
Supporting the Grow-and-Prune
Model for Evolving

Software Product Lines

Leticia Montalvillo Mendizabal

June, 2018

Web Engineering Research Group
Supervisor: Prof. Dr. Oscar Díaz

Ph.D. Thesis

Supporting the Grow-and-Prune Model for
Evolving Software Product Lines

Dissertation
presented to

the Department of Computer Languages and Systems of
the University of the Basque Country

in Partial Fulfillment of
the Requirements for the Degree of

Doctor of Philosophy
(“international” mention)

Leticia Montalvillo Mendizabal

Supervisor: Prof. Dr. Oscar Díaz García
San Sebastián, Spain, 2018

(cc)2018 LETICIA MONTALVILLO MENDIZABAL (cc by-nc-nd 4.0)

This work was hosted by the University of the Basque Country (Faculty of
Computer Science). The author enjoyed a doctoral grant from the University of The
Basque Country (UPV/EHU) from 2014 to 2018. The work was co-supported by
the Spanish Ministry of Education, the European Social Fund and the University of
The Basque Country (UPV/EHU) under contracts TIN2014-58131-R, TIN2011-23839
(Scripting), and OSADATU UFI11/19.

“A man can only attain knowledge with the help of those who possess it. This must
be understood from the very beginning. One must learn from him who knows.”

– George Ivanovich Gurdjieff.

Resumen

El contexto de esta tesis se enmarca dentro de la ingeniería de las Líneas de
Producto Software (LPS), y de como soportar su evolución mediante el paradigma
conocido como grow-and-prune (traducido del inglés como “crecimiento-y-poda”).
Se ha seguido el enfoque Design Science Research, para identificar y solucionar los
problemas que aparecen en el contexto de las SPLs que evolucionan mediante el
paradigma grow-and-prune. A continuación se resumen el contexto de la tesis, los
problemas que se abordan, y las contribuciones científicas que esta tesis aporta al área
de las LPS.

Las Líneas de Producto Software (LPS).

En los últimos años, la ingeniería de LPS ha ganado un impulso considerable.
Empresas como Boeing, Bosch, General Motors, Philips o Siemens recurren a las LPS
para ampliar su abanico de productos software, aumentar el retorno de la inversión,
acortar el tiempo de comercialización y mejorar la calidad del software. En esencia, las
LPS tienen como objetivo respaldar el desarrollo de toda una familia de productos de
software, a través de la reutilización sistemática de los llamados artefactos reutilizables.
Con este fin, el desarrollo de las LPS se divide en dos procesos ínter-relacionados: (1)
ingeniería de dominio (ID), que se encarga de definir cual es el alcance, cuales son
las características (features) de la LPS y su variabilidad, y desarrolla los artefactos
software reutilizables; y (2) ingeniería de aplicaciones (IA), donde los productos se
construyen mediante la reutilización de aquellos artefactos reutilizables desarrollados
en la ID, y resolviendo la variabilidad de los mismos.

Con el fin de obtener el máximo beneficio, la ingeniería de LPS tiene como objetivo
automatizar la derivación del producto a partir de los artefactos reutilizables. Estos
artefactos reutilizables se caracterizan en términos de características, es decir, aspectos
distintivos visibles para el usuario, cualidades o características de los productos de
la LPS. Idealmente, la derivación del producto se limita a indicar el conjunto de
características que exhibirán los productos, sin la necesidad de ningún desarrollo
extra en el producto obtenido. En este escenario, los productos se obtienen a través
de una "Familia de Producto Altamente Configurable" (FPAC), donde casi el 100%
del esfuerzo lo dedican los ingenieros de dominio a la construcción de artefactos
reutilizables, y la personalización del producto no existe. Sin embargo, los escenarios
reales están lejos de ser ideales.

iii

Evolución en las LPS.

En primer lugar, llegar a una FPAC no es trivial, sino el resultado de un largo viaje
que dura años. Es por eso, que en la práctica existen etapas intermedias, (por ejemplo,
"Plataforma", "Línea de productos de software"), en las que el conjunto de artefactos
reutilizables no cubre completamente las necesidades de los productos, y por lo tanto
, los ingenieros de aplicación necesitan desarrollar las funcionalidades restantes ellos
mismos. En la práctica, las LPS se inician frecuentemente con una versión parcial
de los artefactos reutilizables, que se obtienen mediante la refactorización de (un
subconjunto de) variantes de productos ya existentes, y que se amplían gradualmente
con funcionalidades más nuevas extraídas de productos que se han derivado de ella.
Durante este viaje, los activos centrales y los productos coexisten mientras el código
del producto se refactoriza progresivamente y se migra al dominio de los artefactos
reutilizables.

Segundo, incluso si la LPS ha llegado a un nivel de reutilización como el de las
FPAC, las LPS pueden alcanzar una escala y complejidad que las hace inviables para
evolucionar en un corto período de tiempo. Por lo tanto, cuando una organización
tiene como objetivo reaccionar con rapidez a los eventos del mercado o las solicitudes
urgentes de los clientes, se necesitan estrategias para respaldar la adaptación rápida,
con extensiones y personalizaciones específicas del producto. La conclusión final es
que la personalización del producto no siempre se puede evitar.

Modelo grow-and-prune.

Este modelo distingue entre dos etapas durante la evolución de las LPS: crecimiento
(grow) y poda (prune). El modelo permite que los productos crezcan una vez
derivados de la base los artefactos reutilizables de la ID. Durante la poda, aquellas
funcionalidades (de producto) que se consideran útiles se promocionan a la ID (es decir,
a artefactos reutilizables) mediante la refactorización y la fusión software (merge).
En este modelo, tanto los artefactos reutilizables como los productos evolucionan
conjuntamente a través de dos caminos: mientras el código de producto (IA) se porta
progresivamente al dominio de los artefactos reutilizables (ID) central, siguiendo la
ruta de retroalimentación, los productos también se pueden actualizar con nuevas
funcionalidades y correcciones de fallas lanzadas por los ingenieros de dominio
siguiendo la ruta de actualización.

En el contexto de la evolución de las LPS con el modelo grow-and-prune, surgen
una serie de problemas. A continuación se listan los problemas abordados mediante
esta tesis.

Problema 1: analizar de las personalizaciones de los productos.

Como hemos apuntado, el modelo grow-and-prune permite a los productos que
implementes aquellas funcionalidades que no vienen soportadas por los artefactos
reutilizables de la ID. En el contexto de esta tesis, a los cambios y desarrollos software
llevados a cabo por los ingenieros de la aplicación se les llama personalizaciones.
Una vez la etapa de crecimiento (grow) ha concluido, los ingenieros del dominio

han de empezar la poda (prune). Dicha poda requiere que los ingenieros del dominio
tengan que analizar e inspeccionar todos los productos uno a uno, para determinar qué
personalizaciones han desarrollado los productos, y cuales son adecuadas para formar
parte del elenco de los artefactos reutilizables. Esto es clave, porque la nueva versión
de los artefactos reutilizables ha de satisfacer los requisitos de los productos.

El problema principal es que identificar y analizar las personalizaciones de los
productos es costoso y propenso a errores. Esto es debido a varias causas. Primero,
las LPS cuentan con un gran número de artefactos, y productos. Es por ello, que
al finalizar el proceso de crecimiento de los productos, los ingenieros cuentan con
cientos de personalizaciones a analizar. Segundo, este análisis se lleva a cabo a
un nivel de abstracción de bajo nivel, a nivel de archivo y de código fuente. Por
el contrario, las LPS requieren que este análisis sea hecho a niveles más altos de
abstracción, es decir, a nivel de características y productos. Los archivos son
una noción de implementación. Por el contrario, "producto" y "característica" son
conceptos abstractos que se desarrollan a través de los archivos. Es por eso, el
análisis debe abstraerse de los archivos y reformularse en términos de "producto" y
"característica". Finalmente, hay una falta de visualizaciones dedicadas para el análisis
de las personalizaciones de las LPS. Las utilidades de diff tradicionales no escalan a los
posibles miles de cambios que podrían estar involucrados en una LPS. Es por eso que
se necesitan herramientas apropiadas, no solo para identificar las personalizaciones de
los productos en los niveles de abstracción de producto y característica, sino también
para visualizarlos "correctamente".

Si esta problemática no se aborda, los ingenieros del dominio pueden fallar a la
hora de identificar correctamente las personalizaciones, y por consecuencia ofrecer
una nueva versión de artefactos reutilizables que no satisfaga las necesidades de
los productos. Esto, a su vez hace que los productos vuelvan a desarrollar sus
propias personalizaciones, reutilizando cada vez menos los artefactos de la ID. En este
escenario, la LPS se arriesga a una degradación de la reutilización, i.e. una situación
en la que los productos han degenerado tanto de la LPS, en la que los productos ya no
reutilizan artefactos de las LPS ya que ya no se consideran útiles; o si se consideran
útiles, la integración en el producto es tan costosa que no compensa su reutilización
(debido al alto número de conflictos entre los nuevos artefactos reutilizables y el
código personalizado del producto). En este escenario, se produce una caída de la
productividad de la IA, y, a su vez, aumentaría el tiempo de comercialización de los
productos.

Con el objetivo de ayudar a los ingenieros de la IA a analizar las personalizaciones,
esta tesis se plantea las siguientes preguntas de investigación.

• P1: ¿Cuáles son las necesidades de información para el análisis de
personalización? Para cada necesidad de información, ¿cuánto tiempo se
necesita para obtenerla?

• P2: ¿Hasta qué punto se pueden satisfacer las necesidades de información
previas a través de un almacén de datos? Si es así, ¿cómo se vería su esquema
de estrella?

• P3: ¿Cómo se puede visualizar el análisis de personalización?

Esta tesis contribuye a las anteriores preguntas de esta manera:

• P1. Se han identificado las necesidades de información que surgen durante los
escenarios de evolución de LPS ("evolución de características" y "evolución
del producto"). La importancia de cada necesidad de información y el tiempo
requerido para obtenerlas se validan a través de un cuestionario entregado a los
profesionales SPL.

• P2. Se ha desarrollado la herramienta CustomDIFF, con un enfoque de
almacén de datos, para el análisis de personalización que usa Git como el
sistema de control de versiones desde donde se obtienen los datos de hechos, y
pure::variantes como framework de desarrollo de la LPS. El esquema de estrella
diseñado permite a los ingenieros de LPS agregar hechos de personalización a lo
largo de diferentes niveles de abstracción, tales como, producto, característica,
activo central y componente. CustomDIFF ha sido probado con profesionales de
las LPS para evaluar su utilidad y uso de uso para el análisis de personalización.

• P3. Recurrimos a diagramas de aluvión para visualizar el esfuerzo de
personalización de un vistazo. Estos diagramas son un tipo de diagramas
de flujo. Aquí, el flujo representa el esfuerzo de personalización que va
desde las características a los productos de la LPS, si es que se ha necesitado
personalización.

Problema 2: contrarrestar el problema de la fusión infernal (merge hell).

Siguiendo el modelo grow-and-prune, la etapa de la poda (prune) requiere que
las personalizaciones de productos que se consideran útiles se integren en la base
de los activos básicos mediante la fusión (merge) y refactorización. Tenga en
cuenta que, debido a la fase previa de crecimiento, los productos podrían haber
divergido sustancialmente entre sí. Durante la poda, los ingenieros deben conciliar
estas divergencias resolviendo los conflictos que surgen de la combinación de
personalizaciones dispares de productos. Cuando el tiempo para resolver estos
conflictos excede el tiempo necesario para realizar los cambios originales, nos
encontramos en la denominada situación de problema de fusión (fusión infernal).

El problema pues, es que la fusión y refactorización de las personalizaciones de
productos es difícil y lleva mucho tiempo. Esto es causado por las divergencias que se
llevan a cabo durante el proceso de crecimiento. Cuanto más altas sean las divergencias
entre los productos, mayores serán los conflictos y la complejidad para resolverlos. Lo
que se necesita es una forma para que los equipos de productos no se desvíen mucho
los unos de los otros, y por lo tanto, facilitar la fusión posterior. Si no, esto causaría
una bajada de la productividad de los ingenieros del dominio, que solo dispondrían
del tiempo para portar estas personalizaciones, desatendiendo otras tareas como las
de perfeccionar y desarrollar mejoras en las características ya existentes, o en nuevas
solicitudes de características. Esto comprometería a su vez el tiempo de lanzamiento
de la nueva versión de los artefactos reutilizables.

Con el objetivo de reducir el problema del merge, esta tesis se plantea las siguientes
preguntas de investigación:

• P1: ¿Cómo se lleva a cabo el modelo grow-and-prune en la práctica?

• P2: ¿Cuáles son las características del problema de fusión en las LPS? Y, ¿cómo
podemos disminuir el problema de fusión en las LPS?

Esta tesis contribuye a las anteriores preguntas de esta manera:

• P1. Descripción de los roles y las interacciones que se entremezclan en un
enfoque de grow-and-prune, motivado por el caso de la empresa Danfoss Drives.

• P2. Caracterización del problema de fusión en las LPS y cómo difiere del
problema que aparece en el desarrollo tradicional software. Proponemos una
nueva práctica denominada code peering, que se lleva a cabo durante el proceso
de crecimiento, mediante la cual los ingenieros del producto inspeccionan y
comparan el código de otros productos con el suyo propio. Esto tiene la intención
de promover la reutilización temprana entre los diferentes equipos de IA, con el
objetivo de disminuir las divergencias entre ellos, y en consecuencia disminuir
el problema de fusión posterior. Esto plantea la pregunta de si merece la pena
desviar la atención de los desarrolladores del producto para facilitar la posterior
eliminación por parte de los ingenieros de dominio. Usando la teoría de Attention
Investment, presentamos cuatro principios de diseño que impulsan cómo se
puede introducir el peering de código para el desarrollo de las LPS.

• P2. Realización de estos principios en el prototipo PeeringHub, una herramienta
que soporta el code peering a través de: (1) una extensión de Chrome que
mejora GitHub con barras de interconexión que brindan información breve sobre
qué características están cambiando otros productos, (2) una web aplicación
que proporciona visualizaciones de alto nivel basadas en aluviones que indican
las características disponibles para el code peering, y (3) comparaciones
tridireccionales (3-way diff) basadas en características para que los ingenieros
de producto puedan analizar cómo un producto está cambiando el código de una
característica, con respecto al suyo propio.

Problema 3: sincronizar artefactos reutilizables y productos

La etapa de poda del modelo grow-and-prune, requiere la propagación de cambios
entre los artefactos reutilizables (ID) y los productos (IA), de modo que ambas partes
estén sincronizadas. Esto introduce dos operaciones de sincronización: la propagación
de actualización (desde la ID a la IA) y la propagación de la retroalimentación (desde
la IA a la ID). Son los ingenieros de la LPS quien tiene que ejecutar dichas operaciones.
Y aquí es esencial que se consiga una sincronización completa y correcta y entre
artefactos reutilizables y productos.

El problema que surge en este contexto es que ejecutar la propagación de
actualización como la propagación de retroalimentación es un proceso tedioso y
propenso a errores. Esto es debido principalmente a dos causas. Primero, los sistemas
de control de versiones (SCV) son sistemas que facilitan el desarrollo software, pero
no están adecuados las peculiaridades de las LPS. Es decir, los SCV tradicionales
no soportan de una manera nativa las operaciones de sincronización entre artefactos

reutilizables y productos. Segundo, no hay directrices claras de cómo el desarrollo
software se ha de organizar en los SCV, mediante los modelos de ramas.

Esta problemática dificulta la sincronización entre los artefactos reutilizables y los
productos. Si ambas partes, ID e IA, no están sincronizadas, los productos no recibirán
las últimas correcciones de errores y nuevas funcionalidades disponibles Por lo tanto,
los productos tendrían que desarrollarlos ellos mismos, lo que hace que los ingenieros
de aplicaciones sean menos productivos e incrementan el tiempo de salida al mercado
de dichos productos. Por otro lado, cuanto menos sincronizados estén los productos
con los artefactos reutilizables, más se desviarán los productos. Esto significa que
los productos querrán reutilizar los artefactos reutilizables con menor frecuencia, ya
que las actualizaciones requerirían un esfuerzo de integración cada vez mayor. Cuanto
más larga sea la demora de actualización, mayor será la cantidad de actualizaciones
disponibles recientemente, y mayores serán los conflictos entre los desarrollos de ID e
IA, ocasionando finalmente un degradación de la reutilización.

Con el objetivo de ayudar a la sincronización de los artefactos reutilizables y
productos, esta tesis se plantea las siguientes preguntas de investigación:

• P1: ¿Cómo se pueden organizar los productos y los activos centrales en SCV
(por ejemplo, Git) y cómo sería el modelo de ramas?

• P2: ¿Cómo pueden los SCV web (por ejemplo, Github) ayudar a la
sincronización de los artefactos reutilizables y los productos?

Esta tesis contribuye a las anteriores preguntas de esta manera:

• P1. Proponemos una arquitectura de repositorio SCV, que distingue entre
el repositorio artefactos, donde tiene lugar la ingeniería de dominio, y los
repositorios de productos, donde se produce la ingeniería de producto. Además,
ofrecemos modelos de ramas para cada repositorio en el que operan las acciones
de sincronización.

• P2. Desarrollamos la semántica operacional para las acciones de sincronización.
El modelo de ramas anterior permite expresar las operaciones de sincronización
en términos de construcciones SCV básicas (branch, commit, merge). Esto
a su vez implica que los desajustes eventuales que se producen durante la
sincronización se resuelven à la SCV, es decir, que resaltan la diferencia entre
distintas versiones del mismo artefacto (tradicionalmente, utilizando la opción
diff en SCV). Por lo tanto, no apuntamos a la sincronización automática. Nuestro
objetivo es mucho más humilde: aprovechar los populares mecanismos de SCV
para que los ingenieros de la LPS logren la sincronización de una manera
similar a lo que hacen para los productos individuales. Sin embargo, esto da
como resultado una brecha conceptual entre cómo se conciben las rutas de
sincronización y cómo se realizan hasta la fusión completa. Para cerrar esta
brecha, proponemos extender los SCV con las operaciones de sincronización
SPL.

• P2. Como una prueba de concepto, desarrollamos GitLine, una extensión de
navegador para Firefox, que amplía GitHub con operaciones de sincronización

LPS. Con un solo clic, los ingenieros de producto ahora pueden (1) generar
repositorios de productos desde un repositorio de artefactos, a lo largo de
una determinada configuración de características, (2) ejecutar propagaciones de
actualización para actualizar el producto con nuevas versiones de artefactos
reutilizables y (3) ejecutar propagación de retroalimentación de aquellas
personalizaciones de productos que se quieran migrar a la ID.

Summary

Software Product Line (SPL) engineering has gained considerable momentum. Top
leading companies such as Boeing, Bosch, General Motors, Philips or Siemens resort
to SPLs to broaden their software portfolio, increase return on investment, shorten time
to market, and improve software quality. Full benefits of SPLs are achieved through
automating product derivation out of reusable core-assets. Ideally, product derivation
is limited to indicating the set of features to be exhibited by products, with no further
need for product development. However, achieving such a degree of reuse is not a one-
shot effort but a many year-long journey. Hence, companies often rely on intermediary
stages in which product teams need to change the core-assets as part of the product
derivation process. In this context, both core-assets and products need to co-evolve.

The so-called grow-and-prune model has proven great flexibility to incrementally
evolve an SPL by letting the products grow, and later prune the product functionalities
deemed useful by refactoring and merging them back to the SPL core-asset base.
Herein, both core-assets and products co-evolve by means of two sync paths: while
product code is progressively ported to the core-asset realm following the feedback
path, products are upgraded with newer functionalities and bug-fixes released by
domain engineers following the update path.

On this ground, this Thesis aims at supporting the grow-and-prune model as for
initiating and enacting the pruning. Initiating the pruning requires SPL engineers to
conduct customization analysis, i.e. analyzing how products have changed the core-
assets. Customization analysis aims at identifying interesting product customizations
to be ported to the core-asset base. However, existing tools do not fulfill engineers
needs to conduct this practice. To address this issue, this Thesis elaborates on the
SPL engineers’ needs when conducting customization analysis, and proposes a data-
warehouse approach to help SPL engineers on the analysis.

Once the interesting customizations have been identified, the pruning needs to be
enacted, by merging and refactoring product customizations into the core-asset base.
However, this might cause a merge hell, in cases where there is a large number of
conflicts when disparate product developments need to be reconciled. To address this
issue, this Thesis proposes code peering, i.e. a practice whereby product engineers
inspect and compare other products’ code with their own code. This is intended to
promote early reuse across product teams with the aim of lessening the merge problem.
We discuss four design principles that drive how code peering can be introduced
for SPL development, and realize them through a prototype. Eventually, product
code needs to be ported to the core-asset realm, while products are upgraded with

x

newer functionalities and bug-fixes available in newer core-asset releases. Herein,
synchronizing both parties through sync paths is required. However, the state of-the-
art tools are not tailored to SPL sync paths, and this hinders synchronizing core-assets
and products. To address this issue, this Thesis proposes to leverage existing Version
Control Systems (i.e. git/Github) to provide sync operations as first-class constructs.

Acknowledgements

Let me start with a quote:

“It is good to have an end to journey toward; but it is the journey that
matters, in the end.”

–Ursula K. Le Guin

A PhD resembles a journey, at least to me. In that sense, what matters is not the
achievement of a doctoral degree (the end), but the skills I sharpened, the knowledge
I gained, and the experiences I lived throughout it (the journey). I owe gratitude to all
the people who travelled with me during this journey/rollercoaster.

First, I owe my deepest gratitude to my supervisor Professor Oscar Díaz. There
are many things I learnt from him. I am specially grateful for his socratic way of
teaching, for inculcating us the importance of the problem statement, for his patience,
his continuous encouragement, his wise council, and for always seeking the excellence.

I would like to show my gratitude to my teammates too, who turn the lab into
a nice and stimulating working environment, for encouraging me when we were on
a deadline, for bringing cookies and cakes to the coffee breaks, and for putting up
with me whenever I started to talk about product lines, and “my things”. It has been
a pleasure to have all of you as teammates: Jon Iturrioz, Arantza Irastorza, Maider
Azanza, Felipe Ibañez, Iker Azpeitia, Cristóbal Arellano, Gorka Puente, Josune de
Sosa, Jokin García, Itziar Otaduy, Iñigo Aldalur, Juanan Pereira, Jeremías Pérez, and
Haritz Medina.

I am indebted to Thomas Fogdal, functional manager at Danfoss Drives company,
for giving me the opportunity to make a research visit at their place. I am grateful for
his willingness to collaborate, his open mind, his generous spirit, and his Christmas
events, where he cooks like a three-michelin-star-chef and gathers his team around the
table to have lunch and relax. I do not want to miss the chance to express my gratitude
to all the Danfoss engineers that helped me during my research stage, and for those who
participated into the evaluation sessions even though their agendas were full: Marcus,
Hauke, Helene, Martin, Kent, Henning, Christian, Klaus, Karl, Subhamoy and Supriya.

I want also to thank Danilo Beuche, from Pure-systems company, for promoting
one of our research prototypes (CustomDIFF) in the newsletter of the pure::variants
software release.

My deepest thanks to both Don Batory and Roberto Erick Lopez-Herrejón, for
acting as external reviewers, and for their interest on discussing the the ideas presented
in this Thesis.

xii

Rightly, my family deserves a special mention. I will forever be grateful to my
parents, Miren Karmele Mendizabal and Jesús Manuel Montalvillo, and my granny
“amama Juani”. They have raised us (my sister and me) in values such as, respect,
humbleness, kindness, perseverance, and diligence. But more importantly they have
raised us in love, and they have always encouraged us in every decision we made. To
my sister Adriana, for always drawing a smile on my face when we connect via Skype.
To my beloved Jokin, for his unconditional love, his support, and for his willingness to
discuss my research with him. Thank goodness you are a PhD in software engineering
and you can understand me :-) I want also to thank my friends, “nire kuadrila”, for
being there for me, for understanding my absences, and for just being yourselves and
making me laugh every time we meet.

Finally, I want to thank the Basque Government and the University of the Basque
Country (UPV/EHU) for the economical support I have received during the years 2014
to 2018, without which this Thesis would not have been possible.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Context . 1
1.3 General problem overview . 3
1.4 Problem statement for “identify”: analyzing product customization . . 6

1.4.1 Context & definitions . 6
1.4.2 Root-cause analysis . 7
1.4.3 Design Problem . 9
1.4.4 Research questions . 10
1.4.5 Contributions . 10

1.5 Problem statement for “implement”: peering into peers 11
1.5.1 Context & definitions . 11
1.5.2 Root-cause analysis . 11
1.5.3 Design Problem . 13
1.5.4 Research questions . 14
1.5.5 Contributions . 14

1.6 Problem statement for “implement”: synchronizing core-assets and
products . 15
1.6.1 Context & definitions . 15
1.6.2 Root-cause analysis . 15
1.6.3 Design Problem . 18
1.6.4 Research questions . 18
1.6.5 Contributions . 19

1.7 Research Methodology: Design Science Research 19
1.8 Outline . 21
1.9 Conclusion . 23

2 Mapping Software Product Line Evolution 24
2.1 Overview . 24
2.2 Introduction . 24
2.3 Background . 26

2.3.1 A brief on SPLs . 26
2.3.2 Related mapping studies . 28

2.4 Method . 31

xiv

CONTENTS

2.4.1 Phase 1: Planning the review 32
2.4.1.1 Protocol definition 32

2.4.2 Phase 2: Study identification 33
2.4.2.1 Conducting the search 35
2.4.2.2 Filtering studies 35
2.4.2.3 Evaluating the search 36

2.4.3 Phase 3: Data extraction and classification 36
2.4.3.1 Relevant topic keywording 37
2.4.3.2 Data extraction and mapping 40

2.4.4 Threats to validity . 40
2.4.4.1 Selection of studies 41
2.4.4.2 Classification errors 41
2.4.4.3 Evaluation rubric for this mapping study 42

2.5 Mapping of primary studies . 43
2.5.1 Identify change . 44

2.5.1.1 Monitoring customers 44
2.5.1.2 Monitoring the SPL environment 45
2.5.1.3 Monitoring products 45

2.5.2 Analyze and plan change 45
2.5.2.1 Ascertaining the change impact scope 45
2.5.2.2 Decision-making 48
2.5.2.3 Planning and road-mapping 52

2.5.3 Implement change . 53
2.5.3.1 Built-for-change 53
2.5.3.2 Built-with-change 55
2.5.3.3 Change synchronization 56

2.5.4 Verify change . 59
2.5.4.1 Inconsistency detection 60
2.5.4.2 Scalable verification 61

2.6 Analysis of the results . 62
2.6.1 RQ1: What types of research have been reported, to what

extent, and how is coverage evolving? 63
2.6.2 RQ2: Which product-derivation approach received most

coverage, and how is this coverage evolving? 64
2.6.3 RQ3: Which kind of SPL asset received more attention and

how is this attention evolving? 66
2.6.4 RQ4: Which activities of the evolution life-cycle received most

coverage and how is this coverage evolving? 67
2.6.4.1 Zooming into identify change 68
2.6.4.2 Zooming into analyze and plan change 69
2.6.4.3 Zooming into implement change 70
2.6.4.4 Zooming into verify change 70

2.7 Summary of the results . 71
2.8 Conclusion . 72

xv

CONTENTS

3 Analyzing product customization 73
3.1 Overview . 73
3.2 Problem definition . 74
3.3 Motivating scenario . 76
3.4 A Data Warehouse approach to customization analysis 79
3.5 Requirement analysis . 79
3.6 Dimensional modeling . 83
3.7 Reporting tools . 86
3.8 Evaluation . 90

3.8.1 Participants . 91
3.8.2 Training examples . 91
3.8.3 Procedure . 92
3.8.4 Results . 93
3.8.5 Discussion . 93
3.8.6 Threats to validity . 95

3.9 Related work . 96
3.10 Conclusion . 98

4 Peering into peers 100
4.1 Overview . 100
4.2 Problem definition . 101
4.3 Characterizing the grow phase . 102
4.4 The merge problem . 105
4.5 Characterizing “code peering” in SPLs 106

4.5.1 Code comparison for alleviating branch merging 108
4.5.2 Code comparison within an SPL setting 108

4.6 PeeringHub: a peering utility for GitHub 109
4.6.1 PeeringHub: code peering in GitHub 109

4.7 Evaluation . 114
4.8 Related work . 115
4.9 Conclusions . 117

5 Synchronizing core-assets and products 119
5.1 Overview . 119
5.2 Problem definition . 120
5.3 Product derivation: illustrating the challenge 123
5.4 Proposals on VCSs for SPL development 124
5.5 Proposed branching models . 128

5.5.1 A Branching Model For Core-assets 129
5.5.2 A Branching Model For Product Repositories 129

5.6 SPL sync operations as first-
class constructs in VCSs . 131
5.6.1 Product Fork . 132

5.6.1.1 Leveraging GitHub with ProductFork 134
5.6.2 Update Propagation . 135

5.6.2.1 Leveraging GitHub with UpdatePropagation . . . 137

xvi

CONTENTS

5.6.3 Feedback Propagation . 138
5.6.3.1 Leveraging GitHub with FeedBackPropagation . . 140

5.7 Conclusion . 142

6 Conclusions 143
6.1 Overview . 143
6.2 Results . 143
6.3 Publications . 144
6.4 Research visits . 145
6.5 Assessment and future research . 146
6.6 Conclusion . 148

A Papers on SPL evolution classified on facets 150

B ETL at CustomDIFF 159
B.1 Algorithms for the ETL process . 159

C A brief on git 166
C.1 Version Control Systems . 166
C.2 A brief on Git and GitHub . 167

C.2.1 Data Structures: the Git Object Model 167
C.2.2 Git Basic Operations . 168

C.3 Branching models in VCSs . 171

Bibliography 175

xvii

List of Figures

1.1 SPL maturity stages: from less mature (left) to more mature
(right)[DSB05]). 1

1.2 Grow-and-prune process’ main operations: growing might be due to
customer requests, while pruning might involve both feedback and
update propagations. 3

1.3 What the SPL literature on SPL evolution is not solving for the
grow-and-prune model. Nodes with a green check mark () are
tackled in this Thesis. Refer to chapter 2 for a detailed literature
review on SPL evolution. The map is online at MindMeister
https://tinyurl.com/y7sdyb7w. 5

1.4 Mind map depicting the root-cause analysis for customization analysis.
Interact with it online at https://tinyurl.com/yay46us8. 8

1.5 Mind map depicting the root-cause analysis for peering into peers.
Interact with it online at https://tinyurl.com/y9fqucpe. 12

1.6 Mind map depicting the root-cause analysis for propagating changes
between core-assets and products. Interact with it online at
https://tinyurl.com/ya777m2x. 16

1.7 Design Science Research (DSR) Cycles (taken from [Hev07]). 20
1.8 Chapter map. 21

2.1 Types of changes (based on [BP14, Kla08]). 26
2.2 Systematic Mapping Study process (adapted from [PFMM08a]). . . . 31
2.3 Study identification process. 34
2.4 Elaborating on the “Evolution activity” facet. 44
2.5 Distribution of studies over publication venues: types (left) and

individuals (right). 63
2.6 “Research type” over time. 64
2.7 “Product derivation approach” over time. 65
2.8 “Asset type” over time. 66
2.9 “Evolution activity” over time. 67
2.10 A finer-grained classification for SPL “Evolution activity”. 68
2.11 Mapping “Analyze and plan change” across facets “Asset type” and

“Research type”. 69

xviii

LIST OF FIGURES

2.12 Mapping “Implement change” across facets “Asset type” and
“Research type”. 70

2.13 Mapping “Verify change” across facets “Asset type” and “Research
type”. 71

3.1 Depicting the problem definition for customization analysis with a
mind map. Interact with it online at https://tinyurl.com/yay46us8. . . 74

3.2 WeatherStationSPL branching model: the master branch holds the
core-assets baselines from where SPL products are branched off. . . . 76

3.3 Sensors.js core-asset at Baseline-v1.0. The snippet shows two
variations points. VP1 applies when either WindSpeed or AirPressure
are selected. VP2 applies for Temperature. Notice how VP2 is scoped
within VP1. 77

3.4 Traditional DIFF visualization: differences of file sensors.js between
the one in the Master branch (core-assets) and the one in the
productBerlin branch. 78

3.5 Goal, decisions and information needs for customization analysis.
Notation along the profile introduced in Mazon et al. [MPT07] for
DW requirements. 80

3.6 Time spent on solving information needs for Customization Analysis.
The question description is followed by the average importance
obtained from the questionnaire in Table 3.2. 82

3.7 Start/Snowflake schema for CustomDIFF. 84
3.8 CustomDIFF screenshot: Position map (left) and Analysis canvas

(right). The Analysis canvas displays the alluvial diagram to assess
the customization effort for parent-features (left axe) and products
(right axe). Customizations conducted outside VP bodies (impacting
no feature) are collected under the name “No Feature”. 87

3.9 Drilling-down scenario. Breaking down customization efforts for
Sensors by Sensors’ child features (top); next WindSpeed’s assets
(middle), and finally raw facts (bottom). 88

3.10 Stream-based drill down. Simultaneously breaking down the
customization effort for Sensors and productParis’ packages. 89

4.1 Mind map depicting the root-cause analysis for peering into peers.
Interact with it online at https://tinyurl.com/y9fqucpe. 101

4.2 WeatherStationSPL branching model: the master branch holds the core
assets baselines from where SPL products are branched off. At time t3
productDenmark conducts code peering. 103

4.3 Sequence diagram depicting the grow stage. 104
4.4 The merge problem illustrated: the time since the last merge and the

amount of changes introduced since then, exacerbate the merge problem.105
4.5 A 3-way comparison in KDiff3 for sensors.js. The comparison involves

three branches (see Figure 4.2): Baseline-v1.0 (A), productDonosti
(B) and productDenmark (C). Note how sensors.js is being changed
in productDonosti for two variation points: VP-1 and VP-2. 106

xix

LIST OF FIGURES

4.6 Product-branch display in GitHub. The inlayed peering bar hints
customization endeavors i for the productDenmark’s features. 107

4.7 Alluvial diagrams reachable from peering bars. The display shows
two flows (i.e. customization efforts): (1) from productDenmark into
its features, and (2), from productDenmark’s features to sibling SPL
products. 110

4.8 KDiff3 enactment that results from clicking on the (WindSpeed,
productDonosti) arch in Figure 4.7. 111

4.9 Feature-based slicing for diff(Baseline-v1.0.sensors.js,
productDonosti.sensors.js). The diff-output (left) is broken down
based on variation points (right). Each slice accounts for a patch
function. 112

5.1 Depicting the problem definition for propagating changes between
core-assets and products with a mind map. Interact with it online at
https://tinyurl.com/ya777m2x. 120

5.2 The SPL synchronization challenge (adapted from [KC13]) 122
5.3 A closer look into the scenario described in Figure 5.2: branching

impact due to (1) Product Fork, (2) Update Propagation and (3)
Feedback Propagation. CA stands for the core-assets of the sample
SPL. 128

5.4 Product Fork involves 3 branches & 3 commits. 133
5.5 Leveraging GitHub with ProductFork 134
5.6 Update Propagation involves 1 commit for each core-asset updated

core-asset & 1 pull_request . 137
5.7 Leveraging GitHub with UpdatePropagation: enacting (top) and

outcome (bottom). 139
5.8 Feedback Propagation involves 1 branch & 1 commit for each Custom

branch involved & 1 pull_request . 140
5.9 Leveraging GitHub with FeedBackPropagation: enacting (top) and

outcome (bottom). 141

B.1 WeatherStationSPL branching model: the master branch holds the core
assets from where SPL products are branched off. 159

B.2 The diff-output (a.k.a. patch) for the DIFF(C5, C17), w.r.t file sensors.js
file. 162

B.3 Custom_diffs obtained after applying Algorithm B.2 to the diff-output
in Figure B.2: VP-1 (top) and VP-2 (bottom). 165

C.1 Git Object Model . 168
C.2 Commit operation . 169
C.3 Branch + Commit Operation . 169
C.4 Merge Operation . 170
C.5 Fork Operation . 170
C.6 GitHub additional object Model (partial model). 171
C.7 Branching models for CPF (single-systems). 173

xx

List of Tables

2.1 Related mapping studies. 29
2.3 CIA scenarios. 46
2.4 Classification of studies based on the decision to be taken. 49

3.1 WeatherStationSPL features at Baseline-v1.0. 78
3.2 Rating the importance of information needs along a 5 point LIKERT

scale. 83
3.3 Experiment: products and customization effort per feature. 91
3.4 CustomDIFF’s perceived usefulness. 93
3.5 CustomDIFF’s perceived ease of use. Evaluation along a LIKERT

scale from 1 (total disagreement) to 7 (total agreement). 94
3.6 CustomDIFF’s specific utilities. Evaluation along a LIKERT scale

from 1 (total disagreement) to 7 (total agreement). 94
3.7 Danfoss Drive SPL contextual data along Petersen’s facets [PW09]. . 96
3.8 Related work on monitoring the application engineering process. . . . 97

4.1 PeeringHub perceived usefulness and ease of use based on Davis’
template. 114

4.2 Related work on monitoring the application engineering process. . . . 116

5.1 VODPlayer-PL core-assets. 123

xxi

Chapter 1

Introduction

1.1 Overview
This chapter provides the reader with an overview of the Thesis. Section 1.2
contextualizes the Thesis, while Sections 1.3, 1.4, and 1.6 describe the problems that
this Thesis tries to solve. Finally, Section 1.7 introduces the research methodology
followed in this Thesis.

1.2 Context
Software Product Lines (SPL). SPL engineering has gained considerable momentum.
Companies such as Boeing, Bosch, General Motors, Philips or Siemens resort to SPLs
to broaden their software portfolio, increase return on investment, shorten time to
market, and improve software quality1 [CN01a, vdLSR07, Wei08]. In essence, SPLs
aim at supporting the development of a whole family of software products through a

1Refer to http://splc.net/hall-of-fame/ for a list of successful SPL examples.

Am
ou

nt

of
 e
ffo

rt

Standardized
infrastructure

Platform Software
Product Line

Configurable
Product Family

Scope of reuse

Figure 1.1: SPL maturity stages: from less mature (left) to more mature
(right)[DSB05]).

1

Chapter 1. Introduction

systematic reuse of shared assets [CN01a]. To this end, SPL development is separated
into two interrelated processes: (1) domain engineering (DE), where the scope and
variability of the system is defined and reusable core-assets are developed; and (2)
application engineering (AE), where products are derived by selecting and resolving
variability [PBvdL05a, vdLSR07, CN01b].

In order to obtain the full benefit, SPL engineering aims at automating product
derivation out of the reusable core-assets. These assets are characterized in terms of
features, i.e. distinctive user-visible aspects, qualities, or characteristics of the SPL
products. Ideally, product derivation is limited to indicating the set of features to be
exhibited by products (so called "product configuration"), with no additional need for
product development (“product customization” hereafter). In this scenario, products
are obtained through a fully “Configurable Product Family” (refer to Figure 1.1), where
almost the 100% of the effort is dedicated by domain engineers to the building of
reusable assets, and, product customization does not exist. However, real scenarios
might be far from ideal.

SPL Evolution. First, reaching a “Configurable Product Family” is hardly a one-
shot effort but rather the result of a many year-long journey [KJK+06]. As shown
in Figure 1.1, this might require intermediary stages (e.g. “Platform”, “Software
Product Line”), in which the reusable core-asset base does not fully support products’
needs, and hence, application engineers need to develop the remaining functionalities
themselves. Indeed, experiences from industry revealed that SPL adoption is frequently
initiated with a partial core-asset baseline release that is first refactored from (a
subset of) existing product variants, and gradually enlarged with newer functionalities
extracted from products derived from it (e.g. [JB09, KST+14, TFC+09]). These
newer functionalities are made available in the next SPL release, i.e. the set of
core-asset, tested and ready to be reused by application engineering teams, from
which newer products can derived and existing ones updated with newer functionality.
Herein, a critical decision is the pace at which these SPL releases are made available.
Commonly SPL releases come at heartbeats, i.e. regular intervals (e.g. twice a year)
[Bre, GSLC14]. The benefits of heart-beaten releases is that released core-assets are
supposed to work together. The downside is latency: it is not until the next SPL release
that products can benefit from the core asset new versions. Similarly, it is not until the
next SPL release that any of the product customizations promoted to core assets can be
reused by other products. This might hinder products’ time-to-market.

Second, even if SPLs have reached a “Configurable Product Family” level, SPLs
might reach an scale and complexity that make them infeasible to evolve in a short time
frame. Hence, when an organization aims to react to market events or urgent customer
requests, strategies are needed to support fast adaptation, e.g. with product-specific
extensions [DSB05, Jen07, Sch06a]. The bottom line, is that product customization
can not always be avoided. Either because the SPL is on an “intermediary stage”,
or because the “SPL environment” forces the SPL to react faster through product
customization. In this sense, highly customized products might be the symptom of
not-yet fully mature SPLs, or volatile markets. Yet customized products uncover the
potential of future SPL features, e.g. pointing to new customer requirements or new
market niches. The question would be how to drive the evolution of the SPL taking into
account that both core-assets and products need to co-evolve. The answer very much

2

Chapter 1. Introduction

2 months

Platform
backlog

New platform
release

Product-A
backlog

New product
release

Product-N
backlog

New product
release

5 weeks

2 weeks

Refactoring request

Predictive changes
request

Update propagation
 requests

Customer requests

Update propagation
 requests

Feedback propagation
requests

Customer requests

Figure 1.2: Grow-and-prune process’ main operations: growing might be due
to customer requests, while pruning might involve both feedback and update
propagations.

depends on the SPL evolution model.
The grow-and-prune model. This model distinguishes between two stages during

SPL evolution: grow & prune. The model allows products to grow once derived from
the SPL core-asset base, and later prune the (product) functionalities deemed useful
by refactoring and merging [FV03]. In this setting, both core-assets and products
co-evolve by means of two paths: while product code is progressively ported to the
core-asset realm following the feedback path, products can also be upgraded with
newer functionalities and bug-fixes released by domain engineers following the update
path. Figure 1.2 illustrates this scenario where it is easy to guess the rise of eventual
tensions between domain engineers in the pursuit of quality and re-use effectiveness,
and application engineers who are pushed by time-to-market and customer pressures.
In this context, some issues arise. The next Section provides a general overview of the
problem.

1.3 General problem overview
Evolving SPLs with the grow-and-prune model is challenging. The key is to find a
balance between the right amount of growth and pruning [FV03]. Support for the grow-
and-prune model should be given along the steps in the change/evolution mini-cycle
proposed by Yau et al. [YCM93]:

3

Chapter 1. Introduction

1. Identify change. This step deals with identifying product customization.
This requires to keep track of the customization effort involved in adapting
the reusable core-assets for product-specifics, so that engineers can afterwards
perform the required analyses in order to know how exactly derived products are
changing the reusable core-assets; which are the most changed core-assets; and
which are the products most customized. Hereafter, we refer to this practice as
“customization analysis”. The main problem is that customization analysis is
time-consuming and error-prone, due to the lack of tools to provide a holistic
view of product customization in terms of SPL concepts, i.e. “product” and
“feature”.

(a) This Thesis aims at aiding engineers to perform customization analysis.
Section 1.4 delves deeper into the problem statement of this issue.

2. Analyze and plan change. This step deals with analyzing which of the
previously identified product customizations (the growth) deserves to be
promoted to the core-assets base, and when it should be made. This requires
to balance between the costs of refactoring and merging product customizations
into the core-asset base, and the benefits of having them as reusable assets.
Herein, cost models, impact analysis and risk assessments should support the
decision.

(a) This Thesis does not aim at contributing to this issue.

3. Implement change. This step deals with enacting the pruning, i.e. propagating
changes between core-assets and products to keep them synchronized.
Product customizations are pruned into the core asset base through feedback
propagations, while products can also be upgraded with newer functionalities
and bug-fixes through update propagations. Here, two issues arise:

(a) merging and refactoring of product customizations into the core-asset base
is difficult and time-consuming (a.k.a merge problem), due to the large
number of conflicts that arise when disparate product developments are
merged together.

i. This Thesis aims at lessening the chances for merge conflicts. Section
1.5 delves deeper into the problem statement of this issue.

(b) propagating changes between core-assets and products is time-consuming
and error-prone, due to the lack of adequate tools

i. This Thesis aims at aiding engineers on keeping both parties in sync.
Section 1.6 delves deeper into the problem statement of this issue.

4. Verify change. This step deals with verifying and validating that propagated
changes due to the pruning, do not affect the SPL products in an unexpected
way. This would require to run regression tests on all the affected products.

(a) This Thesis does not tackle this issue.

4

Chapter 1. Introduction

Fi
gu

re
1.

3:
W

ha
tt

he
SP

L
lit

er
at

ur
e

on
SP

L
ev

ol
ut

io
n

is
no

ts
ol

vi
ng

fo
r

th
e

gr
ow

-a
nd

-p
ru

ne
m

od
el

.
N

od
es

w
ith

a
gr

ee
n

ch
ec

k
m

ar
k

(
)

ar
e

ta
ck

le
d

in
th

is
Th

es
is

.
R

ef
er

to
ch

ap
te

r
2

fo
r

a
de

ta
ile

d
lit

er
at

ur
e

re
vi

ew
on

SP
L

ev
ol

ut
io

n.
Th

e
m

ap
is

on
lin

e
at

M
in

dM
ei

st
er

ht
tp

s:
//t

in
yu

rl.
co

m
/y

7s
dy

b7
w

.

5

Chapter 1. Introduction

From the evidences gathered from a Systematic Mapping Study (SMS) we conducted,
we could conclude that the state of-the-art in SPL evolution provides little support for
SPL evolution in a grow-and-prune setting (refer to chapter 2 for a detailed account
on the SMS). Figure 1.3 depicts the concerns not solved by the SPL evolution research
in a grow-and-prune setting. Concerns are arranged along the steps in the evolution
mini-cycle (nodes with white background). Those nodes with a green check mark ()
are those investigated in this Thesis. The yellow nodes state the problem statements
tackled by this Thesis. Specifically, we abound on the “identify” and “implement”
change steps.

The next two Sections delve deeper on the two problems addressed by this Thesis.
Methodologically, we resort to Design Science Research (DSR). DSR addresses design
science problems (see Section 1.7), which tackle the design of artifacts to interact with
a real world problem context in order to improve something in that context. First, we
resort to root-cause analysis to methodically identify and correct the root causes of a
problem. Second, when formulating design problems, we resort to Wieringa’s [Wie14]
template:

Improve <a problem context>
by <(re)designing an artifact>
that <satisfies some requirements>
in order to <help stakeholders achieve some goals>

The template provides information about what context is going to be improved, by the
design of which artifact, such that a set of requirements are fulfilled, in order to meet
stakeholders’ goals. To exercise the template with an example, take the design problem
of planning routes for aircraft taxiing on airports [tM10]:

Improve taxi route planning of aircraft on airports
by designing multi-agent route planning algorithms
that reduces taxiing delays
in order to increase passenger comfort and further reduce airplane

turnaround time

For each of the problems tackled in this Thesis, we provide: (1) the context and key
definitions, (2) the root-cause analysis of the problem to be solved, (3) the design
problem formulated along Wieringa’s template, (4) the set of research questions to
be addressed, and finally, (5) the contributions.

1.4 Problem statement for “identify”: analyzing
product customization

1.4.1 Context & definitions
Following the grow-and-prune model, products can grow to meet customer changing
needs or to resolve urgent bug-fixes. This growth can be achieved by adapting the core-
assets from which products were derived, or by creating brand-new product specific

6

Chapter 1. Introduction

assets. In the context of this Thesis, we refer to this growth as “product customization”,
or just, “customization”. Hence,

product customization takes place during product derivation, and refers to the
process of changing the core-assets from which products were derived from, or
create brand-new assets, in order to meet customer needs, or to resolve urgent
bug-fixes.

Eventually, product customization needs to be pruned, by refactoring and merging into
the core-asset base. The pruning is initiated with the “identify change” step, to identify
product customization. This requires SPL engineers to elucidate whether (and which)
products have customized the core-assets they were derived from, and analyzing how.
Herein, a new range of questions might arise: how much effort are product developers
spending on product customization?; how can customizations be promoted to core-
assets?; which are the most customized core-assets?; to which extent is core-asset code
being reused for a given product?; etc. This requires to look at the differences between
core-assets and namesake assets once customized by products. In the context of this
Thesis, we refer to this practice as “customization analysis”. Hence,

customization analysis is the practice by which SPL engineers analyze how products
have changed the core-assets they were derived from. Customization analysis
is intended to help SPL engineers identify interesting customizations to be
promoted to reusable core-assets for the next core-asset release.

The following Section introduces the problem that rises within this context, and its
root-cause analysis.

1.4.2 Root-cause analysis
Figure 1.4 depicts the below-mentioned root-cause analysis as a mind map. The reader
is encouraged to interact with the mind map online at https://tinyurl.com/yay46us8.
The nodes can be unfolded to uncover the supporting evidences for each of the claims.

Problem statement

• Analyzing how products customized core-assets is time-consuming and error-
prone.

Cause

• Large number of files to be reviewed. Anastasopoulos et al. [Ana09] provide
a list of the steps that engineers should manually perform in order to know if
any product has changed a given core-asset. Herein, traditional DIFF utilities are
helpful, as they help engineers spot the differences between the core file and the
same file once customized by a product (e.g. [FV03, SSRS16]). However, this
one-diff-at-a-time approach can hardly scale up to SPLs, where both products
and core-assets can easily account for hundreds of files.

7

Chapter 1. Introduction

Figure 1.4: Mind map depicting the root-cause analysis for customization analysis.
Interact with it online at https://tinyurl.com/yay46us8.

• Low abstraction level at which analysis is conducted. Not only engineers
face a “bunch” of diffs to analyze, but this analysis requires to be done at higher
levels of abstraction. Faust et al. [FV03] briefly reported how the SPL engineers
at Deutsche Bank developed an script that computed how much code was specific
to a product (measured by the lines of code). However, as the authors themselves
recognize, this was not sufficient for engineers, and they ended up manually
inspecting the code. Files are an implementation notion. By contrast, “product”
and “feature” are abstract notions that are fleshed out through files. Analysis
should then abstract away from files and be rephrased in terms of “product” and
“feature”.

• Lack of dedicated visualizations. Traditional diff utilities do not scale up to the
potential thousand of changes that might be involved in a SPL. Appropriate tools
are needed, not only to compute product customizations at feature and product
abstraction levels, but also capable of “properly” visualizing these insights.

Consequences The pressure to deliver a new SPL core-asset release, together with an
overwhelming set of customizations to analyse, risk the next SPL release not to fulfill
the product needs (i.e. the right set of customizations will not eventually be pruned). If
the next SPL release does not fulfill product needs, following consequences occur:

• Reuse decay. Products would perform more product customization, and reuse
less from the SPL core-asset base. Products would then deviate from the SPL
core-asset base, which risk a reuse decay [CKM+08][NNK16], i.e. a situation
where products have degenerated that much from the SPL that products no longer
reuse assets from the SPL, as they are not deemed useful anymore; or if deemed
useful, integrating them into the product is so costly that it does not compensate

8

Chapter 1. Introduction

to reuse it (due to the high number of conflicts between the new core-assets and
the customized code).

• Productivity drop and higher time-to-market. If application engineers start
to rely more and more in product customization, this would directly lower down
their productivity, and would in turn increase the time-to-market of the products.

How can we help with the problem of “analyzing how products customized core-assets
is time-consuming and error-prone”? Next Section provides the design problem along
Wieringa’s template.

1.4.3 Design Problem
Design problems assume a context and stakeholders goals, and call for an artifact
such that the interactions of (artifact × context) help stakeholders to achieve their goals
[Wie14]. Our design problem formulated along the lines of Wieringa’s template could
be described as follows:

Improve customization analysis

by designing a data warehouse approach

that satisfies scalability & usefulness (as for satisfying engineers’
information needs) so that SPL engineers can effectively conduct the
“identify” step during SPL evolution

This template reads as follows. The context to be improved would be “customization
analysis”, and the goal to achieve would be for SPL engineers to effectively conduct the
“identify” step during SPL evolution, i.e. identify all the customizations that happened
in products. To this end, we advocate for the design of an artifact: a data warehouse
(DW). This purposeful artefact needs to address a set of requirements. First, the
artifact must be scalable, as product customizations can account for hundreds of files
across hundreds of different products. In this sense, DW approaches are well known
to be capable of dealing with big volumes of data. Second, the design of the data
warehouse needs to fulfill the “information needs” required by the SPL engineers when
conducting customization analysis (e.g. “which are the most changed features by the
products?”,“how has the product PA customized the feature FA”). Gathering the data
for these information needs might require to access heterogeneous data from different
and multiple information systems. To this end, raw data is conducted through an
Extract, Transform, Load (ETL) process that ends up being arranged in a star schema,
which accounts for facts (i.e. the aspects to be measured) and dimensions (i.e. the
ways measures are going to be broken down). Finally, product customization needs to
be visually depicted. When product customization accounts for hundreds or thousands
of records, information can be better understood with visual representations.

On these grounds, we believe DW techniques might tackle “satisfies scalability
& usefulness” for improving “customization analysis”. Next Section lists the set of
research questions (RQs) addressed in this Thesis.

9

Chapter 1. Introduction

1.4.4 Research questions
The use of DWs for customization analysis raises a set of research questions (RQs).
These are listed next.

RQ1: Which are the information needs for customization analysis? For each
information need, how much time is needed to get it?

By investigating this RQ, we aim at obtaining the set of information needs required by
the SPL engineers when conducting customization analysis (e.g. “which are the most
changed features by the products?”, “How has the product PA customized the feature
FA”). These are the requirements that need to be met by our DW approach. We also
look into how much time SPL engineers need to get those “information needs” when
performing customization analysis.

RQ2: To what extent can previous information needs be satisfied through a data
warehouse? If so, what would its star schema look like?

By investigating this RQ, we aim at designing a DW approach that captures the
information needs previously identified. The star schema needs to be designed to
support the analysis of customization (i.e. facts) at different levels of abstraction (i.e.
dimensions).

RQ3: How can customization analysis be visualized?

By investigating this RQ, we aim at visually representing product customization to easy
customization analysis at a glance.

1.4.5 Contributions
This Thesis aims at contributing to the previous research questions as follows:

RQ1. We elaborate on the information needs that arise during SPL evolution
scenarios (“feature evolution” and “product evolution”). The importance of each
information need, and the required time to get them are validated through a
questionnaire delivered to SPL practitioners.

RQ2. We developed CustomDIFF, a DW approach to customization analysis that
uses Git as the operational system from where fact data is obtained, and
pure::variants as the SPL framework. The designed star schema allows SPL
engineers to aggregate customization facts along different levels of abstraction,
such as, product, feature, core-asset and component. CustomDIFF has been
tested with SPL practitioners to evaluate its usefulness and use of use for
customization analysis.

RQ3. We resort to Alluvial diagrams to visualize the customization effort at a
glance. These diagrams are a type of flow diagrams. Here, the flow stands
for the customization effort that goes from core-assets to SPL products where
customization was needed.

10

Chapter 1. Introduction

1.5 Problem statement for “implement”: peering into
peers

1.5.1 Context & definitions
The pruning requires that those product customizations deemed useful are integrated
into the core-asset base by merging and refactoring [FV03]. Note, that due to the
previous “grow” phase, products might have diverged to much from each other. During
the pruning domain engineers need to reconcile these divergences by resolving the
conflicts that arise from merging together disparate product customizations. The higher
the divergences between the products, the higher the conflicts and the complexity to
resolve them. When the time to resolve these conflicts exceed the time needed to
perform the original changes, we are in the so-called merge problem situation [Duv07]
(a.k.a integration hell or merge hell). Hence, the

merge problem arises during the pruning stage, when disparate product
customizations are merged into the core-asset base resulting in a multitude of
conflicts, whose time to be resolved exceed the time it took to make the original
changes.

Our hypothesis is that providing application engineers integrated support for looking
into other products’ code right during product development, promotes early reuse
across products and small refactoring improvements, in the search lessening the
conflicts of merge problem that occurs during the pruning. We refer to this practice
as “code peering”. Hence,

Code peering (or peering) refers to the practice that takes place during product
development, whereby product engineers inspect and compare other products’
code with their own code, and if interested, merge them together. Code peering
is intended to promote early reuse of product developments across product teams,
with the aim of lessening the merge problem during pruning.

The next Section delves deeper into the problem and its root-cause analysis.

1.5.2 Root-cause analysis
Figure 1.5 depicts the root-cause analysis as a mind map. The reader is encouraged to
interact with the mind map at https://tinyurl.com/y9fqucpe. The nodes can be unfolded
to uncover the supporting evidences for each of the claims.

Problem statement

• Merging and refactoring product customizations into the core-asset base is
difficult and time-consuming.

11

Chapter 1. Introduction

Figure 1.5: Mind map depicting the root-cause analysis for peering into peers. Interact
with it online at https://tinyurl.com/y9fqucpe.

Causes

• Large amount of conflicts. During the growth phase, products detach from the
core-asset baseline, and follow their own life-cycle, without paying attention
to what other product teams are developing. The more the products deviate
from each other during the growth phase, the higher the chances for conflicts
during the merge. These conflicts arise in cases where across product teams,
the same functionality is implemented multiple times (but differently in each
product) [DSB05, TMMK11]. Afterwards, domain engineers need to reconcile
these different implementations into a single one that subsumes all of the others.
Additionally, in cases where different functionalities are implemented across
different products, conflicts also arise when these all need to be merged. What is
needed is a way so that product teams do not deviate that much from each other,
hence, facilitate the later merging. The difficulty of the merge conflicts, and
hence, the time needed to resolve them is influenced by (1) the complexity of the
conflicting lines, (2) the knowledge of the developers on the conflicting code, (3)
the complexity of the files with conflict, and (4) the number of conflicting lines
[MNSD17].

• Large amount of product customizations. The higher the number of products
and product customizations, the higher the the chances for conflicts when these
are merged together.

