234 research outputs found

    Recognizing motor imagery tasks from EEG oscillations through a novel ensemble-based neural network architecture

    Get PDF
    Brain-Computer Interfaces (BCI) provide effective tools aimed at recognizing different brain activities, translate them into actions, and enable humans to directly communicate through them. In this context, the need for strong recognition performances results in increasingly sophisticated machine learning (ML) techniques, which may result in poor performance in a real application (e.g., limiting a real-time implementation). Here, we propose an ensemble approach to effectively balance between ML performance and computational costs in a BCI framework. The proposed model builds a classifier by combining different ML models (base-models) that are specialized to different classification sub-problems. More specifically, we employ this strategy with an ensemble-based architecture consisting of multi-layer perceptrons, and test its performance on a publicly available electroencephalography-based BCI dataset with four-class motor imagery tasks. Compared to previously proposed models tested on the same dataset, the proposed approach provides greater average classification performances and lower inter-subject variability

    What Is Cognitive Psychology?

    Get PDF
    What Is Cognitive Psychology? identifies the theoretical foundations of cognitive psychology—foundations which have received very little attention in modern textbooks. Beginning with the basics of information processing, Michael R. W. Dawson explores what experimental psychologists infer about these processes and considers what scientific explanations are required when we assume cognition is rule-governed symbol manipulation. From these foundations, psychologists can identify the architecture of cognition and better understand its role in debates about its true nature. This volume offers a deeper understanding of cognitive psychology and presents ideas for integrating traditional cognitive psychology with more modern fields like cognitive neuroscience.Publishe

