||x− y||2 is the squared Euclidean distance between them, and

γ is the kernel coefficient that controls the width of the kernel. The value of γ determines the

width of the kernel function. A small gamma results in a wider kernel, which means that the DB

is smoother, while a large gamma results in a narrower kernel, which means that the DB is more

complex and can better fit the training data.
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1.7.2 Deep learning

Deep learning refers to the use of neural networks with multiple layers to perform complex tasks

such as image and speech recognition, natural language processing, time series forecasting and

robotics. Deep learning models are trained using large amounts of labelled data, using a process

known as backpropagation, which involves iteratively adjusting the weights of the network to

minimise a loss function. One of the key advantages of deep learning is its ability to automatically

learn relevant features from raw data, without the need for manual feature engineering. This

makes it a powerful tool for tasks such as image recognition, where the relevant features may be

complex and difficult to define explicitly.

Convolutional Neural Networks (CNNs) are a type of deep neural network commonly used

for image classification, object detection, and other computer vision tasks. CNNs are composed

of multiple layers of neurons, each of which performs a specific transformation on the input

data. The first layer of a CNN typically consists of several convolutional filters, which extract

local features from the input image. These filters slide across the input image, performing a dot

product with each pixel and its surrounding neighbours. The output of this operation is a set of

feature maps that capture different aspects of the image, such as edges, corners, and textures.

The subsequent layers of a CNN typically consist of pooling layers, which reduce the spatial

dimensionality of the feature maps, and activation layers, which introduce non-linearity into the

model. The output of these layers is passed through several fully connected layers, which perform

high-level abstraction and produce the final classification output. CNN can also be used for time

series or digital signal classification, for example, Baek et Youngji [158] predicted the useful

lifetime of bearings by measuring the vibration experienced by the bearings with accelerometers

and used a CNN trained with the CWT of the measured data for prediction.

In addition to CNNs, other types of deep neural networks include recurrent neural networks

(RNNs), which are used for sequence modelling tasks such as speech recognition, language

translation and other time series data [86], and generative adversarial networks (GANs), which

are used for generative tasks such as image synthesis and data augmentation [138]. Overall,

deep learning has revolutionised the field of artificial intelligence in recent years, enabling

breakthroughs in a wide range of applications such as self-driving cars, medical diagnosis, and

recommender systems. Its ability to automatically learn complex patterns from data has made it

a powerful tool for solving previously intractable problems, and its potential for further advances

in the future is enormous. However, due to the large number of parameters in these models, deep

learning is reliant on appropriately large amounts of training data.

1.8 Human activity monitoring

Accelerometers have been extensively used in human health monitoring with much success. Most

of this research focuses on classifying human gait or distinct activities such as sitting or walking,
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1.9. LIVESTOCK ACTIVITY MONITORING

which can then used as surrogate measures of health. Less research has been performed to

directly correlate a person’s health with accelerometry data.

Chung et al [23] used a combination of electrocardiogram (ECG) and accelerometry monitory

with on-body wireless sensors to detect abnormalities in the activity of elderly persons at home in

real-time. The study uses an accelerometer to improve the analysis of the ECG data by detecting

when the user is resting. In this study, the health assessment is derived from the analysis of the

ECG data however the decision making is only done when the patient is detected to be resting.

Hong et al [64] developed a mobile health monitoring system based on activity recognition using

an accelerometer. In this study, the research team was able to estimate the calorific expenditure

of 6 people of different weights by modelling the relation between energy expenditure and activity

magnitude by simultaneously measuring the accelerometry data and the carbon dioxide output

of a user. Crouter et al [25] performed a study in which 48 participants’ energy expenditure was

measured with a gas analyser during various activities where the participant was wearing an

accelerometer. Although these studies were performed on a small sample size, it was found that

accelerometry data alone can be used to estimate the calorie output of an individual which is a

key metric to maintain a healthy weight but is often overestimated by other systems. Bourke et

al [17] used a threshold-based analysis of accelerometer data to accurately detect human falls

while Doughty et al [36] reduced the false positive rate of detection of falls by using accelerometry

data and orientation data from an additional sensor. Zakaria et al [136] used consumer-grade

smartphone accelerometers and ML to detect human activities (standing, sitting, laying, going

up/down stairs, walking).

1.9 Livestock activity monitoring

In the case of livestock, developing a monitoring system based on accelerometers is a practical

alternative to video-based tracking particularly where the animals can roam over wide areas. Wel-

fare assessment of livestock is traditionally performed by direct visual observation which is prone

to human error and time-consuming, cheap alternatives such as accelerometer-based sensors are

an emerging option for precision livestock farming. Most of the research uses accelerometry data

to detect behavioural traits that are linked to animal health, while little research has been done

to directly link accelerometry data to animal health.

Accelerometer studies are most often conducted in ruminants, mainly dairy cows, goats and

sheep. Krieger et al [79] used a tail-mounted accelerometer to predict calving in dairy cows

with a real-time monitoring system, it has been shown that such a system can help reduce

stillborn calves occurrences and other calving complications by detecting the onset of parturition

minutes before the birth. The team used digital signal processing techniques to detect tail raising

events and video monitoring to test their algorithm. Werner et al [156] tested the accuracy

of the commercially available dairy cow accelerometer-based sensor MooMonitor+ by visually
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comparing grazing behaviour with the sensor output. In their experiment, the sensor analysis

highly correlated with grazing time. Grazing is a key metric for pasture management and general

animal welfare, such a device can optimise animal management. Pastell et all [110] used multiple

accelerometers attached to each limb of dairy cows to detect lameness with high accuracy. Wavelet

data analysis of the accelerometry trace allowed the team to detect asymmetry of gait during

walking. Shahriar et al [129] used unsupervised ML, namely K-mean clustering to accurately

detect heat events in dairy cows by analysis of the intensity of the FFT [60] of the activity recorded.

Moreau et al [97] showed that it is possible to classify goat’s grazing behaviour, specifically eating,

resting and walking with the commercially available HOBO bio-logger which uses a tri-axial

accelerometer internally and relatively simple threshold-based analysis of the activity traces.

Alvarenga et al [4] used a Decision Tree [72] and an accelerometer placed under the jaw to

successfully discriminate between chewing and biting eating behaviours which is valuable for

grassland management. Marais et al [90] used the ML algorithms, linear discriminant analysis

and quadratic discriminant Analysis to accurately classify, lying, standing, walking, running and

grazing sheep with accelerometers attached to a collar. Although less extensive the use of an

accelerometer for pigs is possible in some scenarios. In a study by Halvorsen et al [56] epicardial

accelerometers (accelerometers which monitor the motion of the outer surface of the heart) were

used for real-time accurate detection of myocardial ischaemia which occurs when blood flow to

the heart is obstructed in pigs. Ramonet et al [121] used commercially available accelerometers

(Hobo Pendant G) attached to sow legs to detect standing and lying posture.

1.10 Companion animal activity monitoring

ML is increasingly being used for companion animal health to provide a better understanding of

pet behaviour and activity levels. Accelerometers can be attached to a collar or harness and record

the pet’s movements. For example, Weiss et al [154] developed a dog collar for activity monitoring

and recognition. Vision-based sensors have also been used, such as Pons et al [115] who developed

a cat tracking system with a depth camera and was able to successfully classify cat’s posture.

Such technology is useful for pet owners and veterinarians to monitor the health and behaviour

of companion animals, which can help detect potential health problems and improve the overall

quality of life for pets.

For activity monitoring, the data collected can be used to track how much exercise a pet is

getting and whether it is meeting recommended levels for its age and breed. This information can

help identify potential health problems such as obesity, which can lead to a range of health issues

for pets. Morrison et al [99] showed that obese dogs spent significantly less time in vigorous-

intensity physical activity than ideal-weight dogs. Monitoring of pet behaviour is also a possible

application. For example, accelerometers can be used to detect when a dog is barking excessively,

which may be a sign of anxiety or other behavioural issues [16]. Uijil et al [30] were able to
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accurately detect specific behaviours (walk, trot, canter/gallop, sleep, static/inactive, eat, drink,

and headshake) in dogs by using collar-mounted accelerometers and video monitoring. Hussain

et al [67] used wearable sensors (accelerometer and gyroscope) to infer dog well-being based

on accurate detection of pet activities such as walking, sitting, down, staying, eating, sideway,

jumping, running, shaking, and nose work. Other applications for using smart sensors on pets

include location tracking, visual monitoring, feeding management and general health monitoring

based on gait detection. The utility of different accelerometers for the detection of osteoarthritis

in dogs has been reported [94]. In cats, it has been demonstrated that travelling distance and

mobility are correlated with accelerometry data [81]).

The use of ML and wearable sensors for companion animal health has the potential to provide

valuable insights into pet behaviour and activity levels. By monitoring certain aspects of a pet’s

life, veterinarians and pet owners can detect potential health problems early and take steps to

improve the health and well-being of their pets. However, further research is needed to fully

explore the potential of this technology and develop effective tools and strategies for using it in

the field of veterinary medicine.

1.11 Discussion

Accelerometers have become an integrant part of the modern human lifestyle due to their simple

and affordable nature, they are commonly used in everyday items such as smartphones and

entertainment systems. In the industrial world, they are powerful tools to assess mechanical

component health. In recent years, thanks to the advancement in miniaturisation and the rise in

ML algorithm popularity they have successfully been used and researched as tools to monitor

human health in various ways and are more and more used in animal health assessment for

livestock management or companion animals. In the field of human activity monitoring, past

studies have primarily utilised accelerometers to categorise activities such as gait or differentiate

between sitting and walking, providing indirect indicators of health. However, a noticeable

gap exists in directly correlating an individual’s activity with accelerometry data. Decision-

making processes in health assessments are often based on the occurrence of certain gait. In

the domain of livestock, accelerometry data is frequently employed to identify behavioural

traits linked to animal health. However, there is a scarcity of research establishing a direct

link between accelerometry data and animal health. Studies predominantly concentrate on

large ruminants, potentially limiting the generalisability of findings to other livestock species.

Furthermore, the reliance on threshold-based analysis and limited sample sizes raises concerns

about the robustness, scalability and applicability of the results. While companion animal

activity monitoring shows promise, further exploration is needed to fully realise the potential of

accelerometry data in the field of veterinary medicine.
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1.12 Thesis structure

This thesis aim is to correlate animal health to accelerometry data. Chapter 1 provides a literature

review of past and present use of accelerometry data for human, livestock and companion animal

monitoring. The use of ML to analyse accelerometry data is also discussed. Chapter 2 describes

in detail our small-ruminant study group and highlights with extensive visualisation its own

unique challenges including the difficulty of data acquisition, and the drawbacks of the telemetry

hardware used. It also explores solutions to combat the high amount of missing data in our dataset

via the use of deep learning techniques which aim to understand typical activity patterns from the

available data and predict missing points with minimal bias. Chapter 3 presents an interpretable

ML pipeline for the classification of small-ruminant health status with accelerometry data.

The effect of exogenous factors known to affect the animal’s health status is also investigated.

Chapter 4 shows that we can apply the pipeline devised in chapter 3 with minimal modifications

to detect signs of degenerative joint disease in domestic cats. We conclude up by outlining the

potential practical applications of this research and suggesting steps for further studies that

could enable automated health monitoring for both livestock and pets.

1.13 Dissemination

Some parts of this thesis have been presented at academic conferences and published to preprint

services with the aim of journal publication at future dates.

My work on small-ruminant health classification with ML and accelerometer is novel as it

is based on a unique dataset which allows the matching of activity data to the level of parasitic

infections of sheep and goats in South Africa. My findings are currently published on the bioRxiv

preprint service and undergoing revision with up-to-date analysis. Submission to a peer-review

journal is in preparation. In 2020 I also presented this novel work at the 74th Association for

Veterinary Teaching and Research Work (AVTRW) Annual Conference.

The application of the pipeline I developed for the processing of livestock activity data to

domestic cats has shown promising results in the classification of degenerative joint disease

during peaks of high activity, and we have a manuscript in preparation for submission to The

Veterinary Journal.

Ultimately, this research’s true benefits lie in its translation to on-the-field systems that can

accurately give insight into the health of farmers livestock and pet owners alike. I presented the

proof of concept for an accelerometer-based wearable prototype for livestock, dogs, and cat and

researched the business opportunities at the annual University of Bristol Careers Basecamp

"Development Stage pitches" competition and was successful in my application and received

funding to develop my own open source wearable sensor. I also intend to apply to the upcoming

start-up competition to hopefully further close the gap between academic research and real-world

applications.
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UNDERSTANDING AND IMPUTING TELEMETRIC LIVESTOCK

ACTIVITY DATA

The research questions and aims of this chapter revolve around understanding and imputing

telemetric livestock activity data gleaned from modest goat and sheep farms in South Africa. The

principal dataset, curated by Dr Jan Aucamp van Wyk, initially underpinned an inquiry into the

economic repercussions of nematode infection in small ruminants. The chapter aims to dissect the

essence of this data, employing intricate visualisations and crafting imputation methodologies

rooted in deep learning. Acknowledging the constraints posed by conventional machine learning

techniques in dealing with limited datasets, the imputation process emerges as pivotal for optimal

analysis. The spotlight is on two contemporary imputation techniques, Generative Adversarial

Nets Imputation (GAIN) and Multi-Directional Recurrent Neural Networks (M-RNN), juxtaposed

with the more straightforward approach of linear interpolation. The study strives to offer insights

into the nuanced predicaments tied to livestock health management in South African rural

communities, contributing to a broader comprehension of telemetric livestock activity data.
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The data unpinning this chapter and the next was collected by Dr Jan Aucamp van Wyk

in multiple South African small-scale goat and sheep farms. This data initially supported an

investigation conducted by Dr Babayani, Nlingisisi Dombole, Prof Eric Morgan and Dr Jan

Aucamp van Wyk [9], their research highlighting the economic impact of nematode infection in

small ruminants, and the challenges associated with the health management of such livestock in

South African rural communities. While the work of Babayani focused on the practical aspect of

the data collection, such as testing the limitations of the hardware of the different versions of the

accelerometer-based transponders used, limited statistical analysis of the data was performed

and concluded that the activity level of the animals is a non-discriminatory risk indicator of

clinical infection with H. contortus.

In this chapter we use detailed visualisations to understand the nature of this data, and

develop deep learning based imputation methodology for the downstream supervised ML frame-

work presented in chapter 3. As traditional ML techniques tend to generalise and perform better

with larger datasets, it becomes necessary to impute the data for optimal analysis. The cat

accelerometry study (chapter 4) did not suffer such issues as non-telemetric sensors were used,

for that reason the imputation is only performed on the goat and sheep data.

Imputation is the process of estimating the value of missing data points, which can simply

be calculated by simple interpolation approaches or with much more advanced approaches that

harness the expected correlations with non-missing values. In this chapter we will focus on two

different modern imputation techniques, Generative Adversarial Nets Imputation (GAIN) and

Multi-Directional Recurrent Neural Networks (M-RNN), which both utilise deep learning of the

conditional distribution of the data to intelligently impute the data. We compare the techniques

to each other and also the simpler approach of linear interpolation. (Fig. 2.1).

Imputation

GAIN
Linear
Interpo-
lation

M-RNN

Figure 2.1: Imputation approaches.

2.1 Study description

Data were collected from a farm of 108 acres close to Delmas in Mpumalanga Province, South

Africa, and at Cedara, a government research farm and agricultural college, the pastures of which

comprise 25 acres adjacent to Hilton, KwaZulu-Natal. 31 female adult Ile de France sheep ewes

at Delmas and 64 goats at Cedara were individually FAMACHA-evaluated [143] at weekly or
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fortnightly intervals, respectively, and had associated longitudinal accelerometry data recorded

within the study period. For both farms for the entirety of the study from January 2015 to April

2016 for the sheep farm and March 2012 to December 2013 for the goat farm, a number of the

animals in the herds were equipped with transponders, on the goat farm in February 2013 the

transponders were replaced with a newer version, this event is taken into account in order to not

mix the data of different animals.

Discussion of FAMACHA evaluation is deferred to the next chapter (3) as the methods

developed in this chapter deliberately ignore this information to avoid potential over-fitting as

it is used as the response variable for prediction. On both farms, there were multiple improved

pastures, which were irrigated, and utilisation occurred by alternation at intervals according to

visual assessment of amounts of available water and forage. At both farms, young adult ewes/does

were randomly selected for the trials, without attention to reproductive class, but remained with

their flocks/herds of origin for the duration of each trial. The animals were kraaled at night and

let out at a standard time in the mornings for herding to pasture, where they remained until

collected and returned to the kraals in the late afternoon. Adjustments were made according to

season and special management events such as vaccination, and hoof inspection, which were

conducted first thing in the morning. As part of routine husbandry, each animal which scored ≥ 2

during a FAMACHA evaluation was immediately treated with Levamisole (Ripercol-L, Bayer

Animal Health) at 7.5mg.kg−1 [9].

2.1.1 Telemetric monitoring system

Telemetric monitoring systems were supplied by Accitrack Ltd., Paarl, South Africa. Tagged

animals on both farms were equipped with low-cost RFID transponders suspended by a sturdy

ribbon around the neck (Fig. 2.2A). A single solar-powered base station (Fig. 2.2B). was installed

on each farm, mounted at the top of a five-meter wooden pole. Each transponder contains an

active RFID transceiver operating at 868Mhz as well as a battery and an A1 type accelerometer

for activity level measurement. The accelerometers had a set acceleration threshold of 2g so

that every time an acceleration ≥ 2g is sensed, a stored integer is incremented by +1. Version 2

transponders had an increased range (10km versus 1km) and a larger battery, at the expense of

significantly increased weight. In addition, version 2 transponders also output minimum and

maximum acceleration for the three orthogonal axes at each time interval, but this data was not

utilised in this study. All tags were set to transmit the data every minute to the base station, at

which time the accelerometer count was reset to zero. In order to extend battery life, the tag only

transmits data to the base station once a minute, with data transmitted including the identifier of

the transponder, the battery level, the signal strength, a timestamp, and the activity level. Data

transmission is not performed if the signal-to-noise ratio drops below 10dB, which can occur when

there are significant occlusions between the animal and base station. In these cases, the data for

that time interval is lost and becomes missing data to impute. Through mobile connectivity with
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General Package Radio Services (GPRS), the base station then regularly forwards the received

data to the Accitrack cloud repository.

A – Sheep wearing a transponder B – Base station

Figure 2.2: Telemetry hardware. While (A) shows one of the collar mounted v2-accelerometer
based transponders used in this research, (B) show a solar panel base station on the roof of a
small building on a private South African farm.

2.2 Raw data pre-processing

All raw data is stored on the Accitrack cloud repository for two weeks only due to storage

limitations, hence it was manually downloaded regularly by a researcher at the University of

Pretoria for archival [9]. The exported data took the form of CSV files containing the sensor

outputs in the desired time frame. In cases where the data was not retrieved from the cloud

infrastructure, datasets for that time period were lost. The table storing the raw data recorded

at the original minute resolution contains 11, 594, 243 records for the sheep farm Delmas and

75, 449, 986 for the goat farm Cedara. The raw data in CSV (Fig. 2.4) format was parsed and

then transferred to the Hierarchical Data Format 5 (HDF5) (Fig. 2.5). All of the valid activity

records found in the raw spreadsheet of a farm are stored in one corresponding HDF5 file. A

non-valid record is defined as a record which reports a negative activity count or an activity

count whose value is superior to 480, this threshold was estimated by visualising the histogram

of the raw activity counts on each farm (Fig. 2.3). We observed that a small number (relative to

the total number of record) of the recorded activity count measured very high values with the

maximum count recorded at 22k on the goat farm, it is unclear what caused such high values but

it is unlikely linked to a normal or possible natural animal behaviour. A negative accelerometry

value can be explained by sensor memory overflow which occurs when the sensor return value

is too large to be stored in the available memory. Such an event could occur during animal

manipulation, which also might be the cause of activity counts values above 480. Considering the
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Figure 2.4: Subset of a raw spreadsheet containing accelerometry data.

sensor configuration (increment a new count from 0 every time acceleration experienced by the

accelerometer is > 2g every minute).

A – Sheep raw data histogram

B – Goat raw data histogram

Figure 2.3: Raw data histogram. This figure shows the histograms of the log of the positive
unfiltered activity counts. The vertical red dotted line illustrate the maximum activity count
threshold, during normal activities we estimated that an activity count above 480 is unlikely to
be linked to a natural or possible behaviour of a small ruminant. While (A) shows the histogram
of the sheep farm (B) shows the goat farm. Note that negative and zero values were dismissed.

27



CHAPTER 2. UNDERSTANDING AND IMPUTING TELEMETRIC LIVESTOCK ACTIVITY
DATA

Figure 2.5: Subset of a Hierarchical Data Format 5 (HDF5) file containing accelerome-
try data.

t1 t2 t3, t4 t5 t6

NaN NaN x, x NaN x

t1 t2 t3 t4 t5 t6

NaN NaN x x NaN x

Broken time axis

Repaired time axis

Figure 2.6: Illustration of the back-fill repair process. In this schematic x is an integer
corresponding to a activity count value while ’NaN’ (not a number) stands for a missing count.

