15,834 research outputs found

    Self-similar prior and wavelet bases for hidden incompressible turbulent motion

    Get PDF
    This work is concerned with the ill-posed inverse problem of estimating turbulent flows from the observation of an image sequence. From a Bayesian perspective, a divergence-free isotropic fractional Brownian motion (fBm) is chosen as a prior model for instantaneous turbulent velocity fields. This self-similar prior characterizes accurately second-order statistics of velocity fields in incompressible isotropic turbulence. Nevertheless, the associated maximum a posteriori involves a fractional Laplacian operator which is delicate to implement in practice. To deal with this issue, we propose to decompose the divergent-free fBm on well-chosen wavelet bases. As a first alternative, we propose to design wavelets as whitening filters. We show that these filters are fractional Laplacian wavelets composed with the Leray projector. As a second alternative, we use a divergence-free wavelet basis, which takes implicitly into account the incompressibility constraint arising from physics. Although the latter decomposition involves correlated wavelet coefficients, we are able to handle this dependence in practice. Based on these two wavelet decompositions, we finally provide effective and efficient algorithms to approach the maximum a posteriori. An intensive numerical evaluation proves the relevance of the proposed wavelet-based self-similar priors.Comment: SIAM Journal on Imaging Sciences, 201

    Design and Autonomous Stabilization of a Ballistically Launched Multirotor

    Get PDF
    Aircraft that can launch ballistically and convert to autonomous, free flying drones have applications in many areas such as emergency response, defense, and space exploration, where they can gather critical situational data using onboard sensors. This paper presents a ballistically launched, autonomously stabilizing multirotor prototype (SQUID, Streamlined Quick Unfolding Investigation Drone) with an onboard sensor suite, autonomy pipeline, and passive aerodynamic stability. We demonstrate autonomous transition from passive to vision based, active stabilization, confirming the ability of the multirotor to autonomously stabilize after a ballistic launch in a GPS denied environment.Comment: Accepted to 2020 International Conference on Robotics and Automatio

    Learning to Interpret Fluid Type Phenomena via Images

    Get PDF
    Learning to interpret fluid-type phenomena via images is a long-standing challenging problem in computer vision. The problem becomes even more challenging when the fluid medium is highly dynamic and refractive due to its transparent nature. Here, we consider imaging through such refractive fluid media like water and air. For water, we design novel supervised learning-based algorithms to recover its 3D surface as well as the highly distorted underground patterns. For air, we design a state-of-the-art unsupervised learning algorithm to predict the distortion-free image given a short sequence of turbulent images. Specifically, we design a deep neural network that estimates the depth and normal maps of a fluid surface by analyzing the refractive distortion of a reference background pattern. Regarding the recovery of severely downgraded underwater images due to the refractive distortions caused by water surface fluctuations, we present the distortion-guided network (DG-Net) for restoring distortion-free underwater images. The key idea is to use a distortion map to guide network training. The distortion map models the pixel displacement caused by water refraction. Furthermore, we present a novel unsupervised network to recover the latent distortion-free image. The key idea is to model non-rigid distortions as deformable grids. Our network consists of a grid deformer that estimates the distortion field and an image generator that outputs the distortion-free image. By leveraging the positional encoding operator, we can simplify the network structure while maintaining fine spatial details in the recovered images. We also develop a combinational deep neural network that can simultaneously perform recovery of the latent distortion-free image as well as 3D reconstruction of the transparent and dynamic fluid surface. Through extensive experiments on simulated and real captured fluid images, we demonstrate that our proposed deep neural networks outperform the current state-of-the-art on solving specific tasks

    Dense Motion Estimation for Smoke

    Full text link
    Motion estimation for highly dynamic phenomena such as smoke is an open challenge for Computer Vision. Traditional dense motion estimation algorithms have difficulties with non-rigid and large motions, both of which are frequently observed in smoke motion. We propose an algorithm for dense motion estimation of smoke. Our algorithm is robust, fast, and has better performance over different types of smoke compared to other dense motion estimation algorithms, including state of the art and neural network approaches. The key to our contribution is to use skeletal flow, without explicit point matching, to provide a sparse flow. This sparse flow is upgraded to a dense flow. In this paper we describe our algorithm in greater detail, and provide experimental evidence to support our claims.Comment: ACCV201

    Enhancement of Underwater Video Mosaics for Post-Processing

    Get PDF
    Mosaics of seafloor created from still images or video acquired underwater have proved to be useful for construction of maps of forensic and archeological sites, species\u27 abundance estimates, habitat characterization, etc. Images taken by a camera mounted on a stable platform are registered (at first pair-wise and then globally) and assembled in a high resolution visual map of the surveyed area. While this map is usually sufficient for a human orientation and even quantitative measurements, it often contains artifacts that complicate an automatic post-processing (for example, extraction of shapes for organism counting, or segmentation for habitat characterization). The most prominent artifacts are inter-frame seams caused by inhomogeneous artificial illumination, and local feature misalignments due to parallax effects - result of an attempt to represent a 3D world on a 2D map. In this paper we propose two image processing techniques for mosaic quality enhancement - median mosaic-based illumination correction suppressing appearance of inter-frame seams, and micro warping decreasing influence of parallax effects

    Decorrelation Times of Photospheric Fields and Flows

    Full text link
    We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier Local Correlation Tracking (FLCT) to a sequence of high-resolution (0.3 \arcsec), high-cadence (≃2\simeq 2 min) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the {\em Hinode} satellite over 12--13 December 2006. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms' susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval Δt\Delta t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter σ\sigma used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, τ\tau. For Δt>τ\Delta t > \tau, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and Δt\Delta t.Comment: 48 pages, 20 figures, submitted to the Astrophysical Journal; full-resolution images in manuscript (8MB) at http://solarmuri.ssl.berkeley.edu/~welsch/public/manuscripts/flow_lifetimes_v2.pd
    • …
    corecore