    시계열 데이터 패턴 분석을 위한 종단 심층 학습망 설계 방법론

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 공과대학 컴퓨터공학부, 2019. 2. 장병탁.Pattern recognition within time series data became an important avenue of research in artificial intelligence following the paradigm shift of the fourth industrial revolution. A number of studies related to this have been conducted over the past few years, and research using deep learning techniques are becoming increasingly popular. Due to the nonstationary, nonlinear and noisy nature of time series data, it is essential to design an appropriate model to extract its significant features for pattern recognition. This dissertation not only discusses the study of pattern recognition using various hand-crafted feature engineering techniques using physiological time series signals, but also suggests an end-to-end deep learning design methodology without any feature engineering. Time series signal can be classified into signals having periodic and non-periodic characteristics in the time domain. This thesis proposes two end-to-end deep learning design methodologies for pattern recognition of periodic and non-periodic signals. The first proposed deep learning design methodology is Deep ECGNet. Deep ECGNet offers a design scheme for an end-to-end deep learning model using periodic characteristics of Electrocardiogram (ECG) signals. ECG, recorded from the electrophysiologic patterns of heart muscle during heartbeat, could be a promising candidate to provide a biomarker to estimate event-based stress level. Conventionally, the beat-to-beat alternations, heart rate variability (HRV), from ECG have been utilized to monitor the mental stress status as well as the mortality of cardiac patients. These HRV parameters have the disadvantage of having a 5-minute measurement period. In this thesis, human's stress states were estimated without special hand-crafted feature engineering using only 10-second interval data with the deep learning model. The design methodology of this model incorporates the periodic characteristics of the ECG signal into the model. The main parameters of 1D CNNs and RNNs reflecting the periodic characteristics of ECG were updated corresponding to the stress states. The experimental results proved that the proposed method yielded better performance than those of the existing HRV parameter extraction methods and spectrogram methods. The second proposed methodology is an automatic end-to-end deep learning design methodology using Bayesian optimization for non-periodic signals. Electroencephalogram (EEG) is elicited from the central nervous system (CNS) to yield genuine emotional states, even at the unconscious level. Due to the low signal-to-noise ratio (SNR) of EEG signals, spectral analysis in frequency domain has been conventionally applied to EEG studies. As a general methodology, EEG signals are filtered into several frequency bands using Fourier or wavelet analyses and these band features are then fed into a classifier. This thesis proposes an end-to-end deep learning automatic design method using optimization techniques without this basic feature engineering. Bayesian optimization is a popular optimization technique for machine learning to optimize model hyperparameters. It is often used in optimization problems to evaluate expensive black box functions. In this thesis, we propose a method to perform whole model hyperparameters and structural optimization by using 1D CNNs and RNNs as basic deep learning models and Bayesian optimization. In this way, this thesis proposes the Deep EEGNet model as a method to discriminate human emotional states from EEG signals. Experimental results proved that the proposed method showed better performance than that of conventional method based on the conventional band power feature method. In conclusion, this thesis has proposed several methodologies for time series pattern recognition problems from the feature engineering-based conventional methods to the end-to-end deep learning design methodologies with only raw time series signals. Experimental results showed that the proposed methodologies can be effectively applied to pattern recognition problems using time series data.시계열 데이터의 패턴 인식 문제는 4차 산업 혁명의 패러다임 전환과 함께 매우 중요한 인공 지능의 한 분야가 되었다. 이에 따라, 지난 몇 년간 이와 관련된 많은 연구들이 이루어져 왔으며, 최근에는 심층 학습망 (deep learning networks) 모델을 이용한 연구들이 주를 이루어 왔다. 시계열 데이터는 비정상, 비선형 그리고 잡음 (nonstationary, nonlinear and noisy) 특성으로 인하여 시계열 데이터의 패턴 인식 수행을 위해선, 데이터의 주요한 특징점을 추출하기 위한 최적화된 모델의 설계가 필수적이다. 본 논문은 대표적인 시계열 데이터인 생체 신호를 사용하여 여러 특징 벡터 추출 방법 (hand-crafted feature engineering methods)을 이용한 패턴 인식 기법에 대하여 논할 뿐만 아니라, 궁극적으로는 특징 벡터 추출 과정이 없는 종단 심층 학습망 설계 방법론에 대한 연구 내용을 담고 있다. 시계열 신호는 시간 축 상에서 크게 주기적 신호와 비주기적 신호로 구분할 수 있는데, 본 연구는 이러한 두 유형의 신호들에 대한 패턴 인식을 위해 두 가지 종단 심층 학습망에 대한 설계 방법론을 제안한다. 첫 번째 제안된 방법론을 이용해 설계된 모델은 신호의 주기적 특성을 이용한 Deep ECGNet이다. 심장 근육의 전기 생리학적 패턴으로부터 기록된 심전도 (Electrocardiogram, ECG)는 이벤트 기반 스트레스 수준을 추정하기 위한 척도 (bio marker)를 제공하는 유효한 데이터가 될 수 있다. 