2.2.1 Misalignment

Because of apparent misalignment in the accelerometry record timestamp of the Goat and Sheep

transponders, the raw data needs to be "repaired" before imputation. The sampling resolution of

the sensors used for this study was set to 1 record per minute. However, the transmission of the

data does not always follow the same pattern (1 activity record sent every minute) because of

communication errors the sensor transmits data only when possible. Furthermore, it is possible

for the sensor to send multiple records for the same minute ’to catch up’. The reason why this

occurs is unknown. Because of the irregularities of the sensor output, the first preprocessing

step applied to the raw data is to re-align the sampling resolution to 1 record per minute, i.e

allocate one record to a single minute bin. The repair process starts by fixing the time axis of

every transponder on a common time axis that start at the time of the earliest record across all

transponders and similarly ends at the time of the last record. The new time axis will holds a

single activity count per bin (Fig. 2.6).
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Figure 2.7: Screen capture of Web visualisation tool The web tool developed takes the form
of a website, the top of the page contains a dashboard with access to multiple features, such
as selection of the herd, and individual transponders and several and multiple post-processing
options. The dashboard also displays details (Number of points in the signal, Minimum/Maximum
activity values, start date, end date, time range of the data, presence/absence of FAMACHA
report for the transponder) about the selected traces. Each trace can be zoomed in and will
dynamically display a higher resolution of the data depending on the zoom level. This screen
capture shows the data on the Delmas farm. The first row of figures shows on the Left the herd
data as a heatmap of transponders (this figure shows the data aggregate at the day level, i.e
each bin contains the sum of one day’s activity count), on the right, two activity traces are also
displayed at the day sampling resolution. The second row of figures shows on the left the CWT of
the 2 traces selected and on the right the humidity, temperature, and signal strength. The last
figure shows the histogram of the activity traces.

2.2.2 Transformations

In general, ML algorithms and statistical models assume that the data have Gaussian residuals.

Because these algorithms are sensitive to the input data distribution, it is important to under-

stand the distribution of the data before imputation or classification to optimise our preprocessing

approach. Accelerometry data that has been captured as counts naturally follow a statistical

Poisson distribution [74] which is a discrete distribution i.e. only takes a discrete set of values.

It describes the number of events in a fixed time interval, for example, the number of sales a

merchant makes every hour follows a Poisson distribution. This distribution is also characterised

by the expected number of events per time interval parameter λ, where crucially the variance
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rises directly with the expected number of counts. In addition, it is bounded by 0 and ∞. The

Poisson distribution assumes that the rate at which each event occur is constant, in other words,

the probability of an event occurring in a certain time interval should be the same for every time

interval of equal length (assuming the underlying rate does not change due to covariates). And

the occurrence of one event does not affect the occurrence of a subsequent event, i.e. the events

are independent. The probability mass function P for X a discrete random variable with λ> 0 is

defined as:

(2.1) P(X = x)= e−λλx

x!

where,

• e is Euler’s mathematical constant. e ≈ 2.71828. . .

• x is the number of occurrences. x = 0,1,2. . .∞

As our ML methods assume Gaussian residuals with homoscedastic variance, it is important to

pre-transform the data to achieve this.

2.2.2.1 Anscombe transformatiom

The Anscombe transform [7] is a statistical data variance stabilisation transformation, i.e. a

transformation which aims to change the input data so that the variance of each data point

or observation is not related to its magnitude. This transformation therefore transforms het-

eroscedastic Poisson [74] distributed data into approximately Gaussian distributed data with a

homoscedastic standard deviation of one. This then allows us to appropriately apply ML algo-

rithms that assume Gaussian variance, which is the vast majority of them. We consider a set of

values x in a data set, the Anscombe transform A of x is defined as:

(2.2) A(x)= 2×
√

x+ 3
8

2.2.2.2 Log transformation

We want to detect relevant bursts of activity as they may contain key information. In our use case,

the percentage change in activity is more important than the absolute change, i.e. an increase

in activity from 1 to 2 counts (100% change) is far more important than from 100 to 101 counts

(a 1% change). The Logarithm function is a mathematical device to turn multiplicative change

into additive change so that the ML can consider multiplicative effects symetrically. Note that

applying the Log transform on the output of the Anscombe transform does not cause problems

because it is akin to a simple division by two, the Log of x at the power 1/2 is half of the Log of x:

log(x1/2)= 1
2 log(x).
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2.2.3 Visualisation

A web-based online visualisation tool Fig. 2.7 was created in Python. For this work, we parsed

the raw data into an SQL database. The data was re-binned into multiple time resolutions (∆t)

for efficient interactive visualisation with zooming capability. The tool displays the histogram of

the accelerometry data and the Frequency domain representation of the selected transponders

(Continuous Wavelet Transform [53] or Short-time Fourier Transform [128]). Exogenous factors

such as temperature and humidity can also be visualised with the accelerometry data. The tool

also allows visualising the data from two transponders at the same time via a mirrored axis.

Furthermore, visualisation of different pre-processing steps is also possible. � visualisation tool

sources.

This tool was developed for exploratory analysis to allow us to determine whether transpon-

ders were faulty and failed to transmit, and provided visual verification of expected behaviours

such as decreased activity levels at night. The visualisation also revealed the need for data

pre-processing, as changes in average activity signal amplitude across the herd were observed

due to varying calibration of the sensors. Additionally, the sensor’s measurement of acceleration

was influenced by the mounted position on each animal. For instance, a looser collar would permit

more extensive sensor movement, resulting in higher activity values. On the contrary, longer

wool significantly tended to decrease the frequency of registered activity occasions.

2.2.4 Need for data imputation

Visualisation of the raw unfiltered activity data in Fig 2.9 reveals the main problems. The heat

maps show the herds where the x axis display the time and the y-axis the transponder unique

identification number, each row contains the corresponding transponder activity count data, the

pink color highlights missing activity data points. The animals are kraaled (i.e enclosed) every

night and released to the pasture every morning, as part of normal husbandry practice and for

health evaluation/monitoring the animals are periodically individually inspected after being

guided to an inspection facility. From this visualisation we can observe multiple transponders

with no or near to no data points likely due to hardware mis-use or failure but also large

time frames where the data is missing for the entire herd likely due to the data administrator

forgetting to download the data from the servers. In addition, by zooming into the time axis to

a day, in Fig 2.8A we can see missing points likely due to drop of information packets during

communication between the transponder and the base station (Fig. 2.2), Packet drops occur when

the transponders are out of range. In Fig 2.8B, we can see that a decrease of transponder signal

strength (i.e the amount of energy the radio pushes into the air over time) correlate with missing

activity points, in other words, when the signal strength decrease too much no activity points are

transmitted or recorded. Missing points can also be caused by the base station not being able to

process large amounts of incoming data simultaneously.
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The heat maps in Fig 2.9 show the raw data collected over the study period for the Sheep

farm Delmas and the Goat farm Cedara. Each heat map contains activity data for 13 and 73

transponders for Delmas and Cedara, respectively. The heat map grids are configured so that each

row of heat maps represents successive weeks of data from the start to the end of the study. The

content of each individual heatmap shows the output (activity count) of each sensor aggregated

at a 10 minutes bin, i.e., each bin contains the sum of 10 activity counts as the transponders were

set up to a minute time interval.

A – Activity raw counts

B – Signal strength

Figure 2.8: Day of raw herd data. Heat maps of a subsection of the unfiltered raw data,
while (A) shows the activity count of multiple transponders (y-axis) after Log and Anscombe
transformation, (B) shows the corresponding Logged transformed absolute value of the signal
strength of the transponders. Note that the signal strength is measured in dBm (Decibel per
milliwatts ranging from 0 to -100), because we are showing the absolute value of the signal
strength which is a negative value, higher values indicate lower signal strength, while lower
values correspond to high signal strength..
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A Cedara Goat herd activity

Figure 2.9
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B Delmas Sheep herd activity

Figure 2.9: Study group herd raw unfiltered activity. Illustration of the raw activity counts
of all of the transponders (y-axis) in the herd, the x-axis shows the time. The pink colour
represents missing data points. While (A) shows the transponders data in the goat farm (B)
shows the sheep farm. The vertical white dotted line in (A) marks the date of a transponder swap
event on the farm. The transponder on the y-axis in red font are transponders with no ground
truth data which can’t be used in the later chapter 3 for our supervised ML pipeline.
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In chapter 3 our ML pipeline will rely on modeling a day of activity data to predict animal

health. The amount of days that do not contain any missing points in our dataset is limited as we

highlighted in this section. It is therefore key to have the maximum number of examples of days

for the ML pipeline to be able to work optimally, hence the need for data imputation.

2.3 Data imputation

2.3.1 Introduction

Missing values are a reality of modern datasets and a common occurrence in data science. They

are caused by a variety of reasons ranging from human error to failure of measurement tools, for

example in the medical field it is not uncommon for patients to miss appointments or stop their

participation to experimental trials, a data set that logged such patient medical record would

have missing record. Data imputation is the process in which we infer the missing values. There

are many different ways to impute missing data points from very simple approaches such as

padding, i.e replacing missing points with a fixed value or more complex techniques that use

sophisticated algorithm to estimate missing points. Ultimately we want to replace the missing

values with a value that could be true or close to the real value that was missed, for that reason

more advance imputation are usually preferred depending on the use case. We will use simple and

more advanced methods to impute our data; linear interpolation in a natural simple approach

for time series data as it based on a first order approximation, the equation of a line y= mx+b

where m is the slope and b is the intercept, both can be calculated if we have at least 2 data

points, thanks to the formula we can estimate any missing data points, the points will be said

to be "linearly interpolated". This approach is fast but assumes that the missing points depend

linearly on the nearest neighbour non-missing points from the same transponder, and are also

de-correlated with all the other transponders.

Fang et al [40] surveyed current (2020) time series data imputation methods and found that

deep learning approached based on the Recurrent Neural network algorithm [92] outperformed

other approaches. For the more complex methods, we will use two different approaches both

based on deep learning algorithms that aim to estimate the conditional distribution of the data

across the herd.

2.3.1.1 Generative Adversarial Imputation Nets (GAIN)

GAIN is a missing data imputation technique based on Generative Adversarial Networks (GAN)

[159], [24]. GANs are composed of two artificial intelligence models which work against each

other. Most supervised ML models are used to generate a prediction. Classically we start by

feeding a model input training data, the model, in turn, outputs a prediction, and we can compare

the predicted output with the expected output based on the prediction results we can update

the model to improve its predictive power. GAN is an unsupervised technique which consists of
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two sub-models, a Generator and a Discriminator. The Generator’s job is to create fake samples

while the Discriminator’s job is to take a given sample from the Generator and determine if the

sample is fake or real from the original input domain set. As an example to illustrate how GAN

works, we might want to generate pictures of human faces. We are aiming to train the Generator

to create convincing face pictures. We start by first training the discriminator model to recognise

what a picture of a face looks like, hence we need a large dataset of face pictures that we feed into

the discriminator which will look at all the attributes that make up a face in order to characterise

what a typical face should look like, once the discriminator is capable to recognise real faces then

we can test it by feeding it pictures which are not pictures of faces to make sure it can make

the difference. During this first phase, the Generator is frozen but once the discriminator gets

good at recognising pictures from the original dataset i.e pictures of faces then we apply the

generator to start creating fake pictures of faces, by selecting a random sample from the dataset

and modifying it to create a fake sample, the next step will be to feed the discriminator the newly

created fake sample and check if it is capable to identify the sample as fake, based on the answer

either one or the other sub-models will be updated. If the discriminator successfully spots that

the sample is fake then it remains unchanged while the generator will need to update its model

to generate better fakes, and vice-versa if the generator creates a fake sample that fools the

Discriminator, the discriminator model needs to update itself. We repeat the process until the

generator gets so good that the discriminator can no longer pick out its fakes.

GAIN operates on tabular data, using a fully connected neural network (Fig. 2.11) for both

the generator and the discriminator to model the conditional distribution between the columns,

while assuming the rows are independent and identically distributed. In addition the generator

is given a hint matrix containing the location of the missing data points along side the input data

data that we wish to impute, this ensures that the model understand the true distribution of the

data, ie the model has a concept of the distribution of the real data and the missing points, [159].

Figure 2.10: Schematic of generative adversarial networks (GANs). The generator (G), defines a
probability distribution based on the information from the samples, whereas, the discriminator
(D) distinguishes data produced by G from the real data.

36



2.3. DATA IMPUTATION

2.3.1.2 Multi-directional Recurrent Neural Networks (M-RNN)

In our study, we can take advantage of imputation techniques such as the M-RNN approach

devised by Yoon et al [160] which takes advantage of the temporal component across multiple

data streams. In our use case, this approach can take advantage of the information contained

in all of the transponders in the herd to impute the data because it can model both temporal

correlations within each transponder and an orthogonal fully-connected neural network to model

correlations across transponders.

Recurrent neural networks [92] RNN are a deep learning technique which predict sequences

of data, which is commonly used in sequence modelling problems such as natural language

processing and stock prediction where the sequence of the data is important. Traditional RNNs

are also called feed-forward neural networks and use the concept of sequential memory by using

previous information to affect later ones, this takes the form of a looping mechanism that allows

information to flow from one step to the next, and previous information is saved in a hidden state.
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Figure 2.11: Schematic of a Fully Connected Neural Network.
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Figure 2.12: Recurrent neural network diagram x, A and h are the input, hidden and output
layers respectively during the different learning steps, ie for each element in the input sequence
x.

Short term memory is a known limitation of RNNs, it is caused by the vanishing gradient

problem [61] which is due to the nature of back-propagation [59], training a neural network

has 3 major steps, first, a forward pass that makes a prediction, second, a comparison of the
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prediction to ground truth using a loss function which output an error value which estimates

how "badly" the network is performing, last the error value is used to calculate the gradient in

each node in the network through back propagation, the gradient being the value which is used

to calculate the network internal weights which ultimately allows the network to learn, the scale

of the adjustment to the internal weights of the network is directly linked to the gradient value,

the larger the gradient the larger the weight adjustments will be, similarly small gradient values

will cause small adjustments. When doing back-propagation each node calculates its gradients

with respect to the gradients from the nodes in the previous layer which is a problem as the

gradient in the next layer would be smaller after each consecutive layer preventing the earlier

layer from "learning" has their weight are only adjusted by a very small amount due to small

gradient values.

In an RNN each time step is a layer, to train an RNN back-propagation through time [155] is

used. The gradient values will exponentially shrink as it propagates for each time step, which

renders the model unable to learn from earlier time steps which are vital in most sequence

modelling problems, for example, to predict the next word in a sentence knowing a large number

of words is crucial for context, basing the prediction on just a few latter words can cause out of

context predictions. To combat the short term memory problem of RNN, two main specialised

RNN were created, Long Short Term Memory (LSTM) [62] and Gated Recurrent Units (GRU)

[32] which are capable of learning long-term dependencies using mechanism called gates which

are different tensor operations that can learn what information to add or remove to the hidden

state.

M-RNN is composed of multiple independent bidirectional RNNs (Fig. 2.12), each model the

data in an individual stream of data, in our case individual transponder data. In addition, a

neural network with a fully connected (FC) layer (Fig. 2.11) is used to model the data across every

transponder, where each layer in the FC layer contains the data of a single transponder. This last

model can model important data from the herd which improves imputation results (section 2.3.3)

at the animal level.

2.3.2 Methods

2.3.2.1 Selecting high-quality training data

It is important to train our imputation models with high quality data that reflects best the

real world activity of the animals. For this research the data collection not only suffered from

missing data points but also invalid and weak signals due to the transponders not being used

correctly or placed on the animals securely, for example some workers have reported to leave

active transponders on a desk for a prolonged amount of time, such events were not logged, for

that reason we will analyse the quality of the data to assure that the data that we used for this

research is valid. For each transponder, we evaluate the complexity [37] of the accelerometry

data with the Shannon entropy [130], in order to select the transponder that contains the densest
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information and dismiss the lower quality (i.e, large amount of missingness and abnormal data

points) traces (Fig. 2.13). The Shannon Entropy can help us measure the information content in

the transponder which ultimately allow us to detect invalid transponders (Fig. 2.14). The two

main problems the transponder traces suffer from are repetition of the same activity count value

for an extensive period of time and excessive amount of missing points. This approach is effective

at detecting both. The Shannon Entropy formula is given by:

(2.3) H =−
M∑

i=1
Pi log2 Pi.

Where Pi is the normalised probability distribution of the count in a transponder time series.
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A – Sheep farm transponders sorted by increasing entropy

B –Goat farm transponders sorted by increasing entropy

Figure 2.13: Illustration of transponder data sorted by entropy. This heatmap shows a 7
day section of all of the transponders sorted with their respective Shannon entropy in ascending
order from the bottom to the top of the y axis. The raw activity counts are Anscombe and then
Log transformed in this visualisation. We can observe the improvement of the "quality" of the
transponders with lower entries. It is important to note that this illustration only shows a
subsection of the time frame, transponders with no data in this subsection do not necessarily
have a lot of missing points in other time frames. Missing points are displayed via the light
turquoise color.
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A – Sheep farm top 3 transponders B –Sheep farm bottom 3 transponders

C – Goat farm top 3 transponders D –Goat farm bottom 3 transponders

Figure 2.14: Overall view of transponder data quality. This figure shows the top 3 and
bottom 3 transponders based on their respective data entropy. For visualisation convenience we
re-sampled the data to a 7 days resolution by summing all data points within a week. While (A)
and (B) show the Sheep transponders (C) and (D) show the Goat transponders.

2.3.2.2 Creating input samples

Here we will illustrate with a simple example how we will create the input samples for the GAIN

and M-RNN techniques (Fig. 2.15). In this example the accelerometry data come from 2 different

transponders, each collected twelve data points over time, transponder 1 could not measure

accelerometry data 4 times at time t4, t9, t11 and t12 while transponder 2 only missed the data

point at time t5. In both case we need to introduce the concept of window, i.e. a subset of the

original input data of a variable length, in our example we used a window length of 4 points (in

our study the data is sampled to a minute resolution, hence 4 points correspond to 4 minutes).

For GAIN for each transponder we build samples by sliding the window along its time axis with
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a stride equal to the window length, in that fashion we can build 3 samples per transponders

for a total of 6 samples for the GAIN algorithm. In comparison for M-RNN we slide the widow

along the time axis common to every transponders so that each samples contains the data of all

transponders at all times, in our case we could build 3 samples. The key difference is that M-RNN

accepts and models a matrix of data for each sample, wherease GAIN only models a vector.
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Figure 2.15: Explanation of the data preparation.This schematics shows how the samples
are created for the two main imputation techniques we used. Generative Adversarial Nets
Imputation (GAIN) [159] does not not inherently have a concept of the entire timeline of the
data stream while Multi-Directional Recurrent Neural Network (M-RNN) [160] natively uses the
timeline, the natural temporal order of the samples is taken into consideration.

The pipeline to implement the GAIN and M-RNN algorithms are illustrated in Fig. 2.16 and

explained in detail in the following subsections.
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2.3.2.3 GAIN implementation

For our application, the aim of GAIN is to create convincing fakes of our activity samples which

can be used to impute our data set. We used the implementation developed by Yoon et al [159]

and adapted to our use case. Below, we describe the different steps (Schematic. 2.16) to impute

the missing points in the original accelerometry traces. We aim to train the GAIN model with the

accelerometry data recorded during a single or multiple days, which will allow us to capture and

model the activity data of the selected time frames, we will investigate the optimal length or time

frame to use given our data set.

We consider a data set of N animals. For each animal a we have a data stream of length T

where each data point is measured at the time t.

(2.4) Input(N,T)=


a0(t0), . . . ,a0(tT )

. . .

aN (t0), . . . ,aN (tT )


We want to train a GAIN with samples that contain accelerometry data and other features F

that can help the algorithm to optimally model the data, in our case we want to model what

a day of activity looks like. F is an array that holds the timestamp of the day and the unique

transponder id associated with the accelerometry data. By stacking days of activity data from

multiple transponders GAIN can learn across the entire herd what a typical day of activity looks

like.

(2.5) samples(N,T)=



a0(t0), . . . ,a0(t1440),F0

a0(t1440), . . . ,a0(t2880),F0
...

a0(tT−1440), . . . ,a0(tT ),F0
...

aN (tT−1440), . . . ,aN (tT ),FN



• Training

1. Raw data cleaning (Section. 2.2.1).

2. Read each transponder file and filter out transponders that do not have at least 100

data points.

3. Sort transponders by entropy.

4. Calculate the log (2.2.2.2) of the Anscombe (2.2.2.1) of every data point.

5. Chunk all transponder traces into n-day-length chunks and append the day timestamp

and the transponder id for each chunk. (Eq. 2.5)
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Figure 2.16: Schematic of the GAIN and M-RNN imputation pipeline. This flowchart illus-
trates the key steps for each imputation approach.
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6. Filter out days where more than 80% of the data points are missing. There is 1

accelerometry data point per minute, therefore 1440 points in a day, if more than 1152

points are missing the chunk is dismissed.

7. The data is normalised in the range of 0 to 1.

8. The empty data points are masked and replaced with 0.

9. Train the GAIN model with high-quality n-day-length samples (Fig. 2.25).

• Testing

1. Reshape the accelerometry traces we wish to impute into n-day-length chunks.

2. Apply the same preprocessing approach used during training, namely calculating the

Log(2.2.2.2) of the Anscombe (2.2.2.1) of all data points.

3. Feed the trained GAIN model with the n-day-length accelerometry trace to impute

the missing point.

4. Back-transform the data point into accelerometry counts by calculating the inverse of

the Anscombe and Log transform and reverse Normalisation from the range 0 to 1.

5. Restore the imputed data into its original shape of 1 accelerometry trace per transpon-

der.

2.3.2.4 M-RNN implementation

In practice, M-RNN takes a list of 2D time series as input, in our case each time series correspond

to the raw count activity data of the transponders in the herd. We consider a dataset of N animals.

For each animal a we have a data stream of length T where each data point is measured at the

time t (Fig. 2.17). Compared to GAIN where each transponder is treated as an independent data

stream, M-RNN uses groups of sensors aligned on the same time axis, in other words, the herd

activity needs to be preserved to benefit from this technique. Based on the amount of available

data, we aim to model what a week of herd accelerometry data looks like, the fitted model would

then be able to impute and predict what a week of accelerometry data should be based on the

entire information contained in the herd data.

