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A B S T R A C T

The Controller Area Network (CAN) is the backbone of automotive networking, connecting many Electronic Control
Units (ECUs) that control virtually every vehicle function from fuel injection to parking sensors. It possesses,
however, no security functionality such as message encryption or authentication by default. Attackers can easily
inject or modify packets in the network, causing vehicle malfunction and endangering the driver and passengers.
There is an increasing number of ECUs in modern vehicles, primarily driven by the consumer’s expectation of
more features and comfort in their vehicles as well as ever-stricter government regulations on efficiency and
emissions. Combined with vehicle connectivity to the exterior via Bluetooth, Wi-Fi, or cellular, this raises the
risk of attacks. Traditional networks, such as Internet Protocol (IP), typically have an Intrusion Detection System
(IDS) analysing traffic and signalling when an attack occurs. The system here proposed is an adaptation of the
traditional IDS into the CAN bus using a One Class Support Vector Machine (OCSVM) trained with live, attack-free
traffic. The system is capable of reliably detecting a variety of attacks, both known and unknown, without needing
to understand payload syntax, which is largely proprietary and vehicle/model dependent. This allows it to be
installed in any vehicle in a plug-and-play fashion while maintaining a large degree of accuracy with very few false
positives.

K E Y W O R D S intrusion detection system, machine learning, controller area network, connected vehicles
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R E S U M O

A Controller Area Network (CAN) é a principal tecnologia de comunicação interna automóvel, ligando muitas
Electronic Control Units (ECUs) que controlam virtualmente todas as funções do veículo desde injeção de
combustível até aos sensores de estacionamento. No entanto, não possui por defeito funcionalidades de
segurança como cifragem ou autenticação. É possível aos atacantes facilmente injetarem ou modificarem
pacotes na rede causando estragos e colocando em perigo tanto o condutor como os passageiros. Existe um
número cada vez maior de ECUs nos veículos modernos, impulsionado principalmente pelas expectativas do
consumidores quanto ao aumento do conforto nos seus veículos, e pelos cada vez mais exigentes regulamentos
de eficiência e emissões. Isto, associada à conexão ao exterior através de tecnologias como o Bluetooth, Wi-Fi,
ou redes móveis, aumenta o risco de ataques. Redes tradicionais, como a rede Internet Protocol (IP), tipicamente
possuem um Intrusion Detection Systems (IDSs) que analiza o tráfego e assinala a presença de um ataque. O
sistema aqui proposto é uma adaptação do IDS tradicional à rede CAN utilizando uma One Class Support Vector
Machine (OCSVM) treinada com tráfego real e livre de ataques. O sistema é capaz de detetar com fiabilidade
uma variedade de ataques, tanto conhecidos como desconhecidos, sem a necessidade de entender a sintaxe
do campo de dados das mensagens, que é maioritariamente proprietária. Isto permite ao sistema ser instalado
em qualquer veículo num modo plug-and-play enquanto mantém um elevado nível de desempenho com muito
poucos falsos positivos.

PA L AV R A S - C H AV E sistema de deteção de intrusão, aprendizagem máquina, controller area network,
veículos conectados
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1

I N T R O D U C T I O N

Computation and networking were first introduced in the 1970s out of the manufacturer’s necessity to meet new
and stringent emissions regulations (Pelkmans et al., 2003). Then, the concept of connected cars appeared
in Formula 1 in 1980, with the vehicle being able to transmit data to the pitlane (AG, 2019). In 1996, General
Motors introduced its OnStar roadside assistance program, where the vehicle could register an accident and
automatically call the nearest emergency centre (International). The use of Global Positioning System (GPS) by
civillians was allowed in May of 2000, which not only improved navigation but also allowed stolen vehicles to be
tracked (AG, 2019). Remote diagnostics were introduced in 2001 and, since then, we saw the inclusion of vehicle
health reports and 4G Long-Term Evolution (LTE) networking. Manufacturers are currently working on adding 5G
connectivity to their vehicles. This networking ability makes the modern vehicle a part of the Internet of Things
(IoT). Not only are vehicles more connected than ever, but they also have much more computing power. Many
modern vehicles offer at least some driving assistance functionality and make decisions to avoid accidents.

This increase in functionality means that a modern car contains about 100 million lines of software code, and
is expected to have around 300 million lines of code by 2030. For comparison, a passenger plane has around
15 million (Petzinger, 2019). This leaves a lot of room for vulnerabilities to appear, and many attacks have been
successfully demonstrated. These include not only locking and unlocking the vehicle, and information theft, but
also disruption of safety-critical components such as sensors and brakes (Kim et al., 2021). Manufacturers have,
however, failed to keep up with the cybersecurity needs of the vehicles they produce. The two main reasons for
this issue are that first, automakers specialised in the manufacturing of vehicles and not in software engineering,
and second, there is an increased cost to making secure software (Tengler, 2020).

Here, a prototype of an IDS for CAN, which is currently the dominant networking protocol in the automotive
industry, is presented. IDSs are common in traditional IP networks, but their implementation in CAN is still being
explored. Most proposed IDS methodologies are very resource heavy, with complex deep learning models often
being implemented (Ahmad et al., 2021). This results in lower energy efficiency, which is of major importance to
both the manufacturers and the customer. The system here presented performs blind traffic analysis, meaning that
it does not need to understand packet syntax. Since this is non-standardised and highly proprietary information, it
allows the system to be installed in a variety of vehicles. It is also design to work in an embedded environment,
constrained by the limited computing resources that are present in a vehicle as well as its efficiency goals.

This dissertation is organised as follows. In Chapter 2, an overview of relevant concepts is first conducted. This
includes modern vehicle software architectures, followed by automotive security standards, common attacks, and
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proposed solutions. Automotive in-vehicle networks are then detailed, before an in-depth look at the Controller
Area Network is taken. Relevant machine-learning concepts are then introduced.

A look into the state-of-the-art of IDSs is performed in Chapter 3. It details modern detection approaches, along
with evasion techniques, and goes over recent literature on the adaptation of the IDS concept into the Controller
Area Network. Automotive-specific challenges are also explored, followed by an approach to incident response.

Datasets used to develop and test the application are listed in Chapter 4. These vary from publicly available
datasets to ones gathered from a real vehicle cluster for the purposes of this dissertation.

The proposed application is detailed in Chapter 5. The general architecture is first explained, followed by the
training process and the features extracted from network traffic. The application’s execution in an embedded
environment, along with its options, concludes this chapter.

Test results are presented in Chapter 6 and Chapter 7 concludes the dissertation.



2

B A C K G R O U N D

2.1 M O D E R N V E H I C L E S

In recent years, vehicles have become ever smarter, providing functionality that goes beyond simple transportation
of passengers and goods. They can guide us through GPS, make calls, receive over-the-air updates, inform other
vehicles of their position, and even drive themselves. Having this computational capacity, being identifiable, able to
transfer data over a network and connected to each other makes modern vehicles a part of the Internet of Things
(Lombardi et al., 2021).

2.1.1 Applications

A significant part of automotive innovation has been driven by software applications. These take advantage not
only of the data generated by internal sensors to perform complex tasks but allow for better multimedia functionality
and communication with external entities. In Le et al. (2018), the authors classify automotive applications based on
the following criteria: functional domain, influence on safety, driver involvement, connectivity, and time constraint.

The functional domain encompasses powertrain, chassis, body, passive safety, telematics and Advanced Driver-
Assistance Systems (ADAS). Influence on safety describes how a misbehaving application potencially affects
safety, and can go from not safety-related, to safety-related, and finally safety-critical. The degree of the driver’s
involvement determines how much attention the driver must devote to the alerts that an application generates.
The connectivity criteria defines the sort of connectivity needed by an application as in certain applications only
the vehicle’s ECUs are used, while communication with external entities could be necessary for other applications.
Time constraint is degree to which an application must adhere to a given response time. If sometimes missing
deadlines has no significant consequences, the program is considered soft real-time. It is hard real-time if an
application must constantly stick to a predetermined response time and missing a deadline might result in major
issues. Otherwise, a program is non real-time if there are no restrictions on response time.

The main application domains for a modern vehicle are shown in Figure 1. These are powertrain, chassis, body
control, infotainment, and telematics and communications. Powertrain and chassis control vehicle dynamics, with
applications like engine and transmission control being a part of the powertrain domain, and driving assistance
and safety being a part of the chassis domain. The body control domain is responsible for non-dynamic vehicle
applications, such as climate control, dashboard, lights, windows, mirrors, seats, etc. Radio, CD/DVD player,

11



2.1. Modern vehicles 12

Figure 1: Main domains of a modern car (Network and Agency, 2016)

GPS, among others, are part of the infotainment domain. Diagnostic applications, for example, are located in the
telematics and communications domain. Emerging ADAS applications are, however, breaking this separation as
their complexity requires data and computation from multiple different domains in order to safely assist the driver
in controlling the vehicle. These include adaptive cruise control, lane-assist, and automatic emergency braking.

Such an increase in computational complexity allows for the introduction of vulnerabilities in the software
and, with applications extending multiple domains and interacting with other applications, there is an increased
concern about their security. Until recently, applications were developed by the manufacturers to run directly on
the embedded hardware. The usual approach was to add a new ECU for every new function to be implemented.
However, this method has made the vehicle’s internal network too complex for safe and efficient handling.
Therefore, a platform-based approach has become of interest to both manufacturers and developers as it
provides developers with an abstraction of the underlying hardware as well as making it possible to write reusable
applications to run on the same standardised platform, but different hardware. This simplifies both the application
development as well as its deployment. Besides, the authors in Holle et al. (2011) suggest that an approach like
that of the mobile platforms could be taken. In this case, an open Software Developer Kit (SDK) is provided to
third-party developers to create and distribute their applications similarly to mobile app stores.

This increase in application diversity and functionality means that the vehicle handles much more sensitive
information, especially when considering its connectivity to devices as personal as one’s smartphone. This
includes information like common routes and schedules, call history, or even conversations recorded with the
internal microphones (otherwise used for phone conversations on virtual assistances). As such, modern vehicles
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are becoming a major target for attackers who seek to obtain information on the user, not only because they
contain sensitive information, but also because of the lack of security elements present in the vehicle design and
architecture. This is because manufacturers have always designed their vehicles with safety, but no security in
mind (Siegel et al., 2018).

2.1.2 Architecture

In all of these domains, ECUs are responsible for controlling their components, such as precise fuel combustion
in the powertrain domain or air conditioning in the body control domain. These controllers are often based on
the ARM platform, with an automotive-grade product line generally being used due to unique constraints in the
automotive environment. Together, they can be tought as the vehicle’s distributed computer.

In 2003, the AUTOSAR was established as a "worldwide development partnership of vehicle manufacturers,
suppliers, service providers and companies from the automotive electronics, semiconductor and software industry"
with the objective of creating an open and standardised software architecture for ECU (aut). The use of such a
manufacturer independent standard allows for a reduction in development effort and improved software quality, as
software modules can be used in vehicles of different manufacturers and component suppliers, thereby reducing
complexity and expense. AUTOSAR maintains five standards: the AUTOSAR Classic Platform, the AUTOSAR
Adaptive Platform, the Foundation, AUTOSAR Acceptance Tests, and AUTOSAR Application Interfaces.

The AUTOSAR Classic architecture is shown in Figure 2. It is composed of three software layers which run
on a microcontroller: the Application Layer, Runtime Environment (RTE), and Basic Software (BSW). The RTE
handles communication between the application layer, which is mostly hardware independent, and the BSW. The
BSW is then divided intro three layers, along with complex drivers: services, ECU abstraction, and microcontroller
abstraction. Services are further divided into functional groups representing the infrastructure for system, memory
and communication services.

The Virtual Function Bus (VFB) allows for communication between different applications (Software Componentss
(SWCs)) and the use of BSW services, both within the individual ECU and between ECUs. Because the
development of SWCs is based on the VFB, SWCs are independent of the underlying hardware, making them
easier to reuse and integrate into different projects on different platforms as well as to flexibly relocate existing
SWCs to ECUs during development.

New use cases, such as autonomous driving, communication with traffic infrastructure, multimedia applications,
and smartphone integration, led to the creation of the AUTOSAR Adaptive Platform. This standard aims to
provide support for the deployment of customer applications and an environment for applications that require
a high amount of computing power (e.g. computer vision). It implements the AUTOSAR Runtime for Adaptive
Applications, with a POSIX-based operating system at its core running (AUTOSAR, 2021) on virtualized hardware.
In contrast to the AUTOSAR Classic Platform, the AUTOSAR Runtime Environment for the Adaptive Platform
dynamically links services and clients during runtime. This allows applications to be developed, tested and
distributed or updated independently of one another.
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Figure 2: The AUTOSAR architecture (Vector)

Figure 3: The AUTOSAR Adaptive Platform architecture (AUTOSAR)
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The Foundation standard enforces interoperability between the AUTOSAR platforms by the means of common
requirements and technical specifications shared between them, e.g bus protocols and common aspects of the
methodology.

Acceptance Tests for Classic Platform are system tests that validate AUTOSAR stack behaviour at the bus and
application level. AUTOSAR provides tests that cover RTE requirements, BSW services, and bus protocols and
behaviour. It also allows for the addition of tests by the user to certify specific features not covered in the standard
set.

The Application Interfaces standard covers syntax and semantics for the body and confort, powertrain engine,
powertrain transmission, chassis control, ocupant and pedestrian safety, and human-machine interface, multimedia
and telematics domains. The deployment of standardised application interfaces assures software reusability
independently of specific hardware and/or ECUs, which is one of the main requirements of AUTOSAR.

2.1.3 External communication

Modern vehicles have a variety of ways of communicating with the exterior. Use cases include communicating
with wireless keys, sensors, other vehicles, smartphones, and road infrastructure. It is common to classify these
types of vehicle communication according to the following categories:

• Vehicle-to-Device (V2D): Communication with a device inside the vehicle.

• Vehicle-to-Vehicle (V2V): Communication with another vehicle.

• Vehicle-to-Infrastructure (V2I): Communication with road infrastructure.

• Vehicle-to-Network (V2N): Communication with IT or cellular infrastructure.

The term Vehicle-to-Everything (V2X) is used to refer to general vehicle communication.
Either the head unit or the telematics control unit conducts communication. A head unit often includes a screen,

telephone, navigation, and interfaces for connecting to other consumer electronics. An exclusive ECU that offers
wireless communication is a telematics control unit. Based on access range, interfaces may be divided into three
major groups: physical access, short-range wireless access, and long-range wireless access Le et al. (2018).