Consequences

• Productivity drop & higher time-to-market. The integration work and effort
for porting product customizations into the core asset can become a major part
in the DE teams work load, if there are many product customizations to prune,
and if these cause a large amount of conflicts to resolve. This reduces the time

12

Chapter 1. Introduction

for DE to work on feature improvements and new feature requests [JB09]. This
paces down the next core-asset baseline release, compromising product’s time-
to-market.

How can we help with the problem of “merging and refactoring product customizations
into the core-asset base is difficult and time-consuming”? Next Section provides the
design problem along Wieringa’s template.

1.5.3 Design Problem
Our design problem formulated along the lines of Wieringa’s template [Wie14] is as
follows:

Improve the merge problem

by leveraging Web Augmentation, Data Warehouse and 3-way comparison
techniques for code peering

that satisfy respect focus and compatibility

so that the chances for conflicts are lessen and SPL engineers can
effectively conduct the “implement” step during SPL evolution

This template reads as follows. The context to be improved would be “the merge
problem” that arises during the pruning of product customizations, and the goal to
achieve would be for SPL engineers to effectively conduct the “implement” step
during SPL evolution, i.e. merging and refactoring product customizations. To this
end, we advocate for leveraging Web augmentation (WA) [DA15], Data Warehouse
(DW), and 3-way comparison&merging techniques to provide peering functionality.
Web augmentation permits third parties to adapt Web sites, data warehouse techniques
enable making better and faster decisions [KR02], and 3-way comparison&merging
techniques help engineers compare&merge two versions of a file while also considering
the origin of both files (a.k.a. common ancestor) [3waa].

In this Thesis, we utilize web augmentation techniques to enhance Github, the
most popular web-based Git-based Version Control System (VCS) repository hosting
service, with a peering bar that makes product teams aware of what features are other
product teams currently customizing. This bar brings product engineers into a DW
solution, when clicking on it. This web-based DW solution permits product teams to
have an overview on how much are other product customizing the features their product
is reusing. Finally, the DW solution acts as a 3-way comparison&merging enactor,
that permits product teams to compare their product’s code with other products’ code,
for a given feature, and merge them if wanted. This cross-product peering and
reuse lessens the deviations between products, and as consequence, would lessens the
conflict occurrence during the pruning phase for domain engineers. Hence, this Thesis
proposes the use of both WA, DW, and 3-way comparison techniques during the grow
phase, so that SPL engineers can effectively conduct “implement change” step during
the prune phase.

Although, code peering encourages easy pruning, this might be an ancillary activity
from an AE perspective, as for them, product development comes first. This has a main

13

Chapter 1. Introduction

implication: code peering should “respect the focus” of application engineers, i.e. do
not interrupt product development. Additionally, support for code peering needs to
satisfy compatibility requirements, i.e. the extent to which the enhancement is aligned
to previous user experiences [and82]. In our case, this experience refers to the usage
of Github. Hence, the solution should be compatible with Github way of working.
On this grounds, we believe that WAs techniques are good means for enhancing web-
based Version Control System (VCS) tools for code peering, without compromising
application engineers’ focus on product development.

Next Section lists the set of research questions (RQs) addressed in this Thesis.

1.5.4 Research questions
This Thesis elaborates around three main research questions:

RQ1: How is the grow phase conducted in practice?

By investigating this RQ we aim at making explicit who, when and how do stakeholders
participate during the grow phase. Although the grow-and-prune model is being
referred to in the literature, the nitty-gritty details have seldom been reported.

RQ2: What are the characteristics of the merge problem in SPLs? And, how can we
lessen the merge problem in SPLs?

By investigating this RQ we aim at identifying the characteristics that turn the pruning
phase into a merge problem, and a possible way to lessen this.

1.5.5 Contributions
This Thesis aims at contributing to the previous research questions as follows:

RQ1. Description of the roles and interactions that intermingle in a grow-and-prune
approach to SPLs, motivated by the Danfoss case.

RQ2. Characterization of the merge problem and how it differs from the merge
problem that also appears in traditional single-system development. We propose
a new practice, code peering, as a possible way to alleviate it. This begs
the question whether it is worth diverting product developers’ attention for the
sake of making easier the subsequent pruning by domain engineers. Using the
theory of Attention Investment [Bla02] as a narrative, we introduce four design
principles that drive how code peering can be introduced for SPL development.

RQ2. A realization of these principles using GitHub as the VCSs, and pure::variants
as the SPL framework. As a proof-of-concept we developed PeeringHub, a
tool that supports code peering through: (1) a Chrome extension that enhances
GitHub with peering bars that provide brief information about what features are
other peers changing, (2) a web-based application that provides alluvial-based
high-level visualizations indicating the features available for code peering, and
(3) feature-based 3-way comparisons so that product engineers can analyze how
a given product is changing the code of a given feature w.r.t its own.

14

Chapter 1. Introduction

1.6 Problem statement for “implement”:
synchronizing core-assets and products

1.6.1 Context & definitions
Enacting the pruning stage requires propagating changes between core-assets and
products, so that both parties are synchronized. This introduces two sync operations:
the update propagation (from Domain Eng. to Application Eng.), and the feedback
propagation (from Application Eng. to Domain Eng.) [Kru03]:

Feedback propagation is the process that serves for: extending the scope of the
product line to emerging application engineering requirements [Kru03], as well
as, incorporating bug-fixes resolved in products [FSK+16]. The integration of
these changes into the core-asset base may require updates to be applied to
already existing products [Kru03].

Update propagation is the process that serves for: configuration repair (synchronize
products configuration when variability model changes) [BM14], as well as,
product upgrade (where latest versions of reusable assets are propagated to
products) [Kru03]. In the latter case, for every product derived from the original
core-asset, an update operation is required. If products have customized the core-
asset then, the update operation may require a manual merge for each product
[Kru03]. When to conduct the upgrade differs significantly for the different
products in the SPL. While some tend to upgrade rather quickly, some do not
upgrade for a long time, even when not close to the product’s release [JB09].

In order to preserve a correct, complete and consistent synchronization between core-
assets and products, Software Configuration Management (SCM) for SPL development
needs to account also for these propagations. SCM is the discipline that enables
engineers to keep control and track software changes (i.e. evolution). Product line
SCM must support [CN01a]: (1) the derivation process of a product from the core-
asset base, (2) update propagation process, (3) feedback propagation process. In a
nutshell, SCM fulfill these requirements by relying on both (1) tools to track changes
to software assets, i.e. Version Control Systems (VCSs), as well as, on (2) policies for
engineers that establish when and how to branch, merge, and commit code (captured as
branching models). However, the state of-the-art tools and practices are not tailored to
SPL specifics, and this causes update and feedback propagations to be time-consuming
and error-prone.

The next Section delves deeper into the problem and its root-cause analysis.

1.6.2 Root-cause analysis
Figure 1.6 depicts the root-cause analysis as a mind map. The reader is encouraged
to interact with the mind map at https://tinyurl.com/ya777m2x. The nodes can be
unfolded to uncover the supporting evidences for each of the claims.

15

Chapter 1. Introduction

Figure 1.6: Mind map depicting the root-cause analysis for propagating
changes between core-assets and products. Interact with it online at
https://tinyurl.com/ya777m2x.

Problem statement

• Both feedback propagation and update propagation are time-consuming and
error-prone.

Causes

• VCSs not tuned for SPL specific operations. VCSs are mainly thought
for single-systems, and hence, they do not support product derivation, nor
the update and feedback propagation paths required for SPL development
[Ana13, TMN08, vGB02]. State-of-the-art VCSs, such as Git/GitHub, provide
the basics but fall short in supporting sync operations between separated VCS
repositories (e.g. a CoreAsset repository and a Product repository). All GitHub
offers is the fork link to create a clone of a repository. However, forking (i.e.
cloning) is not how products are derived. Indeed, products are built from a
subset of core-assets while forking would entail copying the entire CoreAsset
repository. Likewise, GitHub’s pull request is also thought for synchronizing
a whole repository, hence lacking a more piecemeal synchronization, i.e. at
feature level. The same reasoning applies if product derivation is equated to
branching instead as to forking. This lack of adequacy forces engineers to rely
on workarounds, which are time-consuming and error-prone.

• Lack of guidelines for branching and merging. While VCSs are tools that
track software development, branching and merging policies provide rules to

16

Chapter 1. Introduction

support the efficient synchronization of software development efforts. These
rules are captured in the form of branching models. Extensive literature exists
on branching models for single-system development, e.g. [ABCO98, WS02b,
PSW11, Gitb]. In the case of SPLs, little details are given about how this
is exactly done. This is unfortunate since the adequacy of branching models
very much depends on the processes to be supported. Indeed, industrial
experiences have reported how the lack of stablished branching and merging
policies prevented engineers from synchronizing their developments, causing
inefficiencies [NNK16][JB09].

• Large number of products and core-assets. When a core-asset is upgraded,
existing products might need to get this upgrade. If products have customized
the core-asset then, the update operation may require a manual merge [Kru03].
Since products reuse only a sub-set of the core-asset base, engineers would
need to elucidate only the newer versions of the core-assets that the product
is reusing need to be propagated. Hence, the process of syncing core-assets and
products requires a big effort for SPLs that account for hundreds of core-assets
and products.

• Conflicting changes between DE & AE. Syncing changes between core-assets
and products can be a very time-consuming and error-prone process if the
newer versions of core-assets conflicts with product customization. The longer
both parties wait to sync, the greater the chance for conflicting changes. The
appropriate time to conduct the upgrade differs significantly for the different
products in the SPL. While some tend to upgrade rather quickly, some do not
upgrade for a long time, even when not close to the product’s release [JB09].
This risks synchronizations to be further postponed, which higher the change
for conflicting changes, and for a time-consuming and error-prone integration
process.

Consequences

• Productivity drop and higher time-to-market. If core-assets and products are
not synchronized, products would not get the latest available bug-fixes and new
functionalities [JB09]. Hence, products would need to develop these themselves,
which makes application engineers less productive, and causes a higher time-to-
market of products.

• Reuse decay. The less synchronized the products are with the core-assets, the
more the products deviate from the core-asset base. This means that products
would less frequently want to reuse assets from the core-asset base, as the
updates would require more and more integration effort. The longer the update
delay, the higher the amount of newly available updates, and the higher the
conflicts between DE and AE developments. This risks the SPL to a reuse decay.
Unless products are in sync with latest available updates, products will start
clone-and-own outside the SPL and in the second case do not upgrade [JB09].

17

Chapter 1. Introduction

How can we help on the problem of “both feedback propagation and update
propagation are time-consuming and error-prone”?Next Section provides the design
problem along Wieringa’s template.

1.6.3 Design Problem
Our design problem formulated along the lines of Wieringa’s template [Wie14] is as
follows:

Improve update propagation and feedback propagation

by using Web Augmentation techniques to enhance Github to SPL
practices

that satisfy compatibility

so that SPL engineers can effectively conduct the “implement” step during
SPL evolution

This template reads as follows. The context to be improved would be “update
and feedback propagation process”, and the goal to achieve would be for SPL
engineers to effectively conduct the “implement” step during SPL evolution, i.e.
synchronizing core-assets and products. To this end, we advocate for enhancing VCS
tools by means of Web Augmentation (WA) techniques. Specifically, we leverage
Github and extend its functionality with operations though for SPLs (i.e. product
derivation, and update&feedback propagation). However, this enhancement, needs
to satisfy compatibility requirements. Compatibility refers to the extent to which
the enhancement is aligned to previous user experiences [and82]. In our case, this
experience refers to the usage of Github. Hence, the solution should be compatible
with Github way of working.

On this grounds, we believe WAs techniques are good means for enhancing web-
based VCS tools for SPL specifics. Next Section lists the set of research questions
(RQs) addressed in this Thesis.

1.6.4 Research questions
This Thesis elaborates around two main research questions:

RQ1: How can products and core-assets be arranged in VCSs (e.g. Git), and how does
the branching model look like?

By investigating this RQ we aim at elucidating how core-assets and products, which
are developed at different paces and by different teams, can be arranged under VCS
repositories.

RQ2: How can VCSs’ front-ends (e.g. Github) help on synchronizing core-assets and
products?

By investigating this RQ we aim at providing synchronization operations as first class
constructs using VCS basic operations (i.e. commit, branch and merge).

18

Chapter 1. Introduction

1.6.5 Contributions
This Thesis aims at contributing to the previous research questions as follows:

RQ1. We propose a VCS repository architecture, which distinguishes between the
CoreAsset repository, where domain engineering takes place, and Product
repositories, where product engineering occurs. We additionally provide
branching models for each repository in which sync actions operate.

RQ2. We elaborate on the operational semantics for sync actions. The previous
branching model permits sync operations to be expressed in terms of basic
VCS constructs. This in turn implies that eventual mismatches that rise during
synchronization are resolved à la VCS, i.e. highlighting diff -erence between
distinct versions of the same artifact (traditionally, using the diff option in VCSs).
Therefore, we do not aim at automatic sync. Our aim is much more humble:
tap into VCS popular mechanisms for SPL engineers to achieve sync in a way
similar to what they do for single products. However, this results in a conceptual
gap between how sync paths are conceived, and how they are realized down into
branching and merging. To close this gap, we propose leveraging VCSs with
SPL sync operations.

RQ2. As a proof-of-concept, we developed GitLine, a browser extension for Firefox,
that extends GitHub with SPL sync operations. Through a single click, product
engineers can now (1) generate Product repositories from a CoreAsset repository,
along a certain feature configuration, (2) update propagations of newer core-asset
versions, or (3), feedback propagation of product customizations.

1.7 Research Methodology: Design Science Research
In this Thesis we followed Design Science Research (DSR). DSR is the scientific study
and creation of artefacts as they are developed and used by people with the goal of
solving practical problems of general interest [JP14]. Thus, design science is one
approach to investigating artefacts.

DSR takes a problem solving instance, starting from problems experienced by
people in practice, and then tries to solve them. It does so by creating, positioning,
and repurposing artefacts that can function as solutions to the problems. The key
differentiator between routine design and design research is the clear identification of a
contribution to the archival knowledge base of foundations and methodologies. Design
science is viewed mainly from an IT and information systems perspective. However,
the principles underlying design science are applicable to many other areas [JP14].

Hevner [Hev07] proposes a three cycle process for DSR (see is Figure 1.7).

• The Relevance Cycle initiates the DSR by identifying and analyzing problems
to be addressed in an context. The problem must be precisely formulated and
justified by showing it’s relevant within the context. The problem has to be
of general interest and remarking causes to the problem might be identified
and analyzed. Herein, the root-cause analysis provides a way to methodically

19

Chapter 1. Introduction

Figure 1.7: Design Science Research (DSR) Cycles (taken from [Hev07]).

identify the root causes of a problem. While the consequences of a problem
illustrate the importance of the problem, the causes of the problem are the targets
to be corrected/attacked for preventing the problem recurrence. The relevance
cycle does not only provide the problems to be addressed, but also defines
acceptance criteria for the ultimate evaluation of the research result, i.e. the
requirements to be addressed by the solution in order to solve the problem.

• The Design Cycle is the heart of any design science research project. This
cycle of research iterates between two main activities. First, the design and
construction of an artifact that solves the problem by meeting the requirements
identified in “The Relevance Cycle”. And second, the evaluation of the artifact.
The feedback obtained from the evaluations can make the artifact to be further
refined.

• The Rigor Cycle connects the design science activities with the knowledge base
of scientific foundations, experience, and expertise that informs the research
project. The rigor cycle provides past knowledge to the research project to ensure
its innovation. It is contingent on the researchers to thoroughly research and
reference the knowledge base in order to guarantee that the designs produced
are research contributions and not routine designs based upon the application of
well-known processes [HMPR04].

This dissertation has been developed along the DSR hallmarks.

• As for the relevance cycle, we identified two problems in the context of evolving
SPLs following the grow-and-prune model. Following a root-cause analysis,
we analyzed the causes that lead to the problem, as well as, the consequences
that they could generate. For each of the identified problems, we additionally
identified the requirements that needed to be addressed in order to solve the
issue.

20

Chapter 1. Introduction

Introduction Mapping SPL
evolution

Chap
1

Chap
2

Analyzing
product

customization

Chap
3

Peering into
peers

Chap
4

Synchronizing
core-assets and

products

Chap
5

Conclusions

Chap
6

Papers on SPL
evolution

categorized

Appx
A ETL process at

CustomDIFF

Appx
B

A brief on Git

Appx
C

The Appendix

Figure 1.8: Chapter map.

• As for the design cycle, we designed and build two artifacts, CustomDIFF and
GitLine, targeting each of the identified problem. Due to the difficulties in
finding a company both willing to share its SPL set-up and letting us to evaluate
these artefacts, only the former artefact has been evaluated into an industrial
context.

• With respect to the rigor cycle, we have both nurture from the knowledge base,
as well as, we have contribute to it. We achieved rigor by positioning our
research in the context of evolving SPLs by the grow-and-prune model, and
by applying existing foundations and best practices when designing and building
both artifacts.

We believe to have contributed to the SPL knowledge through:

1. a mapping on SPL evolution literature,

2. a DW approach to customizations analysis: requirements & artifact (i.e.
CustomDIFF)

3. a new practice, included into the application engineering process, that can help
alleviating the merge problem in SPLs (i.e. code peering)

4. a repository branching model for SPLs and their operations counterpart for
keeping both core-assets and products synchronized.

1.8 Outline
This section outlines the content of the Thesis. Figure 1.8 illustrates the chapters of
this dissertation. Below, a summary of each chapter in this dissertation is provided.

21

Chapter 1. Introduction

Chapter 2 This Chapter presents a Systematic Mapping Study (SMS) on SPL
evolution. It provides the reader with a background on SPLs, and maps the existing
research on SPL evolution along four facets: evolution activity (e.g., identify,
analyze and plan, implement), product-derivation approach (e.g., annotation-based,
composition-based), research type (e.g., solution, experience, evaluation), and asset
type (i.e., variability model, SPL architecture, code assets and products). The chapter
ends with the identification of the two issues that this Thesis investigates.

Chapter 3 This chapter introduces the practice of customization analysis, i.e. the
practice by which SPL engineers analyze how products have customized the core-assets
after being derived from the SPL. In this chapter we propose the use of data-warehouse
techniques for customization analysis. Requirement Analysis, Dimensional Modeling
and Reporting Tools are discussed, that end up in CustomDIFF, a data warehouse tool
that uses Git as the operational system and pure::variants as the SPL framework. This
work has been motivated and validated in the context of Danfoss Drives, a SPLC-
awarded hall-of-fame company.

Chapter 4. This chapter introduces the merge problem that arises during the pruning
phase, i.e. when disparate product customizations are merged into the core-asset base
resulting in a multitude of conflicts, whose time to be resolved exceed the time it took to
make the original changes. In this chapter, we propose code peering practice, intended
to promote early reuse across product teams during the grow phase, with the aim of
lessening the subsequent merge problem. We introduce four design principles that drive
how code peering can be introduced for SPL development. We present a realization of
these principles, PeeringHub, that works for Git/GitHub, and SPLs developed with
pure::variants.

Chapter 5. This chapter introduces the practice of synchronization between core-
assets and products. In this chapter we propose the use of Version Control Systems
(VCSs) to aid on such synchronization using using traditional VCS constructs (i.e.
merge, branch, fork and pull). We discuss implications for branching models for SPL
development, and provide sync operations as a first-class constructs. We present a
browser extension, GitLine, that extends GitHub with sync operations for SPLs.

Chapter 6. This chapter concludes the Thesis by remarking main results, listing
the publications that endorse this Thesis, enumerating the limitations of the current
solutions, and suggesting possible future work.

Appendix A. This Appendix serves chapter 2. It provides the list full list of the
papers that were included in the SMS, categorized on

Appendix B. This appendix serves chapter 3. It provides the algorithms for the
Extract Transform and Load (ETL) process followed in CustomDIFF.

22

Chapter 1. Introduction

Appendix C. This appendix serves chapter 4 mainly, although it may be of interest
for chapter 3 too. It provides the reader with a brief on git, its basic operations, and
points to popular branching models for the development of single-systems.

1.9 Conclusion
The intention of this chapter was to give an overview of the contents of this dissertation.
We introduced the context that frames this Thesis, as well as, we defined the problems
that it tries to solve. The contributions to these problems were also listed. Finally, the
research methodology followed in this Thesis was briefly introduced.

The next chapter provides a mapping study on SPL evolution.

23

Chapter 2

Mapping Software Product Line
Evolution

2.1 Overview
This Chapter1 presents a Systematic Mapping Study (SMS) that maps the existing
research on the area of SPL evolution. Note, that in the context of this Thesis SPL
evolution is achieved by co-evolving both core-assets and products. However, this
might well not be the case for other research efforts, that address solutions for SPLs at
other reuse levels (e.g. SPLs that do not consider products to evolve). Hence, this SMS
maps studies on the area of SPL evolution, idenpendently of the SPL maturity level the
study is addressing.

This Chapter provides the reader with a brief background on SPLs, and describes
the characteristics that makes SPL evolution challenging. More importantly, the
existing research on SPL evolution is mapped along main four facets: evolution activity
(e.g., identify, analyze and plan, implement, verify), product-derivation approach
(e.g., annotation-based, composition-based), research type (e.g., solution, experience,
evaluation), and asset type (i.e., variability model, SPL architecture, code assets and
products). Analyses of the results indicate that "Solution proposals" are the most
common type of contribution (31 %). However, few studies do address solutions for
co-evolving core-assets and products. The Chapter ends with the identification of the
two issues that this Thesis investigates.

Next we introduce the motivations and research questions behind the SMS.

2.2 Introduction
As the SPL domain matures, evolution concerns come into play [Bos02, DNGR08].
Unfortunately, the term “evolution” has long been recognized as being overloaded
with diverse matters [BR00]. For the purpose of this work, “evolution” refers to

1The content of this Chapter has been previously published in [MD16]

24

Chapter 2. Mapping Software Product Line Evolution

the adaptation of the SPL as a result of changing SPL requirements. From this
perspective, evolution is triggered by requirement changes, and not so much by
refactoring. Evolution happens as a result of SPLs moving from adoption to maturity.
In their infancy, SPLs strive to fix defects. At adulthood, SPLs might have less
defects, but their wider customer base more likely increases the chances for new
functionality requests.Indeed, SPLs’ long life-span makes evolution a top priority, yet
far from being fully resolved [BP14]. SPL characteristics that make evolution specially
challenging include: (1) separation of development into Domain Engineering (DE) and
Application Engineering (AE), (2) existence of assets of different types of variability
and abstraction, and (3), high number of interrelations between assets [Mcg03, AK08,
DSB05]. One of the first works (conceptually) addressing evolution in SPLs is [SB99].
Svahnberg et al. analyze the life-span of two industrial SPLs, and classified SPL
evolution according to common scenarios that arose during evolution (“requirement
evolution”, “architecture evolution”, and “component evolution”). Thereafter, few
efforts have been made to gather studies addressing this issue. Two exceptions are
[BP14, Mcg03]. The most referenced work is McGregor’s one who introduces basic
evolution concepts and discusses practices that initiate, anticipate, control, and direct
the evolution of SPL assets [Mcg03]. Botterweck et al. [BP14] present the most recent
summary on the topic. Authors provide an overview on three main issues: migration to
SPLs, planning SPL evolution, and implementation of SPL evolution. However, none
of the previous works systematically review the existing literature, and thus, they do
not provide coverage of the different topics.

A systematic mapping study is an evidence-based approach where existing works
can be categorized, often giving a visual map of its results [KC07, PFMM08a]. This
work presents the outcome of such approach conducted for the literature on SPL
evolution available up to July, 2015 which resulted in 107 primary studies. The overall
research questions follow:

RQ1: What types of research have been reported, to what extent, and how
is coverage evolving?
RQ2: Which product-derivation approach received most coverage, and
how is coverage evolving?
RQ3: Which kind of SPL asset received more attention, and how is
attention evolving?
RQ4: Which activities of the evolution life-cycle received most coverage,
and how is this coverage evolving?

Answering RQ1 would allow us to assess maturity within the field, e.g., if research is
limited to solution proposals or rather it takes a step forward and conducts some kind
of validation, or even better, it evaluates the solution in industry. On the other hand,
RQ2 would allow us to assess how SPL product derivation approaches are catching
on. Next, RQ3 looks at “the subject” of evolution, i.e., the SPL asset being subject to
change. This includes the variability model, the SPL architecture, code assets or SPL’s
products. Conversely, RQ4 looks at “the verb” of evolution, i.e., which evolution tasks
authors have focused on (e.g. identify change, analyze change, implement change,
verify change). In summary, the outcome of this study might help to identify trends,

25

Chapter 2. Mapping Software Product Line Evolution

common variable product -specific

Legend

make
common

make
variable

make
specific

make
generic

modify
commonality

modify
variability

product-local
change

Impact on all products

Impact on individual products

Impact on multiple products

Domain
Engineering

Application
Engineering

Figure 2.1: Types of changes (based on [BP14, Kla08]).

hotspots and gaps both in terms of “the verb” and “the subject” of SPL evolution. Also,
a brief is provided for each of the 107 primary studies. Special effort is dedicated to
arrange these studies within a fine-grained schema that might help newcomers to better
pinpoint the area of interest.

The remainder of this Chapter is organized as follows. Section 2.3 provides an
overview on SPLs, highlights what makes SPL evolution challenging, and points
to previous mapping studies in the SPL field. Section 2.4 describes the systematic
methodology used to conduct this mapping study. Section 2.5 provides an annotated
bibliography that serves to map primary studies into a finer-grained classification of
the evolution activities. Section 2.6 analyses the results of the mapping, and answers
the RQs. Conclusions end the Chapter.

2.3 Background
This section provides an overview on SPLs, highlights what makes SPL evolution
challenging, and points to previous mapping studies in the SPL field.

2.3.1 A brief on SPLs
SPLs aim to support the development of a whole family of software products through
systematic reuse of shared assets [CN01a]. These assets give support to different
stages of the SPL production process. The asset list includes variability models (i.e.,
allowed variants to be exhibited by the SPL products, a.k.a. features), architecture (i.e.,
high-level description of the main modules involved and their connections), software
components, class libraries, code snippets or at a higher description level, models as
in model-driven SPLs. It might also include requirement documents, plans, test cases,

26

Chapter 2. Mapping Software Product Line Evolution

process descriptions, product configurations, and trace documents. These assets are
handled along two interrelated processes. During Domain Engineering (DE), the scope
and variability of the SPL are defined, and reusable assets are developed. During
Application Engineering (AE), products are derived using these assets by resolving
variability [PBvdL05b]. Hence, variability management is an SPL hallmark. SPL
assets can be of different variabilities: common assets are present in all products,
variable assets are present in some products, and product-specific assets are local to
individual products.

As any other software, SPLs are subject to evolution [DSB05]. Specifically, we
conceive evolution as adaptation of the SPL to cope with changing requirements. This
might happen in two different scenarios:

• during product derivation, new requirements emerge (a.k.a. reactive evolution).
These requirements can be accounted for in two different places: within the
product realm or within the core-asset realm. The former implies the creation of
product specific artifacts. Application engineers can use the core-assets as basis
for further development, or they can develop new assets from scratch. Second
option is within the core-asset realm. Here, requirements are tackled by domain
engineers, and additions can benefit products other than the one generating the
change.

• at any time, SPL engineers must be able to anticipate future needs (a.k.a.
proactive evolution). This might lead to adapt core-assets in such a way that
the SPL is capable of accommodating the needs of product stakeholders in the
shortest amount of time.

Previous scenarios involve SPL changes. Figure 2.1 depicts the main types of changes
along the lines of those proposed in [BP14, Kla08]. Common functionality can be made
variable if it should be excluded from some products. Usually, this requires changing
the implementation (to make it variable) which then affects all existing products.
Conversely, making a variable asset common, influences at least those products that
did not contain the asset before. Making a variable asset product-specific, or a product-
specific asset generic, requires also to adapt individual products to hold or unhold the
asset, respectively.

The bottom line is that SPL assets might be moved along “the variability spectrum”:
common, variable and product-specific. Common assets are present in all products,
variable assets are present in some products, and product-specific assets are local to
individual products. Moving along this spectrum is not straightforward due to SPL
specifics, namely:

• Large number of asset inter-dependencies. The distinction between DE and
AE introduces dependencies between products and the reusable assets used in
their production. DE and AE have their own life-cycles and priorities. The
urgency in releasing a product, fixing a bug, providing a new product release,
or delivering a new feature may vary depending on whether the stakeholder is
involved in DE or AE. Nevertheless, both parties need to be in sync to avoid SPL
erosion [DSB05].

27

Chapter 2. Mapping Software Product Line Evolution

• Broad scope. SPLs aim to build a family of products. Hence, the volume and
likelihood of asset coupling is potentially larger than if the focus were on a single
product.

• Large life-span. SPLs are long-term investments. This lengthy life-span should
encourage a more effective control over SPL evolution in order to avoid SPL
decay [vGB02].

A final remark. Terminology was particularly elusive in this study. In the SPL
literature, the term “evolution” can denote a broad range of concerns: migrating
legacy systems into SPLs (e.g.,[LC13]), refactoring (e.g.,[LC13]) or bug-fixing (e.g.,
[RB08, SLB13]), to name a few. This is not specific of the SPL literature but it has long
been recognized for software engineering in general [BR00]. The term “maintenance”
tends to be predominantly used to describe activities aiming at preventing software
from failing to deliver the intended functionalities. In the same vein, SEBOK
defines maintainability as "the probability that a system or system elements can be
repaired in a defined environment within a specified period of time" [SEB]. It can
be noticed a bias towards the use of the term maintenance in relation with "failure"
and "repair". From this perspective, maintenance predominantly aims at preserving
functionality. By contrast, we conceive “evolution” not so much as a repairing action,
but as an enhancement in the system’s capabilities. Here, stakeholders (rather than
bugs) tend to be the main triggers of evolution. This distinction is aligned with
the way software modifications are classified by Kitchenham et al. [KTvM+99].
Rather than using Swanson’s classification of maintenance activities based on intention
(i.e., corrective, adaptive, and perfective) [Swa76], Kitchenham et al. propose to
categorize the modifications in terms of activities performed: activities to make
corrections (i.e., existence of discrepancies between the expected behavior of a system
and the actual behavior) versus activities to make enhancements (i.e., existence of
desires to somehow change the current behavior of the system). For the purpose
of this work, we use the term “evolution” to denote these enhancement activities,
would these be modifying the scope, the commonality, the variability or the products
of an SPL. We then leave out activities such as SPL migration ([BLL08, LC13]),
SPL bad-smell detection ([ANS+04, GpKL14, LP07, BGvS10, PPF+14, VFAC14]),
SPL refactoring ([ACA08, AGM+06, RB08, STKS12, SLB13]) or SPL bug fixing
([KSLG11, KSL+13]). At adulthood, SPL is exposed to a wider customer base and
hence, the pressure for new functionality increases. As pointed out by Singer, “a
corrective activity may require only the ability to locate faulty code and make localized
changes, whereas an enhancement activity may require a broad understanding of a large
part of the product” [Sin98]. Our research questions are headed for assessing the types
and coverage of these “enhancement activities”.

2.3.2 Related mapping studies
We conducted a Scopus2 search for mapping studies in SPLs published from 2010. The
following search string was used:

2http://www.scopus.com/

28

Chapter 2. Mapping Software Product Line Evolution

Ref. Year Topic Research Questions

[MAI12] 2012
Quality
attribute

What quality attributes have been proposed for assessing the
quality of software product lines?

What measures have been proposed for assessing the quality of
software product lines and how are they used?

[LC13] 2013 Migration
What approaches have been proposed on SPL oriented evolution

and what is their focus and origin?
Which challenges for SPL oriented evolution have been

identified?

[LBd+13] 2013
Risk
management

Which risk management steps are suggested by the approaches?
Which risks were identified and reported in SPLs?

Which risk management activities and practices are adopted by
the SPL approaches?

What do the researchers commonly use to evaluate the identified
risks?

How do the stakeholders influence the identified risks?

[PCF14] 2014
Management
tools

How many SPL management tools have been cited in the
literature since 2000?

What are the main characteristics of the tools?
What are the main functionalities of the tools?

[SdOdA15] 2015
Consistency
checking

What kind of consistency checking activities have been
performed in the literature?

Can any trend on consistency checking be recognized in the
research field?

How do the existing approaches relate to each other?

[HPMFA+15]2015

Bibliometric
analysis of
SPL
research

What are the most influential papers on SPL literature?
Who are the most prolific authors?

What journals, conferences, etc. have published the majority of
the papers?

How numerous is the SPL literature? How has paper publication
been distributed over time?

What are the main topics studied in the area? How has the
interest in those topics evolved with time?

What are the most impacting papers for a given topic along a
certain period of time?

Table 2.1: Related mapping studies.

29

Chapter 2. Mapping Software Product Line Evolution

("software product line" OR “SPL”) AND ("systematic literature review"
OR “systematic review” OR “research review” OR “systematic overview”
OR “mapping study”)

We identified six relevant papers that overlap with our interests (see Table 2.1). For
quality attributes in SPLs, Montagud et al. [MAI12] found 165 measures proposed in
the literature. This figure is broken down along the SPL life-cycle phase in which the
measures are applied: Requirements (9%), Design (67%), Realization (4%), Testing
(3%), Application domain phase (7%), and, most important here, the Evolution stage
(10%). The latter is based on the insights of a single paper: [AD07].

Laguna et al. [LC13] address the reengineering of legacy systems into SPLs. Here,
the term evolution is understood as the effect of migrating a set of related products,
probably created by clone-and-own operation, into an SPL where reusable assets are
obtained by refactoring existing products. Our focus is not so much in how SPLs are
created by reengineering existing products, but SPLs’ assets evolution. Indeed, studies
of Laguna et al. present no overlap with our primary studies. Though refactoring
is certainly a trigger for evolution, we are more interested in how SPL engineers
accommodate new functionality. This, makes Risk Management (RM) a topic of
special interest. The mapping study conducted by Lobato et al. [LBd+13] identifies
RM activities and practices in SPLs. Some practices tackle the evolution of SPLs.
For instance, the practice SPL variability acknowledges that “the product variability
must be considered when evolving the architecture”. However, SPL evolution does
not appear as a first-class activity but is scattered among other steps (e.g., SPL
management, SPL variability, SPL testing, etc). By contrast, we move SPL evolution
to the forefront, aiming to provide a broader overview of the different aspects involved,
not limited to RM. Nevertheless, all the references concerning evolution were also
included in our study.

Pereira et al. [PCF14] focus on SPL management tools. A classification facet
is about the functionality cluster supported by the tool: Planning (i.e. means
for collecting the data needed to define domain scope), Modeling (i.e. means for
represents the domain scope), Validation (i.e. means for validating the domain),
Product configuration (i.e. means for product derivation) and Import/Export facilities.
The outcome provides the following distribution: Planning (34%), Modeling (85%
of the tools support at least four of the functionalities), Validation (49% support at
least three of the functionalities), Product configuration (83%) and Import/Export
(71%). However, evolution as such is not explicitly considered but blurred behind other
notions, mainly the Validation cluster which comprises functions for the inclusion of
new requirements. It is not clear the extend to which tools give support to the evolution
life-cycle (see later).

For consistency checking, Santos et al. [SdOdA15] undertook a mapping study
for 24 primary studies. This work is certainly of interest for SPL evolution. Indeed,
consistency checking aims at assuring that all SPL assets remain consistent with each
other after some changes have been introduced: model against source code (25%),
model against model (33%), or model against specifications (42%), where rates are
those provided by this study. Our work extends beyond consistency checking to include
other activities of the change life-cycle [YCM93]: identify change, analyze and plan

30

Chapter 2. Mapping Software Product Line Evolution

Phase 1: Planning the review

Phase 2: Study identification Phase 3: Data extraction and classification

Legend

Protocol
definition

Literature
survey

Research
questions
definition

Outcome

Process step

Conducting
search

Filtering
studies

Topics
keywording

Data
extraction

and mapping

Protocol and
data collection

form
Set the
grounds

Review
scope

All studies Preliminary
primary studies

Classification
schema

Systematic
map

Evaluate
search

Primary
studies

Figure 2.2: Systematic Mapping Study process (adapted from [PFMM08a]).

change, implement change or verify change.
Finally, Heradio et al. [HPMFA+15] perform the broadest mapping study on SPL

research. Authors analyzed 20 years of the SPL literature (from 1995 to 2014), which
involved above 2800 primary studies. Authors, resort to bibliometric analyses to:
(1) identify the most influential publications on the SPL literature (based on received
citations), (2) detect the most covered SPL “research topics” (in terms of published
papers), and (3), determine how the interest in these research topics evolved over time.
Main research topics are: software architecture, automated analysis, feature modeling,
software reuse, variability management, software quality, product derivation, domain
engineering, and software design. Regarding the evolution over time, authors ascertain
that: (1) software architecture was the initial motor of research in SPLs; (2) work on
software reuse has been essential for the development of the SPL research; and (3)
feature modeling has been the most important topic for the last fifteen years, having the
best evolution behavior in terms of number of published papers and received citations.
From our perspective, it is worth highlighting that SPL evolution does not appear as a
first-class topic, but included as part of software reuse and software design.

These studies can be considered good sources of information on their subjects.
Yet, SPL evolution tends to be blurred behind other notions (e.g. migration, risk
management, consistency checking, etc.). We aim at moving SPL evolution at the
forefront by providing a deeper analysis along the lines of the change mini-cycle stages
[YCM93].

2.4 Method
A Systematic Mapping Study (SMS) is an evidence-based form of secondary study. It
provides a wide overview of a research area, to establish if research evidence exists

31

Chapter 2. Mapping Software Product Line Evolution

on a topic, and provides an indication of the quantity of the evidence [KC07]. SMSs
offer multiple benefits [BTBK08]. First, SMSs identify gaps and clusters of papers
based on frequently occurring themes, using a systematic and objective procedure.
Second, SMSs help plan new research, avoiding effort duplication. Third, they identify
areas suitable for future systematic literature reviews (SLRs), a more in-depth form of
secondary studies with a focus on smaller research areas and more concrete research
questions compared to SMSs. The software engineering community is working
towards the definition of a standard processes for conducting SMSs. Guidelines
and procedures for undertaking SMSs are defined in [BTBK08, PFMM08a, PVK15].
Similar to other studies (e.g., [dCM+11] and [TGAS14]), we split the process proposed
by Petersen’s. [PFMM08b] into three main phases (see Figure 2.2):

• planning the review, where the need for the review, appraisal of related literature
surveys and research questions are set. Similar to other SMSs [dCM+11,
TGAS14], we complement Petersen’s. approach with a protocol definition
process and the data collection form as suggested by Kitchenham et al. [KC07],

• study identification, where relevant papers are identified. First, a set of initial
papers are identified by querying digital databases. Then, these studies are
filtered based on inclusion/exclusion criteria, yielding primary studies.

• data extraction and classification, where primary studies are analyzed to derive
the classification schema, and studies are classified under the schema.

Next subsections provide the details.

2.4.1 Phase 1: Planning the review
This section introduces the directives for planning our SMS, along Kitchenham’s
guidelines [KC07]. This step iterates along three activities: protocol definition,
literature survey and research question definition (see Figure 2.2-“Phase 1”). We
analyzed literature surveys on SPL evolution whose outcome is presented in Section
2.3. As for the research questions, we point readers to the introduction, where the
objective of research questions RQ1, RQ2, RQ3 and RQ4 is set. Hence, this section
focuses on the protocol definition.

2.4.1.1 Protocol definition

This includes the need, the topic and the scope of the review, the preliminary research
questions, a preliminary search strategy, selection criteria, and a data extraction form
[KC07]. We reviewed and updated the protocol in several iterations throughout the
entire SMS process.

The need for the review. This SMS is motivated by the perceived need to
systematically map out efforts made on SPL evolution. Thus, the outcomes of
this study can identify the trends, hotspots and gaps which need attention from the
community. Moreover, leading venues to publish results (and read literature) on SPL
evolution can be identified. In addition, researchers and practitioners can check if there

32

Chapter 2. Mapping Software Product Line Evolution

is a growing or decreasing interest on SPL evolution. An overview of the field and its
distinctive concerns is given at the beginning of this work (Sections 2.2 and 2.3).

Preliminary research questions. The goal of this study was to obtain a
comprehensive overview of current research on SPL evolution.

The search strategy. The search strategy must lead to inclusion of relevant papers
and exclusion of irrelevant papers. We set initial search strategy to include querying
digital databases with customized search strings, followed by manual filtering of the
resulting studies by predefined inclusion and exclusion criteria. To avoid replication,
we detail this process later in Section 2.4.2.

Inclusion and exclusion criteria. For filtering the papers, we formulated inclusion
and exclusion criteria. The inclusion criteria are:

• IC1. The study focuses on SPLs as opposed to peripherally addressing the topic.

• IC2. The study focuses on SPL evolution as such. Migration from single product
to an SPL approach, refactoring, bad-smells and bug-fixing are not considered
(as addressed in Section 2.3).

• IC3. The study is peer-reviewed.

Next, the exclusion criteria are:

• EC1. The study is not SPL-centric.

• EC2. The study does not address evolution.

• EC3. The study is in a language other than English.

• EC4. The study is gray literature, extended abstract, tutorial, tool demo, or
doctoral symposium paper.

• EC5. The study is a delta of another study in the review.

Data extraction form. Its main purpose is to help researchers in collecting all
the information needed to answer the research questions, recording rationales for
inclusion and exclusion of the studies, and classifying each of the studies along the
classification schema. We employed a spreadsheet to collect metadata for all of the
studies: title, authors, year of publication, publication type, venue, abstract, and
keywords. Additionally, we gave a brief summary for each study and rationales for
inclusion or exclusion. If a study was included, then we determined its classification
categories. The resulting table for all primary studies is available at http://www.
onekin.org/content/spl-evolution-mapping.

2.4.2 Phase 2: Study identification
This phase includes: conducting the search and filtering studies. Additionally, we
added the evaluating the search step to verify that we did not miss any important study
(see Figure 2.2-“Phase 2”). Figure 2.3 depicts the process.

33

Chapter 2. Mapping Software Product Line Evolution

Step 3: Evaluating the
 search

Step 2: Filtering studies

Step 1: Conducting search

ACM DL
(442)

SpringerLink
(567)

ScienceDirect
(79)

Manual
(10)

Merged Studies
(1409)

IEEE Xplore
(311)

Filtered studies
(98)

Filter by title,
abstract
(233)

Filter by
introduction,
conclusions
(987)

Filter by full
content
(21)

Initial set of
studies
(1339)

 Studies from
Botterweck et al.

(9)
Primary studies

(107)Source of Studies

Process Steps

 Studies Filtering

Legend

Remove
duplicates
(70)

Figure 2.3: Study identification process.

34

Chapter 2. Mapping Software Product Line Evolution

2.4.2.1 Conducting the search

This step deals with building a search string to query digital databases. We followed the
PICO approach as suggested by good practices on systematic reviews [PVK15, KC07].
P stands for population. In our case, population refers to the area on SPLs. I stands
for intervention. In our case, the procedure to be assessed is evolution. C corresponds
to Comparison. Here, we do not compare different strategies for evolution but assess
the area as a whole. Finally, O stands for Outcome which does not apply to our study
either. The identified keywords are then, “Software Product Lines” and “Evolution”.

Next, synonyms should be found. Along the guidelines of Petersen’s. [PVK15], the
following related mapping studies were consulted: [CB11, MMCdA14, LC13, KG09].
Additionally, we conducted a pilot study over the IEEE database to find a balance
between hits and noise. We noticed that the terms “evolution” and “maintenance”
tend to be used interchangeably. Hence, we included both terms. This resulted in the
following search string:

(("product lines" OR "product families" OR "product family" OR "product-
lines" OR "product-families" OR "product-family")

AND

("evolution" OR "evolving" OR "maintenance" OR "maintaining"))

We restricted the search to studies published up to July 2015. The following electronic
databases were consulted: IEEE Xplore 3, ACM Digital Library4, Springer Link5

and Science Direct6. The query was matched against the title, the abstract and the
keywords. Unfortunately, at the time of this study, Springer did not account for such
focused search, and we resorted to posing the query against the full article content.
Additionally, previously known references (identified during the analysis of related
literature in the “planning” phase) were manually added. Refer to Figure 2.3 to inspect
the number of the studies that each digital database returned. Figure 2.3-“Step 1”
highlights how Springer Link returned most primary studies (40,2%). Next, ACM
Digital Library, Science Direct , IEEE Xplore, and manually retrieved studies, returned
31,4%, 5,6%, 22,1% and 0,7%, respectively. In summary, we obtained 1409 primary
studies in this first step, where 70 were duplicated and hence, removed. This leads to
1339 initial studies.

2.4.2.2 Filtering studies

For filtering, we formulated inclusion and exclusion criteria (already presented in
Section 2.4.1.1). A paper was selected as a primary study only when it met all the
inclusion criteria and none of the exclusion criteria. Filtering was mainly conducted
by one researcher. When the researcher was not sure about including or excluding a
paper, the other researcher was asked to discuss and decide. Next, we outline the main
debates:

3http://ieeexplore.ieee.org
4http://dl.acm.org/
5http://link.springer.com/
6http://www.sciencedirect.com/

35

Chapter 2. Mapping Software Product Line Evolution

• EC1 (“The study is not centric to SPL”). Some studies addressed SPLs
incidentally, not really focusing on SPLs. For instance, studies just mentioning
SPLs as related work (e.g., [AC07]).

• EC2 (“The study does not address evolution”). We found that evolution might
encompass a great variety of concerns such as migration or refactoring. As noted
in Section 2.3, we understand evolution as “activities to make enhancements”.
Hence, we left outside activities such as SPL migration ([BLL08, LC13]),
SPL bad-smell detection ([ANS+04, LP07, GpKL14, BGvS10, PPF+14,
VFAC14]) or SPL refactoring ([ACA08, AGM+06, RB08, STKS12, SLB13])
or SPL bug-fixing ([KSLG11, KSL+13]). We also excluded studies on
traceability with a focus on trace extraction and trace specification ([AKM+10]
[MPK12][MCNY07][AC07][SPZ09][VPS+12][YGW12]).

• EC4 (“The study is grey literature”). We excluded grey literature, and also
extended abstracts, tutorials, tool demos, and doctoral symposium papers (e.g.,
[VRG14]).

• EC5 (“The study is a delta of another study in the review”). 26 deltas were
excluded in favor of the paper that more extensively detailed the issue (e.g.,
[tBMP11, BPPK09, WMHB11]).

We applied a three-stage filtering process to the initial set of 1339 studies (see Figure
2.3-“Step 2”). Filter 1 looks at the title and abstract (233 papers left out). Filter 2
looks at the introduction and conclusions (987 papers left out). Finally, filter 3 looks
at the content (21 papers left out). At a given stage, a study was filtered out only if the
researcher doing the work was fully sure that it met all the exclusion criteria and none
of the inclusion criteria. Otherwise, it went to the next filtering stage. If reaching the
third stage, the study was revised by the two researchers, and a consensus was reached.
The process resulted in 98 primary studies.

2.4.2.3 Evaluating the search

The filtering of studies was mainly conducted by one researcher, which is a threat we
were aware of. To reduce the risk of having missed any important study, we followed
Petersen et al. [PVK15] guidelines, which recommend to cross-check the resulting
studies with a test-set of studies. Our test-set was extracted from the most up to date
summary on SPL evolution by Botterweck et al. [BP14]. From the set of Botterweck’s
references we excluded those that do not met our inclusion/exclusion criteria, and
obtained a final test-set of 34 studies. We then cross-checked these 34 studies with
our 98 primary studies. The cross-check revealed 9 new references. This rises the
number of primary studies to 107.

2.4.3 Phase 3: Data extraction and classification
This phase iterates along two tasks, relevant topics keywording and data extraction and
mapping (see Figure 2.2-“Phase 3”).

36

Chapter 2. Mapping Software Product Line Evolution

2.4.3.1 Relevant topic keywording

This process yields the classification schema. Our classification schema includes four
facets: “Research type”, “Product-derivation approach”, “Asset type” and “Evolution
activity”. The classification schema is grounded in the literature. Specifically, the
“relevant topic keywording” process was performed to refine the categories for facet
“Evolution activity”. We departed from a coarse-grained classification for “Evolution
activity” first proposed by Yau et al. [YCM93]. This classification was refined by
means of the “relevant topic keywording” process. Within this process, a reviewer read
the papers and manually look for keywords and concepts that reflected the contribution
of the papers. Afterwards, the set of keywords from the different papers were combined
together and clustered to form the fine-grained categories for the “Evolution activity”
facet. The resulting fine-gained schema is later presented in Section 2.5, as part of the
mapping of primary studies. Next paragraphs provide the description of the four facets.

Facet 1: Research type Description & Derivation Method. The research type
reflects the research approach used in the primary study. As other SMSs in software
engineering [ER11], research type categories are based on the scheme proposed by
Wieringa et al. [WMMR05].

Classification Schema:

• “Experience papers” describe the experience of the authors, usually in practice,
using a certain method, technology, etc. Often, these papers are written by people
from industry.

• “Conceptual proposals” sketch a new way of looking at existing things, providing
a vision or philosophical view on a subject matter.

• “Solution proposals” describe a solution which is usually illustrated with an
example, case study, running example, etc. The work is barely or not validated;
the proposal is only explained, and it is shown how to apply it.

• “Validation research” describes validation of research that is not deployed in
practice, for example, by an experiment, performing some kind of tests, lab
studies, etc. Usually it follows a solution proposal. It answers the question:
is the proposed solution “good”?

• “Evaluation research” describes an evaluation of research, usually by seeing how
the solution works in practice or comparing it with other solutions, pointing
out positive and negative points. It is more extensive than validation and often
carried out within an industrial setting. It answers the question: is the proposed
solution the “right” solution?

This facet somehow serves as an indication of maturity. For instance, the existence of
case studies or prototype tools in an academic context indicates at least a certain degree
of validation (“Solution proposals” and “Validation research”). On the other hand,

37

Chapter 2. Mapping Software Product Line Evolution

“Experience papers” and “Conceptual proposals” might denote an incipient research
area.

This classification schema is disjointed, i.e., a study belongs to a unique category.
If a study addresses two categories (e.g., a solution and its validation), the “uppermost”
category is selected (e.g. validation). From a maturity perspective, categories rank
as follows: “Evaluation research” > “Validation research” > “Solution proposals” >
“Conceptual proposals > “Experience papers”. Note that both “Validation research”
and “Evaluation research” will cover studies that propose new solutions (if they are
validated or evaluated), as well as papers that address the validation or evaluation
of existing solutions. Hence, we could not determine whether solutions being
evaluated/validated are new or they have already being proposed. For our purposes,
this is not an issue since our emphasis is on determining the maturity level of each
research area, regardless of whether solutions are new or not.

Facet 2: Product-derivation approach Description & Derivation Method. It refers
to the way products are obtained from core-assets. Two approaches are commonly
distinguished: annotation-based (a.k.a. negative variability) and composition-based
(a.k.a. positive variability) [ABKS13a]. However, if the abstraction level of assets is
also considered, a number of studies also address model-driven SPLs. A minority yet
practical approach for product derivation is the use of clone-and-own.

Classification Schema:

• “Annotation-based ”. Here, the code of all features is merged into a single code
base, and annotations spot which code belongs to which feature. During product
derivation, all code that belongs to deselected features is removed (at compile
time) or ignored (at run time) to form the final product [BPSP04, Kru01]. Pre-
processors are a case in point. They typically provide facilities for conditional
compilation, where marked code fragments in the source code are conditionally
removed at compile-time. Annotations are realized through tags, such as #ifdef
and #endif.

• “Composition-based”. Here, features are realized as compassable units, ideally
one unit per feature. During product derivation, all units of all selected
features and valid feature combinations are composed to form the final
product. Frameworks [JF88], Component-based development, Feature-Oriented
Programming (FOP) [BSR03, Pre97], Aspect-Oriented Programming (AOP)
[KLM+97] or Delta-Oriented Programming (DOP) [SBB+10] applied to SPLs
fall within this category.

• “Model-driven”. Here, code is abstracted in terms of models. During product
derivation, model transformations are used that, ideally, generates the complete
product together with all documentation, test cases, etc., in a fully automated way
[GS03, VV11]. Model-driven SPLs can follow annotations or composition for
variability handling. For our purpose, however, the distinctive aspect is that they
abstract the way at which product derivation takes place, let this be “annotation-
based” or “composition-based”.

38

Chapter 2. Mapping Software Product Line Evolution

• “Clone-based”. In early stages of SPL adoption, developers might prefer keeping
clone-based generated products separately. Here, product derivation is just
“clone-and-own”. Nevertheless, those products conform a family, where changes
in one product might need to be propagated directly to sibling products without
the intermediation of an SPL infrastructure [RCC15].

• “Hybrid”. This comprises studies that somehow combines or blend some of the
aforementioned approaches.

This classification schema is disjointed, i.e. a study belongs to a unique category.
Papers addressing model-driven SPLs are so classified, no matter whether annotation
or composition is used. In this way, we want to gain a glimpse to the extent model
transformation is being involved in product derivation.

Facet 3: Evolution activity Description & Derivation Method. Activities involved
in SPL evolution. We tap into the change mini-cycle model of Yau et al.[YCM93].

Classification Schema:

• “Identify change”. Customers, product engineers, domain engineers, the target
market, maintenance needs or competitors might exert evolutionary forces over
an SPL. “Identify change” has to do with monitoring those sources of change.

• “Analyze and plan change”. Program comprehension is essential to understand
what parts of the software will be affected by a requested change. In addition,
the extent or impact of the change needs to be assessed to obtain an estimation
of how costly the change will be, as well as the potential risk involved in making
the change. This analysis is then used to decide whether it is worth carrying out
the change.

• “Implement change”. This activity conducts the change. The large number
of assets and stakeholders involved in SPLs recommend error prevention and
guidance mechanism to be in place.

• “Verify change”. Techniques to re-verify the SPL after change are crucial to
ensure that the SPL integrity has not been compromised.

This classification schema allows for categories to overlap, i.e. a study might belong
to more than one category. A finer-grained schema is later presented in Section 2.5, as
part of the mapping of primary studies.

Facet 4: Asset type Description & Derivation Method. Type of the SPL asset being
subject to evolution. Types are obtained from the reviewed studies.

Classification Schema:

• “Variability model”. Variability modeling is to efficiently describe more than
one variant of a system. Different approaches to capture such variability have
been proposed: Feature Models (FMs) [Kan90], cardinality-based FMs [KC05],
Decision-Oriented Variability Models (DOVMs) [SRG11], and Orthogonal
Variability Models (OVMs) [PBvdL05b].

39

Chapter 2. Mapping Software Product Line Evolution

• “SPL architecture”. An SPL architecture captures the structure commonalities
and structure variability of the SPL products, along the architecture elements:
software assets, the externally visible properties of those assets, and the
relationships among them [CBT+14].

• “Code assets”. Broadly, code assets are the raw material to produce the SPL
products. This can range from code snippets to models (in model-driven SPLs).
Here, code asset might enclose variability built-in, later resolved during product
derivation.

• “Products”. Broadly, a product is what is delivered to a customer. Depending
on the maturity of the SPL, products might be directly derived from the reusable
assets based on feature selection, or rather, require the intervention of product
engineers before being ready for release [DSB05].

This classification schema is “overlapped”, i.e. a study might address evolution for
different assets. Notice however, that studies are classified based on the “evolving
artefact”, i.e. the artefact that suffers the change first, regardless of whether this change
is next propagated to other artefacts. So, a study describing how a change in the
variability model percolates to code assets and products, is classified as “Variability
model”.

2.4.3.2 Data extraction and mapping

Having the classification scheme in place, the primary studies are sorted into the
scheme. The classification scheme evolved while doing the data extraction, like adding
new categories or merging and splitting existing categories. Data extraction process
was performed by one reviewer, who entered data into the data extraction form fields:
(i) gave a short description of each paper’s contribution, (ii) classified the study into
the four facets, and (iii) provided a short rationale why the paper should be in a certain
category. The second reviewer checked the outcome of this process and checked its
correctness. The outcome of this second review could be agreement, disagreement
or doubt. If disagreement, the document was read (again) in full appraisal by both
researchers, and a consensus was reached. If the classification was still dubious, then
the studies’ authors were contacted through e-mail. This was the case for 15 papers.
Additionally, we contacted authors of other 13 studies, as a cross-check measure. These
28 studies are listed in the acknowledgements to thank the authors for the prompt reply
to our request. The mapping of the papers and their brief is provided in Section 2.5. The
Appendix holds Table A with the mapping of the primary studies into our classification
schema.

2.4.4 Threats to validity
There are several factors that may threaten the validity of systematic mapping
outcomes. Main shortcomings include: (i) bias in the selection of studies [BPS+12],
and (ii) errors when extracting and classifying studies into detailed categories [ER11].
Additionally, we evaluate this mapping study along Petersen’s. evaluation rubric
[PVK15].

40

Chapter 2. Mapping Software Product Line Evolution

2.4.4.1 Selection of studies

Biases might happen during both finding and filtering primary studies. The former
has to do with coming up with primary studies. Here, one of the risks is the lack
of standard languages and terminologies [DD08]. To reduce this risk, we refined
the “search string” by (i) consulting the keywords used on related mapping studies,
and (ii) conducting a pilot study, which let us determine the “noise” introduced by
the selected keywords. Additionally, we referred to the main publishing houses in
computing science (i.e., ACM, IEEE, Springer and Science Direct), even knowing
that a large overlap could exist (indeed, 70 duplicates were detected). Inclusion and
exclusion criteria were established to provide an assessment of how the final set of
primary studies was obtained. Where in doubt, the screening of a study went from
the abstract, introduction and conclusions, to the full-text appraisal. If after full text
appraisal, doubts persisted, then the decision about whether to include or not the study
was jointly taken by the two researchers. This was the case for 21 primary studies (see
2.3).

