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3

Introduction

Nineteenth- century psychology began the experimental study of consciousness 
(Boring, 1950). Two competing early- 20th- century North American schools of 
psychology, structuralism and functionalism, continued this tradition. A new 
school, behaviorism, attacked psychology’s mentalism, reacting against both struc-
turalism and functionalism (Watson, 1913). “The time seems to have come when 
psychology must discard all reference to consciousness; when it need no longer 
delude itself into thinking that it is making mental states the object of observation” 
(Watson, 1913, p. 163).

Behaviorism soon dominated 20th- century psychology, changing the field’s 
topics and inspiring new methodologies. Behaviorism aimed to “remove the bar-
rier from psychology which exists between it and the other sciences. The findings 
of psychology become the functional correlates of structure and lend themselves 
to explanation in physico- chemical terms” (Watson, 1913, p. 177). For behaviorists, 
behavioral theories explained, but mentalistic theories did not (Skinner, 1950, 1977, 
1990).

Cognitive psychology began to replace behaviorism in the 1950s, bringing men-
talism back to psychology (Glenberg et al., 2013; Leahey, 1992; Miller, 2003; Sperry, 
1993). Discoveries in cybernetics and computer science inspired the cognitive 
revolution (Miller et al., 1960; Newell & Simon, 1956, 1961). Cognitivists argued 
that behaviorism could not explain phenomena such as language (Chomsky, 1959). 
Cognitivists claimed that behaviorists viewed humans as passive responders. Cog-
nitivists instead viewed humans as active information processors.

Cognitivism dominates modern psychology. For example, my department lists 
73 courses in its 2020– 21 undergraduate calendar; nearly half (33) explore cognition, 
with titles such as “Cognitive Psychology,” “Spatial Cognition,” “Introduction to 
Cognitive Neuroscience,” “Social Cognition,” and “Theory and Learning in Com-
parative Cognition.”
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4 Introduction

The cognitive revolution ended decades ago. As the debate between cognitivism 
and behaviorism faded into history, cognitive psychology’s theoretical foundations 
also seemed to become forgotten. What is cognitive psychology?

I often ask students to define cognitive psychology to begin my third- year 
“Foundations of Cognitive Science” course. My students understand cognitive 
psychology’s core topics (e.g., attention, memory, and thinking), and they know 
typical methods for studying these topics. However, my students do not know cog-
nitive psychology’s basic assumptions. They do not understand why we can use 
computers to model cognitive processing. They cannot describe differences between 
behaviorist and cognitivist explanations.

Why might my students understand cognitive psychology as a practice, as study-
ing core topics via particular methods, but not understand cognitive psychology’s 
theoretical foundations? Modern textbooks present cognitive psychology in exactly 
this way.

Modern texts first describe cognitive psychology’s history and then provide 
several “topics” chapters. Topics move from sensation and perception (cognitive 
neuroscience, perception, attention) through middle- level topics (different kinds 
of memory) and end with central processing (language, thinking, problem solving). 
Modern texts depict cognitive psychology as experimental results about core topics.

Modern texts also define cognitive psychology as using four “approaches”: 
experimental psychology, cognitive neuroscience (studying normal brains via brain 
imaging), cognitive neuropsychology (studying psychological deficits arising from 
brain injury), and simulated cognition using computers. Unfortunately, using such 
approaches to define cognitive psychology plays fast and loose with theoretical 
foundations.

For example, cognitive psychology’s theories are functionalist, appealing to what 
processes do, not to their physical causes. Functionalism makes computer simu-
lations of cognition plausible, even though computers and brains are physically 
different. However, problems emerge when one endorses functionalism while pro-
moting cognitive neuroscience. Which theoretical foundations permit the physical 
brain not to matter, but also to matter, at the same time?

The philosophy of science uses functional analysis to answer this question (Cum-
mins, 1983). Functional analysis explains agents as organized systems of functions. 
Each function is broken down into sub- functions. A functional analysis becomes 
explanatory by describing physical causes of its simplest functions.

Functional analysis proposes an approach to scientific explanation different from 
the one used by behaviorism and permits cognitive psychology’s four different 
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approaches to be related. However, cognitive psychology textbooks rarely mention 
the philosophy of science. In short, students do not understand cognitive psych-
ology’s theoretical foundations because the foundations are not presented in the 
discipline’s texts.

Why has cognitive psychology reached this state? When cognitive psychol-
ogy arose, it constantly defended attacks against its core assumptions. Cognitive 
psychologists were forced to justify their approach. However, after vanquishing 
behaviorism, cognitive psychology has not faced serious challenges from competing 
schools of thought. Thus, it is complacent about its theoretical foundations.

In this book, I explore those foundations to address cognitive psychology’s com-
placency. The book takes a historical perspective but is not a history. It examines 
classic studies in cognitive psychology because the assumptions underlying classic 
studies arose while cognitive psychology actively defended its foundations against 
behaviorism.

As a result, this book offers a different treatment of cognitive psychology. If you 
want to survey cognitive psychology’s topics, then read a different book, such as a 
modern survey text. However, my hope is that, if you read this book first, you will 
better understand traditional topics presented in survey texts.