전통적으로 심전도의 심박수 변동성 (Herat Rate Variability, HRV) 매개변수 (parameter)는 심장 질환 환자의 정신적 스트레스 상태 및 사망률을 모니터링하는 데 사용되었다. 하지만, 표준 심박수 변동성 매개 변수는 측정 주기가 5분 이상으로, 측정 시간이 길다는 단점이 있다. 본 논문에서는 심층 학습망 모델을 이용하여 10초 간격의 ECG 데이터만을 이용하여, 추가적인 특징 벡터의 추출 과정 없이 인간의 스트레스 상태를 인식할 수 있음을 보인다. 제안된 설계 기법은 ECG 신호의 주기적 특성을 모델에 반영하였는데, ECG의 은닉 특징 추출기로 사용된 1D CNNs 및 RNNs 모델의 주요 매개 변수에 주기적 특성을 반영함으로써, 한 주기 신호의 스트레스 상태에 따른 주요 특징점을 종단 학습망 내부적으로 추출할 수 있음을 보였다. 실험 결과 제안된 방법이 기존 심박수 변동성 매개변수와 spectrogram 추출 기법 기반의 패턴 인식 방법보다 좋은 성능을 나타내고 있음을 확인할 수 있었다. 두 번째 제안된 방법론은 비 주기적이며 비정상, 비선형 그리고 잡음 특성을 지닌 신호의 패턴인식을 위한 최적 종단 심층 학습망 자동 설계 방법론이다. 뇌파 신호 (Electroencephalogram, EEG)는 중추 신경계 (CNS)에서 발생되어 무의식 상태에서도 본연의 감정 상태를 나타내는데, EEG 신호의 낮은 신호 대 잡음비 (SNR)로 인해 뇌파를 이용한 감정 상태 판정을 위해서 주로 주파수 영역의 스펙트럼 분석이 뇌파 연구에 적용되어 왔다. 통상적으로 뇌파 신호는 푸리에 (Fourier) 또는 웨이블렛 (wavelet) 분석을 사용하여 여러 주파수 대역으로 필터링 된다. 이렇게 추출된 주파수 특징 벡터는 보통 얕은 학습 분류기 (shallow machine learning classifier)의 입력으로 사용되어 패턴 인식을 수행하게 된다. 본 논문에서는 이러한 기본적인 특징 벡터 추출 과정이 없는 베이지안 최적화 (Bayesian optimization) 기법을 이용한 종단 심층 학습망 자동 설계 기법을 제안한다. 베이지안 최적화 기법은 초 매개변수 (hyperparamters)를 최적화하기 위한 기계 학습 분야의 대표적인 최적화 기법인데, 최적화 과정에서 평가 시간이 많이 소요되는 목적 함수 (expensive black box function)를 갖고 있는 최적화 문제에 적합하다. 이러한 베이지안 최적화를 이용하여 기본적인 학습 모델인 1D CNNs 및 RNNs의 전체 모델의 초 매개변수 및 구조적 최적화를 수행하는 방법을 제안하였으며, 제안된 방법론을 바탕으로 Deep EEGNet이라는 인간의 감정상태를 판별할 수 있는 모델을 제안하였다. 여러 실험을 통해 제안된 모델이 기존의 주파수 특징 벡터 (band power feature) 추출 기법 기반의 전통적인 감정 패턴 인식 방법보다 좋은 성능을 나타내고 있음을 확인할 수 있었다. 결론적으로 본 논문은 시계열 데이터를 이용한 패턴 인식문제를 여러 특징 벡터 추출 기법 기반의 전통적인 방법을 통해 설계하는 방법부터, 추가적인 특징 벡터 추출 과정 없이 원본 데이터만을 이용하여 종단 심층 학습망을 설계하는 방법까지 제안하였다. 또한, 다양한 실험을 통해 제안된 방법론이 시계열 신호 데이터를 이용한 패턴 인식 문제에 효과적으로 적용될 수 있음을 보였다.Chapter 1 Introduction 1 1.1 Pattern Recognition in Time Series 1 1.2 Major Problems in Conventional Approaches 7 1.3 The Proposed Approach and its Contribution 8 1.4 Thesis Organization 10 Chapter 2 Related Works 12 2.1 Pattern Recognition in Time Series using Conventional Methods 12 2.1.1 Time Domain Features 12 2.1.2 Frequency Domain Features 14 2.1.3 Signal Processing based on Multi-variate Empirical Mode Decomposition (MEMD) 15 2.1.4 Statistical Time Series Model (ARIMA) 18 2.2 Fundamental Deep Learning Algorithms 20 2.2.1 Convolutional Neural Networks (CNNs) 20 2.2.2 Recurrent Neural Networks (RNNs) 22 2.3 Hyper Parameters and Structural Optimization Techniques 24 2.3.1 Grid and Random Search Algorithms 24 2.3.2 Bayesian Optimization 25 2.3.3 Neural Architecture Search 28 2.4 Research Trends related to Time Series Data 29 2.4.1 Generative Model of Raw Audio Waveform 30 Chapter 3 Preliminary Researches: Patten Recognition in Time Series using Various Feature Extraction Methods 31 3.1 Conventional Methods using Time and Frequency Features: Motor Imagery Brain Response Classification 31 3.1.1 Introduction 31 3.1.2 Methods 32 3.1.3 Ensemble Classification Method (Stacking & AdaBoost) 32 3.1.4 Sensitivity Analysis 33 3.1.5 Classification Results 36 3.2 Statistical Feature Extraction Methods: ARIMA Model Based Feature Extraction Methodology 38 3.2.1 Introduction 38 3.2.2 ARIMA Model 38 3.2.3 Signal Processing 39 3.2.4 ARIMA Model Conformance Test 40 3.2.5 Experimental Results 40 3.2.6 Summary 43 3.3 Application on Specific Time Series Data: Human Stress States Recognition using Ultra-Short-Term ECG Spectral Feature 44 3.3.1 Introduction 44 3.3.2 Experiments 45 3.3.3 Classification Methods 49 3.3.4 Experimental Results 49 3.3.5 Summary 56 Chapter 4 Master Framework for Pattern Recognition in Time Series 57 4.1 The Concept of the Proposed Framework for Pattern Recognition in Time Series 57 4.1.1 Optimal Basic Deep Learning Models for the Proposed Framework 57 4.2 Two Categories for Pattern Recognition in Time Series Data 59 4.2.1 The Proposed Deep Learning Framework for Periodic Time Series Signals 59 4.2.2 The Proposed Deep Learning Framework for Non-periodic Time Series Signals 61 4.3 Expanded Models of the Proposed Master Framework for Pattern Recogntion in Time Series 63 Chapter 5 Deep Learning Model Design Methodology for Periodic Signals using Prior Knowledge: Deep ECGNet 65 5.1 Introduction 65 5.2 Materials and Methods 67 5.2.1 Subjects and Data Acquisition 67 5.2.2 Conventional ECG Analysis Methods 72 5.2.3 The Initial Setup of the Deep Learning Architecture 75 5.2.4 The Deep ECGNet 78 5.3 Experimental Results 83 5.4 Summary 98 Chapter 6 Deep Learning Model Design Methodology for Non-periodic Time Series Signals using Optimization Techniques: Deep EEGNet 100 6.1 Introduction 100 6.2 Materials and Methods 104 6.2.1 Subjects and Data Acquisition 104 6.2.2 Conventional EEG Analysis Methods 106 6.2.3 Basic Deep Learning Units and Optimization Technique 108 6.2.4 Optimization for Deep EEGNet 109 6.2.5 Deep EEGNet Architectures using the EEG Channel Grouping Scheme 111 6.3 Experimental Results 113 6.4 Summary 124 Chapter 7 Concluding Remarks 126 7.1 Summary of Thesis and Contributions 126 7.2 Limitations of the Proposed Methods 128 7.3 Suggestions for Future Works 129 Bibliography 131 초 록 139Docto