Physical access

The interface that needs physical access the most is the one for diagnosis. Regulations for On-Board Diagnostics
(OBD) (such as OBD-II in the United States, EOBD in the European Union, or JOBD in Japan) demand the
monitoring and detection of deterioration, dysfunction, and electrical failures in emission systems. This port allows
for the requesting of stored data about faults, real-time data from sensors and ECUs, reading and setting fault
codes, and controlling actuators. It also alows access to vehicle data in non-diagnostic mode.

Other physical access interfaces include CD/DVD players and USB ports.
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Short-range wireless access

One use for these interfaces is to link sensors and actuators to the in-vehicle network, such as tire pressure
monitoring systems and keyless entry (TPMS).

Bluetooth and WiFi are dominant in the telematics domain. Bluetooth is commonly used for hands-free phone
calls and music playback, while WiFi can be used for Over-the-Air (OTA) updates and Internet tethering between
vehicles.

Other protocols exist for ad-hoc Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication,
such as Intelligent Transport Systems operating in the 5 GHz frequency range (ITS-5G) in Europe, and Dedicated
Short Range Communication (DSRC) in the United States. They are both based on the IEEE 802.11p standard at
the physical layer. ITS-5G has four channels for separate purposes: safety applications, non-safety applications,
wireless local area networks, and a channel reserved for future applications. Although DSRC primarily focuses on
safety applications, it is also utilized in toll collection, navigational aid, and garage door openers.

Long-range wireless access

Communication at distances over 1 km is considered long-range and can be classified into wither broadcast or
adressable channels. Signals can be sent to multiple vehicles, whose address is unknown, using a broadcast
channel. Services like GPS or digital radio are examples of this type of communication. On the other hand,
addressable channels are used to send messages to specific devices. These channels are provided by cellular
networks and can be used for Internet access or voice transmission.

2.2 S E C U R I T Y S TA N D A R D S

Functional safety is already an integral part of road vehicle engineering, with the functional safety norm ISO/SAE
26262:2011 being well established. The industry’s pursuit to design and build safer connected vehicles is leading
to the development of several secure software development standards for the automotive sector. One such
standard is the ISO/SAE 21434:2021 Road Vehicles - Cybersecurity Engineering. It’s predecessor, SAE J3061,
already established some high-level guiding principles such as defining a complete lifecycle process framework,
and it also recommends an initial assessment of potential threats and risks that may be considered relevant.

An overview of the ISO/SAE 21434:2021 can be found on Figure 4. Clause 4 offers some general consid-
erations and contextualises the approach to vehicle cybersecurity taken in the standard. Clause 5 concerns
the organisational structure, and describes the organisation’s security objectives and how to achieve those
objectives as well as responsibility and authority assignment. Clause 6 discusses cybersecurity management
at the project level, detailing, among others, the proposed approach for tailoring and incorporating off-the-shelf
components. Clause 7 describes cybersecurity responsibility distribution between customer and supplier. Clause
8 details the continuous development activities, such as risk assessment and vulnerability management, until the
end of cybersecurity support. Clause 9 concerns the concept phase, which involves considerations of vehicle
functionality as well as the cybersecurity goals for each item. Clauses 10 and 11 discuss the product development
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Figure 4: Content overview of the ISO/SAE 21434:2021

phase, including the specification of cybersecurity requirements and architectural design, as well as integration
and verification activities and the validation of cybersecurity goals and claims. Clauses 12 to 14 describe the
components of the post-development phase, such as production (manufacturing and assembly of an item or
component), operations and maintenance (including cybersecurity incident response), and end of support and
decommissioning. Finally, Clause 15 discusses threat analysis and cybersecurity risk assessment.

2.3 A U T O M O T I V E C Y B E R S E C U R I T Y

2.3.1 Objectives

The CIA triad is a common way of refering to the fundamental elements of information security. The three key
terms are:
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• Confientiality, meaning that information is accessible only to those with proper authorisation. This first
became important when manufacturers were conserned with ECU firmware, which contains intelectual
property. More recently, it became a more general concern due to the personal information that the vehicle
stores, such as adress book and location history.

• Integrity, requiring that information is modified only in an authorised manner. Integrity includes authentica-
tion, which calls for the ability of the recipient of a communication to confirm the message’s provenance.
Information that causes a vehicle to react, e.g. automated braking, must be authentic both in terms of its
source and its content.

• Availability, requiring that services are fully available to authorised users.

As security concerns grow due to the connecivity of complex applications, they aim to fullfil these common
security requirements. Moreover, privacy is also a concern, as V2V and V2I applications could share messages
containing personally identifiable information, such as location and the identity of the vehicle’s occupants.

2.3.2 Attackers

To safeguard any system, it is crucial to understand the attackers. These may vary in terms of physical access to
the system, as well as the amount of knowledge and resources.

Wolf (2009) divides in-vehicle system attackers into internal and external. An authorized user attempting to
escalate their privileges is a classic internal attacker. It is considered that internal attackers have unrestricted
physical access to the vehicle. An external attacker, however, has little to no physical access to the vehicle.
Internal attackers are those who have the necessary key materials to log on as authorized network users in
VANET settings. Attackers may be equipped with low, medium, or high levels of resources and expertise.

2.3.3 Attack impact

Different attacks have different effects on the system and its stakeholders, depending on which security goal is
compromised (Le et al., 2018):

• Safety, where passengers and other road users are harmed. When the integrity and accessibility of data
are violated, safety is jeopardized. An attacker could, for example, trigger or disable brakes by injecting or
suppressing network messages.

• Financial, in which unauthorised commercial transactions are performed and intellectual property disclosed.
There are financial consequences when an attacker is able to disrupt any of the security goals. If
confidentiality is not assured, an attacker could steal proprietary information. Vehicle owners could also
replace components or enable locked features. The lack of data availablity for certain applications could
also mean a financial loss for the manufacturer.
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• Operational, preventing non-safety functions from performing as planned during operation. The operational
aspect of the vehicle is disrupted when the attacker compromises information integrity or availability. As
mentioned before, breaking integrity can have operational consequences, such as misbehaving brakes. On
the other hand, unavailable applications are also an operational failure.

• Privacy, giving unauthorized access to information on the whereabouts and identities of drivers or owners
of vehicles. There is a privacy breach when confidentiality is broken. This is due to the amount of private
information that modern vehicles hold on their drivers, which, if compromised, constitutes a privacy breach.

2.3.4 Common attack patterns

Many software and hardware components contain vulnerabilities that can be exploited. The addition of communi-
cation, apps, and platforms to automotive technologies that were not given much thought to security and privacy is
one of the underlying causes of these vulnerabilities. When vehicles were isolated and applications were mostly
for control systems, the lack of protection against IT security risks was not a severe concern. Additionally, vehicles
have a long life-time. Older technology and vehicles are frequently not upgraded to defend against new threats
during that period.

The authors of Kim et al. (2021) surveyed previously published research on attacks against autonomous
vehicles, although some attacks are also effective against non-autonomous vehicles. They classify attack research
into three categories: attacks on the automotive control system, attacks on the autonomous driving system
components, more specifically through mobile apps, and attacks on Vehicle-to-Everything (V2X) communication
technologies.

Automotive control systems

One type of automotive control system attack targets the vehicle’s ECUs. Taking advantage of network vulnerabili-
ties, research shows that it is possible to load firmware into ECUs that control components such as the door-lock
and telematics, primarily through fuzzing (Koscher et al., 2020). The vulnerabilities described by Rouf et al. (2010)
showed that it is possible for an attacker to remotely display a false tire pressure warning or disable the Tire
Pressure Monitoring System (TPMS) ECU, as well as vehicle tracking from 10-40 metres. More recently, it was
shown that ECUs present in Tesla vehicles could be controlled remotely by sending arbitrary CAN packets, which
led Tesla to introduce code-signing protection in an Over-The-Air (OTA) update (Nie et al., 2017). Miller and
Valasek (2015) showed that, even remotely, and attacker can reprogram ECUs, control display and sound systems,
the instrument cluster, body components, interfere with the engine operation, lock and disable brakes, prevent the
car from turning on or off, etc. Even from telematics ECUs, this type of attack has the same effects as directly
injecting messages into CAN buses.

In-vehicle network attacks aim to disrupt communication between vehicle components. In Palanca et al. (2017),
the authors showed that the CAN bus is vulnerable to selective DoS attacks, which cannot be detected at the
frame level. Sniffing and replay attacks have also been demonstrated, as per Hoppe et al. (2009). Nilsson et al.
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(2009) also explored possible attacks on the FlexRay protocol. They showed that, because there is no encryption,
it is possible to read all data sent to the bus, as well as insert unauthenticated messages. A successful attack
causes serious disruption of the vehicle control system and may harm drivers and passengers.

Passive key-less entry and start systems used in modern cars are a major attack target. It has been shown
that some systems are vulnerable to relay attacks by duplicating the existing signal (Francillon et al., 2011).
Through the analysis of cryptographic vulnerabilities, Verdult et al. (2012) demonstrated how private keys could be
recovered from the Hitag2 transponder in order to bypass the key’s cryptographic authentication in as little as 6
minutes. Garcia et al. (2016) also showed how to recover cryptographic keys and clone a VW group remote via
eavesdropping on a single signal, as well as another Hitag2 attack able to clone the remote in just a few minutes.

External communication technologies

A comprehensive survey of attacks on Vehicular Ad Hoc Networks (VANETs) by Hasrouny et al. (2017) showed
that these are vulnerable to the same attacks as a regular network, such as DoS, man in the middle, message
suppression, or spoofing. In addition, the integration of Bluetooth has become standard, and it brings with it a new
set of vulnerabilities. In Cheah et al. (2017), it was shown that manufacturers still include the ability to use legacy
pairing, which led the authors to identify vulnerabilities. Other research has shown the execution of attacks using
Bluetooth as a vulnerable component, as shown in Cai et al. (2019) with BMW cars.

Mobile apps

The increase in connectivity between the driver’s vehicle and his smartphone led to an expansion in the vehicle’s
attack surface. A malicious smartphone app could be used to gain unauthorised access to a vehicle without
needing to be in its proximity (i.e. using long-range wireless networks). The authors of Woo et al. (2015) exploited
CAN vulnerabilities in the process of demonstrating this scenario. Vulnerabilities in the MirrorLink protocol have
also allowed attackers to send CAN packets through a smartphone, opening the possibility for a variety of exploits.
The attack method present in Mazloom et al. (2016) took advantage of a heap overflow. A vulnerability in Blue
Link, a vehicle control application from Hyundai Motors, allowed the recovery of the driver’s username, password,
and PIN. An attacker could also exploit this vulnerability to remotely unlock the vehicle (Beardsley, 2017). With
the smartphone being relatively vulnerable to attacks, and with manufacturers providing more functionality to its
connection to the vehicle, it is expected that these type of applications become a major target (Kim et al., 2021).

2.3.5 Proposed solutions

The development of protection mechanisms faces multiple constraints resulting from the limited computing
resources available to each ECU as well as the time-sensitive nature of their operations. There is also a need to
assert retro-compatibility with currently used embedded technologies and, when considering external entities,
interoperability between their security mechanisms. Two distinct vehicles, for example, should not be prevented
from communicating because their protocols are incompatible (Studnia et al., 2013).
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There is an effort by European projects such as Secure Vehicular Communication (SeVeCom) (Kargl et al.,
2008), Preparing Secure Vehicle-to-X Communication Systems (PRESERVE) (PRESERVE), or E-safety Vehi-
cle Intrusion Protected Applications (EVITA) (Henniger et al., 2009), to design secure vehicle communication
architectures.

For VANETs, the usage of public-key infrastructure has also been proposed, to assert the authenticity of the
messages, as well as the use of pseudo-anonymity to preserve privacy. For preventing DoS attacks, some routing
protocols have also been studied (Hasrouny et al., 2017).

Regarding internal protection, there have been several attempts to leverage cryptography in securing the ECU
and the CAN bus. An authentication protocol, such as the one proposed in Van Herrewege et al. (2011) or Groza
and Murvay (2018), would prevent most injection attacks. Another approach, taken by the EVITA project, consists
in the implementation of a dedicated hardware module for cryptographic operations (Wolf and Gendrullis, 2011).

IDS has traditionally been used in network security, more specifically in desktop IT. Hoppe et al. (2009) are one
of the first to mention its usage in automotive IT as a “promising supplemental measure”. They also discuss a way
to optimally communicate a warning to the driver.

2.4 I N - V E H I C L E N E T W O R K S

For a long time, the only electronic component in a vehicle was the radio. However, pushes for more environmentally
friendly vehicles, as well as increased comfort, led to the addition of many more electronic modules. These can be
a part of several subsystems, such as the powertrain, chassis, body, and infotainment system, each with its own
set of requirements. These requirements may be an assurance of message delivery and minimum delivery times
for safety-critical applications, or high bandwidth for infotainment purposes. Longevity must also be considered. In
ACEA (2021), it was shown that the average car age in the European Union is 11.5 years. For comparison, the
average smartphone lifespan for consumers in the United States has been documented to be around 2.75 years
(Statista). Network boot-time is relevant as well, as automotive boot-time should remain under 100ms, while some
smartphones take over 1 minute to boot (Correa, 2020). Power consumption must not be forgotten, as it impacts
the vehicle’s range. The manufacturer’s desire to reduce the vehicle’s complexity, weight, and cost, led to the use
of a heterogeneous set of networks with different characteristics.

Correa (2020) lists some roles that a network might serve. These are safe/time-critical data, control data,
backbone, infotainment, multi-gig data, and low cost/speed data. Below is an introduction to some of the dominant
automotive network protocols, and a general overview of these networks can be seen in Table 1.

2.4.1 Controller Area Network

The development of the CAN standard started in 1983 by Uwe Kiencke. It was first introduced in February of 1986
at the Society of Automotive Engineers Congress by Robert Bosch GmbH (CiA). Following the publication of CAN
2.0 by Bosch in 1991, the International Organization for Standardization (ISO) released the CAN standard ISO
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Technology Domain Maximum bandwidth Collision avoidance mechanism

LIN Low Cost/Speed 20 Kb/s Time divided media access

CAN

Low Cost/Speed 125 Kb/s (Low-Speed CAN)

Non-destructive arbitrationBackbone 1 Mb/s (CAN 2.0)

Control 10 Mb/s (CAN FD)
10 Mb/s CAN XL

FlexRay Safety/Time Critical/Backbone Control 10 Mb/s Time divided media access

MOST Infotainment 150 Mb/s N/A

Automotive Ethernet

Safety/Time Critical

10Gb/s N/A
Multi-Gig

Infotainment
Backbone
Control

Table 1: Characteristics of dominant automotive networks

11898. The Mercedes W140, first available in 1991, was the first vehicle with a CAN-based in-vehicle network
(CiA, 2016).