An older anti- survey text, Richard Mayer’s Thinking and Problem Solving: An 
Introduction to Human Cognition and Learning (1977), inspired my work in this book. 
Each chapter in Mayer’s wonderfully short book explores a different assumption 
about cognition (e.g., thinking as hypothesis testing, or as restructuring problems, 
or as searching semantic memory, or as information processing). Each chapter then 
shows how core assumptions are revealed in experimental studies.

Inspired by Mayer, I answer in this book the question “What is cognitive psych-
ology?” by examining the theoretical foundations of cognitive psychology as follows.

Cognitive psychology assumes that cognition is information processing. Chap-
ter 1 uses formal games to introduce information processing and describes similar 
processing in computers. Thus, Chapter 1 relates computer science to cognitive 
psychology.

Cognitive psychologists explain cognition in the same manner that computer 
scientists explain programs. However, cognitive psychologists cannot directly 
observe cognitive processes. Chapter 2 therefore describes methods for inferring 
unobservable processes and relates general experimental psychology to cognitive 
psychology.

Behaviorists criticized cognitive psychology’s mentalistic theories as providing 
descriptions, not explanations. Chapter 3 describes a different approach, functional 
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analysis, to show how mentalistic theories can explain. The chapter discusses how 
such analysis affects cognitive psychology’s methods. Thus, Chapter 3 relates the 
philosophy of science to cognitive psychology.

The first three chapters introduce cognitive psychology’s theoretical foundations 
by relating cognitive psychology to computer science, to experimental psychology, 
and to the philosophy of science. These foundations do not restrict cognitive psych-
ology’s variety. Chapter 4 describes a diversity of cognitive theories and relates them 
to the primary goal of functional analysis: identifying primitive functions, called the 
cognitive architecture. Thus, Chapter 4 illustrates how the ideas detailed in earlier 
chapters lead to competing theories, all of which seek the cognitive architecture.

Cognitive psychology not only permits competing architectural ideas but also 
allows many debates about its theoretical foundations. Chapter 5 introduces those 
debates. Each section explores a foundational question. Thus, Chapter 5 uses debates 
about core assumptions to reflect on cognitive psychology’s current state.

These five chapters introduce cognitive psychology by examining its theor-
etical foundations. The book introduces cognitive psychology to undergraduates 
but should also interest graduate students and established cognitive psychologists.

What is cognitive psychology? The book offers a definition that recognizes that 
theoretical foundations affect methodology: cognitive psychology is the branch of 
general psychology that explains psychological phenomena by using functional analysis 
to describe information processing.

To understand this definition, we must first understand cognitive psychology’s 
theoretical foundations. To begin, let us consider what “cognition is information 
processing” means.
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What Is Information Processing?

Many scientists use mechanical analogies to achieve insights. For example, 

imagining the universe as a clock drove the scientific revolution. Similarly, imagining 

the heart as a pump helped in understanding the circulatory system. According to  

18th- century philosopher Giambatisto Vico’s (1710/1988) certum quod factum 

principle, “one is certain only of what one builds.” Vico’s principle explains 

the utility of mechanical analogies. We understand clocks or pumps because 

humans invented them. Well- understood mechanical analogies help us to gain 

new understanding of the world. Cognitive psychologists also use a mechanical 

analogy to guide the study of human cognition: thinking is imagined as being 

similar to how computers process information. Our understanding of computers, 

another human invention, makes the analogy fruitful. In this chapter, I intro-

duce the computer analogy by reviewing the basic properties of information 

processing. The chapter relates information processing to board games. It then 

describes a simple information processor called a Turing machine. The chapter 

then relates the Turing machine to modern electronic computers, whose power 

attracts cognitive psychologists to the computer analogy. The chapter ends by 

claiming that the computer analogy shapes the methods that cognitive psychol-

ogists use to study human cognition.

1.1 Formal Games

Cognitive psychologists believe that human thinking is information processing. 

What does “information processing” mean? To provide an answer, let’s explore the 

parallels between information processing and chess. We play chess on a board div-

ided into an 8x8 pattern of alternating light and dark squares. Figure 1- 1 illustrates 

a chess board labelled with a coordinate system.
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Figure 1- 1 A chess board along with the coordinate system used to label its squares. 
Each row is labelled with a number, and each column is labelled with a letter.

Playing chess involves moving chess pieces, or tokens, on the chess board. One 
player, White, uses light- coloured tokens. The other player, Black, uses dark- 
coloured tokens. Chess uses six different token types. Each type has a different name 
and a distinctive shape. Figure 1- 2 shows the token types available to both players.

King Queen Rook Bishop Knight Pawn

Figure 1- 2 The different chess tokens available for Black (top row) and for White 
(bottom row).

Different rules govern different token types in chess; rules define a token’s pos-
sible moves. To know how to move a particular token, a player must identify the 
token as belonging to a particular type (Queen, Rook, etc.). Chess is a formal game 
because a player identifies a token’s type by examining the token’s shape or form. 
For example, Figure 1- 3 shows the eight squares to which White’s King on square 
d5 could move. Importantly, the eight possible moves presume that a King, and not 
some other type, is on d5.
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Figure 1- 3 The white circles indicate eight squares to which the King at d5 could move.

If the token on d5 belongs to a different type, then different rules apply. Figure 
1- 4 shows the squares to which a Knight could move from d5.

Figure 1- 4 The white circles indicate eight squares to which the Knight at d5 could 
move. Compare Figure 1- 4 with the possible moves of the King provided in Figure 1- 3.