In addition, we follow recommendations by Casteleyn et al. [CGM14] to set
aside “delta papers”, i.e. papers that provide minor additions compared to previously
published work of the authors. Inclusion of delta papers might mislead summarization
data, specifically if classification is fine-grained with few studies for each facet.
This process led to the identification of 26 delta papers. As a final validation, we
conducted a cross-check with the two main potentially overlapping survey studies, i.e.
[LC13, BP14]. Specifically, primary studies of Laguna et al. [LC13] present no overlap
with our primary studies. As for Botterweck et al. [BP14], though this work is not a
mapping study but a survey, their references serve to cross-check our’s: 25 overlapping,
9 only in Botterweck, and 73 only in our study. Besides enriching our set with 9 new
references, this comparison corroborates the role of our work as a systematic mapping
endeavor by introducing 73 new references.

We cannot rule out threats from a quality assessment perspective because selected
studies were assigned no scores7. However, with the aim of increasing the quality of
included studies, we defined exclusion criteria to get rid of potentially low level quality
studies, such as those excluded by “EC4” (grey literature, extended abstract, tool demo,
workshop proposal). Additionally, the selected digital databases (ScienceDirect, ACM,
IEEE Xplore, and SpringerLink) which are regarded as reliable by the community.
Some systematic reviews that include them are: [DD08, LC13, MMCdA14].

Another threat might be the focus on those studies that specifically target SPLs.
We did not explore whether other software engineering studies addressing evolution,
could be applicable for SPLs. Moreover, our notion of evolution can be regarded as too
restrictive as we did not consider SPL migration or SPL refactoring.

2.4.4.2 Classification errors

It is possible for authors to introduce bias during the data extraction process. To
reduce this risk, we based the data extraction on the words used in each publication
wherever possible. First, an author conducted the data extraction and classification

7In SMSs, quality assessment is not a mandatory practice [PFMM08a].

41

Chapter 2. Mapping Software Product Line Evolution

process. The outcome of this second review could be agreement, disagreement or
doubt. If disagreement, the document was read in full (full appraisal), and a consensus
was reached. If the classification was still dubious, then the document’s authors were
contacted through e-mail. This was the case of 15 papers. As a crosscheck, we
additionally contacted authors of 25 papers, although only 13 did finally reply. No
inconsistencies were appreciated except for the facet “Research type”: 5 authors would
classify their paper differently w.r.t to this facet. The main confusion originated from
the distinction between “validation” and “evaluation” research. Additionally, some
authors misunderstood when a study should be considered an “experience paper”. This
is not totally unexpected. Wohlin et al. [WRdMSN+13] already pointed out how
misleading this facet can be. The authors reveal how two independent studies classified
the very same papers differently, w.r.t the “Research type” facet. This blurriness
might advice to stick to the classification of a single observer that makes clear his
understanding of this facet’s values, and where the assessment of which research type
was conducted is based uniquely on what it is described in the paper. The alternative
would be to collect the answers of the 67 studies’ authors whose understanding of what
“validation” and “evaluation” is might differ, and whose appreciation might be partially
biased from experiences not always fully documented.

2.4.4.3 Evaluation rubric for this mapping study

Petersen et al. [PVK15] devise an evaluation rubric where to assess the quality of a
mapping study process. This rubric can be used for readers to quick assess the actions
undertaken in a SMS. Specifically, authors identify 26 actions worth applying. The
more actions taken, the higher would be the quality of a SMS. Table 2.4.4.3 outlines
the actions undertaken in this SMS. Additionally, we include a fourth column which
points to the Section in which the action is addressed. According to the findings of
Petersen et al., the median quality of the analyzed SMSs is 33%. This SMS undertakes
15 out of the 26 suggested actions, which yields a ratio of 57%.

Phase Actions Applied Refer to ...

Phase 1 Motivate the need and relevance Introduction & Background & Protocol
definition (Sections 2.2 & 2.3 & Section

2.4.1)
Define objectives and questions Introduction & Protocol definition

(Section 2.4.1)
Consult with target audience to

define questions
• -

Phase 2 Choosing search strategy
Snowballing • -

Manual References from [BP14] (Section
2.4.2.2)

Conduct database search ACM, IEEE, SpringerLink &
ScienceDirect (Section 2.4.2.1)

PICO Phase 2: data collection (Section
2.4.2.1))

42

Chapter 2. Mapping Software Product Line Evolution

Consult librarians • -
Iteratively try finding more

relevant papers
Conduct a pilot study (Section 2.4.2.1)

Keywords from knows papers From papers [MMCdA14, CB11, LC13,
KG09](Section 2.4.2.1)

Use standards, encyclopedias, and
thesaurus

• -

Evaluate the search
Test–set of known papers Test-set references from [BP14] (Section

2.4.2.2)
Expert evaluates result • -

Search web-pages of key authors • -
Test–retest • -

Inclusion and Exclusion
Identify objective criteria for

decision
Inclusion and exclusion criteria (Section

2.4.1)
Add additional reviewer, resolve

disagreements between them
when needed

• -

Decision rules (what to do when
doubts)

Postpone paper to next filtering level &
ask second reviewer (Section 2.4.2.2)

Phase 3 Extraction process
Identify objective criteria for

decision
Provided along the classification schema

(Section 2.4.3.1)
Obscuring information that could

bias
• -

Add additional reviewer, resolve
disagreements between them

when needed

We asked authors of 28 studies (Section
2.4.4.2)

Test–retest • -
Classification scheme

Research type Facet “Research type” included (Section
2.4.3.1)

Research method • -
Venue type Venues and frequencies reported (Figure

2.5)
Validity

disc.
Validity discussion/limitations

provided
Validity evaluation reported (Section

2.4.4)

Table 2.4.4.3. Actions conducted in this SMS: taken () & not taken (•).

2.5 Mapping of primary studies
This section provides a short summary for the primary studies. This implied a more
carefully reading not just of the abstract but the whole content. This permitted a finer-

43

Chapter 2. Mapping Software Product Line Evolution

Software Product Line Evolution

 Identify
change

Analyze and
plan change

Implement
change

Verify
change

Monitoring
SPL

environment

Monitoring
customers

Ascertaining
change

impact scope

Decision-
making

Planning and
road-mapping

Built-for-
change

Built-with-
change

Inconsistency
detection

Scalable
verification

Monitoring
products

Change
synchronization

Figure 2.4: Elaborating on the “Evolution activity” facet.

grained elaboration of the facet “Evolution activity” based on the challenged addressed
by the primary studies (see Figure 2.4). Table A, in the Appendix A, provides the
outcome. Next, we dedicate a subsection to each of these nine activities. For each
activity, we first outline what makes this activity challenging for SPLs. Next, we
provide a brief about how these challenges are addressed in the primary studies.

2.5.1 Identify change
SPLs broader scope and larger life-span make asset evolution unavoidable. Asset
evolution happens in response to forces both outside the SPL organization and within
it. By monitoring these forces, engineers can identify emerging needs that the SPL may
support. Studies differ in the force being monitored: customers, SPL environment, or
products (i.e., product engineers).

2.5.1.1 Monitoring customers

Customer needs can be identified trough requirement volatility analyses. Requirement
volatility is the tendency of requirements to change over time in response to evolving
needs [PYZ11]. In SPLs, requirement volatility tends to be higher due to its broader
scope. Here, requirement volatility analysis helps to predict which requirements might
change and how. The analysis is based on the priorities that customers assign to each
of the SPL requirements. Hence, by monitoring changes to these priorities, engineers
identify the set of the requested adaptations, e.g., new requirements may arise, others
become obsolete, others may shift from mandatory to optional, etc. This approach
is investigated by Savolainen et al. [SK01] and Villela et al. [VDJ10]. An SPL
requirement-based taxonomy is provided by Schmid et al. [Kla08].

44

Chapter 2. Mapping Software Product Line Evolution

2.5.1.2 Monitoring the SPL environment

Discussion forums, competitors’ websites and market studies can provide useful data
silos where to mine future SPL needs. Bockle et al. [Böc05] discusses measures
to monitor the SPL environment, including: (1) workshops and discussion forums,
(2) usability labs where customers can play with new products and where ideas and
complaints are collected, (3) prototypes for new products, and (4) competitors.

2.5.1.3 Monitoring products

Product engineers are responsible for providing feedback to domain engineers. To
spur product-engineer feed-backing, Carbon et al. [CKM+08] adapt the agile practice
“planning game” [Pla] to SPLs. By means of so-called reuse stories, product engineers
are instructed to provide concrete suggestions about how to improve the reusability
of SPL assets. In addition, product engineers might develop product-specific assets.
These assets may “inspire” domain engineers. This is illustrated by Mende et al.
[MBKM08] and Creff et al. [CCJM12] where code analysis tools are developed to
identify product-specific assets candidate to be promoted as SPL core-assets.

2.5.2 Analyze and plan change
Even to a larger extent than for single products, SPL assets exhibit numerous
dependencies: (1) intra-feature dependencies (e.g., <excludes> or <includes>
dependencies in variability models); (2) feature-to-code dependencies (a.k.a.
configuration knowledge) or (3), product-to-feature dependencies, which are tracked
through product configurations. This coupling makes changes rarely be a one-off event.
Hence, ascertaining the change impact scope is a first step to decide whether or not to
carry out the change. This requires of decision making processes tuned to the kind
of change being considered. For instance, changing the variability model does not
have the same implications than changing a code asset. If the change goes ahead, then
planning and road mapping come into play. Next, we look into these issues.

2.5.2.1 Ascertaining the change impact scope

Change Impact Analysis (CIA) is defined as "identifying the potential consequences of
a change, or estimating what needs to be modified to accomplish a change" [Boh96].
CIA scope depends on the asset at hand. Variability models are those with broader
impact when evolved. This explains why CIA for variability models has received
most attention. But it is by no means the only one. Table 2.3 depicts different
change scenarios arranged along the root of the change (“source”) and its ripple effects
(“target”). Note that it is possible for a study to give support to more than one scenario.
Next we provide a paragraph for each row.

A change in the variability model might impact ...
... the variability model itself. Paskevicius et al [PDŠ12] resort to Prolog rules

to assess how changes in the Feature Model (FM) affect other parts of the FM. The

45

Chapter 2. Mapping Software Product Line Evolution

Triggering Source \
Triggered Target

Variability
model

Architecture Code asset Product

Variability model [PDŠ12],
[HVLG12]

[HVLG12] [Liv11],
[HVLG12]

[TBK09],
[DKvDP15],
[MARC13],
[HRGL12],
[MW11],

[HVLG12],
Architecture [HVLG12] [HVLG12],

[DPG14]
[HVLG12] [MW11],

[HVLG12]
Code asset [HVLG12] [HVLG12] [YM12],

[JZZZ08],
[PHS11],

[HVLG12]
,[RBK14]

[HVLG12],
[MW11]

Product - - [KSS15] [RCC13,
RKBC12]

Table 2.3: CIA scenarios.

FM is expressed in Prolog. For instance, the rule fm :- all(alt(f1), f2, f3) describes
a FM with f2, f3 as compulsory features, and f1 as optional. FM changes are also
captured as Prolog rules. When the FM is changed, the rule engine computes the set
of features affected by the change as a result of the existing feature dependencies (e.g.
excludes, includes, and feature associations). The output is the set of features impacted
by a change. Heider et al. [HVLG12] present an industrial case study, where they
identify engineers’ desired trace links when performing CIA in a component-based
SPL. Desired traces include links between the variability model and solution space
assets (e.g., components, interfaces, and dependencies between them) to ascertain how
changes in the variability model impacts the solution space. They further discuss
implications for a tool support CIA based on the eclipse IDE.

... code assets. Livengood et al. [Liv11] describe industrial experience on assessing
CIA for large and complex variability models (those having multiple constraints).
Specifically, authors stress how difficult it is to determine how implementation is
affected when variability model constraints are modified. So far, the organization relies
on engineers to determine the impact of such changes. Authors advocate for enhanced
traceability between the variability model and the code assets.

... product configurations. Changes to the variability model may alter the
configuration space (e.g., introducing a new feature adds new product configurations).
Thüm et al. [TBK09] present an algorithm to reason about the impact of FM changes
on product configurations. The algorithm takes the two versions of the FM (i.e. before
and after the change) and classifies changes as follows: (1) generalization, if the set of
valid product configurations is extended with additional alternatives, (2) refactoring,
if the same configurations exist, (3) specialization, if the set of valid configurations
is reduced, and (4) arbitrary change, if some of product configurations are removed
and others are added. Similar goal but for multi SPLs (i.e., a set of interacting and

46

Chapter 2. Mapping Software Product Line Evolution

interdependent SPLs) is presented by Dintzner et al. [DKvDP15]. Murashkin et al.
[MARC13] develop a visual tool to detect the set of product configurations that become
non-optimal when the FM changes (w.r.t. quality attributes). In their approach, FMs
are annotated with quality values, e.g., cost and usability. Product configurations are
also annotated with expected objectives, e.g., product configuration p1 can have at most
a cost of 1500, and usability must range between 100 and 300. When a feature quality
value evolves (e.g., the cost of a feature increases), the tool highlights those product
configurations that do not fulfill the set objectives.

... already derived products. Changes in the variability model may force products
to be updated accordingly. Michalik et al. [MW11] propose a preliminary CIA model
where to keep track of derived products’ configurations, so that whenever the FM
changes engineers can assess the affected products. Heider et al. [HRGL12] introduce
a tool for domain engineers to get feedback on how changes performed to the variability
model may affect existing products. Given a new version of the variability model, the
tool re-generates existing products according to their configurations. Next, the tool
triggers regression tests for domain engineers to assess the impact of these changes on
the re-generated products.

A change in the SPL architecture might impact ...
... the SPL architecture itself. Architectures are the result of design decisions.

If those decisions are recorded and contextualized through the features, then so-
captured design decision can help to trace core components back to features. This
is the insight of Díaz et al. [DPG14]. Consider an ATM SPL. Let’s balanceAccount
be a feature about providing information about user account balance. This feature
provides context for the design decision:“if there is an overload of requests, reject it”.
This decision is in turn traced back to the architecture component that implements it
(e.g., Balance component). On changing feature balanceAccount (e.g., adding new
variations or excluding dependencies), CIA can go down to the potentially affected
components. This scenario gets more complex when design decisions might rest on
other design decisions so that their algorithm goes down until all affected components
are ascertained. Authors evaluate their approach in an industrial case study on smart
grids.

... already derived products. Changes in either the component dependencies or
the bindings between these components and the features, may force products to adjust
to the new arrangement. Michalik et al. [MW11] propose a preliminary CIA model
where to keep track of derived products’ configurations. Heider et al. [HVLG12]
present an industrial case study, where they identify engineers’ desired trace links
when performing CIA. Desired CIA include assessing SPL architecture changes on (1)
derived products, (2) dependencies with other architectural components and interfaces,
and (3) features in the variability model.

A change in code assets might impact ...
... the variability model. Changes to component interfaces and component

dependencies often affect variability models [HVLG12]. Heider et al. [HVLG12]
present an industrial case study. They identify engineers’ desired CIA, including how

47

Chapter 2. Mapping Software Product Line Evolution

code assets changes affect variability models. A model is generated based on those
desires and a possible realization in Eclipse is discussed.

... code assets themselves. Clone&own is not limited to products. Code assets can
also be obtained by cloning existing code assets. In this setting, Jiang et al. [JZZZ08]
present an automated technique to identify code asset that need to be changed when
a code asset changes. For component-based SPLs, Yazdanshenas et al. [YM12]
introduce a fine-grained source code analysis (at code line level) where the impact
of component line-grained changes in other components is assessed. For annotation-
based SPLs, Ribeiro et al. [RBK14] develop an Eclipse-based tool for annotation-
based SPLs. Given a point in code (the one to be changed), this tool identifies the set
of additional code changes associated to other features that need to be addressed for
the change to be completed. For model-driven SPLs, Pichler et al.[PHS11] and Correa
et al. [CdOW11] tackle change impact on meta-models and model transformations.
Pichler et al. [PHS11] envisage ten changing scenarios and their respective scopes are
analyzed. For instance, a change into a meta-model might ripple through the meta-
model itself, model-to-model transformations or model-to-text transformations. Based
on the classification for meta-model changes proposed by Gruschko [Gru07], Correa
et al. [CdOW11] adapt it for model-driven SPLs. For instance, Non-breaking changes
(NBC) in SPLs are those changes that do not break consistency and variability rules,
and therefore, no product is affected. Authors classify changes in model-driven SPLs
(feature changes, meta-model changes and transformation changes) according to this
classification, and identify eventual ripple effects.

... already derived products. New enhancements in reusable code assets might
impact already derived products. Michalik et al. [MW11] proses a preliminary CIA
model that keeps track of the configuration details for each derived products.

A change in a product might impact ...
... code assets. Improvement opportunities can be detected by product engineers.

Cossio et al. [KSS15] tackle this scenario. For Version Control Systems (VCSs),
development histories can be used to trace products back to the SPL release version
from where the product was initially derived. Previous release versions that hold the
targeted asset can be detected as well, which, in turn, permits to identify which other
SPL products might benefit.

... already derived products. In clone-based SPLs, changes made to one clone
might be propagated to other clones. Rubin et al. [RKBC12] propose a model to
describe information for managing cloned products. Herein, if a clone changes, then
this model could point to other affected features within the clone as well as identify
other impacted cloned products. The authors discuss the realization through VCSs. In
a later study [RCC13], authors approach is validated through a set of industrial case
studies.

2.5.2.2 Decision-making

A change request is not a must-do. Developers should first explore the impact of
conducting a change. This very much depends on the kind of change being conducted.
This subsection classifies studies based on our understanding of the change type being

48

Chapter 2. Mapping Software Product Line Evolution

Decisions to be
made

Primary Studies

Make Variable /
Make Common

[TB07], [TBC08], [KB12], [DSB09],
[NRG08], [RR03], [LDSL07], [APT12],
[Sch06a], [SS08], [PYZ11], [CGCS04]

Make Generic/
Make Specific

[HGR10]

Product-local
change

[GF13], [GF11], [KR13]

New product [CGCS04], [HFG+10], [TM14], [MKR94], [SV02]

Table 2.4: Classification of studies based on the decision to be taken.

considered. Change types are those indicated in Figure 2.1. Table 2.4 pigeonholes
studies based on these change types. Note that it is possible for a study to give support
for more than one change type.

Make variable / make common Here, the issue is about finding the right amount of
variability. Too much commonality moves the SPL towards traditional single product
engineering. On the other hand, more variability broadens the SPL scope at the expense
of more maintenance (and upfront investment). On the search for a compromise,
decision-making approaches come in handy, specifically, the WinWin model [BBHL94]
and the Question Options Criteria (QOC) model [MYBM91]8. Thurimella et al.
[TB07] propose a combination of the EasyWinWin model (i.e., an adapted version of the
WinWin model) and the QOC model. Specifically, the model includes a question (e.g.
“what are the changes that have been requested for feature F1?”), a set of options (e.g.,
changing variability from mandatory-to-optional, from optional-to-mandatory, to add
a new feature or to delete a feature), and finally, some criteria (e.g., cost to implement
each of these options). In this way, Thurimella et al. [TB07] adapt QOC to SPLs.
Alternatively, Thurimella et al. [TBC08] and Kumar et al. [KB12] enrich variability
models with annotations about feature rationales. This information can later be used to
assess what and how to manage variability. This approach is later evaluated by Kumar
et al. [KB13].

In the same vein, Deelstra et al. [DSB09] introduces the variability assessment
method COSVAM. COSVAM requires engineers to provide both (1) the SPL’s
variability model, and (2), the required variability (i.e., the variability necessary to
accommodate the change request). The tool detects mismatches between the provided
and the required variability. If mismatches arise (i.e., existing product configurations
become invalid), the tool suggests the set of adaptations needed to overcome the
mismatches. However, estimating the cost of such changes is not always easy.
Predictive modeling is a process used in predictive analytics to create a statistical model
of future behavior. Schackmann et al. [Sch06a] and Sarang et al. [SS08] advocate to

8QOC models arrange decision making along four steps. First, define the issues (questions). Second,
identify available solutions (options). Third, define the criteria (e.g., estimates about development efforts,
benefits and risks) to rate the available options. Finally, a decision (option) is selected on this basis.

49

Chapter 2. Mapping Software Product Line Evolution

create such models from past evolution-driven developments efforts. These models
can later be used to estimate costs for the different SPL evolution scenarios (e.g., fix
a feature, add a new feature, etc.). At this respect, Peng et al. [PYZ11] assess the
profit that a change would imply. The metric is based on the following estimates:
(1) the probability that the change will emerge (estimated by analyzing the market
and the technological trends), (2) the volume of the change (the number of products
affected by the change) and (3), the added customer value for each product (estimated
by multiplying the price and the relative value of all the impacted problems identified
in change impact analysis).

If the focus is on risks assessment, Riva et al. [RR03] present an industrial case
study, where architectural assessment helped to determine if a new feature would put
under risk the SPL integrity. Architectural assessments are used to identify defects
and shortcomings of the SPL architecture. If the architecture is weak, new features
may compromise the integrity of the SPL. Here, SPL managers may postpone the new
feature until the architecture is ready to support it. On the other side, new features may
alter the functionality of already existing features. Hence, a careful analysis of feature
interactions is vital. Liu et al. [LDSL07] focus on the identification and modeling of
safety-critical feature interactions to determine whether they may cause a hazard. For
component-based SPLs, Annosi et al. [APT12] present an industrial experience on
risk management when updating COTSs9. The upgrade may surface incompatibilities
with other features resulting into unforeseen side effects. Authors build a decision
model that considers expert knowledge and dependencies between the SPL architecture
elements (i.e. existing components) and the COTS candidates.

Make generic / make specific Here, the issue is about making a variable asset
product-specific (“make specific”) or a product-specific asset generic (“make generic”).
For this matter, Heider et al. [HGR10] resort to a WinWin model. Key stakeholder roles
are first identified (e.g., salesperson, product engineers, customers, SPL managers),
and next, negotiation clusters are set (e.g., development, market, management).
For each negotiation cluster, stakeholders describe their individual objectives and
expectations as win conditions. For instance, project managers might favor cheap
and fast development while product engineers prefer to develop with reuse despite
introducing additional delays. If all stakeholders concur on a win condition, then
the condition is turned into an agreement. Otherwise, stakeholders identify conflicts,
risks, or uncertainties as issues. Stakeholders seek options to overcome the collected
issues and explore tradeoffs as a team. Options can then be turned into agreements that
capture mutually satisfactory solutions.

Product-local change When core-assets are enlarged with a “newcomer”, a question
arises about which SPL products to be used as a test bed. Karimpour et al. [KR13]
tackle this issue. They compute the synergy between the newcomer and distinct
products in terms of value and integrity. The value is provided by products’ customers,
based on how much value will be added to the product if the newcomer is incorporated.
The integrity computes cohesion, i.e. the degree to which (a product’s) features are

9COTS are pre-packaged solutions usually acquired to a third-party for a fee.

50

Chapter 2. Mapping Software Product Line Evolution

perceived to be related to the newcomer (e.g., play and pause features of a video-
player systems are more cohesive than play and volume features). The best product
candidate would be the one with maximum value and integrity. In a similar vein,
but now focusing on product architectures, Gámez et al. [GF13] resort to diff tools to
compute the architectural differences between a product’s current configuration and the
new configuration that will emerge, should the newcomer be incorporated. The output
identifies which components must be added or removed from each product. Managers
would then assess the cost for producing the upgraded product versions.

New product SPLs can potentially account for a large number of products based on
different feature combinations. However, not all products end up being realized. The
cost of a product is not limited to generating the product. Besides the potential pressure
for product-local changes, a new product is a new asset to be maintained when the SPL
evolves. This begs the question: how to decide the introduction of a new SPL product?
Studies resort to simulation models. Simulations involve designing a model of a system
and carrying out experiments on it as it progresses through time. Here, the model is
the SPL ecosystem, and the experiments are about the impact of introducing the new
product. Studies differ in the estimate being considered, e.g. development effort, time-
to-market, change resiliency or marketability.

Chen et al. [CGCS04] resort to simulations to estimate the development effort and
time-to-market. SPL managers should first create the model, indicating: the number
of current SPL products, phases on which the different products are (development,
release, waiting for core-assets requested), phases on which core-assets are (in
development, released), and the number of developers and their current state (free or
under development activities). SPL managers can next simulate the desired change
(e.g., introducing a new product). The simulation will tell managers about: the time-
to-market for the new product, its development effort, and the additional maintenance
effort caused by the change. Effort estimates are traditionally obtained based on
previous development efforts. Alternatively, simulation of evolution scenarios can
be used. For model-based SPLs, Heider et al. [HFG+10] resort to this approach to
measure model maintenance effort.

Minh et al. [TM14] aim to predict products’ resiliency. Experts specify
the prediction of future evolutions in a feature-like model (called eFM). Based
on both the eFM and the current feature model, authors provide a configuration
survivability analysis for new product configurations. This analysis measures whether
a configuration would still be operational in the presence of forthcoming evolutions.

Murthy et al. [MKR94] tackles marketability. Product marketability metrics are
proposed to capture customer affordability (willingness to pay) and product quality.
Though the study focuses on single applications, the authors argue that these metrics
can also be useful to assess whether a new product should enter an SPL. An interesting
issue is whether product introduction is a one-off event or rather, it might be better
to introduce several products as a single shot. Schmid et al. [SV02] discusses the
economical impact of these two scenarios.

51

Chapter 2. Mapping Software Product Line Evolution

2.5.2.3 Planning and road-mapping

The change backlog rarely holds a single petition. Rather, distinct changes are often
competing for attention and resources. Harmonious evolution requires roadmaps and
release plans that guide the evolution journey.

Road-mapping A project roadmap is a simple presentation of project ambitions and
project goals alongside a timeline. The aim is to manage stakeholder expectations,
and generate a shared understanding across the teams involved. For SPL evolution, a
roadmap provides a global vision of the SPL with features and products to be offered
some years from now. Pleuss et al. [PBD+12] and Schubanz et al. [SPP+13] propose
the use of FMs to describe roadmaps. Such FMs are called EvoFM, which include
“the what” and “the why” of the change. EvoFMs are composed of FM fragments. A
fragment gathers related features that are added or removed together during the same
evolution step. Dependencies between fragments can also be stablished, just like in
an standard FM. Each evolution step can then be represented by a “configuration” of
the EvoFM, i.e. a selection of fragments that together make a FM. The evolution of
a FM can, hence, be represented by a sequence of EvoFM configurations. Authors
visualize this sequence in a matrix-like roadmap. The horizontal dimension represents
the time line (year), where each column represents an evolution step. Each cell in
the plan represents a configuration decision, i.e. whether a FM fragment is applied in
that version or not. Moving from FMs to SPL architectures, van Ommering [vO02]
proposes for SPL roadmaps to include both products and components, and most
importantly, release dependencies between them. Finally, Savolainen et al. [SK08]
report experiences from industrial SPLs and suggests key factors for effectively road-
mapping, including e.g., decomposing features into sub-features (to better understand
feature inter-dependencies), mapping features to component versions (to understand
how features are mapped to code), and prioritizing features based on the value that
each product gives to each feature.

Release planning A release plan is a company’s current understanding of what
features are going into the next release, how many effective developers are deployed on
it, and the current status of the development effort (ahead, behind, on-time). It differs
from road-mapping in that it signifies that there are a subset of selected requirements
to be implement, and there are committed resources to implement such requirements.
Release planning provides focus to road-mapping. To know which requirements should
be part of the next release, requirements prioritization is conducted. Prioritization can
be based on distinct criteria: costs and benefits [NRG08], constraints on available
resources to conduct the requirements (e.g., person months until next release) or
dependencies between requirements (e.g., one requirement includes/excludes another)
[IKH14]. The large set of concerns to be considered leads Taborda [Tab04] to specify
release plans as matrixes with different layers. Each layer accounts for different SPL
release facets: prioritized product features, allocated requirements for each component,
estimated development effort, scheduled dates, test plans cases, and delivered product
configuration. The author describes the results of practical trials.

52

Chapter 2. Mapping Software Product Line Evolution

2.5.3 Implement change
CIA strives to identifying the potential consequences of a change. The aim is collecting
data to decide whether the change ends up being implemented or not. If the answer is
yes, then we move to “Implement change”. For classification purposes, we arrange
studies addressing this activity along three main issues: (1) how to make SPL assets
change resilient (“Built-for-change”), (2) how to accommodate change in a reliable
way (“Built-with-change”), and (3), how to ensure consistency when changes are
scattered across different assets (“Change synchronization”).

2.5.3.1 Built-for-change

Studies strive to anticipate change, and reflect about means to make assets change
resilient [LRZJ04]. Resilience very much depends on the SPL architecture and the
programming paradigm used to implement code assets.

SPL architecture resilience Studies strive to make the SPL architecture steady
through evolution. For planned changes, the wired-in variability of SPL architectures
accommodates well. However, unplanned changes might compromise the SPL
architecture stability. The question is how to ensure long-term viability of SPL
architectures considering that unplanned changes are unavoidable. Although no
golden-rules exist, Tischer et al. [TBM+12] and Dikel et al. [DKO+97] present some
successful industrial cases. In hindsight, authors propose some guidelines: focusing on
simplification (finding a balance between features that are needed for “tomorrow” and
features that are needed for “today”), adapting for the future (forecasting market and
technology trends that are specific to the SPL architecture), establishing architectural
rhythm (fix regular architecture and product releases that help coordinate the actions
and expectations of all parties), partnering and broadening relations with stakeholders
(e.g., when users want changes to a component, they should negotiate directly with the
component owner rather than directly change it themselves), maintaining a clear SPL
architecture vision across the company (all parties need to know who is responsible
for what), and managing risks and opportunities (e.g., review the architecture with
customers and stakeholders, tracking and testing the assumptions underlying customer
requirements). Deng et al. [DLS05] discuss several evolution challenges for SPL
architectures, and proposes a model-driven approach based on automated domain
model transformations. Authors advocate that their approach is flexible enough to
accommodate changes to the SPL architecture. Finally, Díaz et al. [DPG14] propose
an SPL architecting approach that combines (1) an incremental SPL architecture
development based on scrum sprints, and (2) a modeling technique to specify the
SPL architecture and design decisions that led to each architectural element. Authors
evaluate whether their approach enables to maintain SPL architectures’ flexibility and
integrity upon evolving requirements.

Code asset resilience A number of studies evaluate how variation mechanisms
perform as for change resilience. Traditional programming paradigms have been
assessed by Svahnberg et al. [SB00] and Sharp et al. [Sha99]. Svahnberg

53

Chapter 2. Mapping Software Product Line Evolution

et al. [SB00] compare inheritance, extensions, parametrization, configuration and
generation. Additionally, Sharp et al. [Sha99] discuss object-oriented mechanisms,
including inheritance, aggregation, generic programming, and conditional compilation.
Departing from traditional programming paradigms, newer approaches have been
investigated for SPL realization, namely, Aspect-Oriented Programming (AOP),
Feature-Oriented Programming (FOP), and Delta-Oriented Programming (DOP).

AOP supports cross-cuts, i.e., functionality that cannot be cleanly decomposed and
tangles/scatters around distinct assets. Tesanovic et al. [Tes07] endorse AOP as a
suitable paradigm to face cross-cutting evolution. Dyer et al. [DRC13] compare
different AOP interface proposals, namely, open modules, annotation-based point-
cuts, explicit join points and quantified-typed events. Figueiredo et al. [FCS+08]
evaluate AOP strengths and weaknesses compared to conditional compilation in a set of
evolution scenarios. Finally, Abdelmoez et al. [AKEs12] contrast the maintainability
effort required during evolution of aspect-oriented SPLs and object-oriented SPLs.

Next, FOP, i.e., a composition-based approach that provides the notion of feature
as a construct of the programming language. The idea is to decompose code in terms
of features (i.e., feature modules). Object-Oriented Programming (OOP) resorts to
subclassing for extending a class C1 with additional functionality in subclass C2. In the
same scenario, FOP defines a single class C1 but its definition is split into two assets:
the base and the feature so that C1 is obtained by composing base • feature. There are
not two classes but a single class that is incrementally extended to exhibit a new feature.
Countinho et al. [FGFd14] evaluate FOP in several evolution scenarios. Authors
conclude that FOP seems to be more effective tackling modularity degeneration, by
avoiding feature tangling and scattering in source code, than conditional compilation
and design patterns. Cafeo et al. [CDG+12] compare AOP, FOP and conditional
compilation. Cardone et al. [CL01] propose java-layers (JL), a FOP-like approach
for Java, and evaluate JL against Object-Oriented frameworks in terms of flexibility,
ease of use, and support for evolution.

Finally, DOP. DOP generalizes FOP by allowing removal of functionality, and
hence, brings non-monotonicity to SPLs. In DOP engineers start from a core module
(containing a valid product configuration), and apply deltas to remove, add, and modify
features. Schaefer et al. [SBB+10] introduce DOP, and compares it w.r.t. FOP in an
SPL evolution scenario.

From the previous studies, it can be concluded that there is not a one-size-fits-all
approach. Hence, hybrid approaches are suggested. Aspectual feature modules, a mix
between AOP and FOP, is proposed by Gaia et al. [GFFd14]. Similarly, Loughran et
al. [LRZJ04] evaluate framed aspects, a mix between AOP and frames technology (i.e.,
a language independent textual pre-processor that creates software modules by using
code templates and a specification from the developer). Finally, for component-based
SPLs, Tizzei at al. [TDR+11] propose aspectual-components, a mix between AOP and
components. Authors evaluate to what extent this approach supports the evolution of
SPLs compared to object-oriented SPLs.

54

Chapter 2. Mapping Software Product Line Evolution

2.5.3.2 Built-with-change

SPL complexity substantiates the efforts to bring assistance during change
implementation. Studies differ in the asset being the subject of change.

Changing the variability model Error prevention can be ameliorated through
constraints to be obeyed when conducting the change. Romero et al. [RUQ+13] follow
this approach by allowing domain engineers to define authorized changes to the SPL.
Such authorized changes are specified in a model (the evolution model). This model is
next fed to asset editors so that editions should be compliant with the evolution model
(i.e., the constraints). Similarly, Borba et al. [BTG12] and Teixeira et al. [TBG15]
propose the use of templates. Templates regulate the SPL evolution so that the behavior
of the the original SPL products is preserved

Changing the SPL architecture Guidance to conduct change at architectural level
is addressed by Hendrickson et al. [HH07], Knodel et al. [KMNL06] and Garg et al.
[GCC+03]. The first two resort to a diff-like approach to capture differences between
the architecture as-is and the architecture as-it-needs-to-be. This representation states
the architectural elements (components, interfaces and connectors) that need to be
added, deleted or modified. This assists engineers in determining the changes to be
made. Similarly, Garg et al. [GCC+03] present a tool to visualize different versions
of architectural models in terms of components and connectors. When a change is
implemented at code level, architecture evaluations can then be used to compare the
architectural model with its corresponding implementation at code level. This assists
developers in determining whether the changes have been thoroughly completed.

Changing code assets Introducing changes at code level can be error-prone. This
is more so for composition-based SPLs where code tends to be scattered across a
large number of modules. For example, a module can reference classes, variables,
or methods that are defined in another module. Safe composition guarantees that a
product synthesized from a composition of modules is type-safe. While it is possible
to check individual products by building and then compiling them, this does not scale.
In an SPL, there can be thousands of products. It is more desirable to ensure that all
legal modules are type-safe without enumerating the entire product line and compiling
each product [DCB09]. Schröter et al. [SSTS14] introduce a tool for FOP, which tells
engineers (while developing), whether their development is type safe, and hence, no
compilation errors will await when composed with other modules. For AOP SPLs,
Menkyna et al. [MV09] advocate to create a change catalog. Once the type of change
is identified (e.g. Adding Column to Grid), this catalogue helps to get an idea of its
realization through AOP constructs (e.g. Performing Action After Event). Authors
present this catalog using a Web applications as a case study. Finally, Ribeiro et
al. [RBK14] address the ripple effect among code assets in annotation-based SPLs.
Based on usage dependencies between code snippets (e.g variables, methods), a tool
highlights the impact that changes in the definition of either variables or method
signatures, have on other snippets using these elements.

55

Chapter 2. Mapping Software Product Line Evolution

Changing products Customers might request product-specific changes. Product
engineers might proceed by developing the bespoken code from scratch. However,
the SPL mindset recommends to tap into the available SPL’s code assets to look for re-
use opportunities. Kakarontzas et al. [KSK08] assist product engineers on this matter
by selecting the component that offer better reuse opportunities. Using Test-Driven
Development, product engineers might resort to SPL components’ test cases for both
developing and testing the bespoken code.

For model-driven SPLs, code assets are realized in terms of models, and products
are obtained through model transformation. Therefore, product specifics should be
handled at the model level. But this is not always possible, and product-specifics end
up being added at the code level. The issue is that once models become out of sync, any
future re-generation of code overrides manual modifications. To solve this problem,
Jarzabek et al. [JT11] propose a flexible model-to-text generator. The idea is to let
engineers weave arbitrary manual modifications into the generation process rather than
directly modify the generated code.

2.5.3.3 Change synchronization

Change synchronization looks at ways to restore consistency. For classification sake,
we distinguish between “inconsistency detection” (addressed in 2.5.4.1) and “change
synchronization” (this subsection). The former checks whether SPL assets are kept in
a consistent state. The answer is basically “yes” or “no”. On the other hand, “change
synchronization” takes a step further by restoring consistency. Studies propose restore
actions for different SPL assets. Differences stem from the asset being restored.

Scenario: keeping the variability model in sync The variability model can hold a
set of dependencies/constraints among its features. It is not enough to detect that some
of these dependencies no longer hold. The triggering change should be followed by
restore actions such as deleting a feature’s children, or removing a cross-tree constraint.
Guo et al. [GWTB12] introduce a tool to assess those actions for cardinality-based
feature models. Dhungana et al. [DGRN10] introduce a tool to propagate changes
between fragments of Decision-Oriented variability models.

However, keeping the variability model in sync is not limited to the variability
model itself. It might also impact product configurations, which were set in terms of the
variability model which is now being updated. Unlike the previous case, now restore
actions are not taken at the time the variability model changes but rather, it is up to
product engineers to decide when it is the right moment for products to be upgraded.
This decoupling requires of a variability model change log. This log records who made
what at when to the variability model. Based on this log, product engineers can adapt
product configurations at the time that they consider most appropriate. Heider et al.
[HRG12] tap on this log to assist product engineers in setting some constraints to be
followed when working out the new product release w.r.t. the upgraded variability
model. Gámez et al. [GF13] consider this scenario for cardinality-based FMs.
Constraint-compliant configurations are obtained which might include new features
in order to meet the constraints (e.g., to satisfy a require dependency). Barreiros et al.
[BM14] face large FMs where the options to restore product configurations might be

56

Chapter 2. Mapping Software Product Line Evolution

very large. Authors introduce an algorithm based on the distance between the original
configuration and a potential repaired configuration akin to the upgraded FM. The
algorithm suggests those with the minimum distance. Finally, Hwan et al. [KC05]
also tackle change propagation but for staged configurations10.

The variability model might also be impacted by changes conducted down in the
SPL infrastructure. In the automotive domain, Holdschick et al. [Hol12] consider
how potential changes in the so-called functional model (e.g., deletion of components,
optional component becomes mandatory) need to be propagated up to the variability
model (e.g., reformulate relations with related features, split features, etc).

Scenario: keeping architectures in sync Usually, product architectures are first
derived from the SPL architecture. From then on, both the SPL architecture and the
product architectures might evolve independently. Domain engineers can extend the
SPL scope and upgrade the SPL architecture accordingly. Likewise, product engineers
might be forced to make changes to products architectures to ensure accurate and
responsive customer service [CN01a]. Temporary deviations between the SPL and
product architectures are allowed, but periodic synchronizations might need to be
performed. Notice that the triggering change might come from either the domain realm
or the product realm.

If the change originates in the SPL architecture (i.e. the domain realm), then
products might benefit from including the new enhancements in the next product
release. To know how a product architecture should be updated, architectural traces
(i.e., those that trace elements from the SPL architecture to products) become vital to
determine what to merge. Michalik et al. [MWB11] seek to abstract the level at which
this process is conducted. Although SPLs tend to describe their architecture through a
model, this is not always the case for products where the architecture might be hidden
within the code assets. This leads Michalik et al. to follow a modernization approach
where the product’s architecture model is first obtained from the product’s code; next,
this model is enhanced from the improvements conducted in the SPL architecture
model; and finally, the so-obtained enhanced model is mapped back to code. The
enhancement stage is conducted by comparing the current product’s model and the
SPL architecture model. These differences will lead product engineers to manually
update products.

If the change originates in the product architecture, domain engineers might
consider the change of interest for the entire SPL organization. Again, this process
is decoupled, i.e., domain engineers do not consider product changes at the time the
change happens, but at a later time in accordance with their roadmap. This begs
the question of how engineers cherry-pick the interesting changes from the distinct
ones the product suffers from the last milestone. Chen et al. [CCG+03] tap into
the product’s version. First, domain engineers look at the product’s version. Second,
two versions are selected that isolate the change of interest. Second, differences are
obtained. Third, these differences are accommodated into the SPL architecture through
an ad-hoc algorithm. Unfortunately, the interesting change does not always correspond

10Staged configuration is a process whereby product configurations are arrived at in stages. At each stage
some feature choices are made.

57

Chapter 2. Mapping Software Product Line Evolution

to one of the product’s version. It might well be the case that interesting changes
are scattered across different versions. This might substantiate the effort of Shen et
al. [SPZZ10] to detect interesting changes from the differences between the current
product architecture (no matter the number of releases it has suffered) and the current
SPL architecture. Once differences are worked out, domain engineers pick those of
interest, and merge then back to the SPL realm.

Scenario: keeping code assets in sync Previous scenario looks at synchronizing
architecture assets. Now, we tackle a similar scenario but for code assets. The
difference stems from synchronization to be achieved not just between assets but asset
versions. Versions introduce variability in time: the very same asset might be available
along different versions. This means that products are derived from asset versions, not
just assets. The very same core-asset might be included in different products but at
different stages of its life-cycle (i.e. different version numbers). Hence, versioning
becomes a main synchronization factor. This moves us to VCSs. VCSs are designed to
keep track of who did what and when. Broadly, VCSs support “revisions”, i.e. a line of
development (a.k.a baseline or trunk) with branches off of this. The branching model
defines the strategy for branching off, and merging back [WS02b]. Studies differ in
the kind of product derivation process being addressed: clone-based and composition-
based.

For clone-based, each product has its own repository. Several authors argue
about the benefits of an integrated platform where cloned variants could be managed.
Specifically, both Rubin et al. [RKBC12] and Antkiewicz et al. [AJB+14] propose
conceptual operations and discuss VCS implications to manage the synchronization of
clones. An industrial experience on managing clone-based SPLs is later conducted by
Rubin et al. [RCC13]. Authors conclude that an efficient management of clones relies
on not only improving the maintenance of existing clones, but also refactoring clones
into an SPL infrastructure. From a technical perspective, McVoy [McV15] introduces
new VCS operations suited for BitKeeper, which enables opportunistic reuse and
synchronization at component-level. Notice that in clone-based SPLs, propagation
takes place at the level of products in the absence of a proper SPL infrastructure.

By contrast, composition-based SPLs derive products out of core-assets. In a
VCS setting, the SPL comprises: one SPL repository where to keep core-assets,
and distinct product repositories where to keep single products. Product repositories
are derived from SPL repositories. A link between both repositories makes change
propagations possible. Thao et al. [TMN08] present a home-made VCS tuned for
component-based SPLs. Here, special branches inside the SPL repository, keep the
SPL repository connected with product repositories. Whenever a product repository is
derived, a special branch is automatically created in the core-asset repository, aimed for
change propagation. Specifically, the special branch references the product repository’s
trunk. This branch works like a mirror: if domain engineers merge changes from
the SPL repository main development trunk to the the special branch, the product
repository will automatically get these updates. Anastasopoulos [Ana09] and Dhaliwal
[DKZH12] differ from the previous studies in keeping both SPL assets and product
assets in the very same repository. For Anastasopoulos [Ana09], the vision is realized

58

Chapter 2. Mapping Software Product Line Evolution

for the Subversion VCS. Engineers can perform activities related to evolution such
as creating change requests for a given core-asset, knowing if product assets are in
sync with core-assets’ latest versions, and propagating changes between core-assets
and products. Diff operations are used to highlight the differences between core
components and product components so that differences can later be merged into
a product. However, integrating changes from the core-asset branch into product
branches is not always easy. When the core-asset branch holds commits related to
more than one change request (e.g, adding a new feature, updating a existing one,
etc), developers need to selectively cherry-pick the commits related to the change
to be integrated. Commonly, change-request tracking system (e.g., Jira) are used
to keep the links between change requests and commits (e.g. a new feature f is
implemented in commits c1, c2 and c3). This way, product engineers select the change
request they want to integrate into their products, and all the commits related to the
change request are merged into the product branch. However, developers need to
perform these tasks manually. This is error-prone and time-consuming. Dhaliwal et al.
[DKZH12] provide algorithms to identify commit dependencies and create groups of
dependent commits that should be integrated together. Authors propose algorithms to
automatically determine dependencies among the commits by analyzing dependencies
among change requests (in Jira), structural and logical dependencies among source
code elements, and the history of developers’ working collaborations (in Git).

Scenario: keeping feature mappings in sync Change propagation frequently
requires a trace infrastructure to ascertain impacted assets. This infrastructure should
also be upgraded. To this end, Seidl et al. [SHA12] introduces re-tracing operations,
e.g. if class C is deleted, so should it be feature mappings that contain class C, provided
domain engineers approve it. When feature traces are not specified into a separate
asset but are embedded into code (i.e., feature annotations), Ji et al. [JBAC15] present
nine patterns for co-evolving code assets together with their embedded annotations.
Finally, Passos et al. [PGT+13] inspect the Linux kernel evolution history over
four years to identify twelve patterns. These patterns cover how variability changes
affect both feature-to-code mappings (specified through Makefiles) and source code
embedded variability annotations (C files with annotated ifdef clauses). For instance,
if a new optional feature is added, the pattern instructs engineers to add variability
annotations into the source code, as well as to extend Makefiles to include the new
feature definition.

2.5.4 Verify change
Once changes are conducted, the SPL needs to be revalidated to ensure that the SPL
integrity has not been compromised (e.g. through regression testing). The issues are
the specifics brought by the SPL assets and scalability. Rather than repeating all tests
for each new release (should this be of the feature model, a core-asset or a product),
authors strive to find ways that scale to large SPLs to verify that the changes did not
have inadvertent effects.

This subsection aligns with the mapping study on consistency checking presented

59

Chapter 2. Mapping Software Product Line Evolution

by Santos et al. [SdOdA15]. The results are quite similar, though here we include a
detailed description of the studies that is missing in Santos’ et al.

2.5.4.1 Inconsistency detection

Inconsistency detection checks whether SPL assets are kept in a consistent state. The
answer is basically “yes” or “no”. Studies differ in the asset being checked.

Inconsistency detection for the variability model Quinton et al. [QPB+14] address
consistency for cardinality-based feature models. Authors discuss about common
changes and the resulting inconsistencies. A tool supports designers in assessing the
where, the why and the what of the inconsistency. For decision-oriented variability
models, Vierhauser et al. [VGH+12] build a consistency checking framework where
developers are given feedback about the constraints being violated at runtime (between
the variability model and the code). However, changes in the feature model percolate
down to the SPL, and hence, consistency checking should be extended to other assets,
specially, product configurations. For instance, promoting a feature from optional
to mandatory turns those configurations that do not included the upgraded feature,
inconsistent. Besides product configurations, feature traces (i.e., those that link
features to their code realization) are also likely to be affected. Consider a product
configuration p1 with features f and g, being class F and class G their code realization,
respectively. Now, f is extended with an optional child (e.g., feature h) together with
its corresponding code assets (e.g., class H). If class H is next inattentively mapped to
feature f (rather than h), then product p1 will no longer deliver the expected behavior.
Study [BTG12] devise tools to check whether the behavior of already existing products
configurations is preserved upon feature changes. In the same vein, Borba et al.
[TABG15] provide a theory about behavior preservation in SPLs upon feature changes.
This study is later extended for multi-product lines (i.e., independently-developed SPLs
that are later integrated) [TBG15]. Finally, Jahn et al. [JRG+12] develop a consistency
checker to detect inconsistencies for decision-oriented variability models w.r.t the SPL
architecture model. When engineers change the code assets (e.g., new components are
added), the SPL architecture is automatically updated. The tool raises warnings about
any inconsistency between the variability model and the SPL architecture. The tool
further suggest the engineer how to resolve such inconsistencies by proposing changes
to the variability model (e.g., a new feature should be added).

Inconsistency detection for the SPL architecture Different means are proposed in
this item: regression testing, functional tests and architecture evaluations. Regression
testing for SPL architectures, checks if new defects are introduced into a previously
tested architecture. Neto et al. [ddC+12] apply regression testing in two scenarios:
corrective changes and perfective changes. Sales et al. [SC11] resort to JUnit tests to
detect violations of design rules during SPL evolution. Alternatively, studies Knodel
et al. [KMNL06] and Duszynski et al. [DKL09] use architecture evaluations, i.e., the
comparison of an architectural model with its source code counterpart. Possible outputs

60

Chapter 2. Mapping Software Product Line Evolution

include: the architectural element converges (if it exists in both the architecture and the
source code), the architectural element diverges (if it is only present in the source code)
or the architectural element is absent (if the element is only present in the architecture).
Next, architects can interpret the results based on the total numbers of convergences,
divergences and absences. Finally, Knodel et al. [KMNL06] illustrates how this output
is used to evaluate the SPL architecture consistency between its design and the SPL
code assets.

Inconsistency detection for products When new releases for code assets are
delivered, existing products might need to be accordingly upgraded. Due to frequent
upgrades, products might keep unnecessary assets (a kind of bloatware). This
superfluous code may be harmful in safety critical domains, hindering runtime
performance and smooth evolution. Demuth et al. [DLHE14] resort to functional
tests for ascertaining and eliminating the bloatware assets from products, as well as for
assuring consistency of products when code assets and variability model evolves.

2.5.4.2 Scalable verification

SPLs might include a large number of assets. Lowering verification efforts has to do
with reducing the number of assets that need to be re-verified. Approaches differ based
on the verification mechanisms being used: model checking, compositional reasoning
and regression testing.

Model checkers automatically verify if a system satisfies a given property. A
property can be concerned with safety or liveness of the program, such as the absence of
deadlocks, but also product-specific behavior can be checked (e.g., in a coffee machine
SPL, check that the total cost of a drink is always less than 2$). The system needs
to be described in a formal notation (e.g. Petri nets, state-transition diagrams). For
large SPLs, Cordy et al. [CCS+12] resort to incremental verification. Here, previous
verification results are used to minimize the re-verification effort. Specifically, authors
try to determine if new added features are conservative or regulative. A feature is
conservative to a product if it adds functionality to the product, without altering its
previous functionalities. Alternatively, a feature is regulative if it doesn’t add new
functionality to the product but “adapts” previous functionalities. When the SPL
evolves and a new feature f is implemented, knowing that f is conservative may
drastically reduce the number of new products to verify. For instance, any property
violated by an old product p is also violated by the new product p after f is added.
Hence, if p is known not to satisfy a property, then there is no need to check p
again. The scenario becomes more complex when a blend of both conservative and
regulative features are added simultaneously. Theorems are provided to determine
which subset of products can be left out for verification when such type of features
are introduced. Similarly, static analysis techniques are used by Sabouri et al. [SK14]
to determine which features affect which properties (a feature affects a property if it can
make the property valid/invalid). In this way, when the SPL evolves (e.g., a feature is
modified that adds/removes program statements), this technique identifies the affected
properties. Here, there is no need to re-verify the properties that are not affected by the
statement added/modified.

61

Chapter 2. Mapping Software Product Line Evolution

Berezin et al. [BCC98] introduce so-called “assume guarantee reasoning”, a
compositional model checking approach that verifies each component separately. It
is based on decomposing the system specification into a set of properties each of
which describes the behavior of a system’s subset (i.e., components). Components
are annotated through an assume-guarantee pair. Assume describes the properties for
the correct functioning of the component. Guarantee denotes properties satisfied by the
component provided the assume clause is met. A component’s assume may depend on
other component’s guarantee. This approach is taken by Beek et al. [tBMP12], where
the SPL architecture is denoted as a set of components chained by assume-guarantees.
When a component implementation changes, its assume-guarantees may change as
well. If stable (the assume-guarantee pair did not change), products that reuse the
component don’t need to be tested again.

Similarly, Rumpe et al. [RRSW] resort to a component compatibility approach,
based on pair-wise model checking. If a new component version is compatible with
the previous version of the products’ component, it could be safely replaced. Finally,
commonalities and similarities between products’ configurations can be analyzed to
additionally narrow the set of products to be tested. The idea is to determine a minimal
set of products such that the successful verification of such a small set implies the
correctness of the entire SPL. Scheidemann et al. [Sch06b] present an algorithm for
this matter.

Regression testing is a type of software testing used to determine whether new
problems are the result of software changes (refer to Engstrom et al. [ER10] for an
survey for single product regression testing practices). The new twist brought by SPLs
is that tests can also be core-asset and hence, subject of reuse. For instance, Lity et
al. [LLSG12] use model-based testing in delta-oriented SPLs. When a new product is
created, the commonalities with existing product configurations is ascertained, and test
assets are automatically derived for the brand new product. In this way, product testing
is given a head start.

2.6 Analysis of the results
Though it was not the main driver of this research, we depict distribution of studies
over publication venues in Figure 2.5. The International SPL Conference (SPLC)
is the prime publication venue for SPL evolution research (28%). In 2005, the
SPLC committee decided to merge the SPLC with its European counterpart, the
Product Family Engineering (PFE) conference, so they are jointly visualized in the
chart. Next in the ranking is the Journal on Information and Software Technology
(IST) (8%), the International Conference on Software Engineering (ICSE) (7%), the
International Conference on Software Maintenance and Evolution (ICSME) (%4), the
Journal of Systems and Software (JSS) (3%), and the ICSE co-located International
Workshop on Product Line Approaches in Software Engineering (PLEASE) (4%).
The top ten is completed by the International Conference on Software Maintenance
and Reengineering (CSMR) (3%), the Journal of Science of Computer Programming
(SCP) (3%), the Working Conference on Software Architecture (WICSA) (3%) and
the International Workshop on Variability Modeling of Software-Intensive Systems

62

Chapter 2. Mapping Software Product Line Evolution

CONFERENCE	
68%	

JOURNAL	
19%	

Workshop	
13%	

SPLC&PFE	
28%	

IST	
8%	

ICSE	
7%	

ICSME	
4%	

JSS	
3%	

PLEASE	
3%	

SCP	
3%	

CSMR	
3%	

WICSA	
3%	

VAMOS	
2%	

2-entry	venues	
11%	

1-entry	venues	
25%	

Figure 2.5: Distribution of studies over publication venues: types (left) and individuals
(right).

(VaMoS) (2%). The 25% of the publications were unique in the venue they were
published in. Figure 2.5 also depicts the type of publication venue. Conference papers
and Journals account for the 68% and 19%, respectively, while workshops account for a
13%. These results align with the state of-the-art on SPL evolution by Botterweck et al.
[BP14]. Specifically, the majority of the included papers by Botterweck et al. belong
to the SPLC (together with the ICSE). Additionally, we both agree on the low numbers
of both the International Conference on Software Reuse (ICSR) and the Generative
Programming: Concepts & Experience (GPCE) conference. Next, we address each of
the research questions.

2.6.1 RQ1: What types of research have been reported, to what
extent, and how is coverage evolving?

From the accumulated results shown in Figure 2.6, we observe that “Solution
proposals” (31%) is the most addressed category, followed by “Validation research”
(24%). As it can be observed, “Solution proposals” have been gradually increasing over
the years. “Evaluation research” accounts for a 19%, which indicate the maturity level
of the SPL evolution field. Specifically, “Evaluation research” has been lately more
increasingly conducted (from 2008 on). This might indicate the SPL field becoming
more mature within an industrial setting. Additionally, “Validation research” (24%)
studies conducted in academia still need to find their way to industry. “Experience
research” (%17) indicates the commitment degree of industry to report “know how”,
“open issues” and “challenges behind”. A few conceptual works have also been
addressed (9%), which might indicate incipient challenges being addressed by the

63

Chapter 2. Mapping Software Product Line Evolution

1	 1	 1	 1	
3	

2	
1	

1	 3	
3	

1	

7	

2	

5	

6	

3	
1	

3	
2	

4	

1	

7	

1	

2	

4	

1	

2	

9	

3	

1	

6	

1	

1	

3	

1	

1	

5	

6	

6	

3	

0	

5	

10	

15	

20	

25	

1994-2005	 2006	 2007	 2008	 2009	 2010	 2011	 2012	 2013	 2014	 2015	

Conceptual	 Evalua9on	 Experience	 Solu9on	 Valida9on	

Conceptual	
9%	

Evalua9on	
19%	

Experience	
17%	Solu9on	

31%	

Valida9on	
24%	

Accumulated	Results	

Figure 2.6: “Research type” over time.

community.
From the stacked bar chart, we see a peak of contributions reached in 201211. This

peak aligns with other SPL related systematic reviews, which have also identified a
global maximum in 2012 [SdOdA15, TAK+14]. Santos et al. [SdOdA15] found also
a global maximum with 7 studies (the 29%), while the rest of the years had less than
the half of the studies found during 2012, except for 2010 (with 6 papers). Thüm et
al. [TAK+14] also identify a global maximum in 2012, with 27 papers. Regarding the
evolution of the research, it comes as no surprise that during the fist years (up to 2005)
“Experience research” and “Solution proposals” are the ones most addressed. From
then on, we observe a trend towards “Validation proposals” and “Evaluation research”.
Nevertheless, “Solution proposals” still are prominently addressed, which seems to
indicate the existence of SPL evolution challenges left to be accomplished.

2.6.2 RQ2: Which product-derivation approach received most
coverage, and how is this coverage evolving?

We are interested in assessing how the distinct product derivation approaches are
catching on (see Figure 2.7). These approaches might, for instance, impact change

11Notice that the survey stops at July 2015. One could postulate that a similar number of papers could be
published in the second semester of 2015.