    Real-Time Lane Detection on Embedded Systems for Control of Semi-Autonomous Vehicles

    Get PDF
    Car accidents are the leading cause of death and injuries in most countries. advanced driving assistance systems and intelligent autonomous vehicles aim to improve road safety, traffic issues, and the comfort of passengers. Lane detection is a pivotal element in advanced driving assistance systems as lane understanding is essential in maneuvering the car safely on roads. Detecting lanes in real-world scenarios is challenging due to adverse weather, lighting conditions, and occlusions. However, as the computational budget available for lane detection in the systems above is limited, a lightweight, fast and accurate lane detection system is crucial. This thesis proposes a simple, lightweight, end-to-end deep learning-based lane detection framework following the row-wise classification approach. The inference speed is significantly increased by reducing the computational complexity and using a light backbone. In contrast to other systems, the proposed method can handle lane-changing scenarios by offering three lane candidates within the model. Additionally, we introduced a second-order polynomial fitting method and Kalman filter for tracking lane points as post-processing steps to improve the overall accuracy and stability of the system. The proposed lane detection method can provide over 500 frames per second on an Nvidia GTX 3080 notebook with our lightweight model and a median 48 frames per second on an Nvidia Jetson AGX Xavier while producing comparable accuracy to most of the state-of-the-art approaches

    Self-Supervised Pretraining and Transfer Learning on fMRI Data with Transformers

    Get PDF
    Transfer learning is a machine learning technique founded on the idea that knowledge acquired by a model during “pretraining” on a source task can be transferred to the learning of a target task. Successful transfer learning can result in improved performance, faster convergence, and reduced demand for data. This technique is particularly desirable for the task of brain decoding in the domain of functional magnetic resonance imaging (fMRI), wherein even the most modern machine learning methods can struggle to decode labelled features of brain images. This challenge is due to the highly complex underlying signal, physical and neurological differences between brains, low data collection throughput, and other factors. Transfer learning is exciting in its potential to mitigate these challenges, but with this application still in its infancy, we must begin on the ground floor. The goals of this thesis were to design, implement, and evaluate a framework for pretraining and transfer learning on arbitrary fMRI datasets, then demonstrate its performance with respect to the literature, and achieve substantive progress toward generalized pretrained models of the brain. The primary contribution is our novel framework which achieves these goals, called BEAT, which stands for Bi-directional Encoders for Auditory Tasks. The design and implementation of BEAT include adapting state-of-the-art deep learning architectures to sequences of fMRI data, as well as a novel self-supervised pretraining task called Next Thought Prediction and several novel supervised brain decoding tasks. To evaluate BEAT, we pretrained ii on Next Thought Prediction and performed transfer learning to the brain decoding tasks, which are specific to one of three fMRI datasets. To demonstrate significant benefits of transfer learning, BEAT decoded instrumental timbre from one of the fMRI datasets which standard methods failed to decode in addition to improved downstream performance. Toward generalized pretrained models of the brain, BEAT learned Next Thought Prediction on one fMRI dataset, and then successfully transferred that learning to a supervised brain decoding task on an entirely distinct dataset, with different participants and stimuli. To our knowledge this is the first instance of transfer learning across participants and stimuli–a necessity for whole-brain pretrained models