After the chess pieces are placed on their starting squares (Figure 1- 5), a game 
begins when White moves one token to a different square. Black replies by moving 
one of her pieces.
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Figure 1- 5 The configuration of the chess pieces before a game begins.

Figure 1- 6 presents the chess board’s state after both players make three moves 
in a game. White has moved a Pawn, a Knight, and a Bishop. Black has moved a 
Knight and two Pawns. The only differences between Figure 1- 6 and Figure 1- 5 are 
chess token positions.

Figure 1- 6 The chess piece positions in an example game after both players make 
three different moves.

In chess, a player can remove a token from the board. If a player moves a 
token to a square already occupied by the opponent’s token, then the opponent’s  
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token is captured. A captured piece disappears from the board. Capturing a piece 
is illustrated in Figure 1- 7. With her fourth move, White moves the Bishop from b5 
to c6 to capture Black’s Knight already on c6; that Knight vanishes from Figure 1- 7.

Figure 1- 7 The Bishop at b5 in Figure 1- 6 moves to c6, capturing the Knight at c6 
in Figure 1- 6.

Black responds by using her Pawn at d7 in Figure 1- 7 to capture the Bishop at c6, 
producing the chess board shown in Figure 1- 8. Note that the chess board in Figure 
1- 8 has two fewer pieces than the one in Figure 1- 5.

Figure 1- 8 The arrangement of chess tokens after Black’s fourth move, the capture 
of White’s Bishop by Black’s Pawn.
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How does chess relate to information processing? Information processing 
involves manipulating symbols stored in memory. A chess board is an example of 
memory. The chess board illustrated in Figure 1- 1 is an empty memory, holding no 
tokens.

An information processing system also uses a finite set of tokens, or a finite 
alphabet of symbols, for storing in memory. In chess, the tokens for storage— for 
placing on the board— are illustrated in Figure 1- 2.

An information processor uses operations to manipulate symbols in memory. 
One operation adds a new symbol to memory. In our chess example, this operation 
is illustrated in Figure 1- 5; to create the chess game’s starting positions, 32 different 
chess tokens appear in Figure 1- 1’s empty memory. The “add a token” operation 
executes 32 different times.

A second operation rearranges symbols by moving a token from one memory 
location to another. Figure 1- 6 demonstrates how chess piece positions change after 
each player makes three different moves. Each move causes a token to change its 
location from one square to another; each move rearranges symbols on the chess 
board memory. Restrictions apply to token rearrangement in memory. Different 
rules apply to different token types (Figures 1- 3 and 1- 4). An information processing 
system must distinguish one token type from another to determine which rules 
can be applied.

A third operation deletes a symbol from memory. Figures 1- 7 and 1- 8 illustrate 
a token’s removal from the board after being captured.

A fourth operation changes a token from one type to another. We could use  
this operation to describe capturing a piece. For example, when Black’s Pawn 
captures White’s Bishop at c6 in Figure 1- 7 to produce Figure 1- 8, two different 
operations occur. First, we delete Black’s Pawn at d7. Second, we change White’s 
Bishop at c6 into a different token, Black’s Pawn.

The chess example illustrates two properties of any information processor: a data 
structure, which is a memory for storing different types of symbols, and a set of rules 
or operations used to manipulate the symbols in the data structure. Another basic 
property is control. Control determines “what to do next.” At any given moment, 
an information processor must choose which rule to apply and which symbol to 
manipulate. Control permits an information processor to apply its rules in a par-
ticular order to accomplish a task.

Chess also involves control. In chess, we try to defeat an opponent by captur-
ing her King. Chess players range in ability from mere amateurs to grandmasters 
and world champions. What makes a grandmaster better than an amateur? The 
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grandmaster has superior control— she makes better decisions about what move 
to make next.

How does a grandmaster make better decisions about the moves to make in a 
chess game? She has more knowledge about playing chess and uses it to make better 
decisions about which move to make next by predicting her opponent’s next moves, 
by identifying weaknesses in her opponent’s position, and so on.

However, we are not immediately concerned with such details. For now, we 
need only understand that an information processor has three basic components: a 
data structure, rules for manipulating the symbols stored in the data structure, and 
a control procedure for deciding which rule to apply to the data structure. Chess 
illustrates the three components. Information processing is rule- governed symbol 
manipulation; it is like playing a formal game.

1.2 Form and Function

The Figure 1- 2 chess pieces represent the Staunton design. In a Staunton chess set, 
Rooks look like castle towers, Knights look like horses, and Bishops, Queens, and 
Kings all have distinctive hats or crowns. However, many alternatives to the Staun-
ton design exist. Some designs use cartoon or Sesame Street characters or American 
Civil War figures. Chess pieces can also be made from wood, plastic, stone, or other 
materials.

The many chess piece designs illustrate a many- to- one relationship. In a many- to- 
one relationship, many (seemingly) different things all belong to the same type. For 
instance, one type of chess token— the King— could resemble a Staunton piece with 
a crown, Abraham Lincoln, or Homer Simpson. We could also construct the King 
from many different materials. Yet the King’s different shapes, built from different 
materials, belong to one type: the King.