64

Chapter 2. Mapping Software Product Line Evolution

1	 1	

3	

1	
2	

2	

1	

2	
3	

2	

4	

1	 1	

3	

10	

1	

6	

2	

1	

2	

4	

8	

1	 1	3	

1	

2	

1	

2	

0	

5	

10	

15	

20	

25	

1994-2000	 2006	 2007	 2008	 2009	 2010	 2011	 2012	 2013	 2014	 2015	

Annota2on	 Clone	 Composi2on	 Model-driven	

Annota&on	
4%	 Clone	

7%	

Composi&on	
29%	

Model-driven	
15%	

NA	
37%	

Hybrid	
8%	

Accumulated	Results	

Figure 2.7: “Product derivation approach” over time.

implementation in so far as the structure and code assets might take different shapes
tuned for the variability implementation and product derivation approach at hand.
This in turn might affect how other activities are conducted from implementing to
propagating change. The 37% of the studies are not reporting any specific product
derivation approach12. The rest of the studies consider either “Annotation” (4%)
(e.g., #ifdef clauses), “Composition” (e.g., component-based approaches, AOP) (29%),
“Model-driven” (15%), “Clone” (7%) or “Hybrid” (8%) approaches. From the stacked
bar chart, we can observe how the most addressed one is composition-based, with
a share of 29%. This is at odds with the annotation approach being the most
widely reported in industry [GLA+09, JB09, PO97, TSSPL09]. This can be due to
composition approaches being proposed to overcome the difficulties that annotation-
based approaches face when evolved in the large [EBN02, Fav97, KS94]. Interestingly,
we can observe an incipient interest on both “Annotation” and “Clone” approaches
since 2012 with a share of 4% and 7%, respectively. Although they have been criticized
due to its lack of modularity, these approaches have being the subject of recent efforts
to overcome this limitation.

12This includes studies on external forces (for “Identify change”), variability-model analyses, metrics and
negotiation processes (for “Analysis and plan change”), and change synchronization outside code assets (for
“Implement change”) and inconsistency checking of variability models (for “Verify change”).

65

Chapter 2. Mapping Software Product Line Evolution

2	
1	

5	

1	 1	

4	

9	

1	

6	

3	

2	

3	

1	

1	

4	

2	

1	

1	

6	

3	 1	

2	

4	

2	

2	

1	

2	

1	

2	
1	

2	

10	

8	

4	

3	

0	

5	

10	

15	

20	

25	

1994-2005	 2006	 2007	 2008	 2009	 2010	 2011	 2012	 2013	 2014	 2015	

Code	assets	 Products	 SPL	architecture	 Variability	model	

Code	assets	
30%	

NA	
9%	

Products	
13%	

SPL	
architecture	

18%	

Variability	
model	
30%	

Accumulated	results	

Figure 2.8: “Asset type” over time.

2.6.3 RQ3: Which kind of SPL asset received more attention and
how is this attention evolving?

From the accumulated results in Figure 2.813, we notice that both the variability model
(30%), and the code assets (30%) are the artefacts most addressed. This stems from the
way we classified studies. Although studies might deal with distinct SPL assets (e.g.,
feature-to-code mappings, test assets, etc), here we are interested in the assets that first
evolve (“the subject of evolution”), rather than those assets that evolve as a result of
the evolution of other assets. The latter assets are not computed into this facet.

“Code assets” account for 30%. Note that this category also includes models
as the code counterpart in model-driven SPLs. Regarding the evolution over time,
“SPL architecture” received more attention during the first years. This aligns with the

13“NA” (9%) refer to studies that consider no asset (e.g., a requirement prioritization algorithm [IKH14],
monitoring the SPL environment to identify new needs [Böc05], etc).

66

Chapter 2. Mapping Software Product Line Evolution

2	
1	

2	
1	 1	

1	

2	

5	
2	

2	

4	
8	 6	

4	
2	

7	

2	
2	

4	

1	
3	

4	

11	

5	

7	

4	

2	

1	

7	

3	

3	

0	

5	

10	

15	

20	

25	

1994-2005	 2006	 2007	 2008	 2009	 2010	 2011	 2012	 2013	 2014	 2015	

Iden1fy	change	 Analyze	and	Plan		 Implement	change	 Verify	change	

Iden1fy	
change	
6%	

Analyze	
and	Plan		
37%	

Implement	
change	
43%	

Verify	
change	
14%	

Figure 2.9: “Evolution activity” over time.

findings of Heradio et al. [HPMFA+15]. On the other hand, products lag behind other
assets as for attention received (13%). Though some proponents regard products to be
derived on the fly from core-assets, the current state of affairs is that products are still
in need of being customized, and hence, having a detached life-cycle from the SPL.

2.6.4 RQ4: Which activities of the evolution life-cycle received
most coverage and how is this coverage evolving?

Figure 2.9 depicts the rate for each evolution activity. Note that it is possible for
a paper to be categorized into more than one activity. This happens in eight cases
which explains why the total amounts goes up to 115. From the accumulated results,
we observe that “Implement change” (43%) and “Analyze and plan change” (37%)
account for more than half of the studies. Conversely, “Identify change” and “Verify
change” lag behind with a rate of 6% and 14%, respectively. These differences
might be partially explained by SPL challenges being more related to analysis and
implementation, while change identification in SPLs exhibits some resemblance with

67

Chapter 2. Mapping Software Product Line Evolution

1	 1	

1	

1	
2	

1	

1	

1	

3	

5	

2	 2	 2	

4	

1	

2	

2	

1	
2	

1	

2	

3	

1	

2	

2	

1	

1	

1	

4	

1	

1	

2	

1	

1	

3	

1	

3	

1	

1	

1	

1	

2	

1	
2	

1	

2	

1	

1	

2	

2	

6	

3	
2	

3	

1	

1	

4	

2	

2	

1	

3	

1	

1	

0	

5	

10	

15	

20	

25	

30	

1994-2005	 2006	 2007	 2008	 2009	 2010	 2011	 2012	 2013	 2014	 2015	

Iden1fy	change	 Change	Impact	 Decision-making	

Planning	 Built-for-change	 Built-with-change	

Change	synchroniza1on	 Inconsistency	detec1on	 Scalable	verifica1on	

Iden1fy		
change	
6%	

Change	Impact	
14%	

Decision-making	
17%	

Planning	
6%	

Built-for-change	
15%	

Built-with-
change	
9%	

Change	
synchroniza1on	

19%	

Inconsistency	
detec1on	

9%	

Scalable	
verifica1on	

5%	

Accumulated	results	

Figure 2.10: A finer-grained classification for SPL “Evolution activity”.

single-product engineering. The stacked bar chart shows a sustained interest in
“Implement change” and “Analyze and Plan change” over the years, while “Verify
change” has recently received more attention.

So far, activities are those of Yau’s change mini-cycle [YCM93]. This mini-cycle
applies to any software artefact. However, we wanted to zoom into the specific sub-
activities SPL practitioners cared about. Based on the mapping of primary studies
conducted in Section 4, we refined Yau’s model along nine sub-activities (see Figure
2.4). Next subsections provide a finer-grained analysis of those sub-activities.

2.6.4.1 Zooming into identify change

Figure 2.10 highlights this activity as being the less addressed: seven studies.
Among the different forces of change, product engineering is the force more broadly
addressed [CKM+08, MBKM08, CCJM12], including customers’ changing needs
[SK01, VDJ10]. This might be so, due to the fact of SPL products being amenable to
be promoted as core-assets, a distinctive aspect not applicable to single systems. On the
other hand, the forces of change exerted by domain engineers are not so different from
those found in single systems, hence, introducing less novelty. This likeness might

68

Chapter 2. Mapping Software Product Line Evolution

Conceptual Experience Solution Validation Evaluation ProductVariability
model

SPL
architecture

Code
asset

Not
applicable

Analyze and plan change

Change
Impact

2	 3	 3	 7	 1	

3	 3	 6	 4	 3	

3	 2	 2	

0	

1	

2	

3	

4	

0	 1	 2	 3	 4	 5	 6	

Serie1	

6	 3	 9	 3	

3	 2	 10	 1	 6	

2	 2	 3	

0	

1	

2	

3	

4	

0	 1	 2	 3	 4	 5	 6	

Serie1	Decision-
making

Planning and
roadmapping

Research
typeAsset

type

10 61

3 79

3

6

2 2

2

3

6

3

3 3

3

3

3

2

3

2 2

4

1

Figure 2.11: Mapping “Analyze and plan change” across facets “Asset type” and
“Research type”.

also explain the sole existence of a study looking into “the SPL environment” (i.e.
competitors, market research and technology forecasts) as a driver for SPL evolution:
[Böc05].

2.6.4.2 Zooming into analyze and plan change

Figure 2.10 depicts how “Decision-making” (17%) has received more attention that
its siblings “Change impact” (14%) and “Planning” (6%). This might stem from
SPLs bringing a new range of decisions concerning how assets evolve along the re-
use spectrum. For these sub-activities, we are interested in finding what is the focus
(i.e. facet “Asset type”) and maturity (i.e. facet “Research type”). To this end, we
crossed the activity dimension with these two facets. Figure 2.11 depicts the outcome.

Impact analysis. Maturity level of CIA reveals that proposed techniques are
mostly validated within academic case studies or experiments conducted in labs.
These studies have mainly considered “Code Assets” and “Variability models” as
the evolving assets. Products lag behind. This might evidence that academia barely
considers product-specific changes which is at odds with common practice in industry
[RDG+07].

Decision making. At first glance, figures suggest this to be a rather mature area
with three studies reaching the evaluation stage. However, this first impression should
be contrasted against the kind of artefact being addressed. “Variability model” is the
most tackled asset with nine studies. This might well stem from the formality brought
by variability models that facilitates formal reasoning. However, other assets are
largely overlooked. Specifically, the decision about product specifics being promoted to
SPL core-assets, has not received so much coverage despite being common in industry
[RDG+07]. This is an area that presumably will receive more attention in the future,
specially if clone-based SPLs take off.

Planning and road-mapping. Studies seem to rely on industrial experiences to
find evidences about how companies schedule and plan releases for SPLs. Variability
models and the SPL architecture are the chosen artefacts for this kind of studies.

69

Chapter 2. Mapping Software Product Line Evolution

11	 6	 1	

5	 4	 1	 1	

10	 3	 10	 8	

0	

1	

2	

3	

4	

0	 1	 2	 3	 4	 5	 6	Conceptual Experience Solution Validation Evaluation ProductVariability
model

SPL
architecture

Code
asset

Implement change

Asset
type

Built-for-
change

5	 2	 10	

1	 7	 1	 1	

3	 2	 7	 7	 3	

0	

1	

2	

3	

4	

0	 1	 2	 3	 4	 5	 6	

Research
type

Built-with-
change

Change
synchronization10

5

11

4

3

6

10 8

1

1

1

3 2

1 1 1

3

5

7

7

7

2 10

Figure 2.12: Mapping “Implement change” across facets “Asset type” and “Research
type”.

2.6.4.3 Zooming into implement change

Figure 2.10 places “Change synchronization” (19%) as the most covered activity, ahead
of “Built-for-change” (14%) and “Built-with-change” (9%). Next, we analyze each
sub-activity w.r.t. asset focus and maturity (see Figure 2.12).

Built-for-change. It comes as no surprise that code-artefact realization is by far the
largest studied asset. It also stands out the comprehensive extent at which these studies
have been conducted with nine studies reaching the evaluation stage.

Built-with-change. This sub-activity seems to mainly rely on “Solution
proposals”, and lacks empirical evaluation. Additionally, proposed approaches mostly
aid engineers on performing changes at architecture and code asset level. Research on
this field seems to underestimate product engineers when conducting product-specific
changes (one study).

Change synchronization. This topic is receiving a steady interest in the last
years. Special attention is devoted to keeping the SPL assets in sync along all
abstraction levels, as well as, to keep synchronized SPL core-assets and product
assets. Specifically, “Evaluation research” has focused on keeping the variability model
consistent with (smaller parts of) itself [GWTB12], and keeping in sync core-assets and
products [DGRN10, HRG12]. The latter calls for effective configuration management
approaches. We found several evidences at technical level, i.e., VCSs. For code assets,
the trend seems to be to adapt new generation VCSs (e.g., BitKeeper, Git) to SPL’s.
However, we found neither experiences nor practices regarding how configuration
management is achieved in industry.

2.6.4.4 Zooming into verify change

Figure 2.10 gives a rough total for the sub-activities “Inconsistency detection” and
“Scalable verification” of 9% and 5%, respectively. Mapping with the other dimensions
indicates an evenly distribution of the studies w.r.t. both asset type and research type
(see Figure 2.13).

Inconsistency detection. Regarding the asset type, the variability model is the
most addressed, presumably due to its readiness to formal reasoning. Specifically,
Feature models are the favorite notation as opposed to Orthogonal Variability models,

70

Chapter 2. Mapping Software Product Line Evolution

1	 3	 4	 2	

1	 3	 2	

0	

1	

2	

3	

4	

0	 1	 2	 3	 4	 5	 6	

6	 2	 7	 2	

2	 3	 3	 1	

0	

1	

2	

3	

4	

0	 1	 2	 3	 4	 5	 6	Conceptual Experience Solution Validation Evaluation ProductVariability
model

SPL
architecture

Code
asset

Scalable
verification

Inconsistency
detection

Verify change

Asset
type

Research
type

13

7

2

6

3

2 2

1

1

3

3

2

24

Figure 2.13: Mapping “Verify change” across facets “Asset type” and “Research type”.

Decision-Oriented Variability models, or Cardinality-based models. Moreover, more
than half of the studies include either validation or evaluation.

Scalable verification. Model checking is by far the most reported approach,
and approaches to reduce re-verification effort upon changes, specially, on variability
models and SPL architectures. Research in this field looks to be less mature compared
to its sibling “inconsistency detection”. This might be due to the difficulties in finding
industrial cases where to test out the approaches.

2.7 Summary of the results
This Chapter presented the results of a mapping study on SPL evolution. In total,
107 articles were included in this mapping study from 1994 to mid 2015. The aims
were (1) to provide a consolidated overview on “SPL evolution”, and (2), to identify
well-established topics, trends and open research issues. As for the first goal, we
described the SPL specifics and their impact on the traditional software change mini-
cycle proposed by Yau et al. [YCM93]. On these grounds, we further elaborated on
this mini-cycle, and classified the literature accordingly. This permitted a finer grained
classification of studies. The answers to the research questions of our mapping study
are summarized below.

RQ1, Research type. Solution papers are the most common type of contribution
(31%), followed by “Validation research” (24%). Nevertheless, a tendency can be
observed towards more evaluation and validation papers. The area reaches a peak in
2012 with 25 papers, and it maintains a steady contribution of around 10 papers a year.
Four main conferences stand out as the main venues, though SPLC takes the lion’s
share with a 28%. Surprisingly, the number of “Experience papers” is rather limited
(17%) which contrasts with the increasing use of SPLs in industry [Sav14]. A plea is
then for practitioners to report their SPL evolution efforts, rather than reporting only
SPL adoption effort. This would certainly be a spur for the whole field.

RQ2, Product derivation approach. Efforts go as follows: “Annotation” (4%),
“Clone” (7%), “Hybrid” (8%), “Model-driven” (15%), and “Composition-based”
(29%), the later specially for component-based SPLs. Studies on FOP, AOP or DOP
took the form of academic evaluations aiming at proving their resiliency upon SPL
evolution. No evidences were found on the applicability of these approaches in an

71

Chapter 2. Mapping Software Product Line Evolution

industrial setting. Interestingly, we observed a recent interest in both “Annotation” and
“Clone” approaches since 2012 on. Since, both annotation and clone-based SPLs are
the approaches widely used in industry, this interest might be interpreted as the research
community making the effort to provide means for SPLs in industry.

RQ3, Asset type. Basically, all assets received coverage: variability model (30%),
SPL architecture (18%), code assets (30%) and SPL products (13%). Products lag
behind other assets as for attention received. This is bad news for SPLs evolving
following a grow-and-prune model. Though some proponents regard products to be
derived on the fly from core-assets, the current state of affairs is that products are still
in need of being customized, and hence, having their detached life-cycle from the SPL.
This advices for products to be kept in the radar of SPL evolution.

RQ4, Evolution Activity. The least addressed topic is “Identify change” (%6),
followed by “Verify change” (14%). On the other hand, “Analyze and plan change”
and “Implement change” have received significantly more attention (37% and 43%,
respectively). A finer-grained analysis uncovered some tasks as being underexposed,
namely, (1) decision-making on whether product specifics should be promoted to SPL
core-assets; (2) change impact analysis upon architectural changes; (3) inconsistency
detection for assets other than variability models. “Document change” was left out
since no study was found on this activity.

2.8 Conclusion
From the results of this systematic mapping, we can observe that SPLs have received
considerable attention by the Software Engineering community, with conferences fully
dedicated to this topic. The increasing focus on evolution might be a symptom of
maturity where SPL solutions start being tested out. Nevertheless, we have spotted
how the SPL research community has left products behind when considering SPL
evolution. This means that little support is given for incrementally evolving SPLs
from product development. This is unfortunate since capitalizing on the changes that
happen at the product level becomes vital during the initial phases of the SPL life-
time. As shown in Chapter 1, at these initial phases, commonly the SPL core-asset
base does not fulfill all the requirements needed by products, and hence, products need
to customize the core-assets, as well as, create brand new assets in order to develop
the “remaining” requirements themselves. In this context where both core-assets and
products need to co-evolve, the SPL evolution is governed by pruning seasons, where
product functionalities deemed useful are promoted to core-assets. Specifically, means
are required to help SPL engineers:

• identify and analyze how products have changed the core-assets after they were
derived from the SPL core-asset base,

• propagate product customizations to the SPL core-asset base, and vice versa.

This thesis aims at addressing both gaps. The next two chapters delve into each of the
issues.

72

Chapter 3

Analyzing product
customization

3.1 Overview
The previous Chapter presented a mapping study on SPL evolution research. We saw
how the existing research does not sufficiently address the issue of co-evolving both
core-assets and products. In such SPLs, evolution is driven by new functionalities
implemented in products, and these need to be identified and analyzed in order to
elucidate which ones to promote.

In this Chapter1, we explore how to aid SPL engineers on “customization
analysis”, i.e. analyzing how products have changed the core-assets they were derived
from. Customization analysis is intended to help SPL engineers identify interesting
customizations to be promoted to reusable core-assets for the next core-asset release.
Deciding when and what should go into the next SPL release is far from trivial. A main
decision-making input is the effort that has been put into product customization. We
propose the use of data warehouses to analyze this customization effort. Requirement
analysis, dimensional modeling and reporting tools are discussed in Sections 3.5,
3.6, and 3.7, respectively. As a proof-of-concept we developed CustomDIFF, a
data warehouse tool that uses Git as the operational system and pure::variants as the
SPL framework. An 8-minute video showing CustomDIFF highlights is available at
https://tinyurl.com/ycjhwzpc. This research has been motivated and validated in the
context of the Danfoss Drives, a SPLC-awarded hall-of-fame company [Dan].

Next Section provides the problem definition.

73

Chapter 3. Analyzing product customization

Figure 3.1: Depicting the problem definition for customization analysis with a mind
map. Interact with it online at https://tinyurl.com/yay46us8.

3.2 Problem definition
Development in application engineering should be avoided as far as possible, as
increases the complexity of SPL evolution management [Kru06]. Unfortunately,
companies cannot always avoid it. Different reasons why products need to be adapted
after being derived from the SPL release have been reported by the industry: to
meet changing products’ deadline & budget [DSB05, Jen07, Sch06a], to expedite
bug-fixes when close to a release [FSK+16], to speed up unexpected functional
changes in customers needs [NNK16, CKM+08, IMY+16], to decrease reusable asset
complexity with single-product needs [DSB05, KH12, BB11], and specially, during
the first stages of an SPL, where an initial partial SPL does not provide the 100%
functionality required by the products, application engineering teams need to develop
the “remaining” functionalities themselves [JB09, KST+14, TFC+09]. We refer to this
development as “product customization”.

Following the grow-and-prune model, product customization (i.e the growth)
needs to be cleaned up by merging and refactoring (i.e. pruning) [FV03]. The
pruning requires SPL engineers to analyse how core-assets are being customized, i.e.
looking at the difference between core-assets and namesake assets once customized by
products. In this context, a new range of concerns arise: how much effort are product
developers spending on product customization?; how and which customizations need
to be promoted to the core-asset base?; which are the most customized core-assets?;
to which extent is the core-asset code being reused for a given product?; etc. We refer
to this endeavor as “customization analysis”. Customization analysis is intended to
help engineers plan the next SPL release according to products’ needs. Evidences
from industry revealed that customization analysis is periodically performed by domain

1The content of this Chapter has partially been previously published in [MDA17], and it is currently under
revision process in the Special issue on SPL engineering of the Journal of Systems and Software (JSS).

74

Chapter 3. Analyzing product customization

experts, which inspect the source code versions looking for any functionality deemed
useful. Below are two excerpts from two different industrial case studies:

“You must carry out such an effort with the support of the best domain
experts of the system. Domain experts are required because only they
understand the subtle differences between code unit versions and the
needs of the users as they evolved historically, so are best equipped to
prune and consolidate”. [FV03]

“... all required changes during product derivation are handled
through product specific adaptation. Periodically, the functionality that is

deemed useful for the product family is incorporated in the family assets.”
[DSB05]

Traditional DIFF utilities might help to see the differences between the core file and
the same file once customized by a product [SSRS16]. However, this one-diff-at-a-time
approach can hardly scale up to SPLs, where both products and core assets can easily
account for hundreds of files. Needed are mechanisms that move from code-level DIFF
to assessing differences at higher abstraction terms: features and products. Rather than
DIFF(aFile, aFile), we long for DIFF(aFeature, aProduct) utilities that encapsulate
the scanning of potentially hundreds of products for all the files a given feature has
an impact upon. This involves gathering data from thousands of DIFFs. But this is
just raw data that needs to be cleaned-up and aggregated in meaningful analysis terms.
Due to this issue the following problem arises: analyzing how products customized
core-assets is time-consuming and error-prone.

Refer to Figure 3.1, which depicts the problem definition as a mind map, and
outlines the causes and consequences of the problem. Refer to Chapter 1 for
a detailed description on the root-cause analysis of the problem (i.e. cause and
consequences of the problem). The reader is encouraged to interact with the mind map
at https://tinyurl.com/yay46us8. The nodes can be unfolded to uncover the supporting
evidences for each of the claims.

Fortunately, mechanisms already exist that help: data warehouses. Data warehouse
(DW) is a collection of decision support technologies, aimed at enabling knowledge
workers to make better and faster decisions [KR02].

In this Chapter we study the use of DW for customization analysis. Specifically,
our work elaborates around three main research questions:

• RQ1: Which are the information needs for customization analysis? How much
time is needed to get these information needs?

• RQ2: To what extent can previous information needs be satisfied through a data
warehouse? If so, what would its Star Schema look like?

• RQ3: How can customization analysis be visualized?

This work aims at contributing to the previous research questions as follows:

• RQ1. We introduce a set of questions that might arise during "feature evolution"
and "product evolution". The importance and required time to answer to these

75

Chapter 3. Analyzing product customization

Figure 3.2: WeatherStationSPL branching model: the master branch holds the core-
assets baselines from where SPL products are branched off.

questions is addressed through a questionnaire delivered to SPL practitioners
(Section 3.5),

• RQ2. We develop CustomDIFF, a DW approach that uses Git as the operational
system from where fact data is obtained, and pure::variants as the SPL
framework (Section 3.6),

• RQ3. We resort to Alluvial diagrams to visualize the customization effort at
a glance. These diagrams are a type of flow diagrams. Here, the flow stands
for the customization effort that goes from core-assets to SPL products where
customization was needed (Section 3.7).

Next Section illustrates the challenge with a motivating scenario.

3.3 Motivating scenario
As an example, consider the WeatherStationSPL, an SPL for building web-based

applications for weather stations. We borrow this example from the experimental
material provided by pure::variants, a well-known industrial tool for developing SPLs
[pur]. Figure 4.2 depicts a certain stage in the WeatherStationSPL journey. So far, this
SPL has undergone two core-asset baseline release at the master branch, i.e ,Baseline-
v0.5 and Baseline-v1.0. The latter holds seven features realized through 30 code
assets (see Table 3.1). Figure 3.3 shows a snippet of the core-asset sensors.js. This
snippet shows two variation points, i.e. VP-1 and VP-2. In pure::variants, a variation
point starts with the opening directive //PV:IFCOND, and ends with a closing directive
//PV:ENDCOND 2. Hence, VP-1 body comprises lines 24 to 49, whereas VP-2 expands
along lines 30 to 46.

From Baseline-1.0, three products are branched off: productParis, productBerlin
and productNewYork. Let us consider that some urgent needs arise that prevent
customers from waiting to the next SPL release. This moves us to the grow-and-prune
process:

2These variation point patterns only hold for code files. For example, in XML and HTML files, variable
elements are annotated in an attribute called condition.

76

Chapter 3. Analyzing product customization

Figure 3.3: Sensors.js core-asset at Baseline-v1.0. The snippet shows two variations
points. VP1 applies when either WindSpeed or AirPressure are selected. VP2 applies
for Temperature. Notice how VP2 is scoped within VP1.

• Grow. Product specifics can be promptly considered in the products’ branches
by adjusting core-assets to product specifics, delivering the new product version
on time (e.g. Paris-v1.0),

• Prune. During SPL consolidation, domain engineers prepare for the next SPL
release. Analyzing how core-assets have been used by products becomes a main
stepping stone in ascertaining reuse opportunities, and deciding which feature
upgrades are going to be supported in the next SPL release.

The grow-and-prune is an evolution model, for moving SPL approaches from a state
S0 to a better state S1. This “better state” is to be (partially) obtained out of product
customizations that, independently of one another, have already moved to a “better
state” making the core-assets C0 evolve into customized assets C1. Hence, pruning
requires to analyse how core-assets are being customized, i.e. looking at the difference
between core-assets (kept in the master branch) and namesake assets once customized
by products (kept in the product branches). This is commonly performed one file at
a time: diff(C0.file, C1.file). Back to the example, Figure 3.4 illustrates the case for
sensors.js using the DIFF utility in the unified format [uni]. For each change hunk,
the outcome indicates: the hunk header (i.e. starting and ending line numbers together

77

Chapter 3. Analyzing product customization

Figure 3.4: Traditional DIFF visualization: differences of file sensors.js between the
one in the Master branch (core-assets) and the one in the productBerlin branch.

Parent
Feature

Feature Description

Sensors
AirPressure The weather station system measures the air pressure and displays in a

pressure gauge
Temperature The weather station system measures the air pressure and displays in a

thermometer gauge
WindSpeed The weather station system measures the wind speed and displays it in a

speed gauge

Warnings Gale The weather station alerts the user when the wind speed value surpasses
the maximum.

Heat The weather station alerts the user when the temperature value surpasses
the maximum.

Languages English The weather station front-end texts are available in English
German The weather station front-end texts are available in German

Table 3.1: WeatherStationSPL features at Baseline-v1.0.

with the heading of the function the change hunk is part of), the context (i.e. the three
nearest unchanged lines that precede and follow the change), the added lines (denoted
by a plus sign with a greenish background) and the deleted lines (denoted by a minus
sign with a redish background).

However, sensors.js is just one of the thirty files this SPL encompasses. And
this thirty files might potentially suffer changes by any of the three products. This
implies that domain engineers will potentially need to scan 30 x 3 DIFFs. Now move
to the Danfoss Drives SPL, which holds over 10,000 core-assets and 20 products. And
this is just to get the raw data, i.e. the lines of code (LOC) that have been changed.
These LOCs need next to be cleaned-up and aggregated in meaningful analysis terms
(i.e. features and products). In short, manually conducting DIFFs does not scale up.
Fortunately, mechanisms already exist that might help: data warehouses.

78

Chapter 3. Analyzing product customization

3.4 A Data Warehouse approach to customization
analysis

Data warehouse (DW) is a collection of decision support technologies, aimed
at enabling knowledge workers to make better and faster decisions [KR02].
Implementation wise, DWs are systems used for reporting and data analysis. A main
component is a central repository of integrated data from one or more disparate sources
(a.k.a the operational systems). They store current and historical data in one single
place that are used for creating analytical reports for decision making. To this end, raw
data is conducted through an Extract, Transform, Load (ETL) process that ends up
in the data being arranged along facts (i.e. the aspects to be measured) and dimensions
(i.e. the ways measures are going to be broken down). The combination of facts and
dimensions is called a Star Schema that results from dimensional modeling.

Dimensional Modeling supports analysis of a process by modeling how it is
measured [KR02]. Here, the process to be measured is

the customization involved in tuning reusable artifacts for product
specifics.

This process it is to be measured through the number of lines of code (LOC) being
added/deleted. That is, LOCs are regarded as manifestations of the customization
effort. This data is to be obtained through the SPL’s Version Control System (VCS)
(e.g. Git), our operational system. Specifically, during the ETL process, a DIFF is
worked out between the namesake artifacts of the core-asset and the product at hand.
Differences stand for the adjustments (i.e. LOCs) introduced to account for product
specifics.

However, LOCs are too fine-grained, and fail to provide a holistic view of the
customization effort at a glance. This is when Dimensional Modeling comes into play.
File-based LOC changes are the finest grain of data but it can be rolled up to various
levels of dimensionality till reaching coarser grains, such as, “feature” or “product”.
In short, DW is the means to move from traditional diff(aFile, aFile) to diff(aFeature,
aProduct).

We fleshed out this vision through CustomDIFF, an ETL and visualization tool for
SPL customization analysis for Git as the operational system, and pure::variants as
the SPL framework. A video showing CustomDIFF at work is available at https:
//tinyurl.com/ycjhwzpc. Next sections delve into three key notions in DW
projects: Requirement Analysis, Dimensional Modeling and Reporting Tools.

3.5 Requirement analysis
As in all software projects, a critical phase in the DW lifecycle is the Requirement
Analysis phase. The predominant objective of this phase is to identify organization
goals and elaborate requirements that could measure organization performance
[AYD13]. Here, we resort to a goal-oriented approach described in Mazon et al.
[MPT07] where data needs are obtained out of organizational goals. Specifically,

79

Chapter 3. Analyzing product customization

Increase
product
quality

<<Strategic>>

Determine which
customizations to

promote as core-asset

Analyze
customization effort

by feature

<<Decision>>

<<Decision>>

Analyze which products
are customizing a given

feature

<<Information>>

Analyze which features a
given product is

customizing

<<Information>>

Analyze
customization effort

by product

<<Decision>>

Analyze which features
are being customized by

which products

<<Information>>

Figure 3.5: Goal, decisions and information needs for customization analysis. Notation
along the profile introduced in Mazon et al. [MPT07] for DW requirements.

goals are classified as strategic, decisional and informational. Next, we apply this
approach for the case of customization analysis (see Figure 3.5). Other aspects of the
SPL evolution process are outside the scope of this work.

Strategic goals. Strategic goals are thought as “changes from a current situation
into a better one” [MPT07] (e.g. “increase sales”, “increase number of customers”).
Their fulfillment causes an immediate benefit for the organization. For SPLs, strategic
goals can be reducing time-to-market, increasing product quality, etc.

Decision goals. Strategic goals are detailed out into decision goals that are more
actionable (e.g. “open new stores”). For SPLs, strategic goals require of an “updated
core-asset base” that is periodically upgraded. In this setting, we can make the decision
to “determine which customizations to promote as core-assets”. This decision might
be refined by differentiating between two focuses:

• feature focus, when deciding when and what customizations are to be included
in the next SPL release. In Danfoss, a specific body exists (known as the Change
Control Board (CCB)) who decides the pace at which the SPL evolves, i.e. which
feature upgrades are to go into the next SPL release.

• product focus, to assess whether the importance of the customer or the revenue
coming from a product, might favor prioritizing the customizations coming from
a given product. In Danfoss, each product-development project has its own
committee that determines whether a request for development will go to the CCB
[DSB05].

The CCB synchronizes the requests from different projects and decides whether and
which of the requests will be honored. To this end, the CCB should balance the upgrade

80

Chapter 3. Analyzing product customization

costs (estimated development cost and developer agenda availability) vs. the upgrade
benefits (how many and which products will benefit from the upgrade). In addition,
upgrades might have different degrees of urgency from as-soon-as-possible (e.g. bug
fixes) to desirable (e.g. new fancy functionality). Finally, and depending on the SPL
size, feature management might be split among distinct domain engineers. Each feature
(or set of related features) is up to a team which is in charge of coding, debugging and
upgrading the features at hand [DSB05]. Here, SPL engineers might need to track
what, how and where have products changed "their" features. This moves us to the
information goals.

Information goals. These goals aim to capture which specific information could
help to obtain the strategic goals. As for the customization effort, two main variables
are involved: features and products. This permits to tackle the analysis through a
three-fold perspective: (1) holistic (e.g. which features are being customized by which
products); (2) feature-focused (e.g. for a given feature, which products are customizing
it); and (3), product-focused (e.g. for a given product, which features were necessary to
customize). In addition, the customization effort admits different levels of granularity:
the artefacts being affected by the customization effort (#); the number of lines of code
(LOC) involved in the customization; or the code itself that supports the customization.

These two dimensions (i.e. perspective and grain) permit to systematize the kind
of questions analysts might face (see Table 3.2). To validate the importance of
these questions for our Decision goal, we conducted a survey among practitioners.
Participants were selected who had at least one-year experience on SPLs. Eight
practitioners turned up where three have 10 years of experience while the other five
accounted for 9, 7, 6, 3, and 1 year of experience each. Though practitioners all
come from the same company, they might have different duties, and hence, they were
requested to provide their opinion from their specific “SPL plot”. For instance, two
domain engineers (application engineers) responsible for distinct features (products)
might give different answers depending on how their features (products) behave
regarding customization needs.

The questionnaire was first checked with two researchers for clarification and
understanding purposes. Next, practitioners were requested to indicate the extent to
which the agree with each of the statements along a LIKERT scale from 1 (“Strongly
disagree”) to 5 (“Strongly agree”). Table 3.2 shows the results. Some comments are
due:

• perspective wise, both feature-focused and product-focused are similarly rated.
The highest rated questions are “for the feature F1, which products are
customizing it” (avg. 4) and its sibling, i.e. “for the product P1, which are
the features being customized” (avg. 4.12)

• grain wise, quite an unexpected result: intermediary grains are ranked down.
Analysis needs seem to be biased towards gaining either a general overview of
the customization effort (i.e. [#] questions) or instead, diving into the nitty-gritty
code details (i.e. + code questions)

So far, these information needs are fulfilled by directly peering at the code. We
requested the participants to also indicate how much time they currently need to solve

81

Chapter 3. Analyzing product customization

<	1	hour	
50%	

Few	hours	
25%	

1	day	
25%	

Time	required	for	(Fi,Pi)	[#]	

<	1	hour	
37%	

Few	hours	
38%	

1	day	
25%	

Time	required	for	(*,	Pi)	[#]		

<	1	hour	
12%	

Few	hours	
63%	

1	day	
25%	

Time	required	for	(Fi,Pi)	+code	

<	1	hour	
45%	

Few	hours	
44%	

1	day	
11%	

Time	required	for	(F1,Pi)	[#]	

<	1	hour	
50%	Few	hours	

37%	

1	day	
13%	

	Time	required	for	(F1,	Pi)	+	code	

<	1	hour	
22%	

Few	hours	
33%	

1	day	
45%	

Time	required	for	(Fi,*)[LOC]	

<	1	hour	
25%	

Few	hours	
50%	

1	day	
25%	

Time	required	for	(Fi,	P1)	[#]	

<	1	hour	
12%	

Few	hours	
38%	

1	day	
50%	

Time	required		for	(*,	P1)	[LOC]	

<	1	hour	
12%	

Few	hours	
50%	

1	day	
38%	

Time	required	for	(Pi	,	P1)	+	code	

HOLISTIC PERSPECTIVE FEATURE PERSPECTIVE PRODUCT PERSPECTIVE

Time needed to know:
which products are customizing
(no) features (Avg. Imp. 3.75).

Time needed to know:
which features are (not) being

customized by products
(Avg. Imp. 3.5).

Time needed to know:
how code is being changed on each
product to customize each feature

(Avg. Imp. 3).

Time needed to know:
for the product P1, which features
are customized (Avg. Imp. 4.12).

Time needed to know:
for the feature F1, which products
are customizing it (Avg. Imp. 4).

Time needed to know:
how code is being changed on each

product to customize feature F1
(Avg. Imp. 3.37).

Time needed to know:
for the feature F1, which has been

the total customization effort
(Avg. Imp. 2.75).

Time needed to know:
for the product P1, how much effort
has been spent (Avg. Imp. 2.87).

Time needed to know:
for the product P1, how P1 is

changing the code that realizes
each feature (Avg. Imp. 2.75).

Figure 3.6: Time spent on solving information needs for Customization Analysis.
The question description is followed by the average importance obtained from the
questionnaire in Table 3.2.

82

Chapter 3. Analyzing product customization

Holistic perspective Item: “I consider important to know ...
Likert scale

Avg.
1 2 3 4 5

(Fi, Pi) [#] ... which features are (not) being customized by products 0 1 3 3 1 3.5

(*, Pi) [#] ... which products are customizing (no) features 0 1 2 3 2 3.75

(Fi, *) [LOC] ... how much effort (i.e. LOC) has been spent on customizing

each feature, in total, no matter the product

2 1 4 0 1 2.87

(Fi, Pi) [LOC] ... how much effort (i.e. LOC) each product is spending on

customizing each feature

2 2 2 1 1 2.62

(Fi, Pi) + code ... how code is being changed on each product to customize

each feature

2 0 2 4 0 3

Feature perspective Item: “I consider important to know ...
Likert scale

Avg.
1 2 3 4 5

(F1, Pi) [#] ... for the feature F1, which products are customizing it 0 0 1 3 3 4

(F1, *) [LOC] ... for the feature F1, which has been the total customization

effort

2 1 3 1 1 2.75

(F1, Pi) [LOC] ... for the feature F1, how much effort (i.e. LOCs) each

product is spending on customizing it

2 1 3 1 1 2.75

(F1,Pi) + code ... how code is being changed on each product to customize

feature F1

1 2 1 1 3 3.37

Product perspective Item: “I consider important to know ...
Likert scale

Avg.
1 2 3 4 5

(Fi, P1) [#] ... for the product P1, which features are customized 0 1 1 2 4 4.12

(*, P1) [LOC] ... for the product P1, how much effort has been spent on

customization, no matter the feature

2 1 2 2 1 2.87

(Fi, P1) [LOC] ... for the product P1, how much effort (i.e. LOC) has been

spent on customizing each feature

2 1 3 1 1 2.75

(Fi, P1) +code ... for the product P1, how P1 is changing the code that

realizes each feature

2 1 3 1 1 2.75

Table 3.2: Rating the importance of information needs along a 5 point LIKERT scale.

these information needs. The outcome is depicted in Figure 3.6 for the highest rated
queries. Ultimately, these figures vindicate the effort of providing dedicated tools to
customization analysis.

3.6 Dimensional modeling
The previous section uncovers information needs for customization analysis. This
provides the grounds for coming up with the DW Star Schema, a blueprint of the
database schema that will eventually support the customization analysis. Figure 3.6
depicts the Star Schema for CustomDIFF.

The Fact table. A main decision is the grain at which the customization effort is
to be captured. In Dimensional Modeling, the grain is the fundamental atomic level of

83

Chapter 3. Analyzing product customization

�
�
�
��
�
��
	
��
�

�
�	
�
�

��
��
��
�
�
�	

���
�
�

�
�

���
�
��

�
�
�
�
�

�
�

���
�
��
�
�
��
��
�
�

�
�

��
��
�
�
�
�
���
��
�
�
�
�
�
�
�

��
�
�
��
�
�
�
�
��
�
�
���
��
��
�
�
�
�
�
�

��
�
�
��
�
�
�
�
�
�
��

�
�
�
��
��
�
�
�
�
�

��
�

��

���
�
�
�
��
��

�
�

��
�
�
�
��
��
�
�
��
�
��
�
�
�

�
�

��
�
��
�
�
��
��
��

��
�

�
�

��
�
��
!!
!

�
�
�
�
�

�
	
��
	
��
�

�
�
�
�

�

��
�

��

���
�
�
�
��
��

�
�

�
"�
��
��
��
�
��
�
�
�
�
�
�
�

��

��
�
��

�
�

��
�
��

��
��
�
�
��
�
�
�

�
�

�
�
�
�
�

��
��
�
	
�
�
�
�

��

��
�
��

�
�

�

�
�
�#
$
%
&
'
$
%
()
*
*
+

�

�,
�#
$
%
&
'
$
%
()
*
*
+

��
	�
�

�
�

��
�
�
�
$
��
�
��

�
�

��
�
��
�
��
�
�
�
�
�
�
�
�

��
�

�-

�
�
�

�
�

�
�
�
�
�

�
�
�
�
��
�
�
�

�
��
�
�
�
��
��
��
	
�
�

��
	
��
��

��
��

��
��
�#
$
%
&
'
$
%
()
*
*
+

�

�
�
�#
$
%
&
'
$
%
()
*
*
+

��
�
�
�
�

�
�

��
�

��
�
��

�
�

�
�
�
�
�

��
	
��
��
�
�
��
�
�

��
�
��

��
��
�
�
��
�
�
�

�
�

�
�
�
�
�

��
	
��
��
�
�
��
�
�
�

��
�
��

��
��
�
�
��
�
�
�

�
�

��
�
��

��
��
�#
$
%
&
'
$
%
()
*
*
+

�
�
�
�
�

�
�
�
�
��
�
�
��
�
��
�
�
�

�
�
�
�
��
�
�
��
�
��
�
�

�
�
�
	
�
�
�
��
�
�

�
�
��
�
�
�
��

��
	
��
��
�
�
�

�
�
	
��
	
��
�

�
�
�

��

�
�
�
�

�
�
��
�
�
�
��
�
��
��
��
�
�
��
	
��
��
�

�
�
�
�

�
�
�
��
	
�
�
�
��
�
	

�
�
��
	
��
��
�
�
�
�
�
�
�

�
�
��
	
�
�
�
��
�
	

�
�
��
	
��
��
�

�
�
�
��
�
�
�
�
�
�
��
	
��
��
�
	

�
�
�
�
��
	
�
�
�
�

�
	
��

��
��
	
��
��

��
�

��
�
��
�

��
��
�

�
�

�

�
�
�#
$
%
&
'
$
%
(.
/
+

��
��
�
�
��
�
��
�#
$
%
&
'
�

�
�
�
�
�

�
	
�
�
	
�
�
�
	
�
�
�
�

��
�

�-

�
�
�

�
�

�

�
�
�#
$
%
&
'
$
%
(.
/
+

��
��
�
��

�
�

��
�
�
�
�

�
�

�
�
�
�
�

�
�
�
�

�
�
	
��

��
��
	
��
��
�
�
�
��
�
�
�
��
�
��
��
��
�

�
�
�
�

�
�
	
��

��
��
	
��
��
�
�
�
��
�
�
�
��
�
	
�
�
	
�
�
�

�
�
�
�

�
�
	
��

��
��
	
��
��
�
�
�
	
�
�
	
�
�
�
	
�
�
�
��

�
�
�
�

�
��
	
��
��
�
�
�
��
�
�
�
��
�
	
�
�
	
�
�
�

�
�
�
�

�
��
	
��
��
�
�
�
	
�
�
	
�
�
�
	
�
�
�
��

�
��
�
�
�
�

��
0
��
�
�
��
�

�
�

�

�
�
�#
$
%
&
'
$
%
(.
/
+

��
��
�
�
�
��
�
�
�
�
�
�
�
�

��
��
�
�
�
�

�
�

�
�
�
�
�

Th
e

w
ho

Th
e

w
he

n

Th
e

w
he

re

Th
e

w
ha

t

Fi
gu

re
3.

7:
St

ar
t/S

no
w

fla
ke

sc
he

m
a

fo
rC

us
to

m
D

IF
F.

84

Chapter 3. Analyzing product customization

data to be represented in the Fact table. For our purposes, we consider a fact to be

the consecutive deletion/addition of LOC for files pertaining to a given
release ("when") conducted by developers ("how") in order to customize
the body of a given variation point ("what") to account for the specifics of
a given product ("where")

These facts are obtained by working out a DIFF between the namesake artifacts of the
core-asset and the product at hand. For the DIFF depicted in Figure 3.4, two facts
would be obtained. Fact #1 would stand for the change introduced in line 29, whereas
Fact #2 would correspond to those changes introduced in lines 34-38. Fact properties
include: the number of lines added, the number of lines deleted or the actual code being
changed (custom_diff).

Facts are the finest grain of the customization effort. Obtaining a higher vision
of the customization effort requires these facts to be aggregated along different
dimensions: "the what" (i.e. the VP being affected by the customization), "the where"
(i.e. the product in which the customization took place), "the when" (i.e. the time of
the product release), and "the who" (i.e. developers who conducted the customization).

The “what” dimension (variation_point table). The customization effort (i.e.
addition/deletion of code lines) takes place within a context: the body of the variation
point (VP). Products derived from the same core-assets will be able to touch the same
VPs. VPs are embedded within file_assets. Finally, file assets might be arranged
along packages (basically, folders). This conforms the asset hierarchy. That is,
tables "customization_fact", "variation_point", "file_asset" and "package_asset" (see
Figure 3.7) all hold a one-to-many relationship that permits to gradually aggregate
customization measures along coarser-grained assets.

Besides the asset hierarchy, another aggregation criterium are features. Variation
points include a boolean expression that checks out feature presence. A customization
effort might then impact a feature_group3. Along good practices on dimensional
design, this is captured using a "bridge table"4 (feature_bridge). This permits analysis
to be conducted at the level of single features. However, Danfoss practitioners observed
that for large number of features, it would be convenient to undertake the analysis
at the parent-feature level. Parent features gather together a set of related features,
e.g. ’AirPressure’, ’Temperature’ and ’WindSpeed’ belong to the same parent feature
’Sensors’ (see Table 3.1). Hence, we also include information about the parent_feature.
Summing it up, customization efforts (i.e. facts) are scoped by VP expressions which
might refer to different features, which, in turn, might be clustered along parent
features. This conforms the feature hierarchy.

3Worth noticing, VPs might be nested. Figure 3.3 illustrates this situation for VP-1. The frequency of
these situations (feature tangling and feature nesting) is being studied in [HZS+16, ZBP+13]. This begs the
question of what are the features affected by a customization effort inside VP-2’s body. For our purposes, we
include all features: those appearing directly in the VP body (i.e. ’Temperature’) as well as those “inherited”
from containing VPs (i.e. ’WindSpeed’ and ’AirPressure’).

4An alternative design is to flatten the multi-valued attribute by including a column for each of the
different values: a boolean column will be included for each possible feature, setting it a true if the feature at
hand participates in the VP expression. This however will tight the dimensional design to the current feature
model. Adding (or deleting) features would need to be propagated to the variation_point table. Since we are
considering SPLs in an early stage of development where changes in the feature model are likely, we rather
stick to the "bridge table" option.

85

Chapter 3. Analyzing product customization

The “where” dimension (product table). Customization efforts are contextualized
within products. Product characterization (e.g. customer, contact details, priority, etc)
are not addressed in this work.

The “when” dimension (product_release table). Customizations are committed
at a given time. However, we do not consider in-between releases but just final
releases where the product is ready to be delivered. This increases the confidence that
the customization effort being measured, has been appropriately tested before being
disclosed to customers. Therefore, the customization effort is for changes already
available at the product release. It can be argued that this does not account for all
the effort that goes till reaching this final state. That’s true. But this would measure
more a kind of productivity effort rather than the amount of change. Nevertheless,
property inbetween_commit for the fact table, collects the ID for those intermediary
releases, just in case.

The “who” dimension (developer_group table). This dimension collects data
about the engineers that conduct the customization. Since more than one person might
be involved, we capture the notion of group that is next broken down in each of its
members (developer). We do not further tackle this dimension here.

Figure 3.6 depicts the main tables that result from Dimensional Modeling. These
tables are populated out the SPL’s Git repository through the ETL process. This process
is responsible for pulling data out of the operational systems and placing it into a data
warehouse. Most DWs combine data from different source systems. For the time
being, however, we stick to a single data source: the SPL’s Git repository. Appendix A
provides details of CustomDIFF’s ETL process.

Once the data is in placed, Reporting Tools help to interactively explore the
customization-effort dimensions. Broadly speaking, Reporting Tools can be regarded
as a continuation of existing DIFF utilities. While these utilities currently permit to
assess the size of the change at the level of files, DW Reporting Tools would permit
this assessment to take place at the level of features and products that might potentially
encompass tens, if not hundreds, of files. Next section introduces such a reporting
capability for CustomDIFF with a focus on the “where” dimension.

3.7 Reporting tools
As captured in the Requirement Analysis stage, Decision goals might be “product-
focus” (“the where”) or “feature-focus” (“the what”). We believe Alluvial diagrams
might help to convey this double focus. Alluvial diagrams are a type of flow diagram
originally developed to represent how multiple groups relate to one another across
several variables. We resort to this visualization to convey the relationship for the
two main dimensions of the customization effort: “the where” and “the what”.

Figure 4.7 shows the case for our running example. Each dimension is assigned
to a vertical axe: the feature axe (right) vs. the product axe (left). Values are
represented with blocks on each axis. The height of a block represents the size of the
customization effort for this feature/product, and the height of a stream represents the
degree of the customization effort contained in both blocks connected by the stream
field. Looking at Figure 4.7, we can promptly appreciate how the parent feature

86

Chapter 3. Analyzing product customization

Analysis
canvas

Position
map

Figure 3.8: CustomDIFF screenshot: Position map (left) and Analysis canvas (right).
The Analysis canvas displays the alluvial diagram to assess the customization effort for
parent-features (left axe) and products (right axe). Customizations conducted outside
VP bodies (impacting no feature) are collected under the name “No Feature”.

Sensors is being customized by productBerlin, productParis, and productNewYork,
with product productBerlin being the one with the largest customization effort. Alluvial
diagrams also help to promptly appreciate which variables are more clustered (fewer,
wider streams) and which are more distributed (more, narrower streams). For instance,
Sensors is being evenly customized in the three products, whereas No Feature is
being mainly associated with productNewYork. Next, we provide different analysis
scenarios. Readers are encouraged to access the running example on-line at http:
//158.227.178.168:8081/analysis.

Figure 4.7 shows the extent of the customization effort at the level of parent features
and products. But finer-grained details might be needed. Back to the Star Schema in
Figure 3.7, we notice “the where” dimension accounts for two hierarchies, namely,
the asset hierarchy and the feature hierarchy. Developers can move up and down each
of these hierarchies by clicking on the respective blocks. An example follows for the
feature axe:

• when in Figure 4.7, clicking on the Sensors block, drills down into its child
features. The outcome is depicted in Figure 3.9 (top) where Sensors’ child
features become blocks on the left axe,

87

Chapter 3. Analyzing product customization

Enhanced heading
with VP expression

Enhanced heading with
VP expression

Figure 3.9: Drilling-down scenario. Breaking down customization efforts for Sensors
by Sensors’ child features (top); next WindSpeed’s assets (middle), and finally raw facts
(bottom).

88

Chapter 3. Analyzing product customization

Figure 3.10: Stream-based drill down. Simultaneously breaking down the
customization effort for Sensors and productParis’ packages.

• when in Figure 3.9 (top), clicking on a feature block, e.g. WindSpeed, drills down
into the artefacts impacted by this feature5. Figure4.7 stuffed(middle) depicts the
output where the customization effort is broken down by WindSpeed’s files.

• when in Figure 3.9(middle), clicking on a stream, e.g. sensors.js&productBerlin-
v4.0, drills down into the code level diff. Now, the customization effort is
broken down by the lines of code that productBerlin changed in sensors.js. This
information is displayed mimicking traditional DIFF outputs but where VPs are
shown as separated hunks (see Figure4.7 (bottom)).

The latter example illustrates how streams also denote customization efforts, but this
time involving a value for each of the axes, e.g. (Sensors, productBerlin). By clicking
on the stream, the associated customization effort is broken down simultaneously for
the two variables affected. Figure 3.10 shows the case for Sensors and productParis,
which are decomposed into features and packages, respectively. Next, we introduce
some improvements that resulted from previous formative evaluations of CustomDIFF.

Enhancing DIFF context description DIFF traditional visualization includes the
so-called context, i.e. the three nearest unchanged lines that precede and follow the
change (see Figure 3.4). The context serves as a reference to locate the changed lines’
place in a modified file. However, this might not be enough for SPLs. In SPLs, code
is stuffed with variation points (VPs) that determine when the associated body is to be

5Note that there is one level behind, i.e. component package level. For the sake of understanding, we
omit this step.

89

Chapter 3. Analyzing product customization

included. Hence, VPs are a main contextual information for changes. Unfortunately,
VPs are realized as comments, which can be placed far away from where the change
has occurred, and hence, might not show up in the DIFF context, depriving engineers
from this information. This is the case for the change introduced in line 29 in Figure
3.4. Lines 26, 27, 28, i.e. the context, do not include the VP annotation.

CustomDIFF adds VP expressions as part of the DIFF visualization. Figure 3.9
(bottom) shows the same case that Figure 3.4, but now information about the enclosing
VP is included into the headings of each hunk. Note how the DIFF is now split into two
hunks, one for each customization fact. One hunks corresponds to the change in line
29 under the scope of VP-1 (WindSpeed or AirPressure). The other hunk stands for
the changes in lines 34-38 under the scope of VP-2. Notice that VP-2 is nested within
VP-1. This is reflected in the hunk’s heading along the pattern: <enclosing VP> “–>
nested into –>” <enclosed VP>. Notice that all this information is pre-computed in
the fact table, specifically the hunk is stored into the custom_diff property.

The position map Engineers might get disoriented when moving up and down the
hierarchies. To ease location (where am I?), a left hand-side collapsable panel is
deployed besides the Analysis canvas. The map pinpoints the current grain in the
dimension hierarchy (see node with orange background in Figure 4.7) as well as the
grains already visited (see node with blue background in 3.9 (top)).

Feature-based Filtering Engineers might not be interested in the whole set of
(parent) features but just a subset. The feature-based filter (see Figure 4.7) permits
engineers to select those features they are interested in using a feature-diagram similar
to the one displayed in pure::variants. The Analysis canvas will depict the alluvial
diagram just for the selected set of features.

3.8 Evaluation
By moving from the traditional DIFF to CustomDIFF, we aim at making customization
analysis more efficient and effective. Efficiency wise, DWs outperform DIFF, insofar
as results are precomputed and access is conducted through performant SQL engines.
But what it rests to be seen is whether DW in general, and CustomDIFF in particular,
is effective, i.e. they help to satisfy the information needs of SPL analysts. To this
end, this section attempts to predict the acceptability of tools, such as, CustomDIFF by
applying the Technology Acceptance Model (TAM) [Dav89].

TAM proposes that the readiness of a user to use (or not to use) a new technology
is determined by her attitude towards the technology. This attitude is influenced by two
beliefs which are perceived usefulness and perceived ease of use. Perceived usefulness
is defined as “the degree to which a person believes that using a particular technology
would enhance his or her job performance” [Dav89]. On the other hand, ease of use
refers to “the degree to which a person believes that using a particular system would
be free of effort” [Dav89]. According to the theory of reasoned action [FA75], these
constructs are strongly correlated to the intention of actually using the technological
innovation. No matter how easy to use a tool can be; if the tool is not perceived as

90

Chapter 3. Analyzing product customization

Sensors Language Warning No

featureAir

Pressure

Wind

Speed

Temperature German English Gale Heat

Product

Berlin

19

LOCs

30

LOCs

0

LOCs

0

LOCs

0

LOCs

2

LOCs

2

LOCs

3

LOCs

Product

Paris

9

LOCs

14

LOCs

0

LOCs

0

LOCs

0

LOCs

0

LOCs

0

LOCs

0

LOCs

Product

NewYork

18

LOCs

8

LOCs

2

LOCs

0

LOCs

0

LOCs

0

LOCs

0

LOCs

17

LOCs

Table 3.3: Experiment: products and customization effort per feature.

useful by its users it would not be used. The opposite also holds. A technology might
be very useful; but if the tool is cumbersome and hard to use, users would not use it
either. Hence, we decided to use both constructs. Therefore, we aim at

analyzing the use of CustomDIFF for the purpose of evaluating its
usefulness and ease of use with respect to conducting customization
analysis from the point of view of SPL practitioners in the context of
annotation-based SPLs.

3.8.1 Participants
Customization analysis is to be entrusted not to newcomers, but to those with a
reasonable exposure to SPL engineering. In addition, customization analysis allows
for different perspectives (feature vs. product) that might depend on the subjects’ role,
balanced between domain engineering and product engineering. On these grounds,
participants were selected among Danfoss developers with at least one year experience
and having heterogenous roles: 1 product-release manager, 3 software developers that
accomplish both domain and application engineering task, and 2 more that also act as
code reviewers before changes are integrated into the integration branch. Participants’
average expertise on the SPL was 7 years.

3.8.2 Training examples
Before delivering the questionnaire, it is most important for participants to be exposed
to the system under study (i.e. CustomDIFF). The faithfulness of these sample cases
w.r.t the real practice, is paramount for participants to correctly validate the tool, and
for researchers to assess the validity of the experiment. This subsection describes these
sample cases.

Sample cases were selected among those ranked highest during the Requirement
Analysis stage (see Table 3.2). The WeatherStation SPL was used as the running
example (see Section 3.3). This SPL is included in pure::variants [pur] experimental
material, and hence, participants were already familiarized with it. This permits
participants to focus on customization issues rather than on mixing up with the SPL
domain itself.

91

Chapter 3. Analyzing product customization

For the evaluation, three product variants were created: productParis,
productBerlin and productNewYork, each with a set of customizations (see Table 3.3).
For instance, productBerlin customizes AirPressure, WindSpeed, Gale and Heat by
changing 19, 30, 2, and 2 LOCs, respectively. Both, core-assets and products, reside
in a GIT repository. CustomDIFF taps into this repository. We deployed CustomDIFF
online at http://158.227.178.168:8081/analysis (open for inspection).