    Підсистема прийняття рішень на базі нечітких нейронних мереж

    Get PDF
    Робота публікується згідно наказу ректора від 29.12.2020 р. №580/од "Про розміщення кваліфікаційних робіт здобувачів вищої освіти в репозиторії НАУ".Керівник дипломної роботи: д.т.н., проф., завідувач кафедри авіаційних комп’ютерно-інтегрованих комплексів, Синєглазов Віктор МихайловичThe purpose of scientific work: development of a subsystem for decision-making on the basis of fuzzy neural networks, improvement of existing algorithms. The thesis considers theoretical and software part of the development of the decision-making subsystem for solving the classification problem. The author substantiates the relevance of using fuzzy neural networks to solve the problem of classification, analyzes the existing topologies of fuzzy neural networks and fuzzy classifiers, basic algorithms to improve results and combine them into a single structure, identified their shortcomings and proposed a solution to eliminate them An optimization and improvement algorithm for solving the classification problem based on the creation of an ensemble of fuzzy neural networks, namely, a fuzzy TSK classifier, is proposed. This software architecture allows you to create a neural classifier that improves the results of an existing solution. And expands the range of calculations performed to classify the input data.Мета наукової роботи: розробка підсистеми для прийняття рішень на базі нечітких нейронних мереж, покращення існуючих алгоритмів. В дипломній роботі розглядається теоретична та програмна частина розробки підсистеми прийняття рішень для розв’язання задачі класифікації. Автором обґрунтовано актуальність використання нечітких нейронних мереж для вирішення задачі класифікації, проведено аналіз існуючих топологій нечітких нейронних мереж та нечітких класифікаторів, основних алгоритмів для покращення результатів та поєднання їх в єдину структуру, виявлено їх недоліки та запропоноване рішення, що дозволяє їх усунути Запропоновано алгоритм оптимізації та покращення для вирішення задачі класифікації на основі створення ансамблю з нечітких нейронних мереж а саме, нечіткого класифікатора TSK. Дана програмна архітектура дозволяє створити нейронний класифікатор який покращує результати уже існуючого рішення. Та розширює спектр виконуваних обчислювань для класифікації вхідних даних

    Artificial Intelligence Models in the Diagnosis of Adult-Onset Dementia Disorders: A Review

    Get PDF
    Background: The progressive aging of populations, primarily in the industrialized western world, is accompanied by the increased incidence of several non-transmittable diseases, including neurodegenerative diseases and adult-onset dementia disorders. To stimulate adequate interventions, including treatment and preventive measures, an early, accurate diagnosis is necessary. Conventional magnetic resonance imaging (MRI) represents a technique quite common for the diagnosis of neurological disorders. Increasing evidence indicates that the association of artificial intelligence (AI) approaches with MRI is particularly useful for improving the diagnostic accuracy of different dementia types. Objectives: In this work, we have systematically reviewed the characteristics of AI algorithms in the early detection of adult-onset dementia disorders, and also discussed its performance metrics. Methods: A document search was conducted with three databases, namely PubMed (Medline), Web of Science, and Scopus. The search was limited to the articles published after 2006 and in English only. The screening of the articles was performed using quality criteria based on the Newcastle-Ottawa Scale (NOS) rating. Only papers with an NOS score ≥ 7 were considered for further review. Results: The document search produced a count of 1876 articles and, because of duplication, 1195 papers were not considered. Multiple screenings were performed to assess quality criteria, which yielded 29 studies. All the selected articles were further grouped based on different attributes, including study type, type of AI model used in the identification of dementia, performance metrics, and data type. Conclusions: The most common adult-onset dementia disorders occurring were Alzheimer's disease and vascular dementia. AI techniques associated with MRI resulted in increased diagnostic accuracy ranging from 73.3% to 99%. These findings suggest that AI should be associated with conventional MRI techniques to obtain a precise and early diagnosis of dementia disorders occurring in old age
    corecore