How, then, do we define the chess King? We cannot define the King as a specific 
form in a particular chess set or the material from which it is built. To do so would 
rule out possible Kings. For example, defining a King as a wooden Staunton piece 
ignores the possibility that the King could take another shape or be built from 
another material. In short, we cannot define a King using physical properties; such 
definitions restrict us too much. Instead, we must define a King by its function in 
a chess game. A functional definition focuses on what something does, not on its 
physical properties. In chess, a King is the token to which the King’s rules apply 
(Figure 1- 3). Functional definitions permit assigning chess pieces of different shapes 
or materials to the same type, having the same function in a game.
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We almost always explain information processors functionally, not physically. 

Cognitive psychologists liken human thinking to a computer running a program. 

What makes such an analogy possible given physical differences between brains 

and computers? The analogy works by being functional, not physical. Like different 

designs for chess pieces, brains and computers can perform identical functions even 

while being built from different materials.

1.3 The Formalist’s Motto

Processing information is playing a formal game. A chess game’s characteristics 

illustrate information processing’s core properties. However, playing chess and 

processing information differ on one key property. Useful information processors 

manipulate representations— symbols with meanings, symbols referring to things in 

the world. Information processing conveys new meanings by creating new symbol 

combinations. Formal games do not.

Chess tokens do not represent meanings. A chess move has no content because 

chess pieces do not represent anything; formal chess moves depend only on token 

shapes. Chess piece positions do not communicate meanings.

To distinguish an information processor’s formal properties from its meanings, 

we borrow two words from linguistics. Linguists use the word syntax to describe a 

sentence’s grammatical structure. Syntax is a set of rules for distinguishing gram-

matical sentences from ungrammatical sentences. The rules governing token 

movements in a formal game are analogous to a syntax.

In contrast, linguists use the word semantics to describe a sentence’s meaning. 

Claiming that a symbol has meaning is claiming that a symbol stands for something 

else; a symbol refers to something in the world. For instance, the string of letters dog 

is meaningful because it represents or stands for a particular animal in the world. 

When a symbol represents meaning by referring to something in the world, we  

call the symbol intentional.

Philosopher Franz Brentano (1874/1995) used intentionality to distinguish  

the physical from the mental. For Brentano, mental states could be intentional, but 

physical states could not, separating syntax from semantics. Consider linguist Noam 

Chomsky’s famous example “Colorless green ideas sleep furiously,” a meaningless 

sentence with proper syntax. Meaningless sentences can still be grammatical.

Separating syntax from semantics makes mechanical information processing 

possible. Information processors manipulate symbols using formal operations; 
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information processors do not understand what symbols mean. However, formal 
operations can be meaningful.

Although chess tokens do not have meanings, symbols used in other formal systems 
do. For example, mathematics uses formal rules to manipulate symbols. But math-
ematical symbols represent meanings. Engineers manipulate symbols to determine 
whether a bridge will stand, or whether an airplane will fly, using symbols to represent 
real- world properties such as force, gravity, or mass. Logic also manipulates meaningful 
symbols. In logic, a symbol represents a real- world property’s truth or falsehood.

Mathematical or logical operations, though meaningful, do not themselves under-
stand what symbols mean, for they are as formal as the rules governing chess. For 
example, one rule in mathematics permits replacing the string x + x + x with the string 
3x but does not know x’s value or what x represents. The rule only requires recognizing 
symbol shapes (e.g., x, +) to permit symbols to be manipulated in a particular way.

Amazingly, mathematical operations preserve meanings. For instance, the pre-
ceding example of replacing one set of symbols with another (x + x + x = 3x) operates 
without knowing what x means. However, in the real world, whatever x is, when 
added to itself three times, the result will be three times its value. The formal oper-
ation preserves meanings, even though it does not understand them.

Philosopher John Haugeland (1985) notes that a symbol in an information pro-
cessing system possesses dual properties. One property is the symbol’s shape or 
form, which permits the symbol to be manipulated by formal operations. The other 
property is the symbol’s meaning. Haugeland points out that information process-
ing systems are powerful because their formal operations on symbols— operations 
not sensitive to meaning— still preserve meaning and therefore can produce new 
meanings. Haugeland summarizes this notion in the formalist’s motto: take care of 
the syntax, and the semantics will take care of itself.

The formalist’s motto makes modern information processors, such as comput-
ers, possible. Basic information processing operations provide a formal syntax for 
manipulating symbols. The syntax works independently of what the symbols rep-
resent. However, the syntax preserves the meanings of symbols, making modern 
computers useful information processing devices.

1.4 Demonstrating the Formalist’s Motto

The formalist’s motto claims that information processors formally manipulate 
symbols, but still preserve meanings, even without understanding what symbols 
represent. We will now consider one example to illustrate the formalist’s motto.
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In the 1930s, mathematician Alan Turing (1936) proposed an idea now known as a 
Turing machine. A Turing machine is a very basic information processing device with 
two different components (Figure 1- 9). The first is an infinitely long ticker tape mem-
ory. The tape is divided into a series of individual cells. Each cell can only contain a 
single symbol. The ticker tape cells in Figure 1- 9 contain a 0, a 1, or a B (for blank).

A Turing machine’s second component is a machine head for manipulating 
the symbols on the ticker tape. The machine head includes methods for moving 
along the tape (one cell at a time), for reading the symbol in the current cell, 
and for writing a symbol into the current cell. The machine head also includes a  
register to indicate its current physical condition or machine state. Finally, the 
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Figure 1- 9 A Turing machine’s basic components.
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machine head contains operations, the machine table, for manipulating the ticker 

tape’s contents.