Upon this setting, participants were requested to conduct distinct tasks along the
different perspectives identified in Section 3.5. For each perspective, two types of
tasks were performed:

• pinpointing a given artefact (either a feature or a product)

• conducting roll-up and drill-down along “the where” dimension, either the
feature hierarchy or the asset hierarchy

Next, we list the tasks:

• Feature Perspective: Analyze the evolution of feature AirPressure

– Task 1.1: Which products are customizing the AirPressure child-feature?
– Task 1.2: Analyze how the code that realizes AirPressure has been changed

by the product portfolio.

• Holistic perspective: Analyze how the whole set of features is being
customized

– Task 2.1. Which parent features are not customized by the products?
– Task 2.2. Analyze how productParis is changing the implementation of the

Sensors parent feature

• Product perspective: Analyze how product Berlin has evolved from the
core-assets

– Task 3.1. Which parent-features is productBerlin customizing?
– Task 3.2. Analyze how the implementation of productBerlin has evolved.

3.8.3 Procedure
Session 1: Introduction to CustomDIFF (1h 45’). CustomDIFF’s rationales and
operations were introduced to the participants with the help of the WeatherStation SPL.
Next, CustomDIFF was used for the Danfoss Driver SPL. Participants made questions
during and after the presentation.

Session 2: Hands-on CustomDIFF (1h 30’). CustomDIFF was evaluated w.r.t.
usefulness and ease of use. First a running example was conducted (see previous
subsection) where participants were exposed to different information needs. Next,
the evaluation questionnaire was deployed on-line for the participants to assess
CustomDIFF’s usefulness and ease of use. Due to agenda constraints, participants
were divided into two group, with 2 and 4 participants each. During the sessions, a
researcher was observing participants’ interactions with the tool. Participants raised
questions, doubts and comments that were noted down by the researcher.

92

Chapter 3. Analyzing product customization

Perspect. Item: CustomDIFF was useful to

determine ...

P1 P2 P3 P4 P5 P6 Avg. St.

Dev.

Feature
...which products are customizing

the child-feature AirPressure?

6 4 6 6 6 6 5.67 0.82

...how is each product customizing

the code that realizes the

AirPressure feature

6 4 6 6 7 4 5.5 1.22

Holistic
...which parent-features are not

customized by the products

7 5 6 6 6 6 6 0.63

...how productParis is changing the

implementation of Sensors

parent-feature

6 5 6 6 7 5 5.83 0.75

Product
...which parent-features is

productBerlin customizing

7 4 6 6 6 6 5.83 0.98

...how the implementation of

productBerlin has evolved

6 4 6 6 6 4 5.33 1.03

Total 6.33 4.33 6 6 6.33 5.17 5,.9 5.43

Table 3.4: CustomDIFF’s perceived usefulness.

3.8.4 Results
Usefulness. Usefulness was evaluated w.r.t. information findability, i.e. to what extent
does it help users find the required information needed for customization analysis.
Table 3.4 gathers the results of a questionnaire where agreement with statements is
rated along a LIKERT scale that ranges from 1 (“Strongly disagree”) to 7 (“Strongly
agree”).

Participants rated CustomDIFF with a total average of 5.69. As for the type
of questions, i.e. artefact pinpointing vs. hierarchy drill down, i.e. the former is
consistently punctuated slightly higher.

Ease of use. Davis’ template was used for evaluating this aspect (see Table 3.6).
Participants rated CustomDIFF with an avg. 5.44. This general template was extended
to assess CustomDIFF specific mechanisms (see Table 3.6): the use of alluvial
diagrams (5.84), the parent-feature dimension (5.5), the component-based dimension
(5.33), the VP-enriched context DIFF (5.5), the feature-based filtering utility (5.83)
and the analysis position map.

3.8.5 Discussion
Preliminary evaluation shows promising results for CustomDIFF. The aspects most
highly rated include:

• the easiness to find the DIFF between products and features,

• the overall picture provided by alluvial diagrams.

93

Chapter 3. Analyzing product customization

Item: P1 P2 P3 P4 P5 P6 Avg. St.

Dev.

Learning to operate CustomDIFF would be easy

for me

6 4 7 6 6 6 5.83 0.98

I would find it easy to get CustomDIFF to do what

I want it to do

5 4 6 6 5 4 5 0.89

My interaction with CustomDIFF would be clear

and understandable

6 4 6 6 6 5 5.5 0.84

I would find CustomDIFF to be flexible to interact

with

5 4 6 5 6 5 5.17 0.75

It would be easy for me to become skillful at

using CustomDIFF

7 4 6 6 6 5 5.67 1.03

I would find CustomDIFF easy to use 6 4 6 6 6 5 5.5 0.87

Total 5.83 4 6.16 5.83 5.83 5 5.44 0.89

Table 3.5: CustomDIFF’s perceived ease of use. Evaluation along a LIKERT scale
from 1 (total disagreement) to 7 (total agreement).

Item: I would find ... P1 P2 P3 P4 P5 P6 Avg. St.

Dev.

...alluvial diagrams useful for grasping

customization effort

6 5 6 6 6 6 5.84 0.41

...the parent-feature dimension useful to abstract

away from individual features

6 5 5 5 6 6 5.5 0.58

...the component-based dimension to abstract

away from files

5 5 6 5 6 5 5.33 0.52

... the VP-enriched context Diff to easy locate

change placement into code

6 5 7 6 5 4 5.5 1.05

... feature-based filtering utility useful to easy

focus

7 4 6 6 6 6 5.83 0.98

...the position map useful to position myself

during customization analysis

6 4 5 6 5 6 5.33 0.82

Total 6 4.66 5.83 5.67 5.67 5.5 5.55 0.72

Table 3.6: CustomDIFF’s specific utilities. Evaluation along a LIKERT scale from 1
(total disagreement) to 7 (total agreement).

94

Chapter 3. Analyzing product customization

Subsequent discussions with participants also helped to identify two additional use
cases where CustomDIFF can help:

1. as a code-review tool. When product customizations are to be promoted (i.e.
integrated into the SPL core-assets), code reviewers need to ensure that these
changes do not affect other products in the first place. This is ensured by
surrounding the customization with a variation point that includes a brand
new child feature that is initially enabled only for the product from where the
customization was originated. CustomDIFF might help to trace if this practice
is followed.

2. as an impact analysis tool for integrating frozen products into the SPL. Frozen
products are those derived from the SPL core-asset base several years ago but
which evolved independently afterwards. At a certain point, the decision is
made that a frozen product needs to be upgraded to the current SPL release.
This decision needs to weight the effort needed. This can be achieved using
CustomDIFF.

3.8.6 Threats to validity
Construct Validity refers to the degree of accuracy to which the variables defined
in a study measure the constructs of interest. Here, the constructs are usefulness and
ease of use, while variables are the items of the used questionnaires, and the answers
participants provide to the tasks. Usefulness was assessed in terms of the fulfillment of
information needs. These information needs were carefully selected to be paradigmatic
of the different scenarios that might rise during customization analysis, specifically,
those scenarios that were ranked as most important by practitioners. As for ease of use,
we resort to Davis’ questionnaire whose validity and reliability have been previously
endorsed (e.g. [MPC01, AP98]).

Internal Validity is concerned with the conduct of the study. Here, the treatment
is the use of CustomDIFF to address customization analysis by SPL engineers. We
were specially careful to focus on SPL engineers who have at least one year of SPL
expertise. Indeed, participants have on average, seven years of SPL experience and
come from different backgrounds in SPL development. Hence, we believe participants
to be representative of the target audience. As for the evaluation methodology, the
questionnaire’s understandability was improved by providing a running example that
aimed to help participants on contextualizing the different questions.

External Validity tackles the representativeness of the study, and the ability to
generalize the conclusions beyond the scope of the study itself. In this paper, validation
was conducted with employees coming from a given SPL: Danfoss Drive SPL. Hence,
customization practices reflect those of a single company, and hence, it rests to be
seen whether CustomDIFF accounts for customization practices other than Danfoss’.
For others to tap into this experience, Table 3.7 provides contextual details that might
help others to extrapolate this experience to their owns. That said, it should be noted
that CustomDIFF is an analysis tool and hence, it does not preclude the customization
practice as such, in the sense of determining how to proceed during the pruning stage.

95

Chapter 3. Analyzing product customization

Context dimension Characteristic Value

Product
System Type embedded systems
Size (aprox.) 800 features & 20 products
Maturity 10 years
Programming Language C++

Process
Customization practice grown-and-prune
Branching strategy branch-and-unite
Release cycle frequency bi-monthly

Tools & Techniques
SPL approach annotation-based
SPL tool pure::variants

People
Roles domain engineers
Experience 7-year average SPL experience

Organization
Model Matrix organization
Certification SPLC-awarded hall of fame

Table 3.7: Danfoss Drive SPL contextual data along Petersen’s facets [PW09].

Specially, we hypothesize that companies whose SPL is on a less mature level, where
product customizations are more likely, would find CustomDIFF more useful.

For engineering science, Wieringa argues that “for theories to be useful in practice,
they should give sufficient understanding of a sufficiently large class of cases, without
having to be universal or complete” [WD15]. On the way to generalization, Wieringa
introduces four strategies. In case-based generalization, we study individual cases,
and generalize about components and mechanisms found in a case, by similarity. The
assumption is that components are less varied than the cases they occur in [WD15].
This is the approach we follow. CustomDIFF’s main contributions are pinpointing
to the information needs, and the way to resolving these needs through DW and
Alluvial diagrams. We believe this approach to be valid beyond variations on either
the technological setting (e.g. data sources other than Git, annotation-based SPL
frameworks other than pure::variants) or the process setting (e.g. different SPL release
frequencies) or the organizational setting (e.g. a hierarchical structure instead of a
matrix structure). CustomDIFF’s main contributions are pinpointing to the information
needs, and the way to resolve these needs through DW and Alluvial diagrams. We
believe these contributions to be general enough to benefit SPL installations other than
Danfoss.

3.9 Related work
This section frames CustomDIFF within related approaches on monitoring the
application engineering process. Differences mainly stem from what is being
monitored, how is being monitored, and why is being monitored. Table 3.8 outlines
the outcome that also includes the type of SPL being targeted. Next, the comparison is
arranged along the artefact being monitored (“the what”).

Requirements. Here, product engineers are instructed to suggest eventual SPL

96

Chapter 3. Analyzing product customization

Work The subject of change

(What)

Purpose

(Why)

Change Detection
Technique

(How)

SPL type

(Where)

[HR10] Requirements, Variability

model

Uncover application needs Continuous monitoring na

[CKM+08] Requirements Foster feed-backing from

application engineers

Story-based textual

communication

na

[MBKM08] Code Promote cloned code to the

SPL

Clone detection Annotation

[LG15] Variability model Increase awareness of

changes in products

Continuous monitoring Composition

[PTS+16] Code Synchronize products among

them

Continuous monitoring
Clone&own

[FLLE16] Code Synchronize products among

them

Feature extraction

CustomDIFF Code Ease product customization

analysis

Diff Annotation

Table 3.8: Related work on monitoring the application engineering process.

requirements to domain engineers. In Carbon et al. [CKM+08], and based on
their interaction with customers, product engineers resort to reuse stories to directly
communicate changes in SPL requirements to domain engineers. This approach adapts
the agile practice “planning game” to SPLs [CKM+08]. In a similar vein, Heider
et al. also advocate for SPL requirements to be fed from requirements risen during
application engineering [HR10]. Unlike Carbon et al, Heider et al. do not require
explicit intervention of domain engineers, but rather, application engineering is being
monitored at the requirement level. To this end, authors introduce EvoKing, a tool
that provides SPL engineers an overview on new requirements that have arisen on
product level. Domain engineers can afterwards decide about each requirement to be
implemented at the product level or SPL level.

Compared with EvoKing, CustomDIFF faces a similar problem but tracking is
achieved at the code level by inspecting the SPL’s Git repository. It could be argued
that monitoring code rather than requirements makes CustomDIFF more “evidence-
based” in the sense that what is being tracked is code that has already been delivered
to customers. Drawing the attention of busy domain engineers would require not
just grasping the product requirements but proving that the new functionality is being
coded, tested and delivered to customers. What might well lie behind these different
focuses is a distinct way of managing product engineering, i.e. whether product
engineers are free to promptly account for their customer requirements by moving
directly into code, or rather, customer requirements might need first some additional
approval by domain engineers. On the downside, and unlike EvoKing, monitoring
product engineering at the code level requires of additional mechanisms that abstract
away from code to most abstract terms such as feature and product. This is being one
of the endeavors of CustomDIFF.

97

Chapter 3. Analyzing product customization

Variability models. Here, product engineers can add features to the variability
model if exiting functionality is not enough to fulfill customer requirements. Broadly,
the variability model can be collaboratively edited, and the challenge is how to make
all contributors aware of the change. To this end, Lettner et al. [LG15] introduce
the notion of “features feeds”. Domain and application engineers can subscribe to
the variability model elements, i.e. configuration units, features and variation points
(elements in the Common Variability Language [HMO+08]). Say a product engineer
needs to add a new feature to a product, and hence, she adds a new feature to the
configuration unit CU1. Engineers (both domain and application ones) subscribed to
CU1 will be notified. Next, when the new feature is implemented, product engineers
can propose their implementation to be promoted as reusable, and if so, other engineers
can incorporate it into their developments.

Compared with Lettner et al., CustomDIFF is less ambitious in the sense that
our aim stops at detecting the change (i.e. the customization effort) but it does not
elaborate on what should be the implications of such analysis. So far, CustomDIFF’s
main scenario is for domain engineers to schedule next SPL release. However, product
engineers might also benefit from gazing at what other mates are customizing for the
features of interest. For instance, a bug fix introduced in a given product might be
promptly and directly incorporated into other products, without waiting for this fix to
be promoted into the core-asset. Nevertheless, CustomDIFF does not preclude the
actions derived from customization analysis.

The source code. Mende et al. [MBKM08] tackles clone detection among product
customizations. Authors use clone detection techniques to identify similar functions
among the derived products, that can later be re-engineered back to the SPL. Their
approach uses the Levenshtein distance to measure the similarity between products’
functions. They also propose metrics that aggregate the similarity at the architectural
level to sustain the need for the pruning phase. For clone&own SPLs, Pfofe et
al. [PTS+16] address product sync. For a given product change, an Eclipse plugin
facilitates this change to be propagated to other feature-sharing products using a 3-way
merge.

Compared with these works, our approach differs in the goal. We also work at
the code level but our aim is not to detect clones nor comparing one implantation
with another. Our analysis stops at detecting the modified LOCs as a measure of the
customization effort. By contrast, we strive to provide abstraction and visualization
mechanisms that permit engineers to conduct customization analysis at levels other
than code.

3.10 Conclusion
Timely SPL evolution might require changes to be first conducted into products (grow),
and next, be promoted into core-assets (prune). This grow-and-prune cycle might need
to assess the extent and quality of “the growth” to better conduct the pruning. That
is, grow-and-prune might need customization analysis. The main contribution of this
paper is to introduce a DW approach to analyze this customization process. In this
setting, we conducted a survey among Danfoss engineers to identify information needs.

98

Chapter 3. Analyzing product customization

Next, we resorted to Dimensional Modeling to tackle these information needs using
the modified LOCs as facts. Finally, we proposed the use of Alluvial diagrams as
a visualization mean. This approach is fleshed out in CustomDIFF, a DW tool that
uses git as the operational system, and pure::variants as the SPL framework. The
approach has been motivated and evaluated by Danfoss Drives SPL engineers. Primary
evaluations reveal promising results on CustomDIFF’s usefulness for customization
analysis.

Main limitations of the approach are the that ETL process depends on the variability
approach, the VCS, and the branching model used. So far the approach works for
annotation-based SPLs, git VCS, and branching models that keep the development of
core-assets and products in separate branches. Another limitation of the approach, is
that the approach focuses on the code assets and left aside other type of artifacts (e.g.
models, documents). Future lines include extending the approach for other VCS and
branching models, and other asset types.

Additionally, we would like to further evaluate CustomDIFF in different companies
to measure its effectiveness along two parameters: the SPL maturity (which might
impact the customization effort) and the SPL size (the larger the number of core-asset
and products, the more compelling the need for abstract visualizations). In addition,
we have so far focused just on two dimensions: “the what” and “the where”. It would
be of interest to study how to supplement Git data with data coming from other sources
to collect information about products, customers and developers, and to see what other
kind of analysis this additional sources would allow for. After all, DW are thought for
integrating heterogenous data sources.

Another follow-on is to go beyond analysis into action. CustomDIFF is an analysis
tool and hence, it does not preclude the customization practice as such, in the sense
of determining how to proceed during the pruning stage. An interesting development
would be using CustomDIFF within a DevOps framework where the customization
effort (at its different abstraction levels) is tracked, and reactions can be attached to
a certain customization-effort threshold being surpassed. Other scenarios include the
use of CustomDIFF by product engineers to gaze what other mates are customizing.
For instance, a feature enhancement introduced in a given product might be promptly
and directly incorporated into other products, without waiting for this enhancement
to be promoted as a core-asset. This opens new scenarios for SPL evolution where
“longitudinal evolution” (between core-assets and products) might well co-exist with
“traversal evolution” where products sharing same features might decide to incorporate
enhancements from other products, and later on, be jointly pruned. The final aim is to
find ways to alleviate the tension between the quality and re-use effectiveness required
by domain engineers, and the time-to-market and customer pressure put on application
engineers.

99

Chapter 4

Peering into peers

4.1 Overview
In the previous Chapter we addressed customization analysis, i.e. the practice by which
engineers analyze product customizations, so that (a subset of these) are identified and
promoted to the core-asset base. Customization analysis is the first step towards the
pruning phase. Once the interesting functionalities are identified, these need to be
propagated to the core-asset base. However, this practice might end up in the so-called
“merge problem” (a.k.a. integration hell, or merge hell).

In this Chapter 1, we look at how to lessen the “merge problem” in SPLs. We
advocate for making application engineers aware of potential coordination problems
right during coding, rather than deferring it till merging time. To this end, we introduce
the practice of code peering, i.e. the practice whereby product engineers inspect
and compare other products’ code with their own code, and if interested, merge the
other product’s code into his/her own product. We discuss four design principles
that drive how code peering can be introduced for SPL development. As a proof-
of-concept we developed PeeringHub, a tool tool that supports code peering through:
(1) a Chrome extension that enhances GitHub with peering bars that provide brief
information about what features are other peers changing, (2) a DW solution (similar to
the previous Chapter) that provides alluvial-based high-level visualizations indicating
the features available for code peering, and (3) feature-based 3-way comparisons so
that product engineers can analyze how a given product is changing the code of a
given feature w.r.t its own. A 13-minutes video showcasing PeeringHub is available at
https://tinyurl.com/y7pe79h4.

Next Section provides the problem definition.

100

Chapter 4. Peering into peers

Figure 4.1: Mind map depicting the root-cause analysis for peering into peers. Interact
with it online at https://tinyurl.com/y9fqucpe.

4.2 Problem definition
Following the grow-and-prune model, product customization (i.e the growth) needs to
be cleaned up by merging and refactoring (i.e. pruning) [FV03]. Implementation wise,
this is supported through Version Control Systems (VCSs) [WS02a]. VCSs support
parallel development of software by maintaining a line of development (the master or
trunk) with branches off this. For SPLs, the master holds the core assets while branches
can stand for SPL products [FSK+16]. Product branches help to address product
specifics in a secluded setting: developers can add commits to their local repository
(grow) and completely forget about companion product developments till they are
(fully or partially) merged back to the master (prune). At this time, however, resolving
integration issues might be too demanding [mer]. Living on their own, products might
diverge too much from each other, a known issue when communication channels are
poor [DSB05, TMMK11]. Due to this issue the following problem arises: merging
and refactoring product customizations is difficult and time-consuming.

Refer to Figure 4.1, which depicts the problem definition as a mind map, and
outlines the causes and consequences of the problem. Refer to Chapter 1 for
a detailed description on the root-cause analysis of the problem (i.e. cause and
consequences of the problem). The reader is encouraged to interact with the mind map
at https://tinyurl.com/y9fqucpe. The nodes can be unfolded to uncover the supporting
evidences for each of the claims.

To alleviate this situation, we propose to make application engineers aware of
potential coordination problems right during coding rather than deferring it till merging
time. This idea might seem counter-intuitive. Product branches are all about
speeding up customer-demand satisfaction. By caring about posterior merging, product
engineers might delay this satisfaction. This begs the question whether it is worth

1The content of this Chapter has been accepted for publication in the International Conference of
Software Product Lines (SPLC’18).

101

Chapter 4. Peering into peers

diverting developers’ attention for the sake of later merging. We elaborate this issue
with the help of the theory of Attention Investment [Bla02]. This theory is based on
the premise that most decisions to start programming activities are based on an implicit
cost-benefit analysis. In our setting, the cost is that of somehow tuning your code to that
of your peers. But there exists also important benefits: early reuse. After all, products
are all generated from the very same set of features, and hence, they share most of their
code. If code is changed for a product’s feature (e.g. bug fixing), then other products
reusing that feature might be interested in the change. This scenario raises different
questions. How can application engineering teams be aware of what others are doing
without compromising their main duty (i.e. product development)? Which changes
from other peers should they pay attention to?

In addressing these questions, this paper makes the following contributions:

1. a description of the roles and interactions that intermingle in a grow-and-prune
approach to SPLs, motivated by the Danfoss case.

2. a characterization of the merge problem and how it differs from the merge
problem that also appears in traditional single-system development. We propose
a new practice, code peering, as a possible way to alleviate it. This begs
the question whether it is worth diverting product developers’ attention for the
sake of making easier the subsequent pruning by domain engineers. Using the
theory of Attention Investment [Bla02] as a narrative, we introduce four design
principles that drive how code peering can be introduced for SPL development.

3. a realization of these principles using GitHub as the VCSs, and pure::variants as
the SPL framework. As a proof-of-concept we developed PeeringHub, a tool that
supports code peering through: (1) a Chrome extension that enhances GitHub
with peering bars that provide brief information about what features are other
peers changing, (2) a web-based application that provides alluvial-based high-
level visualizations indicating the features available for code peering, and (3)
feature-based 3-way comparisons so that product engineers can analyze how a
given product is changing the code of a given feature w.r.t its own.

We start by characterizing the grow phase.

4.3 Characterizing the grow phase
This Section outlines the grow process, based on the Danfoss case. As a running
example, consider the WeatherStationSPL, an SPL for building web-based applications
for weather stations2. Figure 4.2 depicts a certain stage in the WeatherStationSPL
evolution. So far, this SPL has undergone a single core-asset baseline release at the
master branch, i.e Baseline-v1.0, that holds seven features realized through 30 code
assets. Let us consider that customers urge to account for product specifics with no
time to wait for the next core release. As a result, Baseline-1.0 might be branch off into
productDonosti, productNewYork, productDenmark and productLondon.

2This example is slightly different form the one presented in Chapter 3.

102

Chapter 4. Peering into peers

t2
master

productDonosti

productNewYork

productDenmark

productLondon

time

Baseline-v1.0
t1 t3

Peering from branch to branch

Legend
Commit

Git Repository @ GitHub

Pull request

Figure 4.2: WeatherStationSPL branching model: the master branch holds the
core assets baselines from where SPL products are branched off. At time t3
productDenmark conducts code peering.

Figure 4.3 displays the main roles and interactions along the lines of the Danfoss
experience. The interaction starts with the Platform Release Manager delivering a
new release of the core assets (in the master branch using the Version Control agent).
Next, the Core Team3 branches off for each product where product configurations are
tested out. The diagram highlights the two main triggers of the grow stage: bug fixing
(verification) and product enhancements (validation). The former involves the Quality
Assurance actor while validation results from User Acceptance Testing (UAT) with
the Customer. Both, bugs and enhancements requests, are first communicated to the
Core Team, which is the one that sets priorities and commands development. Both
verification and validation activities are handled through the Change Management
agent.

Figure 4.3 highlights the interactions with the Version Control agent (in bold):
product branches are created by the Core Team, and elaborated upon by the Software
Developer. Eventually, product branches are merged back into the master, and merge
issues are resolved by the Core Team (not shown in the figure). Merge conflicts arise
when Software Developers were working on the same codebase. The likelihood of this
situation very much depends on the size of the merge, which in turn, it is influenced by
the time span from the last merge. For Danfoss, this timespan is two weeks.

3Members of Core Team are Release Manager, Product Manager , Project Manager (who interacts with
developers and Platform Manager) and a person from the verification and validation team (QA) to understand
on the schedules and testing.

103

Chapter 4. Peering into peers

Platform
Release Plan

final_release_to_customer()

loop [for each enhancement]

work_on
enhancement()

verification_pass()

set_of_criticalties

commit_fix()

work_on
issue()

Product
Release Plan

notify_done()

send_sw_pack
_config() commit()

Core
Team

Software
Developer

Version
Control Quality

Assurance

Change
Management

verify_new_config()
failed_tests

new_issue()

create_product_branch()

fix_issue()

notify_fixed()
verify_fixed()

failed_tests

UAT_validate()

decide_criticalities()

develop_
enhancement()

notify_
enhancement()

verify_enhancement()
failed_tests

incorporate_enhancement
_next_release()

validation_pass()

[critical == false]

loop [while failed_test == true]

alt [critical==true]

loop [for each enhancement]

alt [validation == true]

loop [while failed_test == true]

loop [for each package/configuration]

loop [for product]

prioritize_issues()

Customer
Platform
Release
Manager

commit_
enhancement()

set_of_enhancements

new_platform_release()

Figure 4.3: Sequence diagram depicting the grow stage.

104

Chapter 4. Peering into peers

Time

Ch
an

ge

A long time

Lots of lines
of code

Figure 4.4: The merge problem illustrated: the time since the last merge and the amount
of changes introduced since then, exacerbate the merge problem.

4.4 The merge problem
This section tackles the merge problem in an SPL setting. This problem is being studied
for single-system development [Duv07]. This issue rises when long-living branches
are merged back into the master branch. Here, the amount of code to be integrated
might exceed the time it took to make the original changes, leading to the so-called
“integration hell” [mer]. The likelihood of this situation very much depends on the size
of the merge, which in turn, is influenced by the time span from the last merge. Figure
4.4 depicts this situation. The larger the span, the harder the integration. Developers
should then aim at frequent merges, easy to be integrated with the base code.

However, in SPLs, product customization cannot be readily made available at the
master. First, they need a proving time at the product realm before being promoted
to core assets. Hence, if we cannot always reduce the merge granularity by frequent
integration, we can alternatively attempt to make product engineers “merge-minded”.
That is, making application engineers aware of potential coordination problems right
during product coding rather than deferring it till merging time. However, to what
extent is diverting developers’ attention worth, for the sake of the posterior merging?
We elaborate this issue with the help of the theory of Attention Investment.

This theory is based on the premise that most decisions to start programming
activities are made based on an implicit cost-based analysis [Bla02]. Specifically, the
following parameters are introduced:

• Investment: the attention expended toward a potential reward, where the reward
can either be external to the model (such as payment for services) or an attention
investment pay-off. Back to merging, caring for integration during product
development requires an extra effort of comparing your code with someone
else’s.

• Pay-off: the reduced future cost that will result from the way the user has chosen

105

Chapter 4. Peering into peers

VP-1

VP-2

1
3

2

A B C

Figure 4.5: A 3-way comparison in KDiff3 for sensors.js. The comparison
involves three branches (see Figure 4.2): Baseline-v1.0 (A), productDonosti (B) and
productDenmark (C). Note how sensors.js is being changed in productDonosti for two
variation points: VP-1 and VP-2.

to spend attention. Back to merging, the comparison effort might payoff in
two main ways. First, promoting early reuse. If a feature’s code is changed
in product, then, this change would likely be of interest to other products that
exhibit the same feature. Second, a developer who sees an opportunity to
incrementally improve the quality of the codebase might somehow tune his/her
code to facilitate late merging.

• Risk: the probability that no pay-off will result (specification failure), or that
additional costs will be incurred (bugs). At this respect, it is being documented
that the type of small but broad refactorings that can gradually improve a
codebase—or stop it gradually degrading—are exactly the type of changes that
often lead to a merge conflict [sem].

The hypothesis is that providing developers with integrated support for product-branch
comparison would promote early reuse and small refactoring improvements, on the
search for easy merging back into the master branch. Next Section characterizes this
challenge which is referred to as “code peering”.

4.5 Characterizing “code peering” in SPLs
Code peering is the process whereby developers look into someone else’s code w.r.t.
their own code. Specifically, developers look at sibling branches, i.e. branches that

106

Chapter 4. Peering into peers

Peering Bar

Figure 4.6: Product-branch display in GitHub. The inlayed peering bar hints
customization endeavors i for the productDenmark’s features.

conduct customizations on products (i.e. the observed products) that share at least
one feature with the product at hand (i.e. the observer product). Hence, code peering
involves comparisons between the observed products and the observer product w.r.t. a
common ancestor, i.e. the master branch. This requires a three-way file comparison:
3WAYDIFF (base, observed, observer). Figure 4.5 depicts how a 3WAYDIFF (Baseline-
v1.0, productDonosti, productDenmark) looks like in KDiff34, a popular three-way
comparison tool (for a larger list on three way comparison tools refer to [3wab]).
The base (a.k.a “common ancestor”) provides the reference point for conducting the
comparison. Using the base as the reference, KDiff3 compares (1) the observed vs.
the base, (2) the observer vs. the base, and (3), the changes in both the observed and
the observer to each other. For instance, Figure 4.5 highlights that productDonosti’s
version of the sensors.js file, holds an if-clause (yellow background) that is not present
in productDenmark’s. Without the presence of the base (i.e. Baseline-v1.0), we
would not know whether productDenmark did remove the if-clause from the base,
or instead, it was productDonosti the one that included the if-clause. The comparison
with Baseline-v1.0 shows this up.

KDiff3 is a powerful tool for code comparison in single-system development. Next,
we frame code comparison within the grow-and-prune model. Here, code comparison
is conducted for alleviating branch merging within an SPL setting. Next subsections
elaborates on the implications in terms of design principles that might guide the
introduction of code comparison in SPLs.

4http://kdiff3.sourceforge.net/

107

Chapter 4. Peering into peers

4.5.1 Code comparison for alleviating branch merging
Code peering encourages easy merging. This might be an ancillary activity from an
AE perspective, as for them, product development comes first. Therefore, the attention
capital available for code peering is limited. Implications are twofold. First, code
peering should not interrupt product development. Second, if the peering effort goes
beyond a certain threshold, the benefits might not payoff. On these premises, two
design principles are introduced.

Seamless integration with VCSs. The need for code peering arises when
conducting product development in VCS’s branches. Hence, easy access from VCSs
becomes paramount to promote “code peering” right at the place where the need
emerges.

Respect focus. Along the theory of Attention Investment, the design should
respect the fact that developers should control their own focus of attention. Product
development should not be interrupted with merging concerns but developers should
choose the appropriate moment. One might think that by letting developers decide, the
appropriate moment for conducting code peering would never happen, as they would be
too busy. Following the attention investment theory, we argue that making developers
aware of early reuse mitigates this. Nevertheless, the development process should
enforce developers to conduct code peering when developing, i.e. product developers
should “look” for reuse opportunities in other peers just like they would do with domain
assets.

4.5.2 Code comparison within an SPL setting
Feature-centricity. SPL development is basically feature-centric, i.e. most bug
fixing and functional upgrades are conducted within a feature. Certainly, products can
add brand-new functionality. However, our focus is on upgrades on existing features.
This feature-centricity should percolate code comparison. That is, code comparison
should be in terms of features, not just files or folder. Developers wonder “what features
have been upgraded by my peers”, and not “what files/folders have been updated”. This
requires a clear understanding of feature boundaries and an explicit feature-to-code
mapping.

Abstraction. SPLs are reckoned to exhibit a large number of features and products.
Hence, even if we limit our attention to the features of the product at hand, the
number of sibling products (i.e. those with overlapping features) can still be quite
large. Code-based comparison might not scale up. Conducting traditional KDiff3-
like comparison for each file within each product would end up in hundreds (if not
thousands) of KDiff3 displays. This might put developers off. But even if they are
dedicated enough, developers might overlook some interesting upgrades, hidden in the
plethora of changes. Hence, mechanisms are needed that abstract away from raw code
into higher-level visualizations.

108

Chapter 4. Peering into peers

4.6 PeeringHub: a peering utility for GitHub
This section realizes the aforementioned principles for KDiff3 as the DIFF tool, Github
as the VCSs, and pure::variants as the SPL framework [pur]. We first outline these
tools, and next, address how they have been integrated and adjusted for “code peering”.

Pure::variants. It is a framework for annotation-based SPLs. Figure 4.5-A shows
a snippet of the core asset sensors.js at Baseline-v1.0. This snippet shows two variation
points, i.e. VP-1 and VP-2. In pure::variants, a variation point starts with the
opening directive //PV:IFCOND, and ends with a closing directive //PV:ENDCOND 5.
Core assets can be branched off for verification (corrective maintenance) or validation
(perfective maintenance) purposes. Figure 4.5 highlights changes when comparing
productDonosti (B) vs. productDenmark (C). Two variation points (i.e. feature
expressions) are impacted: VP-1 and VP-2, that account for features AirPressure and
WindSpeed, respectively.

GitHub6. It is the largest git repository hosting site [GVSZ14]. Github became
“the social meeting point” for software developers working on the same repository.
This “social activity” includes: branch comparison, pull-requests creation, conducting
code-reviews, open/close issues, leave comments, see statistics and so on. This “social
character” makes GitHub also a suitable place for code peering. Although GitHub
has been made popular for open-source development, it is also popular for companies
developing commercial software too [KDB+15b].

4.6.1 PeeringHub: code peering in GitHub
PeeringHub is a Chrome extension for GitHub. This extension enhances GitHub with
three main utilities: peering bars, alluvial diagrams, and KDiff3 enactors. PeeringHub
has been designed along the aforementioned principles.

Seamless integration with GitHub. PeeringHub resorts to Web Augmentation
[DA15] to enhance GitHub with code peering. This permits developers to keep using
their URLs as usual. The new functionality is realized in terms of inlayed HTML
elements (see next). Seamlessness is sought by using the same CSS classes and
aesthetics of the hosting pages.

Respect focus. Code peering should not imply constantly popping up code
differences. This would have been very annoying. Rather, developers should be able to
consult about differences anytime they see appropriate. That said, giving full control to
developers does not tell the whole story, because there is also an attention cost involved
if the system simply waits for developers to proactively ask questions. Peering bars
provide a middle way. Before delving into the bar itself, it is worth discussing where
this bar is going to be integrated. The “respect focus” principle suggests the bar to
be close to where the decision is to be taken. If code peering is conducted before

5These variation point patterns only hold for code files. For example, in XML and HTML files, variable
elements are annotated in an attribute called condition.

6http://github.com/

109

Chapter 4. Peering into peers

“Our product”

“Features our
product is reusing”

“Other products
customizing
the features”

Figure 4.7: Alluvial diagrams reachable from peering bars. The display shows two
flows (i.e. customization efforts): (1) from productDenmark into its features, and (2),
from productDenmark’s features to sibling SPL products.

initiating a development task, or at the end of the development task, this places the
central repository (where the issue tracking system is) as the first option. Else, if code
peering is conducted while in development, this places the IDE (e.g Eclipse) as the first
option. We decided to integrate the peering bar as part of the GitHub interface, as a
way to provide an IDE-indepent solution, since each developer (at least at Danfoss) can
develop with his/her preferred IDE.

110

Chapter 4. Peering into peers

Asset at version:
Baseline-v1.0

A

Asset at version:
Baseline.v1.0 +

[product Donosti’s changes to
WindSpeed]

Asset at version:
Baseline.v1.0 +

[product Denmark’s
changes to WindSpeed]

B C

1

Figure 4.8: KDiff3 enactment that results from clicking on the (WindSpeed,
productDonosti) arch in Figure 4.7.

Peering bars mimic GitHub’s language bars. Figure 4.6 shows the case for the
productDenmark branch. To avoid distraction, the peering bar is initially collapsed: the
existence of product customization is indicated but not the extent of this customization.
Additional information requires for developers to proactively click on the bar. For our
example, this will result in displaying the extent to which other products are altering
productDenmark’s features. Should a large number of features be involved, the display
limits itself to those features that have received most attention, i.e. those features that
have been subject to most customization in the productDenmark branch. Therefore, the
peering bar displays changes dynamically as productDenmark is being customized. In
this way, and without leaving GitHub, developers can assess whether it might be worth
to zoom into the raw code or not. This bring us to the next principle.

Abstraction. PeeringHub gradually unveils the customization effort through three
visualizations: bars, alluvial diagrams and finally, raw-code differences. A peering trail
is built-in through hyperlinks that permit to move forward along these different visuals.

This trail starts at peering bars. These bars show aggregated feature-based
customization efforts (see Figure 4.6). Click on these eye-shaped figures for these
aggregates to be broken down through alluvial diagrams. These diagrams are a type
of flow diagram originally developed to represent how multiple groups relate to one
another across several variables [All]. Here, code upgrades are characterized along two
variables: the product (where the upgrade is conducted) and the feature (that scopes the
upgrade within a variation point). Figure 4.7 shows the case for our running example.
The diagram depicts “the customization effort” that goes from the observer product
(e.g. productDenmark) to the features, and next, from the features to the observed
products (e.g. productDonosti, productLondon and productNewYork). This effort is
measured in terms of the number of lines (LOCs) added/deleted (a.k.a the code churn),
and it is reflected through the width of the flow arc.

111

Chapter 4. Peering into peers

VP-2

VP-3

patchVP-1VP-1

patchVP-2

patchVP-3

Figure 4.9: Feature-based slicing for diff(Baseline-v1.0.sensors.js,
productDonosti.sensors.js). The diff-output (left) is broken down based on variation
points (right). Each slice accounts for a patch function.

Looking at Figure 4.7, we can promptly appreciate how productDenmark
is customizing the WindSpeed feature the most. Additionally, we can notice
how both productDonosti and productNewYork also customize WindSpeed, being
productDonosti the one with the largest customization effort (the arch flow stream
to WindSpeed is the widest). Alluvial diagrams also help to promptly appreciate
which variables are more clustered (fewer, wider arch flows) and which are more
distributed (more, narrower arch flows). For instance, productDonosti is considerably
more customized than the other two products, whereas the Heat feature has not been
customized by any product at all. In this way, alluvial diagrams provide an abstract
view of the customization effort. A flow arc (P, F) stands for the customization effort
that product P conducts in feature F. The width of the arc denotes the amount of this
effort. However, we do not yet see the concrete LOCs being added/deleted. This brings
us to KDiff3.

Flow arcs account for enactors of 3WAYDIFF (base, observed, observer)
comparisons. Specifically, when working on the P1 product branch, a flow arc
(P2, F) holds an enactor to KDiff3(base, P2, P1)7. For instance, by clicking on

7This requires KDiff3 to be locally installed, as well as, to grant permission to the protocol

112

Chapter 4. Peering into peers

the arc (productDonosti, WindSpeed), KDiff3 will be launched in your desktop to
show 3WAYDIFF (baseline-v1.0, productDonosti, productDenmark). Unfortunately,
a straight invocation to KDiff3 will highlight all the changes that both, productDonosti
and productDenmark, have performed to the baseline. This means that changes to all
the features will be highlighted. Hence, the feature of the flow arc “has been lost in
translation”. What is needed is a “feature-aware” 3-way diff, i.e., 3WAYDIFF (baseline-
v1.0, productDonosti, productDenmark)[WindSpeed], so than only the changes to the
feature WindSpeed are shown (as in Figure 4.8). This moves us to the next requirement.

Feature-centricity. Alluvial diagrams hold arcs from features to observed products.
That is, arcs are anchored on features. Hence, differences need to be shown between
the observer product and the observed product, but for the feature at hand. That is, the
code should just focus on the feature being looked into. This means that we need to
“build” versions of productDonosti and productDenmark, with only the changes that
they introduced for the WindSpeed feature. So, that when KDiff3 is launched only the
changes to the feature WindSpeed are shown. To this end, PeeringHub proceeds in
three steps.

• first, it conducts diff(base, observer) and diff(base, observed). Figure 4.9
(left) shows the diff-output (a.k.a patch) for diff(Baseline-v1.0.sensors.js,
productDonosti.sensors.js)8,

• second, it slices the diff-outputs in terms of features. Figure 4.9 (right) shows
the “featured” patches for the diff-output sample (left). This results in a patch
for each variation point: patchVP-1, patchVP-2 and patchVP-3. VP-1 impacts
AirPressure. VP-2 impacts WindSpeed. And most interestingly, VP-3 impacts
WindDirection but also WindSpeed since it is nested within VP-2,

• third, patches behave as functions, i.e. they list the code lines being added
or deleted. If you apply a patch to a file, it returns the file with the patch
directives (addition/deletion) being performed. Therefore, applyPatch(Baseline-
v1.0, patchVP-3 patchVP-2) returns a version of productDonosti with only the
changes performed to the WindSpeed feature since derived from the baseline.

• forth, KDiff3 is launched with the “featured” versions of both the observed
and the observer. The outcomes are shown shown in Figure 4.8(B) and (C)
respectively, after PeeringHub conducts these operations transparently. Unlike
Figure 4.5, now the outcome limits itself to changes that impact WindSpeed
alone. In this way, 3-way comparison is adjusted to SPL specifics, i.e. feature
centricity.

kdiff:// so that KDiff3 can be launched from the browser. This can be achieved by running a
lightweight script, such as the following for Mac OS X https://gist.github.com/letimome/
4f8bd099c74f5226b98b09976f6812b7.

8Due to space limitations Figure 4.9 does not show the diff(Baseline-v1.0., productDenmark)

113

Chapter 4. Peering into peers

Item for usefulness: P1 P2 P3 P4 P5 P6 Avg.
Using PeeringHub would enable me
to accomplish code peering tasks
more quickly

7 7 7 6 6 7 6.66

Using PeeringHub would increase my
productivity on code peering

6 7 6 5 7 7 6.33

Using PeeringHub would enhance my
effectiveness on the code peering job

6 6 6 5 6 7 6

Using PeeringHub would make it
easier to do my job w.r.t. code peering

7 6 6 6 5 7 6

I would find PeeringHub useful for
code peering

7 7 7 7 6 7 6.83

I would find PeeringHub useful in my
job

7 7 4 7 7 6 6.33

Total 6.66 6.66 6 6 6.16 6.83 6.36
Items for ease of use: P1 P2 P3 P4 P5 P6 Avg.
Learning to operate with PeeringHub
would be easy for me

7 7 7 7 6 7 6.83

I would find it easy to get PeeringHub
to do what I want it to do

7 7 6 6 5 7 6.33

My interaction with PeeringHub
would be clear and understandable

5 7 6 6 7 7 6.33

I would find PeeringHub to be flexible
to interact with

7 6 5 6 6 6 6

It would be easy for me to become
skillful at using PeeringHub

7 7 6 7 7 7 6.83

I would find PeeringHub easy to use 6 7 6 7 7 7 6.66
Total 6.5 6.83 6 6.5 6.3 6.8 6.48

Table 4.1: PeeringHub perceived usefulness and ease of use based on Davis’ template.

4.7 Evaluation
This section predicts the acceptability of PeeringHub based on the Technology
Acceptance Model (TAM) [Dav89]. TAM proposes that the readiness of a user to use
(or not to use) a new technology is determined by her attitude towards the technology.
This attitude is influenced by two beliefs which are perceived usefulness and perceived
ease of use. Perceived usefulness is defined as “the degree to which a person believes
that using a particular technology would enhance his or her job performance” [Dav89].
On the other hand, ease of use refers to “the degree to which a person believes that using
a particular system would be free of effort” [Dav89]. Therefore, we aim at analyzing
the use of PeeringHub for the purpose of evaluating its usefulness and ease of use with
respect to conducting code peering from the point of view of product developers in the

114

Chapter 4. Peering into peers

context of annotation-based SPLs.
Six participants took part on the evaluation. Participants were introduced

to the tool, by a short demo available at https://vimeo.com/262269218.
Afterwards, they were introduced to the WeatherStationSPL. They were asked to
conduct code peering using PeeringHub, as if they were engineers working for the
productDenmark product. Specifically, the following tasks were proposed:

• Task 1: Which products are changing features also used by your product (i.e.
productDenmark)?

• Task 2: Which products are customizing the WindSpeed feature? List them.
Which is the product that is customizing WindSpeed the most?

• Task3: For the previously identify products, list lines of code being added to the
WindSpeed feature.

During the session, a researcher was observing participants’ interactions with the tool.
Next, an on-line questionnaire was delivered to assess usefulness and ease of use. Table
4.1 gathers the results where agreement with statements is rated along a LIKERT scale
that ranges from 1 (“Strongly disagree”) to 7 (“Strongly agree”). Davis’ template was
used for evaluating both usefulness and ease of use.

Participants rated PeeringHub with an average of usefulness and ease of use of
6.36 and 6.48, respectively. Although results are rather encouraging, they should be
interpreted with caution, as some threats to validity need to be considered. Internal
validity is concerned with the conduct of the study. Here, the treatment is the use of
PeeringHub to address code peering. We cannot claim PeeringHub to be tested in a real
scenario, as it was conducted by SPL researchers with a sample SPL. Also, this work is
based on insights from the Danfoss setting. This setting, i.e. the SPL size, the number
of developers or the SPL maturity, might change for other companies that might rise
issues not addressed here. Finally, external validity tackles the representativeness of
the study, and the ability to generalize the conclusions beyond the scope of the study
itself. At this respect, we believe our insights can be of interest to SPLs other than
Danfoss’. Wherever product branches are permitted, the risk of difficult merges shows
up. Code peering, and PeeringHub, might alleviate this scenario. While this evaluation
provides some initial evidence that the proposed tool could be useful and easy to use
for code peering, it is only a starting point for a more large-scale evaluation. We still
need to evaluate whether conducting code peering with PeeringHub can alleviate the
merge problem.

4.8 Related work
PeeringHub monitors the application-engineering process. Differences with other
works mainly stem from what is being monitored, how is being monitored, and why
is being monitored. Table 4.2 outlines the outcome that also includes the type of SPL
being targeted. Next, the comparison is arranged along the “what”, i.e. the artefact
being monitored.

115

Chapter 4. Peering into peers

Ref. The subject of change

(what)

Purpose (why) Change Detection

Means (how)

SPL type

[CKM+08] Story-based

requirements

Feed-back Asynchronous

communication

na

[HR10] Requirements,

Variability model

Feed-back Monitoring na

[LG15] Variability model Increase awareness of

changes in products

Monitoring Composition

[MBKM08] Clone code Feed-back Levenshtein distance Annotation

[PTS+16] Code Product synchronization Monitoring Clone&own

[SSRS16] Code Update propagation Diff Annotation

[?] Code Identifying features in

forks

Diff Clone&own

PeeringHub Code Alleviate the merge

problem

Diff Annotation

Table 4.2: Related work on monitoring the application engineering process.

Requirements. Here, product engineers are instructed to suggest eventual SPL
requirements to domain engineers (a kind of feed-back propagation). In Carbon et
al. [CKM+08], product engineers resort to reuse stories to communicate changes
in SPL requirements to domain engineers. This approach adapts the agile practice
“planning game” to SPLs [CKM+08]. In a similar vein, Heider et al. also advocate
for SPL requirements to be fed from requirements risen during application engineering
[HR10]. Unlike Carbon et al, Heider et al. do not require explicit intervention of
product engineers, but rather, application engineering is being transparently monitored
at the requirement level. To this end, authors introduce EvoKing, a tool that monitors
requirement-level activities by product engineers. Domain engineers can afterwards
decide about each requirement being implemented at the product level or SPL level.
This tools was later used in [LG15] through the notion of “features feeds”. Domain and
application engineers can subscribe to the variability model elements, i.e. configuration
units, features and variation points (elements in the Common Variability Language
[HMO+08]). Say a product engineer needs to add a new feature to a product, and
hence, she adds a new feature to the configuration unit CU1. Engineers (both domain
and application ones) subscribed to CU1 will be notified. Next, when the new feature
is implemented, product engineers can propose their implementation to be promoted
as reusable, and if so, other engineers can incorporate it into their developments.

PeeringHub differs from the aforementioned approaches in all: the target
audience (domain engineers vs. application engineers), the artefact being monitored
(requirements vs. code) and the SPL stage (requirement analysis vs. code
development). At this respect, EvoKing and PeeringHub complements each other:
requirement feed-back can be conducted through EvoKing; next, assigned to different
product-engineering teams whose efforts and synergies are later tracked through
PeeringHub. Monitoring wise, EvoKing requires product engineers to explicitly
subscribe to the features they are interested in. By contrast, PeeringHub resorts

116

Chapter 4. Peering into peers

to the heuristic of “subscribing” products to those features that are being more
intensively updated from those exhibited by the product at hand. Though products
might potentially exhibit a large number of features, the heuristic limits the focus to
only those features being upgraded in a short turnover (two weeks for Danfoss), hence
averting the scalability issue in the presence of large feature models.

Source code. Mende et al. [MBKM08] tackles clone detection among functions
during product customizations. To this end, they resort to the Levenshtein distance
to measure the similarity between clones. They also propose metrics that aggregate
similarities at the architectural level to sustain the need for the pruning phase. For the
growing phase, Schulze et al. [SSRS16] address update propagation in Pure::Variants
where products are upgraded with newer versions of the core-assets. Similar to our
approach, authors resort to a 3-way diff/merge. However, the compared commits
are different. Given a product generated out of BASELINE-1, they are interested
in upgrading it with a new release of core assets, e.g. BASELINE-2. Therefore,
their 3-way diff looks like: 3WAYDIFF (BASELINE-1, BASELINE-2, PRODUCT). By
contrast, our approach looks for differences between products generated out of the
same baseline. That is, our 3-way diff looks like: 3WAYDIFF (BASELINE-1, PRODUC-
1, PRODUCT-2).

For clone&own SPLs, Pfofe et al. [PTS+16] address change synchronization
between cloned products. Their tool, an eclipse plugin called VariantSync, tracks
changes as engineers conduct product development. Afterwards, developers need to
tag these changes to feature expressions, and the tool aids engineers on automating
propagating those changes to products sharing the same feature expression. Although
thought for fork-based development in open-source projects, the work presented by
Zhou et al. [?] comes close to ours. Notice that forking is a common approach in
clone&own SPL (e.g. [RKBC12]). In open-source projects, forks (i.e. a clone of a
whole repository) can be interested in what related forks are doing. Zhou et al. propose
a tool that compares each fork with the Main repository from where forks were derived.
Unlike annotated SPLs, no explicit feature-to-code mapping exists so authors need to
rely on both concern location and dependency analyses in order to identify features
in forks. Finally, clone&own SPLs are regarded as the “first step” towards a fully-
integrated SPL approach [?, RCC13]. In this sense, Antkiewicz et al. [?] and Rubin et
al. [RCC13], propose roadmaps as to iteratively transition from a clone&own setting
towards a fully-integrated SPL platform.

Back to PeeringHub, our efforts are not so much about concern location (since
changes happens within the scope of a variation point) but at integrating the practice of
“peering” as part of product enginering process. This moves visualization and gradual
unveiling to the forefront.

4.9 Conclusions
This chapter proposes code peering as a way to lessen the merge problem during
the pruning of product customizations. Using the theory of Attention Investment as
a narrative, we introduce four design principles that drive how code peering can be
introduced in SPLs. These principles are realized through PeeringHub, a prototype

117

Chapter 4. Peering into peers

composed by: (1) a Chrome extension that enhances Github with Peering bars, (2) a
web-based application that visualizes code peering by means of alluvial diagrams, and
(3) feature based 3-way comparisons.

While we got some initial evidences that the proposed tool could be useful and easy
to use for code peering, a more large-scale evaluation should be conducted, that can
shed some light as whether conducting code peering (with PeeringHub) can alleviate
the merge problem.

Next follow-on activity is to measure PeeringHub effectiveness along two
parameters: the SPL maturity (the less mature, the larger the need for code peering) and
the SPL size (the larger the number of core asset and products, the more compelling the
need for abstract visualizations). The impact of code peering can be measured not only
in terms of facilitating branch merging, but also changing how product engineering
is conducted. For instance, a feature enhancement (e.g. a bug fix) introduced in a
given product might be promptly and directly incorporated into other products, without
waiting for this enhancement to be promoted as a core asset. This opens new scenarios
for SPL evolution where “longitudinal evolution” (between core assets and products)
might well co-exist with “traversal evolution” where products sharing features might
decide to incorporate enhancements from other products, and later on, be jointly
pruned. The final aim is to find ways to lessen the tension between the quality and re-
use effectiveness required by domain engineers, and the time-to-market and customer
pressure put on application engineers.

118

Chapter 5

Synchronizing core-assets and
products

5.1 Overview
In Chapter 4 we addressed the merge problem that arises during the pruning of product
customization. Herein, we proposed code peering, i.e. a practice that promotes early
reuse across products during the grow phase, with the aim of reducing the merge
problem implications.

This Chapter1, no longer focuses on preventive measures for the issues the pruning
might await. Once the interesting functionalities are identified, these need to be
propagated to the core-asset base, which after a successful integration, will eventually
be delivered to the already existing products. This introduces two sync paths: update
propagation (from DE to AE) and feedback propagation (from AE to DE).

We look at how to support these sync paths using traditional Version Control
Systems (VCSs) constructs (i.e. merge, branch, fork and pull). In this way,
synchronization mismatches can be resolved à la VCS, i.e. highlighting difference
between distinct versions of the same artifact. However, this results in a conceptual gap
between how propagations are conceived (i.e. update, feedback) and how propagation
are realized (i.e. merge, branch, etc). To close this gap, we propose to enhance existing
VCSs with SPL sync paths as first-class operations. As a proof-of-concept, we use Web
Augmentation techniques to extend GitHub’s Web pages with this extra functionality.
This ends up in GitLine, a browser extension for Firefox that extends GitHub with sync
operations for SPLs. Through a single click, product engineers can now (1) generate
product repositories, (2) update products with newer feature versions, and (3), feedback
product customizations amenable to be upgraded as core-assets. A 8-minute video
showcasing GitLine is available at https://vimeo.com/145403689

This Chapter requires from the reader a basic understanding on VCS basic
operations, and branching strategies. The appendix C provides the reader with a brief

1The content of this Chapter has been previously published in [MD15].

119

Chapter 5. Synchronizing core-assets and products

Figure 5.1: Depicting the problem definition for propagating changes between
core-assets and products with a mind map. Interact with it online at
https://tinyurl.com/ya777m2x.

on git VCS, its basic operations, and points to popular branching models for single-
system development.

Next Section provides the problem definition.

5.2 Problem definition
Enacting the pruning requires propagating changes between core-assets and products,
so that both parties are synchronized. This introduces two sync paths: the update path
(from DE to AE), and the feedback path (from AE to DE) [Kru03]:

• Update paths serve two scenarios: configuration repair (synchronize products
configuration when variability model changes) [BM14] & product upgrade
(where latest versions of reusable assets are propagated to products) [Kru03].
In the latter case, for every product derived from the original core-asset, an
update operation is required. If products have customized the core-asset then, the
update operation may require a manual merge for each product [Kru03]. When
to conduct the upgrade differs significantly for the different products in the SPL.
While some tend to upgrade rather quickly, some do not upgrade for a long time,
even when not close to the product’s release [JB09].

• Feedback paths serve two scenarios: extending the scope of the product
line to emerging application engineering requirements [Kru03], as well as,
incorporating bug-fixes resolved in products [FSK+16]. The integration of the

120

Chapter 5. Synchronizing core-assets and products

feedback would result in changes to a set of core-assets, which may require
updates to be applied to all the products that reuse them [Kru03].

In order to preserve a correct, complete and consistent synchronization between core-
assets and products, Software Configuration Management (SCM) for SPL development
needs also to account for propagations. SCM is the discipline that enables engineers
to keep control and track software changes (i.e. evolution). Some equate SCM to
VCS tools. However, beyond configuration management tools, policies and procedures
are needed to guide developers in how to control and manage the evolution of the
core-assets and products[McG07]. In a nutshell, SCM relies on both (1) tools to track
changes to software assets, i.e. VCS, as well as, on (2) policies for engineers that
establish when and how to commit code, and policies for branching and merging. If
an organization chooses tools and practices separately, their use may conflict, resulting
in failure to carry out the practices (e.g. SPL development and change propagation)
properly [CN01a].

However, traditional VCSs tools are mainly thought for single-product
development. State-of-the-art VCSs such as Git/GitHub, provide the basics but fall
short in supporting sync paths between core-assets and products. All Git/GitHub offers
is the fork/branch mechanism. However, forking/branching is not how products are
derived. Likewise, GitHub’s pull request / merge is also thought for synchronizing a
whole repository/branch, hence lacking a more piecemeal synchronization, i.e. only a
subset of features or core-assets. Due to this issue the following problem arises: both
feedback propagation and update propagation are time-consuming and error-
prone.

Refer to Figure 5.1, which depicts the problem definition as a mind map, and
outlines the causes and consequences of the problem. Refer to Chapter 1 for
a detailed description on the root-cause analysis of the problem (i.e. cause and
consequences of the problem). The reader is encouraged to interact with the mind map
at https://tinyurl.com/ya777m2x. The nodes can be unfolded to uncover the supporting
evidences for each of the claims.

This complexity calls for Version Control Systems (VCSs), accompanied by branch
and merge policies, not only to assist in managing the large number of SPL artifacts,
but also to help in synchronizing the AE and the DE realms. This involves: (1) a model
of what a CoreAsset repository looks like (a.k.a. branching model), (2) a model of
what a Product repository looks like, and (3), a set of operations to keep both models
in sync. In this setting, this work’s main contributions rest on:

1. a repository architecture, which distinguishes between the CoreAsset repository,
where domain engineering takes place, and Product repositories, where product
engineering occurs. This provides the data structure branching model in which
sync actions operate (Section 5.6).

