12 research outputs found

    Consolidation of Customized Product Copies into Software Product Lines

    Get PDF
    In software development, project constraints lead to customer-specific variants by copying and adapting the product. During this process, modifications are scattered all over the code. Although this is flexible and efficient in the short term, a Software Product Line (SPL) offers better results in the long term, regarding cost reduction, time-to-market, and quality attributes. This book presents a novel approach named SPLevo, which consolidates customized product copies into an SPL

    Consolidation of Customized Product Copies into Software Product Lines

    Get PDF
    In software development, project constraints lead to customer-specific variants by copying and adapting the product. During this process, modifications are scattered all over the code. Although this is flexible and efficient in the short term, a Software Product Line (SPL) offers better results in the long term, regarding cost reduction, time-to-market, and quality attributes. This book presents a novel approach named SPLevo, which consolidates customized product copies into an SPL

    Toward an Effective Automated Tracing Process

    Get PDF
    Traceability is defined as the ability to establish, record, and maintain dependency relations among various software artifacts in a software system, in both a forwards and backwards direction, throughout the multiple phases of the project’s life cycle. The availability of traceability information has been proven vital to several software engineering activities such as program comprehension, impact analysis, feature location, software reuse, and verification and validation (V&V). The research on automated software traceability has noticeably advanced in the past few years. Various methodologies and tools have been proposed in the literature to provide automatic support for establishing and maintaining traceability information in software systems. This movement is motivated by the increasing attention traceability has been receiving as a critical element of any rigorous software development process. However, despite these major advances, traceability implementation and use is still not pervasive in industry. In particular, traceability tools are still far from achieving performance levels that are adequate for practical applications. Such low levels of accuracy require software engineers working with traceability tools to spend a considerable amount of their time verifying the generated traceability information, a process that is often described as tedious, exhaustive, and error-prone. Motivated by these observations, and building upon a growing body of work in this area, in this dissertation we explore several research directions related to enhancing the performance of automated tracing tools and techniques. In particular, our work addresses several issues related to the various aspects of the IR-based automated tracing process, including trace link retrieval, performance enhancement, and the role of the human in the process. Our main objective is to achieve performance levels, in terms of accuracy, efficiency, and usability, that are adequate for practical applications, and ultimately to accomplish a successful technology transfer from research to industry

    ModelVars2SPL : an automated approach to reengineer model variants into software product lines