(2.6) HerdData =


a0(t0), . . . ,a0(tT )

. . .

aN (t0), . . . ,aN (tT )
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Figure 2.17: This figure shows a subset of the accelerometry input data for M-RNN each
row shows a 1440-minute long stream of activity data after Anscombe and Log transformation
where each data point is measured every minute.

Because M-RNN uses the mean square error as a cost function we first apply the Anscombe

( 2.2.2.1) and the Log ( 2.2.2.2) transformation to make the native Poisson distributed count

follows a normal distribution.

To train the M-RNN model training sets are built by creating consecutive subsections of the input

data, each i subsection w(N, t)i is of fixed length s where ts − tn = s and n is incremented by s.

Here w is the accelerometry data component of the sample where each row value comes from a

different transponder, each sample is constructed by creating 3D matrix where the first matrix

is wi, a second mask matrix that will hold the location of the missing points in wi, and a final

matrix that for each row of wi (Fig. 2.19).

858.0 1.0 1.0 1.0 2.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 2.0
1.0 1.0 1.0 1.0 1.0 2.0 1.00.0 1.0 1.0 1.0 0.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 0.0
1.0 1.0 1.0 1.0 1.0 0.0 1.0nan 0.0 0.0 0.0 nan 0.0 0.0

0.0 0.4 0.0 0.0 0.0 0.2 0.0
0.5 0.4 0.0 0.0 0.3 0.2 nan
0.6 0.6 0.5 0.0 0.8 nan 0.5

Time Axis

Figure 2.18: Schematic of the M-RNN imputation 3D sample). In this illustration, for all
matrices each row corresponds to the data stream from a single transponder, in this example,
there are 4 transponders data streams. The columns represent time, there are 7 consecutive
accelerometry records here. The first matrix (in the front) shows the accelerometry data, and the
missing points are marked by the word ’nan’(i.e not a number). The other matrices are calculated
based on the first. The matrix in the middle is a mask of the first one while the third one shows
how many data points were missing before a new data point is recorded by the transponder, in
this example the top transponder could not record 858 values before it could record a real data
point (0).
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(2.7) w(N, t)i =


a0(t0), . . . ,a0(ts)

. . .

aN (t0), . . . ,aN (ts)

 . . .


a0(ts), . . . ,a0(ts∗2)

. . .

aN (ts), . . . ,aN (ts∗2)

 . . .


a0(ts∗i−1), . . . ,a0(ts∗i)

. . .

aN (ts∗i−1), . . . ,aN (ts∗i)



• Training

1. Raw data cleaning (Section. 2.2.1).

2. Calculate the Log (2.2.2.2) of the Anscombe (2.2.2.1) of every data point.

3. The data is normalised in the range of 0 to 1.

4. Build and reshape the entire data into multiple 3D matrices (activity, mask, time)

(Fig. 2.18) of 7 days long with a sliding window along the time axis, we used a 7 days

stride with no overlap.

5. Filter out the windows that do not contain any activity data.

6. Fitting all the RNNs (one per transponder)

7. Fitting the Fully connected layer

• Testing

1. Reshape data into 3D matrices (activity, mask, time) (Fig. 2.18).

2. Feed M-RNN with the reshaped data.

3. If data points are missing in all streams impute with the data from the mean window.

4. Revert MinMax Scale normalisation and inverse Log (Apply natural exp) and Anscombe

transform

5. Restore original data traces shape
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Figure 2.19: Example of the training set for M-RNN with real Sheep accelerometry data. In
this example, we show 12 samples ready for training a M-RNN imputation model. Each column
corresponds to the 3 elements of a 3D matrix (Fig. 2.18) from the top to the bottom, first the
activity data, then the mask data, and finally the "time since missing point" data.

2.3.2.5 Evaluation

We can evaluate the results from the GAIN and M-RNN imputation by adding missing data

points and comparing the imputed point with the original value of the same transponders. We will

use the root mean square error (RMSE) [20] for that purpose and we will compare the imputation

results with imputed values achieved via linear interpolation of the data on the time axis. Lower

RMSE values are better as the indicate that the imputed value is closer to the real value. In this

section we will present the results of different imputation experiments to establish the optimal

methodology and parameters. For the GAIN imputation we will investigate the effects of the

filtering threshold, the sample length (window size) and the effect of adding extra features in the

training samples. For the M-RNN imputation we will experiment with the same parameters but

also monitor the impact of using different number of data stream for training.

2.3.3 Results

The experiment shows that the M-RNN-imputed data points are closer to their original value

compared to the GAIN and linearly imputed one, which suggests that M-RNN is more accurate

at predicting missing values (Fig. 2.21).
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A –GAIN B –M-RNN C –Linear interpolation

Figure 2.20: Evolution of RMSE with increased missingness for GAIN and M-RNN. The
x-axis shows the missing rate, i.e the rate of artificially added missing points. The y-axis shows
the root mean square error (RMSE). While (A) shows the results for GAIN (B) shows the results
for M-RNN and (C) Linear interpolation.

2.3.3.1 Robustness toward missingness

By adding missing points to the original samples we can evaluate how resistant to missingness

the imputation the imputation is. This can also give us a clear indication of which technique is

most powerful for our use case. Figure 2.20 shows that M-RNN performs better for all sample

length compared to GAIN.

2.3.3.2 Sample length and RMSE

Ultimately we want to find the optimal training configuration for each of the algorithms before

comparing their outputs, we can use the RMSE to determine the best sample length to use. Here

will add 40% of missingness, i.e 40% of the dataset points will be marked as missing (Fig. 2.21C).

50



2.3. DATA IMPUTATION

A –GAIN B –M-RNN C –Linear interpolation

Figure 2.21: Evolution of RMSE with increased sample length for GAIN and M-RNN.
The x-axis shows the sample length in days, i.e the number of activity data points in the sample,
for example 1-day samples contain 1440 data points, 1 per minute. The y-axis shows the root
mean square error (RMSE). While (A) shows the results for GAIN (B) shows the results for
M-RNN and (C) Linear interpolation.

For the GAIN imputation sample length of 1 day gives us a RMSE slightly below 0.2 while

other sample length give values > 0.2. Similarly 1 day give the lowest RMSE at < 0.12 for M-

RNN. For both techniques increasing the sample length minimally increase the RMSE. Linear

interpolation perform the worst with a RMSE around 0.60 for the lowest level of missingness.

2.3.3.3 M-RNN training and RMSE

We can train the M-RNN model with a subset of high entropy transponders to ensure we are

using the best data for training our models, however we need to be cautious about over curating

our data as some level of noise is realistic on the field scenario, for that reason we will train

the models with different number of transponders and evaluate the effect on the RMSE. An
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added benefit of training on a subset of the transponders significantly decrease processing time

as M-RNN involves training as many Bi-RNN as transponders used for training.

Figure 2.22: Comparison of The root mean square error of M-RNN with training on differ-
ent number of transponders (data stream).

52



2.3. DATA IMPUTATION

2.3.3.4 Model loss curves and sample length

Analysing the model loss function is a valuable approach to gauge the learning progress of the

model. Regarding the GAIN models, one can anticipate the divergence of the two competing

models as the generator enhances its ability to generate fakes, while the discriminator becomes

more adept at detecting them (as detailed in Section 2.3.1.1). Similarly, for M-RNN, an expectation

is set for the model’s loss to decrease progressively as it undergoes the learning process. Notably,

our experiment aligns with and validates both of these expectations.

Figure 2.23: Evolution of RMSE with changing sample length. The x-axis shows the model
iteration while the y-axis shows the moving average of the model loss. Each GAIN model
(Generator and Discriminator) share the same color, the generator curves are marked with
the "x" marker while the discriminators are marked with "•". Different colours represent different
sample length.
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A – Bi-RNN Models loss

B – FC layer model loss

Figure 2.24: M-RNN models loss. (A) shows the loss of each Bi-RNN while (B) shows the loss
of the fully connected layer. The x-axis shows the model iteration and the y-axis shows the loss.
In (A) each curve correspond to a Bi-RNN model learning the data conditional distribution of a
single transponder, we can observe that some model converge faster than others.

2.3.3.5 Imputation visualisation

In this section we will display and compare the output of the imputation with the help of heat

maps. We will compare the output of GAIN and M-RNN with Linear interpolation. In Figure 2.25C

we can observe that GAIN have successfully learned the structure of a day of activity, particularly

for the samples range [0, . . . ,20] which real values are low, in contrast the linear interpolation

approach Fig 2.25D has no concept of a typical day structure. Similarly Figure 2.26 highlight

how well M-RNN learned the data structure of each transponder as it can impute entire chunk of

missing herd data, for example after 9.5k minutes of the x-axis.
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A – GAIN samples for a single transponder B – Before GAIN imputation

C – After GAIN imputation D – After Linear interpolation imputation

Figure 2.25: Illustration of GAIN training samples from a single transponder for 1 day
length samples. For visualisation purposes, the samples are placed on the entire transponder
data collection time frame which displays the period of emptiness in light turquoise (A). (B) shows
ready-for-training samples for a single transponder while (C) displays the GAIN imputed output
and (D) shows the linear interpolated samples.
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Figure 2.26: Illustration of M-RNN imputation on a 7 days subset of herd data. The top
heatmap shows the herd data where each row is the data stream from a single transponder
where the missing points are highlighted in light turquoise. The middle heatmap shows the
M-RNN imputation results while the last heatmap shows the original data imputed with linear
interpolation within each transponder trace.

2.3.4 Discussion

As expected linear interpolation performs the worst with RMSE values increasing faster with

increased missingness compared to GAIN and M-RNN, it also has the highest RMSE of all

approaches at every level of missingness.

Increasing the number of transponders used for training did not negatively affect the RMSE

(Figure. 2.22), results were similar when training with 1 4, 8, 12 16, 20, or 30 transponders. This

may indicate that a single transponder contains enough information to impute the herd, even

though each transponder record the individual data of an animal, the herd behaviour is still

contained in its activity data.

By adding more days in the samples we could model structures between consecutive days or

even consecutive month if we used month sized samples, in our use case we increased the number

of days up to 7 but the results in Figure 2.21 have shown that this advantage is negligible likely

due to lower number of samples when using longer time frames.
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2.4 Conclusion

In this Chapter we have presented the study group, the nature of our data and highlighted the

need for imputation. We tried different methods to impute the missing activity data points in our

data sets as it is vital to use as much data as possible without compromising the quality of the

data for the chapter (3) in which we will create new samples composed on activity data labeled

with the health status of the animal. We used two deep learning based imputation algorithms

GAIN and M-RNN, for both the results have shown that using day-length samples for training

allow the models to learn the real data conditional distribution best for accurate imputation. The

M-RNN impuation gave the best results and was robust to high amount of missingness.
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MACHINE LEARNING PIPELINE FOR PREDICTING HEALTH STATUS

In this chapter we develop and validate a supervised ML pipeline for the classification of develop-

ing ill-health in goats and sheep based on the preprocessing and imputation workflow established

in chapter 2. We conducted temporal validation for the sheep farm, training models on different

periods and testing their predictive capabilities. Cross-farm validation was explored to assess the

classifier’s ability to generalise across goat and sheep farms without retraining. The evolution of

predictive power over time was studied, focusing on how well the model could forecast ill health

as we moved back in time. Additionally, model explainability was addressed by training a linear

SVM model and extracting coefficients to understand the importance of features over different

time frames, specifically during daytime and nighttime. The chapter concludes with insights

into the generalisability of the model, impact of exogenous factors like weather data, and the

importance of fine-tuning hyperparameters for future improvements. The findings emphasise the

potential of simple, low-cost telemetry systems for health monitoring in resource-poor farming

environments.

As an exemplar for ill-health we use parasitic nematode Haemonchus contortus infection, and

its manual assessment with the FAMACHA (FAffa MAlan CHArt) scoring system in particular.

We develop and validate a supervised ML pipeline to classify the health status associated with

a time series of activity counts or a combined time series containing activity count data and

exogenous factors such as temperature and ambient humidity. The pipeline starts with the

creation of the samples that will be used for the ML algorithms. Each sample is made out of an

array of features and a target or ground-truth value corresponding to the FAMACHA transition

of the animal for the feature set. Various preprocessing steps are tested to determine the optimal

predictive model.
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3.1 Introduction

The FAMACHA scoring system has been used successfully to detect anaemia caused by infection

with the parasitic nematode Haemonchus contortus in small ruminants and is an effective way to

identify individuals in need of treatment [12, 143].

FAMACHA scoring works by comparing sheep or goat conjunctivae (the mucous membrane

that covers the front of the eye and lines the inside of the eyelids) against a colour calibrated

chart as seen in Fig 3.1. FAMACHA scores range from 1 to 5, with score 1 being the most

healthy, equating to haematocrit (measure of the proportion of red blood cells in your blood)

≥ 28%, and score 5 the most severely anaemic (haematocrit ≤ 12%). The scoring system requires

minimal training, provides immediate results and does not rely on expensive equipment or

laboratory analysis. However, the training is specific and the trainers are mostly in short supply,

particularly in resources poor regions. However, assessing FAMACHA is labour-intensive and

costly as individuals must be manually examined at frequent intervals, therefore a low-cost

system that could automatically predict parasite burden may be of particular use.

A – FAMACHA card B – Live FAMACHA testing

Figure 3.1: FAMACHA testing on the field. (A) shows the FAMACHA guide card while (B)
shows a live test on the field on a sheep in South Africa while the guide card is displayed on a
smartphone.

As described in Section 2.1, 31 female adult Ile de France sheep ewes at Delmas and 64 goats

at Cedara were individually FAMACHA-evaluated [143] at weekly or fortnightly intervals,

respectively, and had associated longitudinal accelerometry data recorded within the study

period. This was conducted as part of routine farm management rather than within the defined

study, which was focused on trialling the feasibility of the telemetric activity monitoring system

hardware.

Our interest is to detect changes in FAMACHA for individuals before manual assessment.

As FAMACHA scores are in the range [0. . .5] = {1,2,3,4,5} there are theoretically 25 possible
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FAMACHA transitions. However, in practice samples with a FAMACHA score ≥ 3 are rare

because animals need to be treated when they reach a score of 2, as illustrated by proportion of

transitions (Fig. 3.2) and number of transitions (Table. 3.1) for both farms.
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Table 3.1: Proportion of FAMACHA samples per farm

FAMACHA transition Cedara Delmas

FAMACHA 1→1 20%(79) 33.4%(414)
FAMACHA 1→2 11.6%(46) 19.2%(238)
FAMACHA 1→3 3.5%(14) 0%
FAMACHA 1→4 1.5%(6) 0%
FAMACHA 1→5 0% 0%
FAMACHA 2→1 13%(50) 18.4%(229)
FAMACHA 2→2 19.9%(79) 28.6%(355)
FAMACHA 2→3 7%(29) 0%
FAMACHA 2→4 2.3%(9) 0%
FAMACHA 2→5 1%(5) 0%
FAMACHA 3→1 5.3%(21) 0%
FAMACHA 3→2 5.5%(22) 0%
FAMACHA 3→3 2%(9) 0%
FAMACHA 3→4 0.5%(2) 0%
FAMACHA 3→5 0.2%(1) 0%
FAMACHA 4→1 0.5%(2) 0%
FAMACHA 4→2 3%(12) 0%
FAMACHA 4→3 0.5%(2) 0%
FAMACHA 4→4 0.2%(1) 0%
FAMACHA 4→5 0.2%(1) 0%
FAMACHA 5→1 0% 0%
FAMACHA 5→2 1%(4) 0%
FAMACHA 5→3 0.7%(3) 0%
FAMACHA 5→4 0% 0%
FAMACHA 5→5 0% 0%

A – Sheep B – Goat

Figure 3.2: FAMACHA transitions available. Illustration of the amount of FAMACHA transi-
tions in the dataset
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3.2 Methods

We present our pipeline used for classifying the health status of the animals in Figure 3.3. The

first step is to ’repair’ the raw data. This step is necessary as the sensors used in this study have

an irregular sample rate, i.e. the activity counts measured are not always associated with the

appropriate time bin, for example, two different counts can be saved as marked as measured at

the exact same time. This issue is believed to be caused by the communication protocol used by

the transponders and the base station. The aim of the ’repair’ step is to rearrange every measured

count to its appropriate unique time bin. For this, the backfill approach described in chapter 2 is

used (Figure 2.6). Imputation is the next step in the pipeline which allows us to use as much data

as possible from the raw dataset. This outputs accelerometry imputed count data for multiple

transponders which we subsequently use to build our dataset samples based on the evolution

of the FAMACHA score on consecutive weeks (Figure 3.4). The figure also highlights the need

for imputation as discussed in chapter 2 as we can clearly see multiple FAMACHA transition

samples where activity data is missing.

Raw data

Repair to 1 min bin (backfill,
unify time axis, export csv)

Imputation

Build samples
FAMACHA

farmer’s report

Quotient Nor-
malisation

Anscombe

Log

CWT

ML SVM
Logistic

regression
K nearest
neighbour

Decision
trees

Pre-processing

Figure 3.3: Classification of health status pipeline. Diagram showing the simplified pipeline
used for the classifying of healthy from unhealthy samples.

After this stage, our samples each contain an array of activity points and a FAMACHA label.

Samples are then pre-processed before training different ML classifiers through a cross-validation

approach. We will feed our different models with the results directly and after Continuous Wavelet
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Transform (CWT, see section 3.3) to bring out different frequencies of activity, evaluating and

interpreting performance. We will also investigate the effect of the number of days used in the

samples activity array, the amount of imputed data used, different pre-processing pipelines and

classifiers.
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A – Sheep

B – Goats

Figure 3.4: Heatmaps of FAMACHA samples for ML. For both heatmaps the x-axis shows
the time from the start to the end of the study, the y-axis shows the different transponders in
the herd after filtering out invalid ones (Section. 2.3.2.2). The activity count data displayed is
transformed with the Log of the Anscombe (Sections. 2.2.2.2, 2.2.2.1). The data is re-sampled to
an hour resolution (i.e. each bin contains the sum of 60 activity counts) for ease of visualisation
of the entire time frame. While (A) show the sheep herd (B) shows the goat herd. The FAMACHA
transitions are located and specified as per the legend with the overlay of coloured boxes. Note
that in these heatmaps the activity data is not imputed, missing points are highlighted by the
pink background. 65



CHAPTER 3. MACHINE LEARNING PIPELINE FOR PREDICTING HEALTH STATUS

3.2.1 Building samples

Because we use supervised ML, we need to build a dataset which contains sets of features and

target/label or ground truth, i.e. the value we want to predict. In our case, the label is the change

of FAMACHA score from two consecutive tests, the time distance between two tests being a week

for the sheep farm Delmas and two weeks for the goat farm Cedara. The features in each sample

are composed of the activity time series associated with a FAMACHA transition. The feature

time series is selected based on the date of the first FAMACHA test, it contains the activity data

measured before the test date at midnight, for example for a FAMACHA transition from 1 to 2

with the first FAMACHA score evaluated at 2 on Feb 12, a feature array contains 1 day of activity

data will contain the data measured from Feb 11 at 00:00am to Feb 12 at 00:00pm (Fig 3.5). The

date of the FAMACHA tests of all samples for the sheep herd and the goat herd can be visualised

in Figure 3.4.

Class imbalance is a common problem in ML [58], where the distribution of instances

across different classes is highly imbalanced, with one or more classes having significantly fewer

instances than the others. This can lead to biased predictions, where the model tends to favour

the majority class and performs poorly on the minority class. There are various techniques

and algorithms that can be used to handle class imbalance, such as resampling, cost-sensitive

learning, and ensemble methods [22]. For the FAMACHA transitions ≤ 2 our dataset did not

have a significant class imbalance between the healthy and unhealthy (1To2 or 2To2) group as

illustrated in figure 3.2 and Table 3.2. The biggest imbalance was in the case of the Sheep farm

when comparing the healthy samples (1To1) with the unhealthy samples (1To2) where we had

156 and 98 possible examples respectively, in this case, the healthy group was approximately 1.6

times larger than the unhealthy. Slightly imbalanced datasets, such as in our use case, may not

necessarily be a major concern for ML algorithms. In such cases, the class imbalance is relatively

small, and many algorithms can still perform well without any specific handling of the imbalance

[102].
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Figure 3.5: Example of a single day-long ML sample. Illustration of a ML sample composed
of 1440 features (all activity counts) and a FAMACHA label indicating a transition of FAMACHA
from 1 to 2. Note that we only use activity data sampled at the 1-minute resolution, in this
example there is a day (1440 minutes) of activity data, 1 minute per feature.

As this research focuses on a binary classification approach, we decided to build 2 groups of
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FAMACHA transitions, one being "healthy" and the other "unhealthy". Each group can contain

single or multiple FAMACHA transitions. We tried groups of different compositions to find the

optimal configuration for accurate classification. In section 3.1 we explained that FAMACHA

scores ≥ 3 indicate poor health of the animal but our dataset is mostly composed of FAMACHA

transitions containing score 1 and 2 (Figures. 3.2 and 3.1). We will define a sample as healthy if

the FAMACHA score remained 1 for the two consecutive tests and we will refer to this transition

with the notation FAMACHA 1→1 (1To1). Similarly we will refer to the unhealthy samples as

FAMACHA 1→2 (1To2) or FAMACHA 2→2 (2To2). Although the amount of samples with other

FAMACHA transitions is too low for training, we can test our models against those samples.

Intuitively the unhealthy samples with FAMACHA 2→2 transition will be in a more "unhealthy"

state that the FAMACHA 1→2 as the animal remained at a higher FAMACHA score (2) for

longer, we will validate this hypothesis in the result section.