2. the operational semantics for sync actions. Synchronization happens upon
artifact versions. The previous branching model permits sync operations to
be expressed in terms of basic VCS constructs. This in turn implies that
eventual mismatches that rise during synchronization are resolved à la VCS,
i.e. highlighting diff -erence between distinct versions of the same artifact

121

Chapter 5. Synchronizing core-assets and products

VODPlayer

ChooseMovie

ViewMovieDetails

Baseline 1 Baseline 2 Baseline 3

Product A

Product B

Legend
Core Asset Release

Alpha release Beta release GA release

Repository

Update Core Asset Feedback Product Asset

PlayMovie

PauseMovie

QuitPlayer

ChangeMoviesServer

Manual Change

AssistedChange

AutomaticReplay

StopMovie

Product C

Figure 5.2: The SPL synchronization challenge (adapted from [KC13])

(traditionally, using the diff option in VCSs). Therefore, we do not aim
at automatic sync. Our aim is much more humble: tap into VCS popular
mechanisms for SPL engineers to achieve sync in a way similar to what they
do for single products (Section 5). However, this results in a conceptual gap
between how sync paths are conceived, and how they are realized down into
branching and merging. To close this gap, we propose leveraging VCSs with
SPL sync operations.

3. GitLine, a browser extension for GitHub that accounts for the above-mentioned
sync operations (subsections 5.6.1.1, 5.6.2.1 and 5.6.3.1). Through a single click,
product engineers can now (1) generate product repositories along a certain
configuration, (2) update propagations of newer core-asset versions, or (3),
feedback propagation of product customizations.

The next Section illustrates the synchronization challenge.

122

Chapter 5. Synchronizing core-assets and products

Core-asset
ID

Core-asset Name Core-asset Description

CA1 VODPlayer Provides the PL architecture and basic functionality to run the
player

CA2 ChooseMovie Allow users to view the list of available movie and select one
CA3 ViewMovie

Details
Allow users to see a movie details: director, title and actors

CA4 PlayMovie Allow users to start playing the movie the have selected
CA5 StopMovie Allow users to stop the movie they are currently watching
CA6 PauseMovie Allow users to pause the movie they are currently watching
CA7 Quit Allow users to quit from the player
CA8 ChangeMovies

Server
Allow users to change the server they are connected to

CA9 ManualChange A manual-like approach to change the server users are connected to
CA10 AssistedChange Load a list of servers to allow users to select the one to connect to

Table 5.1: VODPlayer-PL core-assets.

5.3 Product derivation: illustrating the challenge
We stick to the generic process for product derivation described in [DSB05]. Deelstra
et al. distinguish between the initial and the iteration phase. In the initial phase, a
first configuration is created from the core-assets. In the iteration phase, the initial
configuration is modified in a number of subsequent iterations until the product
sufficiently implements the imposed requirements. Unlike Configurable Product Lines
(CPLs) where product derivation is limited to the configuration expression, SPLs do
not achieve such degree of reuse effectiveness, and require core-assets to be customized
during product derivation. This makes SPLs more difficult to manage that CPLs since
they might potentially involve a larger number of artifacts (not just core-assets, but
product specific artifacts as well), handled by different teams, and following different
life-cycles. This Section illustrates the complexities of product derivation through an
example.

Consider VODPlayer-PL, a SPL for video playing software. VODPlayer-PL
includes ten core-assets at its initial version (see Table 5.1), is implemented in
Java using Feature-Oriented programming [ABKS13a, BSR03], for FeatureHouse
composer [AKL13]. Products are derived from those core-assets in accordance with
a feature diagram (not included here). Both core-assets and products are not standing
still but evolve. And this introduces the challenge: synchronize the pace at which core-
assets and products are released, considering that those artifacts might well be governed
by different teams with distinct priorities. Figure 5.2 depicts this matter. core-assets
are arranged down the left-hand side(e.g. VODPlayer, ChooseMovie). Each asset
undergoes evolutionary change; its evolutionary trajectory extends to the right. The
bottom shows the products in the SPL. Each product goes through various phases, such
as alpha release, beta release, and General Available (GA) release. Across the top are
several baselines. A baseline contains a set of assets, each at a given version, that work
together and are used to build products. Besides re-use of core-assets, Figure 5.2 also
highlights possible sync paths (depicted as dotted lines): upgrades of ChooseMovie are
percolated to ProductA whereas a customization conducted for ProductA is promoted
as the core-asset AutomaticReplay. The question is how to facilitate this process using
existing VCSs. The appendix C provides the reader a brief on VCS and git basic

123

Chapter 5. Synchronizing core-assets and products

operations and popular branching models.

5.4 Proposals on VCSs for SPL development
VCSs are a cornerstone for distributed, collaborative development. SPLs promote
collaborative development through reuse. Traditionally, collaborative development
applies to different users working on the same piece of code. By contrast, SPLs set
two realms (i.e. domain engineering & application engineering), where collaboration
goes along the sync paths. The fact of being two separated realms makes it even more
important to track who made which changes, and when they were made. Provenance
of the contributions can turn key when, like in the SPL case, development might be
distributed among different business units with their own budgets and responsibilities
[Bos01].

VCSs are specifically designed to keep track of who did what. Broadly, VCSs
support “revisions”, i.e. a line of development (a.k.a baseline or trunk) with branches
off of this. Disparate efforts are reunited by merging branches. In addition, repositories
can be forked whereby a whole repository is cloned in a separated space. Unlike a
branch, a fork is independent from the original repository. If the original repository is
deleted, the fork remains. This space can be merged back through a pull request2.
The fork-&-pull model reduces the amount of friction for new contributors. This
makes this model popular among open source projects because it allows people to
work independently without upfront coordination. Notice that VCSs do not dictate
the file structure nor when to branch or merge. This is part of the branching
model. Approaches to branching models very much depend on the dependencies to
be preserved through the VCS.

Back to SPLs, approaches broadly distinguish two main ways to face SPL
development: clone&own (departing from existing products) and managed (departing
from reusable assets). Next paragraphs delve into VCS proposed solution for these two
scenarios3.

Cone&own approach Here, a new product is obtained through clone&own from
existing products. Branching model wise, there are three alternative models:

branch-per-product-customer [Sta04]: a main branch holds the code shared by all
products. Product variants come as branches off the main branch, one per
customer, where customer-specific modifications are performed.

branch-per-product-functionality [ABKS13b]: there is one main branch per
functionality that products may exhibit. Product variants are obtained by
merging functionality branches.

2https://help.github.com/articles/using-pull-requests/
3The reader might notice that some of the below mentioned works were already introduced in the

background Section 2.5.3.3. In this case, we provide a discussion with a focus on VCSs and underlaying
branching models.

124

Chapter 5. Synchronizing core-assets and products

repository-per-product approach, where there is a repository for each product being
developed. The difference with the aforementioned approaches is that each
product resides within a separate repository, instead of branches. Within each
product repository any branching model for single-systems can be used to
develop the product (refer to Appendix C). Thanks to distributed VCSs, if
desired, a fork&pull model can be leveraged to clone & propagate changes
between different product repositories [RKBC12].

As the authors themselves recognize, clone&own approach might be suitable as there
is no need for a complete upfront scoping process [Sta04]. However, it also introduces
overhead as it scales, since they encourage the development of product variants and
not reusable core-assets. Notice that in clone-based SPLs, propagation takes place at
the level of products in the absence of a “proper reuse”. Therefore, activities such
as propagating changes between product clones and creating new products based on
previous clones becomes difficult [DRB+13], as well as, repetitive tasks are conducted
(some tasks need to be performed on each cloned copy). In this context, other works
have addressed the issue of aiding synchronizing of clone&own products. Rubin et al.
[RKBC12] and Antkiewicz et al. [AJB+14] propose conceptual operations and discuss
VCS implications to manage the synchronization of clones. An industrial experience
on managing clone-based SPLs is later conducted by Rubin et al. [RCC13]. Authors
conclude that an efficient management of clones relies on not only improving the
maintenance of existing clones, but also refactoring clones into an SPL infrastructure.
From a technical perspective, McVoy [McV15] introduces new VCS operations suited
for BitKeeper, which enables opportunistic reuse and synchronization at component-
level.

Managed approach Here, a distinction is made between core-assets (thought for
reuse) and products (thought for use). From the perspective of VCS repository
structure, three approaches have been reported:

single repository. Here, core-assets and products are kept in the same repository.
Traceability between core-assets and derived products is achieved through
branching [GP06]. On the downside, branches hold both core-assets and
products. Sharing the same space might be a problem if these different kinds
of artifacts are handled by different teams along distinct life-cycles. Scalability
might also be an issue. Here, Anastasopoulos [Ana13] presents a tool on top
of Subversion, which keeps SPL artifacts identified (where in the VCS are
core-assets and products located). Engineers can perform activities related to
evolution control including propagation of changes. Update propagation is
performed by AE over a single core-asset instance. Feedback propagation is
conducted by DE over a single core-asset. The feedback gets first all the changes
performed to that core-asset by all the products, and merged them into the core-
asset. This seems inconvenient since it assumes that all the instances have
changes that need to be promoted to DE. We (latter) argue a more cherry-
picking approach for feedbacking changes. Anastasopulos does not discuss
implications for underlaying branching model. Calefato et al. [CNLL15]

125

Chapter 5. Synchronizing core-assets and products

propose a branching model for git (adapts git-flow [Gitb]), which is best suited
for SPLs at a “platform” reuse level (i.e. where reuse is only for assets common
to all products). For core-asset development there is only one branch: the release
branch of core-assets (master) which holds reusable components for products.
For the development of each product: (1) there is a product release branch, which
branches from the core-asset release branch, (2) an integration branch which
branches from the product’s release branch, and merges back to it for releasing
new product versions, and (3) feature branches for parallel development of
product specifics which branch from products’ integration branch and merges
back to it when finished. We found some limitations with this branching model.
First, a single branch for core-asset development seems to fall short. At least an
additional core-asset integration branch should exist to aid in core-assets parallel
development. Second, updates from core-asset to products, come as a merge
from core-asset release branch into a product’s’ release branch. This seems
risky since product specific changes might conflict with a new core-asset update,
which would yield an unstable state of the product into the release branch.
We argue that these updates should first be integrated into products’ integration
branch, and then, if correct, merged to products’ release branch. Feedbacks from
products’ release branches to core-assets release branch follows a similar risk.
This branching model might also face some limitations upon a high number of
products being developed.

detached repositories. Here, core-assets and products are kept into independent
repositories. There is one core-asset repository that serves for core-
asset development and multiple product repositories that serve for product
development [SSRS16, HSB]. Hellebrand et al. [HSB] present two branching
models in git, by adapting git-flow [Gitb] (refer to the appendix C Section
C.3 for more details on git-flow). The core-asset repository branching model
extends git-flow with multiple release branches for core-assets releases (e.g.
releases for versions 1.x, 2.x) to support the maintenance of old released product
versions. The product repository branching model extends git-flow with branches
though for synching with the core-asset repository, i.e. a generation branch. A
product is derived from a core-asset repository release branch (e.g. baseline
1.0) by generation. This implies that the product repository, no longer holds
the core-asset instances, but it holds the post-compiled (transformed) source
files. Therefore, only the resulting generated product is committed to product
repositories’ generation branch. As the repositories are detached, another
tool rather than the VCS, needs to store the relationship between the pairs
core-asset&product repositories. This is managed by the variant management
tool, which is in charge on creating product repositories whenever a new
product is created from the variant management tool, as well as, enacting the
update propagations[SSRS16]. Authors approach does not support feedback
propagation. Since, product repositories hold only the generated product, and
hence, the product-specific changes modify the generated product (not the
core-asset instances), a VCS merge from any product repository branch to the
core-assets makes no sense, since the core-assets have variation points and

126

Chapter 5. Synchronizing core-assets and products

products have already resolved them. This, could have been solved if product
repositories hold the core-assets instances, instead of the generated products. In
this sense, product engineers could make changes to the core-assets instead to the
product itself and feedback them to the core-asset repository. Product generation
(transformation or composition) can be made after the product-specific changes
were done. This is the approach we follow.

linked core-asset and product repositories. Here, core-assets and products are kept
in different repositories, although they are tied-up through a derivation trace so
that subsequent syncs can be conducted by means of branching and merging
operations[TMN08]. Unlike Anastasopoulos, Thao et al. [TMN08] do not
consider reusing existing VCSs. Instead, they build a home-made one, which
is capable of establishing dependencies between products and core-assets. They
support built in product derivation, where the product engineers select the
set of features they want to reuse, and a new product repository is created.
Unlike Hellebrand and Schulze et al., the product repository does not hold
the composed product, but just the components belonging to the features that
product engineers have selected. Whenever a product is derived, a new branch
is automatically created in the core-asset repository. This branch references
the product repository main branch, and serves for change propagation (for
both parties). If DE changes something on it, this is an update propagation.
Hence, update propagation looks like permitting DE to override assets in Product
repositories, which seems risky. Scalability might be an issue as well.

Our work follows Anastasopoulos in so far as taping into existing VCS tools (in our
case, git and GitHub). Like Thao et al., we also advocate for two types of repositories
that are linked: CoreAsset repositories and Product repositories. Unlike Hellebrand et
al. we advocate for a product repository that maintains the trace back to the CoreAsset
repository it was derived from. Product repositories, will instantiate the core-asset
release they were derived from, then, filter those not necessary for constructing the
product, and only after making the pertinent product-specific changes, the product
can be generated/built (preprocessed or composed). This approach would enable both
update and feedback operations.

Figure 5.2 depicts our sample SPL arranged along this repository architecture. Each
repository is a separated installation, hence, managed by its own team. However,
the SPL’s repositories are not isolated but conform an ecosystem tightened together
through sync paths (depicted through dotted lines in Figure 5.2). Unfortunately, inter-
repository operations are so far limited to fork & pull model: a fork clones a whole
repository into a brand new one, which evolves independently until it might be merged
back through a pull. This fits well for open source software projects but fall shorts
for SPLs. Here, reuse is not based on whole cloning but derivation: cherry-picking
core-asset and next, customization. On this premise, we introduce the derive & update
& feedback model which rests in the namesake operations. Unlike fork, derivation
does not involve a whole clone but a cherry-picking selection of core-assets. In the
same vein, and in contrast with GitHub’s pull, update & feedback govern a piecemeal
synchronization between Product repositories and its source CoreAsset repository.
Next section delves into the branching models that we propose.

127

Chapter 5. Synchronizing core-assets and products

Figure 5.3: A closer look into the scenario described in Figure 5.2: branching impact
due to (1) Product Fork, (2) Update Propagation and (3) Feedback Propagation. CA
stands for the core-assets of the sample SPL.

5.5 Proposed branching models
VCSs support “revisions”, i.e. a line of development (the baseline or trunk) with
branches off of this, forming a directed tree, visualized as one or more parallel lines
of development (the "mainlines" of the branches) branching off a baseline (see Figure
5.3). The question is how to mimic the modus operandi of SPL development in terms of
“parallel lines of development”, i.e. setting the branching model. Since core-assets and
products are not born equal (i.e. products are derived from core-assets while core-assets
might be obtained from scratch or extractively from existing products), we believe they
can be better served by distinct branching models.

128

Chapter 5. Synchronizing core-assets and products

5.5.1 A Branching Model For Core-assets
For single-product development, a popular approach is branch-per-purpose [WS02a].
This strategy recommends different branch types per task type. A popular git branching
model, git-flow, includes the following branching types [Gitb]: master, develop,
digression and release. The usage of git-flow in industrial companies has been reported
in [KDB+15a] . For understanding sake, we stick to this terminology (see Figure 5.3
top):

• Master branch is a long-lived branch aimed at core-assets release management.
Each commit under master, holds a stable release of core-assets that work
together (e.g. Baseline 1.0 holds core-assets CA1 to CA10). This branch,
becomes essential for application engineers, and it is the cornerstone for product
derivation4.

• Develop branch is a long-lived branch which serves as the mainline of
development for core-assets.

• Digression branches are short-lived branches that serve to assist on parallel
development of core-assets, to create new core-assets or adapt existing ones (e.g.,
updateCA2 branch enhances CA2 core-asset).

• Release branches are short-lived branches used to prepare the next release for the
core-asset baseline, before merging it to master (e.g., release2.0 branch).

This approach accounts for a parallel and consistent development of core-assets under a
single join development (by means of Develop and Digression branches). In addition,
products can rely on a consistent release of core-assets (baseline release in Master
branch). This model embraces a release strategy whereby all core-assets are made
available all together on regular intervals. This may introduce a latency for application
engineers. That is, even if a core-asset implementation is ready for production, it cannot
be released until other core-assets are also ready to be in the next baseline release. This
latency might lead product engineers to “clone and own” the best-fitting asset and adapt
it to their needs [Mcg03]. Finding the right release pace is up to each SPL organization.

5.5.2 A Branching Model For Product Repositories
Unlike core-assets, products are derived from other artifacts, i.e. the core-assets. This
states a dependency between products and core-assets. Better said, between a product
and the core-assets used for its derivation. Notice, this dependency is not with all core-
assets but just with those assets that participate in the initial product configuration.
This dependency might involve for product engineers, first, to be aware of upgrades for
the core-assets at hand (update propagation), and second, being able to communicate
product customization which might be amenable to be turned into SPL’s core-asset
(feedback propagation). This subsection introduces a branching model conceived for
facilitating these propagations. By “facilitating” we mean to be able to express those

4That the core-asset code is fully stable might be less an issue if development speed counts. Releasing
not-fully tested features might make sense in these scenarios which we have not considered here.

129

Chapter 5. Synchronizing core-assets and products

propagations in terms of the basic VCS constructs (i.e. branch, merge, fork, pull). The
final aim is to spot mismatches risen during synchronization à la VCS, i.e. highlighting
diff -erence between distinct versions of the same artifact. In this way, SPL engineers
handle sync in a very similar way to what they are used to for single products.

Our branching model for Product repositories rests on seven branch types to
account for three purposes: development, delivery and propagation. For illustration
purposes, we resort to our running example (see Figure 5.2) but now looking inside the
repositories (see Figure 5.3).

For development: BigBang, Develop & Custom branches. BigBang is a long-
lived branch, which keeps localized the baseline from which the product was derived.
For instance, if a product wants to be derived from the CoreAsset Baseline 1.0 , a
BigBang branch would point to a commit exactly the same as baseline 1.0 (same
commit object, although in different repositories). This branch remains untouched,
during the repository life time. This is so, to enable feedback propagation process (see
later). On the other hand, Develop and Custom branches embrace parallel development
for product assets. Develop branch is a long-lived branch which holds the mainline
of product asset development. Custom branches, obtained off Develop branches, are
used for product specifics: core-assets can be adapted while brand new assets can
be introduced. When a customization is considered finished, Custom branches are
merged back into Develop branch . Although good practices would advocate to delete
Custom branches after merging them back to the mainline, our model maintains these
branches alive for feedback purposes. Figure 5.3 (bottom) shows the case where a
Product repository is derived from Baseline1.0, instantiating core-assets CA1 to CA7.
Additionally, CA1 is customized to CA1’, hence giving rise to a Custom branch.

For delivery: Release & Master branches. Upon a consistent set of product assets
under a Develop branch, Release branches are created for obtaining an executable
product with the help of assembly tools. When this product is ready for GA Release,
it would be merged to the Master branch and tagged accordingly. Master is a long-
lived branch containing product releases ready to be delivered to customers. Figure
5.3, shows the case where productA alpha release consists of the initially derived core-
assets plus CA1’ customization. The beta release includes an additional enhancement
on CA2’. Finally, the GA Release also comprises a customization for CA4’.

For propagation: Update & FeedBack branches. Parallel development involves
resolving eventual conflicts when acting upon the same artifact. VCSs offer diff tools
that highlight differences in code lines to easily spot mismatches. For these tools to
be effective, the artifacts to be compared should correspond to versions of the same
artifact. However, when an artifact is composed with other artifacts, the result can
no longer be qualified as “a version” of the composing artifacts. Hence, applying diff
between a core-asset and a product would be of limited use since the code of the core-
asset might be tangled and polluted with code that is not related with the core-asset
as such. This calls for Product repositories to keep an independent line of branching
with untouched core-assets. This is the goal of Update branches: holding the product’s
core-assets separated from the product mainline (i.e. develop branch). Upon a new
baseline release in the CoreAsset repository, product engineers might request an update
propagation and easily spot differences using diff (see later).

Back to our example in Figure 5.3, domain engineers have been busy yielding

130

Chapter 5. Synchronizing core-assets and products

Baseline 2.0 where CA2 is leveraged to automatically play a movie when the user
selects it from a movie list (CA8 and CA9 have also been adapted). At time t3,
application engineers conduct an UpdatePropagation upon Baseline 2.0. Should this
upper version be integrated? The decision is twofold. First, product engineers diff -
erentiate what’s new w.r.t. to previous version (i.e. diff(CA2, CA2’)). If satisfied, next
they assess the impact of the new version of CA2 with respect to the product as such.
This implies a merge with a Develop branch (see Figure 5.3). This accounts for a diff -
driven stepwise decision that might help spotting potential mismatches between how
CA2 evolve (in the domain realm) and how CA2 was customized (in the product realm).

Finally, Feedback branches support promotion of meaningful product
customizations into core-assets. By meaningful is meant a customization that
makes sense as a unit. This might imply collecting code scattered throughout several
Custom branches. The feedback process is twofold (see Figure 5.3). First, a FeedBack
branch is created to diff -erentiate the customization code from the code in the original
core-assets. To isolate the customization code (i.e. avoiding mixing it up with other
functionality), we cherry-pick those changes from the Custom branch at hand 5.
Back to the example, CA4 was customized to automatically re-play a movie after
finished. At time t4, application engineers conduct feedback propagation. First,
they need to pinpoint the Custom branches at hand (e.g., customCA4 branch). Next,
changes of customCA4, are cherry-picked and merged into a FeedBack branch.
Hence, feedbackCA4 branch only contains those changes for customCA4 (i.e., CA4’).
When domain engineers handle this feedback request, a diff(develop:coreAssets,
feedback:feedbackCA4) will highlight only changes for the new functionality (i.e.,
CA4). Domain engineers can now decide to stick with CA4 or rather, open a new
core-asset (i.e., CA11) where to generalize the product customization to the whole
SPL.

5.6 SPL sync operations as first-
class constructs in VCSs

Previous section introduces branching models for ProductFork, UpdatePropagation
and FeedbackPropagation to be expressed in terms of VCS primitive operations (i.e.
fork, branch, merge). For instance, a productFork involves both a fork and a branch: a
fork upon the CoreAsset repository which creates a BigBang branch; next, BigBang
is branched into a Develop branch where only the required core artifacts are kept.
Likewise, UpdatePropagation and FeedbackPropagation can also be expressed in
terms of these VCS primitives. However, this introduces a gap between how operations
are conceived, and how operations are realized, with the consequent costs associated.
Our aim is to leverage existing VCSs with these operations as first-class constructs.
To this end, we need first to precisely indicate their operational semantics, and next,
to integrate them into a VCS tool. As a proof-of-concept, we outline a GitHub

5VCS’s cherry-pick operation takes the changes introduced in a commit, and tries to reapply it on the
current branch. This is useful when there is a number of commits on a branch, and only one of them is to be
integrated into another branch.

131

Chapter 5. Synchronizing core-assets and products

Algorithm 5.1 Product Fork

1 ProductFork(UserAccount:userAccount,Repository:coreRepo,String
[]:configuration):Repository

2 Repository productRepo=Fork(userAccount,coreRepo)
3 productRepo.name=split(coreRepo.name,’-’)[0]+’-Product-’+

currentDate()
4 productRepo.description=’A product derived from ’+coreRepo.name
5 for each branch in productRepo.branches do
6 if (branch.name<>’master:baseline’)
7 DeleteBranchByName(userAccount,productRepo,branch.

name)
8 Branch master=GetBranchByName(userAccount,productRepo,’master.

baseline’)
9 Branch bigBang=new Branch(userAccount, productRepo, master,’

bigBang:kickOff’)
10 Branch develop= new Branch(userAccount,productRepo,bigBang,’

develop:productAssets’)
11 SetDefaultBranch(userAccount,productRepo, develop)
12 DeleteBranchByName(userAccount,productRepo,’master:baseline’)
13 Folder CRepBaseline=develop.commit.folders
14 for each coreAsset in CRepBaseline do
15 if (coreAsset.name not in configuration)
16 DeleteFolder(userAccount,productRepo,develop,coreAsset)
17 Branch update=new Branch(userAccount,productRepo, develop,’

update:updates’)
18 File productConfig=new File(userAccount, productRepo,’product.

config’,bigBang.commit.sha)
19 Commit(userAccount,productRepo,update,productConfig,’Create

config file’)

implementation.

5.6.1 Product Fork
ProductFork takes a CoreRepository as input, and delivers a ProductRepository, along
a given configuration. Namely:

PRODUCTFORK (USERACCOUNT:USERACCOUNT,
REPOSITORY:COREREPO, STRING[]: CONFIGURATION)::
REPOSITORY:PRODUCTREPO

where USERACCOUNT stands for the application engineer’s GitHub user account;
COREREPO stands for the CoreAssetRepository from which a Product repository will
be derived; and CONFIGURATION holds a list of core-asset identifiers. PRODUCTREPO
stands for the newly initialized Product repository. Figure 5.4 describes the new
Product repository. Algorithm 5.1 provides the details:

132

Chapter 5. Synchronizing core-assets and products

Figure 5.4: Product Fork involves 3 branches & 3 commits.

1. Perform a FORK operation over COREREPO (line 2). Now, USERACCOUNT
owns a copy of COREREPO repository. At this point, PRODUCTREPO and
COREREPO are identical (same branches, commits, tags, repository details, etc),
except for PRODUCTREPO holds a fork link to COREREPO.

2. Rename PRODUCTREPO with pattern <SPL_name> <product><date>, and
change its description to state that PRODUCTREPO is actually a product derived
from a core repository (lines 3-4).

3. Adapt PRODUCTREPO to the product branching model introduced in section
5.5.2 (lines 5-19), namely:

(a) First, all branches that PRODUCTREPO holds, are deleted (lines 5-7),
except for master : baseline branch, which in ProductRepository turns
into bigBang: kickOff. As there is no way to rename a branch in git,
the way to simulate this operation is to, first create a new branch for
bigBang:kickOff (lines 8-9), and then delete master:baseline (line12).
BigBang:kickOff keeps now all core-assets from COREREPO baseline
(i.e, CREPBASELINE). DELETEBRANCHBYNAME operation performs an
HTTP request to delete branches of GitHub repositories.

(b) Second, develop:productAssets branch is created off bigBang:kickOff
(line 10). GETBRANCHBYNAME operation is accessed the GitHub
API to obtain a branch by its name from a given repository.
SETDEFAULTBRANCH operation performs a HTTP request to set as default
branch of a GitHub repository.

(c) Third, those core-assets not referred in CONFIGURATION are deleted (lines
13-16). DELETEFOLDER operation performs HTTP requests to delete all
files from a given folder. At this point develop: productAssets branch
only holds the core-assets needed to exhibit by the product (Figure 5.4,
PRODUCTASSETS).

(d) Finally, update:updates branch is created off develop:productAssets (line
17), and initialized with the Product.config file. This file holds

133

Chapter 5. Synchronizing core-assets and products

A

E

D

C

B

Figure 5.5: Leveraging GitHub with ProductFork

the sha6 identifier of the COREREPO’S baseline version from which
PRODUCTREPO is derived (line 18-19). At this point, update:updates holds
original reusable core-assets versions (Figure 5.4, ORIGINALCORESV1).

5.6.1.1 Leveraging GitHub with ProductFork

Product derivation is performed upon CoreAsset repositories. Figure 5.5 depicts
VODPlayer-CoreAssets repository, which is available at the following link https:
//github.com/letimome/VODPlayer-CoreAssets . However, this will

6“sha” is GitHub name for unique hash identifier for an artifact, let this be a folder, a file or a commit
object.

134

Chapter 5. Synchronizing core-assets and products

only recover a plain GitHub HTML page. Enhancing GitHub pages with SPL-specific
VCS operations is achieved through the GitLine browser extension. GitLine makes
on-the-fly changes to GitHub pages to account for ProductFork, UpdatePropagation
and FeedBackPropagation. Using Web Augmentation techniques [DA15], GitLine
adds buttons to enact those operations, i.e. repositories are accessed through GitHub’s
APIs, and extra iFrames are popped-up, should additional interactions with the user be
needed. GitLine has been proven for Firefox 37.0, and its available for download at
http://onekin.github.io/GitLine/. Note that GitLine needs to be locally
installed in each browser from where the SPL repository is to be accessed. This
subsection focuses on ProductFork. Drop-like icons are used to highlight certain facts.
Double-lined drops denote GitLine layered content.

Figure 5.5 depicts VODPlayer-PL CoreAsset repository . Drop A points to
the owner and repository name: letimome and VODPlayer-CoreAssets, respectively.
Drop B points to the current branch. Drop C points to the core-assets. On top
of this rendering, GitLine layers additional content: a new button (drop D). On
clicking, a panel shows up which delivers an IFrame which holds the result of
invoking a web-accessible feature configurator: S.P.L.O.T [S.P] (drop E). The panel
is automatically generated from the VODPlayer feature model which, in the current
implementation, needs to be previously loaded at S.P.L.O.T. Users are now guided
by S.P.L.O.T in setting the configuration (in the screenshot core-assets CA1 to CA7
are selected). Once the configuration is over, the ProductFork algorithm resorts
to GitHub’s APIs to automatically create a GitHub repository. Its name follows
the pattern: <SPL_name><product><date> (e.g. VODPlayer-Product-05ABR2015).
This repository is already initialized with a BigBang branch, Update branch and
a Develop branch (Figure 5.4). The latter holds the selected core-assets. Now,
application engineers are ready to start.

5.6.2 Update Propagation
UpdatePropagation takes a Product repository as input, and creates a new version for
the Update branch. Namely:

UPDATEPROPAGATION(USERACCOUNT: USERACCOUNT,
REPOSITORY: PRODUCTREPO, REPOSITORY: COREREPO) ::
PULLREQUEST

where USERACCOUNT stands for the application engineer’s GitHub user account;
PRODUCTREPO denotes the hosting ProductRepository; and COREREPO corresponds
to the CoreAsset repository from which PRODUCTREPO was derived. The precondition
to trigger the operation is: there is a new baseline version in COREREPO whose
changes have not been yet propagated to PRODUCTREPO. This is assessed by reading
PRODUCTREPO’S product.config file under update:updates branch, which holds the
sha identifier to the COREREPO baseline to which PRODUCTREPO is currently
synchronized. If the sha at product.config differs from the one at COREREPO’S
master:baseline, it means that PRODUCTREPO is unsynchronized with COREREPO,
and thus, update propagation can be enacted. Figure 5.6 describes Product repository

135

Chapter 5. Synchronizing core-assets and products

Algorithm 5.2 Update propagation algorithm.

1 UpdatePropagation(UserAccount:userAccount,Repository:
productRepo,Repository:coreRepo):PullRequest

2 Branch update=GetBranchByName(userAccount,productRepo,’update:
updates’)

3 Branch coreBaseline=GetBranchByName(userAccount,coreRepo,’
master:baseline’)

4 Folder originalCoresV1=update.commit.folders
5 Folder originalCoresV2= null
6 for each coreAsset in originalCoresV1 do{
7 originalCoresV2= GetFolderByName(userAccount,coreRepo,

coreBaseline,coreAsset.name)
8 if (coreAsset.sha<>originalCoresV2.sha)
9 CommitFolder(userAccount,productRepo,update,originalCoresV2

,’new update for core asset:’+originalCoresV2.name)
10 }
11 File productConfig=GetFileByName(userAccount,productRepo,update

,"product.config")
12 productConfig.content=coreBaseline.commit.sha
13 Commit(userAccount,productRepo,update,productConfig,’product

synched to baseline’+coreBaseline.commit.sha)
14 Branch develop=GetBranchByName(userAccount,productRepo,’develop

:productAssets’)
15 CreatePullRequest(userAccount,productRepo,productRepo,develop,

update,update.commit.comment)

branching structure before and after the operation. Algorithm 5.2 describes the
operational semantics:

1. Get the latest baseline version available from COREREPO, and bring to
PRODUCTREPO’S update branch the newest versions of those core-assets that
PRODUCTREPO is reusing (lines 2-10).

(a) Specifically, for all those core-assets versions PRODUCTREPO is currently
reusing (i.e, ORIGINALCORES -V1), check if there is a newer reusable
core-asset version at COREREPO (lines 6-8).

(b) If there is a newer version, get it and commit the new version of the
asset (i.e., ORIGINALCORES-V2) to update:updates branch (line 9). As
GitHub web site only allows to commit a single file at a time, we developed
COMMITFOLDER HTTP operation which given a folder, all files contained
inside are committed iteratively. At this point, PRODUCTREPO holds
new versions of reusable core-assets under update:updates branch (i.e.,
ORIGINALCORESV2).

2. Update product.config file to indicate that PRODUCTREPO is now in sync
with PRODUCTREPO (lines 11-13). First the file is obtained by means of

136

Chapter 5. Synchronizing core-assets and products

Figure 5.6: Update Propagation involves 1 commit for each core-asset updated core-
asset & 1 pull_request

GETFILEBYNAME operation, which is a HTTP request to get a file from
a GitHub repository (line 11). Afterwards, file content is updated with the
sha identifier of COREREPO last baseline version (line 12), and committed to
update:updates branch (line 13).

3. Finally, a pull request is enacted to notify application engineers about the new
changes pulled from the CoreAsset repository (lines 14-15). The pull request
requests to merge update: updates branch into develop: productAssets branch.
At this point application engineers can reason about the impact of this updates
have into the product assets by popping up the diff panel (see later).

5.6.2.1 Leveraging GitHub with UpdatePropagation

Update propagation is performed by application engineers upon a Product repository.
Figure 5.7 depicts VODPlayer-Product-05ABR2015, i.e. the Product repository
obtained in the previous sub-section, available at https://github.com/
lemome88/VODPlayer-Product-05ABR2015. Let’s assume that core-assets
evolve until Baseline 2.0 (time frame t1-t3) where a new version of CA2 (i.e.
ChooseMovie) is available. During the same timeframe, product engineers customized
CA1 into CA1’. At this time, application engineers perform updatePropagation. Figure
5.7(left) depicts this scenario. Drop B points to the current branch. Drop A points to the
Update_Propagation button. On clicking, a pop-up displays the summary of changes
to be pulled (drop C): a list of rows with the name of the updated core-asset (e.g.
ChooseMovie), and a link to the Core-Asset-repository’s commits describing those
changes (“New commits”). Following these links brings product engineers to the Core
Asset realm by opening a new browser tab, where the ChooseMovie asset evolution is
shown in a diff panel (not shown in the Figure), so that product engineers can make an
informed decision about whether to pull these changes back to the Product repository.
If so decided, developers go back to the Product repository (Figure 5.7(left), and click
the Yes button (drop D). The ChooseMovie newer version is pushed to the Update
branch (e.g. update:updates). Application engineers are notified through a new pull
request (drop E) to merge update:updates into develop:productAssets. Developers can

137

Chapter 5. Synchronizing core-assets and products

Algorithm 5.3 Feedback propagation algorithm.

1 FeedbackPropagation(UserAccount:userAccount,Repository:coreRepo
,Repository:productRepo,Branch[]: customizations,String:
feedbackBranchName)

2 Branch bigBang=GetBranchByName(userAccount,productRepo,"bigBang
:kickOff")

3 Branch newFeedback=new Branch(userAccount,productRepo,bigBang,
feedbackBranchName)

4 for each custom in customizations do {
5 Folder customizedAssets=GetChangesFromBranch(userAccount,

productRepo,custom)
6 for each custAsset in customizedAssets do
7 CommitFolder(userAccount,productRepo,newFeedback,custAsset,

’customized asset:’+custAsset.name)
8 }
9 Branch develop=GetBranchByName(userAccount,coreRepo,’develop:

coreAssets’)
10 CreatePullRequest(userAccount,coreRepo,productRepo,develop,

newFeedback,newFeedback.commit.comment)

now open the pull request to retrieve the changes (drop F). A new page shows up
with the diff -erences: diff (develop: productAssets, update:updates). If changes are
accepted, application engineers merge the branches. Otherwise, the pull request is
closed, and the Product repository sticks with the old asset versions.

5.6.3 Feedback Propagation
FeedBackPropagation takes a Product repository as input, and creates a new version
for the FeedBack branch. Namely:

FEEDBACKPROPAGATION(USERACCOUNT: USERACCOUNT,
REPOSITORY: COREREPO, REPOSITORY: PRODUCTREPO,
BRANCH: KICKOFF, BRANCH[]: CUSTOMIZATIONS, STRING:
FEEDBACKBRANCHNAME):: PULLREQUEST

where USERACCOUNT stands for the application engineer’s GitHub user account;
COREREPO stands for the CoreAsset repository; CUSTOMIZATIONS correspond to the
set of branches that keep the product specific changes that want to be propagated back
to the CoreAsset repository; finally, FEEDBACKBRANCHNAME refers to the name for
the feedback branch to be created. Figure 5.8 describes Product repository branching
structure before and after the operation. Algorithm 5.3 provides the details:

1. Create a FeedBack branch , labeled FEEDBACKBRANCHNAME (i.e.,
NEWFEEDBACK), off bigBang:kickOff (lines 2-3).

2. Build the meaningful customization based on existing CUSTOMIZATIONS
branches (lines 4-8). This requires, for each custom branch in CUSTOMIZATIONS

138

Chapter 5. Synchronizing core-assets and products

E

A

C

D

F

B

Figure 5.7: Leveraging GitHub with UpdatePropagation: enacting (top) and outcome
(bottom).

139

Chapter 5. Synchronizing core-assets and products

Figure 5.8: Feedback Propagation involves 1 branch & 1 commit for each Custom
branch involved & 1 pull_request

(Figure 5.8, C1 AND C3), to cherry-pick the changes that each of the custom
branch introduces (i.e., R1,R2 for C1) and to commit them into NEWFEEDBACK
branch (i.e., R5). As GitHub does not provide cherry picking operation, we
needed to develop it for GitHub repositories.

(a) This, requires first to identify the assets that a given branch (e.g, custom
branch) has changed. GETCHANGESFROMBRANCH is a HTTP operation
which returns all the artifacts that a given branch has changed, arranged in
a tree structure.

(b) Then, all the identified assets are committed into NEWFEEDBACK branch.

3. When all CUSTOMIZATIONS have been merged into NEW FEEDBACK branch,
a pull request is created in COREREPO, requesting to merge PRODUCTREPO’S
NEWFEEDBACK branch into COREREPO develop branch (lines 9-10).

5.6.3.1 Leveraging GitHub with FeedBackPropagation

FeedBack propagation is performed over a Product repository. Figure 5.9 (left)
depicts VODPlayer-Product-05ABR2015 repository at time t3: a custom branch (i.e.,
customCA4) was created for CA4 (i.e. PlayMovie). Meanwhile, VODPlayer-CoreAsset
repository also committed some changes. At this point, application engineers want to
promote changes done in customCA4 (i.e. new version for CA4). Figure 5.9(left)
depicts this scenario. Drop B points to the current branch. Drop A points to the new
FeedBack_Propagation button. On clicking, a pop-up lists all Custom branches that
the Product repository holds (drop C). Users can now select the desired customization
(e.g. customCA4 branch), and press the Yes button (drop D). This triggers the feedback
propagation algorithm. Behind the scenes, a new FeedBack branch is created (i.e,
feedbackCA4), and the CoreAsset repository receives a pull request coming from the
Product repository (drop E in Figure 5.9(right)). When this request is opened, domain

140

Chapter 5. Synchronizing core-assets and products

C

D

A

B

E

F

Figure 5.9: Leveraging GitHub with FeedBackPropagation: enacting (top) and
outcome (bottom).

141

Chapter 5. Synchronizing core-assets and products

engineers are invited to merge the newly created VODPlayer-Product’s FeedBack
branch (i.e., feedback:customCA4) into VODPlayer-CoreAssets’ Develop branch (i.e.,
develop: coreAssets). Drop F points to the diff view of the changes proposed by this
pull request. At this point, domain engineers should decide whether the customization
is useful to the whole product line. If so, domain engineers would need to refactor
the customized core-assets. This might require to create a new Digression branch (e.g.
newCA11 branch in Figure 5.3).

5.7 Conclusion
This Chapter considers a SPL scenario where core-assets and products evolve along
different life-cycles but get synchronized through propagation events. However,
synchronization is achieved not between artifacts but artifact versions. This requires
propagations to act upon the right version of artifacts. Specially, 3-way merges are
required in order to not override changes done by the other party. We introduced
a branching model that permits to capture sync paths in terms of VCS standard
operations. Next, so-described processes are delivered as first-class constructs on top
of an existing VCS, i.e. Git/GitHub. This permits reducing “the accidental complexity”
that goes with supporting sync paths while freeing up developers for focusing on
“the essential complexity”, i.e. attuning and refactoring code coming from different
developers. Tested for a FOP composer, the approach is valid as long as dedicated core-
assets for dedicated functionalities are involved. Usability wise, the enhanced GitHub
(i.e. the one augmented with GitLine) certainly outperforms the raw GitHub, if only as
for reducing the number of clicks. GitLine is being used for two SPLs. Our hope is that
by delivering GitLine to the community, sync-path good practices emerge. This work
is an attempt to make these practices explicit and available. Future work includes to
extend GitLine with composition options, facing scalability issues (i.e. SPL with large
number of features and products), and evaluating GitLine’s branching models and sync
operations in industry. This would require to find a company where development efforts
are carried out in both DE and AE. Our intuition is that SPLs at different levels of reuse
might very well require different branching models. In a similar vein, different sizes
of SPLs, as well as, differences in the business organization demand differences on
the repository structures. For instance, for a big SPL it might be convenient to have a
repository per reusable component. Nevertheless, in such a case, branching models are
also necessary. But which one?. To the best of our knowledge no discussion is given
on this issue. We aim at investigating this concern further.

142

Chapter 6

Conclusions

6.1 Overview
Following the so called grow-and-prune model [FV03] SPLs can be incrementally
evolved by letting products grow and later prune product functionalities deemed useful
by refactoring and merging. In this context, this Thesis investigates how current VCSs
can be leveraged to support these practices. Specifically, we focus on the “prune”
stage where Domain Engineers need to recap and merge what Application Engineers
have been doing during the “grow” state. This includes capabilities for customization
analysis, code peering and change propagation. The rest of the chapter reviews the
main results of the Thesis, lists its limitations, as well as, new areas for future research
are suggested.

6.2 Results
The contribution of this Thesis has been presented in the four central chapters of this
manuscript. Next, we provide a summary for each:

• Chapter 2 revisits the concept of “evolution” in SPLs. This chapter
systematically maps the existing research on SPL evolution, along four main
facets. Well-covered areas, as well as, areas that require further research are
identified. Analyses of the results indicate that "Solution proposals" are the most
common type of contribution (31 %). However, few studies do address solutions
for co-evolving core-assets and products. This fact, together with the evidences
coming from the industry that attest the need for co-evolving core-assets and
products (specially during the first years of the SPL life-cycle), grounds the
importance of tackling co-evolution issues in SPLs. Specifically, few efforts have
been made in order to identify product customization, as well as, to synchronize
core-assets and products. This Thesis faces these gaps.

• Chapter 3 tackles customization analysis. We propose a data-warehouse
approach to track product customization efforts. More concretely, we conduct a

143

Chapter 6. Conclusions

survey among Danfoss drives engineers in order to identify the information needs
required for conducting customization analysis. Next, we resort to Dimensional
Modeling to tackle these information needs using the modified LOCs as facts.
Finally, we propose the use of Alluvial diagrams as a visualization mean.
This approach is fleshed out in CustomDIFF, a data-warehouse tool that uses
Git as the operational system, and pure::variants as the SPL framework.
Primary evaluations reveal promising results on CustomDIFF’s usefulness for
customization analysis.

• Chapter 4 tackles the merge problem that arises during the pruning (i.e. merging
and refactoring) of product customizations. We propose a new practice, i.e.
code peering practice, as a way to lessen the issue by promoting early reuse
across product teams right at product development. We discuss four design
principles that drive how code peering can be introduced for SPL development.
As a proof-of-concept we developed PeeringHub, a tool tool that supports code
peering through: (1) enhancing Github with a peering bar, (2) exercising a
DW solution similar to CustomDIFF’s, and (3) leveraging feature-based 3-way
comparison&merging. Primary evaluations reveal promising results with respect
to usability and ease of use.

• Chapter 5 addresses update and feedback propagations. Branching models
for SPL development are proposed, that permit to capture the sync paths in
terms of Version Control System (VCS) standard operations. On these grounds,
sync operations are delivered as first-class constructs. The approach is fleshed
out for GitHub. This permits reducing “the accidental complexity” that goes
with supporting sync paths while freeing up developers for focusing on “the
essential complexity”, i.e. attuning and refactoring code coming from different
developers. Tested for a FOP composer, the approach is valid as long as
dedicated core assets for dedicated functionalities are involved.

6.3 Publications
Part of the work presented in this thesis has been already presented and discussed in
distinct peer-reviewed forums. The publications that endorse this Thesis are listed
below.

Selected publications

• Leticia Montalvillo, Oscar Díaz: Requirement-driven evolution in
software product lines: A systematic mapping study. Journal of
Systems and Software (JSS). Volume 122, pages 110-143 (2016). DOI
https://doi.org/10.1016/j.jss.2016.08.053. Related to Chapter 2.

• Leticia Montalvillo, Oscar Díaz, Maider Azanza: Visualizing product
customization efforts for spotting SPL reuse opportunities. In the proceeding
of the International Workshop on Reverse Variability Engineering (REVE’17),

144

Chapter 6. Conclusions

full paper. Pages 73-80 (2017). DOI https://doi.org/10.1145/3109729.3109737.
Related to Chapter 3.

• Leticia Montalvillo, Oscar Díaz, Maider Azanza: CustomDIFF: A tool for
customization analysis in SPLs. In the proceedings of the International
Conference on Software Product Lines (SPLC’18), tool paper. Related to
Chapter 3.

• Leticia Montalvillo, Oscar Díaz and Thomas Fogdal: Reducing Coordination
Overhead in SPLs: Peering in on Peers. In the proceedings of the International
Conference on Software Product Lines (SPLC’18), full paper. Related to Chapter
4.

• Leticia Montalvillo, Oscar Díaz: Tuning GitHub for SPL development:
branching models & repository operations for product engineers.
In the proceeding of the International Conference on Software
Product Lines (SPLC’15), full paper. Pages 111-120 (2015). DOI
https://doi.org/10.1145/2791060.2791083. Related to Chapter 5.

Publications under review

• Oscar Díaz, Leticia Montalvillo, Maider Azanza: The role of customization
analysis for Software Product Line evolution. Sent to the Special Issue on
Software Product Line Engineering, in the Journal of Systems and Software
(JSS) on January 2018. Related to Chapter 3.

6.4 Research visits
During the development of the Thesis I often found myself wondering about how
a company that develops software with an SPL approach does “this” or “that”.
Experience reports that industries publish might shed some light... sometimes, but
they frequently did not provide me with the answers I was looking for. Most of the
time I ended up with even more questions... Therefore, I really wanted to meet real
practitioners, from real companies, developing real SPLs. The chance turned my prays
into reality. During the Software Product Line Conference (SPLC) held in Nashville
in 2015 I met Thomas Fogdal, a functional manager (a.k.a. my golden pass to a SPL-
developing company) working for Danfoss Drives. We soon found common interests
and thanks to that I had the pleasure to perform a research visit at Danfoss Drives for 4
months. I had the opportunity to help them during the first steps of transitioning their
SPL from their old ClearCase set-up, to a git-based set-up. During this period of time
I had the chance to learn how a real SPL looks like, and how real SPL engineers work
together to deliver software following an SPL approach. This insights were priceless,
and certainly gave my Thesis a ready start. After my stay, I was able to come back
again to Danfoss, in order to test out one of our new ideas (i.e. CustomDIFF) in their
setting.

145

Chapter 6. Conclusions

6.5 Assessment and future research
The goal of a Thesis is to try to resolve a problem. Nevertheless, in its development,
some issues might remain open. We next assess the limitations of each piece of work
presented in this Thesis and, we expose some of the topics that this Thesis leaves
open. Discussion is articulated as per piece of work. Bullets list the limitations/future
research opportunities.

Mapping the existing literature on SPL evolution

• Performing in-deep Systematic Literature Reviews (SLRs). SLRs are a form
of more focused literature reviews, with a narrower scope and more specific
research questions compared to SMSs. Our SMS was broad, as SMS are in
nature. We provide an overview of the existing literature on SPL evolution, and
we classified it along four main evolution activities, i.e. identify, analyze&plan,
implement and verify change. Researchers can tap into our SMSs to conduct
more in-deep SLRs. Potentially, a SLR for each evolution activity could be
conducted.

Aiding SPL engineers conduct customization analysis

• Evaluating CustomDIFF in different SPL set-ups. The evaluation we have
carried out at Danfoss Drives permitted us to assess the usefulness of
CustomDIFF’s with respect to analyzing product customization. However, we
would like to further evaluate CustomDIFF in different companies to measure its
effectiveness along two parameters: the SPL maturity (less mature SPLs might
face higher customization effort) and the SPL size (the larger the number of core
asset and products, the more compelling the need for abstract visualizations).

• Performing an experiment to evaluate CustomDIFF’s usefulness to plan the next
SPL release. The evaluation we have carried out at Danfoss Drives permitted
us to assess the usefulness of CustomDIFF’s to analyze product customization.
However, we did not evaluate whether CustomDIFF help engineers plan the next
SPL release. We would like to deploy it and evaluate its effectiveness to help
engineers plan the next SPL release.

• Integrating CustomDIFF with other sources of information. We have so far
focused on two dimensions of customization analysis: “the what” (i.e. what
features & core assets are customized) and “the where” (i.e. products that
performed such customization). It would be of interest to study how to
supplement Git data with data coming from other sources, to collect information
about products, customers and developers, and to see what other kind of analyses
this additional sources would allow for. After all, data-warehouses are thought
for integrating heterogenous data sources.

• Integrating CustomDIFF into a DevOps framework. CustomDIFF is an analysis
tool and hence, it does not preclude the customization practice as such, in the

146

Chapter 6. Conclusions

sense of determining how to proceed during the pruning phase. An interesting
development would be using CustomDIFF within a DevOps framework where
the customization effort (at its different abstraction levels) is tracked, and
reactions can be attached to a certain customization-effort threshold being
surpassed. Other scenarios include the use of CustomDIFF by product engineers
to gaze what other mates are customizing. For instance, a feature enhancement
introduced in a given product might be promptly and directly incorporated
into other products, without waiting for this enhancement to be promoted as a
core asset. This opens new scenarios for SPL evolution where “longitudinal
evolution” (between core assets and products) might well co-exist with “traversal
evolution” where products sharing same features might decide to incorporate
enhancements from other products, and later on, be jointly pruned.

Fostering product engineers on peering into other peers

• Performing an experiment to evaluate PeeringHub’s effectiveness to alleviate
the merge problem during the pruning of product customization. The evaluation
we carried out permitted us to assess the usefulness of PeeringHub to compare
product customizations between them. However, we did not evaluate it at an
industrial setting, nor we did evaluate whether code peering with PeeringHub
lessens the merge problem.

Supporting the synchronization of core-assets and products

• Evaluating GitLine’s branching models and sync operations. We have not yet
evaluated the suitability of the proposed branching models and operations for
synching core-assets and product repositories. The proposed branching models
are suited for SPLs at a maturity level in which both core-assets and products
require development. We did not have the chance to meet a company in such
SPL maturity level willing to evaluate our approach.

• Providing support for other variability realizations. The presented approach was
tested for a FOP composer (i.e. FeatureHouse). Nevertheless, the approach is
valid as long as dedicated core assets for dedicated functionalities are involved,
i.e. for composition-based approaches. The reader might have noticed how
in this Thesis different variability implementation techniques were considered.
Initially, we started this Thesis with the present piece of work, i.e. supporting
the synchronization of core-assets and products (Chapter 4). Note, that the order
in which the Thesis’ chapters are arranged differ from the chronological order
in which they were worked. At the moment we tackled this piece of work,
evidences in the SPL literature showed how composition-based approaches
outperformed annotation-based ones (at least for evolution related tasks). Hence,
we opted to ground the work in a composition-based setting. Later in time, we
conducted a SMS on SPL evolution, and this was the inflection point. The results
of the mapping showed that most of the SPL-developing companies are not

147

Chapter 6. Conclusions

using composition-based approaches, but annotation-based ones. Additionally,
only few pieces of work addressing composition-based approaches were actually
evaluated into an industrial context. That is the reason why our next research
efforts (presented in Chapter 3) focuses on annotation-based approaches. With
this paradigm switch we aimed to cause a significant impact on both the SPL
research and practice.

• Comparing the suitability of different branching models for SPL development.
The reader might have noticed, how in Chapter 3 and Chapter 4 we considered
different repository structures and branching models for SPL development.
While in Chapter 4 we advocated for a separated repository approach where
core-assets and products are developed in separate repositories, in Chapter 3 we
advocated for a single repository approach where both core-assets and product
are being developed in the same repository but in different branches. This
switch was due to the fact that the piece of work in Chapter 3 was motivated
by the Danfoss experience. Since at Danfoss development in AE is minor (a
two week development period), and no clear separation between DE and AE
exists, a single repository approach suits well. However, this fact does not
invalidate the repository model proposed in Chapter 4, since this can suit SPL
companies with a clear separation between DE & AE, and which have a higher
volume of development in AE. In fact, our intuition is that SPLs at different
levels of reuse might very well require different branching models. In a similar
vein, our intuition is that differences on the SPL size, as well as, differences in
the team’s organizational model of an SPL, demand different VCS repository
structures. For instance, for a big SPL in which teams are organized around
the SPL high-level components, it might be convenient to have a repository per
reusable component. No matter the repository structures, underlaying branching
models that drive development are also necessary. But which pair of branching
model and repository structure best fits the development of an SPLs? To the best
of our knowledge no discussion is given on this issue. We aim at investigating
this concern further.

6.6 Conclusion
This Thesis took a Design Science Research approach to identifying and solving
problems that raise when incrementally evolving SPLs from product developments.
In order to evaluate the state of-the-art on the area of SPL evolution, we systematically
mapped the existing literature on the topic. This, helped us to spot the fact that few
efforts were made to address the co-evolution of core-assets and products. This finding
kicked-off this Thesis, and provided three main issues to investigate: (1) how to help
SPL engineers analyze product customizations, (2) how to alleviate the merge problem
that raises during the pruning of product customization, and (3) how to help SPL
engineers synchronize core-assets and products. Following good practices for design
science research,

• the importance of the problems were argued,

148

Chapter 6. Conclusions

• root-cause analysis was conducted for these problems,

• three artefacts (i.e. CustomDIFF, PeeringHub, and GitLine) were developed
to lessen some of these causes (i.e. lack of dedicated visualization tools for
customization analysis, low abstraction level at which customization analysis is
conducted, large amount of conflicts between product customizations, VCSs not
tuned to SPL propagation operations, and lack of guidelines for branching and
merging).

• those artefacts were evaluated to the extent research prototypes can be evaluated
in an industrial SPL setting,

There is a considerable amount of future work. We invite both the product line research
and the industry to join our efforts and further improve the work started in this Thesis,
by refining the proposed approaches to support the grow-and-prune model, studying
their applicability to different SPL contexts and scenarios, and providing missing
solutions.

Although this chapter “physically” concludes this dissertation, the journey
continues.

149

Appendix A

Papers on SPL evolution
classified on facets

Ref. Title Year Evolution
activity

Evolution
sub-activity

Asset type Product-
derivation
appr.