    Get PDF
    Orientadora : Profª. Drª. Silvia R. VergilioCoorientador : Prof Dr. Roberto E. Lopez-HerrejonTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa: Curitiba, 11/04/2017Inclui referências : f. 74-82Área de concentração : Ciência da computaçãoResumo: Linhas de Produto de Software (LPSs) são famílias de sistemas de software relacionados que são desenvolvidos para um segmento de mercado ou domínio. Comumente, LPSs surgem de um conjunto de variantes existentes, quando a manutenção e/ou evolução individuais tornam-se complexas. Contudo, as abordagens encontradas na literatura para extração de LPS a partir de variantes existentes não dão suporte a modelos de projeto, são parcialmente automatizadas, ou não refletem restrições de domínio em termos de combinação de características. Para lidar com estas limitações, o objetivo deste trabalho é apresentar uma abordagem automatizada para fazer a reengenharia de variantes de modelos em uma LPS, chamada ModelVars2SPL (Variantes de Modelos para Linha de Produto de Software, do Inglês Model Variants to Software Product Line). A entrada para a abordagem é um conjunto de diagramas de classe Linguagem de Modelagem Unificada (UML) e uma lista de características que estes implementam. Todo o processo de reengenharia é coberto, e a saída inclui (i) um Modelo de Características, que representa a combinação de características das variantes de entrada, e (ii) uma Arquitetura de Linha de Produto, que representa uma arquitetura global com características anotadas. O processo de reengenharia da ModelVars2SPL é composto por quatro passos, sendo dois deles apoiados em técnicas baseadas em busca, e os dois outros baseados em algoritmos determinísticos. Não existe a necessidade de especialistas humanos para obter soluções. Para avaliar a abordagem proposta, foi conduzido um experimento para aferir a qualidade das soluções obtidas. A qualidade dos Modelos de Características e das Arquiteturas de Linha de Produto foi medida considerando-se o quão bem as variantes de entrada foram representadas. Além disso, a qualidade das saídas em cada passo da abordagem foi avaliada levando-se em consideração os objetivos do processo de reengenharia. Para a experimentação utilizaram-se dez estudos de caso representando dois cenários diferentes. Os resultados da avaliação mostram que a abordagem consegue obter soluções com alto grau de corretude em termos de representação das variantes de entrada, e que as saídas dos passos estão de acordo com as fases do processo de reengenharia. Com base em um exemplo de uso de uma solução mostra-se como os artefatos de LPS obtidos facilitam a atividade de manutenção. Palavras-chave: Reúso, Reengenharia, Linha de Produto de Software, Extração de LPS, Engenharia de Software Baseada em Busca.Abstract: Software Product Lines (SPLs) are families of related software systems developed for specific market segments or domains. SPLs commonly emerge from sets of existing variants when their individual maintenance and/or evolution become complex. However, current approaches for SPL extraction from existing variants do not support design models, are partially automated, or do not reflect domain constraints in terms of feature combinations. To tackle these limitations, the goal of this work is to present an automated approach to reengineer model variants into an SPL, called ModelVars2SPL (Model Variants to Software Product Line). The input of the approach is a set of Unified Modeling Language (UML) class diagrams and the list of features they implement. All the reengineering process is covered, and the output includes (i) a Feature Model, which represents the combinations of features of the input variants, and (ii) a Product Line Architecture, which represents a global architecture with feature-related annotations. The reengineering process of ModelVars2SPL is composed of four steps, two of them rely on searchbased techniques and the others are based on deterministic algorithms. There is no need for human experts for obtaining solutions. We conducted an experiment to evaluate the quality of the solutions obtained with the proposed approach. The quality of the FMs and PLAs was measured by considering how well these artifacts represent the input variants. Furthermore, we evaluate the quality of the outputs in each step of the approach taking into account the goals of the reengineering process. For the experimentation we used ten case studies representing two di_erent scenarios. The results of the evaluation show that the approach can obtain solutions with high degree of correctness in terms of representing the input variants, and that the outputs of the steps are in accordance to the phases of the reengineering process. Based on an example of use we show how the obtained FM and PLA make easier the maintenance activity. Keywords: Reuse, Reengineering, Software Product Line, SPL extraction, Search-Based Software Engineering

    Metamodelisation to support Test and Evolution

    Get PDF
    Legacy software systems correspond to the wealth of the companies. They often exist for dozens of years and concentrate a big part of the company knowledge, its business rules or its savoir-faire. Requirements to which these systems answer have evolved with time, as well as the used technologies leading to modications. These mo-dications occurring after the software delivery, they are considered maintenance. They correspond to more than 80% of the software li-fecycle and its cost. Maintaining a software system is a complex and useful activity that deserves to o be anticipated from the design activity. Remodularisation phases may be useful to reduce complexity massed from successive evolutions and to provide new strong basis for future evolutions. Work presented in this manuscript answers to a unique target : Designing systems of good quality, easily maintainable and managing their evolutions. Quality can be ensured and measured from dierent ways. In this document, I only focus on tests. Tests enable developers to identify and locate errors or check after an evolution that unchanged parts are not impacted. Finally, software artefacts do not independently evolve. The evolution of one of them may have consequences on one or several others. In this document, two types of software are considered chains of model transformations or traditional programs. Thus, transformation chains are not seen as a way to generate code from models via transformations. They are considered software system by them selves that would need to be later maintained and to make evolve. Results presented in this document may be summarised as such : Proposal of a new transformation type localized transformations introducing better reusability, modularity and exibility in transformation chains. Adaptations in designing and building chains are thus needed