To use a Turing machine, we ask a question by writing some symbols on the 

ticker tape. The symbols on the Figure 1- 9 tape provide an example question. Next, 

we place the machine head at a starting cell on the ticker tape, and we assign a start-

ing machine state. The starting cell for the Figure 1- 9 machine head is the lowest cell 

containing a 1, and the starting machine state is 1. Finally, we activate the machine, 

which starts to read and write symbols on the tape, moving along the tape one 

cell at a time. Eventually, the machine halts. When halted, the symbols written by  

the machine on the tape give the machine’s answer to the original question.

How does the machine head manipulate the symbols on the ticker tape? The 

machine head contains formal operations. The machine reads the symbol from  

the current cell on the tape, noting the current machine state. Combined, the sym-

bol and the machine state tell the machine which operation to perform. At each 

processing step, the Figure 1- 9 machine writes a symbol (0, 1, or B) to the tape or 

moves one cell up or down.

Table 1- 1 contains one special instruction. If the machine head reads a 0 while in 

State 6, then the Turing machine executes an operation called HALT. When HALT 

occurs, the tape holds the Turing machine’s answer to the original question. Figure 1- 10 

shows the Turing machine’s answer to the question shown on the tape in Figure 1- 9.

A Turing machine’s information processing behaviour does not require under-

standing what the ticker tape’s symbols represent. The interested reader can confirm 

this by starting with the Turing machine as laid out in Figure 1- 9 and then fol-

lowing the machine table’s steps. The reader— like the Turing machine itself— can 

produce the Figure 1- 10 ticker tape without knowing what the tape’s symbols mean. 

What question does the tape hold in Figure 1- 9? What answer does the tape hold in 

Figure 1- 10? If the reader can pretend to be the machine, but cannot answer such 

questions, then she has acted as a formal system.

Importantly, the ticker tape contents in Figures 1- 9 and 1- 10 are meaningful. In 

both figures, the tapes represent integer values by placing a certain number of 1s 

between two 0s. The integer 2 is coded “0110,” the integer 3 is coded “01110,” and 

so on. A tape can hold more than one integer, separating different integers with a 

blank cell.

Knowing the tape’s encoding, we see that the ticker tape in Figure 1- 9 represents 

two different integers (2 and 3) and that the ticker tape in Figure 1- 10 represents a 

single integer (5). The Table 1- 1 machine table provides instructions for adding two 
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integers together. Thus, the question in Figure 1- 9 is “What is the sum of 2 and 3?,” 
and the machine’s answer in Figure 1- 10 is “The sum is 5.”

Our example Turing machine operates without understanding ticker tape mean-
ings. But the Table 1- 1 operations preserve meaning and will correctly add any two 
integers written on the tape. The Turing machine takes care of the syntax only, 
while the ticker tape’s semantics takes care of itself.

1.5 A Universal Machine

The Turing machine in Section 1.4 performs only one task: summing up two 
integers. It does not solve any other information processing problems. A specialist, 
the Turing machine accomplishes only one thing.

Many other specialist Turing machines can exist. For example, one machine 
might (only) subtract one integer from another. Another machine might (only) 
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Figure 1- 10 The state of the Figure 1- 9 Turing machine when the machine head 
executes HALT.
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multiply two integers together. To create a different Turing machine, we must cre-
ate a different machine table to take the place of Table 1- 1. Every specialist Turing 
machine has its own distinct machine table.

However, we can create a general information processor. Consider a reader pre-
tending to be the Turing machine in Section 1.4. If that section provided a different 
machine table, then the reader could pretend to be the different machine as well, 
by following any instructions like those in Table 1- 1. Therefore, she could pretend 
to be any Turing machine. She would be a generalist, not a specialist.

In the 1930s, Turing designed a Turing machine pretending to be any other Tur-
ing machine, called the universal Turing machine, which operates like the reader who 

Table 1- 1 A machine table for the Turing machine in Figure 1- 9

Current State Symbol Read Write Move Next State

1 B 1 6

1 0 B 2

1 1 UP 1

2 B UP 2

2 0 B 3

3 B UP 3

3 0 B 4

3 1 B 5

4 B DOWN 4

4 1 UP 6

5 B DOWN 5

5 1 UP 1

6 B 0 6

6 0 HALT 6

6 1 UP 3

Note: B represents a blank cell.
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uses Table 1- 1 to simulate the Figure 1- 9 machine. A universal machine’s ticker tape 
holds different information (Figure 1- 11). One part of the tape holds data— where one 
writes the to- be- answered question. Another part describes the Turing machine that 
the universal machine pretends to be. A third part serves as a temporary memory 
or scratchpad.

When observing a universal Turing machine behave, we might recognize that  
it operates like a reader who simulates Table 1- 1. The universal machine’s 
machine head moves back and forth between the data on the ticker tape and  
the machine description on the ticker tape. The universal machine reads a data 
symbol, goes to the machine description to find out what to do to the symbol, 
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and then goes back to the data to perform the operation. The scratchpad remem-
bers important information (e.g., the current machine state of the device that 
it is pretending to be). Eventually, the universal machine will HALT, with the 
answer to the question written on the ticker tape region for holding data.

However, the universal Turing machine does not understand the ticker tape’s 
meaning and does not know that the ticker tape holds different information at dif-
ferent places. A universal Turing machine is purely formal, and it works like any other 
Turing machine by reading a symbol, noting the current machine state, and picking 
an operation from the machine table. The operation will involve either writing a 
symbol or moving along the tape, and it will determine the machine head’s next state.