CAN messages are sent in broadcast mode, which means that all ECUs in a network receive all transmissions.
Devices that receive a message acknowledge their reception. Each ECU listens for messages from a subset of
IDs, and each message ID must be sent by no more than one ECU (Kulandaivel et al., 2019). It was designed
with the objective of building a low-cost, and reliable network, and is therefore used mainly used for powertrain,
chassis and body electronics. Its limited bandwidth of 1Mb/s does not allow for its use in other domains, such as
the infotainment system (Huang et al., 2019).

A deeper look into CAN is conducted in Section 2.5.

2.4.2 Local Interconnect Network

Local Interconnect Network (LIN) is a supplement to the CAN bus, offering lower performance and reliability, but
also a much lower cost. It is a product of the LIN Consortium, founded by BMW, Volkswagen Group, Audi, Volvo
Cars Mercedes-Benz, Volcano Automotive Group, and Motorola, and provides cost-efficient communication in
applications where the bandwidth and versatility of CAN are not required. This typically includes mechatronic
nodes like the vehicle’s windows, wipers, side mirrors, or seat controllers (Corp, 2020).

The first version of the specification was released in 1999, with updates soon following. LIN 2.0 was released
in 2003 and the protocol was standardised in ISO 17987:2016.

Unlike CAN, a typical LIN cluster consists of a single commander node and up to 16 responders connected by
a single copper wire, with communication speeds up to 20 Kb/s (Takahashi et al., 2017). It is usually deployed as
a CAN sub-network, with only the LIN master node being connected to the CAN-bus. All communications are
initiated by the commander node, with one responder replying to a given message identifier (the commander node
can also act as a responder, replying to its own messages). There is, therefore, no need to implement collision
detection (CSS Electronics, 2021).
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Figure 5: Number of nodes in automotive by technology (CSS Electronics, 2021)

This protocol also implements a sleep and wake-up mechanism, allowing it to potentially save power. Respon-
ders can enter sleep via a command issued by the commander node or are forced into that state after more than 4
seconds of LIN inactivity. The wake-up command can be issued by any node (Corp, 2020). We can see in Figure
5 that the number of LIN nodes has recently surpassed the number of CAN nodes.

There have been recent efforts to study the security aspects of LIN, such as the one detailed in (Takahashi
et al., 2017), and it is noted that due to its link with CAN, the latter’s vulnerabilities are also a cause for concern
for the former. (Ernst and Michaels, 2018) showed that a compromised LIN node can destroy as well as create
"erroneous, but valid packets". The authors also suggested that the effect of an intrusion can be minimised by the
use of appropriate firewalls. However, since LIN is usually used for non-safety-critical purposes, compromising the
bus would most likely not be life-threatening.

2.4.3 FlexRay

The continuous search for improved safety, performance, and comfort of vehicles means that the speed and
reliability of data communicated between ECUs must increase. FlexRay was developed by the FlexRay Consortium,
founded in 2000 by Daimler Chrysler and BMW along with Motorola and Phillips, and disbanded in 2009. The
Consortium had the goal of creating a bus protocol capable of delivering achieving high data rate, deterministic
and fault-tolerant communications (Makowitz, 2006) as a way of overcoming CAN’s limitations in these aspects.
Features that require a higher throughput for safety/time-critical data like active cruise control, anti-lock braking
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system, or break-by-wire, thus use FlexRay as the preferred communication protocol, as it satisfies the reliability
requirements for these safety-critical systems.

The FlexRay bus consists of a single twisted-pair copper cable, with ECUs connected using multi-drop
technology. Its clock synchronisation is deterministic and uses time divided media access as a collision avoidance
mechanism, in contrast to the arbitration mechanism used by CAN. This makes it suitable for safety/time-critical
applications. It is also used for backbone and control data, similarly to CAN. However, it provides much higher
bandwidth: 10Mb/s, compared to CAN’s maximum of 1Mb/s, and is more expensive (Huang et al., 2019).

The protocol is defined in ISO 17458-1 to 17458-5.

2.4.4 Media Oriented Systems Transport

As the name suggests, Media Oriented Systems Transport (MOST) is primarily used for high-speed multimedia. It
can use either a single twisted pair of copper cables, or plastic optical fibre (which has the advantage of being
completely immune to electromagnetic disturbance), and supports 25, 50, and 150 Mb/s data transfer speeds
(Microchip). The MOST network is capable of managing up to 64 devices, usually configured in a ring topology.
Star or double ring configurations are also possible (GmbH), with the latter being relevant for safety-critical
applications (Huang et al., 2019).

The MOST specification, described in ISO 21806, defines the physical and data link layers, as well as all the
seven layers of the ISO/OSI model.

2.4.5 Automotive Ethernet

Automotive Ethernet is an adaptation of standard Ethernet that fulfils the requirements of the automotive envi-
ronment, such as the use of a single twisted-pair wiring, which provides lower cost and better electromagnetic
compatibility.

The motivation behind this adaptation is primarily the amount of full-duplex bandwidth it provides. In 2020,
IEEE published the IEEE 802.3ch-2020 standard, detailing the specification for automotive Ethernet with data
transfer speeds of up to 10Gb/s (10GBASE-T1). This allows fields like ADAS to grow and develop without much
concern for bandwidth restrictions. Another important factor is that Ethernet is already an established technology
outside of the automotive industry. This means that there is a large knowledge base to support it, especially when
compared to the other protocols discussed here. Its use of the IP stack is a point in its favour as well. It is also a
scalable technology, with adding new nodes to the network being a relatively easy task (Bello, 2011).

As for the network topology, Ethernet is, by nature, a point-to-point network. This means that connecting more
than two nodes requires an Ethernet switch.

This technology does not aim, however, to only replace other high-bandwidth networks like MOST. The
10BASE-T1s version of the automotive Ethernet protocol is a direct competitor to CAN and FlexRay, as it describes
a multi-drop bus topology network over a single twisted pair of copper wires with speeds up to 10Mb/s and time
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Figure 6: CAN and the OSI model (Richards, 2002)

divided media access for collision avoidance (Correa, 2020). This would allow for a vehicle using only IP based
technologies, simplifying the overall design of the network.

2.5 C O N T R O L L E R A R E A N E T W O R K

CAN is currently the dominant network protocol in automotive. As laid out in 2.4.1, it is a broadcast network with
no central bus master, which allows for data consistency across the entire system. The two lowest layers of the
ISO/OSI model for CAN are defined in the ISO 11898 (Richards, 2002) and the implementation can be seen in
Figure 6. Protocols such as the CANopen protocol, supported by the CAN in Automation group (CiA), establish
the link between the physical and data link layers and those above (Corrigan, 2002).

The CAN bus differs from a conventional bus because it inverts the logic state between the bus, driver input
and receiver output. In CAN, a logic high is associated with a 0 (the dominant bit), and a logic low with a 1 (the
recessive bit) (Corrigan, 2002). An illustration of this mechanism can be seen in Figure 7.

CAN uses Carrier-Sense Multiple-Access (CSMA), meaning that each node must wait for bus inactivity before
transmitting, with Collision Detection and Arbitration on Message Priority (CP+AMP), meaning that collisions are
resolved through bit-wise arbitration using the message’s ID field. Messages with lower ID have a higher priority,
as a smaller identifier will hold the dominant state on the bus for longer (Corrigan, 2002). The bus can, therefore,
be thought of as acting as an AND gate, as explained by Cook and Freudenberg (2008).
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Figure 7: The inverted logic of a CAN bus (Corrigan, 2002)

There are four message types in CAN: the data frame, the remote frame, the error frame, and the overload
frame. Error-free messages have the last bit of the EOF set as recessive, and a dominant bit in this field causes
the message to be re-transmitted.

The data frame is the most common message type and is composed of seven fields: SOF, arbitration, control,
data, CRC, ACK, and EOF. The SOF field consists of a single dominant bit, and the arbitration decides which of
the nodes attempting to transmit is allowed to do so. The RTR field distinguished between data (dominant bit)
and remote (recessive bit) frames. The control field indicates the amount of data being sent in the data field. The
remote frame is used to request a data frame from another node. If a node broadcasts a remote frame containing
a particular identifier, the node responsible for this identifier immediately generates a data frame as a response.
The error frame is used to notify errors in frame transmission, and the overload frame signals that the controller
has not finished processing the current message, and delays the start of the next message (Lee et al., 2017).
CAN is available in three generations: Classical CAN, CAN FD, and CAN XL. These are described below.

2.5.1 Classical CAN

There are three versions of what can be called "classical" CAN: low-speed CAN, CAN 2.0A, and CAN 2.0B. As
the name suggests, low-speed CAN has limited bandwidth, at 125Kb/s. However, it is fault-tolerant, as it can
operate even when one of the two wires fails. This version of the protocol is standardised in ISO 11898-3. CAN
2.0 versions A and B allow for speeds up to 1Mb/s, with the main difference between the two versions being
that the former uses an 11-bit identifier (standard), and the latter a 29-bit identifier (extended). The bit fields for
standard (low-speed CAN and CAN 2.0A) and extended (CAN 2.0B) versions can be seen of Figures 8a and 8b,
respectively. The meaning of the bit fields are:

• SOF (Start Of Frame): Single dominant bit that marks the start of a message.

• Identifier: Establishes the priority of a message (lower ID means higher priority).

• RTR (Remote Transmission Request): When this bit is dominant, information is required from the node
specified in the identifier.

• SRR (Substitute Remote Request): Replaces the RTR bit as a placeholder in the extended format.
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(a) Standard CAN: 11-bit identifier

(b) Extended CAN: 29-bit identifier

Figure 8: Classical CAN frame structure (Corrigan, 2002)

• IDE (Identifier Extension): When this bit is dominant, a standard CAN identifier is being transmitted.

• r0: Reserved bit.

• r1: Reserved bit.

• DLC (Data Length Code): 4-bit field that contains the number of bytes of data being transmitted.

• Data: Up to 64 bits may be transmitted.

• CRC (Cyclic Redundancy Check): 16-bit field containing the checksum of the transmitted data for error
detection.

• ACK (Acknowledge): Every accurate message received has this recessive bit overwritten by a dominant
bit.

• EOF (End-Of-Frame): 7-bit field that signals the end of a CAN frame, while also disabling bit-stuffing.

• IFS (Inter-Frame Space): 7-bit field that allows the controller enough time to move the received frame into
the message buffer.

2.5.2 CAN FD

Increasing demand for more bandwidth led to the development of CAN FD (standing for Flexible Data-Rate), which
was started in 2011 by Robert Bosch GmbH. The fact that this design is based on CAN 2.0 provides several
advantages. Costs are similar, and it has a small impact on current software and applications. The physical layer
and topologies can also be maintained (Woo et al., 2016). It is primarily used in high-performance vehicle ECUs
and is established as an international standard in ISO 11898-2:2015.

The main difference between CAN 2.0 and CAN FD is the flexible data rate that CAN FD offers. This means that
it allows for the data frame to be transmitted at different speeds, depending on the characteristics of the network.
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Figure 9: Comparison of CAN and CAN FD data frames (Woo et al., 2016)

Figure 10: Illustration of the CAN FD flexible data-rate mechanism (Electronics, 2021)

Development was faced with two main challenges: avoiding increased message delays caused by placing more
bytes of data in a single frame, and maintaining CAN’s practical wiring (Electronics, 2021). The solution to this
was the introduction of a new frame structure, which can be seen in Figure 9.

In the arbitration field, we can see that the RTR bit is not present in the CAN FD frame. This is because there
are no remote frames in CAN FD.

Three new bits were added to the control field: extended data length (EDL), bit rate switch (BRS), and error
state indicator (ESI). The EDL bit is used to distinguish between the classical CAN (bit is dominant) and the
CAN FD (bit is recessive) frame formats. If the BRS bit is dominant, it signals that the data frame is sent at the
arbitration rate (i.e. up to 1Mb/s). Otherwise, the remaining part of the data frame is sent at a higher speed
(around 5Mb/s). The ESI bit is used for identifying an error in the CAN FD node.

The CRC has also been updated from 15 bits in classical CAN to 17 or 21 bits in CAN FD. Lastly, the payload
portion of the frame stops at the ACK bit, which means that this is the end of the potentially higher bit rate. An
illustration of this can be seen in Figure 10.

There exists also an extended version of CAN FD, shown in Figure 11. It functions much like the classical
extended CAN, allowing for more IDs to be used.

A major challenge in securing CAN has been the limited speed and payload size, as it makes it difficult to
implement typical cryptographic schemes, such as authentication, to defend against attacks. CAN FD brings some
relief in this matter, and new techniques have been proposed, like the ones in (Woo et al., 2016) and (Agrawal
et al., 2019).



2.5. Controller Area Network 29

Figure 11: Comparison of extended CAN and CAN FD data frames (Bosch, 2012)

2.5.3 CAN XL

Fueled by much of the same objectives as CAN FD, as well as the rise in popularity of automotive Ethernet, CAN
XL presents itself as the third generation of CAN, capable of providing speeds above 12Mb/s in the frame’s data
phase (the arbitration phase of the frame maintains its top bit-rate of 1Mb/s). This puts both 10BASE-T1s Ethernet
and CAN XL at the same level in terms of bit rate.

In contrast to 10BASE-T1s Ethernet, CAN XL offers a wider range of topologies to choose from, meaning
that not all CAN XL networking topologies can be exactly replaced with Ethernet, as the latter has a stricter bus
topology. An example of this can be seen in Figure 12. The increase in data field length for CAN XL also allows for
transparent Ethernet frame tunnelling, enabling the use of IP communication (Bosch, 2021). Another advantage
this protocol has over automotive Ethernet is the fact that it is much easier to upgrade existing CAN networks to
CAN XL than it is to transition to Ethernet and the IP stack, which is more complex and requires more expensive
controllers (Garnatz and Decker, 2020). Seen as though CAN XL can be mixed with CAN FD, it also allows
manufacturers to optimise cost by using the cheaper technology where higher bandwidth is not required (Bosch,
2021).