Research
type

[KSS15] A process to support a
systematic change impact
analysis of variability and safety
in automotive functions

2015 Analyze
and plan

Change
impact

Products Model-
driven

Solution

[HVLG12]
A case study on the evolution of
a component-based product line

2012
Analyze
and plan

Change
impact

Variability
model, Composition Experience
SPL
architecture,
Code assets

[Sch06a] A cost-based approach to
software product line
management

2006 Analyze
and plan

Decision-
making

Variability
model

NA Conceptual

[BM14] A cover-based approach for
configuration repair

2014 Implement Change
synchronization

Variability
model

NA Validation

[MKR94] A holistic approach to product
marketability measurements-the
PMM approach

1994 Analyze
and plan

Decision-
making

Products NA Solution

[KB13] A mixed-method approach for
the empirical evaluation of the
issue-based variability modeling

2013 Analyze
and plan

Decision-
making

Variability
model

NA Evaluation

[TABG15]
A product line of theories for
reasoning about safe evolution
of product lines

2015
Implement

Built-with-
change

Variability
model,

Hybrid Solution
SPL
architecture,

Verify
Inconsistency
checking

150

Chapter A. Papers on SPL evolution classified on facets

Code assets
[GFFd14] A quantitative and qualitative

assessment of aspectual feature
modules for evolving software
product lines

2014 Implement Built-for-
change

Code assets Composition Evaluation

[Kla08] A requirements-based
taxonomy of software product
line evolution

2007 Identify Monitoring
the
environment

NA NA Conceptual

[BTG12]
A theory of software product
line refinement

2012
Implement Built-with-

change
Variability
model,

Hybrid Solution

Verify Inconsistency
checking

Code assets

[DLS05] Addressing domain evolution
challenges in software product
lines

2006 Implement Built-for-
change

SPL
architecture

Model-
driven

Solution

[DPG14]
Agile product-line architecting
in practice: A case study in
smart grids

2014
Analyze
and plan

Change
impact

SPL
architecture

Composition Evaluation

Implement Built-for-
change

[NRG08] Agile product line planning: A
collaborative approach and a
case study

2008 Analyze
and plan

Planning NA NA Validation

[CdOW11] An analysis of change
operations to achieve
consistency in model-driven
software product lines

2011 Implement Change
synchronization

Code assets Model-
driven

Conceptual

[SS08]
An analysis of effort variance in
software maintenance projects

2008
Analyze
and plan

Decision-
making

Code assets,
NA SolutionSPL

architecture,
Code asset

[TM14] An approach for decision
support on the uncertainty in
feature model evolution

2014 Analyze
and plan

Decision-
making

Variability
model

NA Solution

[GCC+03] An environment for managing
evolving product line
architectures

2003 Implement Built-with-
change

SPL
architecture

Composition Solution

[ddC+12]
An experimental study to
evaluate a SPL architecture
regression testing approach

2012 Verify
Inconsistency
checking

SPL
architecture,

Composition Evaluation

Code assets

[CDG+12]
Analysing the impact of feature
dependency implementation on
product line stability: An
exploratory study

2012
Implement Built-for-

change
Variability
model,

NA Evaluation

Code assets

151

Chapter A. Papers on SPL evolution classified on facets

[PYZ11] Analyzing evolution of
variability in a software product
line: From contexts and
requirements to features

2011 Analyze
and plan

Decision-
making

Variability
model

NA Conceptual

[IKH14] Application of requirements
prioritization decision rules in
software product line evolution

2014 Analyze
and plan

Planning NA Composition Experience

[VGH+12]

Applying a consistency
checking framework for
heterogeneous models and
artifacts in industrial product
lines

2012 Verify
Inconsistency
checking

Variability
model,

Model-
driven

Evaluation

Code assets

[DKO+97] Applying software product-line
architecture

1997 Implement Built-for-
change

SPL
architecture

NA Experience

[GF13]
Architectural evolution of
FamiWare using
cardinality-based feature
models

2013
Analyze
and plan

Decision-
making

Variability
model

NA Validation

Implement Change
synchronization

[MV09] Aspect-oriented change
realization based on
multi-paradigm design with
feature modeling

2012 Implement Built-with-
change

Code assets Composition Solution

[tBMP12] Assume-guarantee testing of
evolving software product line
architectures

2012 Verify Scalable
verification

SPL
architecture

Composition Solution

[DLHE14]
Automatic and incremental
product optimization for
software product lines

2014 Verify
Inconsistency
checking

Variability
model,

Composition Validation

Code assets
[RRSW] Behavioral compatibility of

simulink models for product
line maintenance and evolution

2015 Verify Scalable
verification

SPL
architecture

Composition Validation

[KR13]
Bi-criteria genetic search for
adding new features into an
existing product line

2013
Analyze
and plan

Decision-
making

Variability
model,

NA Solution

Code assets
[Hol12] Challenges in the evolution of

model-based software product
lines in the automotive domain

2012 Implement Change
synchronization

SPL
architecture

Composition Experience

[PDŠ12] Change impact analysis of
feature models

2012 Analyze
and plan

Change
impact

Variability
model

NA Solution

[SHA12]
Co-evolution of models and
feature mapping in software
product lines

2012
Implement Change

synchronization
Variability
model,

Model-
driven

Solution

Code assets

152

Chapter A. Papers on SPL evolution classified on facets

[PGT+13] Coevolution of variability
models and related artifacts: A
case study from the Linux
kernel

2013 Implement Change
synchronization

Variability
model

Annotation Validation

[CL01] Comparing frameworks and
layered refinement

2001 Implement Built-for-
change

Code assets Hybrid Evaluation

[AKEs12] Comparing maintainability
evolution of object-oriented and
aspect-oriented software
product lines

2012 Implement Built-for-
change

Code assets Composition Evaluation

[TDR+11] Components meet aspects:
Assessing design stability of a
software product line

2011 Implement Built-for-
change

SPL
architecture

Composition Evaluation

[QPB+14] Consistency checking for the
evolution of cardinality-based
feature models

2014 Verify Inconsistency
checking

Variability
model

NA Validation

[GWTB12] Consistency maintenance for
evolving feature models

2012 Implement Change
synchronization

Variability
model

NA Evaluation

[LLSG12] Delta-oriented model-based
SPL regression testing

2012 Verify Scalable
verification

Products Compositon Solution

[SBB+10] Delta-oriented programming of
software product lines

2010 Implement Built-for-
change

Code assets Composition Evaluation

[TBM+12] Developing long-term stable
product line architectures

2012 Implement Built-for-
change

SPL
architecture

NA Experience

[CCG+03] Differencing and merging
within an evolving product line
architecture

2004 Implement Change
synchronization

Products Composition Solution

[DKvDP15] Evaluating feature change
impact on multi-product line
configurations using partial
information

2015 Analyze
and plan

Change
impact

Variability
model

NA Validation

[VDJ10] Evaluation of a method for
proactively managing the
evolving scope of a software
product line

2010 Identify Monitoring
customer

NA NA Evaluation

[TB07] Evolution in product line
requirements engineering: A
rationale management approach

2007 Analyze
and plan

Decision-
making

NA NA Validation

[PHS11] Evolution patterns for business
document models

2011 Analyze
and plan

Change
impact

Variability
model

Model-
driven

Solution

[Tes07] Evolving embedded product
lines: Opportunities for aspects

2007 Implement Built-for-
change

Code assets Composition Experience

[FCS+08] Evolving software product lines
with aspects

2008 Implement Built-for-
change

Code assets Composition Evaluation

153

Chapter A. Papers on SPL evolution classified on facets

[RR03] Experiences with software
product family evolution

2003 Analyze
and plan

Decision-
making

SPL
architecture

NA Experience

[Sha99] Exploiting object technology to
support product variability

1999 Implement Built-for-
change

Code assets Hybrid Experience

[HRG12]

Facilitating the evolution of
products in product line
engineering by capturing and
replaying configuration
decisions

2012
Implement Change

synchronization

Variability
model, Model-

driven
Evaluation

Code assets

[RBK14]
Feature maintenance with
emergent interfaces

2014
Analyze
and plan

Change
impact

Code assets Annotation Validation

Implement built-with-
change

[SSTS14] Feature-context interfaces:
Tailored programming
interfaces for software product
lines

2014 Implement Built-with-
change

Code assets Composition Evaluation

[YM12] Fine-grained change impact
analysis for component-based
product families

2012 Analyze
and plan

Change
impact

Code assets Composition Validation

[JT11] Flexible generators for software
reuse and evolution

2011 Implement Built-with-
change

Products Model-
driven

Solution

[AJB+14] Flexible product line
engineering with virtual
platform

2014 Implement Change
synchronization

Products Clone Conceptual

[LRZJ04] Framed Aspects: supporting
variability and configurability
for AOP

2009 Implement Built-for-
change

Code assets Hybrid Solution

[Tab04] Generalized release planning
for product line architectures

2004 Analyze
and plan

Planning SPL
architecture

NA Experience

[TBC08] Identifying and exploiting the
similarities between rationale
management and variability
management

2008 Analyze
and plan

Decision-
making

Variability
model

NA Evaluation

[Ana09]

Increasing efficiency and
effectiveness of software
product line evolution: An
infrastructure on top of
configuration management

2009
Implement Change

synchronization

Variability
model,

Composition ValidationCode assets,

Products

[Böc05] Innovation management for
product line engineering
organizations

2005 Identify Monitoring
the
environment

NA NA Conceptual

154

Chapter A. Papers on SPL evolution classified on facets

[KB12] Issue-based variability
management

2012 Analyze
and plan

Decision-
making

Variability
model

NA Evaluation

[SB00] Issues concerning variability in
software product lines

2000 Implement Built-for-
change

SPL
architecture

Hybrid Experience

[Liv11] Issues in software product line
evolution: complex changes in
variability models

2011 Analyze
and plan

Change
impact

Variability
model

Annotation Experience

[DRC13] Language features for software
evolution and aspect-oriented
interfaces: An exploratory study

2013 Implement Built-for-
change

Code assets Composition Evaluation

[JBAC15] Maintaining feature traceability
with embedded annotations

2015 Implement Change
synchronization

Variability
model

Clone Validation

[APT12] Managing and assessing the risk
of component upgrades

2012 Analyze
and plan

Decision-
making

Code assets Composition Experience

[JZZZ08] Maintaining software product
lines: an industrial practice

2008 Analyze
and plan

Change
impact

Code assets Composition Experience

[RCC13]
Managing cloned variants : A
Framework and experience

2013
Analyze
and plan

Change
impact

Products Clone Validation

Implement Change
synchronization

[CCS+12]
Managing evolution in software
product lines: A
model-checking perspective

2012 Verify
Scalable
verification

Variability
model,

Model-
driven

Solution

Code assets

[RKBC12]
Managing forked product
variants

2012
Analyze
and plan

Change
impact

Product Clone Conceptual

Implement Change
synchronization

[CCJM12] Model-based product line
evolution: An incremental
growing by extension

2012 Identify Monitoring
products

Products Model-
driven

Solution

[SPP+13] Model-driven planning and
monitoring of long-term
software product line evolution

2013 Analyze
and plan

Planning Variability
model

Model-
driven

Solution

[PBD+12] Model-driven support for
product line evolution on
feature level

2012 Analyze
and plan

Planning Variability
model

Model-
driven

Validation

[HH07] Modeling product line
architectures through change
sets and relationships

2007 Implement Built-with-
change

SPL
architecture

Composition Solution

[HGR10] Negotiation constellations in
reactive product line evolution

2010 Analyze
and plan

Decision-
making

NA NA Conceptual

[MWB11] On the problems with evolving
egemin’s software product line

2011 Implement Change
synchronization

SPL
architecture

Composition Experience

155

Chapter A. Papers on SPL evolution classified on facets

[FGFd14] On the use of feature-oriented
programming for evolving
software product lines - A
comparative study

2014 Implement Built-for-
change

Code assets Hybrid Evaluation

[Sch06b]
Optimizing the selection of
representative configurations in
verification of evolving product
lines of distributed embedded
systems

2006 Verify
Scalable
verification

Variability
model, NA Experience

SPL
architecture

[McV15] Preliminary product line
support in BitKeeper

2015 Implement Change
synchronization

Code assets Clone Solution

[SC11] Preserving the exception
handling design rules in
software product line context:
A practical approach

2011 Verify Inconsistency
checking

Code assets Composition Validation

[KSK08] Product line variability with
elastic components and
test-driven development

2008 Implement Built-with-
change

Products Composition Solution

[CKM+08] Providing feedback from
application to family
engineering: The product line
planning game at the Testo AG

2008 Identify Monitoring
products

Products NA Experience

[TBK09] Reasoning about edits to feature
models

2009 Analyze
and plan

Change
impact

Variability
model

NA Validation

[DKZH12] Recovering commit
dependencies for selective code
integration in software product
line

2012 Implement Change
synchronization

Code assets Composition Validation

[SK14]
Reducing the verification cost
of evolving product families
using static analysis techniques

2014 Verify
Scalable
verification

Variability
model,

Annotation Validation

code assets
[vO02] Roadmapping a product

population architecture
2002 Analyze

and plan
Planning SPL

architecture
Composition Solution

[TBG15]
Safe evolution of product
populations and multi product
lines

2015 Verify
Inconsistency
checking

Variability
model

NA Solution

code assets
[SK08] Scheduling product line features

for effective roadmapping
2008 Analyze

and plan
Planning NA NA Experience

[HFG+10] Simulating evolution in
model-based product line
engineering

2010 Analyze
and plan

Decision-
making

NA NA Validation

[TMN08]
Software Configuration
Management for Product
Derivation in Software Product
Families

2008
Implement Change

synchronization

Variability
model, Composition Solution
Code assets,

156

Chapter A. Papers on SPL evolution classified on facets

Product
[RUQ+13] SPLEMMA: A generic

framework for
controlled-evolution of software
product lines

2013 Implement Built-with-
change

Variability
model

NA Solution

[LDSL07] State-based modeling to support
the evolution and maintenance
of safety-critical software
product lines

2007 Analyze
and plan

Decision-
making

NA NA Solution

[KMNL06]
Static evaluation of software
architectures

2006 Implement Built-with-
change

SPL
architecture

NA Experience

Verify Inconsistency
checking

[DGRN10]
Structuring the modeling space
and supporting evolution in
software product line
engineering

2010
Implement Change

synchronization

Variability
model,

Model-
driven

Evaluation

Code assets

[JRG+12]
Supporting model maintenance
in component-based product
lines

2012 Verify
Inconsistency
checking

Variability
model,

Model-
driven

Validation

Code assets
[MBKM08] Supporting the grow-and-prune

model in software product lines
evolution using clone detection

2008 Identify Monitoring
products

Products Clone Evaluation

[SPZZ10]
Synchronized architecture
evolution in software product
line using bidirectional
transformation

2010
Implement Change

synchronization

SPL
architecture,

Model-
driven

Solution

Products
[KC05] Synchronizing

cardinality-based feature
models and their specializations

2005 Implement Change
synchronization

Variability
model

NA Solution

[SV02] The economic impact of
product line adoption and
evolution

2002 Analyze
and plan

Decision-
making

NA NA Experience

[MW11]
Towards a solution for change
impact analysis of software
product line products

2011
Analyze
and plan

Change
impact

Variability
model,

Model-
driven

Conceptual
SPL
architecture,
Code assets

[MD15]

Tunning Github for SPL
development: branching models
and operations for product
engineers

2015
Implement Change

synchronization
Composition Solution

Code assets,
Products

157

Chapter A. Papers on SPL evolution classified on facets

[HRGL12] Using regression testing to
analyze the impact of changes
to variability models on
products

2012 Analyze
and plan

Change
impact

Variability
model

Model-
driven

Validation

[CGCS04] Using simulation to facilitate
the study of software product
line evolution

2004 Analyze
and plan

Decision-
making

NA NA Solution

[DSB09] Variability assessment in
software product families

2009 Analyze
and plan

Decision-
making

Variability
model

NA Validation

[SK01] Violatility analysis framework
for product lines

2001 Identify Monitoring
customer

NA NA Solution

[MARC13] Visualization and exploration of
optimal variants in product line
engineering

2013 Analyze
and plan

Change
impact

Variability
model

NA Validation

Table A.4 Primary study facet classification.

158

Appendix B

ETL at CustomDIFF

This Appendix provides the algorithms that describes the ETL process followed by
CustomDIFF.

B.1 Algorithms for the ETL process

Figure B.1: WeatherStationSPL branching model: the master branch holds the core
assets from where SPL products are branched off.

CustomDIFF’s ETL follows traditional DW practices [KR02]. However, the extraction
stage makes some assumptions about the underlying Git repository structure. The
extraction process depends on the Git branching strategy being used. So far,
CustomDIFF supports the branch-and-unite model [BP14]. Here, the master branch
contains core-asset baseline releases while products branch off the master (see Figure
B.1). Later on, product branches can be reunified with the master branch after releasing
the product and pruning the branch.For automated processing, the following parameters
need to be configured beforehand: (1) PR_PATTERN, i.e the pattern that product
release tags should match (e.g. “PR-*”); (2) BASELINE_PATTERN, i.e the pattern that
baseline release tags should match (e.g. “Baseline-*”), (3) VP_INIT_CLAUSE, i.e.
the pattern that variation point opening clauses should match (e.g. “PV:IFCOND*”),

159

Chapter B. ETL at CustomDIFF

Algorithm B.1 Mining product customizations.

1 List<CustomizationFacts> MINE_CUSTOMIZATIONS (GitRepository
gitRepo, String baseline_tag)

2
3 List<CustomizationFact> customization_facts = new List<

CustomizationFact> ();
4 Commit baselineCommit = gitRepo.getCommitByTagName(baseline_tag

);
5
6 List <Tag> all _tags = gitRepo.getAllTags()
7 for each tag in all_tags
8 Commit baseline;
9 if(tag.name.matches(PR_PATTERN)) do

10 baseline = getBaselineForRelease(tag);
11 if(baselineCommit === baseline) do
12 List<Diff> diffs = DIFF(baselineCommit, tag.getCommit())
13 for each diff in diffs
14 List<CustomizationFact> custom_facts =

extractCustomizationFacts (diff, tag);
15 customizations.add(custom_facts);
16 end_for_each
17 end_if
18 end_if
19 end_for_each
20 return customizations;

and (4) VP_END_CLAUSE, i.e. the pattern that product release tag should match (e.g
“ENDCOND*”). Next, we delve into the details 1.

The process starts with the main function called Mine_Customizations2, which
takes a GitRepository and returns the set of customization_facts that have been
performed to a given baseline by all the products derived from this baseline. Namely
(line 1 in Algorithm B.1):

List<Customization_Facts> Mine_Customizations (GitRepository
gitRepo, String baseline_tag)

where GITREPO stands for the git repository where the SPL is
being developed; BASELINE_TAG stands for the name of the git
tag that identifies the baseline for which the customization facts
will be computed. To illustrate the algorithm with a running
example, take the content of Figure B.1 as the GITREPO; “Baseline-
v1.0” as the value for BASELINE_TAG, “PR-” as the value for

1Note that in Git, commits are chained with each other from “parent” to “child”. This means that,
although in Figure B.1 C5 was committed before C7, we can not reach C7 from C5, as C7 points to C5.
Likewise, C5 points to C1, and C10 to C9. Keep this fact in mind when reading the next algorithm.

2This algorithm was implemented in Java, using the JGit library http://www.eclipse.org/
jgit/

160

Chapter B. ETL at CustomDIFF

PR_PATTERN, “Baseline-” as the value for BASELINE_PATTERN, and
“PV:INFOND” and “PV:ENDCOND” as the values for VP_INIT_CLAUSE
and VP_END_CLAUSE, respectively. Algorithm B.1 provides the details:

1. Identify which is the BASELINECOMMIT to analyze (line 4). The function
GETCOMMITBYTAGNAME returns the commit to which the BASELINE_TAG
points to. For our running example BASELINECOMMIT holds the commit C5.

2. Identify the product releases that were derived from the BASELINECOMMIT
(lines 6-11). This implies to:

(a) From all the tags in GITREPO, identify those that are product releases (lines
6-9). First, collect all the existing tags in the repository (line 6). For
our running example, the variable ALL_TAGS holds now: London-v1.0,
NewYork-v1.0, Paris-v1.0, Berlin-v4.0, Baseline-v0.5 and Baseline-v1.0.
Second, filter out those tags that are not product releases. i.e. those that
do not match the PR_PATTERN (line 7-9). For our running example tags
Baseline-v0.5, and Baseline-v1.0 are filtered out.

(b) Filter out the product releases that were not actually derived from the
BASELINECOMMIT (lines 10-11). This implies, first, to identify the
baseline commit each product release was derived from. This is calculated
by calling to the method GETBASELINEFORRELEASE (line 10), which
takes a product release tag (e.g. Berlin-v4.0), traverses the git history
(e.g backwards from C17) until it finds a commit tagged with a label that
matches the pattern BASELINE_PATTERN (e.g. Baseline-v1.0), and finally,
returns the commit it points to (e.g. C5). Second, filter out those product
releases whose baseline is not equal to BASELINECOMMIT (line 11). For
our running example, the product release London-v1.0 would be filtered
out, as the BASELINE it was derived from is C3 instead of C5.

3. Finally, compute the customization facts for each product release that was indeed
derived from BASELINECOMMIT (lines 12-16). This implies for each product
release to:

(a) Perform a DIFF operation between the BASELINECOMMIT and the commit
to which the product release tag is pointing to (line 12). For instance, the
DIFF operation for the product release tag Berlin-v4.0 would be as follows:
DIFF(C5, C17). The result of the operation, i.e. DIFFS, is the list of diff-
outputs (a.k.a patches), one per file that the product has changed from the
baseline. For instance, if the product release Berlin-v4.0 changes five files
from the baseline, then DIFFS would contain five diff-output files, each per
file changed (see Figure B.2 as an example of a diff-output).

(b) For each diff-output, extract the customization facts by calling to the
method EXTRACTCUSTOMIZATIONFACTS (line 14). This method, parses
the diff-output, identifies the set of consecutive changes performed to the
same variation point, and returns the corresponding customization facts
(see Algorithm B.2 next).

161

Chapter B. ETL at CustomDIFF

Figure B.2: The diff-output (a.k.a. patch) for the DIFF(C5, C17), w.r.t file sensors.js
file.

(c) Finally, add the extracted customization facts to the global container
CUSTOMIZATIONS (line 15), and when all product releases are mined,
return this container (line 20).

How diff-outputs are read, and constructed, is important to understand our next
algorithm. As a reminder of how a diff-output looks like, take Figure B.2, which shows
the changes that product Berlin has performed to the file sensors.js. The first 4 lines
give the details of the file being compared (i.e. sensors.js), and the rests are the hunks.
When comparing two versions of the file, the diff operation tries to record differences as
groups of differing lines, and uses common lines (context lines) to anchor these groups.
Such groups are called hunks of difference and follow the pattern: @@ old-file-range
new-file-range @@ [heading]. Note how the diff-output in Figure B.2 only contains
one hunk. The old-file-range is in the form: -<start_line>,<number_of_lines>, and
new_file_range is: +<star_line>,<number_of_lines>. Start_line and number_of_lines
refer to the position and the hunk length in the original version the and new version,
respectively. Therefore, the line “var divisor = Meath.round (max -min)/13” in Figure
B.2, corresponds to the line 26 in the older version of the file (i.e the baseline version
of sensors.js), and also corresponds to the line number 26 in the newer version of the
file (i.e. the product Berlin version of sensors.js). Hence, if we would like to know
line position for the change “+ var tmp = getTmpForMeassure(measureText)” in the
new version of the file, we would need to: take the line number 26 (the first line in the
hunk), and sum the number of context lines (+ 3) and the number of added lines (+1)
until we reach the line “+ var tmp = getTmpForMeassure(measureText)”.

The extractCustomizationFacts algorithm takes as input a diff-output (take the
example in Figure B.2), and extracts a set of customization facts, i.e. the consecutive
changes made to a given variation point. Namely:

162

Chapter B. ETL at CustomDIFF

Algorithm B.2 Extracting customization facts from a diff-output file.

1 List<CustomizationFact> extractCustomizationFacts(String diff,
Tag tag)

2
3 List<CustomizationFact> customizations = new List<

CustomizationFact> ();
4 String fileName = extractFileNameFromDiff(diff);
5 List<String> hunks = diff.split("@@");
6 for each hunk in hunks
7 List<String> lines = hunk.split("\n");
8 String custom_diff ="";
9 int added_lines = 0, deleted_lines =0, context_lines = 0;

10 VariationPoint vp;
11 int lineNumberOld = extractLineNumberFromHunk(lines.get(1));
12 int lineNumberNew = extractLineNumberFromHunk(lines.get(1));
13 for each line in lines
14 customDiff.concat.(line);
15 if(line.startsWith("+") AND (!line.contains(VP_INIT_CLAUSE))

AND (!line.contains(VP_END_CLAUSE))) //added line
identified

16 added_lines ++;
17 else if(line.startsWith("-") AND (!line.contains(

VP_INIT_CLAUSE)) AND (!line.contains(VP_END_CLAUSE))) //
deleted line identified

18 deleted_lines ++;
19 else if(line.startsWith(" ") AND (!line.contains(

VP_INIT_CLAUSE)) AND (!line.contains(VP_END_CLAUSE))) //
context line

20 context_lines++;
21 else if (line.contains(VP_INIT_CLAUSE) OR (line.contains(

VP_END_CLAUSE))){
22 vp = extractVpFromFileAndLine(filename, lineNumberNew -1

+ added_lines + context_lines);
23 customDiff = fixHeaderForCustomDiff(customDiff, vp.

getExpression(), lineNumberOld, lineNumberNew);
24 customDiff = customDiff.concat(line+1).contact(line+1);

//add context lines
25 CustomizationFact cust = new CustomizationFact (

customDiff, added_lines, deleted_lines, vp, tag.name)
;

26 customizations.add(cust);
27 lineNumberOld = lineNumberOld + context_lines +

deleted_lines;
28 lineNumberNew = lineNumberNew + context_lines +

added_lines;
29 deleted_lines = 0; added_lines = 0; context_lines = 0;
30 end_else_if
31 end_for_each
32 if (vp== null) //no vp was found
33 vp = extractVpFromFileAndLine(filename, lineNumberNew)
34 hunk = fixHeaderForCustomDiff(hunk, vp.expression,

lineNumberOld, lineNumberNew);
35 CustomizationFact cust = new CustomizationFact (hunk,

added_lines, deleted_lines, vp, tag.name);
36 customizations.add(cust);
37 end_if
38 end_for_each
39 return customizations;

163

Chapter B. ETL at CustomDIFF

LIST<CUSTOMIZATION_FACTS> EXTRACTCUSTOMIZATIONFACTS
(DIFF DIFF, TAG PR)

where DIFF stands for the diff-output from which to extract the
customization facts from; and TAG stands for the product release tag for
which the customizations are being computed. As the running example,
take the content of Figure B.2 as the value for the DIFF, and “PR-Berlin-
v4.0” as the value for the TAG. Algorithm B.2 provides the details:

1. Elucidate which is the file name being diff-ed (line 3). This implies calling
to the method EXTRACTFILENAMEFROMDIFF, which takes as input a diff-
output (i.e DIFF), and extracts the FILENAME. For our running example, the
EXTRACTFILENAMEFROMDIFF would return sensors.js.

2. Identify the set of consecutive changed lines that correspond to the same
variation point, and create the corresponding customization facts (lines 14-35).
Namely:

(a) Traverse each HUNK line by line. This requires to:

i. Split the DIFF into HUNKS, and convert each HUNK into a list of LINES
(lines 5-7). For our running example there is only one hunk, and the
LINES would be those in Figure B.2, excluding the first four.

ii. Initialize the variables that support the computation of a customization
fact (lines 7-12): the additions, deletions and context lines (i.e.
ADDED_LINES, DELETED_LINES, CONTEXT_LINES, respectively),
the new diff-output, based on the variation point being affected
by the changes (i.e. CUSTOM_DIFF), the actual variation point
(i.e. VP), and the range information to build the diff correctly (i.e.
LINENUMBEROLD, LINENUMBERNEW).

(b) Until a LINE containing a VP_INIT_CLAUSE or VP_END_CLAUSE is
not identified, increment the corresponding counters when an addition,
deletion, or contextual line is found (lines 16-21).

(c) Create a new customization fact when an LINE containing a
VP_INIT_CLAUSE or VP_END_CLAUSE is identified (lines 23-
34). For our running example, say LINE is equal to “PV:IFCOND
(pv:hasFeature(”Temperature’))”. Namely:

i. Elucidate to which variation point do the already traversed lines
belong to (those lines prior to the VP_INIT_CLAUSE). The method
EXTRACTVPFROMFILEANDLINE takes a FILENAME and a line
number, and returns the variation point to which the line number
belongs to (line 24). The method would return that the previous line,
i.e. “+ var tmp = getTmpForMeasureText”, belongs to a variation point
which expression is (WindSpeed or AirPressure).

ii. Build up the new diff for the set of consecutive changed lines (i.e.
“+ var tmp = getTmpForMeasureText”). The variable CUSTOM_DIFF

164

Chapter B. ETL at CustomDIFF

Figure B.3: Custom_diffs obtained after applying Algorithm B.2 to the diff-output in
Figure B.2: VP-1 (top) and VP-2 (bottom).

has been recording each traversed line up to the new variation point
(line 15), but needs additional fixes. First, it needs two more
contextual lines (line 26). Second, the hunk header needs to be
changed: the range needs to be fixed, and the heading needs to
state the expression to which the changed lines affect. The method
FIXHEADERFORCUSTOMDIFF would do both. Figure B.2 (top)
depicts the content of the CUSTOM_DIFF after being fixed.

iii. Create the new customization fact and add it to the total list of
customizations (lines 28-29).

iv. Finally, reset the variables for the next customization fact to be
identified (lines 31-33).

(d) If no variation point was identified during the analysis of the hunk,
elucidate to which variation point does the DIFF content corresponds to,
and create a customization fact accordingly (lines 36-41).

3. When all the hunks are analyzed, and hence, all customizations facts are
computed, return the total list of customizations (line 39).

Figure B.2 depicts the two CUSTOM_DIFF derived from the main DIFF (depicted in
Figure B.2) after applying extractCustomizationFacts.

165

Appendix C

A brief on git

This Appendix provides a bite on Version Control Systems (VCSs) and git basics.

C.1 Version Control Systems
Version Control Systems (VCSs), a.k.a. revision or source control systems, are
tools that support concurrent and collaborative software processes by: (1) seamlessly
tracking changes to the source code, and (2) letting multiple developers collaborate
efficiently. A VCS repository stores of all the files under version control, as well as
their previous versions. Developers, in order to work on the source code, check-out a
version of the files to a local workspace. Developers make changes to local files on their
workspace, and commit (a.k.a check-in) to make permanent software changes to the
central repository. Commits are chained together, with each new version committed
to the repository. Over time, a sequence of changes is represented as a series of
commits, known as the repository history. Branches are used to launch a separate
lines of development, and allow the development to continue in multiple directions
simultaneously, without interfering into each others work. Eventually, a branch is
merged (fused) with other branches to reunite disparate efforts, usually, by a three-
way merge. As a result, a new version is created. When this process does not go
smoothly (i.e. different changes where made to the same part of the same file), the user
has to manually resolve the conflicts.

VCSs can broadly be classified into centralized and distributed. Centralized VCSs
(CVCS) came first in history. In a CVCS there is a single central repository to which
which clients synchronize. The local workspace of the clients only holds a copy of
the files that reside in the server. When any CVCS operation needs to be performed,
e.g committing the changes from the local workspace to the repository, review the
history a file, branch, merge, etc., clients need to connect to the server. Conversely, in
a distributed VCS (DCVS) clients don’t just checkout the latest version of the files, but
they get a full-fledged repository: with the whole history and the power to exchange
source code changes with other repositories, i.e. peer-to-peer.

DVCS introduce three additional operations to VCSs: clone, push and pull. A

166

Chapter C. A brief on git

clone, copies a repository into a developers machine. Indeed, in DVCSs each developer
has each own local repository. A clone, is ideally made only once, i.e. when a
developer joints the project for the first time. Afterwards, traditional VCSs operations
(e.g. commit, branch, merge) are performed against developer’s local repository. To
sync with other peers, developers would conduct a push (publishing local changes to
another repository) and pull (getting changes from a remote repository to a local one)
operations. A peer-to-peer collaboration approach opens new collaboration workflows
not previously possible with centralized VCSs1. Specially, the fork&pull model has
been beneficial Open Source Software projects. Nevertheless, DVCS can mimic a
centralized model if developers sync to a canonical repository and they don’t sync
between them.

C.2 A brief on Git and GitHub
Git is a DVCS. The Eclipse Foundation reported in its annual community survey that
as of May 2014, Git is now the most widely used source-code management tool, with
42.9% of professional software developers reporting that they use Git as their primary
source control system2. This figure grounds the selection of Git in this Thesis. This
section outlines the main operations supported by Git (i.e. commit, branch and merge)
and its web counterpart, GitHub (i.e. fork and pullRequest).

C.2.1 Data Structures: the Git Object Model
The major difference between Git and other VCSs (e.g. CVS, Subversion) is the
way it stores data: as a set of snapshots of a mini filesystem instead of a set of
changes. Every time a client saves (i.e. commits) the state of the project, Git takes
a snapshot of all the files. Git includes four objects: TREE, BLOB, COMMIT and
TAG (see Figure C.1) which are characterized along the following properties: sha
(unique hash identifier based on the objects’ content), type (“tree”, “blob”, “commit”
or “tag”), content and size (in bytes). TREE objects, represent file-system directories,
which can contain further TREEs and BLOBs. BLOB objects, represent a file storing
data. COMMIT objects, represent a version (i.e. snapshot) for the project at a certain
time. COMMIT’s project attribute, hold the top-level directory for the project artefacts.
Commit objects, are preceded by its antecesor commit (zero parents for the first commit
in the commit history, one parent for a normal commit, and multiple parents for a
commit that results from a merge of two or more branches). Commit objects, contain
additional metadata: message (user entered message describing the changes), commiter
(the user who performs the commit), author (the user responsible for the change)
and time (the moment on which the commit was performed). Note, that a COMMIT
object does not itself contain any information about what was actually changed. All
changes are calculated by comparing the contents of the project tree referred to by
the commit, with the trees associated with its parent. Finally, TAG objects serve to
tag special commits, such as, releases, hot-fixes, etc. A Git REPOSITORY, comprises

1https://tinyurl.com/jb37na6
2https://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/

167

Chapter C. A brief on git

Figure C.1: Git Object Model

all objects aforementioned. Additionally, Git repositories, have BRANCHEs, which is
just a lightweight movable pointer to a COMMIT. Git repositories must have at least
one branch (i.e. the default branch). The default branch, is destined for the main-
line of development. When a Git repository is created, Git automatically creates a
branch named master, and sets it as the repository’s default branch. Git repositories
further include: repository owner user, repository name, a little description about the
repository project, the currentBranch the user is working at, the uri of the repository,
a origin, if the repository is a clone of another Git the repository, and the remote
repository to which it synchronizes (if any).

C.2.2 Git Basic Operations
Commit. A commit operation makes permanent the software changes to a repository.
Git, converts the users’ working directory into a Git snapshot, i.e. COMMITObject(see
Figure C.2). When a commit operations is performed, the branch moves forward
automatically, pointing to the last commit performed. This way, commit objects are
chained together, with each new snapshot pointing to its predecessor (c2 points to c1).
Over time, a sequence of changes is represented as a series of commit objects, known as
the repository history. The operation, can be implicitly described as, COMMIT: USER
X REPOSITORY X BRANCH X TREE X STRING -> COMMITOBJECT

3.
3We distinguish commit operation and commit object as, COMMIT and COMMITOBJECT, respectively.

168

Chapter C. A brief on git

Figure C.2: Commit operation

Figure C.3: Branch + Commit Operation

Branch. It launches a separate line of development. Branches are created upon
an existing commit (users must set first the branch-to-be name). Figure C.3, depicts
the repository before and after performing a branch operation to create branch1
upon master. When branch operation is performed, branch1 points to c2 commit
object. Further commits to branch1 (i.e. commit c3), make the two branches diverge.
The branch operation can be described as BRANCH: REPOSITORY x BRANCH x
IDENTIFIER -> BRANCH.

Merge. Often, a branch is fused (i.e. merged) with other branches to reunite
disparate efforts. Figure C.4, depicts a merge operation scenario, where the
headBranch will be merged into the baseBranch. Git does a simple three-way merge,
using the two commit objects pointed to by branches c3 and c2, and their common
ancestor (i.e. c1). As a result, a new commit, c4, is created for baseBranch. When this
process does not go smoothly (i.e. different changes where made to the same part of the

169

Chapter C. A brief on git

Figure C.4: Merge Operation

Figure C.5: Fork Operation

same file), Git adds standard conflict-resolution markers to the files that have conflicts,
so that users can detect them, and resolve them manually. The merge operation can be
defined as: MERGE: User X Repository X Branch X Branch -> COMMITOBJECT .

GitHub4 is the largest open source Git repository hosting service. GitHub provides
a Web-based graphical interface, and introduces social functionalities that make
developer’s identity and activities visible to other users [ref -Social Coding in GitHub].
This is particularly interesting for SPLs where two different teams need to collaborate:
domain engineers and application engineers. GitHub introduces two new operations:
fork and pull request.

Fork. This is the mechanism to make copies (i.e. clones) of entire repositories
across GitHub users. When a user clicks on the fork button, GitHub automatically
copies that repository to the user who requests the fork. This operation keeps both
repositories connected, the source repository knows all its forks repositories, while the
forked repository sets its origin attribute with the source repository uri . Fork operation
is defined as, FORK: REPOSITORY X USER -> REPOSITORY.

Pull request. Whenever one of the users thinks his changes to the repository are
appropriate for the other party, he can send him back as form of a pull request. A pull
request operation, is basically a merge request between two repository branches. The
user sending the request must specify the following attributes: (i) the base repository
and base branch, where changes should be applied, (ii) the head repository and
the head branch, meaning what changes the user like to apply, and (iii) a message,
describing the proposed changes. Changing the base repository branch, changes who
is notified of the pull request (the base repository gets the request). Once a pull
request is sent, interested parties can review the set of changes, discuss potential
modifications, and even push follow-up commits if necessary. A pull request operation

4https://github.com/

170

Chapter C. A brief on git

Figure C.6: GitHub additional object Model (partial model).

can be described as: CREATEPULLREQUEST: USER x REPOSITORY x REPOSITORY
X BRANCH X BRANCH ->PULLREQUEST. Both operations, require Git to handle
additional objects, which are depicted in Figure C.6. This model of collaboration is
commonly called the fork&pull model, which is very popular for the development of
open-source projects.

C.3 Branching models in VCSs
A branching model embodies the rationales adopted for branching and merging
configuration items within a VCS [WS02b]. It closely matches a team’s software
development process: it tells (1) how developers develop and collaborate with each
other for new development, (2) how engineers release software both to test department
and customers, and (3) how they deal with production fixes, i.e bugs that occur to the
software released to customers. There is no a one-fit-all branching model, and each
team needs to find its own.

Inherent to branching models there is the notion of the integration branch (a.k.a.
mainline or trunk), where all developers integrate their changes to collaborate. The
integration branch holds the current state of the project, and it is usually from where
automated or nightly builds are triggered. Additionally, dedicated feature branches, i.e.
auxiliary branches that branch from the integration branch, might be used to develop
codebase changes without interfering other teammates. These branches should be as
short-lived as possible to avoid deviating to much from the mainline and avoid merge
hell. Finally, release branches serve to prepare a software release to distribute it outside
the development activity (e.g. to customers or QA testing). It might hold also to small
bug-fixes prior to the actual software release. The final version produced after QA
that is released for production is usually tagged within the release branch (so that it
can be identified for future needs). However, some others prefer to merge it to release

171

Chapter C. A brief on git

(a.k.a production) branches, which only holds the sequential versions of the software
released to customers. These different purposes call for different branches within the
VCS project.

Next, we describe four branching models though for single-systems, each of which
is suitable for a different development practice.

Git-flow [Gitb] supports formal releases on a longer term interval (a few weeks to a
few months) [cha] (see Figure C.7-B). For parallel development feature branches
are used, i.e. short-lived branches aimed to develop new functionality without
interfering with other teammates work. Collaboration between all developers
is achieved when feature branches are merged to develop, i.e. the integration
branch (from where nightly build should be triggered). When all the features
planned for the next release have reached the integration branch, a release branch
is created for testing and bug-fixing all products before is sent to production.
When it reaches the desired quality, it is merged to master, i.e. the release branch
that holds all sequential versions of the core assets from where products are
released to customer, and tagged. Production bugs are solved through hotfix
branches.

Trunk-based [tru] supports continuous integration (CI), i.e. “a software development
practice where members of a team integrate at least daily” [CI-]. There are
no parallel branches for development (see Figure C.7-a). Instead, all developers
work together in a single branch, i.e. the integration branch 5. The only branches
permitted are release branches, used for testing the software. If during such
testing bugs are identified these are worked in the integration branch and cherry-
picked to the release branch. When the software is stable is it tagged and send
to production. To resolve any production bug a similar approach is conducted.
Instead, others advocate to also work the defects within the release branch and
cherry-pick them to the integration branch (e.g. [bar]).

CoDe:U [CoD] supports a continuous delivery (CoDe) [HF10] approach (see Figure
C.7-D). Based on git-flow, CoDe:U automates all merges between branches, by
an automated delivery pipeline [HF10] , which covers all required steps, e.g
retrieving code from the repository, building binaries and running tests. The
single branches engineers can use for development and bug-fixing are feature
branches. The rest is automated by pipeline that will: (1) merge commits from
feature branch to the integration branch only if the result is a build-able state, (2)
merge integration to the stable if it passes, e.g., regression tests, and (3) merge
to the release branch if, e.g., the commit in stable is delivered to production. To
deal with production fixes, maintenance branches are used.

Github-flow [gita] supports continuous deployment (CoDep) practice, specially
targeted for web applications. CoDep extends CoDe by deploying to production
every change committed to the integration branch (upon success of build
and requires automated tests). Hence, anything in the integration branch is

5Teams might use feature toggles and branch by abstraction to disable uncompleted features.

172

Chapter C. A brief on git

(a) Trunk-based (b) Git-flow

(c) Github-flow (d) Code:U
integration
branch

feature
branches

maintenance
branches stable release

Figure C.7: Branching models for CPF (single-systems).

173

Chapter C. A brief on git

deployable (see Figure C.7-C). Github-flow uses feature branches for parallel
development. When developers are ready to integrate feature branches they will
issue a pull-requests6 (PR). The PR will be reviewed by other teammates and
signed off. Additionally, a build job would check wether the resulting merge
of the PR is build-able. Only when the PR passes the review and the build,
it is merged to the integration branch and deployed to production. To solve a
production bug the same process needs to be carried out. No release branches
are used, neither tags to identify releases.

6https://help.github.com/articles/about-pull-requests/

174

Bibliography

[3waa] Panlo santos. Three-way merging: A look under
the hood. http://www.drdobbs.com/tools/
three-way-merging-a-look-under-the-hood/
240164902. Accessed: 2018-03-26.

[3wab] Slant.co. What are the best visual merge tools for
git? https://www.slant.co/topics/48/
~best-visual-merge-tools-for-git. Accessed:
2018-03-26.

[ABCO98] Brad Appleton, S Berczuk, R Cabrera, and R Orenstein. Streamed
Lines : Branching Patterns for Parallel Software Development. PLoP
conf., 98:98–25, 1998.

[ABKS13a] Sven Apel, Don S Batory, Christian Kästner, and Gunter
Saake. Feature-Oriented Software Product Lines - Concepts and
Implementation. Springer, 2013.

[ABKS13b] Sven Apel, Don S. Batory, Christian Kästner, and Gunter
Saake. Feature-Oriented Software Product Lines - Concepts and
Implementation. Springer, 2013.

[AC07] Sangim Ahn and Kiwon Chong. Requirements Change Management
on Feature-Oriented Requirements Tracing. In Computational
Science and Its Applications - {ICCSA} 2007, International
Conference, Kuala Lumpur, Malaysia, August 26-29, 2007.
Proceedings, Part {II}, pages 296–307, 2007.

[ACA08] Vander Alves, Tarcisio Camara, and Carina Frota Alves. Experiences
with mobile games product line development at meantime. In
Software Product Lines, 12th International Conference, SPLC 2008,
Limerick, Ireland, September 8-12, 2008, Proceedings, pages 287–
296, 2008.

[AD07] Samuel Ajila and Razvan T. Dumitrescu. Experimental use of code
delta, code churn, and rate of change to understand software product
line evolution. Journal of Systems and Software, 80(1):74–91, 2007.

175

BIBLIOGRAPHY

[AGM+06] Vander Alves, Rohit Gheyi, Tiago Massoni, Uirá Kulesza, Paulo
Borba, and Carlos José Pereira de Lucena. Refactoring product
lines. In Generative Programming and Component Engineering, 5th
International Conference, {GPCE} 2006, Portland, Oregon, USA,
October 22-26, 2006, Proceedings, pages 201–210, 2006.

[AJB+14] Michał Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof
Czarnecki, Thomas Schmorleiz, Ralf Lammel, Stefan Stanciulescu,
Andrzej Wasowski, and Ina Schaefer. Flexible product line
engineering with a virtual platform. Companion Proceedings of
the 36th International Conference on Software Engineering - ICSE
Companion 2014, pages 532–535, 2014.

[AK08] Samuel A Ajila and Ali B Kaba. Evolution support mechanisms
for software product line process. Journal of Systems and Software,
81(10):1784–1801, 2008.

[AKEs12] Walid Abdelmoez, Hatem Khater, and Noha El-shoafy. Comparing
maintainability evolution of object-oriented and aspect-oriented
software product lines. In 18th International Conference on
informatics and Systems (INFOS 2012), pages 53–60, 2012.

[AKL13] Sven Apel, Christian Kästner, and Christian Lengauer. Language-
independent and automated software composition: The featurehouse
experience. IEEE Trans. Software Eng., 39(1):63–79, 2013.

[AKM+10] Nicolas Anquetil, Uirá Kulesza, Ralf Mitschke, Ana Moreira, Jean-
Claude Royer, Andreas Rummler, and André Sousa. A model-driven
traceability framework for software product lines. Software and
System Modeling, 9(4):427–451, 2010.

[All] Visualizing categorical data as flows with alluvial diagrams.
http://digitalsplashmedia.com/2014/06/
visualizing-categorical-data-as-flows-with-alluvial-diagrams/.
Accessed: 2018-03-26.

[Ana09] Michail Anastasopoulos. Increasing Efficiency and Effectiveness
of Software Product Line Evolution: An Infrastructure on
Top of Configuration Management. In Proceedings of the
Joint International and Annual ERCIM Workshops on Principles
of Software Evolution (IWPSE) and Software Evolution (Evol)
Workshops, IWPSE-Evol ’09, pages 47–56, New York, NY, USA,
2009. ACM.

[Ana13] Michail Anastasopoulos. Evolution Control for Software Product
Lines: An Automation Layer over Configuration Management. PhD
thesis, Fraunhofer IESE, 2013.

176

BIBLIOGRAPHY

[and82] Fred K. Weigel and. Innovation characteristics and innovation
adoption-implementation: A meta-analysis of findings. In IEEE
Transactions on Engineering Management, pages 28–45, 1982.

[ANS+04] Walid Abdelmoez, Diaa Eldin M Nassar, Mark Shereshevsky,
Nicholay Gradetsky, Rajesh Gunnalan, Hany H Ammar, Bo Yu, and
Ali Mili. Error Propagation In Software Architectures. In 10th
{IEEE} International Software Metrics Symposium {(METRICS}
2004), 11-17 September 2004, Chicago, IL, {USA}, pages 384–393,
2004.

[AP98] Ritu Agarwal and Jayesh Prasad. A conceptual and operational
definition of personal innovativeness in the domain of information
technology. Information Systems Research, 9(2):204–215, 1998.

[APT12] Maria Carmela Annosi, Massimiliano Di Penta, and Genny Tortora.
Managing and assessing the risk of component upgrades. In
Proceedings of the Third International Workshop on Product LinE
Approaches in Software Engineering, {PLEASE} 2012, Zurich,
Switzerland, June 4, 2012, pages 9–12, 2012.

[AYD13] Nur Hani Zulkifli Abai, Jamaiah H. Yahaya, and Aziz Deraman. User
requirement analysis in data warehouse design: A review. Procedia
Technology, 11(Supplement C):801 – 806, 2013. 4th International
Conference on Electrical Engineering and Informatics, ICEEI 2013.

[bar] https://barro.github.io/2016/02/a-succesful-git-branching-model-
considered-harmful/.

[BB11] Joerg Bartholdt and Detlef Becker. Re-engineering of a hierarchical
product line. In Software Product Lines - 15th International
Conference, SPLC 2011, Munich, Germany, August 22-26, 2011,
pages 232–240, 2011.

[BBHL94] Barry W Boehm, Prasanta K Bose, Ellis Horowitz, and Ming June
Lee. Software requirements as negotiated win conditions.
In Proceedings of the First {IEEE} International Conference
on Requirements Engineering, {ICRE} ’94, Colorado Springs,
Colorado, USA, April 18-21, 1994, pages 74–83, 1994.

[BCC98] Sergey Berezin, Sergio Campos, and EdmundM. Clarke.
Compositional Reasoning in Model Checking. In Willem-
Paul de Roever, Hans Langmaack, and Amir Pnueli, editors,
Compositionality: The Significant Difference, volume 1536 of
Lecture Notes in Computer Science, pages 81–102. Springer Berlin
Heidelberg, 1998.

[BGvS10] Isela Macia Bertran, Alessandro Garcia, and Arndt von Staa.
Defining and Applying Detection Strategies for Aspect-Oriented

177

BIBLIOGRAPHY

Code Smells. In 24th Brazilian Symposium on Software Engineering,
{SBES} 2010, Salvador, Bahia, Brazil, September 27 - October 1,
2010, pages 60–69, 2010.

[Bla02] A. F. Blackwell. First steps in programming: a rationale for attention
investment models. In Proceedings IEEE 2002 Symposia on Human
Centric Computing Languages and Environments, pages 2–10, 2002.

[BLL08] Hongyu Pei Breivold, Stig Larsson, and Rikard Land. Migrating
industrial systems towards software product lines: Experiences and
observations through case studies. In 34th Euromicro Conference
on Software Engineering and Advanced Applications, SEAA 2008,
September 3-5, 2008, Parma, Italy, pages 232–239, 2008.

[BM14] Jorge Barreiros and Ana Moreira. A cover-based approach for
configuration repair. In 18th International Software Product Line
Conference, {SPLC} ’14, Florence, Italy, September 15-19, 2014,
pages 157–166, 2014.

[Böc05] Günter Böckle. Innovation Management for Product Line
Engineering Organizations. In Software Product Lines, 9th
International Conference, {SPLC} 2005, Rennes, France, September
26-29, 2005, Proceedings, pages 124–134, 2005.

[Boh96] Shawn A Bohner. Impact analysis in the software change process: a
year 2000 perspective. In 1996 International Conference on Software
Maintenance {(ICSM} ’96), 4-8 November 1996, Monterey, CA,
USA, Proceedings, pages 42–51, 1996.

[Bos01] Jan Bosch. Software product lines: Organizational alternatives.
In Proceedings of the 23rd International Conference on Software
Engineering, ICSE 2001, 12-19 May 2001, Toronto, Ontario,
Canada, pages 91–100, 2001.

[Bos02] Jan Bosch. Maturity and Evolution in Software Product Lines:
Approaches, Artefacts and Organization. In Software Product Lines,
Second International Conference, {SPLC} 2, San Diego, CA, USA,
August 19-22, 2002, Proceedings, pages 257–271, 2002.

[BP14] Goetz Botterweck and Andreas Pleuss. Evolution of Software
Product Lines. In Evolving Software Systems, pages 265–295. 2014.

[BPPK09] Goetz Botterweck, Andreas Pleuss, Andreas Polzer, and Stefan
Kowalewski. Towards feature-driven planning of product-line
evolution. In Proceedings of the First International Workshop on
Feature-Oriented Software Development, {FOSD} 2009, Denver,
Colorado, USA, October 6, 2009, pages 109–116, 2009.

178

BIBLIOGRAPHY

[BPS+12] Sebastian Barney, Kai Petersen, Mikael Svahnberg, Aybüke Aurum,
and Hamish T. Barney. Software quality trade-offs: A systematic
map. Information & Software Technology, 54(7):651–662, 2012.

[BPSP04] Danilo Beuche, Holger Papajewski, and Wolfgang Schröder-
Preikschat. Variability management with feature models. Sci.
Comput. Program., 53(3):333–352, 2004.

[BR00] Keith H Bennett and Václav Rajlich. Software maintenance and
evolution: a roadmap. In 22nd International Conference on on
Software Engineering, Future of Software Engineering Track, {ICSE}
2000, Limerick Ireland, June 4-11, 2000., pages 73–87, 2000.

[Bre] Danilo Breuche. Product line engineering.
https://productlines.wordpress.com/2011/12/20/strategies-for-
releases-development-and-maintenance-in-product-line-part-2-
release-and-maintenance/ Last accessed: 1 March, 2018.

[BSR03] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling
step-wise refinement. In International Conference on Software
Engineering (ICSE)., 2003.

[BTBK08] David Budgen, Mark Turner, Pearl Brereton, and Barbara
Kitchenham. Using mapping studies in software engineering. In
Proceedings of Psychology of Programming Interest Group (PPIG),
volume 8, pages 195–204, 2008.

[BTG12] Paulo Borba, Leopoldo Teixeira, and Rohit Gheyi. A theory of
software product line refinement. Theor. Comput. Sci., 455:2–30,
2012.

[CB11] Lianping Chen and Muhammad Ali Babar. A systematic review of
evaluation of variability management approaches in software product
lines. Information & Software Technology, 53(4):344–362, 2011.

[CBT+14] Rafael Capilla, Jan Bosch, Pablo Trinidad, Antonio Ruiz Cortés,
and Mike Hinchey. An overview of Dynamic Software Product
Line architectures and techniques: Observations from research and
industry. Journal of Systems and Software, 91:3–23, 2014.

[CCG+03] Ping Chen, Matt Critchlow, Akash Garg, Christopher van der
Westhuizen, and André van der Hoek. Differencing and Merging
within an Evolving Product Line Architecture. In Software Product-
Family Engineering, 5th International Workshop, {PFE} 2003,
Siena, Italy, November 4-6, 2003, Revised Papers, pages 269–281,
2003.

[CCJM12] Stephen Creff, Joël Champeau, Jean-Marc Jézéquel, and Arnaud
Monégier. Model-based product line evolution: an incremental

179

BIBLIOGRAPHY

growing by extension. In 16th International Software Product Line
Conference, SPLC ’12, Salvador, Brazil - September 2-7, 2012,
Volume 2, pages 107–114, 2012.

[CCS+12] Maxime Cordy, Andreas Classen, Pierre-Yves Schobbens, Patrick
Heymans, and Axel Legay. Managing evolution in software product
lines: a model-checking perspective. In Sixth International Workshop
on Variability Modelling of Software-Intensive Systems, Leipzig,
Germany, January 25-27, 2012. Proceedings, pages 183–191, 2012.

[CDG+12] Bruno Barbieri Pontes Cafeo, Francisco Dantas,
Alessandro Cavalcante Gurgel, Everton T Guimarães, Elder
Cirilo, Alessandro F Garcia, and Carlos José Pereira de Lucena.
Analysing the Impact of Feature Dependency Implementation on
Product Line Stability: An Exploratory Study. In 26th Brazilian
Symposium on Software Engineering, {SBES} 2012, Natal, Brazil,
September 23-28, 2012, pages 141–150, 2012.

[CdOW11] Chessman K F Corrêa, Toacy Cavalcante de Oliveira, and Cláudia
Maria Lima Werner. An analysis of change operations to achieve
consistency in model-driven software product lines. In Software
Product Lines - 15th International Conference, {SPLC} 2011,
Munich, Germany, August 22-26, 2011. Workshop Proceedings
(Volume 2), page 24, 2011.

[CGCS04] Yu Chen, Gerald C Gannod, James S Collofello, and Hessam S
Sarjoughian. Using Simulation to Facilitate the Study of Software
Product Line Evolution. In 7th International Workshop on Principles
of Software Evolution {(IWPSE} 2004), 6-7 September 2004, Kyoto,
Japan, pages 103–112, 2004.

[CGM14] Sven Casteleyn, Irene Garrigós, and Jose-Norberto Mazón. Ten
years of rich internet applications: A systematic mapping study, and
beyond. TWEB, 8(3):18:1–18:46, 2014.

[cha] Scott chacon’s blog. http://scottchacon.com/2011/08/31/github-
flow.html.

[CI-] Martin fowler blog. https://www.martinfowler.com/articles/continuousintegration.html.

[CKM+08] Ralf Carbon, Jens Knodel, Dirk Muthig, Gerald Meier, and Testo Ag.
Providing Feedback from Application to Family Engineering - The
Product Line Planning Game at the Testo AG. Proceeding of the 12th
International Software Product Line Conference (SPLC), (01):180–
189, 2008.

[CL01] Richard Cardone and Calvin Lin. Comparing Frameworks and
Layered Refinement. In Proceedings of the 23rd International
Conference on Software Engineering, {ICSE} 2001, 12-19 May 2001,
Toronto, Ontario, Canada, pages 285–294, 2001.

180

BIBLIOGRAPHY

[CN01a] Paul Clements and Linda Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley Professional, 2001.

[CN01b] Paul Clements and Linda M. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2001.

[CNLL15] Fabio Calefato, Roberto De Nicolò, Filippo Lanubile, and Fabrizio
Lippolis. Product Line Engineering for NGO Projects. pages 1–4,
2015.

[CoD] An automated git branching model. http://www.josra.org/blog/an-
automated-git-branching-strategy.html.

[DA15] Oscar Díaz and Cristobal Arellano. The augmented web: Rationales,
opportunities and challenges on browser-side transcoding. To appear
at ACM Transactions on the Web, 2015.

[Dan] Danfoss drives in the product line hall of fame. http://splc.
net/hall-of-fame/danfoss-drives/. Accessed: 2018-
02-23.

[Dav89] Fred D. Davis. Perceived usefulness, perceived ease of use, and
user acceptance of information technology. MIS Q., 13(3):319–340,
September 1989.

[DCB09] Benjamin Delaware, William R Cook, and Don Batory. Fitting the
Pieces Together: A Machine-checked Model of Safe Composition.
In Proceedings of the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC/FSE ’09, pages 243–
252, New York, NY, USA, 2009. ACM.

[dCM+11] Paulo Anselmo da Mota Silveira Neto, Ivan Do Carmo Machado,
John D McGregor, Eduardo Santana de Almeida, and Silvio Romero
de Lemos Meira. A systematic mapping study of software product
lines testing. Information and Software Technology, 53(5):407–423,
may 2011.

[DD08] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile
software development: A systematic review. Information & Software
Technology, 50(9-10):833–859, 2008.

[ddC+12] Paulo Anselmo da Mota Silveira Neto, Ivan do Carmo Machado,
Yguaratã Cerqueira Cavalcanti, Eduardo Santana de Almeida,
Vinicius Cardoso Garcia, and Silvio Romero de Lemos Meira.
An experimental study to evaluate a {SPL} architecture regression
testing approach. {IEEE} 13th International Conference on
Information Reuse {&} Integration, {IRI} 2012, Las Vegas, NV, USA,
August 8-10, 2012, pages 608–615, 2012.

181

BIBLIOGRAPHY

[DGRN10] Deepak Dhungana, Paul Grünbacher, Rick Rabiser, and Thomas
Neumayer. Structuring the modeling space and supporting evolution
in software product line engineering. Journal of Systems and
Software, 83(7):1108–1122, jul 2010.

[DKL09] Slawomir Duszynski, Jens Knodel, and Mikael Lindvall. {SAVE:}
Software Architecture Visualization and Evaluation. In 13th
European Conference on Software Maintenance and Reengineering,
{CSMR} 2009, Architecture-Centric Maintenance of Large-SCale
Software Systems, Kaiserslautern, Germany, 24-27 March 2009,
pages 323–324, 2009.

[DKO+97] David Dikel, David Kane, Steve Ornburn, William Loftus, and Jim
Wilson. Applying Software Product-Line Architecture. {IEEE}
Computer, 30(8):49–55, 1997.

[DKvDP15] Nicolas Dintzner, Uirá Kulesza, Arie van Deursen, and Martin
Pinzger. Evaluating Feature Change Impact on Multi-product Line
Configurations Using Partial Information. In Software Reuse for
Dynamic Systems in the Cloud and Beyond - 14th International
Conference on Software Reuse, {ICSR} 2015, Miami, FL, USA,
January 4-6, 2015. Proceedings, pages 1–16, 2015.