In short, a universal Turing machine also illustrates the formalist’s motto. With 
respect to syntax (formal operations), a universal Turing machine is just another 
Turing machine. With respect to semantics (the interpretation of its behaviour), a 
universal Turing machine simulates another machine described on the ticker tape.

Importantly, the universal Turing machine changes behaviour without needing 
its own machine table to be altered. To change the behaviour of the universal Turing 
machine, we simply write a new machine description on the ticker tape. A universal 
Turing machine’s ability to simulate any other Turing machine also means that it is 
an exceptionally powerful information processor. A universal Turing machine can 
answer any formally expressed question. It can answer any question that a modern 
computer can answer.

1.6 Why Is the Turing Machine Important?

The Turing machine was one of the 20th century’s most important ideas. In math-
ematics, the Turing machine was important because its computational power 
originated from simple operations (Section 1.5). Therefore, it could be included in 
mathematical proofs because its mechanisms were simple and non- controversial 
(Hodges, 1983).

The Turing machine was central to proving that some mathematical statements 
are undecidable (Turing, 1936). For an undecidable statement, no method exists to 
decide whether the statement is true or false. For such a problem, a Turing machine 
never HALTs; instead, it enters an infinite loop. Turing’s proof revolutionized the 
field because, prior to Turing, most mathematicians believed that all mathematical 
statements were decidable.

Created to be used in mathematical proofs, the Turing machine affected other 
fields as well. It provided the essential foundation for modern computers. The 
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Turing machine’s core components (Figure 1- 11) describe the basic properties of 
computers: a data structure, a basic set of operations, and a method of control.

The modern computer behaves like a Turing machine but far more efficiently. 
For instance, modern computers use random access memory, permitting immediate 
access to symbols stored anywhere in memory. A Turing machine accesses memory 
far less efficiently and must move through a sequence of tape cells to obtain infor-
mation from a different memory location.

Although modern computers solve problems faster than Turing machines, 
they are not more powerful. Modern computers cannot answer any question that 
a universal Turing machine cannot also answer. The Turing machine’s power— the 
breadth of questions that it can answer— explains its impact on studying cognition.

A Turing machine can solve some psychologically interesting information pro-
cessing problems. For example, a Turing machine can determine whether a symbol 
string written on the ticker tape is grammatical or not. One example of such behav-
iour comes from studying an extremely simple- looking artificial grammar (Bever et 
al., 1968). Sentences from the grammar contain only two different “words”: a and 
b. The grammar that Bever et al. studied was bNabN, where N gives the number of 
b’s in the string. According to this grammar, strings such as a, bab, and bbabb are 
grammatical, but strings such as ab, babb, bbb, and bbabbb are not. A string is gram-
matical only if the same number of b’s appear before and after the a.

Bever et al.’s (1968) grammar exhibits embedded clauses: each b before the a is 
paired with another b after the a. A Turing machine can evaluate grammaticality 
if strings contain embedded clauses. Humans can as well because natural human 
languages have embedded clauses. We know that in the sentence “The dog who 
did not like cats who liked mice ran” the verb ran is associated with the noun dog 
because of our ability to process embedded clauses.

Less powerful information processors, such as the finite state automaton, can-
not deal with embedded clauses in grammars. A finite state automaton is like a 
Turing machine because it processes a ticker tape with a machine head. However, 
a finite state automaton can only read symbols, cannot write to the tape, and can 
only move in one direction along the tape. It reacts to each symbol that it reads: the  
machine state represents the reaction. When the finite state automaton reaches  
the end of the question, it stops; its final state represents the answer to the question.

A finite state automaton cannot judge whether symbol strings were generated 
by a grammar such as bNabN (Bever et al., 1968). Because the device cannot move in 
both directions along the tape, it cannot track the pairings of b’s that define embed-
ded clauses. Thus, if human cognition is information processing, then cognitive 



What Is Information Processing? 23

https:// doi .org/ 10 .15215/ aupress/ 9781771993418 .01

operations must be like those performed by a Turing machine and not like those 
of a finite state automaton. Processing the embedded clauses of human grammar, 
for instance, cannot be accomplished by simpler information processors. When 
cognitivists assume that “cognition is information processing,” they also assume 
that cognition can be described with a universal Turing machine.

1.7 The Modern Computer

Turing proposed the Turing machine as a hypothetical device to include in math-
ematical proofs. The Turing machine was never intended to be built; its simplicity 
made it impractical. However, the Turing machine inspired a more practical device, 
the digital computer, developed to meet the challenges of the Second World War.

British engineer Tommy Flowers built the first electronic computer, Colossus, 
in 1943. Colossus deciphered encoded German military messages. In 1946, John 
Mauchly and J. Presper Eckert created the first American electronic computer 
(ENIAC) at the University of Pennsylvania; ENIAC created artillery firing tables for 
the United States Army.

In 1951, the world saw the first commercial computers. The University of Man-
chester received the first, the Ferranti Mark I, in February. Soon after the University 
of Toronto purchased a similar machine. The advent of commercial computers per-
mitted researchers to explore which problems computers could solve (Boden, 1977; 
Feigenbaum & Feldman, 1963; Hofstadter, 1979; McCorduck, 1979; Nilsson, 2010).