The CAN XL frame structure can be seen in Figure 13.
In Classical CAN and CAN FD, the CAN-ID field (11 bit or 29 bit) is used for both arbitration and addressing

purposes. In CAN XL these functions are separated. The CAN XL protocol separates the priority functions (11-bit
Priority ID) and the addressing (32-bit AF). The 11-bit Priority Field provides the uniquely assigned priority of the
CAN XL DF. The 32-bit AF (Acceptance Field) is included in the 64-bit hardware acceptance filter of the CAN XL
controller. It may contain node address or content-indicating information.
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Figure 12: Comparison between 10BASE-T1s and CAN XL topology requirements (Garnatz and Decker, 2020)

Figure 13: Current status of development of the CAN XL frame (Garnatz and Decker, 2020)
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The CAN XL DF includes two CRC (cyclic redundancy check) fields: the 13-bit PCRC (Preamble CRC) in
Control Field and the 32-bit FCRC (Frame CRC) in CRC Field. The CRCs are cascaded, which means the FCRC
protects the whole frame, including the PCRC. Both CRCs can detect any five randomly distributed bit-errors,
which corresponds to a Hamming distance of 6 (in Automation). New in the control field are also the possibilities to
indicate the payload type, much like the EtherType field in Ethernet, and a virtual CAN ID, allowing the separation
of the CAN network into virtual networks and comparable to the VLAN ID in Ethernet (Bosch, 2021).

CAN XL, therefore, presents itself as an incremental upgrade step for existing CAN and CAN FD networks,
while also closing the gap in transmission speed between CAN and automotive Ethernet. It aims to be a reliable
alternative to 10BASE-T1s, with a simpler protocol stack and cheaper controllers. The fact that it allows for
Ethernet frame tunnelling may also open the doors to joint single-based communication in the lower levels of the
network (CAN) and signal-based communication at the higher end (10BASE-T1s) (Garnatz and Decker, 2020).

2.5.4 Vulnerabilities

The reason CAN is so dominant in the automotive networking space is because of its simplicity. This has, however,
become an exploitable property with the exterior connectivity that did not exist when the protocol was developed.

Because messages are broadcast to the entire network, an attacker with access to one part of the network, like
an ODB port, can eavesdrop on all traffic as well as send messages to all nodes. When eavesdropping, messages
can be easily interpreted because there is no encryption in the protocol. There is also no authentication methods
that allow nodes to know the source of the received frame, meaning that nodes cannot assert if a received frame
was sent by a legitimate node or a bad actor. The ID-based arbitration scheme also facilitates Denial of Service
attacks, as flooding the system with high-priority messages would cause all others to back off (Scalas and Giacinto,
2019).

2.6 M A C H I N E L E A R N I N G

As stated in 3.1, the use of machine learning in an IDS allows it to adapt and detect previously unseen attacks.
Such an approach has two phases: training and testing. First, attributes and classes from the training data must
be identified. These must be reduced to a subset of those most relevant for classification, discarding unnecessary
ones (i.e., dimensionality reduction). Then, the resulting dataset is used to train the model, with the trained model
being used to classify unknown data. The training data can be unlabelled, which creates an unsupervised learning
problem, partially labelled, for semi-supervised learning, or fully labelled, making the learning phase supervised
(Buczak and Guven, 2016).

In (Shearer, 2000), the CRoss Industry Standard Process for Data Mining (CRISP-DM) was presented as
a six-phase model describing the data science life cycle in a industry, tool, and application neutral way. A
representation of this can be see in Figure 14.

The model’s six phases are:

• Business understanding, where the project’s requirements are defined.
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Figure 14: CRISP-DM diagram (DSPA)

• Data understanding, where data is collected and examined.

• Data preparation, where the collected data is processed to produce the final dataset.

• Modeling, where machine learning methods are applied to produce the model.

• Evaluation, to verify whether the produced model is able to verify the requirements established in the first
phase.

• Deployment, with the model being implemented.

In most applications, machine learning models are trained and then used for a long time without any modifica-
tions. In the security space, however, new threats emerge frequently. This means that models must be updated
often in order to learn to detect new and emerging attacks, as well as in cases where the network traffic suffers
modifications in its usual pattern. Training times are, therefore, important. The model’s ability to learn incrementally
is also valuable, as training from scratch every time new data appears would be very time consuming.

Network traffic also generates a huge amount of unlabelled data, and labelling it is a laborious task. Quickly
acquiring novel attack data can also be difficult, but is necessary to update the model as soon as possible (Buczak
and Guven, 2016).

Deep learning is a subset of machine learning where the neural networks have more than one hidden layer.
While machine learning algorithms make use of labelled and structured data to make predictions, deep learning
algorithms automate feature extraction and can ingest and process unstructured data (IBM, 2020c).
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Table 2: Components of a confusion matrix (Handelman et al., 2019)

2.6.1 Performance metrics

There are several metrics used to classify a model’s performance. To access if the model will generalise to an
independent dataset, cross validation techniques are commonly used. Cross validation consists of a re-sampling
method that iterates several times over a given dataset, sampling distinct training and test sets each time. This is
particularly useful if the amount of available data is small.

For binary classification tasks, the confusion matrix provides several useful performance metrics by laying out
true and false positives, as well as true and false negatives in a 2x2 table. Many relevant metrics can be inferred
from these values, as shown in Table 2. The true-positive rate, also known as recall or sensitivity, provides the
rate at which the model detects a truly positive case, while the false-negative rate is the proportion of positive
cases missed. The false-positive rate is the probability of the model classifying a negative case as positive,
and the true-negative gives the rate at which the model correctly identifies negative cases. Prevalence is the
proportion of the dataset that is actually positive, while accuracy tells us how many correct predictions (both
positive and negative) the model made in proportion to the total dataset. The positive predictive value metric, or
precision, represents the likelihood that a positive prediction is actually positive, with the false discovery rate being
its complement. The negative predictive value and false omission rate are analogous. The positive and negative
likelihood ratios tell the probability that a classification is actually positive or negative is the model classifies it at
such. The diagnostic odds ratio provides a way to measure the model’s performance without, unlike accuracy,
being affected by prevalence. The F1 score is a function of both precision and recall to give an overall indication of
the classifier’s performance.

Another widely used metric for evaluating performance in binary classification tasks is the area under the
receiver operating characteristic curve (AUROC). The curve is a graphical plot that illustrates the true-positive
versus false-positive rates as the discrimination threshold is varied. A variation in the discrimination threshold
usually means a gain in one metric, but a loss in the other, e.g. a higher threshold value will decrease the
classifier’s recall, but increase its precision, and vice-versa. Good performing classifiers will have a large area
under the plotted curve.

For regression problems, the mean squared error (MSE) is generally used as a way to evaluate how good the
model’s predictions are (i.e., how close they are to the true value). The MSE is calculated as the mean or average
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Table 3: Comparison of network traffic datasets (Khraisat et al., 2019)

of the squared differences between predicted and expected target values in a dataset, where a lower value is
preferred. The rooted mean square error (RMSE) is an extension of the MSE where the units of the metric are the
same as the units of the target value (and not its square). The mean absolute error, unlike MSE and RMSE, does
not punish large error values as harshly as the other two metrics, as its value increases linearly with the error size,
and not quadratically. The coefficient of determination (R2) indicates how much of the observed variations in the
data are explained by the model, in which case a higher value is better (Handelman et al., 2019; Brownlee, 2021).

2.6.2 Datasets

Both the size and quality of the dataset are very important to achieve good model performance. For networking
purposes, there are different types of data, with the most common being packet capture data and NetFlow.

Packet capture data consists of data captured by the networking interface, at the packet level. NetFlow is a
router feature introduced by Cisco, giving it the ability to collect IP network traffic that goes through the interface,
identifying packet flow. NetFlow version 5 defines a network flow as a unidirectional sequence of packets that
share the exact same seven packet attributes: ingress interface, source IP address, destination IP address,
IP protocol, source port, destination port, and IP type of service (Handelman et al., 2019). Table 3 shows a
comparison between several public datasets.

A majority of the effort in compiling networking datasets has been placed in the real of IP networks. In the
automotive domain, there is a clear lack of such comprehensive datasets, especially when looking for labelled
datasets containing attacks. Some datasets commonly used in IDS research for CAN are HCRL (a,b); TUE; IEEE.

2.6.3 Machine learning techniques

Supervised learning

D E C I S I O N T R E E S A decision tree is a flowchart-like structure with three basic components: a decision
node, containing the test attribute, a branch, containing a possible decision based on the attribute, and a leaf,
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identifying the class that the instance belongs to. The best known algorithms for constructing decision trees are
the ID3 and the C4.5 algorithms (Hssina et al., 2014; Buczak and Guven, 2016).

N A Ï V E B AY E S This technique applies Bayes’ principle with assumptions that the input features are
independent. It is an optimal classifier if the features are conditionally independent, although this is rarely true.
One of its biggest advantages is that training can be completed in linear time (Buczak and Guven, 2016). The
Hidden Naïve Bayes model is more sophisticated and can be applied to highly dimensional IDS tasks, with
interrelated attributes and high-speed networks (Khraisat et al., 2019).

E VO L U T I O N A RY C O M P U TAT I O N An evolutionary computation algorithm is based on the survival of
the fittest principle. Starting with a randomly generated population, a fitness value is computed for each individual
from the population, revealing how good it is at solving a given problem. Fitter individuals are copied into the
next generation, and the process continues. The two most widely used methods are Genetic Algorithms (GA)
and Genetic Programming (GP). In GA, individuals are represented as a series of bits, to which selection and
reproduction operators are applied favouring fitter solutions. In GP, individuals are represented as programs
with operators (e.g. plus, minus, and, or) and programming blocks (e.g. if, while), and crossover and mutation
operations are more complex than those in GA.

A RT I F I C I A L N E U R A L N E T W O R K The mechanisms behind an artificial neural network are similar to
those of a brain. Input data is fed to a first layer of neurons, where a computation is performed and the output is
fed to the next layer of neurons. The result is the output of the last layer. The model learns by looking at the error
between the output and the desired outcome, and adjusting the computations, typically through backpropagation
methods. For IDSs, the frequency of certain attacks in the dataset impacts how well it will be recognised, making
it difficult for the model to recognise less frequent attacks (Khraisat et al., 2019).

F U Z Z Y L O G I C Unlike in conventional boolean logic, where there are only true or false values, fuzzy logic
allows an instance to partially belong to multiple classes at the same time, allowing for degrees of uncertainty.
This makes it a good classifier for an IDS, where the border between normal and abnormal behaviour is not well
defined and, therefore, reducing the rate of false alarms (Khraisat et al., 2019).

S U P P O RT V E C T O R M AC H I N E S This classifier works by finding a hyperplane in the feature space that
separates two classes so that the distance between the hyperplane and the closest data points is maximised.
This is a favourable method in situations where the number of features is much greater than the number of data
points (Buczak and Guven, 2016).

H I D D E N M A R K OV M O D E L A Markov process is a stochastic model describing a sequence of states
where the probability of transitioning to any particular state is dependent solely on the current state and time
elapsed (Maltby et al.). An Hidden Markov model is a statistical Markov model where the modelled system is



2.6. Machine learning 36

assumed to be a Markov process with unseen data, where its states represent unobservable conditions (Buczak
and Guven, 2016).

K - N E A R E S T N E I G H B O U R S The idea behind this method is to classify a point based on the k near-
est samples, where k is the number of samples being considered. Majority voting is used to determine the
classification, which can be a pitfall if the class distribution is skewed (Buczak and Guven, 2016).

R E C U R R E N T N E U R A L N E T W O R K S A Recurrent Neural Network (RNN) is a feed-forward deep
learning neural network in which each unit bases its decision making process on its current input and the output
of the previous input. It is widely used in natural language processing and speech recognition (IBM, 2020c).
Although it can only handle limited length sequences and may suffer from short-term memory if the input length
is too long, RNN variants like Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) have been
developed to solve these issues (Ahmad et al., 2021).

D E E P N E U R A L N E T W O R K A Deep Neural Network (DNN) is a deep learning structure composed of an
input layer, many hidden layers, and an output layer. Increasing the number of hidden layers improves the model’s
abstraction level, and its used to model complex nonlinear functions Ahmad et al. (2021).

D E E P B E L I E F N E T W O R K A Deep Belief Network (DBN) as a deep learning model composed of stacked
Restricted Boltzmann Machines (RBM) (a two-layer model with data flowing in both directions) in layers followed
by a softmax classification layer. In a DBN, connections exist between the layers but not between units within
each layer Ahmad et al. (2021).

C O N VO L U T I O N A L N E U R A L N E T W O R K Convolutional Neural Networks (CNNs) have three main
types of layers: convolutional layer, pooling layer, and fully-connected layer. The convolutional layer is the first
layer of a convolutional network. While convolutional layers can be followed by additional convolutional layers or
pooling layers, the fully-connected layer is the final layer. With each layer, the network increases in its complexity,
identifying greater portions of the input data. Earlier layers focus on simple features, and data progresses through
the layers of the CNN, it starts to recognise larger patterns IBM (2020b).

Unsupervised learning

C L U S T E R I N G This is an unsupervised pattern discovery approach which groups unlabelled data based on
their similarities or differences. Clustering algorithms can be exclusive, overlapping, hierarchical, and probabilistic
(IBM, 2020a). In exclusive clustering, a data point can exist be a part of no more than one cluster. K-means
clustering is an example of an exclusive clustering algorithm, where the aim is to separate data objects into k
clusters, where each observation belongs to the cluster with the nearest mean. On the other hand, overlapping
clustering allows a data point to be a part of multiple clusters at once (e.g. fuzzy k-means). Hierarchical clustering
seeks to create a hierarchy of clusters, and the approach can be categorised in two ways: agglomerative, which
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is a bottom up approach where sub-clusters are grouped together as one moves up through the hierarchy, and
divisive, where the largest cluster in diameter is separated into sub-clusters (Khraisat et al., 2019). Probabilistic
clustering, data points are clustered based on the likelihood that they belong to a particular distribution, with the
Gaussian Mixture model being commonly used (IBM, 2020a).

A S S O C I AT I O N RU L E S An association rule describes a relationship among different attributes: if (A and
B) then C, with metrics revealing how often a given relationship occurs in the data. Fuzzy association rules extend
this functionality into categorical or quantitative data, instead of boolean only. These take the form of if (X is A)
then (Y is B) (Buczak and Guven, 2016).

Statistical inference

I N D U C T I V E L E A R N I N G This method attempts to find patterns and regularities in the observations, and
then makes general conclusions or theories about the data in the form of rules.