[DKZH12] Tejinder Dhaliwal, Foutse Khomh, Ying Zou, and Ahmed E Hassan.
Recovering commit dependencies for selective code integration in
software product lines. In 28th {IEEE} International Conference on
Software Maintenance, {ICSM} 2012, Trento, Italy, September 23-
28, 2012, pages 202–211, 2012.

[DLHE14] Andreas Demuth, Roberto E Lopez-Herrejon, and Alexander
Egyed. Automatic and incremental product optimization for software
product lines. Proceeding of the 7th International Conference on
Software Testing, Verification and Validation (ICST), pages 31–40,
2014.

[DLS05] Gan Deng, Gunther Lenz, and Douglas C Schmidt. Addressing
Domain Evolution Challenges in Software Product Lines. In
Satellite Events at the MoDELS 2005 Conference, MoDELS
2005 International Workshops, Doctoral Symposium, Educators
Symposium, Montego Bay, Jamaica, October 2-7, 2005, Revised
Selected Papers, pages 247–261, 2005.

[DNGR08] Deepak Dhungana, Thomas Neumayer, Paul Grünbacher, and
Rick Rabiser. Supporting Evolution in Model-Based Product
Line Engineering. In Software Product Lines, 12th International
Conference, {SPLC} 2008, Limerick, Ireland, September 8-12, 2008,
Proceedings, pages 319–328, 2008.

182

BIBLIOGRAPHY

[DPG14] Jessica Díaz, Jennifer Pérez, and Juan Garbajosa. Agile product-line
architecting in practice: A case study in smart grids. Information &
Software Technology, 56(7):727–748, 2014.

[DRB+13] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski,
Martin Becker, and Krzysztof Czarnecki. An exploratory study of
cloning in industrial software product lines. Proceedings of the
European Conference on Software Maintenance and Reengineering,
CSMR, pages 25–34, 2013.

[DRC13] Robert Dyer, Hridesh Rajan, and Yuanfang Cai. Language
Features for Software Evolution and Aspect-Oriented Interfaces:
An Exploratory Study. T. Aspect-Oriented Software Development,
10:148–183, 2013.

[DSB05] Sybren Deelstra, Marco Sinnema, and Jan Bosch. Product derivation
in software product families: A case study. Journal of Systems and
Software, 74(2 SPEC. ISS.):173–194, 2005.

[DSB09] Sybren Deelstra, Marco Sinnema, and Jan Bosch. Variability
assessment in software product families. Information and Software
Technology, 51(1):1487–1510, 2009.

[Duv07] Continuous Integration: Improving Software Quality and Reducing
Risk. Addison Wesley, 2007.

[EBN02] Michael D. Ernst, Greg J. Badros, and David Notkin. An empirical
analysis of C preprocessor use. IEEE Trans. Software Eng.,
28(12):1146–1170, 2002.

[ER10] Emelie Engström and Per Runeson. A Qualitative Survey
of Regression Testing Practices. In Proceedings of the 11th
International Conference on Product-Focused Software Process
Improvement, PROFES’10, pages 3–16, Berlin, Heidelberg, 2010.
Springer-Verlag.

[ER11] Emelie Engström and Per Runeson. Software Product Line Testing -
A Systematic Mapping Study. Inf. Softw. Technol., 53(1):2–13, 2011.

[FA75] Martin Fishbein and Icek Ajzen. Reading, Mass Addison-Wesley
Pub. Co., 1975.

[Fav97] Jean-Marie Favre. Understanding-in-the-large. In 5th International
Workshop on Program Comprehension (WPC ’97), May 28-30, 1997
- Dearborn, MI, USA, pages 29–38, 1997.

[FCS+08] Eduardo Figueiredo, Nélio Cacho, Cláudio Sant’Anna, Mario
Monteiro, Uirá Kulesza, Alessandro Garcia, Sérgio Soares,
Fabiano Cutigi Ferrari, Safoora Shakil Khan, Fernando Castor Filho,
and Francisco Dantas. Evolving software product lines with aspects:

183

BIBLIOGRAPHY

an empirical study on design stability. 30th International Conference
on Software Engineering {(ICSE} 2008), Leipzig, Germany, May 10-
18, 2008, pages 261–270, 2008.

[FGFd14] Gabriel Coutinho Sousa Ferreira, Felipe Nunes Gaia, Eduardo
Figueiredo, and Marcelo de Almeida Maia. On the use of feature-
oriented programming for evolving software product lines - {A}
comparative study. Sci. Comput. Program., 93:65–85, 2014.

[FLLE16] Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and
Alexander Egyed. Enhancing clone-and-own with systematic reuse
for developing software variants. In Software Engineering 2016,
Fachtagung des GI-Fachbereichs Softwaretechnik, 23.-26. Februar
2016, Wien, Österreich, pages 95–96, 2016.

[FSK+16] Thomas Fogdal, Helene Scherrebeck, Juha Kuusela, Martin Becker,
and Bo Zhang. Ten years of product line engineering at danfoss:
lessons learned and way ahead. In Proceedings of the 20th
International Systems and Software Product Line Conference, SPLC
2016, Beijing, China, September 16-23, 2016, pages 252–261, 2016.

[FV03] D. Faust and Chris Verhoef. Software product line migration and
deployment. Softw., Pract. Exper., 33(10):933–955, 2003.

[GCC+03] Akash Garg, Matt Critchlow, Ping Chen, Christopher van der
Westhuizen, and André van der Hoek. An Environment
for Managing Evolving Product Line Architectures. In 19th
International Conference on Software Maintenance {(ICSM} 2003),
The Architecture of Existing Systems, 22-26 September 2003,
Amsterdam, The Netherlands, page 358, 2003.

[GF11] Nadia Gámez and Lidia Fuentes. Software Product Line Evolution
with Cardinality-Based Feature Models. In Top Productivity through
Software Reuse - 12th International Conference on Software Reuse,
{ICSR} 2011, Pohang, South Korea, June 13-17, 2011. Proceedings,
pages 102–118, 2011.

[GF13] Nadia Gámez and Lidia Fuentes. Architectural evolution of
FamiWare using cardinality-based feature models. Information and
Software Technology, 55(3):563–580, 2013.

[GFFd14] Felipe Nunes Gaia, Gabriel Coutinho Sousa Ferreira, Eduardo
Figueiredo, and Marcelo de Almeida Maia. A quantitative and
qualitative assessment of aspectual feature modules for evolving
software product lines. Sci. Comput. Program., 96:230–253, 2014.

[gita] Github flow. https://githubflow.github.io/.

[Gitb] A successful git branching model. http://nvie.com/posts/a-
successful-git-branching-model.

184

BIBLIOGRAPHY

[GLA+09] Dharmalingam Ganesan, Mikael Lindvall, Christopher Ackermann,
David McComas, and Maureen Bartholomew. Verifying architectural
design rules of the flight software product line. In Software Product
Lines, 13th International Conference, {SPLC} 2009, San Francisco,
California, USA, August 24-28, 2009, Proceedings, pages 161–170,
2009.

[GP06] Jilles Van Gurp and Christian Prehofer. Version management tools
as a basis for integrating Product Derivation and Software Product
Families. SPLC, 2006.

[GpKL14] Thomas Devine Katerina Goseva-popstajanova, Sandeep Krishnan,
and Robyn R Lutz. Assessment and cross-product prediction of SPL
quality: accounting for reuse across products , over multiple releases.
Automated Software Engineering, 2014.

[Gru07] Boris Gruschko. Changes classification in {M2} models. In Software
Engineering 2007 - Beitr{ä}ge zu den Workshops, Fachtagung des
GI-Fachbereichs Softwaretechnik, 27.-30.3.2007 in Hamburg, pages
277–280, 2007.

[GS03] Jack Greenfield and Keith Short. Software factories: assembling
applications with patterns, models, frameworks and tools. In
Companion of the 18th Annual {ACM} {SIGPLAN} Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, {OOPSLA} 2003, October 26-30, 2003, Anaheim, CA,
{USA}, pages 16–27, 2003.

[GSLC14] Susan P. Gregg, Rick Scharadin, Eric Legore, and Paul Clements.
Lessons from AEGIS : Organizational and Governance Aspects
of a Major Product Line in a Multi-Program Environment. In
Proceedings of the 18th International Systems and Software Product
Line Conference, SPLC, 2014.

[GVSZ14] Georgios Gousios, Bogdan Vasilescu, Alexander Serebrenik, and
Andy Zaidman. Lean ghtorrent: Github data on demand. In 11th
Working Conference on Mining Software Repositories, MSR 2014,
Proceedings, May 31 - June 1, 2014, Hyderabad, India, pages 384–
387, 2014.

[GWTB12] Jianmei Guo, Yinglin Wang, Pablo Trinidad, and David Benavides.
Expert Systems with Applications Consistency maintenance for
evolving feature models. Expert Systems With Applications,
39(5):4987–4998, 2012.

[Hev07] Alan R. Hevner. The three cycle view of design science.
Scandinavian J. Inf. Systems, 19(2):4, 2007.

185

BIBLIOGRAPHY

[HF10] Jez Humble and David Farley. Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment Automation.
Addison-Wesley Signature Series, 2010.

[HFG+10] Wolfgang Heider, Roman Froschauer, Paul Grünbacher, Rick
Rabiser, and Deepak Dhungana. Simulating evolution in model-
based product line engineering. Information and Software
Technology, 52(7):758–769, 2010.

[HGR10] Wolfgang Heider, Paul Grünbacher, and Rick Rabiser. Negotiation
constellations in reactive product line evolution. In Fourth
International Workshop on Software Product Management,
{IWSPM} 2010, Sydney, NSW, Australia, September 27, 2010,
pages 63–66, 2010.

[HH07] Scott A Hendrickson and André Van Der Hoek. Modeling Product
Line Architectures through Change Sets and Relationships. In 29th
International Conference on Software Engineering (ICSE), pages
189–198, 2007.

[HMO+08] Øystein Haugen, Birger Møller-Pedersen, Jon Oldevik, Gøran K.
Olsen, and Andreas Svendsen. Adding standardized variability
to domain specific languages. In Software Product Lines, 12th
International Conference, SPLC 2008, Limerick, Ireland, September
8-12, 2008, Proceedings, pages 139–148, 2008.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram.
Design science in information systems research. MIS Quarterly,
28(1):75–105, 2004.

[Hol12] Hannes Holdschick. Challenges in the evolution of model-based
software product lines in the automotive domain. In 4th International
Workshop on Feature-Oriented Software Development, {FOSD} ’12,
Dresden, Germany - September 24 - 25, 2012, pages 70–73, 2012.

[HPMFA+15] Ruben Heradio, Hector Perez-Morago, David Fernandez-Amoros,
Francisco Javier Cabrerizo, and Enrique Herrera-Viedma. A
Bibliometric Analysis of 20 Years of Research on Software Product
Lines. Information and Software Technology, 2015.

[HR10] W. Heider and R. Rabiser. Tool Support for Evolution of Product
Lines through Rapid Feedback from Application Engineering.
Proceedings of the 4th International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS), pages 167–170,
2010.

[HRG12] Wolfgang Heider, Rick Rabiser, and Paul Grünbacher. Facilitating
the evolution of products in product line engineering by capturing
and replaying configuration decisions. International Journal on
Software Tools for Technology Transfer, 14(5):613–630, 2012.

186

BIBLIOGRAPHY

[HRGL12] Wolfgang Heider, Rick Rabiser, Paul Grünbacher, and Daniela
Lettner. Using regression testing to analyze the impact of changes
to variability models on products. In 16th International Software
Product Line Conference, {SPLC} ’12, Salvador, Brazil - September
2-7, 2012, Volume 1, pages 196–205, 2012.

[HSB] Robert Hellebrand, Michael Schulze, and Martin Becker. A
Branching Model for Variability-Affected Cyber-Physical Systems.

[HVLG12] Wolfgang Heider, Michael Vierhauser, Daniela Lettner, and Paul
Grünbacher. A Case Study on the Evolution of a Component-based
Product Line. In Proceedings of the Joint 10th Working IEEE/IFIP
Conference on Software Architecture and 6th European Conference
on Software Architecture (WICSA/ECSA), pages 1–10. Ieee, 2012.

[HZS+16] Claus Hunsen, Bo Zhang, Janet Siegmund, Christian Kästner, Olaf
Leßenich, Martin Becker, and Sven Apel. Preprocessor-based
variability in open-source and industrial software systems: An
empirical study, volume 21. 2016.

[IKH14] Mari Inoki, Takayuki Kitagawa, and Shinichi Honiden. Application
of requirements prioritization decision rules in software product line
evolution. In 5th {IEEE} International Workshop on Requirements
Prioritization and Communication, RePriCo 2014, Karlskrona,
Sweden, August 26, 2014, pages 1–10, 2014.

[IMY+16] Takahiro Iida, Masahiro Matsubara, Kentaro Yoshimura, Hideyuki
Kojima, and Kimio Nishino. PLE for automotive braking
system with management of impacts from equipment interactions.
Proceedings of the 20th International Systems and Software Product
Line Conference on - SPLC ’16, pages 232–241, 2016.

[JB09] Hans Peter Jepsen and Danilo Beuche. Running a software product
line: standing still is going backwards. In Software Product
Lines, 13th International Conference, {SPLC} 2009, San Francisco,
California, USA, August 24-28, 2009, Proceedings, pages 101–110,
2009.

[JBAC15] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof
Czarnecki. Maintaining feature traceability with embedded
annotations. In Proceedings of the 19th International Conference
on Software Product Line, {SPLC} 2015, Nashville, TN, USA, July
20-24, 2015, pages 61–70, 2015.

[Jen07] P Jensen. Experiences with product line development of multi-
discipline analysis software at overwatch textron systems. In 11th
International Software Product Line Conference, SPLC 2007, pages
35–43, Overwatch Textron Systems, 2007.

187

BIBLIOGRAPHY

[JF88] Ralph E Johnson and Brian Foote. Designing reusable classes.
Journal of object-oriented programming, 1(2):22–35, 1988.

[JP14] Paul Johannesson and Erik Perjons. An Introduction to Design
Science. Springer, 2014.

[JRG+12] Markus Jahn, Rick Rabiser, Paul Grünbacher, Markus Löberbauer,
Reinhard Wolfinger, and Hanspeter Mössenböck. Supporting Model
Maintenance in Component-based Product Lines. In 2012 Joint
Working {IEEE/IFIP} Conference on Software Architecture and
European Conference on Software Architecture, {WICSA/ECSA}
2012, Helsinki, Finland, August 20-24, 2012, pages 21–30, 2012.

[JT11] Stan Jarzabek and Ha Duy Trung. Flexible generators for software
reuse and evolution. In Proceedings of the 33rd International
Conference on Software Engineering, {ICSE} 2011, Waikiki,
Honolulu , HI, USA, May 21-28, 2011, pages 920–923, 2011.

[JZZZ08] Michael Jiang, Jing Zhang, Hong Zhao, and Yuanyuan Zhou.
Maintaining software product lines - an industrial practice. In 24th
{IEEE} International Conference on Software Maintenance {(ICSM}
2008), September 28 - October 4, 2008, Beijing, China, pages 444–
447, 2008.

[Kan90] Kyo C Kang. Feature-oriented Domain Analysis (FODA): Feasibility
Study ; Technical Report CMU/SEI-90-TR-21 - ESD-90-TR-222.
Software Engineering Inst., Carnegie Mellon Univ., 1990.

[KB12] Anil Kumar and Bernd Bruegge. Issue-based variability
management. Information and Software Technology, 54(9):933–950,
2012.

[KB13] Anil Kumar and Bernd Brügge. A mixed-method approach for the
empirical evaluation of the issue-based variability modeling. Journal
of Systems and Software, 86(7):1831–1849, 2013.

[KC05] Chang Hwan Peter Kim and Krzysztof Czarnecki. Synchronizing
Cardinality-Based Feature Models and Their Specializations. In
Model Driven Architecture - Foundations and Applications, First
European Conference, {ECMDA-FA} 2005, Nuremberg, Germany,
November 7-10, 2005, Proceedings, pages 331–348, 2005.

[KC07] Barbara Kitchenham and Stuart Charters. Guidelines for performing
{S}ystematic {L}iterature {R}eviews in {S}oftware {E}ngineering.
Technical Report EBSE 2007-001, Keele University and Durham
University Joint Report, 2007.

[KC13] Charles Krueger and Paul Clements. Systems and Software Product
Line Engineering. Encyclopedia of Software Engineering, 2013.

188

BIBLIOGRAPHY

[KDB+15a] Eirini Kalliamvakou, Daniela Damian, Kelly Blincoe, Leif
Singer, and Daniel M. German. Open source-style collaborative
development practices in commercial projects using GitHub.
Proceedings - International Conference on Software Engineering,
1:574–585, 2015.

[KDB+15b] Eirini Kalliamvakou, Daniela E. Damian, Kelly Blincoe, Leif
Singer, and Daniel M. Germán. Open source-style collaborative
development practices in commercial projects using github. In 37th
IEEE/ACM International Conference on Software Engineering, ICSE
2015, Florence, Italy, May 16-24, 2015, Volume 1, pages 574–585,
2015.

[KG09] Mahvish Khurum and Tony Gorschek. A systematic review of
domain analysis solutions for product lines. Journal of Systems and
Software, 82(12):1982–2003, 2009.

[KH12] Michael Kircher and Peter Hofman. Combining systematic reuse
with Agile development. Proceedings of the 16th International
Software Product Line Conference on - SPLC ’12 -volume 1, 1:215,
2012.

[KJK+06] Ronny Kolb, Isabel John, Jens Knodel, Dirk Muthig, Uwe Haury,
and Gerald Meier. Experiences with product line development of
embedded systems at testo AG. Proceedings - 10th International
Software Product Line Conference, SPLC 2006, (01):172–181, 2006.

[Kla08] Holger Eichelberger Klaus Schmid. A Requirements-Based
Taxonomy of Software Product Line Evolution. Proceedings of the
Third International ERCIM Symposium on Software Evolution, 8,
2008.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect-Oriented Programming. In ECOOP, pages 220–242. 1997.

[KMNL06] Jens Knodel, Dirk Muthig, Matthias Naab, and Mikael Lindvall.
Static evaluation of software architectures. In 10th European
Conference on Software Maintenance and Reengineering (CSMR
2006), 22-24 March 2006, Bari, Italy, pages 279–294, 2006.

[KR02] Ralph Kimball and Margy Ross. The data warehouse toolkit: the
complete guide to dimensional modeling, 2nd Edition. Wiley, 2002.

[KR13] Reza Karimpour and Günther Ruhe. Bi-criteria genetic search for
adding new features into an existing product line. In 1st International
Workshop on Combining Modelling and Search-Based Software
Engineering, CMSBSE at ICSE 2013, San Francisco, CA, USA, May
20, 2013, pages 34–38, 2013.

189

BIBLIOGRAPHY

[Kru01] Charles W Krueger. Easing the Transition to Software Mass
Customization. In Software Product-Family Engineering, 4th
International Workshop, {PFE} 2001, Bilbao, Spain, October 3-5,
2001, Revised Papers, pages 282–293, 2001.

[Kru03] Charles W. Krueger. Towards a taxonomy for software product
lines. In Software Product-Family Engineering, 5th International
Workshop, PFE 2003, Siena, Italy, November 4-6, 2003, Revised
Papers, pages 323–331, 2003.

[Kru06] Charles W. Krueger. New methods in software product line practice.
Commun. ACM, 49(12):37–40, 2006.

[KS94] Maren Krone and Gregor Snelting. On the Inference of Configuration
Structures from Source Code. In Proceedings of the 16th
International Conference on Software Engineering, Sorrento, Italy,
May 16-21, 1994., pages 49–57, 1994.

[KSK08] George Kakarontzas, Ioannis Stamelos, and Panagiotis Katsaros.
Product Line Variability with Elastic Components and Test-Driven
Development. In 2008 International Conferences on Computational
Intelligence for Modelling, Control and Automation {(CIMCA}
2008), Intelligent Agents, Web Technologies and Internet Commerce
{(IAWTIC} 2008), Innovation in Software Engineering {(ISE} 2008),
10-12 December, pages 146–151, 2008.

[KSL+13] Sandeep Krishnan, Chris Strasburg, Robyn R Lutz, Katerina Goseva-
popstojanova, and Karin S Dorman. Predicting failure-proneness
in an evolving software product line. Information and Software
Technology, 55(8):1479–1495, 2013.

[KSLG11] Sandeep Krishnan, Chris Strasburg, Robyn R. Lutz, and Katerina
Goseva-Popstojanova. Are change metrics good predictors for
an evolving software product line? In Proceedings of the
7th International Conference on Predictive Models in Software
Engineering, PROMISE 2011, Banff, Alberta, Canada, September
20-21, 2011, page 7, 2011.

[KSS15] Michael Käßmeyer, Michael Schulze, and Markus Schurius. A
process to support a systematic change impact analysis of variability
and safety in automotive functions. In Proceedings of the 19th
International Conference on Software Product Line, {SPLC} 2015,
Nashville, TN, USA, July 20-24, 2015, pages 235–244, 2015.

[KST+14] R Kodama, J Shimabukuro, Y Takagi, S Koizumi, and S Tano.
Experiences with commonality control procedures to develop clinical
instrument system. 18th International Software Product Line
Conference, SPLC 2014, 1:254–263, 2014.

190

BIBLIOGRAPHY

[KTvM+99] Barbara A Kitchenham, Guilherme H Travassos, Anneliese von
Mayrhauser, Frank Niessink, Norman F Schneidewind, Janice
Singer, Shingo Takada, Risto Vehvilainen, and Hongji Yang.
Towards an Ontology of Software Maintenance. Journal of Software
Maintenance, 11(6):365–389, 1999.

[LBd+13] Luanna Lopes Lobato, Thiago Jabur Bittar, Paulo Anselmo da
Mota Silveira Neto, Ivan do Carmo Machado, Eduardo Santana
de Almeida, and Silvio Romero de Lemos Meira. Risk Management
in Software Product Line Engineering: a Mapping Study.
International Journal of Software Engineering and Knowledge
Engineering, 23(4):523–558, 2013.

[LC13] Miguel A Laguna and Yania Crespo. A systematic mapping study on
software product line evolution: From legacy system reengineering
to product line refactoring. Sci. Comput. Program., 78(8):1010–
1034, 2013.

[LDSL07] Jing Liu, Josh Dehlinger, Hongyu Sun, and Robyn R Lutz. State-
Based Modeling to Support the Evolution and Maintenance of
Safety-Critical Software Product Lines. In 14th Annual {IEEE}
International Conference and Workshop on Engineering of Computer
Based Systems {(ECBS} 2007), 26-29 March 2007, Tucson, Arizona,
{USA}, pages 596–608, 2007.

[LG15] Daniela Lettner and Paul Grünbacher. Using Feature Feeds to
Improve Developer Awareness in Software Ecosystem Evolution.
Proceedings of the 9th International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS ’15), pages 11–18,
2015.

[Liv11] Steve Livengood. Issues in software product line evolution:
complex changes in variability models. In Proceedings of the 2nd
International Workshop on Product Line Approaches in Software
Engineering, {PLEASE} 2011, Waikiki, Honolulu, HI, USA, May 22-
23, 2011, pages 6–9, 2011.

[LLSG12] Sascha Lity, Malte Lochau, Ina Schaefer, and Ursula Goltz. Delta-
oriented model-based {SPL} regression testing. In Proceedings of
the Third International Workshop on Product LinE Approaches in
Software Engineering, {PLEASE} 2012, Zurich, Switzerland, June 4,
2012, pages 53–56, 2012.

[LP07] Felix Loesch and Erhard Ploedereder. Restructuring Variability
in Software Product Lines using Concept Analysis of Product
Configurations. In 11th European Conference on Software
Maintenance and Reengineering, Software Evolution in Complex
Software Intensive Systems, {CSMR} 2007, 21-23 March 2007,
Amsterdam, The Netherlands, pages 159–170, 2007.

191

BIBLIOGRAPHY

[LRZJ04] Neil Loughran, Awais Rashid, Weishan Zhang, and Stan Jarzabek.
Supporting Product Line Evolution With Framed Aspects. In
Proceedings of the 3rd workshop on Aspects, components, and
patterns for infrastructure software (ACP4IS), pages 22–26, 2004.

[MAI12] Sonia Montagud, Silvia Abrahão, and Emilio Insfrán. A systematic
review of quality attributes and measures for software product lines.
Software Quality Journal, 20(3-4):425–486, 2012.

[MARC13] Alexandr Murashkin, Michal Antkiewicz, Derek Rayside, and
Krzysztof Czarnecki. Visualization and exploration of optimal
variants in product line engineering. In 17th International Software
Product Line Conference, {SPLC} 2013, Tokyo, Japan - August 26 -
30, 2013, pages 111–115, 2013.

[MBKM08] Thilo Mende, Felix Beckwermert, Rainer Koschke, and Gerald
Meier. Supporting the Grow-and-Prune Model in Software Product
Lines Evolution Using Clone Detection. In 12th European
Conference on Software Maintenance and Reengineering, {CSMR}
2008, April 1-4, 2008, Athens, Greece, pages 163–172, 2008.

[Mcg03] John D Mcgregor. The Evolution of Product Line Assets. Technical
Report. Carnegie Mellon University, Software Engineering Institute,
10(CMU/SEI-2003-TR-005), 2003.

[McG07] John McGregor. CM - configuration change management. Journal
of Object Technology, 6(1):7–15, 2007.

[MCNY07] Mikyeong Moon, Heung Seok Chae, Taewoo Nam, and Keunhyuk
Yeom. A metamodeling approach to tracing variability between
requirements and architecture in software product lines. In Seventh
International Conference on Computer and Information Technology
(CIT 2007), October 16-19, 2007, University of Aizu, Fukushima,
Japan, pages 927–933, 2007.

[McV15] Larry McVoy. Preliminary product line support in BitKeeper.
In Proceedings of the 19th International Conference on Software
Product Line, {SPLC} 2015, Nashville, TN, USA, July 20-24, 2015,
pages 245–252, 2015.

[MD15] Leticia Montalvillo and Oscar Díaz. Tuning github for SPL
development: branching models & repository operations for product
engineers. In Proceedings of the 19th International Conference on
Software Product Line, SPLC 2015, Nashville, TN, USA, July 20-24,
2015, pages 111–120, 2015.

[MD16] Leticia Montalvillo and Oscar Díaz. Requirement-driven Evolution
in Software Product Lines: A Systematic Mapping Study. The
Journal of Systems and Software, 2016.

192

BIBLIOGRAPHY

[MDA17] Leticia Montalvillo, Oscar Díaz, and Maider Azanza. Visualizing
product customization efforts for spotting SPL reuse opportunities.
In Proceedings of the 21st International Systems and Software
Product Line Conference, SPLC 2017, Volume B, Sevilla, Spain,
September 25-29, 2017, pages 73–80, 2017.

[mer] Ward Cunningham. Integration Hell. http://c2.com/cgi/
wiki?IntegrationHell. Accessed: 2018-03-26.

[MKR94] K.R.S. Murthy, Anantha Kadur, and Padma Rao. A holistic
approach to product marketability measurements-the pmm approach.
In Engineering Management Conference, 1994. ’Management in
Transition: Engineering a Changing World’, Proceedings of the 1994
IEEE International, pages 323–329, 1994.

[MMCdA14] Ivan Do Carmo Machado, John D McGregor, Yguaratã Cerqueira
Cavalcanti, and Eduardo Santana de Almeida. On strategies for
testing software product lines: A systematic literature review.
Information and Software Technology, 56(10):1183–1199, oct 2014.

[MNSD17] Shane McKee, Nicholas Nelson, Anita Sarma, and Danny
Dig. Software practitioner perspectives on merge conflicts and
resolutions. In 2017 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2017, Shanghai, China,
September 17-22, 2017, pages 467–478, 2017.

[MPC01] Kieran Mathieson, Eileen Peacock, and Wynne W. Chin. Extending
the technology acceptance model: the influence of perceived user
resources. DATA BASE, 32(3):86–112, 2001.

[MPK12] Daniel Merschen, Julian Pott, and Stefan Kowalewski. Integration
and Analysis of Design Artefacts in Embedded Software
Development. In 36th Annual {IEEE} Computer Software and
Applications Conference Workshops, {COMPSAC} 2012, Izmir,
Turkey, July 16-20, 2012, pages 503–508, 2012.

[MPT07] Jose-Norberto Mazón, Jesús Pardillo, and Juan Trujillo. A model-
driven goal-oriented requirement engineering approach for data
warehouses. In Advances in Conceptual Modeling - Foundations and
Applications, ER 2007 Workshops CMLSA, FP-UML, ONISW, QoIS,
RIGiM,SeCoGIS, Auckland, New Zealand, November 5-9, 2007,
Proceedings, pages 255–264, 2007.

[MV09] Radoslav Menkyna and Valentino Vranic. Aspect-Oriented
Change Realization Based on Multi-Paradigm Design with Feature
Modeling. In Advances in Software Engineering Techniques
- 4th {IFIP} {TC} 2 Central and East European Conference
on Software Engineering Techniques, {CEE-SET} 2009, Krakow,

193

BIBLIOGRAPHY

Poland, October 12-14, 2009. Revised Selected Papers, pages 40–53,
2009.

[MW11] Bartosz Michalik and Danny Weyns. Towards a Solution for Change
Impact Analysis of Software Product Line Products. In 9th Working
{IEEE/IFIP} Conference on Software Architecture, {WICSA} 2011,
Boulder, Colorado, USA, June 20-24, 2011, pages 290–293, 2011.

[MWB11] Bartosz Michalik, Danny Weyns, and Wim Van Betsbrugge. On
the problems with evolving Egemin’s software product line. In
Proceedings of the 2nd International Workshop on Product Line
Approaches in Software Engineering, {PLEASE} 2011, Waikiki,
Honolulu, HI, USA, May 22-23, 2011, pages 15–19, 2011.

[MYBM91] Allan MacLean, Richard M Young, Victoria M E Bellotti, and
Thomas P Moran. Questions, Options, and Criteria: Elements of
Design Space Analysis. Hum.-Comput. Interact., 6(3):201–250,
1991.

[NNK16] Motoi Nagamine, Tsuyoshi Nakajima, and Noriyoshi Kuno. A
case study of applying software product line engineering to the air
conditioner domain. Proceedings of the 20th International Systems
and Software Product Line Conference on - SPLC ’16, pages 220–
226, 2016.

[NRG08] Muhammad Asim Noor, Rick Rabiser, and Paul Grünbacher. Agile
product line planning: A collaborative approach and a case study.
Journal of Systems and Software, 81(6):868–882, 2008.

[PBD+12] Andreas Pleuss, Goetz Botterweck, Deepak Dhungana, Andreas
Polzer, and Stefan Kowalewski. Model-driven support for product
line evolution on feature level. Journal of Systems and Software,
85(10):2261–2274, oct 2012.

[PBvdL05a] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software
Product Line Engineering - Foundations, Principles, and Techniques.
Springer, 2005.

[PBvdL05b] Klaus Pohl, Günter Böckle, and Frank J van der Linden. Software
Product Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[PCF14] J A Pereira, K Constantino, and E Figueiredo. A systematic literature
review of software product line management tools. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 8919:73–89,
2014.

194

BIBLIOGRAPHY

[PDŠ12] Paulius Paskevicius, Robertas Damasevicius, and Vytautas Štuikys.
Change impact analysis of feature models. Communications in
Computer and Information Science, 319 CCIS:108–122, 2012.

[PFMM08a] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson.
Systematic Mapping Studies in Software Engineering. In
Proceedings of the 12th International Conference on Evaluation
and Assessment in Software Engineering, EASE’08, pages 68–77,
Swinton, UK, UK, 2008. British Computer Society.

[PFMM08b] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson.
Systematic Mapping Studies in Software Engineering. 12th
International Conference on Evaluation and Assessment in Software
Engineering, {EASE} 2008, University of Bari, Italy, 26-27 June
2008, 2008.

[PGT+13] Leonardo Passos, Jianmei Guo, Leopoldo Teixeira, Krzysztof
Czarnecki, Andrzej Wasowski, and Paulo Borba. Coevolution of
variability models and related artifacts: A case study from the Linux
kernel. ACM International Conference Proceeding Series, pages 91–
100, 2013.

[PHS11] Christian Pichler, Christian Huemer, and Michael Strommer.
Evolution patterns for business document models. In Software
Product Lines - 15th International Conference, {SPLC} 2011,
Munich, Germany, August 22-26, 2011. Workshop Proceedings
(Volume 2), page 21, 2011.

[Pla] {Planning Game} Agile Practice. http://c2.com/cgi/wiki?
PlanningGame.Lastvisited:2015-12-11. Accessed:
2018-02-23.

[PO97] T Troy Pearse and Paul W Oman. Experiences Developing and
Maintaining Software in a Multi-Platform Environment. In ICSM,
pages 270–277, 1997.

[PPF+14] Juliana Padilha, Juliana Alves Pereira, Eduardo Figueiredo,
Jussara M Almeida, Alessandro Garcia, and Cláudio Sant’Anna.
On the Effectiveness of Concern Metrics to Detect Code Smells:
An Empirical Study. In Proceedings of the 26th International
Conference on Advanced Information Systems Engineering (CAiSE),
pages 656–671, 2014.

[Pre97] Christian Prehofer. Feature-Oriented Programming: {A} Fresh Look
at Objects. In ECOOP, pages 419–443, 1997.

[PSW11] Shaun Phillips, Jonathan Sillito, and Rob Walker. Branching and
Merging: An Investigation into Current Version Control Practices.
Proceedings of the 4th International Workshop on Cooperative and

195

BIBLIOGRAPHY

Human Aspects of Software Engineering SE - CHASE ’11, pages 9–
15, 2011.

[PTS+16] Tristan Pfofe, Thomas Thüm, Sandro Schulze, Wolfram Fenske, and
Ina Schaefer. Synchronizing software variants with variantsync.
Proceedings of the 20th International Systems and Software Product
Line Conference on - SPLC ’16, pages 329–332, 2016.

[pur] Pure::variants. variant management tool from pure-systems
company. http://www.pure-systems.com/products/
pure-variants-9.html. Accessed: 2018-02-23.

[PVK15] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines
for conducting systematic mapping studies in software engineering:
An update. Information and Software Technology, 64:1–18, 2015.

[PW09] Kai Petersen and Claes Wohlin. Context in industrial software
engineering research. 2009 3rd International Symposium on
Empirical Software Engineering and Measurement, ESEM 2009,
pages 401–404, 2009.

[PYZ11] Xin Peng, Yijun Yu, and Wenyun Zhao. Analyzing Evolution
of Variability in a Software Product Line: From Contexts and
Requirements to Features. Information and Software Technology,
53(7):707–721, 2011.

[QPB+14] Clément Quinton, Andreas Pleuss, Daniel Le Berre, Laurence
Duchien, and Goetz Botterweck. Consistency checking for the
evolution of cardinality-based feature models. Proceedings of the
18th International Software Product Line Conference (SPLC), pages
122–131, 2014.

[RB08] Márcio Ribeiro and Paulo Borba. Recommending Refactorings
when Restructuring Variabilities in Software Product Lines. In
Proceedings of the 2Nd Workshop on Refactoring Tools, WRT ’08,
pages 8:1—-8:4, New York, NY, USA, 2008. ACM.

[RBK14] Márcio Ribeiro, Paulo Borba, and Christian Kästner. Feature
maintenance with emergent interfaces. Proceedings of the 36th
International Conference on Software Engineering - ICSE 2014,
pages 989–1000, 2014.

[RCC13] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. Managing
Cloned Variants: A Framework and Experience. Proceedings of the
17th International Software Product Line Conference (SPLC), pages
101–110, 2013.

[RCC15] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. Cloned
product variants: from ad-hoc to managed software product lines.
STTT, 17(5):627–646, 2015.

196

BIBLIOGRAPHY

[RDG+07] R Rabiser, D Dhungana, P Grunbacher, K Lehner, and C Federspiel.
Involving Non-Technicians in Product Derivation and Requirements
Engineering: A Tool Suite for Product Line Engineering. In
Requirements Engineering Conference, 2007. RE ’07. 15th IEEE
International, pages 367–368, oct 2007.

[RKBC12] Julia Rubin, Andrei Kirshin, Goetz Botterweck, and Marsha
Chechik. Managing forked product variants. In 16th International
Software Product Line Conference, SPLC ’12, Salvador, Brazil -
September 2-7, 2012, Volume 1, pages 156–160, 2012.

[RR03] Claudio Riva and Christian Del Rosso. Experiences with software
product family evolution. pages 161–169, 2003.

[RRSW] Bernhard Rumpe, Jan Oliver Ringert, Christoph Schulze, and
Michael Von Wenckstern. Behavioral Compatibility of Simulink
Models for Product Line Maintenance and Evolution. Proceedings of
the 19th International Conference on Software Product Line (SPLC),
pages 141–150.

[RUQ+13] Daniel Romero, Simon Urli, Clément Quinton, Mireille Blay-
Fornarino, Philippe Collet, Laurence Duchien, and Sébastien Mosser.
SPLEMMA: A Generic Framework for Controlled-Evolution of
Software Product Lines. Proceedings of the 17th International
Software Product Line Conference co-located workshops (SPLC),
2013:59, 2013.

[Sav14] Juha Savolainen. Past, present and future of product line engineering
in industry: reflecting on 15 years of variability management
in real projects. In The Eighth International Workshop on
Variability Modelling of Software-intensive Systems, VaMoS ’14,
Sophia Antipolis, France, January 22-24, 2014, page 1:1, 2014.

[SB99] Mikael Svahnberg and Jan Bosch. Evolution in Software Product
Lines: Two Cases. Journal of Software Maintenance, 11(6):391–
422, 1999.

[SB00] Mikael Svahnberg and Jan Bosch. Issues Concerning Variability
in Software Product Lines. International Workshop on Software
Architectures for Product Families (IW-SAPF)., pages 146–157,
2000.

[SBB+10] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and
Nico Tanzarella. Delta-oriented programming of software product
lines. In Software Product Lines: Going Beyond - 14th International
Conference, SPLC 2010, Jeju Island, South Korea, September 13-17,
2010. Proceedings, pages 77–91, 2010.

197

BIBLIOGRAPHY

[SC11] Ricardo J Sales and Roberta Coelho. Preserving the exception
handling design rules in software product line context: A practical
approach. In Proceedings of the 5th Latin-American Symposium on
Dependable Computing Workshops (LADCW), pages 9–16, 2011.

[Sch06a] H Schackmann H.; Lichter. A Cost-Based Approach to Software
Product Line Management. International Workshop on Software
Product Management (IWSPM), pages 2–7, 2006.

[Sch06b] Kathrin D Scheidemann. Optimizing the selection of representative
configurations in verification of evolving product lines of distributed
embedded systems. 1Proceedings of the 10th International Software
Product Line Conference (SPLC), 2006.

[SdOdA15] Alcemir Rodrigues Santos, Raphael Pereira de Oliveira, and
Eduardo Santana de Almeida. Strategies for Consistency Checking
on Software Product Lines: A Mapping Study. In Proceedings of
the 19th International Conference on Evaluation and Assessment in
Software Engineering, EASE ’15, pages 5:1—-5:14, New York, NY,
USA, 2015. ACM.

[SEB] Sebok. maintainability. http://sebokwiki.
org/wiki/Reliability,{_}Availability,
{_}and{_}Maintainability. Accessed: 2018-02-23.

[sem] Martin Fowler. Semantic conflict. https://martinfowler.
com/bliki/SemanticConflict.html/. Accessed: 2018-
03-26.

[Sha99] David C Sharp. Exploiting object technology to support product
variability. Proceedings of the 18th Digital Avionics Systems
Conference, 2, 1999.

[SHA12] Christoph Seidl, Florian Heidenreich, and Uwe Assmann. Co-
evolution of Models and Feature Mapping in Software Product Lines.
In Proceedings of the 16th International Software Product Line
Conference (SPLC), pages 76–85, 2012.

[Sin98] Janice Singer. Practices of software maintenance. In 1998
International Conference on Software Maintenance, ICSM 1998,
Bethesda, Maryland, USA, November 16-19, 1998, pages 139–145,
1998.

[SK01] Juha Savolainen and Juha Kuusela. Violatility analysis framework
for product lines. Proceedings of the 2001 symposium on Software
reusability: putting software reuse in context, 26:133–141, 2001.

[SK08] Juha Savolainen and Juha Kuusela. Scheduling Product Line
Features for Effective Roadmapping. Proceedings of the 5th Asia-
Pacific Software Engineering Conference (APSEC), pages 195–202,
2008.

198

BIBLIOGRAPHY

[SK14] Hamideh Sabouri and Ramtin Khosravi. Science of Computer
Programming Reducing the verification cost of evolving product
families using static analysis techniques. Science of Computer
Programming, 83:35–55, 2014.

[SLB13] Sandro Schulze, Malte Lochau, and Saskia Brunswig. Implementing
Refactorings for FOP: Lessons Learned and Challenges Ahead. In
Proceedings of the 5th International Workshop on Feature-Oriented
Software Development, FOSD ’13, pages 33–40, New York, NY,
USA, 2013. ACM.

[S.P] S.P.L.O.T. http://www.splot-research.org.

[SPP+13] Mathias Schubanz, Andreas Pleuss, Ligaj Pradhan, Goetz
Botterweck, and Anil Kumar Thurimella. Model-driven planning
and monitoring of long-term software product line evolution.
Proceedings of the 7th International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS), page 1, 2013.

[SPZ09] Liwei Shen, Xin Peng, and Wenyun Zhao. A Comprehensive
Feature-Oriented Traceability Model for Software Product Line
Development. Australian Software Engineering Conference
(ASWEC), pages 210–219, 2009.

[SPZZ10] Liwei Shen, Xin Peng, Jiayi Zhu, and Wenyun Zhao. Synchronized
Architecture Evolution in Software Product Line Using Bidirectional
Transformation. Proceedings of the 34th Annual Computer Software
and Applications Conference, pages 389–394, 2010.

[SRG11] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. A Comparison
of Decision Modeling Approaches in Product Lines. In Proceedings
of the 5th Workshop on Variability Modeling of Software-Intensive
Systems, VaMoS ’11, pages 119–126, New York, NY, USA, 2011.
ACM.

[SS08] Nita Sarang and Mukund A Sanglikar. An Analysis of Effort Variance
in Software Maintenance Projects. 2008.

[SSRS16] Sandro Schulze, Michael Schulze, Uwe Ryssel, and Christoph Seidl.
Aligning Coevolving Artifacts Between Software Product Lines and
Products. Proceedings of the Tenth International Workshop on
Variability Modelling of Software-intensive Systems - VaMoS ’16,
pages 9–16, 2016.

[SSTS14] Reimar Schröter, Norbert Siegmund, Thomas Thüm, and Gunter
Saake. Feature-context interfaces: tailored programming interfaces
for software product lines. In Proceedings of the 18th International
Software Product Line Conference (SPLC), pages 102–111, 2014.

199

BIBLIOGRAPHY

[Sta04] Mark Staples. Change control for product line software engineering.
In 11th Asia-Pacific Software Engineering Conference (APSEC
2004), 30 November - 3 December 2004, Busan, Korea, pages 572–
573, 2004.

[STKS12] Sandro Schulze, Thomas Thüm, Martin Kuhlemann, and Gunter
Saake. Variant-preserving Refactoring in Feature-oriented Software
Product Lines. In Proceedings of the Sixth International Workshop
on Variability Modeling of Software-Intensive Systems, VaMoS ’12,
pages 73–81, New York, NY, USA, 2012. ACM.

[SV02] K Schmid and M Verlage. The economic impact of product line
adoption and evolution. IEEE Software, 19(4), 2002.

[Swa76] E Burton Swanson. The Dimensions of Maintenance. In Proceedings
of the 2Nd International Conference on Software Engineering, ICSE
’76, pages 492–497, Los Alamitos, CA, USA, 1976. IEEE Computer
Society Press.

[Tab04] Louis J M Taborda. Generalized Release Planning for Product Line
Architectures. Proceedings of the 3rd International Conference on
Software Product Lines (SPLC), pages 238–254, 2004.

[TABG15] Leopoldo Teixeira, Vander Alves, Paulo Borba, and Rohit Gheyi.
A product line of theories for reasoning about safe evolution of
product lines. In Proceedings of the 19th International Conference
on Software Product Line, {SPLC} 2015, Nashville, TN, USA, July
20-24, 2015, pages 161–170, 2015.

[TAK+14] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and
Gunter Saake. A Classification and Survey of Analysis Strategies for
Software Product Lines. ACM Computing Surveys (CSUR), 47(1):1–
45, 2014.

[TB07] Anil Kumar Thurimella and Bernd Bruegge. Evolution in
product line requirements engineering: A rationale management
approach. Proceedings of the 15th IEEE International Requirements
Engineering Conference (RE), pages 254–257, 2007.

[TBC08] Anil Kumar Thurimella, Bernd Bruegge, and Oliver Creighton.
Identifying and exploiting the similarities between rationale
management and variability management. Proceedings of the 12th
International Software Product Line Conference (SPLC), pages 99–
108, 2008.

[TBG15] Leopoldo Teixeira, Paulo Borba, and Rohit Gheyi. Safe evolution
of product populations and multi product lines. In Proceedings of
the 19th International Conference on Software Product Line, SPLC
2015, Nashville, TN, USA, July 20-24, 2015, pages 171–175, 2015.

200

BIBLIOGRAPHY

[TBK09] Thomas Thüm, Don Batory, and Christian Kastner. Reasoning
about edits to feature models. Proceedings of the 31st International
Conference on Software Engineering (ICSE), pages 254–264, 2009.

[TBM+12] Christian Tischer, Birgit Boss, Andreas Müller, Andreas Thums,
Klaus Schmid, Christian Tischer, Birgit Boss, Andreas Mueller,
and Andreas Thums. Developing Long-Term Stable Product Line
Architectures. Proceedings of the 16th International Software
Product Line Conference (SPLC), pages 86–95, 2012.

[tBMP11] Maurice H ter Beek, Henry Muccini, and Patrizio Pelliccione.
Guaranteeing Correct Evolution of Software Product Lines:
Setting Up the Problem. In Software Engineering for Resilient
Systems - Third International Workshop, {SERENE} 2011, Geneva,
Switzerland, September 29-30, 2011. Proceedings, pages 100–105,
2011.

[tBMP12] Maurice H ter Beek, Henry Muccini, and Patrizio Pelliccione.
Assume-Guarantee Testing of Evolving Software Product Line
Architectures. In Software Engineering for Resilient Systems - 4th
International Workshop, {SERENE} 2012, Pisa, Italy, September 27-
28, 2012. Proceedings, pages 91–105, 2012.

[TDR+11] Leonardo P Tizzei, Marcelo Dias, Cecília M F Rubira, Alessandro
Garcia, and Jaejoon Lee. Components meet aspects : Assessing
design stability of a software product line. Information and Software
Technology, 53(2):121–136, 2011.

[Tes07] Aleksandra Tesanovic. Evolving embedded product lines:
opportunities for aspects. In Proceedings of the 6th workshop
on Aspects, Components, and Patterns for Infrastructure Software,
ACP4IS 2007, Vancouver, British Columbia, Canada, March 12,
2007, page 10, 2007.

[TFC+09] Yasuaki Takebe, Naohiko Fukaya, Masaki Chikahisa, Toshihide
Hanawa, and Osamu Shirai. Experiences with software product
line engineering in product development oriented organization.
Proceedings of the 13th International Software Product Line
Conference, pages 275–283, 2009.

[TGAS14] Dan Tofan, Matthias Galster, Paris Avgeriou, and Wes Schuitema.
Past and future of software architectural decisions ? A systematic
mapping study. Information and Software Technology, 56(8):850–
872, 2014.

[tM10] Adriaan ter Mors. The world according to MARP. PhD thesis, Delft
University of Technology, Netherlands, 2010.

201

BIBLIOGRAPHY

[TM14] Le Minh Sang Tran and Fabio Massacci. An Approach for Decision
Support on the Uncertainty in Feature Model Evolution. In {IEEE}
22nd International Requirements Engineering Conference, {RE}
2014, Karlskrona, Sweden, August 25-29, 2014, pages 93–102, 2014.

[TMMK11] C Tischer, A Müller, T Mandl, and R Krause. Experiences from a
large scale software product line merger in the automotive domain.
In 15th International Software Product Line Conference, SPLC 2011,
pages 267–276, Robert Bosch GmbH, Diesel Gasoline Systems,
Postfach 30 02 20, 70442 Stuttgart, Germany, 2011.

[TMN08] Cheng Thao Cheng Thao, E.V. Munson, and T.N. Nguyen. Software
Configuration Management for Product Derivation in Software
Product Families. ECBS, 2008.

[tru] What is your branching model.
http://paulhammant.com/2013/12/04/what_is_your_branching_model/.

[TSSPL09] Reinhard Tartler, Julio Sincero, Wolfgang Schröder-Preikschat, and
Daniel Lohmann. Dead or Alive: Finding Zombie Features in the
Linux Kernel. In Proceedings of the First International Workshop on
Feature-Oriented Software Development, FOSD ’09, pages 81–86,
New York, NY, USA, 2009. ACM.

[uni] Unified diff format explained by Guido van van Rossum.
http://www.artima.com/weblogs/viewpost.jsp?
thread=164293. Accessed: 2018-02-23.

[VDJ10] Karina Villela, Jörg Dörr, and Isabel John. Evaluation of a method for
proactively managing the evolving scope of a software product line.
International Working Conference on Requirements Engineering.
Foundation for Software Quality (REFSQ), pages 113–127, 2010.

[vdLSR07] Frank van der Linden, Klaus Schmid, and Eelco Rommes. Software
product lines in action - the best industrial practice in product line
engineering. Springer, 2007.

[VFAC14] G Vale, E Figueiredo, R Abilio, and H Costa. Bad Smells
in Software Product Lines: A Systematic Review. In Software
Components, Architectures and Reuse (SBCARS), 2014 Eighth
Brazilian Symposium on, pages 84–94, sep 2014.

[vGB02] Jilles van Gurp and Jan Bosch. Design Erosion: Problems and
Causes. J. Syst. Softw., 61(2):105–119, 2002.

[VGH+12] Michael Vierhauser, Paul Grünbacher, Wolfgang Heider, Gerald
Holl, and Daniela Lettner. Applying a Consistency Checking
Framework for Heterogeneous Models and Artifacts in Industrial
Product Lines. In Proceedings of the 15th International Conference

202

BIBLIOGRAPHY

on Model Driven Engineering Languages and Systems (MoDELS),
pages 531–545, 2012.

[vO02] Rob van Ommering. Building product populations with software
components. In International Conference on Software Engineering
(ICSE)., 2002.

[VPS+12] Alexandre Vianna, Felipe Pinto, Demóstenes Sena, Uirá Kulezsa,
Roberta Coelho, Jadson Santos, Jalerson Lima, and Gleydson Lima.
Squid: An Extensible Infrastructure for Analyzing Software Product
Line Implementations. In Proceedings of the 16th International
Software Product Line Conference (SPLC)- Volume 2, volume II,
pages 209–216, 2012.

[VRG14] Michael Vierhauser, Rick Rabiser, and Paul Grünbacher. A
Requirements Monitoring Infrastructure for Very-Large-Scale
Software Systems. In Camille Salinesi and Inge van de Weerd,
editors, Requirements Engineering: Foundation for Software
Quality, volume 8396 of Lecture Notes in Computer Science, pages
88–94. Springer International Publishing, 2014.

[VV11] Markus Voelter and Eelco Visser. Product Line Engineering Using
Domain-Specific Languages. In Proceedings of the 2011 15th
International Software Product Line Conference, SPLC ’11, pages
70–79, Washington, DC, USA, 2011. IEEE Computer Society.

[WD15] Roel Wieringa and Maya Daneva. Six strategies for generalizing
software engineering theories. Science of Computer Programming,
101:136 – 152, 2015. Towards general theories of software
engineering.

[Wei08] David M Weiss. The Product Line Hall of Fame. In Software Product
Lines, 12th International Conference, {SPLC} 2008, Limerick,
Ireland, September 8-12, 2008, Proceedings, page 395, 2008.

[Wie14] Roel J. Wieringa. Research Goals and Research Questions, pages
13–23. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[WMHB11] Danny Weyns, Bartosz Michalik, Alexander Helleboogh, and Nelis
Boucke. An Architectural Approach to Support Online Updates of
Software Product Lines. In Proceedings of the 2011 Ninth Working
IEEE/IFIP Conference on Software Architecture, WICSA ’11, pages
204–213, Washington, DC, USA, 2011. IEEE Computer Society.

[WMMR05] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland.
Requirements Engineering Paper Classification and Evaluation
Criteria: A Proposal and a Discussion. Requir. Eng., 11(1):102–107,
2005.

203

BIBLIOGRAPHY

[WRdMSN+13] Claes Wohlin, Per Runeson, Paulo Anselmo da Mota Silveira Neto,
Emelie Engström, Ivan do Carmo Machado, and Eduardo Santana
de Almeida. On the reliability of mapping studies in software
engineering. Journal of Systems and Software, 86(10):2594–2610,
2013.

[WS02a] Charlene (Chuck) Walrad and Darrel Strom. The importance of
branching models in SCM. IEEE Computer, 35(9):31–38, 2002.

[WS02b] Chuck Walrad and Darrel Strom. The Importance of Branching
Models in {SCM}. Computer, 35(9):31–38, 2002.

[YCM93] S S Yau, J S Collofello, and T M MacGregor. Software Engineering
Metrics I. chapter Ripple Eff, pages 71–82. McGraw-Hill, Inc., New
York, NY, USA, 1993.

[YGW12] Dongjin Yu, Peng Geng, and Wei Wu. Constructing Traceability
between Features and Requirements for Software Product Line
Engineering. Proceedings of the 9th Asia-Pacific Software
Engineering Conference (APSEC), pages 27–34, 2012.

[YM12] Amir Reza Yazdanshenas and Leon Moonen. Fine-Grained
Change Impact Analysis for Component-Based Product Families.
Proceedings of the International Conference on Software
Maintenance (ICSM), (5):119–128, 2012.

[ZBP+13] Bo Zhang, Martin Becker, Thomas Patzke, Krzysztof Sierszecki,
and Juha Erik Savolainen. Variability Evolution and Erosion in
Industrial Product Lines: A Case Study. In Proceedings of the 17th
International Software Product Line Conference (SPLC), pages 168–
177, 2013.

204

Glossary

• Application Engineering (AE) is the process of developing a specific product
for the needs of a particular customer (or other stakeholder). It corresponds to the
process of single application development in traditional software engineering,
but reuses artifacts from domain engineering where possible [ABKS13a].

• Branching model. A branching model embodies the rationales adopted for
branching and merging configuration items within a Version Control Systems
[WS02b]. It closely matches a team’s software development process: it tells (1)
how developers develop and collaborate with each other for new development,
(2) how engineers release software both to test department and customers, and (3)
how they deal with production fixes, i.e bugs that occur to the software released
to customers. There is no a one-fit-all branching model, and each team needs to
find its own.

• Code peering (or peering) refers to the practice that takes place during product
development, whereby product engineers inspect and compare other products’
code with their own code, and if interested, merge the other product’s code into
his/her own product. Code peering is intended to promote early reuse of product
developments across product teams, with the aim of lessening the merge problem
during pruning.

• Core-assets (or core-asset base) refer to domain engineering artifacts built “for
reuse”. These can source code, requirement documents, domain models, and test
assets.

• Core-asset release (or SPL release) refers to the set of core-asset, tested and
ready to be reused by application engineering teams.

• Customization analysis refers to the practice by which SPL engineers
analyzing how products have changed the core-assets they were derived from.
Customization analysis is intended to help SPL engineers identify interesting
customizations to be promoted to reusable core-assets for the next core-asset
release.

• Design Science Research is the scientific study and creation of artefacts as they
are developed and used by people with the goal of solving practical problems of
general interest.

205

BIBLIOGRAPHY

• Domain engineering (DE) is the process of analyzing the domain of a product
line and developing reusable artifacts (a.k.a core-assets). Domain engineering
does not result in a specific software product, but prepares artifacts to be used in
multiple, if not all, products of a product line [ABKS13a].

• Feature. A feature is prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems [Kan90]. Features are used
in product line engineering to specify and communicate commonalities and
differences of the products between stakeholders, and to guide structure, reuse,
and variation across all phases of the software life cycle [ABKS13a].

• Feedback propagation refers to the process of updating the core-asset base from
product customizations that reside in already derived products.

• Grow-and-prune model refers to the approach of incrementally evolving an
SPL from product customizations. During the growth seasons, products are
allowed to customize the core-assets in order to attend to new customer needs,
resolve bugs, or enhance functionalities. The pruning phase returns part of
these product customizations to the core-asset base so they can be later reuse
by products.

• Merge problem arises during the pruning stage of the grow-and-prune model,
and refers to the issue of merging disparate product customizations, which result
in a multitude of conflicts, and whose time to be resolved exceed the time it took
to make the original changes.

• Product derivation (or product generation or product assembly) is the
production step of application engineering, where reusable artifacts are
combined according to the results of requirement analysis. Depending on the
implementation approach, this process can be more or less automated, possibly,
involving several development and customization tasks [ABKS13a]. This thesis
considers product customization into product derivation.

• Product customization (or customization) takes place during product
derivation, and refers to the process of changing the core-assets from which
products were derived from, or create brand-new assets, in order to meet
customer needs, or to resolve urgent bug-fixes.

• Update propagation refers to the process of updating already derived products
with newer core-asset versions available in newer domain engineering.

• Software Product Line Engineering (SPLE) is the engineering of a portfolio of
related products using a shared set of engineering assets and an efficient means
of production [Kru06].

• Software Product Line (SPLs). A software product line is a set of software-
intensive systems sharing a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and that are developed
from a common set of core-assets in a prescribed way.

206

BIBLIOGRAPHY

• Version Control Systems (VCSs) keep track of every change to a file over time
so early versions can be restored and are used by software teams for source code.

207