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Fundamental Approaches to Software Engineering, FASE 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 23 full papers, 1 tool paper and 6 testing competition papers presented in this volume were carefully reviewed and selected from 81 submissions. The papers cover topics such as requirements engineering, software architectures, specification, software quality, validation, verification of functional and non-functional properties, model-driven development and model transformation, software processes, security and software evolution

    Supporting the grow-and-prune model for evolving software product lines

    Get PDF
    207 p.Software Product Lines (SPLs) aim at supporting the development of a whole family of software products through a systematic reuse of shared assets. To this end, SPL development is separated into two interrelated processes: (1) domain engineering (DE), where the scope and variability of the system is defined and reusable core-assets are developed; and (2) application engineering (AE), where products are derived by selecting core assets and resolving variability. Evolution in SPLs is considered to be more challenging than in traditional systems, as both core-assets and products need to co-evolve. The so-called grow-and-prune model has proven great flexibility to incrementally evolve an SPL by letting the products grow, and later prune the product functionalities deemed useful by refactoring and merging them back to the reusable SPL core-asset base. This Thesis aims at supporting the grow-and-prune model as for initiating and enacting the pruning. Initiating the pruning requires SPL engineers to conduct customization analysis, i.e. analyzing how products have changed the core-assets. Customization analysis aims at identifying interesting product customizations to be ported to the core-asset base. However, existing tools do not fulfill engineers needs to conduct this practice. To address this issue, this Thesis elaborates on the SPL engineers' needs when conducting customization analysis, and proposes a data-warehouse approach to help SPL engineers on the analysis. Once the interesting customizations have been identified, the pruning needs to be enacted. This means that product code needs to be ported to the core-asset realm, while products are upgraded with newer functionalities and bug-fixes available in newer core-asset releases. Herein, synchronizing both parties through sync paths is required. However, the state of-the-art tools are not tailored to SPL sync paths, and this hinders synchronizing core-assets and products. To address this issue, this Thesis proposes to leverage existing Version Control Systems (i.e. git/Github) to provide sync operations as first-class construct

    Supporting the grow-and-prune model for evolving software product lines

    Get PDF
    207 p.Software Product Lines (SPLs) aim at supporting the development of a whole family of software products through a systematic reuse of shared assets. To this end, SPL development is separated into two interrelated processes: (1) domain engineering (DE), where the scope and variability of the system is defined and reusable core-assets are developed; and (2) application engineering (AE), where products are derived by selecting core assets and resolving variability. Evolution in SPLs is considered to be more challenging than in traditional systems, as both core-assets and products need to co-evolve. The so-called grow-and-prune model has proven great flexibility to incrementally evolve an SPL by letting the products grow, and later prune the product functionalities deemed useful by refactoring and merging them back to the reusable SPL core-asset base. This Thesis aims at supporting the grow-and-prune model as for initiating and enacting the pruning. Initiating the pruning requires SPL engineers to conduct customization analysis, i.e. analyzing how products have changed the core-assets. Customization analysis aims at identifying interesting product customizations to be ported to the core-asset base. However, existing tools do not fulfill engineers needs to conduct this practice. To address this issue, this Thesis elaborates on the SPL engineers' needs when conducting customization analysis, and proposes a data-warehouse approach to help SPL engineers on the analysis. Once the interesting customizations have been identified, the pruning needs to be enacted. This means that product code needs to be ported to the core-asset realm, while products are upgraded with newer functionalities and bug-fixes available in newer core-asset releases. Herein, synchronizing both parties through sync paths is required. However, the state of-the-art tools are not tailored to SPL sync paths, and this hinders synchronizing core-assets and products. To address this issue, this Thesis proposes to leverage existing Version Control Systems (i.e. git/Github) to provide sync operations as first-class construct
    corecore