2.6.4 Support Vector Machines

As stated in 2.6.3, Support Vector Machines (SVMs) are a supervised machine learning model for non-probabilistic
binary classification (although methods such as Platt scaling allow for it’s use in a probabilistic classification setting
(Platt et al., 1999)) through the construction of one or several hyperplanes that best separate data into distinct
categories. This classifier works by mapping the input space into a higher-dimensional feature space, where
separation between classes becomes easier, and finding a hyperplane that separates two classes so that the
distance between the hyperplane and the closest data points is maximised (Buczak and Guven, 2016). New data
is then classified based on their positioning relative to those hyperplanes. An example of this can be seen in
Figure 15.

Mapping the input space into the feature space is done through an approach called the "kernel trick". This allows
the algorithm to operate in the feature space without the need to map each data point into a higher dimension,
which is computationally expensive. Instead, a kernel method is more efficient by using only the dot product of all
pairs of data to achieve this same effect. Popular kernels include the linear, polynomial, and Gaussian (or radial
basis function) kernels:

• Linear: K(x, y) = xTy

• Polynomial: K(x, y) = (xTy + c)d, where c >= 0 is a parameter that trades off the influence of
higher-order against lower-order terms in the polynomial, and d is the polynomial degree.

• Gaussian function: exp(− ∥x−y∥2

2σ2 ), where σ is a free parameter.

• Sigmoid (hyperbolic tangent): K(x, y) = tanh(αxTy + c), where α is the slope and c a constant.

The Gaussian kernel consistently reports good results in practical situations, but is computationally more
expensive than the linear or polynomial alternatives (Bounsiar and Madden, 2014).
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Figure 15: A hyperplane separating two classes (Jav)

Schölkopf et al. (1999) then introduced an "extension to the support vector algorithm" adequate for novelty
detection through unsupervised learning, now refered to as One Class Support Vector Machine (OCSVM). Here,
data is not classified as belonging to one of two classes, but as belonging to one class or everything else (hence
the name). It has become one of the most popular methods for anomaly detection. Training is done on using only
positive (normal) data, which is advantageous since anomalous data can be difficult to obtain when comparing
to the large amount of normal data that can be easily obtained from most systems. This algorithm has been
successfully used in a variety of domains, such as Tian et al. (2018); Miao et al. (2018); Amraee et al. (2018).

The OCSVM algorithm attempts to create a decision boundary that provides the maximum separation between
the training data points and the origin, with only a fraction of data points being allowed to reside outside of the
decision boundary. To do this, the origin is treated as the only member of the non-target class.

The primary objective function of the OCSVM is

min
e,ξ,ρ

∥ω∥2

2
− ρ +

1
νn

n

∑
i=1

ξi

subject to: wTϕ(xi) ≥ ρ − ξi ∧ ξi ≥ 0

where ξi is the slack variable that allows certain points to reside outside the boundary (in order to avoid over-fitting),
ω is the vector perpendicular to the decision boundary, ϕ(·) is the nonlinear transformation that maps samples
to the high-dimensional feature space, ρ is the distance to the origin, n is the training set size, and ν is the
regularisation parameter which describes the trade-off between over-fitting and generalisation by setting an
upper-bound on the fraction of outliers and a lower-bound on the number of support vectors.
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Using Lagrange multipliers and a kernel function for dot product calculations, to avoid the computation of the
nonlinear mapping, the decision function becomes

min
α

{
1
2 ∑

i,j
αiαjK(x, y)

}

subject to: 0 ≤ αi ≤
1

νn
∧ ∑

i
αi = 1

which, after solving the dual problem and obtaining a set of model weights αi, provides the decision function for
any test vector z∗:

f (z∗) = sgn

(
∑

i
αiK(x, z∗)− ρ

)

2.6.5 Time complexity

The amount of time it takes to run an algorithm dictates whether it can be trained in an online fashion or not.
Algorithms that take a long time to process data can easily be overwhelmed by a streaming input, potentially
bottlenecking network throughput.

Time complexity is typically expressed using big O notation (e.g. O(n), O(n log n), O(n2)), where n is the
size in units of bits needed to represent the input. Buczak and Guven (2016) state that, as a rule of thumb, the
O(n) and O(n log n) algorithms are considered to be linear time and are usable for online approaches. O(n2)

is considered as acceptable for most practices. O(n3) and higher are considered to be much slower algorithms
and used for offline approaches. Table 4 shows a comparison between different algorithms, assuming n to be
much larger than m. Most machine learning methods have linear time complexity on the testing phase, and can,
therefore, be used online.

2.6.6 Anomaly detection

Novelty detection, also known as semi-supervised anomaly detection (scikit learn), is the task of recognising
data in the test set that differs in some respect to the data available during training. It is particularly useful when
there is a large amount of "normal" data, but insufficient "abnormal" data. This is common in settings where
measurements of a normal operating state are inexpensive to obtain, but generating a large amount of data in
abnormal states is both difficult and costly. The goal is to train a model with what is considered to be "normal"
data and then use that model to detect anomalies, i.e. data not present in the training set. The techniques used
should have a high detection rate, but with few false alarms, be scalable, and good time and space complexity.
Pimentel et al. (2014) classified anomaly detection techniques into five categories: probabilistic, distance-based,
reconstruction-based, domain-based, and information-theoretic.
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Algorithm Typical Time Complexity Streaming Capable Comments

Artificial Neural Network O(emnk) low e: number of epochs
k: number of neurons

Association Rules »O(n2) low
Bayesian Network »O(mn) high

Clustering, k-means O(kmni) high i: number of iterations until threshold is reached
k: number of clusters

Clustering, hiearchical O(n3) low
Clustering, DBSCAN O(n log n) high

Decision Trees O(mn2) medium

GA O(gkmn) medium g: number of generations
k: population size

Nearest Neighbour k-NN O(n log k) high k: number of neighbours
Hidden Markov Model (HMM) O(ne2) medium e: number of states

Random forest O(Mmn log n) medium M: number of trees
Sequence Mining »O(n3) low

SVMs O(n2) medium

Table 4: Complexity comparison of machine learning algorithms during training (Buczak and Guven, 2016)

Probabilistic methods

This approach is based on estimating the generative probability density function of the data, which is then
thresholded in order to determine if a test sample originated from the same distribution or not. The estimation
of the underlying data density from multivariate training data falls under two categories: parametric and non-
parametric.

Parametric statistics assumes that the distribution of the population is known and is based on a fixed set of
parameters (IBM, 2019). The Gaussian distribution is commonly used for continuous variables, but more complex
distributions may use mixture models such as Gaussian Mixture Model (GMM). State-space models, often used in
time-series data, assume that there are unobserved variables or parameters (states) that describe the evolution of
the underlying system. Common state-space models used for novelty detection are the HMM and the Kalman
filter.

Non-parametric statistics makes no assumptions about the population’s distribution or it’s parameters. The use
of kernel density estimators is an approach in which the probability density function is estimated using a large
number of kernels distributed over the data space (e.g. the Gaussian kernel).

Probabilistic methods are a mathematically well-grounded, effective, and transparent way to identify novel
data as long as an accurate estimate of the data’s probability density function has been obtained. However, this
performance is limited when the training set is small. Non parametric approaches are usually preferred because
prior knowledge of the data’s distribution parameters is typically unavailable.

Distance-based methods

These methods determine the similarity between two observations based on distance metrics. Most methods are
k-nearest neighbour- or clustering-based.

The k-nearest neighbours is a supervised algorithm that assumes that normal data points are close to each
other, while anomalies are located far from these points. The Euclidean distance is a popular choice for distance
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measurement, and local density, in which the average of the k nearest neighbours is considered, determines if a
point is an anomaly or not.

The k-means clustering algorithm, a unsupervised algorithm, is a clustering-based method for identifying
abnormalities. Here, data points from the training set are divided into clusters and classifying data points based
on the cluster into which they are inserted.

Both k-nearest neighbours and clustering algorithms rely on the existence of a suitable distance metric to
detect anomalies. Although they are very effective at this task, they do not scale very well to high dimensional
datasets.

Reconstruction-based methods

Reconstruction methods attempt to model the underlying training data and classify the testing data based on it’s
reconstruction error. Both neural networks and subspace-based methods can be trained this way.

Domain-based methods

Domain-based methods attempt to define a boundary based on the training data, and testing samples are labelled
based on their position relative to the boundary. SVMs, for example, generate a hyperplane that maximises the
minimum distance to the closest point of either of the two classes. As for novelty detection, SVMs have been used
in one of two ways: through the one-class approach, or through the support vector data description approach.

The aim of the one-class approach, introduced by Schölkopf et al. (1999), is to, though a kernel, separate all
the data points from the origin and maximise the distance from this hyperplane to the origin. This does, however,
require that a hyper-parameter corresponding to the percentage of data in the training set that is allowed to fall
outside of this boundary.

The support vector data description method, proposed by Tax and Duin (2004) gives the training data a
spherically shaped boundary with the minimum volume that encloses all, or most, of the data.

Although they are commonly used for anomaly detection, showing good performance, the kernel methods used
can be computationally intensive. The choice of the appropriate kernel is also a challenge, as discussed at the
start of Section 2.6.4.

Information-theoretic methods

These methods attempt to detect novelties through significant changes in the information content of the data.
Typical metrics include entropy, relative entropy, information gain, etc.
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S TAT E O F T H E A R T

Intrusion detection is, as defined in Liao et al. (2013), “the process of monitoring the events occurring in a computer
system or network, and analysing them for signs of intrusions”. It can be deployed directly on the network node
(host-based), where it monitors the activity for hosts containing sensitive information, or it can be deployed on
the network (network-based), where it monitors traffic using sensors. Recent literature classifies the system’s
detection approach as being either signature-, anomaly-, or specification-based (Lokman et al., 2019).

3.1 D E T E C T I O N A P P R O A C H E S

A signature-based IDS raises an alert when it finds a pattern in the network that corresponds to a signature in
the system database. Its advantage comes from its simplicity, as it only requires a database of known attacks to
compare network traffic to. However, this reliance on the attack signature database means that it will not recognise
new attacks that are not stored there, meaning that regular updates are required.

The specification-based approach attempts to detect deviations from a protocol specification (well-defined rules
that describe component behaviour). It is, again, a simple solution that requires only a set of rules that trigger an
alert when not followed. Nonetheless, manually setting specifications is an error-prone and time-consuming task
and must be adapted for different domains.

In the case of an anomaly-based IDS, an alert is raised when the network state deviates from what it considers
to be normal behaviour. Here, the challenge relies upon defining what is considered normal behaviour, as a
poorly defined model can generate alerts on what would otherwise be considered normal packets. A high rate
of false positives could cause the user to ignore the alerts completely. Techniques for defining what constitutes
normal behaviour include machine learning, packet frequency and statistical-based analysis, as well as a hybrid
approach.

In the traditional desktop environment, a hybrid approach is a combination of several IDS techniques, such as
network- and host-based IDS. Here, the host-based IDS aggregates information into a standard format, which
is then transmitted to the network-based IDS, where it is aggregated and processed. In the case of anomaly
detection in CAN, a hybrid-based approach consists of the combination of more than one detection method,
considering various packet features, e.g., ID field, payload, timing interval and frequency.

42
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3.2 I D S E VA S I O N T E C H N I Q U E S

Intrusion detection systems are commonly used in many networks, and attackers have adapted in order to avoid
being detected. Evasion techniques mostly make the use of fragmentation, flooding, obfuscation and encryption.

Fragmentation is the process of dividing a packet into smaller packets, which are then reassembled when
received. To analyse these fragmented packets, an IDS is required to re-assemble them. Attackers then take
advantage of fragmentation overlap, overwrite and timeouts to escape detection. Flooding occurs when an attacker
overwhelms the detector with a massive stream of packets, which causes it to fail. Obfuscation works by making a
message difficult to understand, typically by changing the code while maintaining its functionality. This reduction
in the code readability makes both static analysis and reverse engineering much more difficult. An IDS using
a signature database will also see a decrease in its ability to detect attacks. Although encryption offers many
security benefits, attackers can also leverage it to their advantage. Attacks on encrypted protocols, for example,
cannot be detected by an IDS that relies on a signature database, as it cannot interpret the packets contents
(Khraisat et al., 2019).

3.3 I N T R U S I O N D E T E C T I O N I N T H E C O N T R O L L E R A R E A N E T W O R K

Although IDSs are commonplace in traditional IP networks, they are still being developed for use in vehicles, more
specifically in the CAN bus. Therefore, there still is no single best approach, but multiple different attempts to build
a reliable IDS.

3.3.1 Based on packet frequency

Taylor et al. (2015) proposed a frequency-bases analysis of network traffic flow in order to detect anomalies.
Through the use of a OCSVM, they found that they were able to identify when packets were artificially inserted or
removed by the mean-time interval between packets of the same ID. Another frequency-based detection method
was proposed by Song et al. (2016), in which they recorded no false positives during the packet injection tests.

An IDS that is based on the offset ratio and time interval between request and response was proposed by Lee
et al. (2017). The system periodically sends remote frame requests and analyses the response time, and attacks
were successfully identified because of the abnormalities in the instant reply ratio, lost reply ratio, correlation
coefficient between offsets and time intervals, and average response time.

A clock-based IDS was developed by Cho and Shin (2016), where it identified ECUs based on the intervals of
periodic messages. This baseline then allowed for the detection of abnormal behaviour in the network, with a
reported false positive rate of 0.055%. Unlike most IDSs, it also facilitated the identification of the misbehaving
ECU.
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3.3.2 Based on network entropy

An entropy-based anomaly detection mechanism was proposed in Müter and Asaj (2011). Here, the developed
IDS analysed variation in the network entropy (i.e., how much coincidence a given dataset contains) to detect
anomalies. Through increased message frequency, message flooding, and simulation of unrelated events, they
concluded that "deviations from the normal behavior of in-vehicle networks can successfully be identified by an
information-theoretic detection approach". Another entropy-based system was proposed by Marchetti et al. (2016),
in which they claimed that this represents a "viable approach for identifying CAN bus anomalies caused by the
activity of attackers that [are] injecting messages over the CAN bus". However, limitations include only being able
to detect attacks where packets are inserted at a high rate.

3.3.3 Based on network data probability

Kang and Kang (2016) used probability-based feature vectors extracted from the network packets to train a Deep
Neural Network. The training was performed offline, while the detection was done against incoming packets in the
network. They achieved a 99% detection racio against a TPMS spoofing attack. Another deep learning model was
presented in Taylor et al. (2016), in which the authors developed an LSTM that attempts to predict the next data
word originating from each sender on the bus, flagging anomalies. However, it worked only for a single CAN ID
and did not support online learning.