As part of routine husbandry, each animal which scored ≥ 2 during a FAMACHA evaluation

was immediately treated with Levamisole (Ripercol-L, Bayer Animal Health) at 7.5mg.kg−1 [9].

We created a dataset to examine our ability to predict which animals responded well to treatment,

comparing FAMACHA 2→1 against FAMACHA 1→1. This was based on classifying the 5 days

of accelerometer data immediately following treatment for the sheep. For the goat, FAMACHA

2→1 against FAMACHA 1→1 was compared and 3 days of accelerometer data were used.

Cedara Delmas

Healthy 1To1 1To1
Unhealthy 2To2, 1To2 2To2, 1To2

Table 3.2: Definition of healthy/unhealthy status

3.2.2 Exogenous factors

We have discussed how the parasitic burden of small ruminants is directly linked to the life

cycle of Helminths in section 1.3.1. We know that the worm population exponentially increase

in wet weather, we can use the rainfall data on the location of each farm to asses how much

predictive power it holds in comparison with the activity data, we will also combine the activity

and rainfall data as well as other exogenous data sources such as the temperature and the wind

speed. To include exogenous data in our samples we will append the data in the feature array

(Fig 3.6). Similarly to the activity data (3.2.1), we select the data before the first FAMACHA test

date up to the length of the sample. However, contrary to the activity data which is sampled per

minute, the resolution (measurement per unit of time) of the weather data is hourly, it is not

necessary to upscale the weather data to match the activity data resolution as this would only

add redundant values to the feature array and the ML algorithms we used are not sensitive to

the concept of different time resolutions in the feature space. We will only use Min Max scaling
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(section 3.2.3) which preserves the relative differences in magnitude while bringing all values

within a standardised interval. This approach preserve the original scale of the data while still

providing a consistent range for machine learning algorithms that are sensitive to feature scales

such as SVM.
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Figure 3.6: Example of a single sample with exogenous data. Illustration of a ML sample
composed of activity and temperature data and a FAMACHA label indicating a transition of
FAMACHA from 1 to 1. Note that the temperature data is sampled hourly while the activity data
is sampled per minute.

3.2.3 Intensity normalisation

The magnitude or scale of the activity data greatly changes depending on the transponder used.

The accelerometry sensor calibration might not be uniform across all of the transponders used.

Furthermore, despite attaching the transponders with the same collar in the same position, it is

challenging to regulate the tightness of the attachment. In addition, the attachment used does

loosen up over time which will affect the recorded accelerometry values as the device will move

with less inertia (Section 2.2). For these reasons intensity normalisation at the sample level is key

for our ML approach as we aim to model the difference in patterns that might indicate ill-health

within our data and avoid bias dues to the difference in intensities that we have no control over.

Feature scaling is an important step for most ML algorithms, some algorithm such as K-NN

depends on computing distances between the data points while others rely on solving the gradient

descent optimisation problem which is highly dependent on the scale of each feature. If a feature

has an order of magnitude larger than others, it might have an overly high weight in the objective

function of the algorithm and make it unable to learn from other features correctly. Features

can have completely different magnitude ranges naturally, especially if they come from different

sources, for example, weather data such as temperature and rainfall have different magnitude

ranges. Feature normalisation aims to scale all the features to a comparable scale of the same

range.

Some of the commonly used techniques for feature scaling include L2-normalisation, Min-Max

normalisation and Standard Scaling. Min-Max normalisation scales the data array x between

the range [0,1]:

(3.1) xscaled = x− xmin

xmax − xmin
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While Standard Scaling subtracts the input array x by its mean value and divides it by its

standard deviation σ, which centres the data around zero and scales it to unit variance (σ= 1).

(3.2) xscaled = x− x
σ

L2 Normalisation simply divides the input sample array x by its Euclidean distance:

(3.3) ||x||2 =
√

n∑
i=1

x2
i =

√
x2

1 + x2
2 +·· ·+ x2

n

These techniques are all linear transformations which do not change the probability distribu-

tion of the data, they only scale the magnitude of the data. Each of these techniques could be used

for sample normalisation, however as all the data points are used to compute the scaling they

can be biased by random bursts of high or low activity. Rather, we are interested in normalising

each sample robustly so that only data points comparative to herd activity levels are taken

into account. A viable solution is Quotient normalisation (QN), which scales the intensity of

samples originating from each animal with a scaling factor that takes into consideration the herd

behaviour.

3.2.3.1 Quotient normalisation

Quotient normalisation is a method often used for normalising gene expression [109], Dieterle et

al successfully used Quotient Normalisation (QN) to normalise the concentration (intensities)

of the spectra of complex biofluilds [34]. It is particulary useful when the variation of the data

is not constant over time such as in our activity time series. Here we describe with examples

the different steps of QN. The input must be activity counts stored as samples in a matrix M of

size (nxm) such that each row contains a single activity sample for a total of n samples and each

sample containing m activity counts.

M =


s11 . . . s1m

...
. . .

...

sn1 . . . snm



Figure 3.7: Quotient Normalisation step 1. Visualisation of the 1-day length activity samples
after Anscombe transformation.
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First, we define the herd-level activity across time as the median sample H of M. Here, the

median value of each column of M is calculated and stored in a m sized array. Figure 3.7 shows

all of the samples while 3.8 shows the median sample

H(m)=

median(


s11

...

sn1

), . . . ,median(


s1m

...

snm

)



Figure 3.8: Quotient Normalisation step 2. The ’herd level activity’ point-wise median sample
[median of col1, .... median of col n]

each row in M is then divided by the "median sample" H element-wise to give D, the point-wise

scaling matrix between the herd activity and each individual activity trace:

D =


s11
H(0)

. . .
s1m
H(m)

...
. . .

...
sn1
H(0)

. . .
snm
H(m)


We then calculate the median of each row in D, which is our robust scaling factor for each

sample:

A(n)=


median(

[
s11
H(0)

. . .
s1m
H(m)

]
)

...

median(
[

sn1
H(0)

. . .
snm
H(m)

]
)


Now that we have calculated our scaling factors, we can just simply scale the input matrix M

by dividing each row of M by the corresponding scaling value A(n) obtained in step3. Figure 4.10

shows the fully normalised samples.

Norm =


s11
A[1]

. . .
s1m
A[1]

...
. . .

...
sn1
A[n]

. . .
snm
A[n]
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Figure 3.9: Final results of Quotient Normalisation. Visualisation of the activity samples (1
day length) after QN.
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3.2.4 Machine learning

Time series classification is a common problem which has been tackled with various ML al-

gorithms. We will classify our datasets with some of the most commonly used algorithms and

compare their results, namely K-Nearest Neighbour (KNN) [157] [47], Support Vector Machine

(SVM) [71], Logistic Regression (LREG) [2], and Decision tree (DTREE) [70]. SVM’s are described

in Chapter 2 section 1.7.1.

The K-Nearest Neighbour algorithm is one of the simplest supervised ML algorithm used

for classification, it is based on feature similarity, aiming to group samples by comparing their

relative distance in the feature space. The k in KNN is a parameter that refers to the number of

nearest neighbours (samples) to include in a majority voting process, a new sample is classified

by majority votes from its k nearest neighbours. In KNN choosing the optimal k value is the

objective, the process of finding its optimal value is called parameter tuning (Fig. 3.10).

3.5 4 4.5 5 5.5 6 6.5 7 7.5
3

4

5

6

7

8

k = 3

k = 15

Feature 1

F
ea

tu
re

2

Unhealthy Sample
Healthy Sample

?

kNN

Figure 3.10: K-Nearest Neighbour classification example. Illustration of the KNN classifi-
cation algorithm majority voting process, in this example we reduced the number of features
in our samples to 2 for ease of visualisation. To classify a new unknown sample (represented
by the green square), KNN aim to find the optimal number of nearest neighbour k for correct
classification. In this example, if k = 3 the new sample will be classified as unhealthy while if
k = 15 it will be healthy.

Because KNN does not learn a discriminative function from the training set, it is more

appropriate for smaller datasets as computation expense is poor compared to other techniques on

larger datasets. To find the nearest neighbours, KNN can use the Euclidean distance defined by
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the Equation. 3.4 where d is the distance between two points of coordinate (x1, y1) and (x2, y2).

(3.4) d =
√

(x1 − x2)2 + (y1 − y2)2

By calculating the distance of an unknown data point from all the points in the dataset we can

rank the k nearest neighbours. Note that for this example we used 2D points (with 2 features) for

simplification. Our samples are of much higher dimensions that cannot be visualised on a 2D

graph like in the example we presented in figure 3.10.

Regression analyses are methods for modelling relationships between variables, they allow

the inference or prediction of a variable based on other variables. In a Logistic Regression (LREG),

the variable we wish to predict is dichotomous i.e. can only have two values (for example healthy

and unhealthy). It is called the dependent variable and in our case is the label/target of the

sample we wish to classify. The goal of LREG is to estimate the probability of the occurrence of

the prediction, the value range of the output of LREG is therefore between 0 and 1. The objective

function of LREG is called the logistic function (Fig 3.11) and is defined by the Equation 3.5

where z is the equation of the linear regression defined as Eq 3.6 for k features xk and bk and a

regression coefficients.

(3.5) P(y= 1|x1, . . . , xk)= 1
1+ e−z = 1

1+ e−(b1∗x1+b2∗x2+···+bk∗usethe)

(3.6) y= b1 ∗ x1 +b2 ∗ x2 +·· ·+bk ∗ xk +a

−∞ 0 ∞

0.5

1

Probability

Figure 3.11: Logistic function. The x-axis is define between −∞ and +∞ while the y-axis is
define between 0 and 1.

The probability that the dependent variable is 1 is given by Equation 3.5 for xk features. For

example, the probability of a 1-day activity sample 3.5 to be unhealthy is a function of the activity

feature array defined by Eq 3.7:
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(3.7) P(is unhealthy)= 1
1+ exp−(b1∗ f eature1+b2∗ f eature2+···+b1339∗ f eature1440+a)

To find the coefficients bk and a that best model the given data, the maximum likelihood

optimisation method [124] is used.

Decision trees (DTREES) are binary trees that recursively splits a data set until their "leaf"

nodes only contain samples of the same class. A DTREE is composed of two different types of

nodes, decision and leaf nodes, the former applies a condition to split the data while the latter

decides the class of a sample (Fig 3.12). The first node is called the root node where all of the data

set samples will be initially split into child nodes. The optimal splits are decided by calculating

the "Information Gain" from the previous or root node with the entropy (equation 3.8) difference

between the child nodes’ entropy and the previous node’s entropy for every possible split and

picking the split that maximises the Information Gain. The Information Gain is defined by the

equation 3.9 where w is the relative size of the child node with respect to its parent node.

E =∑−pi ∗ log(pi)

pi = probability of class i
(3.8)

(3.9) Inf ormation Gain = E(parent node)−∑
wi ∗E(childi)

C

C

C

••••••••••
••••••••••

••••
••••••••••

••••••

••••
••••••••••

••

•••••••••• ••

Figure 3.12: Schematic of a trained Decision Tree. In this example we used a 20 samples
dataset with 10 healthy samples and 10 unhealthy samples, the healthy samples are represented
by blue points outside the tree nodes while the red points show the unhealthy samples. The
DTREE algorithm aim to find the best possible split of the samples in each node until the nodes
contain only 1 type of sample based on a condition C.
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3.2.5 Regularisation

We will use the Python Scikit-learn’s (section A.1) implementation of the different ML classifiers

we used [111] which offer numerous regularisation strategies. Regularisation is a technique used

in ML to prevent overfitting of the model to the training data, which can result in poor generali-

sation to new, unseen data. In Scikit-learn, several popular classifiers implement regularisation

techniques to improve model performance. Here’s a summary of how regularisation works in

Scikit-learn for SVM, DTREE, LREG, and KNN classifiers:

• SVM:

Scikit-learn’s SVM implementation includes the regularisation parameter "C," which con-

trols the trade-off between achieving a low training error and a low testing error. The

larger the value of C, the more emphasis is placed on correctly classifying the training

examples, while smaller values of C allow the model to be more flexible and potentially

better able to generalise to new data. For the RBF kernel, the "gamma" parameter is used

which determines the width of the kernel function (Equation 1.20). A small gamma results

in a wider kernel, which means that the DB is smoother, while a large gamma results

in a narrower kernel, which means that the DB is more complex and can better fit the

training data. We used the default value of γ= 1
n f eatures∗variance of samples (figure. 3.13). A

grid search over a range of values for gamma and C is also a good option to find optimal

parameters (Fig. A.1).

SVM also uses L1 and L2 regularisation methods to penalise large weights for its linear

version, we used the default L2 regularisation for our classifiers which works by adding a

penalty term to the SVM objective function. The penalty term is proportional to the square

of the L2 norm of the model coefficients, also known as the weight vector. The L2 norm is

the square root of the sum of the squared values of the coefficients.

• Decision Tree:

Scikit-learn’s decision tree classifier includes regularisation techniques like pruning, which

reduces the size of the tree by removing unnecessary nodes. Pruning can help prevent over-

fitting by simplifying the tree and reducing the risk of capturing noise in the training data.

Scikit-learn’s decision tree classifier also includes parameters like "min samples split"

and "max depth" that can be used to control the complexity of the tree.

• Logistic Regression:

Scikit-learn’s logistic regression classifier includes regularisation techniques like L1 and L2

regularisation, which add a penalty term to the objective function to discourage the model

from overfitting. The strength of regularisation can be controlled using the "C" parameter,

similar to SVM. We will use the default L2 regularisation method.
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• KNN:

Scikit-learn’s KNN classifier includes regularisation techniques like distance weighting,

which weights the contribution of each neighbour to the classification decision based on

their distance from the query point. Distance weighting can help prevent overfitting by

reducing the influence of noisy or irrelevant neighbours in the classification decision we

also used the commonly used k as the square root of the total number of samples as tuning

k is a challenging and computationally expensive task in itself [57].

In summary, regularisation is a powerful technique for preventing overfitting in ML models.

Scikit-learn provides several popular classifiers with built-in regularisation techniques, including

SVM, DTREE, LREG, and KNN classifiers. By controlling the strength of regularisation and

other hyperparameters, these classifiers can be optimised for better performance on unseen data.

Gkerekos et al showed that default hyperparameters included in Scikit-learn are reasonably

effective [49]. Kim et al used Scikit-learn’s default regularisation parameters for their DTREE

model with good results [77]. Wainer et al. concluded in their research paper on SVM regulariza-

tion hyperparameters that it is likely not worth investing excessive computational time in the

search for better hyperparameters. [150].

Figure 3.13: Illustration of SVM model regularisation. In this illustration we show the
impact of the regularisation parameter of an SVM model with RBF kernel. In this example, the
data set is composed of two classes, blue and red. The contours show the DB for our trained SVM
model. On the left, we can see that this model decision function is not complex enough to model
the data, this model is underfitting while on the right the DB is overly complex and tailored to
the data including the noise of the problem, this is called overfitting. Regularisation aims to find
a balanced DB like the one in the middle.
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3.2.6 Evaluation

We will evaluate how well our models can classify our data via multiple experiments:

1. Classification of health status.

2. Classification of response to treatment.

3. Temporal validation.

4. Cross-farm validation.

5. Early prediction.

6. Model explainability.

In the ’Classification of health status’ experiment we train our models with "healthy" and "un-

healthy" samples and evaluate how well unseen activity data is classified. For the ’classification

of response to treatment’ we aim to evaluate the health evolution of the animal after being given

treatment by training our models with examples of where the FAMACHA score did or did not

successfully decrease after treatment, this way we can check treatment effectiveness.

We also explored the impact of concept drift which occurs when the data used for training a

model changes over time in unforeseen ways that impacts the accuracy of the model (Fig. 3.14).

Main Pipeline
applied to Farm

Split

First Period Second Period

ML

Figure 3.14: Temporal Validation. Schematic of the temporal validation

The notion of "concept drift" describes the decrease in performance of a given classifier due

to changing environmental or sensing conditions over a period of time. For example, training

data collected at the start of a given period becomes less representative of future data. This is a

common issue in long-duration supervised classification problems that use real life data which is,

in most scenarios, changing intrinsically [148].

With the aim to show how well a classifier trained on a farm performs on the data of another

farm and other small ruminant species, the following experiment was devised. We trained
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classifier with the data from the Delmas sheep farm and tested it on the data of the Cedara goat

farm and vise versa (Fig. 3.15).

Delmas
Main Pipeline

Cedara
Main Pipeline

ML

Figure 3.15: Schematic of Cross-farm Validation .

We also study how the predictive power of our model behaves as we move back in time, i.e. an

earlier prediction of ill health.

Finally, we also looking at explaining the result of the trained models to understand what

part of the activity data holds the most discriminative power for the classification of health status.

We trained our models to classify healthy (FAMACHA 1To1) samples from unhealthy samples

(FAMACHA 1To2 or FAMACHA 2To2) because of the relatively high number of samples available

for these FAMACHA transitions (Fig 3.2). Other transitions can be used for testing/validation of

our train model on unseen samples. We assume that a more advanced > 2 FAMACHA score in

the second test of the transition should be classified as unhealthy while a transition ending with

a FAMACHA score of 1 should be classified as healthy.
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The rest of this section explains the methodology we use to evaluate performance of the above.

3.2.6.1 Cross-validation

Cross-validation is a widely used approach which allows us to split our samples into several

’folds’, sequentially leaving out one fold to test the results of the mode trained on the rest of the

data, as shown in Figure 3.16. Repeated nested k-fold cross-validation was used to optimise

the hyperparameters and evaluate the model. Kim et al. [76] showed that the repeated cross-

validation estimator outperforms the non-repeated version by reducing the variability of the

estimator and providing lower bias. Hence we choose to use 10-times repeated 5-fold cross-

validation to assess a realistic estimate of the performance of the model predictions while making

the most of the data set available.

Split1

Split2

Split3

Splitk

Train SamplesTest Samples

· · ·

Fold-1

AUC1

Fold-2

AUC2

Fold-3

AUC3

Fold-k

AUCk

Figure 3.16: Schematic of K-Fold cross-validation. By splitting the ML samples we can train
and test our model with different subsets of the entire data set. In this illustration, the test
samples are represented in grey while the training samples are represented in white.

3.2.6.2 Area under the curve, Receiver operator characteristic curve and Precision

To explain Receiver Operator Characteristic curves (ROC) and the area under the curve (AUC)

we must first introduce the concept of a confusion matrix. The confusion matrix summarises

how a model performs on the test data, the rows in a confusion matrix correspond to what the

ML algorithm predicted (for example, healthy and unhealthy) and the columns correspond to

the known truth (Table. 3.3) The true positives (TP) are defined as samples that was unhealthy

that were correctly identified by the prediction, the true negatives (TN) are the samples that

were healthy that were correctly classified, while the false negatives (FN) are when the sample is

unhealthy but the model predicted it was healthy, and false positives (FP) are samples that were

healthy but the model predict them as unhealthy.

ML algorithms output score between -infinity and infinity of a given sample to be healthy or

unhealthy, although many are able to convert this to a probability between 0 and 1. To make a
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Actual

Unhealthy Healthy

Predicted
Unhealthy True Positives False Positives

Healthy False Negatives True Negatives

Table 3.3: Example of a confusion matrix. This example is base on our use case for the binary
classification of healthy and unhealthy samples.

decision a threshold must be set, for example if we pick a 0.5 threshold all samples returning

a probability above 0.5 will be categorised as unhealthy while those below 0.5 will be classified

as healthy. By changing the value of the threshold for deciding if a sample is unhealthy or not

we change the calibration of the classifier and hence the values in the confusion matrix. For

example, if we want to prioritise the detection of unhealthy samples we can lower the threshold

to 0.1 which will increase the number of TPs but also increase the number of FPs and also reduce

the number of FNs. Similarly we could set the threshold to 0.9 would decrease the number of

FPs and increase the detection of TNs. By changing the threshold value we can find the optimal

threshold value for our model for a particular task, ROC curves (Fig.3.17) provide a simple way

to summarise the effect of different threshold values. The y-axis shows the True Positive Rate

(TPR), also called the sensitivity:

(3.10) TruePositiveRate = Sensitivity= TruePositives
TruePositives+FalseNegatives

In our case the True Positive rates tells us what proportion of the unhealthy samples were

correctly classified. The x-axis shows the False Positive Rate (FPR), which is also 1−Speci f icity,

(3.11) FalsePositiveRate = 1−Sensitivity= FalsePositives
FalsePositives+TrueNegatives

The False positive rate tells us the proportion of healthy samples that were incorrectly classified.

We can calculate the TPR and the FPR for all of the confusion matrices generated by changing

the value of the threshold from 0 to 1 and place the points on a ROC curve. A point at the top

right corner (TPR = 1 and FPR = 1) means that even though we correctly classified all of the

unhealthy samples, we incorrectly classified all of the healthy samples, while a point at the top

left corner means that we correctly classified all unhealthy samples without mistake, the model

makes "perfect" classifications. The line that goes through the points (0,0) and (1,1) is the "Chance

line" (Gray line in Fig 3.17) where TPR = FPR any points on this line means that the proportion

of correctly classified unhealthy samples is the same as the proportion of incorrectly classified

healthy samples. The ROC curve summarises all of the confusion matrices that each threshold

produced.

The Area Under the Curve (AUC) is a value between 0 and 100 (in percent) is a metric that

allow a simple comparison of different model performances, with higher AUC indicating better

performances.
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Figure 3.17: ROC curve example. Receiver Operator Characteristic (ROC) curves illustrating
the performance of the classification model (black) compared to chance (gray), showcasing the
trade-off between true positive and false positive rates.