Early research focused on programming computers to play board games such 
as chess or checkers. Formal games provided ideal test cases for exploring machine 
intelligence. As we have seen, the rules for formal games are simple, but they can 
create complex game situations to challenge even the best human players. If com-
puters could play high- level chess or checkers, then perhaps machines could achieve 
human- like intelligence.

The first successful game- playing programs appeared in the early 1950s (Sam-
uel, 1959). Arthur Samuel developed the first checkers program in 1952. By 1955, his 
program could learn to improve performance by playing against itself. His program 
would eventually become a good, but not an expert, player.

Four decades later the Chinook program developed at the University of Alberta 
by Johnathan Schaeffer became the world checkers champion (Schaeffer et al., 1992; 
Schaeffer et al., 1995; Schaeffer et al., 1993). In 1994, Chinook defeated the reigning 
human champion, Dr. Marion Tinsley. Similar stories can be told about computers 
playing other formal games. IBM’s Deep Blue defeated world chess champion Gary 
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Kasparov in a match in 1997 (Campbell et al., 2002). Google’s AlphaGo defeated 

world go champion Lee Sedol in 2016.

Computers also produced intelligent behaviour outside the realm of games. In 

the mid- 1950s, Herbert Simon, Allan Newell, and John Shaw created a program, the 

logic theorist, for developing logical proofs (Newell & Simon, 1956). It successfully 

derived 38 proofs in Russell and Whitehead’s Principia Mathematica. An under-

graduate class taught by Simon in 1956, attended by artificial intelligence pioneer 

Edward Feigenbaum, was told that, “over Christmas, Allan Newell and I invented a 

thinking machine” (Grier, 2013, p. 74). Simon was talking about the logic theorist.

Many early computer scientists believed that intelligent machines were inevit-

able. Alan Turing wrote a landmark paper in 1950 to propose how to identify machine 

intelligence. Two decades into the 21st century, we live in the age of intelligent 

machines. Computers perform many complex tasks. Banks rely on artificial intel-

ligence to decide about investments and fraud protection. Computers— including 

our smartphones— translate the spoken word into text. Security systems identify 

objects and recognize faces. Medical programs diagnose diseases and process huge 

amounts of patient data. Most domains of human life come into contact with com-

puter programs performing tasks that seemingly require intelligence.

Yet modern computers are formal symbol manipulators no different in kind from 

Turing machines. Clearly, the formal manipulation of symbols permits machines to 

behave intelligently. As a result, many researchers believe that symbol manipulation 

also underlies human intelligence. Perhaps brains perform operations similar to 

those performed by computers.

1.8 Explaining How Computers Process Information

Cognitive psychology adopts a key working hypothesis: human thinking involves 

formal operations like those of chess, Turing machines, and electronic computers. 

Thus, explanations of human cognition will be similar to explanations of com-

puters. How do we explain a computer’s information processing?

We explain computers at different levels of analysis (Chomsky, 1957; Marr, 1982; 

Pylyshyn, 1984). Each level involves asking a different question and then using a 

distinct method to answer the question. The most abstract is the computational level 

of analysis. At the computational level, we answer the question “What information 

processing problem is the computer solving?” Typically, we express answers to com-

putational questions as proofs, using formal methods such as mathematics and logic.
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For example, consider the Section 1.4 Turing machine, which— like any other 
Turing machine— receives a question and then produces an answer. The compu-
tational level of analysis defines which question is being answered. Computational 
accounts define the mapping from the initial question to the final answer.

The computational level of analysis expresses explanations using mathematics 
or logic because of a many- to- one relationship. Many different question- answer 
pairings all belong to the same information processing problem. For instance,  
2 + 3 = 5, 1 + 6 = 7, 4 + 9 = 11, and so on all involve calculating integer sums. In fact, an 
infinite number of different examples of adding integers exist; the Turing machine 
of Section 1.4 could handle each and every one.

Rather than providing an infinitely long list of question- answer pairings, com-
putational explanations are far more compact. For instance, the Section 1.4 Turing 
machine deletes the string 0B0 separating the 1’s of the two integers on the initial 
tape and then moves all the symbols down three cells to fill in these three deleted val-
ues, creating a single integer (the sum of the original two). Describing the machine 
in this way proves that it adds two integers; the proof provides a computational 
account of the Turing machine.

A second approach examines a computer at the algorithmic level of analy-
sis. An algorithm or program is a sequence of operations for accomplishing a  
task. An algorithmic account of a computer explains its behaviour by describing  
the program being executed. The computer behaves one way when executing a word 
processing program, but it behaves differently when executing a web browser pro-
gram. An algorithmic account of a universal machine would focus on the “machine 
description” on the ticker tape, which serves as the program that the universal 
machine is executing. If we change the machine description on the tape, then the 
universal Turing machine’s behaviour will change.

A third approach to explaining a computer occurs at the architectural level of 
analysis. The architecture consists of the properties built into a computer to process 
information. Architectural accounts answer questions such as “What serves as the 
device’s memory?” “Which symbols can the device store?” “Which basic operations 
manipulate symbols?” “How are these basic operations selected?” An architectural 
account of a universal Turing machine would focus on symbols on the ticker tape, 
on possible machine states, and on machine table contents.