In Narayanan et al. (2016), the authors proposed the utilisation of a HMM to model what is considered normal
vehicle function. The IDS works by signalling low probability changes of state (like a sudden jump from 25 kph to
160 kph) as an anomaly. The system was able to detect the introduction of anomalous RPM data, and they state
that advantages of this approach include the fact that it can be applied in a plug-and-play fashion to both new and
older vehicles.

3.3.4 Hybrid

Weber et al. (2018) presented a hybrid anomaly detection system that combines both specification-based detection
and machine learning, drawing from the advantages of both. In a first stage, static checks are made, and then the
machine learning part applied learning checks for temporal analysis of the CAN packets.

A Hierarchical Temporal Model (HTM) model was developed by Wang et al. (2018). This is a memory-based
model that is capable of online learning, meaning that it can continuously learn with new CAN data. Results from
packet insertion and modification attacks show that it outperforms existing CAN IDSs that used RNN and HMM
models.
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3.3.5 Based on protocol specifications

Larson et al. (2008) investigated the use of a specification-based IDS with security rules derived from the e CAN
v2.0 and CANopen draft standard 3.01 communication protocol and object directory sections. These enforce the
correct functioning of the protocol according to specification, signalling deviation from the rules as anomalous
traffic. They tested six types of attacks (spoof, replay, read, modify, flood, and drop), concluding that most attacks
can be readily detected and that "both protective and detective measures will be required in future in-vehicle
networks".

3.3.6 Based on attack signatures

To act as attack signatures for IDS, Müter et al. (2010) designed eight anomaly detection sensors that were
generated from CAN bus system characteristics. The signatures created in the sensors included CAN bus
protocol specifications, which described permitted packets with regard to the intended communication bus system,
specifications of packet payload that complied with data range, and approved packet frequency and interval
behavior, among others. According to the overall findings, the sensors were able to identify abnormalities with no
false positive alert. The approach, however, was unable to identify packet insertion attacks that complied with the
CAN specification’s usual behavior.

Finite-state automata were used by Studnia et al. (2018) to extract the attack signatures derived from conven-
tional ECU specifications in order to detect an abnormal sequence of CAN packets. The attack packets were
simulated using altered CAN frames while the authors tested the suggested approach using malicious packet
injection. However, as it emitted the initial frames of the broadcasted attack packets, the detection performance of
the approaches became useless even if they could detect deviations from the typical states of CAN activity.

3.4 C H A L L E N G E S F O R A U T O M O T I V E

There are, however, several challenges that must be overcome to successfully implement an IDS in a CAN bus.
First, most ECUs have very limited resources, meaning low memory capacity, computational power, and data
transmission rate. Another consideration is the time-sensitive nature of the packets being transmitted (Hoppe et al.,
2009). Proper vehicle function must be maintained, which means that CAN packets must be managed in real-time.
Otherwise, the safety of the driver might be at risk, as there would be an additional delay in information processing.
Typical IDS solutions were developed for conventional Internet Protocol (IP) networks. As this environment is very
different from the in-vehicle one, adopting existing solutions is not possible. The nature of the vehicle environment
is also a constantly moving one, and at various speeds. This means that an IDS must have a certain degree of
autonomy, as establishing a connection to an outside party may not always be possible. Lastly, it must be an
efficient solution, both in terms of cost, for it to be implemented in mass-production, and its physical aspects, i.e.,
not requiring massive amounts of rewiring, as it may be infeasible for manufacturers (Lokman et al., 2019).



3.4. Challenges for automotive 46

Figure 16: Three stages model for IDS alert communication (Hoppe et al., 2009)

In a traditional IT setting, a system administrator is usually in charge of maintaining the system functioning
properly and up to date and is also the one notified in case of an alert. In the automotive domain, however,
the IDS cannot be maintained by a qualified administrator, and a typical user cannot be expected to be an IT
expert. This means that tasks like maintenance and alert handling can be delegated to him in a limited way. This
might motivate the design of the system to be as autonomous as possible, but the high safety requirements of
automotive systems make this a challenging task. The authors of (Hoppe et al., 2009) state that "in general,
automotive systems shall never take safety relevant decisions autonomously but may only support the driver in his
reaction (final decisions regarding control or safety of the vehicle are only to be made by the driver)". Because
of this, special care must be taken when deciding upon the way of communicating an alert to the driver. This
communication must be done in a modern way, taking advantage of the car’s multimedia system, and must not
cause panic. If a driver reaction is required, it is advantageous to provide suggestions and the need to disrupt
the driver must be kept to a minimum. They identified four aspects that should be taken into consideration when
designing a way to communicate an alert to the driver: the use of a modern way of communicating, transmitting a
sense of peace of mind, avoiding repetition, and support of the driver’s decision-making. They then propose a
three-stage model, which can be seen in Figure 16 for alert communication to the driver depending on the severity
of the intrusion. The three stages are visual, containing elements like the dashboard or central screen, acoustic,
through the vehicle’s sound system, and haptic, through force feedback in the brake pedal or steering wheel.

Increasing severity is implicated by going from visual to acoustic and then to haptic. A visual-only message is
used for non-critical alarms as the driver may not immediately look at the visual indication. Combining visual with
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acoustic signals indicates a critical alarm, as the driver would be immediately alerted. Haptic signals, like steering
wheel vibration, are reserved for only severe alarms as they might frighten the driver. However, communication
ability increases by going from haptic to acoustic and then to visual. Haptic signals are only able to indicate that
something is wrong, without further information. Audible signals can provide more context, with visual messages
informing the driver about what is the problem.

The severity of the alarm, however, is not the only factor to determine what stage should be used. Environmental
context gathered from the vehicle’s multiple sensors may aid in this decision. If the light sensors, for example,
detect a high level of brightness, the system may opt for audiovisual indication in a non-critical situation, as a
visual-only warning would be difficult for the driver to notice.
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C O R E
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D ATA S E T S

Various datasets were used in the development of this IDS prototype, including publicly available datasets obtained
from both a real environment and synthetically generated, as well as datasets generated for the purpose of this
prototype’s development. These are described below.

4.1 C A R H A C K I N G D ATA S E T

These datasets were generated as part of the study published by Song et al. (2020). Traffic was collected from a
Raspberry Pi connected to a real vehicle via the OBD-II port, while another Raspberry Pi was used to inject traffic.
The vehicle was parked with the engine turned on throughout the data gathering process. Five datasets were
produced, with an overview of the attack datasets being available on Table 5.

• Normal: An attack-free dataset

• DoS attack: Packets with the ID set to 0 were injected every 0.3 ms, impairing network availability

• Fuzzy attack: Packets with random IDs and payloads were injected every 0.5 ms, aiming to cause vehicle
malfunction

• Gear spoofing attack: Packets a specific ID and payload were injected every 1 ms, successfully changing
the gear value on the instrument panel

• RPM spoofing attack: Packets a specific ID and payload were injected every 1 ms, successfully changing
the RPM gauge on the instrument panel

4.2 I E E E C A R H A C K I N G : AT TA C K & D E F E N S E C H A L L E N G E 2 0 2 0

The datasets published by Kang et al. (2021) were created to be used in the Car Hacking: Attack & Defense
challenge. It had two rounds: preliminary and final. For the preliminary round, training and submission datasets
were provided, both containing driving and stationary vehicle traffic. For the final session, a single dataset with
multiple attacks was created.
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Attack type Normal messages Injected messages

DoS Attack 3,078,250 (84%) 587,521 (16%)
Fuzzy Attack 3,347,013 (87%) 491,847 (13%)
Gear Spoofing 2,766,522 (82%) 597,252 (18%)
RPM Spoofing 2,290,185 (78%) 654,897 (22%)

Table 5: Car Hacking dataset overview

Purpose Status Flood Spoof Replay Fuzzy

Training
Driving

77,373 3,879 23,775 45,474
(4.1%) (0.2%) (1.3%) (2.4%)

Stationary
76,807 3,877 23,818 44,405
(4.3%) (0.2%) (1.3%) (2.5%)

Submission
Driving

96,559 22,489 37,869 44,770
(4.8%) (1.1%) (1.9%) (2.2%)

Stationary
95,120 20,094 25,012 51,923
(5.4%) (1.1%) (1.4%) (3.0%)

Table 6: IEEE Car Hacking: Attack & Defense Challenge 2020 dataset overview

An overview of the preliminary datasets can be seen on Table 6. For both driving and stationary scenarios, the
datasets contained flooding, spoofing, replay, and fuzzing attacks. Attack-free datasets were also provided.

4.3 A U T O M O T I V E C O N T R O L L E R A R E A N E T W O R K ( C A N ) B U S I N T R U S I O N D ATA S E T V 2

The datasets made available by Dupont et al. (2019) consists of bus data from an Opel Astra, a Renault Clio, and
a custom built prototype. For all three systems, attack-free datasets were provided along with datasets containing
diagnostic, fuzzing, replay, spoofing and DoS attacks.

4.4 C R Y S Y S L A B

This dataset was obtained from CrySySLab (a) and consists of CAN traffic collected from 25 minutes of driving in
the highway as well as in small streets. A variety of packet modification attacks were simulated using the tool
publicly available in CrySySLab (b), which allows for easy modification of CAN log files. These attacks consist
of modifying the payload of packets with a given ID, akin to a man-in-the-middle attack. Five attack datasets
were generated, along with the attack-free version, and the attacks target the payload of the packets with ID 120
starting at 50% and ending at 90% of the total file. The attacks consist of holding the payload at a constant value,
modifying the payload to be a random value, adding an increasing amount to the original payload, decreasing the
payload from 255 to 0 and repeating, and adding a delta of 1000 to the original payload. Unlike other datasets,
were packet insertion is performed and the attack can mostly be detected via the interval between arriving packets,
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these attacks do not insert any packets. Attacks can only be detected by observing anomalies in the behaviour of
the payloads.

4.5 C U S T O M

The setup used to generate real CAN traffic is composed of various real vehicle ECUs, along with a modern
touchscreen, and a Raspberry Pi to capture CAN traffic and execute the IDS here proposed. Three attacks were
simulated (fuzzing, flooding, and spoofing) by inserting packets every 200ms. The following unlabelled datasets
were generated:

• Baseline: 2,508,370 packets of attack-free traffic.

• Fuzzy attack: 184,833 packets containing two instances of a fuzzing attack.

• Denial-of-Service attack: 235,187 packets containing two instances of a Denial-of-Service attack.

• Left blinker spoofing attack: 375,569 packets containing two instances of a spoofing attack targeting the
left blinker signal.



5

A P P L I C AT I O N

This chapter covers the proposed IDS solution and its implementation. In Section 5.1, the overall system is
explained, including how feature extraction is performed as well as how the model is trained. Section 5.2 goes
into more detail on how the training mechanism works. The features used to train the model, and their selection
process, are documented in Section 5.3. In Section 5.4, the system’s implementation in an embedded environment
is detailed, along with its behaviour regarding resource restriction. Finally, Section 5.5 shows the application’s
Command Line Interface (CLI) and visual interface. The application’s full documentation is available in Appendix
C, with the source code being available in Carvalho (2022).

5.1 I D S A R C H I T E C T U R E

In 3.1, various approaches to IDS deployment were presented, most notably its placement (host or network-based)
and detection techniques (signature, specification, anomaly, or hybrid). Here, a host-based IDS for anomaly
detection is put forward. Instead of the IDS residing in a separate ECU connected to the network, the IDS is
deployed on all of the vehicle’s ECUs. It then monitors the same messages as the ECU in which it is deployed.
Since it would be present on all ECUs, an attack on any relevant message ID would, theoretically, trigger at least
one alarm. Monitoring a small set of IDs also aids with detection because an anomaly in the behaviour of a certain
ID becomes more noticeable in the average of the set when compared to a larger number of IDs being monitored.

Features are extracted from a rolling window with an overlap of 75% between consecutive windows. Given the
same amount of packets, this allows for the extraction of a larger amount of features during the training phase,
when compared to non-overlapping windows.

A diagram of the overall system can be seen in Figure 17.

5.2 T R A I N I N G

Training the IDS can be done both in an online and offline fashion. Training online means that a baseline reading is
gathered from live traffic, which must be attack-free to generate an accurate model because attacks are detected
based upon significant deviations from the baseline traffic’s characteristics. Offline training is done by providing
the IDS with a Comma Separated Values (CSV) file containing CAN traffic that will serve as a baseline.
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Figure 17: IDS architecture
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Figure 18: IDS structure

Features are extracted using a rolling window on the collected traffic, which are then scaled to fit in the [0, 1]
interval. The minimum and maximum values of each feature are saved to perform proper feature scaling when the
IDS is deployed.

The kernel method is employed using the Gaussian kernel with ϵ = 1 and the model is trained with the ν

parameter set to 0.01. The IDS is then saved to the filesystem so it can be recovered upon a system restart. The
documentation for the structure and training function can be seen in Figures 18 and 19, respectively.

5.3 F E AT U R E S

This section focuses on the features extracted from CAN bus traffic that are then used as input to the OCSVM
model. Prior research on IDSs that focus on CAN has found success in the use of frequency analysis and
information-theoretic algorithms, as shown in Section 3.3. Frequency analysis was one of the first methods used
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Figure 19: Training function
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to detect packet insertion attacks. Since many packets of the same ID are sent at a consistent interval (typically
10 or 20 milliseconds), a variation of these timings caused by a bad actor inserting packets into the network would
be picked up as an anomaly. On the other hand, information-theory may aid in detecting anomalous behaviour
caused by packet modification attacks, or packet low-frequency packet insertion.

Here, the proposed features are described, and the feature selection process is presented.

5.3.1 Packet frequency

Frequency analysis consists of measuring the average time between consecutive packets with the same ID. Since
many packets sharing the same ID are sent at regular intervals, an attacker inserting new packets into the network
would decrease the time between packets, which would be detected by the IDS. Likewise, packet suppression
would also trigger an alert.

Calculating the arrival time between packets can done by

T(pt0 , pt1) = t1 − t0

where t0 and t1 are consecutive arrival timestamps for packets of the same ID.

5.3.2 Shannon entropy

In the CAN domain, traffic is more restricted than in standard computer networks. This means that, generally,
entropy in an automotive network is lower (Müter and Asaj, 2011). If an attacker replaces the payload of a given
ID, it likely would change the network entropy, triggering an alert (an instance of this would be a constant payload
on an ID that usually sends distinct values, or vice-versa).