Precision is another metric that gives insight into a model performance and is also based on

the confusion matrices. It is defined as:

(3.12) Precision = TruePositives
TruePositives+FalsePositives

It is the proportion of positive results that were correctly classified. In the case that there are

lots of samples that are healthy relative to the number of unhealthy samples, precision is more

useful than the FPR because it does not include the number of TN in its calculation which makes

it unaffected by class imbalances (large number of one category of samples compared to the other

category), which is common in real world datasets.

3.2.6.3 Decision boundaries

The DB of a trained ML model is the functional boundary between the two possible predictions.

Decision boundaries can give us insight into how a given model classifies samples. In this section

we will focus on the DB of linear SVM models, in this case, the DB is a hyperplane as our

samples exist in a high dimensional space of dimension equal to the number of features in the

samples (for example 1-day samples of activity data have a dimension equal to 1440). We can

use dimensionality reduction techniques such as Partial Least Square (PLS) [43] to visualise our

samples and the DB hyperplane in a 2D space (Fig 3.18).
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A – Sheep farm

Figure 3.18
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B – Goat farm

Figure 3.18: Visualisation of SVM DB of sheep (A) and goat (B) samples. Projection of our
samples and the DB of a SVM classifier into a 2D space via dimensionality reduction with PLS.
The black dotted line and the turquoise hexagone show the DB, while the green and blue circles
show the testing samples, similarly, the blue and green squares show the training samples, and a
red circle or square indicates a misclassification of the sample. This illustration also shows as an
overlay the FAMACHA transition of each sample. The month of the data in the samples is also
colour coded with a rectangular patch as per the legend.
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3.2.6.4 Sample size and imputation/synthetic data

In Chapter 3 we discussed how we imputed the original activity data, the imputation results

allow us to increase the number of ML samples (Fig. 3.5) we can create. Thanks to our approach

we can create fully synthetic days of activity data if we chose, i.e. none of the data is from a

true measurement but created by our deep learning imputation models which were trained

on multiple examples of days. We can also simply fill in the gaps when the samples contain a

smaller amount of missing points. We will use the number of synthetic days within a sample

as a threshold to evaluate the impact of increasing the number of samples for training our ML

algorithms while for our testing sets we will not use sample which contain uniquely synthetic

data points. There are only a few days with no missing points which drastically reduces the

number of samples we could build if we discarded samples with any level of missingness. Thanks

to this approach we can use all of the real data available for classification, and potentially also

high-quality synthetic data as a data augmentation approach. Figure 3.19 shows a schematic of a

7-day ML sample that contains a single synthetic day and a mixture of days with only real data

and a mix of missing and real data.

day1 day2 day3 day4 day5 day6 day7 2To2

real
value

real
value

all real
values

real
value

real
value

t1 t2 . . . t1439 t1440

real
value

imputed
value

real and imputed
values

real
value

imputed
value

t1 t2 . . . t1439 t1440

imputed
value

imputed
value

all imputed
values

imputed
value

imputed
value

t1 t2 . . . t1439 t1440

Activity data FAMACHA data

(A) Day with only real data (non-missing)

(B) Day with a mixture of
missing and real data

(C) Day with only
imputed data (synthetic day)

Figure 3.19: Schematic of a 7-day-long ML sample with synthetic data. A day of activity
can more or less imputed points, in this example day 3 (A) is fully synthetic while day 1 (B)
contains only real data and day 2 (C) has real and missing data. The samples in our datasets fit
of these categories with the samples of type (B) being the most common
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3.3 Results

3.3.1 Imputation

In chapter 2, we showed that the M-RNN imputation technique yields lower RMSE performances

compared to the other method by evaluating the RMSE of the different transponder traces. In

figure 3.20 we compare the RMSE of the ML samples (Fig. 3.5) we created for our ML pipeline.

Figure 3.20: Comparison of imputation performance of ML samples. This box plot high-
lights the RMSE performance of the same ML samples for each imputation technique, we
compared the different imputed versions of the samples with their real data counterpart.

3.3.2 Classification of health status

For both farms, we will compare the results obtained by training different types of models, namely

SVM (linear and rbf kernel), LREG, DTREE and KNN. We will also use different training labels

for the health status of the samples, FAMACHA score of 1→1 will be the healthy class while

FAMACHA score of 2→2 or FAMACHA score of 1→2 will be unhealthy. The number of activity

days in a sample will be changed to 1, 4 or 7. Similarly, we will allow 1, 4 or 7 fully synthetic

activity days in a sample (Section. 3.2.6.4). Furthermore, we will apply different pre-processing

approaches to the activity time series of the samples. Initially we will show the top and bottom

test results based on the AUC performance of the different models in tables 3.4 and 3.5.

In figures 3.23 and 3.24 we show that the predictive power of our model is higher when we

train with unhealthy samples with FAMACHA score of 2→2 compared to 1→2, this is likely due

to the animal being in an unhealthy state (FAMACHA 2) for longer. Among the ML algorithms

we tried SVM and LREG performed best with similar results while KNN and DTREE had

lower performance. (Fig 3.21). In addition, although more computationally expensive we found
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that using the frequency domain CWT transform did not improve classification performance

(Table 3.6).

A – Sheep farm | Models trained with unhealthy label 1To2. B – Sheep farm | Models trained with unhealthy label 2To2.

C – Goat farm | Models trained with unhealthy label 1To2. D – Goat farm | Models trained with unhealthy label 2To2.

Figure 3.21: Performance of different ML algorithms with M-RNN imputed samples
for different unhealthy labels. By fixing the number of activity days and the maximum
number of synthetic days allowed in the samples to 7, we can compare the performances of
different type of models. We also fixed the pre-processing pipeline of the activity time series to
QN→ANSCOMBE→LOG→STDS. For each figure, the x-axis shows the ML algorithm while the
left y-axis shows the number of samples per class and the right y-axis shows the AUC.
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AUC test(95% CI) Class0 P-test Class1 P-test N test A-days S-days Imp Clf Pre-proc Class1 Farm

0.80 (0.68-0.91) 0.70 (0.53-0.92) 0.72 (0.61-0.85) 42 7 4 M-RNN LREG QN->ANSCOMBE->LOG 2To2 delmas
0.80 (0.67-0.91) 0.70 (0.54-0.85) 0.73 (0.62-0.89) 42 7 4 M-RNN SVM(linear) QN->ANSCOMBE->LOG 2To2 delmas
0.80 (0.67-0.90) 0.70 (0.53-0.85) 0.73 (0.62-0.86) 42 7 4 M-RNN SVM(linear) QN->ANSCOMBE->LOG->MINMAX 2To2 delmas
0.80 (0.67-0.90) 0.70 (0.54-0.90) 0.72 (0.60-0.85) 42 7 4 M-RNN LREG QN->ANSCOMBE->LOG->MINMAX 2To2 delmas
0.80 (0.68-0.90) 0.71 (0.53-0.85) 0.74 (0.63-0.89) 42 7 4 M-RNN SVM(linear) QN->ANSCOMBE->LOG->STD 2To2 delmas
0.80 (0.68-0.90) 0.71 (0.53-0.85) 0.74 (0.63-0.89) 42 7 4 M-RNN SVM(linear) 2To2 delmas
0.80 (0.67-0.90) 0.70 (0.53-0.84) 0.73 (0.63-0.86) 42 7 4 M-RNN LREG 2To2 delmas
0.80 (0.67-0.90) 0.70 (0.53-0.84) 0.73 (0.63-0.86) 42 7 4 M-RNN LREG QN->ANSCOMBE->LOG->STD 2To2 delmas
0.77 (0.60-0.91) 0.71 (0.50-0.86) 0.69 (0.58-0.83) 42 7 4 M-RNN LREG QN 2To2 delmas
0.77 (0.62-0.89) 0.69 (0.53-0.85) 0.70 (0.58-0.82) 42 7 4 M-RNN SVM(linear) QN 2To2 delmas

(a) Top 10 models.

AUC test(95% CI) Class0 P-test Class1 P-test N test A-days S-days Imp Clf Pre-proc Class1 Farm

0.46 (0.31-0.61) 0.61 (0.57-0.64) 0.19 (0.00-1.00) 41 7 4 LI SVM(linear) L2 1To2 delmas
0.46 (0.30-0.64) 0.60 (0.59-0.61) 0.00 (0.00-0.00) 33 4 1 LI SVM(rbf) L2 1To2 delmas
0.45 (0.26-0.66) 0.54 (0.42-0.63) 0.39 (0.14-0.73) 26 4 1 M-RNN LREG QN 1To2 delmas
0.45 (0.32-0.61) 0.60 (0.59-0.61) 0.00 (0.00-0.00) 33 7 1 LI SVM(rbf) L2 1To2 delmas
0.45 (0.32-0.56) 0.61 (0.59-0.62) 0.02 (0.00-0.31) 41 7 4 LI SVM(rbf) QN->ANSCOMBE->LOG->STD 1To2 delmas
0.45 (0.32-0.56) 0.61 (0.59-0.62) 0.02 (0.00-0.31) 41 7 4 LI SVM(rbf) 1To2 delmas
0.45 (0.28-0.64) 0.57 (0.56-0.58) 0.00 (0.00-0.00) 26 4 1 M-RNN LREG L2 1To2 delmas
0.44 (0.32-0.59) 0.55 (0.52-0.57) 0.04 (0.00-0.77) 34 7 4 M-RNN LREG L2 1To2 delmas
0.43 (0.29-0.55) 0.61 (0.60-0.62) 0.00 (0.00-0.00) 41 7 4 LI SVM(rbf) QN 1To2 delmas
0.43 (0.24-0.62) 0.57 (0.56-0.58) 0.00 (0.00-0.00) 26 7 1 M-RNN LREG L2 1To2 delmas

(b) Bottom 10 models.

Table 3.4: Comparison of model results for FAMACHA samples classification on the sheep farm. "Class0" and "Class1" refer to
the healthy FAMACHA transition ("1To1") and the unhealthy transition. "P" refer to the model precision. "A" and "S" indicate "Activity"
and "Synthetic" respectively. "Imp" shows the imputation technique used. "Clf" shows the type of model used. "Pre-proc" shows the
preprocessing used on the sample time series before training (QN: Quotient Normalisation, "STD": Standard Scaling).



AUC test(95% CI) Class0 P-test Class1 P-test N test A-days S-days Imp Clf Pre-proc Class1 Farm

0.68 (0.39-0.94) 0.60 (0.50-0.78) 0.69 (0.27-1.00) 14 4 1 LI LREG L2 2To2 cedara
0.66 (0.45-0.89) 0.62 (0.41-0.84) 0.61 (0.34-0.97) 14 4 1 M-RNN LREG QN->ANSCOMBE->LOG 2To2 cedara
0.66 (0.45-0.88) 0.61 (0.43-0.83) 0.60 (0.34-0.96) 14 4 1 M-RNN LREG 2To2 cedara
0.66 (0.45-0.88) 0.61 (0.43-0.83) 0.60 (0.34-0.96) 14 4 1 M-RNN LREG QN->ANSCOMBE->LOG->STD 2To2 cedara
0.66 (0.45-0.88) 0.62 (0.41-0.84) 0.61 (0.38-0.96) 14 4 1 M-RNN LREG QN->ANSCOMBE->LOG->MINMAX 2To2 cedara
0.64 (0.41-0.87) 0.56 (0.47-0.67) 0.69 (0.00-1.00) 14 4 1 M-RNN LREG L2 2To2 cedara
0.64 (0.31-0.88) 0.57 (0.43-0.70) 0.65 (0.00-1.00) 14 7 1 LI LREG L2 2To2 cedara
0.64 (0.31-0.89) 0.66 (0.00-1.00) 0.57 (0.39-0.81) 14 4 1 LI SVM(linear) QN 2To2 cedara
0.64 (0.39-0.91) 0.68 (0.08-1.00) 0.57 (0.40-0.82) 14 4 1 LI LREG QN 2To2 cedara
0.64 (0.17-0.87) 0.62 (0.41-0.84) 0.61 (0.35-0.97) 14 4 1 M-RNN SVM(linear) QN->ANSCOMBE->LOG 2To2 cedara

(a) Top 10 models.

AUC test(95% CI) Class0 P-test Class1 P-test N test A-days S-days Imp Clf Pre-proc Class1 Farm

0.42 (0.10-0.77) 0.54 (0.42-0.62) 0.51 (0.00-1.00) 14 4 1 M-RNN SVM(rbf) QN->ANSCOMBE->LOG->STD 2To2 cedara
0.41 (0.20-0.64) 0.68 (0.55-0.82) 0.44 (0.00-1.00) 14 7 4 LI SVM(linear) QN->ANSCOMBE->LOG->MINMAX 1To2 cedara
0.41 (0.10-0.75) 0.55 (0.44-0.62) 0.66 (0.00-1.00) 14 4 1 M-RNN SVM(rbf) QN->ANSCOMBE->LOG 2To2 cedara
0.41 (0.15-0.77) 0.56 (0.47-0.63) 0.68 (0.00-1.00) 14 7 1 LI SVM(rbf) L2 2To2 cedara
0.41 (0.18-0.66) 0.56 (0.46-0.67) 0.62 (0.00-1.00) 14 7 1 M-RNN SVM(linear) L2 2To2 cedara
0.41 (0.13-0.76) 0.53 (0.50-0.57) 0.22 (0.00-1.00) 14 4 1 M-RNN SVM(rbf) L2 2To2 cedara
0.41 (0.10-0.74) 0.54 (0.42-0.62) 0.56 (0.00-1.00) 14 4 1 M-RNN SVM(rbf) QN->ANSCOMBE->LOG->MINMAX 2To2 cedara
0.40 (0.08-0.71) 0.56 (0.45-0.67) 0.67 (0.08-1.00) 14 7 1 LI SVM(rbf) 2To2 cedara
0.40 (0.08-0.71) 0.56 (0.45-0.67) 0.67 (0.08-1.00) 14 7 1 LI SVM(rbf) QN->ANSCOMBE->LOG->STD 2To2 cedara
0.40 (0.12-0.74) 0.56 (0.46-0.62) 0.72 (0.08-1.00) 14 7 1 LI SVM(rbf) QN->ANSCOMBE->LOG 2To2 cedara

(b) Bottom 10 models.

Table 3.5: Comparison of model results for FAMACHA samples classification on the goat farm. "Class0" and "Class1" refer to
the healthy FAMACHA transition ("1To1") and the unhealthy transition. "P" refer to the model precision. "A" and "S" indicate "Activity"
and "Synthetic" respectively. "Imp" shows the imputation technique used. "Clf" shows the type of model used. "Pre-proc" shows the
preprocessing used on the sample time series before training (QN: Quotient Normalisation, "STD": Standard Scaling).



3.3. RESULTS

The training AUC (Area Under the Curve) is a measure of how well a ML model can distin-

guish between positive and negative classes in the training dataset. It represents the performance

of the model on data that it has already seen during the training process. The testing AUC, on

the other hand, measures the model’s performance on a completely independent dataset that it

has not seen during training. It gives an estimate of how well the model will perform on new,

unseen data. If the training AUC is higher than the testing AUC, it indicates that the model

is overfitting to the training data. Overfitting occurs when a model learns to capture noise and

random fluctuations in the training data, rather than the underlying patterns that generalise to

new data. To address overfitting, we can use techniques such as regularisation, in practice, we

would have to tune the parameter of our models with a parameter grid search which is timely

and computationally expensive. In figure 3.22A we show the training and testing AUCs of one of

our LREG model and in figure 3.22B one of our SVM models, we can observe that although both

models overfit on the training data with the default regularisation parameters the still performed

well on the testing datasets, fine-tune parameter tuning may increase the testing performances

even further.

A – Sheep farm | Models trained with unhealthy
label 2To2 while healthy is 1To1.

B – Goat farm | Models trained with unhealthy
label 2To2 while healthy is 1To1.

Figure 3.22: ROC curves of models for classification of health status. For each figure, the
black curve shows the median test auc from the cross-validation while the blue curves show the
AUC of each individual test split (section. 3.2.6.1). Similarly, the red curve shows the median
AUC for the training data while the purple curves show the AUC of each training split.
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A – Sheep farm | SVM(rbf) trained with unhealthy label 1To2 while healthy is 1To1

B – Sheep farm | SVM(rbf) trained with unhealthy label 2To2 while healthy is 1To1

Figure 3.23: Performance of SVM(rbf) with M-RNN imputed samples for different unhealthy labels on the sheep farm.
Boxplot illustration of different SVM models trained with different versions of the samples. The x-axis shows the number of activity days
used in the samples with the notation "AD=", for example, "AD=1" means that the samples contained 1 day of activity data, similarly
"ID=" indicates the number of fully synthetic(imputed) days allowed in the sample, the boxplot line thickness also shows the amount
of imputed data allowed in the samples. The preprocessing pipeline is indicated by the integer in parenthesis, for example (0) refers to
applying L2 normalisation on the samples’ time series. The y-axis on the left shows the number of samples in the healthy and unhealthy
classes while the right axis shows the AUC.



A – Goat farm | SVM(rbf) trained with unhealthy label 1To2 while healthy is 1To1

B – Goat farm | SVM(rbf) trained with unhealthy label 2To2 while healthy is 1To1

Figure 3.24: Performance of SVM(rbf) with M-RNN imputed samples for different unhealthy labels on the goat farm. Boxplot
illustration of different SVM models trained with different versions of the samples. The x-axis shows the number of activity days used
in the samples with the notation "AD=", for example, "AD=1" means that the samples contained 1 day of activity data, similarly "ID="
indicates the number of fully synthetic(imputed) days allowed in the sample, the boxplot line thickness also shows the amount of imputed
data allowed in the samples. The preprocessing pipeline is indicated by the integer in parenthesis, for example (0) refers to applying L2
normalisation on the samples’ time series. The y-axis on the left shows the number of samples in the healthy and unhealthy classes while
the right axis shows the AUC.



AUC test(95% CI) Class0 P-test Class1 P-test N test A-days S-days Imp Clf Pre-proc Class1 Farm

0.80 (0.80-0.80) 0.83 (0.83-0.83) 0.74 (0.74-0.74) 31 7 1 M-RNN SVM(linear) QN->ANSCOMBE->LOG->CWT->STD 2To2 delmas
0.69 (0.58-0.81) 0.63 (0.44-0.86) 0.63 (0.50-0.78) 31 7 1 M-RNN SVM(rbf) QN->ANSCOMBE->LOG->CWT->STD 2To2 delmas
0.65 (0.54-0.81) 0.61 (0.43-0.82) 0.63 (0.52-0.78) 31 7 1 M-RNN LREG QN->ANSCOMBE->LOG->CWT->STD 2To2 delmas
0.65 (0.53-0.78) 0.63 (0.46-0.87) 0.62 (0.54-0.69) 31 4 1 M-RNN SVM(rbf) QN->ANSCOMBE->LOG->CWT->STD 2To2 delmas
0.63 (0.44-0.80) 0.67 (0.46-0.92) 0.54 (0.44-0.66) 37 7 1 LI KNN QN->ANSCOMBE->LOG->CWT->STD 2To2 delmas
0.61 (0.48-0.80) 0.70 (0.41-1.00) 0.57 (0.50-0.64) 31 4 1 M-RNN KNN QN->ANSCOMBE->LOG->CWT->STD 2To2 delmas
0.61 (0.45-0.75) 0.64 (0.43-0.87) 0.53 (0.40-0.63) 37 4 1 LI KNN QN->ANSCOMBE->LOG->CWT->STD 2To2 delmas
0.58 (0.44-0.71) 0.55 (0.36-0.72) 0.57 (0.47-0.69) 31 4 1 M-RNN LREG QN->ANSCOMBE->LOG->CWT->STD 2To2 delmas
0.58 (0.42-0.76) 0.61 (0.46-0.76) 0.55 (0.39-0.79) 37 7 1 LI DTREE QN->ANSCOMBE->LOG->CWT->STD 2To2 delmas
0.57 (0.39-0.71) 0.60 (0.42-0.73) 0.55 (0.36-0.75) 37 4 1 LI DTREE QN->ANSCOMBE->LOG->CWT->STD 2To2 delmas

(a) Sheep farm| Top 10 models with CWT.

AUC test(95% CI) Class0 P-test Class1 P-test N test A-days S-days Imp Clf Pre-proc Class1 Farm

0.63 (0.29-0.89) 0.73 (0.60-0.87) 0.63 (0.00-1.00) 14 7 4 M-RNN LREG QN->ANSCOMBE->LOG->CWT->STD 1To2 cedara
0.59 (0.33-0.86) 0.55 (0.37-0.77) 0.53 (0.33-0.75) 18 7 4 LI LREG QN->ANSCOMBE->LOG->CWT->STD 2To2 cedara
0.59 (0.38-0.85) 0.55 (0.42-0.70) 0.54 (0.33-0.74) 18 7 4 M-RNN LREG QN->ANSCOMBE->LOG->CWT->STD 2To2 cedara
0.59 (0.27-0.82) 0.57 (0.40-0.82) 0.51 (0.25-0.71) 14 7 1 M-RNN LREG QN->ANSCOMBE->LOG->CWT->STD 2To2 cedara
0.58 (0.32-0.78) 0.59 (0.33-0.78) 0.58 (0.26-0.84) 18 7 4 M-RNN DTREE QN->ANSCOMBE->LOG->CWT->STD 2To2 cedara
0.58 (0.25-0.83) 0.69 (0.43-0.98) 0.38 (0.03-0.61) 14 7 4 LI KNN QN->ANSCOMBE->LOG->CWT->STD 1To2 cedara
0.57 (0.29-0.82) 0.58 (0.27-0.81) 0.52 (0.17-0.70) 14 4 1 LI LREG QN->ANSCOMBE->LOG->CWT->STD 2To2 cedara
0.57 (0.27-0.86) 0.59 (0.28-0.83) 0.51 (0.22-0.71) 14 7 1 LI LREG QN->ANSCOMBE->LOG->CWT->STD 2To2 cedara
0.56 (0.14-0.86) 0.73 (0.57-0.88) 0.63 (0.00-1.00) 14 7 4 M-RNN SVM(linear) QN->ANSCOMBE->LOG->CWT->STD 1To2 cedara
0.55 (0.32-0.74) 0.58 (0.31-0.83) 0.52 (0.21-0.74) 14 7 1 LI DTREE QN->ANSCOMBE->LOG->CWT->STD 2To2 cedara

(b) Goat farm| Top 10 models with CWT.