The concept of information entropy was first introduced by Shannon (1948). Shannon entropy is often defined
as being the amount of information or uncertainty of a random variable. For an alphabet X, and a random variable
x ∈ X distributed according to p : x → [0, 1], Shannon entropy is defined as

H(X) = −
n

∑
i−1

P(xi) log2 P(xi)

An occurrence with probability 1 has no entropy, while a set of occurrences with a balanced probability
distribution has an entropy value of 1.

5.3.3 Hamming distance

In information theory, the number of points where the matching symbols are different between two strings of equal
length is known as the Hamming distance (Hamming, 1950). For example, the Hamming distance between 0000
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and 1111 is 4, while the Hamming distance between 0101 and 1101 is 1. The formula for evaluating the Hamming
distance between two words of length k is

Hd(x, y) =
k

∑
i=1

|xi − yi|

Here, the proposed approach consists on calculating the Hamming distance between consecutive packets in
the network, similar to what was proposed by Stabili et al. (2017). The authors formulated this as being

Hd(pt, pt+1) =
k

∑
i=1

pi
t ⊗ pi

t+1

where pt is a generic payload at time t and pi
t is the ith element of that payload.

Both bit and byte-wise calculations were explored in the development of this prototype. An example of a bit-wise
Hamming distance calculation is

Hbit(0000000 000110100, 00111111 00000100) = 8

and the same operation performed byte-wise is

Hbyte(00 34, 3F 04) = 2

5.3.4 Difference between bytes

The calculation of the difference between bytes is done by

D(pt, pt+1) =
k

∑
i=1

|pi
t − pi+1

t |

where pt is a generic payload at time t and pi
t is the ith element of that payload.

The hypotheses is that this metric, similar to entropy and Hamming distance, contributes to the modelling of
what constitutes normal packet payload behaviour.

5.3.5 Selection

For all datasets, five features were extracted from each rolling window of traffic: average frequency, average
entropy, average bit-wise Hamming distance, average byte-wise Hamming distance, and average byte-wise
difference. Since it would take a lot of computational power to extract all five features from each window while
keeping up with incoming traffic, dimensionality reduction was performed. To do so, correlation between features
and the datasets’ labels was calculated. Some illustrative results are shown in Figure 20, with all results obtained
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being present in Appendix A. All features were extracted from a 1000 packet rolling window, with a slide of 250
packets.

Figure 20 shows some illustrative examples of how these features are correlated with each other and the label.
In the case of a modification attack, payload behavior will be altered, but no packets will be inserted. This is
demonstrated in Figure 20a, where the average time between packets (AvgTime) shows no correlation with the
dataset’s label, but both entropy and Hamming distance-related features show a higher correlation. Figure 20b
shows feature correlation values in the case where a variety of spoofing, replay, fuzzing, and flooding attacks are
performed. All features except the difference between consecutive payloads of the same ID (GapBytes) show
some correlation with the label, meaning that they are relevant predictors of many common attacks. Lastly, Figure
20c shows feature correlation values in the case of a replay attack. Here, only the average time between packets
is relevant, since many previously observed packets are being inserted into the CAN bus. Payload-related features
show no correlation with the label, which is to be expected because the attack consists of inserting packets whose
payload is not abnormal.

Thus, after observing several attack types, including with and without packet insertion, the average byte-wise
Hamming distance and the average arrival time between packets of the same ID appear to be the most promising
in predicting whether an attack is present or not.

5.4 E M B E D D E D S Y S T E M E N V I R O N M E N T

To simulate the environment where the proposed system would be deployed, the program was written in Rust
1.62.0 and compiled to the ARM v7 architecture to run on a Raspberry Pi 4 Model B connected to the ECU cluster.
Code documentation is available in Appendix C, with additional Python tools that assisted in development being
detailed in Appendix D.

To verify if the system would be able to analyse real-time traffic, the number of packets per second it was able
to process was recorded. This came at around 1600. However, it was unclear whether this was a bottleneck
or if it was the real network throughput. To clear this, traffic was logged onto a CSV file and processed by the
Raspberry Pi as if it was live traffic, but read from memory instead of a network socket. The average number of
packets per second processed came at 39,195.426, while the average number of packets per second in the log
file was 1,678.878. The proposed system should therefore be able to perform real-time analysis in an embedded
environment. CPU usage was recorded as being 5%, signalling that its implementation in a real ECU would not
raise serious concerns about resource usage.

It is also important to assure that the algorithm does not consume too much power, as it would reduce the
overall range of the vehicle. Figure 21 shows how much current the Raspberry Pi was drawing while executing the
IDS. Applied voltage was constant at 4900mV. The baseline current was established to be at 400mA, and it rose
up to 500mA when the IDS was executing. This comes at 0.5W, which is negligible.
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(a) CrySyS Lab - Adding an incrementing amount to packet payload

(b) IEEE Car Hacking: Attack & Defense Challenge 2020 - Attacks while
driving

(c) Automotive Controller Area Network (CAN) Bus Intrusion Dataset v2 -
Replay attack

Figure 20: Correlation between extracted features



5.5. Execution 60

Figure 21: Power consumption from the Raspberry Pi while executing the proposed IDS

5.5 E X E C U T I O N

A CLI was developed in order to facilitate application testing and deplyment. It consists of the following:

USAGE:

aihds [OPTIONS]

OPTIONS:

--extract-features <EXTRACT_FEATURES>

Extracts features to CSV files

-h, --help

Print help information

--live

Run IDS in live mode

--model <MODEL>

Path to model to be loaded

--monitor <LIST>

IDs to monitor

--streaming <URL>

Run model in streaming mode

--test <PATHS>

Paths to the datasets required for testing the model,

separated by ’,’

--train <PATHS>

Paths to the datasets required for training the model,

separated by ’,’

-V, --version

Print version information
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Figure 22: Graphical interface

Running the application in online mode is done with the live option, while the training option is used to indicate
the file on which offline training will be performed. The streaming option sends features and predictions as
HTTP requests to the specified Uniform Resource Locator (URL). An example of a graphical interface to visually
represent the streaming data can be seen on Figure 22.
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R E S U L T S

Performance tests were performed in the datasets layed out in Chapter 4. These aim to show how the system
performs in different environments and subject to a variety of attacks. Five metrics are used to evaluate system
performance: False Negative (FN) rate, error rate, precision, recall, and F1-score (see 2.6.1).

Values in bold were obtained when using three features as input to the model: average time between packets,
entropy, and Hamming distance. The remaining values were obtained using only the average time between
packets and Hamming distance.

Appendix B contains illustrations of the system’s performance over all the tests.

6.1 C A R H A C K I N G D ATA S E T

Tests were made monitoring the IDs 350, 130, 131, 140, 2c2, 2b0, 316, 18f, 43f, and 440. The gear spoofing
attack targets the ID 43f, and the RPM gauge spoofing attack targets the ID 316. Results are shown in Table 7.

When using only two features, the F1-score for both spoofing attacks are above 90%. However, the occurrence
of false positives remains high. Including entropy wields generally better results. Although the rate of false
negatives is slightly worse, both precision and F1-score show bigger improvements. The fuzzing attack is harder
to detect in both cases.

Graphics showing feature behaviour during tests can be seen of Figures 29, 30, 31, and 32.

Data FN rate Error rate Precision Recall F1-score

Fuzzing
1.597% 20.300% 66.091% 98.403% 79.074%
1.632% 10.746% 79.134% 98.368% 87.709%

Gear spoofing
0.869% 10.470% 86.554% 99.131% 92.416%
1.062% 2.910% 96.698% 98.938% 97.799%

RPM spoofing
0.871% 10.256% 87.106% 99.129% 92.729%
0.948% 2.723% 96.891% 99.052% 98.034%

Table 7: Performance metrics on Car Hacking dataset

62



6.2. IEEE Car Hacking: Attack & Defense Challenge 2020 63

Data FN rate Error rate Precision Recall F1-score

Stationary Preliminary
0.601% 19.242% 71.264% 99.399% 83.013%
0.701% 16.635% 74.232% 99.299% 84.955%

Stationary Final
0.403% 4.478% 93.283% 99.597% 96.337%
0.403% 8.004% 88.349% 99.597% 93.636%

Driving
2.591% 1.218% 99.412% 97.409% 98.400%
3.935% 2.140% 98.427% 96.065% 97.184%

Table 8: Performance metrics on the IEEE Car Hacking: Attack & Defense Challenge 2020

6.2 I E E E C A R H A C K I N G : AT TA C K & D E F E N S E C H A L L E N G E 2 0 2 0

The model was trained by gathering a baseline from the attack-free datasets in the stationary and driving modes,
separately. Twelve IDs were monitored in each state (44E, 164, 260, 140, 541, 386, 490, 366, 367, 563, 4CB, 50E
for the stationary state and 44E, 164, 130, 140, 3A0, 386, 490, 366, 367, 563, 4CB, 2B0 for the driving state). To
test the IDS’ performance, the stationary model was executed on the datasets provided for the preliminary and
final round of the competition, and the driving model was executed on the dataset provided for the preliminary
round (the final round did not include a dataset for the driving state).

Test results are present in Table 8. Results for the stationary final and driving tests are above 90% in both
the precision and F1-score metrics. The IDS, however, did not perform so well in the stationary preliminary test.
Adding entropy to the set of features reduces the amount of false positives, at the expense of a small increase in
the amount of false negatives. The IDS performs slightly worse in the other two tests. Still, it may be preferable to
use the three features.

Graphics showing feature behaviour during tests can be seen of Figures 33, 34, and 35.

6.3 A U T O M O T I V E C O N T R O L L E R A R E A N E T W O R K ( C A N ) B U S I N T R U S I O N D ATA S E T V 2

Here, the results the tests performed on the datasets described in 4.3 are shown in Table 9. For both the dataset
created from traffic gathered from an Opel Astra and a Renault Clio, the IDS was tested on payload fuzzing,
message deletion, and replay attacks. For the Opel Astra, the monitored IDs were 0C9, 1C8, 1E2, 232, 348, 34A,
451, 0F1, 1F3, 1E5, and 1A1. For the Renault Clio, the monitored IDs were 2C6, 186, 18A, 1F6, 211, 217, 214,
218, 4FA, and 090. All monitored IDs include the IDs targeted in the attacks, with the rest chosen at random.

The payload fuzzing attack goes unnoticed. This happens because, in this case, the attack consists of the
modification of the payload of 10 consecutive messages on a given ID, which does not affect either the entropy or
Hamming distance values enough to trigger an alert.

Graphics showing feature behaviour during tests can be seen of Figures 36, 37, and 38.
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Opel Astra
Data FN rate Error rate Precision Recall F1-score

Payload fuzzing
100.000% 0.408% N/A 0.000% N/A
100.000% 0.408% N/A 0.000% N/A

Message deletion
18.750% 0.491% 100.000% 81.250% 89.655%
18.750% 0.491% 100.000% 81.250% 89.655%

Replay
0.000% 0.000% 100.000% 100.000% 100.000%
0.000% 0.000% 100.000% 100.000% 100.000%

Renault Clio
Data FN rate Error rate Precision Recall F1-score

Payload fuzzing
100.000% 2.800% 0.000% 0.000% N/A
100.000% 2.800% 0.000% 0.000% N/A

Message deletion
27.273% 3.629% 100.000% 72.727% 84.746%
27.273% 3.629% 100.000% 72.727% 84.211%

Replay
0.000% 0.000% 100.000% 100.000% 100.000%
0.000% 0.000% 100.000% 100.000% 100.000%

Table 9: Performance metrics on the Automotive Controller Area Network (CAN) Bus Intrusion Dataset v2

6.4 C R Y S Y S L A B

Table 10 shows the results of the tests performed on the CrySyS Lab dataset and the generated modification
attacks, as described in 4.4. Tests were made monitoring 10 IDs (110, 120, 140, 180, 1A0, 280, 290, 295, 300,
and 301) and only the attacked ID (120).

6.5 C U S T O M

The IDS was trained with the attack-free dataset monitoring the IDs A0, A1, AB, CA, DE, F1, F3, F9, FA, 145,
231, 29D, and 510. Since this dataset is unlabelled, performance metrics, like precision, cannot be used. Instead,
Figures 23 and 24 shows how feature values behave during the fuzzing and spoofing attacks, respectively.

In the case of the fuzzing attack, since packets were inserted at a rather slow rate (200ms), the average
time between packets, shown in Figure 23a, does not behave abnormally. Network entropy also remained
largely unchanged (Figure 23c). In Figure 23b, which shows Hamming distance values, two identifiable spikes
corresponding to the two instances of the attack can be seen.

As for the spoofing attack, analysis of packet frequency (Figure 24a) does not show any anomalies given the
slow rate at which the packets were inserted. Entropy, which can be seen in Figure 24c, was also not altered.
Hamming distance, however, became anomalous during the two instances of the attack represented by the spikes
in Figure 24b.
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Monitoring 10 IDs

Attack FN rate Error rate Precision Recall F1-score

Constant value
100.000% 40.451% 0.000% 0.000% N/A
100.000% 40.451% 0.000% 0.000% N/A

Random value
8.992% 3.687% 99.851% 91.008% 95.225%
8.311% 3.357% 100.000% 91.689% 95.665%

Adding an increasing value
94.959% 38.415% 97.368% 5.051% 9.585%
96.185% 38.855% 100.000% 3.815% 7.349%

Decreasing value
100.000% 40.396% N/A 0.000% N/A
100.000% 40.396% N/A 0.000% N/A

Delta of 1000
99.728% 40.341% 66.667% 0.272% 0.543%
99.864% 40.341% 100.000% 0.136% 0.272%

Monitoring 1 ID

Attack FN rate Error rate Precision Recall F1-score

Constant value
4.511% 1.911% 100.000% 95.489% 97.692
5.263% 2.229% 100.000% 94.737% 97.297

Random value
1.504% 0.637% 100.000% 98.496% 99.242%
0.752% 0.318% 100.000% 99.248% 99.623%

Adding an increasing value
38.346% 16.242% 100.000% 61.654% 76.279%
24.812% 10.510% 100.000% 75.188% 85.837%

Decreasing value
100.000% 42.357% N/A 0.000% N/A
100.000% 42.357% N/A 0.000% N/A

Delta of 1000
100.000% 42.357% N/A 0.000% N/A
100.000% 42.357% N/A 0.000% N/A

Table 10: Performance metrics on the CrySyS Lab datasets
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(a) Average time between packets

(b) Hamming distance

(c) Entropy

Figure 23: Features extracted from the fuzzing attack present in the custom dataset

(a) Average time between packets

(b) Hamming distance

(c) Entropy

Figure 24: Features extracted from the spoofing attack present in the custom dataset
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C O N C L U S I O N

7.1 L I M I TAT I O N S A N D F U T U R E W O R K

Because of the lightweight nature of the proposed solution, it could become overloaded if the number of messages
being analysed is too high. Currently, this is alleviated by monitoring only a subset of IDs per application instance.
However, as automotive applications become more complex, and as network throughput increases, scalability
issues may arise. Alternatives such as different network metrics to monitor may be investigated as a potential
solution, as well as a possible replacement to the method of averaging the features concerning different IDs to
obtain a single value.

Another limitation in detecting an anomaly relies in the fact that attacks that span a small number of messages
go largely undetected. This is because the deviation from normal behaviour is not enough to cause a significant
alteration in the features of the window being analysed.

Traditionally, the training phase of machine learning includes some kind of hyperparameter tuning. However,
there is no hyperparameter tuning for the OCSVM here implemented as the hyperparameter values are hard-coded.
This is because traditional tuning algorithms rely on validation and testing datasets to evaluate model performance,
but this would not apply to a real-world scenario where the model is trained only with attack-free data. The
inclusion of such a process in the training phase would likely increase performance.

7.2 S U M M A R Y

Continuous automotive development has brought forth a new concept of the vehicle. Modern vehicles are capable
of running many complex applications, as well as communicating with each other and with road infrastructure.
This allows the vehicle to aid the driver through ADAS applications such as lane-assist and adaptive cruise control,
as well as gather traffic information and other aspects of its surroundings. Vehicles capable of fully autonomous
driving are also in active development.

The ability to connect to the exterior significantly raised the risk of attacks compared to when vehicles were
self-contained. This new vector of attack motivated a new search for security solutions in the automotive space.
One such solution is based on the concept of the IDS, which has existed in traditional networks for many years.

68
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By analysing network traffic and signalling when an attack is ocurring, and IDS is an important defence against
attacks.

This dissertation puts forward three major contributions to this topic:

• It performs blind traffic analysis, meaning that knowledge of packet syntax, which is not standardised and
largely proprietary, is unnecessary. This allows it to be implemented by a variety of manufacturers in a
plug-and-play fashion.

• It combines multiple information-theoretic metrics, which previous research has only used separately, into a
single machine learning algorithm.

• The implementation is capable of being executed in a resource-constrained environment such as the
automotive platform.

To make modern vehicles secure, a variety of solutions must come together. This includes Trusted Platform
Modules (TPMs), network encryption, and many others. This application is yet another component contributing to
achieving this ever-important goal.
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F E AT U R E S E L E C T I O N

Here, the collection of graphs generated as part of the feature selection process is presented.
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(a) Fuzzing attack

(b) Gear spoofing attack

(c) RPM spoofing attack

Figure 25: Correlation between extracted features obtained from the Car Hacking dataset



84

(a) Incremental payload modification attack

(b) Random payload modification attack

Figure 26: Correlation between extracted features obtained from the CrySyS Lab dataset
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(a) Attacks while driving

(b) Attacks while stationary

Figure 27: Correlation between extracted features obtained from the IEEE Car Hacking: Attack & Defense
Challenge 2020 dataset
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Figure 28: Correlation between extracted features obtained from the Automotive Controller Area Network (CAN)
Bus Intrusion Dataset v2



B
F E AT U R E E X T R A C T I O N

This chapter presents the collection of graphs illustrating the performance of the IDS over all the datasets.
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(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 29: Car Hacking - DoS
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(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 30: Car Hacking - Fuzzing
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(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 31: Car Hacking - Gear spoofing
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(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 32: Car Hacking - RPM spoofing
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(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 33: IEEE Car Hacking: Attack & Defense Challenge 2020 - Driving Submission
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(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 34: IEEE Car Hacking: Attack & Defense Challenge 2020 - Stationary Submission



94

(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 35: IEEE Car Hacking: Attack & Defense Challenge 2020 - Stationary Final
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(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 36: Automotive Controller Area Network (CAN) Bus Intrusion Dataset v2 - Opel Astra - Fuzzing attack
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(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 37: Automotive Controller Area Network (CAN) Bus Intrusion Dataset v2 - Opel Astra - Message deletion
attack
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(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 38: Automotive Controller Area Network (CAN) Bus Intrusion Dataset v2 - Opel Astra - Replay attack
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(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 39: Automotive Controller Area Network (CAN) Bus Intrusion Dataset v2 - Renault Clio - Fuzzing attack
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(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 40: Automotive Controller Area Network (CAN) Bus Intrusion Dataset v2 - Renault Clio - Message
deletion attack
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(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 41: Automotive Controller Area Network (CAN) Bus Intrusion Dataset v2 - Renault Clio - Replay attack
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(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 42: Modified CrySyS Lab - Adding an increasing value
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(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 43: Modified CrySyS Lab - Constant value
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(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 44: Modified CrySyS Lab - Decreasing value
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(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 45: Modified CrySyS Lab - Delta of 1000
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(a) Average time between packets

(b) Average entropy

(c) Average Hamming distance

Figure 46: Modified CrySyS Lab - Random value



C
C O D E D O C U M E N TAT I O N

This chapter presents the source code documentation. It aims to provide a high-level understanding of the
application’s funcionality as well as the API it provides.
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Figure 47: Crate AIHDS
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(a) Module

(b) normalize function

(c) packets_from_csv function

Figure 48: Dataset module
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(d) write_features function

(e) write_features_unsupervised function

Figure 48: Dataset module (cont.)
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(a) Module

(b) Struct

Figure 49: IDS module
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(c) IDS’ new function

(d) load function

(e) get_monitor function

Figure 49: IDS module (cont.)
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(f) train function

(g) test function

Figure 49: IDS module (cont.)
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(h) feature_set function

(i) push function

(j) predict function

Figure 49: IDS module (cont.)
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(k) extract_features function

(l) Packet struct

(m) Packet’s new function

Figure 49: IDS module (cont.)
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(n) Features type

(o) Prediction type

Figure 49: IDS module (cont.)
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(a) Module

(b) open_socket function

(c) post function

Figure 50: Server module



D
A U X I L I A R Y C O D E

Below is the set of auxiliary Python scripts that assisted throughout various part of the application’s development.

D.1 C A N S P E E D

Calculates the average number of packets per second in the CSV file.

import argparse

import can

def main():

parser = argparse.ArgumentParser()

parser.add_argument("dataset", help="Path to CSV file.")

args = parser.parse_args()

timestamps = list(map(lambda msg: msg.timestamp, list(can.BLFReader(args.

dataset))))

diffs = []

for i in range(0, len(timestamps) - 1):

diffs.append(timestamps[i + 1] - timestamps[i])

print(f"{1 / (sum(diffs) / len(diffs)):.3f} packets/s")

D.2 F E AT U R E S E L E C T I O N

Outputs a graph showing correlation between features.

import argparse

import pandas

import matplotlib.pyplot as plt

import seaborn
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from pathlib import Path

def main():

parser = argparse.ArgumentParser()

parser.add_argument("dataset", help="Path to CSV file.")

args = parser.parse_args()

dataset = pandas.read_csv(args.dataset)

plt.figure(figsize=(15, 10))

seaborn.heatmap(dataset.corr(), annot=True)

plt.savefig(f"graphs/{Path(args.dataset).stem}.png")

D.3 G E T I D S

Get set of IDs in file.

import argparse

import pandas

def main():

parser = argparse.ArgumentParser()

parser.add_argument("dataset", help="Path to CSV file.")

parser.add_argument("--attack", action="store_true", help="Filter IDs that

are attacked.")

args = parser.parse_args()

dataframe = pandas.read_csv(parser.parse_args().dataset)

if args.attack:

ids = dataframe.loc[dataframe.iloc[:, -2] == "Attack"].iloc[:, 1].unique

()

ids.sort()

print(f"There are {len(ids)} unique IDs targeted for attacks: {ids}")

else:

ids = dataframe.iloc[:, 1].unique()

ids.sort()

print(f"There are {len(ids)} unique IDs: {ids}")

D.4 G R A P H F E AT U R E S

Graphs the features extracted by the IDS.

import argparse



D.4. Graph features 119

from pathlib import Path

import pandas as pd

import matplotlib.pyplot as plt

from matplotlib.lines import Line2D

import numpy as np

def label_to_color_alt(label):

match label:

case 0 | 2:

return ’g’

case 1 | 3:

return ’b’

def label_to_color(label):

match label:

case 0:

return ’g’

case 1:

return ’b’

case 2:

return ’y’

case 3:

return ’r’

def main():

parser = argparse.ArgumentParser()

parser.add_argument("dataset", nargs="*", help="Path to CSV file.")

parser.add_argument("--threed", action=’store_true’, help="Make a 3d

scatterplot.")

parser.add_argument("--nolabel", action=’store_true’, help="Ignore labels.")

args = parser.parse_args()

Path("graphs").mkdir(exist_ok=True)

for path in args.dataset:

Path(f"graphs/{Path(path).stem}").mkdir(exist_ok=True)

dataset = pd.read_csv(path)

if args.threed:

fig = plt.figure()

ax = fig.add_subplot(projection=’3d’)

ax.set_xlabel("AvgTime")

ax.set_ylabel("Entropy")

ax.set_zlabel("HammingDist")

ax.scatter(dataset["AvgTime"], dataset["Entropy"], dataset["

HammingDist"], c = dataset["Label"].apply(label_to_color_alt if

args.nolabel else label_to_color).values if "Label" in dataset

else "c")

plt.savefig(f"graphs/{Path(path).stem}.png")

for col in dataset:
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if col != "Label":

fig, ax = plt.subplots()

fig.set_size_inches(20, 5)

ax.set_xlabel("Window")

ax.scatter(np.arange(0, len(dataset[col])), dataset[col], c =

dataset["Label"].apply(label_to_color_alt if args.nolabel else

label_to_color).values if "Label" in dataset else "c")

if col == "AvgTime":

ax.set_ylabel("Average Time")

ax.set_title("Average Time Between Packets of the Same ID")

elif col == "Entropy":

ax.set_ylabel(col)

ax.set_title("Average Entropy of Packets of the Same ID")

elif col == "HammingDist":

ax.set_ylabel("Hamming Distance")

ax.set_title("Average Hamming Distance of Packets of the Same

ID")

if "Label" in dataset:

if not args.nolabel:

legend_elements = [Line2D([0], [0], marker=’o’, color=’w’

, label=’True positive’, markerfacecolor=’g’,

markersize=15),

Line2D([0], [0], marker=’o’, color=’w’,

label=’True negative’, markerfacecolor

=’b’, markersize=15),

Line2D([0], [0], marker=’o’, color=’w’,

label=’False positive’,

markerfacecolor=’y’, markersize=15),

Line2D([0], [0], marker=’o’, color=’w’,

label=’False negative’,

markerfacecolor=’r’, markersize=15)]

else:

legend_elements = [Line2D([0], [0], marker=’o’, color=’w’

, label=’Alert’, markerfacecolor=’g’, markersize=15),

Line2D([0], [0], marker=’o’, color=’w’,

label=’No alert’, markerfacecolor=’b’,

markersize=15)]

ax.legend(handles=legend_elements)

fig.savefig(f"graphs/{Path(path).stem}/{col}.png")

D.5 L O C AT E AT TA C K T Y P E S

Locate attack types on the IEEE challenge dataset.
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import argparse

import pandas

def main():

parser = argparse.ArgumentParser()

parser.add_argument("dataset", nargs="*", help="Path to CSV file.")

args = parser.parse_args()

for path in args.dataset:

dataframe = pandas.read_csv(path)

dataframe = dataframe.loc[dataframe["label"] == "Attack"]

last_attack = dataframe.iloc[0][-1]

last_timestamp = dataframe.iloc[0]["timestamp"]

start = last_timestamp

end = 0

for _, row in dataframe.iterrows():

if row["class"] != last_attack:

end = last_timestamp

print(f"{last_attack} occurs from {start} to {end}")

start = row["timestamp"]

last_attack = row["class"]

last_timestamp = row["timestamp"]

D.6 L O G T O C S V

Convert CANDump format to CSV.

import argparse

import re

from pathlib import Path

def main():

parser = argparse.ArgumentParser()

parser.add_argument("dataset", help="Path to CSV file.")

args = parser.parse_args()

with open(args.dataset, "r") as file:

content = file.read()

content = re.sub("\(", ’’, content, flags=re.M)

content = re.sub("\) slcan0 ", ’,’, content, flags=re.M)

content = re.sub(f"#(?=[0-9A-Z]{{16}})", ",8,", content, flags=re.M)

content = re.sub(f"#(?=[0-9A-Z]{{14}})", ",7,", content, flags=re.M)
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content = re.sub(f"#(?=[0-9A-Z]{{12}})", ",6,", content, flags=re.M)

content = re.sub(f"#(?=[0-9A-Z]{{10}})", ",5,", content, flags=re.M)

content = re.sub(f"#(?=[0-9A-Z]{{8}})", ",4,", content, flags=re.M)

content = re.sub(f"#(?=[0-9A-Z]{{6}})", ",3,", content, flags=re.M)

content = re.sub(f"#(?=[0-9A-Z]{{4}})", ",2,", content, flags=re.M)

content = re.sub(f"#(?=[0-9A-Z]{{2}})", ",1,", content, flags=re.M)

content = re.sub(f"(?<=,[0-9A-Z]{{1}},[0-9A-Z]{{2}})(?=[^,])", ’,’,

content, flags=re.M)

for _ in range(8):

content = re.sub(f"(?<=,[0-9A-Z]{{2}},[0-9A-Z]{{2}})(?=[^,\n])", ’,’,

content, flags=re.M)

content = re.sub(’\n’, ",Normal\n", content, flags=re.M)

content = re.sub(",,", ",", content, flags=re.M)

with open("datasets/replaced.csv", "w") as out:

out.write("timestamp,id,dlc,data0,data1,data2,data3,data4,data5,data6

,data7,label\n" + content)

D.7 P O W E R D R A W P L O T

Plot power consumption readings from CSV file.

import argparse

from pathlib import Path

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from matplotlib.pyplot import figure

def main():

parser = argparse.ArgumentParser()

parser.add_argument("dataset", help="Path to CSV file.")

args = parser.parse_args()

Path("graphs").mkdir(exist_ok=True)

dataframe = pd.read_csv(args.dataset)

figure(figsize=(20, 5))

plt.plot(np.arange(0, dataframe.shape[0]), dataframe["Current(mA)"])

plt.xlabel("Record")

plt.ylabel("Current (mA)")

plt.savefig("graphs/powerdraw.png")
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