Table 3.6: Comparison of model results for health classification with frequency domain data (CWT). "Class0" and "Class1"
refer to the healthy FAMACHA transition ("1To1") and the unhealthy transition. "P" refer to the model precision. "A" and "S" indicate
"Activity" and "Synthetic" respectively. "Imp" shows the imputation technique used. "Clf" shows the type of model used. "Pre-proc" shows
the preprocessing used on the sample time series before training (QN: Quotient Normalisation, "STD": Standard Scaling).



3.3. RESULTS

3.3.2.1 Model evaluation on unseen labels

We plot density histograms of the prediction probability of our cross-validated best model (Tables.

3.5a and 3.4a) to evaluate how well the model classifies unseen samples. The model will classify

a sample as unhealthy if the probability output is ≥ 0.5 (marked as a vertical grey dotted line)

(Fig 3.26).

We show the result for the sheep farm in figure 3.25A. An SVM model was trained on healthy

famacha (1To1, 142 examples) and unhealthy FAMACHA (2To2, 140 examples) and tested with

repeated k-fold cross-validation on all of the samples available in the dataset including the ones

used for training. When the density histogram values are skewed to the left it means that the

model classifies the data as healthy while on the opposite side, it will classify as unhealthy. As

expected the model perform well by properly classifying the label used for training "1To1" and

"2To2" while the "1To2" and "2To1" transitions were mostly classified as healthy, arguably both

are still in the healthy range of FAMACHA.

The goat farm figure 3.26A shows the results. Similarly, An SVM model was trained on

healthy famacha (1To1, 79 examples) and unhealthy FAMACHA (2To2, 79 examples). Although

in small numbers the goat farm had more variation of FAMCHA transitions that our model

could be tested on, as expected the density histogram on the trained label shows mostly correct

classifications, for the advanced stage in FAMCHA such as "2To5", "4To5", "5To3", "5To2", "4To3"

and "4To1" our model perfectly classified all samples as unhealthy, even for the "1To2" transition

the model seems to start "understanding" health decline as a majority of samples were classified

as unhealthy instead of healthy with the demarcation getting clearer with "1To3", "1To4", "2To3",

"2To4", "3To4", "3To1", "3To2" and "4To2". Only "3To5" showed mitigated results where the model

performance was poor. For reference, the number of available samples in each group is stated in

figure 3.2.
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A – Sheep farm| Model trained on healthy 1To1 and unhealthy
2To2

Figure 3.25: Density histograms of prediction results for transitions used in training.
Density histograms are a way to represent the distribution of a set of continuous data. They are
similar to regular histograms, which shows the frequency of values within certain intervals (bins)
of a continuous variable. However, in a density histogram, the y-axis represents the density of
data points within each bin, rather than their frequency. The density is calculated as the number
of data points in each bin divided by the total number of data points multiplied by the width of
the bin. This ensures that the area under the histogram equals 1, which makes it possible to
compare the relative proportions of data in different bins, even if they have different widths.
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A – Goat farm| Model trained on healthy 1To1 and unhealthy 2To2

Figure 3.26: SVM predictions on sheep unseen samples. Density histograms of the model
predictions on unseen labels. Each histogram shows the probability output on the x-axis and the
density on the y-axis. The dotted grey vertical line marks Probability = 0.5. While (A) shows
the results for the sheep farm (B) shows the goat. For (B) the FAMACHA transitions tested from
top to bottom and right to left are: 1To1, 2To2, 3To3, 4To4, 1To2, 1To3, 1To4, 2To3, 2To4, 2To5,
3To4, 3To5, 2To1, 3To1, 3To2, 4To1, 4To2, 4To3, 5To2, 5To3 and 4To5.

3.3.2.2 Adding Exogenous features

In figure 3.27 we added exogenous features in our samples or only used exogenous features

without activity data (Fig 3.6). It has already been discussed in Chapter 2 that the parasitic

burden of the animals is directly correlated to the rainfall on the farm. As expected when using
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the rainfall data (black box plot) the predictive power of our SVM model was high with a 76%

median AUC with the 84 days of rainfall data before the FAMCHA test, the predictive power

reduced significantly to 65% AUC when using a short 7 days window of the rainfall before the test

which can be explained by the fact that the worm hatching time onset. Using a mix of Activity

data and rainfall (orange box plot) gave an AUC above 80%.

3.3.3 Classification of response to treatment

We had 50 examples of FAMACHA 2→1, 67 for FAMACHA 1→1 for the sheep, and 53 examples

of FAMACHA 2→1 and 79 examples of FAMACHA 1→1 for the goats. This resulted in a modest

training set size which may diminish the performance of the ML (Fig. 3.2). Nevertheless, the

classifier was able to predict a drop in FAMACHA score indicating a response to treatment with

mean precision of 64% and 55% for the sheep and goats, respectively, and no change in FAMACHA

score with mean precision of 61% and 66%. As shown in Fig. 3.28, the median AUC was 65% for

the sheep and 70% for the goats.
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Figure 3.27: Performance of SVM model with exogenous features for the sheep farm. The x-axis shows the number of activity
days via the notation "AD=", the number of synthetic days with "ID=" and "W=" for the number of days for the weather. For example, if the
x-axis shows "ID=7 AD=5 W=84 SVC(0)" this means that if the samples contain activity data, a sample can contain up to 7 synthetic days,
the activity time series contains 5 days from the first famacha test and the sample contains 84 days of weather (rainfall, temperature
or wind speed) data. The models that were trained with a combination of activity and weather features are annotated with the word
"APPEND" in the legend. The left y-axis shows the number of samples while the right axis shows the AUC.
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A – Sheep B

C – Goats D

Figure 3.28: Classifying the response to treatment. For both farms the ML was trained to
discriminate FAMACHA 2→1 against FAMACHA 1→1 using 7 days of accelerometry data
directly proceeding anthelmintic treatment for the Sheep farm and 7 days for the Goat farm.
(A) DB plot and (B) Receiver Operating Characteristic (ROC) curve for training and testing on
sheep. (C) DB plot and (D) ROC curve for training and testing on goats.
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3.3.4 Temporal validation

Two equally-sized periods of data were extracted from the sheep and goat datasets to maximise

seasonal differences. For the sheep farm, the first period was from March 2015 to October 2015,

and the subsequent period from October 2015 to April 2016. The first period contained 136 (54

healthy and 82 unhealthy) samples and 151 (96 healthy and 55 unhealthy) in the second period.

It is clear from observing the resulting scatter plots of the trained classifiers (Fig. 3.29) that while

there is little observable drift in the activity of the healthy animals, the less healthy animals

cluster differently depending on the time period. Nevertheless, these clusters do not interfere

with the DB and hence the overall precision of prediction did not noticeably decrease, yielding a

mean AUC of 70% for the sheep when training on the first period and testing on the second and

74% when doing the reverse.

For the goat farm, only 46 (26 healthy and 20 unhealthy) samples could be built for the first

period and 51 (14 healthy and 37 unhealthy) samples for the second one, which yielded a mean

AUC of 58% when training on the first period and testing on the second, while we obtained a

50% mean AUC when doing the reverse. Because of the limited number of samples that was

available on the goat farm, the latter results are inconclusive.
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A – Sheep model trained on first period B

C – Sheep model trained on second period D

Figure 3.29: Temporal validation for the sheep farm. (A) Scatter plot and (B) ROC curve for
training on the first period and testing on the second. (C) Scatter plot and (D) ROC curve for
training on the second period and testing on the first.

3.3.5 Cross-farm validation

While a high degree of predictive power was achieved by training the model on each farm in-

dependently, a useful requirement for the practical application of our technique would be the

ability of the classifier to generalise across farms without retraining. We evaluated the general-
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isability of our approach from the goats to the sheep and vice-versa. We trained a SVM(linear)

model with 90% (randomly selected) of the healthy (1To1) and unhealthy(2To2) samples from

a farm and test on the other, by repeating the process 50 times we obtained the ROC curves

in figure 3.30. For both farms, the samples were pre-processed with the same pre-processing

steps: QN→ANSCOMBE→LOG→STDS. Furthermore, we use the 7-day version of the samples

with a maximum of 7 days of fully synthetic data. The results demonstrate that cross-farm

generalisability was not achieved, most likely due to the size of the datasets and too big of a

difference between sheep and goat accelerometry data and behaviour.

A B

Figure 3.30: Cross farm validation. Figure (A) show the ROC curve for training on the sheep
farm data and testing on the goat farm data while (B) shows the opposite. Testing curves appear
in blue while training curves are in red.

3.3.6 Evolution of predictive power over time

We wish to establish how the predictive power of our model behaves as we move back in time,

i.e. an earlier prediction of ill health (Figure 3.31). In figure 3.32 we trained and tested a SVM

classifier to classify samples with FAMACHA 1→1 against 2→2. We used day-long samples and

shifted their time frame to an increasingly earlier time from the first famacha test as described

in the figure 3.32.

The AUC was 70% for the first 4 days and then decreased to approximately 60% and the

sheep followed while the decrease started after the third day for the goats. This result confirms

the hypothesis that the activity level of the animal shortly before (up to 7 days) FAMACHA

evaluation is most representative of the animal’s health.
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day1 day2 day3 day4 day5 day6 day7 2To2

Activity data FAMACHA data

← Sliding Window

Figure 3.31: Schematic of sliding window ML sample. In this illustration we used a day-long
sliding window, to capture the activity component of the sample, in this example, the sample
label is 2To2, i.e the FAMACHA score remained 2 across two successive weeks.

A –Sheep B –Goat

Figure 3.32: Evolution of predictive power over time. The x-axis shows the number of days
before the first FAMACHA test while the y-axis shows the AUC.

3.3.7 Model explainability

We train a linear SVM model with all of the samples available and extract the coefficients of its

DB 1.3 function which are linearly proportional to the importance of the features (each minute

in the time series) [55] [21] [161]. For the different sample lengths, we train a SVM model

and visualise the feature importance in the time domain, we also segmented the activity data

into different time frames namely the daytime and the night time to evaluate which is most

important. We centred our daytime segment around the median midday time and the median

midnight time for the night time, the exact times were obtained with the use of a public historic

weather data API (API, or Application Programming Interface, is a standardised set of protocols

and tools that facilitate seamless communication and data exchange between different software

applications) for each farm (Fig. 3.33). In figure 3.34 and 3.35) we can observe the daytime and

nighttime importance of the sheep and goats by plotting the mean of the feature importance of

each time frame for 7 consecutive days, we can use the p value of the two groups (array of daytime

mean importance and array of night time mean importance) to evaluate if there is statistically

significant differences between the daytime and nigh time activity [66]. We obtained a p value

of 0.011 which is lower than the typical 0.05 threshold [33] that indicates that the observed
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differences are unlikely to be due to chance while for the goat we obtain a higher p value of 0.535

which doesn’t allow us to draw a similar conclusion for the goats.

A –Sheep 7 day B –Goat 7 days

Figure 3.33: Feature importance during the day and night for the sheep farm. For each
boxplot we plotted the mean feature importance of the daytime and night times for 7 days of
activity preceding the first FAMACHA test.

3.4 Conclusion

In this chapter, we have devised a ML pipeline that can classify FAMACHA score transitions

based on animal activity data alone. We discovered that it is possible to classify activity data of

goats and sheep who had a FAMACHA score of 2 for two consecutive tests with high accuracy,

87%(0.77-0.94) AUC for the sheep and 0.78%(0.68-0.89) AUC for the goats (Figure 3.22). We were

also able to classify the animals’ responses to treatment by training our models with activity

samples presenting FAMACHA transitions of 2→1 and 1→1. We also tested against concept drift

and found that although predictive power decreased when training and testing on two distinct

time periods it remains high (AUC ≥ 70%) given enough samples. Furthermore, we tested our

model generalisability by training them on the data of the goat farm and testing them with the

data of the sheep farm and vice-versa, however this was not successful. The low performance

can be explained by multiple factors, firstly the activity of goats and sheep although similar are

inherently different, secondly the topography of the farms are different, thirdly the hardware of

the transponders used varied from farm to farm and finally even after imputation the number

of samples available is fairly low. In addition, we tested our model on the data we decided to

not train with, namely the samples with higher FAMACHA scores (≥ 3) and discovered that
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despite being trained with "healthier" samples (FAMACHA 2→2) it was possible to accurately

classified unseen samples with FAMACHA score increasing to values above 2. In an attempt

to add interoperability to our results pipeline, we analysed our models to reveal what features

are most discriminative for classification, we found that for the sheep the night time activity is

most important, while the goats the results are inconclusive. Lastly, we also investigated the

impact of exogenous factors on the classification, we focus on weather data including rainfall,

temperature and wind speed. It has been established in Chapter 2 that FAMACHA is highly

dependent on rainfall as wetter weather drastically increases (H. contortus) populations and

infection of small-ruminant. We found that using the rainfall alone as features for the prediction

of FAMACHA (FAMACHA 2→2) yields predictive power up to 75%AUC. However, using a

combination of activity data and rainfall data offered better results. Furthermore, fine-tuning

our ML algorithm hyperparameters for regularisation may increase performance in future work.

While efforts in developed countries have been focused on building high-precision, securely-

mounted and precisely fitted sensors, we demonstrate that robust results can be gained from

much simpler, low-cost systems with rudimentary maintenance requirements suitable for both

commercial and ressources-poor farmers in developing countries. It is important to note that due

to significant calibration and mounting variation between transponders, including loosening of

the transponder over time, it was necessary to perform normalisation of each activity trace to

the herd/flock mean. This meant that uniform reductions in activity level from week to week are

likely to be normalised out of our data. Nevertheless, a biological reason for a completely uniform

reduction in activity level is implausible; instead, intensities of some daily activities are likely to

be impacted more than others. We have shown that changes in the variation of activity levels

constitute a strong predictor of early changes in health status, as regards haemonchosis and are

robust to technical variation.
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A – 1 day B – 3 day

C – 5 day D – 7 day

Figure 3.34: SVM features importance for the sheep farm. For every figure, the x-axis shows the time while the left y-axis shows the
pre-processed activity value and the right y-axis the feature importance. The blue curve shows the mean of all of the samples, the black
curve shows the feature importance. The red dotted vertical lines show the daytime segments, similarly, the blue vertical lines display the
night time.



A – 1 day B – 3 day

C – 5 day D – 7 day

Figure 3.35: SVM features importance for the goat farm. For every figure, the x-axis shows the time while the left y-axis shows the
pre-processed activity value and the right y-axis the feature importance. The blue curve shows the mean of all of the samples, the black
curve shows the feature importance. The red dotted vertical lines show the daytime segments, similarly, the blue vertical lines display the
night time.
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TRANSLATION TO COMPANION ANIMAL ACTIVITY MONITORING

In Chapter 4, we expanded our supervised ML pipeline for classifying activity data originally

tailored for small ruminants to categorize the activity patterns of domestic cats. This chapter

concentrates on addressing Degenerative Joint Disease (DJD), commonly known as arthritis, in

felines. DJD, distinguished by irreversible cartilage degradation, induces joint inflammation and

discomfort during movement. Given the susceptibility factors like obesity and joint surgery, DJD

prevails among cats. The study aims to foresee initial indications of DJD in indoor cats, employing

accelerometers and ML techniques. The hypothesis posits that the impact of DJD is more

conspicuous during heightened activity. The investigation, deploying Actical® Z accelerometers,

enlisted 85 cats, with comprehensive data amassed through proprietor surveys, VetMetrica

evaluations, and orthopaedic examinations. The analysis encompasses constructing ML samples

grounded in peak activity occurrences, contributing to early DJD identification and enhancing

the well-being of cats.

In Chapter 4 we devised an activity data classification pipeline with supervised ML and

accelerometers for small ruminants. The activity time series was revealed to contain enough

information to characterise the healthy and lower-health status of sheep and goats. In this

chapter, we demonstrate the flexibility of our pipeline by adapting it to classify the activity data

of domestic cats.

4.1 Introduction

DJD, also known as arthritis, affects the cartilage within the joints. With age cartilage naturally

wears down, however irreversible deterioration of the articular cartilage is characterised as DJD.

The condition causes inflammation in the joint and pain when the affected subject moves. Known

risk factors of DJD in cats include obesity, bone or joint surgery. It is estimated that most cats of
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all ages have DJD [134], [81]. Because of the high frequency of DJD in cats, an accurate detection

system can be a valuable tool to improve indoor cats’ quality of life.

Clinical signs of decreased mobility are symptoms of DJD in cats and other felines, and

are highly prevalent [134], while radiographic evaluation allows accurate assessment of the

condition, clinical examination of cats’ pain response is not always possible and there is no

universal objective assessment method for DJD caused pain in cats [134]. Gruen et al [54] used

collar-mounted accelerometers (Fig. 4.1) to compare the mean activity of cats with minimal signs

of DJD to cats with DJD over a 7-day period and found that cats exhibited a sharp peak of activity

in the morning and broader peak in the evening. They also found that cats with DJD showed

different patterns of activity from cats without DJD, although activity and intensity were not

always lower.

The development of an accurate evaluation model can help to alleviate and treat symptoms

faster and increase cats’ well-being. The aim of this study was to predict early signs of degenera-

tive joint disease in indoor cats with the use of accelerometers and ML techniques. The study

hypothesis was that the effect of degenerative joint disease would reflect more in a cat’s activity

when it performs higher activity behaviour such as jumping, running quickly etc.

Figure 4.1: Cat wearing a Actical® Z wearable accelerometer based sensor. Client-owned
cat wearing a collar-mounted Actical® accelerometer in the typical position on the neck. The
image is taken from source [54].
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4.2 Study group

Recruitment for this study finished in November 2019, with a total of 85 cats recruited [88]. Of

the 85 participants enrolled, 56 cats were fitted with accelerometers (Fig. 4.1) and data from 52

of these were included in the analysis. Out of the 56 included cats, 30 cats had early signs of DJD

and 27 cats were disease-free based on multiple assessment methods.

An owner-completed questionnaire was distributed evaluating their cat’s mobility based on

the Feline Musculoskeletal Pain Index (FMPI), which consists of 18 questions that evaluate

the cat’s mobility, grooming and behaviour related to pain. The questionnaire is completed by

the cat’s owner or caregiver and is designed to provide a subjective measure of the cat’s pain

and disability. The FMPI can be used to monitor the cat’s response to treatment over time

and help guide the management of chronic pain associated with musculoskeletal disease [10].

VetMetrica questionnaires were also conducted, which are a set of tools used to assess various

aspects of a cat’s health and well-being, including chronic pain, quality of life, and appetite. The

questionnaires were also completed by the cat’s owner or caregiver and provide a subjective

measure of the cat’s condition. The results can be used by veterinarians to monitor the cat’s

health over time and guide treatment decisions. The VetMetrica questionnaires are designed to

be user-friendly and can be completed online or on paper [27].

In addition, all eligible cats were visited in their own home and an orthopaedic examina-

tion was performed by a veterinarian to accurately assess their DJD status. An orthopaedic

examination for DJD in cats involves a thorough evaluation of the cat’s medical history, physical

examination, joint palpation, range of motion, manipulation and stress testing, and radiographs.

The examination aims to assess joint mobility, stability, and pain, and to rule out other potential

conditions that may cause similar symptoms.

This study differs from the small-ruminant study described in previous chapters for many

reasons. Although accelerometry data remained the primary measurement for analysis, the

wearable sensors used here are more expensive, including memory on the device for recording

with minimum noise and missingness (≤ 0.5 % of missing data points in the data set), therefore

imputation was not required. The study length for small-ruminants was also significantly longer

and span over multiple years while here the data collection time only lasted 14 days. While the

sheep and goats’ health status was based on a gradual shift in health caused by parasitic burden

increase, here we adopted a binary approach where the cat is said healthy if it has DJD and

unhealthy otherwise. Individual sheep and goats’ health status fluctuated multiple times from

healthy to unhealthy and vice versa during the study time, while here each cat always had the

same health status. For this study, we used Actical® Z wearable devices (Philips Respironics,

Bend, Oregon USA). The raw data takes the form of 57 MS Excel spreadsheets that contain the

sensor data, in addition to a metadata spreadsheet (Table. 4.1) which describes the joint health

of each cat assessed using an orthopaedic examination conducted by a veterinary surgeon was

provided, as well as other metrics such as the age (Fig. 4.2) and the mobility score of the cats.
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Cat ID Age Status Mobility_Score

12 7.76 0 1
128 6.98 0 1
75 6.78 0 1
621 9.22 0 1
40 8.45 0 1
77 7.71 0 1
634 11.96 0 1
57 6.81 0 1
635 7.49 0 1
24 7.79 1 0.83
78 6.85 0 1
602 6.69 0 1
609 6.37 0 1
604 10.41 0 1
658 11.81 1 0.86
612 8.7 0 1
611 9.38 0 1
626 9.03 1 0.58
31 8.51 0 1
610 6.43 0 1
655 10.92 0 1
11 7.78 0 1
601 6.52 0 1
608 9.97 1 0.82
613 15.31 1 0.58
620 8.17 0 1
646 6.37 1 0.88
600 11.54 1 0.71

Cat ID Age Status Mobility_Score

622 11.05 1 0.83
632 7.62 0 1
637 16.59 1 0.83
649 8.63 1 0.83
650 8.63 1 0.83
36 8.28 1 0.83
627 9.16 1 0.83
645 16.25 1 0.83
647 8.5 1 0.75
652 14.53 0 1
661 6.4 1 0.88
603 19.97 1 0.67
630 11.33 1 0.88
631 6.33 1 0.83
618 10.78 1 0.83
662 14.15 1 0.83
642 7.42 1 0.46
607 15.01 1 0.92
614 13.12 1 0.75
660 13.25 1 0.73
13 7.03 1 0.83
619 11.13 1 0.71
26 7.84 0 1
129 7.15 0 1
648 15 1 0.88
651 14.53 0 1
605 11.58 1 0.82
613 15.31 1 0.58

Table 4.1: Metadata available for the cat population of the study. Each cat was assigned
a mobility score assessed by its owner. The Status was given based on the mobility score, for a
score > 0.5 the status is 1 otherwise it is 0. The age (in years) of the cat at the start of the study
was also reported.

Three cats were excluded from the current analysis as their sensors were calibrated differently

from the rest of the population. This is done as a safeguard to avoid biasing the analysis, although

post-processing approaches may tackle such an issue. In table 4.1 we present the metadata of

each cat included in the analysis, the "Cat ID" column shows the unique identification number of

the cat, "Age" shows the age of the cat in years, "Status" gives the health status, 0 for healthy

and 1 for unhealthy, finally "Mobility Score" shows the questionnaire assessed mobility scores of

the cats.
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Figure 4.2: Cats age. Boxplot showing the age of the cats used in this study.
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4.3 Methods

Five sensors were set up to measure activity counts every millisecond while the rest collected

activity counts every second. For this project, all the activity data were resampled to the second

resolution (i.e. each count contains the sum of activity counts within each second) if it was not

already at that resolution.

In figure 4.3 we show the activity data (after Anscombe and Log transformation) of all the cats

including the ones not used in the analysis. Each row shows the activity count data of a single

cat during the entirety of the study. We can easily observe that 3 cat traces show a much higher

magnitude of activity compared to the others, this is likely due to the sensor calibration and was

taken into consideration for the analysis. Compared to the small-ruminant dataset (Fig. 3.4A) no

obvious day/night cycle can be seen, each cat has a unique behaviour . Note that the resolution of

the data is also higher at 1 measurement per second for the cat study and 1 measurement per

minute for the small-ruminants.

Figure 4.3: Cats accelerometer heatmap. This Heat-map shows the accelerometry data of
each cat during the study time. The raw data counts are pre-processed with the Anscombe and
the Log transform.

4.3.1 Building samples

As in our developed ML pipeline in chapter 3, we used a supervised ML approach which requires

us to build samples that are composed of an array of features and a ground truth value that will

be the value we want to predict. In this study case, we decided to solely use activity counts as

features and the health score as ground truth. Unlike herded free-range livestock, exogenous

factors such as the weather are unlikely to be of significance in indoor cats’ activity level or

health.
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Our sample-building strategy needed to differ from the "n day of activity" approach we used

for small-ruminants, firstly because cats do not have a fixed daily routine like the sheep and goats

in a herd, and secondly because the data was collected on a much shorter time frame. Multiple

samples were built per cat to overcome the limitations of a relatively small sample size. To reflect

the study hypothesis that DJD would have its greatest effects during higher activity events,

samples were created by looking for peaks of activity in each cat’s trace and selecting a fixed

amount of activity data before and after the peak occurred, effectively building a window around

the peaks (Fig. 4.5A). This also had the effect of aligning the samples (i.e. by the point of impact)

which was not necessary for the small ruminants who all had a regular daily schedule. We fixed

the window length to different values and selected the top 0.001% peaks based on the activity

count. With this approach, we were able to generate 10 peaks per cat. which gave a total of 520

samples (Fig 4.4).

day1 day2 day3 day4 day5 day6 day7 day8 day9 day10 day11 day12 0

0 2 . . . 198 230 302 300 292 . . . 54 23

12 . . . 230 302 300 . . . 9 0

tpeak0−60 . . . tpeak0−1 tpeak0 tpeak0+1 . . . tpeak0+60

0 . . . 358 423 365 . . . 44 0

tpeakn−60 . . . tpeakn−1 tpeakn tpeakn+1 . . . tpeakn+60

...

0 2 . . . 198 230 302 300 292 . . . 54 23

t0 t1 . . . t98 t99 t100 t101 t102 . . . t86399 t86400

Activity data DJD data

(B) Samples (Peaks)

(A) Day 1 Activity
(1 second per bin)

Figure 4.4: Schematic of the ML samples for a single cat. In this illustration, we explain
how we created samples for a single cat. For each cat an activity count was recorded every second
for 12 days and the cat was assigned a DJD health status (0 for healthy, 1 for unhealthy) by its
owner. (A) shows the activity data of the first day. In this example, the first peak (peak0) was
found in Day1 at t = 100, we will create a sample by selecting the activity in the window centred
on t100 = tpeak0 of length 2 minutes (120 seconds). By following this process we can build an array
of n samples containing the activity data around the top n peaks (B).

Because ML algorithms aim to model generalisable patterns in training data and correctly

predict unseen data, such techniques are sensitive to overfitting i.e when a model adjusts

excessively to the training data and is unable to predict unseen data correctly. Data augmentation

is a technique used in ML to artificially increase the size of a dataset by creating new, synthetic
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A – 1-Peak samples for a single healthy cat.

B – 3-Peaks samples for a single healthy cat.

Figure 4.5: 1-Peak and 3-Peaks samples for a single healthy cat. While (A) shows 1-Peak
samples for a single healthy cat, (B) shows the augmented version of (A) by permutation of 3
peaks. The x-axis shows the time in seconds (length of the sample) the y-axis shows the activity
count value.
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data points that are similar to the original data points. Data augmentation is commonly used

when training ML models, especially in computer vision tasks such as image classification, object

detection, and semantic segmentation [87] [132]. The main idea behind data augmentation

is to increase the diversity of the data available to the model, thereby improving its ability to

generalise to new, unseen data. Data augmentation can be achieved by applying a variety of

transformations to the original data, such as rotation, translation, scaling, flipping, cropping,

and noise addition. These transformations can be applied randomly or with specific parameters,

depending on the task.
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Our small dataset is subject to overfitting because of the small number of samples, one

solution is data augmentation that increases the number of samples from existing data [84] [142].

The initial dataset was augmented (increasing the number of samples) by building permutations

of peaks from the initial sample dataset (Fig 4.6)(Fig 4.5B). We will also cap the number of

possible permutations to a thousand per cat to limit computational expenses.

Peak1

Peak2

Peak3

Peak2

Peak3

Peak3

Peak1

Peak1

Peak2

Peak3

Peak2

Peak1

Peak3

Peak2

Peak1

Peak1 | Peak2 | Peak3

Peak1 | Peak3 | Peak2

Peak2 | Peak3 | Peak1

Peak2 | Peak1 | Peak3

Peak3 | Peak1 | Peak2

Peak3 | Peak2 | Peak1

(B) Augmented
6 Samples

(A) Initial
3 Samples

Figure 4.6: Cat samples augmentation with permutation for a single cat. By using per-
mutations we can increase the number of samples from 3 samples containing 1 peak each (A) to 6
samples containing 3 peaks each (B).

Raw data

Build samples DJD status report

Quotient Nor-
malisation

Anscombe

Log

CWT

Machine/deep
learning SVM Transformer

Pre-processing

Figure 4.7: Classification of health status pipeline. Diagram showing the pipeline used for
the classifying of healthy from unhealthy samples.
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4.3.2 Pre-processing

To compare the different activity patterns within each sample we will align and normalise

the data to avoid bias due to different sensor calibrations and positions of the sensor on the

collar, different cats also naturally have different levels of activity depending on their breed

and the architecture of the home they live in. We will use the same quotient normalisation

technique (Section. 3.2.3) we used to normalise the small-ruminant samples. Similarly to the

livestock research (Chapters 3 and 4), we will also use the same pre-processing approach of the

activity count data obtained from the accelerometer-based sensor used to monitor the cats, Firstly

we will use the Anscombe transform (Section. 2.2.2.1) followed by the Logarithm transform

(Section. 2.2.2.2) (Fig 4.8).

Figure 4.8: Histogram of Log of the Anscombe of positive raw activity counts. This
histogram shows the distribution of the positive activity count data of all the cats.

4.3.3 Machine learning

In Chapter 4 section Results 3.3 we showed that the SVM algorithm was capable of accurately

classifying activity counts time series and other commonly used ML algorithms gave similar

to lower performances. We will train multiple SVM classifiers with the different cat "activity

peaks" datasets we built. All samples were pre-processed by applying quotient normalisation and

standard scaling before training the SVM.

4.3.4 Evaluation

4.3.4.1 Leave-one-out cross-validation

Data leakage is a common problem in ML where information from the test set is inadvertently

used to train the model. This can result in the model being overly optimistic and performing well

on the test set but poorly on new, unseen data. As our augmentation approach duplicates data

across many samples from the same cat, it is important that the same peaks are not present in

the training and test sets. To do this, we propose Leave-one-out cross-validation at the cat level
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i.e. in turn training the model on all cats except one, and then testing on the cat left out. This is

a variation of Leave-one-out cross-validation (LOOCV), a popular method used to evaluate the

performance of prediction models.

The LOOCV method involves training a model on all the data except one observation, and

then testing the model on the observation that was left out. This process is repeated for each

observation in the dataset, and the results are aggregated to give an estimate of the model’s

performance. LOOCV has several advantages over other cross-validation methods. One of the

main advantages is that it maximises the use of available data, as it uses all but one observation

for training the model. This can be particularly useful when working with small datasets, where

every data point is valuable. Another advantage of LOOCV is that it provides an unbiased

estimate of the model’s performance. This is because it uses all the available data to train the

model, and the testing is performed on data that was not used in the training process. LOOCV

also has some disadvantages. One of the main disadvantages is that it can be computationally

expensive, especially when working with large datasets. This is because the training process

needs to be repeated for each observation in the dataset, which can be time-consuming. Another

drawback of LOOCV is its sensitivity to outliers in the dataset, as the model is trained on all

available data except one observation, leading to potential performance issues on new data

containing the outlier.

In our use case we will use LOOCV at the cat level i.e we will only test on the samples

(peaks)( Fig.4.6) of a single cat while we will train on all of the other samples( Fig.4.9).

Split1 Cat1 Cat2 Cat3

Split2 Cat1 Cat2 Cat3

Split3 Cat1 Cat2 Cat3

Train SamplesTest Samples

Figure 4.9: Schematic of Leave-one-out cross-validation.
In this example there are 3 cats in the dataset, and each cat contains multiple peak samples 4.6.
Leave one out cross-validation allows training (white blocks) on the data from all the cats but 1
which is excluded for testing (grey blocks), with this approach, a data set containing the data of 3

cats can be split 3 times.

4.3.4.2 Bootstrapping for confidence intervals

We discussed in Chapter 4 section 3.2.6.2 how Receiver operating characteristic (ROC) curves are

powerful tools to evaluate ML performance. For the small ruminant study, the cross-validation

approach we used allowed us to show the different ROC curves per testing split (Fig. 3.22). Here

because we used LOOCV, each test split only contain the samples of a healthy or unhealthy cat
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which does not permit to create the confusion matrix necessary for ROC curve, we opted to create

a single test ROC curve by concatenating the predictions and true health status labels (ground

truth) of all the cats used for testing.

The process of bootstrapping involves randomly selecting a subset of the original dataset,

with replacement, to create a new "bootstrap sample". This means that each data point in the

original dataset has an equal chance of being selected multiple times in the new sample. This

bootstrap samples has (approximately) the same statistical properties as the original dataset,

and could feasible have been generated instead of our original dataset. This process is repeated

multiple times to create several new bootstrap samples. By passing each sample through the

same analysis we can then determine the different the effect random chance has on our results.

Bootstrap can be performed at any point in the pipeline but applying it prior to ML would

lead to us needing to perform the whole LOOCV ML 100 times, once for each bootstrap sample.

While this would have captured all uncertainty, it would have also have biased the performance

of the ML downwards by effectively reducing the samples size further for what is already a small

study. In this study, we therefore chose to apply it on the output of a single LOOCV ML analysis

of the original dataset. We therefore generate 100 bootstrap samples on the predictions of each

unique fold obtained by LOOCV, which are then sorted to determine the 95% quantiles, which

correspond to the 95% confidence interval of the model’s results.
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4.4 Results

4.4.1 Classification of DJD status

Table 4.2 shows the bootstrap performances of the different models. Our best SVM model was

trained on 5 minutes samples with permutations of 5 peaks and had a 72% median AUC with

a (0.61−0.81) 95% confidence interval while the precision (section 3.2.6.2) was 0.67% with a

(0.53−0.80) confidence interval, we applied QN normalisation on the samples.

Because we test our models on the samples of a unique single cat we can evaluate how

accurate it is at classifying the high activity peaks for each cat - Figure( 4.10). We can observe

that while the model almost perfectly classified the samples from cat 603 with 98% accuracy it

was not possible to classify the samples of some other cats with good accuracy.

Figure 4.10: Accuracy of classification per cat. The x-axis shows the id of the cat tested while
the y-axis shows the accuracy of the model.

In figure 4.11 we display the ROC curves for different datasets with and without data augmen-

tation. in figure 4.11A we obtained a 51% AUC with the 1-peak dataset (no data augmentation).

In figure 4.11B we used a 2-peaks permutation which increase the AUC to 62% and in figure

4.11C we obtained a 68% AUC with the 3-peaks dataset, 65% and 72% with 4 and 5 peaks

respectively figure 4.11D figure 4.11E.
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A – 1 Peak B – 2 Peaks

C – 3 Peaks D – 4 Peaks

E – 5 Peaks

Figure 4.11: AUC and ROC curves when increasing the number of peaks. The red curve
shows the training AUC while the black curve shows the testing AUC. The blue curves show the
confidence interval.

121



AUC test (95% CI)* AUC train* Precision test* Precision train* N train N test N peaks L(min) Classifier Pre-proc

0.72 (0.63-0.78) 1.00 (1.00-1.00) 0.69 (0.53-0.80) 0.99 (0.99-0.99) 51000 1000 5 5 SVM(rbf) QN
0.69 (0.61-0.76) 1.00 (1.00-1.00) 0.65 (0.48-0.77) 0.98 (0.98-0.98) 51000 1000 4 4 SVM(rbf) QN
0.68 (0.59-0.78) 0.99 (0.99-0.99) 0.65 (0.52-0.78) 0.96 (0.96-0.96) 36720 720 3 3 SVM(rbf) QN
0.67 (0.57-0.76) 1.00 (1.00-1.00) 0.62 (0.44-0.79) 1.00 (1.00-1.00) 51000 1000 4 8 SVM(rbf) QN
0.67 (0.60-0.76) 1.00 (1.00-1.00) 0.64 (0.49-0.80) 0.99 (0.99-0.99) 36720 720 3 6 SVM(rbf) QN
0.66 (0.57-0.74) 1.00 (1.00-1.00) 0.62 (0.45-0.74) 1.00 (1.00-1.00) 36720 720 3 12 SVM(rbf) QN
0.65 (0.54-0.75) 1.00 (1.00-1.00) 0.59 (0.44-0.75) 1.00 (1.00-1.00) 51000 1000 5 10 SVM(rbf) QN
0.65 (0.55-0.73) 0.96 (0.96-0.96) 0.62 (0.47-0.79) 0.90 (0.90-0.90) 4590 90 2 4 SVM(rbf) QN
0.65 (0.56-0.71) 1.00 (1.00-1.00) 0.60 (0.49-0.72) 1.00 (1.00-1.00) 51000 1000 4 4 SVM(rbf) QN->STD
0.65 (0.53-0.75) 1.00 (1.00-1.00) 0.59 (0.44-0.74) 1.00 (1.00-1.00) 51000 1000 4 16 SVM(rbf) QN
0.65 (0.55-0.72) 0.99 (0.99-0.99) 0.61 (0.45-0.74) 0.96 (0.96-0.96) 4590 90 2 8 SVM(rbf) QN
0.65 (0.53-0.72) 1.00 (1.00-1.00) 0.59 (0.47-0.75) 0.99 (0.99-0.99) 51000 1000 4 4 SVM(rbf) STD
0.64 (0.52-0.74) 1.00 (1.00-1.00) 0.60 (0.47-0.72) 1.00 (1.00-1.00) 51000 1000 5 5 SVM(rbf) QN->STD
0.64 (0.55-0.71) 1.00 (1.00-1.00) 0.61 (0.44-0.74) 1.00 (1.00-1.00) 36720 720 3 3 SVM(rbf) QN->STD
0.64 (0.54-0.71) 0.91 (0.91-0.91) 0.63 (0.52-0.75) 0.85 (0.85-0.85) 4588 90 2 2 SVM(rbf) QN
0.64 (0.54-0.72) 1.00 (1.00-1.00) 0.57 (0.41-0.72) 1.00 (1.00-1.00) 51000 1000 4 8 SVM(rbf) QN->STD
0.64 (0.54-0.72) 1.00 (1.00-1.00) 0.56 (0.44-0.72) 1.00 (1.00-1.00) 36720 720 3 6 SVM(rbf) QN->STD
0.62 (0.53-0.70) 1.00 (1.00-1.00) 0.57 (0.44-0.73) 0.98 (0.98-0.98) 36720 720 3 3 SVM(rbf) STD
0.62 (0.49-0.72) 1.00 (1.00-1.00) 0.55 (0.41-0.72) 1.00 (1.00-1.00) 51000 1000 5 10 SVM(rbf) QN->STD
0.62 (0.52-0.73) 1.00 (1.00-1.00) 0.56 (0.37-0.68) 1.00 (1.00-1.00) 51000 1000 5 5 SVM(rbf) STD

Table 4.2: Comparison of model results for DJD peak samples classification. "N Train" and "N test" show the number of samples
used for training and testing respectively while "L" indicate the sample length in minute and "Pre-proc" shows the preprocessing used on
the sample time series before training (QN: Quotient Normalisation, "STD": Standard Scaling).



4.4. RESULTS

In figure 4.12 we show the impact of the data augmentation on the AUC performances. Each

curve shows the training or testing AUCs for different window lengths (i.e how much time before

and after the peak event) and pre-processing pipelines. Using the 5-peak samples gives the

optimal test AUC values with 3 and 4 peaks giving slightly slower results when using a 60

seconds sample window (30 seconds before and after the peak of activity). For all models, we can

observe an increase in AUC when using more than one peak with a plateau in the AUC increase

after 3 peaks.

Figure 4.12: Evolution of the AUC with the increase of the number of peaks. While the
x-axis shows the number of peaks used in the data set, the y-axis shows the Median AUC. The
training AUC is shown by the dotted lines while the testing AUC is shown by the solid lines.
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4.4.2 Model explainability

It is paramount to interpret the output of our ML algorithms as the ultimate goal for this research

is on the field application. In the small ruminant study, we were able to identify that the night-

time activity of the animals contained important information to classify the goats’ and sheep’s

health status (section 3.3.7), such information is valuable for farm management as it might allow

farmers to monitor their animals further in the night or might help to devise a bio-logger that

would put more importance in collecting high-resolution data in the night time while tacking less

measurement in the day time hence saving battery life. For this study, interpretability is key for

veterinarians as it would allow them to devise appropriate solutions and treatments to alleviate

symptoms and increase cats’ well-being. After fitting our ML model it is possible to visualise

what parts of the data in the samples are most important for the classification process (Fig 4.13).

Because we fitted the model with accelerometry time series we can directly see what part of the

time series is most useful for the model to discriminate between healthy and unhealthy peaks.

The results show that the activity before the highest peak appears to be the most important for

classification. This might indicate that cat apprehension is causing a change in activity right

before engaging in a high-activity move. Although in Figure 4.13 we used the non-augmented

dataset we could observe a sharp decrease of feature importance approximately 8 seconds before

the high activity event which was also observable in the 2, 3, 4, 5 and 6 peak versions of the

dataset this pattern may be due to cats stopping in preparation of a strenuous effort, because

they remain stationary, the model may perceive this portion of the data as less significant.
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A – 1 Peak

B – 2 Peaks

C – 3 Peaks

Figure 4.13
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D – 4 Peaks

E – 5 Peaks

F – 6 Peaks

Figure 4.13: Feature importance. The Blue curve shows the mean trace of all the samples
(3 peaks) used to fit the SVM model. The Black curve displays the feature importance derived
from the fitted model. While the x-axis shows the time, the vertical red dotted lines separate
the different peaks of activity within the samples, the y-axis on the left shows the mean activity
count of all cats after normalisation and pre-processing, the y-axis on the right shows the SVM
feature importance. 126
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4.5 Conclusion

Despite the limited amount of data available, our machine-learning approach demonstrated

promising results in the prediction of early joint disease in cats with the help of our data

augmentation approach. It has also been found that the data within small windows centred

around bursts of activity contains relevant information to discriminate a healthy cat from an

unhealthy cat. However, the prediction accuracy varied for each cat; cats have behaviour unique

to their own genetics and personality, classifying the data of unseen cats with a modest-sized

training data set is a challenging task, further work may allow better predictive power. Further

work is currently ongoing to determine which part of the windows of activity is most important

for prediction, this will give novel insight into how cats with early joint disease differ in their

movements when trying to perform actions of high activity.

Although our approach allowed us to reveal the presence of discriminative markers within

the accelerometry data of the cats, this was achieved by looking at specific zones of high-intensity

activity of the cats which is not generalisable to the entire data trace of a cat. We were able to

build a peak classifier but to develop a cat health classifier, we would need to use the results

obtained as part of the training of another model. Furthermore, while data augmentation is a

common alternative to a large dataset, large data collection remains key for a generalisable ML

model. Early results are a good incentive to extend or renew this study with further participants.
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In this thesis, we have presented a ML pipeline capable to classify the activity data of small

ruminants measured by affordable wearable accelerometers despite a relatively small size data

set and the challenging quality of the data. We also showed promising progress toward the

detection and classification of degenerative joint disease in domestic cats.

5.1 Exploratory data analysis

Exploratory data analysis (EDA) is a critical first step in data analysis that involves exploring

and summarising data to gain a better understanding of its characteristics and relationships.

EDA typically involves techniques such as visualising data using graphs and charts, computing

summary statistics, identifying outliers and missing values, and testing assumptions about the

data. The goal of EDA is to generate hypotheses and insights that can guide further analysis and

modelling of the data. We have extensively analysed the raw data provided to understand its key

characteristics and devise an appropriate imputation and pre-processing pipeline. The activity

monitoring of small-ruminant in resource-poor communities required the use of affordable sensors

for financial viability, however, our analysis showed the difficulties associated with the hardware

used namely inconvenient data access with no redundancy and telecommunication faults of the

transponder used which cause a high amount of missingness in the data. We tackled this issue by

using advanced deep-learning-based imputation techniques which were capable to model activity

data patterns from the existing data and estimate with minimal bias the missing points in our

dataset, which in turn allowed us to maximise the amount of usable data for our ML pipeline.
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5.2 Machine learning pipeline

Our analyses reveal that an increase in FAMACHA score from 1 ("optimal") to 2 ("acceptable") and

remaining at 2 for up 1 week for Sheep and 2 weeks for goats, which is considered a sub-clinical

disease, can be predicted from behaviour measured using low-cost biologgers. We discovered

that the discriminative ability of our classifier increases during the night for the sheep and in

inconclusive for the goats.

While efforts in developed countries have been focused on building high-precision, securely

mounted and precisely fitted sensors, we demonstrate that robust results can be gained from

much simpler, low-cost systems with rudimentary maintenance requirements suitable for both

commercial and RP farmers in developing countries. It is important to note that due to significant

calibration and mounting variation between transponders, including loosening of the transponder

over time, it was necessary to perform normalisation of each activity trace to the herd/flock mean.

This meant that uniform reductions in activity level from week to week are likely to be normalised

out of our data. Nevertheless, a biological reason for a completely uniform reduction in activity

level is implausible; instead, the intensities of some daily activities are likely to be impacted

more than others. We have shown that changes in the variation of activity levels constitute a

strong predictor of early changes in health status, as regards haemonchosis and are robust to

technical variation.

In the small-ruminant study, we have focused on accelerometry data, but exogenous factors

such as temperature, rainfall, body weight, and yield farming data could all be beneficial to the

prediction, particularly as H. contortus is well known to hatch after humid, hot weather, and to

require rainfall for movement onto pasture [151, 153]. Nevertheless, optimal incorporation of

these data types is challenging because of their potential non-linear and/or lagged or cumulative

effect on health. Conversely, the fundamental advantage of high-dimensional longitudinal data

from accelerometers is that the end effect of these covariates could intrinsically be contained

within the data directly, which ML approaches have the potential to deconvolute. The ability of

ML to detect health-relevant changes in behaviour under variable climatic conditions could make

it especially useful as climate change drives increasingly unpredictable transmission patterns

among helminths [123], and hence to support adaptation to climate change by resource-poor

farmers [140].

For the feline study, our approach allowed us to reveal the presence of discriminative markers

within the accelerometry data of the cats, this was achieved by looking at specific zones of

high-intensity activity of the cats which is not generalisable to the entire data-trace of a cat.

We were able to build a peak classifier but to develop a cat health classifier, we would need

to use the results obtained as part of the training of another model. Furthermore, while data

augmentation is a common alternative to a large dataset, large data collection remains key for a

generalisable ML model. Early results are a good incentive to extend or renew this study with

further participants.

130



5.3. TRANSLATION INTO PRACTICE

5.3 Translation into practice

Helminths negatively impact livestock productivity worldwide, and in resource poor settings are

considered ‘neglected cold spot’ diseases, in that they are preventable in principle, but farmers

continue to struggle to manage their effects [122]. Technical improvements in helminth control

consequently have especially high potential to positively impact farmer livelihoods, with knock-on

benefits for human nutrition and health [112]. The FAMACHA system has been successfully

adopted by smallholder farmers in Africa, but sustained use is difficult because of high training

and labour requirements [152]. Our results show that it is feasible to apply ML approaches to

data streams that are attainable on smallholder farms in Africa to detect early changes in health

status and support timely and targeted intervention.

Notably, in this study, we have focused on FAMACHA evaluation of H. contortus infection;

whether the multi-label classification of a range of different disease states and transient events

is possible is currently unknown but would require extensive studies to attain the appropriate

predictive power. In addition, as our accelerometry data is based on a simple activity count

paradigm, we hypothesise that activity traces could be derived from other sensor types, such as

video [91] [6], for direct input into our prediction model.

The existing pipeline presents numerous impactful practical applications. The developed

ML pipeline, tailored for animal health monitoring using accelerometer data, finds effective

implementation in real-world scenarios. The focus on helminth control, particularly the successful

application of the FAMACHA system by smallholder farmers in Africa, underscores the immediate

relevance of ML approaches. Farmers can leverage this technology to identify early changes in

the health status of their livestock, facilitating timely and targeted interventions. Practically,

the current ML pipeline can seamlessly integrate with various types of sensors, such as collars,

leg bands, or ear tags, depending on the species and farming practices. This flexibility allows for

customization based on specific needs and conditions. While the ML algorithm would require an

initial training period for training data collection on farm, , it could be deployed for real-time

classification of new data once trained. The ensuing classification results can trigger alerts for

farmers or veterinarians, indicating potential health problems and prompting prompt actions.

Collecting robust annotated datasets is especially challenging in resource-poor farming sys-

tems where farming practices are generally less consistent, regulated and well-funded. Because

of this and the need for intensive manual labour over a prolonged period, our datasets are

highly valuable. Although the training data obtained is dependent on farm topology, location

and management, we have shown that a basic ML pipeline can discriminate on behavioural cues

dominated by fluctuations in activity levels. Some concept drift was found, particularly among

animals with increasing parasitic burden.

Another challenge is the need for careful monitoring of the algorithm’s performance in the

real-world environment. Because the algorithm is continuously learning and adapting, there is

a risk that it may develop sub-optimal strategies or make incorrect decisions that could harm
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animal health or welfare. It is therefore important to have robust monitoring and feedback

systems in place to ensure that the algorithm is performing as intended and making decisions

that align with the goals of the livestock operation.

In practice, streaming the accelerometer data of livestock in real-time would be most useful

for farmers and animal caregivers. Data streaming involves collecting data from wearable sensors

in real-time, processing the data, and applying ML algorithms to classify the data into different

health states. The accelerometry data can be collected using various sensors, such as collars, leg

bands, or ear tags and the data at an appropriate frequency which would allow for maximising

battery life while keeping high-enough resolution information, our small-ruminant study revealed

that a recording frequency of 1 measurement per minute is enough, while the cats’ data was using

1 measurement per second, lower resolution may be sufficient. We could hypothesise that because

indoor cats do not exist in herds a higher resolution might be preferable, unlike the livestock

animals there is no intrinsic herd information that could help ML algorithm. Further work is

required to assess the optimal resolution in this case. The first step in real-time health monitoring

is to preprocess the accelerometer data. This involves cleaning the data, removing noise, and

extracting relevant features from the data. The preprocessing step can be challenging, as the data

is constantly changing and can contain artefacts from sensor movement or environmental factors.

Once the data has been preprocessed, ML algorithms can be used to classify the data into different

health states. The ML algorithm needs to be trained on a labelled dataset of accelerometer data,

where each data point is labelled with the corresponding health state, such as healthy, sick, or

injured. The choice of ML algorithm will depend on the specific problem being addressed, but

common algorithms include decision trees, SVM, and neural networks. The ML algorithm can be

trained on historical data and then deployed to classify new data in real-time. The classification

results can be used to alert farmers or veterinarians of potential health problems, enabling

early intervention and treatment. For example, if the ML algorithm detects a change in activity

levels or behaviour that suggests an animal is in distress, an alert can be sent to the farmer or

veterinarian to investigate further.

Real-time health monitoring of livestock using streaming accelerometer data and ML has

several benefits. It can enable early detection of health problems, which can improve animal

welfare and reduce economic losses. It can also reduce the need for manual health monitoring,

which can be time-consuming and labour-intensive. Additionally, real-time health monitoring

can provide farmers and veterinarians with valuable insights into animal behaviour and activity

levels, which can inform management practices and improve overall animal health and well-being.

In conclusion, reinforcement learning techniques offer a promising approach to improving

livestock management and decision-making based on real-time data. While there are challenges

associated with this approach, with careful planning and monitoring, reinforcement learning can

help optimise the performance of livestock operations and improve animal health and welfare

[41] [106].
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Figure 5.1: Schematic of online reinforcement learning. Contrary to traditional ML, rein-
forcement learning allows the retraining of the model(agent) in real-time. Image taken from
source: Sutton and Barto, 2018 [137]

5.4 Summary

We have shown that activity count data collected with wearable accelerometers is a predictor of

animal health for goats, sheep and cats. For small ruminants, we used activity data mapped to

the level of a parasitic infection of the animals while for the cat we used degenerative joint disease

as the health metric both had impacts on animal behaviour and activity that we could detect

with ML algorithms. The small-ruminant study was particularly challenging as the association

of accelerometry data with worm infection is novel work and there was no control of data quality,

nonetheless, we leveraged the use of powerful imputation techniques which allowed us to use the

available data to the fullest.

5.5 Future work

Animal health monitoring is a crucial area of research, as it is essential to ensure the well-being

and productivity of livestock. ML and accelerometers have emerged as promising tools in this

domain, with the potential to offer real-time, non-invasive, and cost-effective monitoring of animal

behaviour and health.

Accelerometers are small, low-cost sensors that can be attached to animals to measure their

movement and activity patterns. ML algorithms can be trained on these data to identify patterns

of behaviour that indicate changes in health, such as reduced activity or changes in posture. In

recent years, researchers have explored a range of ML approaches for animal health monitoring,

including artificial neural networks, decision trees, and SVM, however, most of the research tries

to infer animal health based on the analysis of the occurrence of common behaviours such as

grazing, running, sleeping etc... We showed in this thesis that by using the accelerometry data of

consecutive days it is possible to detect health markers in the data of goat and sheep without the

need to categorise different behaviour. Similarly, although novel the recent work on dog and cats
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focus more on the categorisation of behaviour related to poor health while our approach classifies

segment of activity themselves.

One area of future research in animal health monitoring with ML and accelerometers is the

development of more sophisticated algorithms that can detect subtle changes in behaviour that

may indicate the onset of illness or injury. This may involve the use of deep learning techniques

such as convolutional neural networks, which are capable of analysing large amounts of data and

identifying complex patterns and the recent increasingly popular Transformer, first introduced

in 2017. Transformer deep learning models have revolutionised natural language processing

(NLP) tasks. These models are based on the transformer architecture, which was introduced

by Vaswani et al [146], its based on a neural network architecture that uses self-attention

mechanisms to compute contextual relationships between words in a sentence or sequence. The

transformer architecture has several advantages over traditional recurrent neural network

(RNN) architectures. One of the main advantages is that the transformer architecture can

process entire sequences in parallel, whereas RNNs process sequences sequentially. This parallel

processing leads to faster training and inference times, making transformers more efficient than

RNNs. Another advantage of transformers is their ability to capture long-range dependencies

between words in a sequence. Traditional NLP models struggle with this because they rely on

sequential processing, making it difficult to capture long-range dependencies. Transformers

overcome this limitation by using self-attention mechanisms, which enable them to capture

contextual relationships between words across the entire sequence. Transformers have been used

in a variety of NLP tasks, including machine translation, text classification, question answering,

and language modelling. They have achieved state-of-the-art performance in many of these

tasks, surpassing previous models that relied on RNN architectures. One of the most popular

transformer models is the BERT (Bidirectional Encoder Representations from Transformers)

model [31], which was introduced by Google in 2018. BERT is a pre-trained language model that

uses a transformer architecture and is trained on large amounts of text data. It has been used

for a wide range of NLP tasks and has achieved impressive results. Transformers can also be

used for text-to-image prediction [120]. Transformers can also be used for binary classification of

activity time series and have shown promising results [35].

Two additional broad avenues for future research may include: (a) Starting from deployments

of our pre-trained model, use of online reinforcement learning techniques to create a ’life-long

learning’ decision support system which identifies animals for FAMACHA evaluation and feeds

back the results to dynamically update the model calibration and improve future predictions; (b)

Multivariate time-course statistical modelling to further characterise the nature of sheep and

goat behaviour in health and disease.

Reinforcement learning is a branch of ML that involves training an agent to make decisions

in a given environment based on trial and error. In the context of livestock data, reinforcement

learning can be used to develop intelligent systems that can make decisions related to animal
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health, nutrition, and management based on real-time data, for example, we can imagine a

system where farmers could annotate specific events or self-assessed new conditions via the use

of a simple website or smartphone application at any time. Online reinforcement learning, in

particular, is a technique that allows the models to learn and adapt in real-time as new data

becomes available.

Online reinforcement learning for livestock data involves several key steps. First, a reinforce-

ment learning algorithm is developed and trained using historical data to predict the optimal

action to take in a given situation. This could involve, for example, predicting the optimal feed

ratio for a particular animal based on its weight, activity level, and other factors. Once the

algorithm is trained, it is deployed in the real-world environment, and the model interacts

with the environment by classifying new data and receiving feedback. The model then uses

this feedback to update its decision-making strategy in real-time, continuously improving its

performance based on the latest data. There are several advantages to using online reinforcement

learning for livestock data. One of the main benefits is that it allows for more responsive and

adaptive decision-making based on the latest data. For example, if an animal’s health status

changes suddenly, the reinforcement learning algorithm can quickly adjust its recommendations

for feeding, medication, or other interventions based on this new information (Fig. 5.1).

Another advantage of online reinforcement learning is that it can help optimise the perfor-

mance of livestock operations over time. By continuously learning and adapting to new data,

the algorithm can identify patterns and trends that may not be apparent to human operators,

leading to more efficient and effective management strategies.

However, there are also several challenges to using online reinforcement learning for livestock

data. One of the main challenges is the need for high-quality data to train the algorithm. This

may require significant investment in data collection and processing systems, as well as careful

consideration of data quality and consistency.

Another important area of research is the integration of other sensor data, such as heart

rate, respiration rate, and temperature, into the analysis. This will enable more comprehensive

monitoring of animal health and provide more accurate insights into the underlying causes of

changes in behaviour. Furthermore, the application of ML and accelerometers to animal health

monitoring can be extended beyond livestock to other species, such as companion animals and

wildlife. For example, researchers can develop models to monitor the activity patterns of dogs

and cats to identify changes in behaviour that may indicate health issues. Similarly, wildlife

researchers can use accelerometers to monitor the movements of animals in their natural habitats

and gain insights into their behaviour and ecology. In addition the development of more practical

and cost-effective monitoring systems that can be deployed on a large scale. This will involve

the integration of ML algorithms into low-cost, battery-powered devices that can be attached to

animals and transmit data wirelessly to a central server for analysis.

Unsupervised ML could also be a viable direction to take for further research, it is a type
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of ML that involves training an algorithm to identify patterns and structures in data without

the need for labelled training examples. For livestock monitoring, unsupervised ML can be used

to analyse large datasets of animal behaviour and cluster different patterns that may indicate

changes in health. Clustering algorithms are used to group animals together based on similarities

in their behaviour or other attributes. This can help identify subgroups of animals that may have

different health or welfare needs, or that may respond differently to management interventions.

Another example of unsupervised ML for livestock monitoring is anomaly detection. Anomaly

detection algorithms are used to identify outliers or unusual data points that may indicate a

problem or abnormality. For example, an anomaly detection algorithm could be used to identify a

cow that is exhibiting unusual activity patterns or that has stopped eating, which could indicate

a health problem. Principal component analysis (PCA) [1] is a commonly used unsupervised ML

technique that can be used for livestock monitoring [117] [95] [42]. PCA involves identifying

the most important features or variables in a dataset and reducing the dimensionality of the

data by combining these features into a smaller number of principal components, for example

in the figure. 5.2 we used goat activity samples to find relevant clusters, however, it was not

possible to find significant differences with this approach, further work is required. This can help

identify patterns or relationships in the data that may not be apparent in the original dataset.

One advantage of unsupervised ML for livestock monitoring is that it does not require labelled

training data, which can be difficult or expensive to obtain. This can make it easier to analyse

large datasets of animal behaviour and identify patterns that may be relevant to animal health

or welfare. However, there are also challenges associated with unsupervised ML for livestock

monitoring. One challenge is the need to carefully interpret the results of the analysis. Because

unsupervised ML algorithms do not rely on labelled training data, it can be difficult to know

whether the patterns or clusters identified by the algorithm are meaningful or useful for making

decisions about animal management. Another challenge is the need to ensure that the data being

analysed is accurate and representative of the population of interest. For example, if the data is

collected using sensors that are only attached to a subset of animals, the clustering or anomaly

detection algorithms may not be representative of the entire herd.
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Figure 5.2: Principal component analysis (PCA) of goat activity samples. While the x-axis
shows the first PCA component, the y-axis shows the second. Each point shows a dimensionality-
reduced (2 dimensions) representation of the different samples.

In conclusion, animal health monitoring with ML and accelerometers is an exciting and

rapidly evolving field that has the potential to revolutionise the way we monitor and manage

animal health. With further research and development, this technology could be applied to a

wide range of animal species and have a significant impact on animal welfare, productivity, and

conservation.
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5.6 Conclusion

This thesis aims to advance the field of animal health monitoring by employing ML techniques on

accelerometer data. The primary research questions revolve around the effectiveness of the ML

pipeline in classifying the activity data of small ruminants, despite challenges such as a limited

dataset and data quality issues. Another key objective is the exploration of ML applications in

detecting DJD in domestic cats, with an emphasis on predicting early signs of health issues. The

research aims to shed light on the impact of health conditions, specifically parasitic infections in

small ruminants and DJD in cats, on animal behavior as detected through ML algorithms. The

objectives include showcasing the viability of using affordable sensors in resource-poor farming

settings and considering the integration of exogenous factors like temperature, rainfall, for more

comprehensive predictions. Future research directions involve the development of advanced

algorithms, potentially incorporating deep learning techniques like transformers, to identify

subtle changes in behavior indicative of early illness or injury. Additionally, the study explores

extending ML and accelerometry applications to diverse species, including companion animals

and wildlife, highlighting potential avenues for further exploration and addressing the challenges

of real-time monitoring. The overarching goal is to contribute valuable insights to the evolving

field of animal health monitoring, driven by ML and accelerometry, with broad applications in

various farming practices and species.
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APPENDIX A. APPENDIX A

A.1 Software and Packages

The analysis and development in this thesis were conducted using Python [118] 3.10 along with

the following packages:

• typer==0.4.1

• pandas==1.1.5

• scikit-learn==1.0.2

• matplotlib==3.5.1

• plotly==5.6.0

• umap-learn==0.5.2

• plotnine==0.8.0

• pycwt==0.3.0a22

• PyWavelets==1.3.0

• BaselineRemoval==0.0.7

• datashader==0.13.0

• scikit-image==0.19.2

• colorcet==3.0.0

• seaborn==0.11.2

• nlopt==2.7.1

• natsort==8.1.0

• tensorflow==2.8.0

• holoviews==1.14.8

• pydot==1.4.2

• pydotplus==2.0.2

• graphviz==0.20

• colour

These packages were instrumental in conducting various aspects of the research, including

data analysis, machine learning, and visualisation.
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A.2. REGULARISATION

A.2 Regularisation

A.2.1 Method

The technique utilises a parameter grid search method to refine hyperparameters for a Support

Vector Machine (SVM) with a radial basis function (RBF) kernel. Two pivotal hyperparameters,

"C" (regularisation parameter) and "gamma" (RBF kernel coefficient), undergo a systematic

exploration across specified candidate values. The range for "C" encompasses a series of powers of

10, ranging from 1 to 100,000,000, while "gamma" spans powers of 10 from -25 to 3. The parameter

grid search exhaustively generates all conceivable combinations of these hyperparameter values

utilising the ParameterGrid class from the scikit-learn library. Each combination constitutes

a unique set of hyperparameters that is subsequently applied to train and evaluate the SVM

RBF model. This thorough exploration enables the identification of the optimal hyperparameter

configuration by evaluating the model’s performance across the entire parameter grid. The

technique facilitates a comprehensive search for the hyperparameter values that yield the best

model performance on a given dataset.

A.2.2 Result

Figure A.1A shows that on the sheep farm higher C values > 1e06 allows for a wider selection of

gamma that will result in AUCs ≥ 80% while figure A.1B shows that there are fewer combination

of C and gamma that result in optimal AUC value where C = 1e07 and gamma = 1e−10 give the

best result.
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APPENDIX A. APPENDIX A

A –Sheep

B –Goats

Figure A.1: Improving Generalisation of SVM(RBF) with parameters gridsearch. Tuning
C and Gamma allows for fine-tuning the SVM model to achieve better generalization performance
on unseen data. Regularization helps the model adapt to the underlying patterns in the data
without being overly influenced by noise or outliers, making it more robust and reliable.
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