We call a computer’s architecture primitive because the architecture belongs to the 
machine’s physical structure. Later we will see that identifying an architecture— an 
information processor’s primitives— converts cognitive descriptions into cognitive 
explanations.
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Physical properties bring a computer’s architecture into being. As a result, 
the implementational level of analysis provides a fourth approach to explaining a 
computer. An implementational account explains how the computer’s physical 
properties create primitive information processing properties (the architecture). 
How do physical mechanisms produce the primitive operations used to manipulate 
symbols?

In summary, we can explain a computer at four different levels of analysis: imple-
mentational, architectural, algorithmic, and computational. A complete explanation 
requires appealing to each level: explaining which problem is being solved, which 
algorithm is being used, which basic operations make up the algorithm, and  
which physical mechanisms bring primitive operations to life. When we assume 
human cognition to be information processing, human information processing 
must be explained in a similar fashion. Cognitive psychologists try to explain human 
cognition in the same way that computer scientists explain computers.

1.9 A Hierarchy of Levels

The different types of analysis for explaining information processors are hierarch-
ically organized; a many- to- one relationship exists from one level to the level above 
it (Dawson, 1998, 2013).

A many- to- one relationship exists from the algorithmic level to the com-
putational level. Different algorithms can solve the same problem. Consider 
calculating the product of two integers, x and y. One algorithm adds x to itself y 
different times. A different algorithm computes the logarithm of x, computes the loga-
rithm of y, adds the two logarithms together, and takes the antilogarithm of the sum.  
Both algorithms determine the product of x and y but are very different from one 
another.

Another many- to- one relationship exists from the architectural level to  
the algorithmic level. Different architectures can run the same algorithm. Imagine 
multiplying two integers together using the logarithmic algorithm described above. 
The algorithm could be carried out by the specialized machine table of Turing 
machine Z. But a Turing machine with a very different architecture could execute 
the same algorithm: the universal Turing machine simulating Turing machine Z.

Finally, a many- to- one relationship exists from the implementational level  
to the architectural level. Different physical mechanisms can bring the same  
architecture to life. Consider constructing an architecture to define a particular 
Turing machine. We might imagine an architecture with an electromechanical 
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tape head for processing a paper ticker tape. But other physical designs are possible. 
Turing machines have been constructed from LEGO, Meccano, wood, and toy train 
sets (Ferrari, 2006; Stewart, 1994).

Figure 1- 12 illustrates the many- to- one relationships between levels, showing 
that one architecture can be implemented by many different physical implemen-
tations, many different architectures can be used to program one algorithm, and 
many different algorithms can carry out the same computation.

When we explain information processing, we must consider relationships 
between levels. Explanations must detail how particular operations are primi-
tive, how operations are organized to create an algorithm, and how the algorithm 
solves an information processing problem. Comparisons between two systems (e.g., 
between a computer simulation and a human subject) must also be made at different 
levels. Do the two systems solve the same problem? Do the two systems use the same 
algorithm? Do the two systems use the same architecture?

However, comparing systems at the implementational level is not a priority. Pro-
vided that two systems bring the same architecture into being, we need not worry 
whether they do so with different physical mechanisms, provided that we endorse 

Di�erent implementations

Di�erent architectures

Di�erent algorithms

Computation

Figure 1- 12 An illustration of the various many- to- one relationships between 
different levels of analysis.

http://www.nzmeccano.com/image-85232
http://www.openculture.com/2018/03/a-turing-machine-handmade-out-of-wood.html
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functionalism (Section 1.2). Indeed, computer simulations of cognition make sense 

only when we ignore implementational differences between computers and brains.

1.10 Explaining Human Cognition

Computers use formal operations to manipulate symbols stored in data struc-

tures. Computers preserve meanings, or create new meanings, even though formal 

operations ignore what symbols represent. Computers bring the formalist’s motto 

to life by taking care of the syntax while letting the semantics of symbols take care 

of itself.

Cognitive psychologists assume that they can explain human cognition just as 

we would explain a computer’s information processing. How do we explain a com-

puter? We could detail the properties of its data structures, of its basic operations, 

and of its control. When we assume that cognition is computation, we must assume 

that the same approach can be applied to human thinking. Alternatively, we could 

examine a computer at multiple levels: computational, algorithmic, architectural, 

and implementational. Cognitivists believe that human cognition can be explained 

at these different levels.

However, there is an important difference between computers and humans, 

making human cognition much harder to explain.

Consider asking a programmer to add new features to a computer program. 

Computers have operations to permit the programmer to see a program’s prop-

erties. The programmer can list the program’s steps or examine the data files that 

the program processes. In other words, the programmer can directly observe the 

computer’s information processing.

Psychologists cannot examine human cognition in the same fashion. For a cog-

nitive psychologist, a human participant is a black box. Researchers can directly 

observe stimuli presented to a participant as well as a participant’s responses. How-

ever, cognitive psychologists cannot directly observe internal processes of converting 

stimuli into responses. These psychologists assume that human thinking is rule- 

governed symbol manipulation but cannot directly observe human information 

processing’s data structures, operations, or control.

In response, cognitive psychologists design clever experiments to permit them 

to observe subtle relationships between stimuli and responses. Armed with such 

data, they infer the properties of the information processing that cannot be directly 

observed. Cognitive psychologists create models of human information processing 



What Is Information Processing? 29

https:// doi .org/ 10 .15215/ aupress/ 9781771993418 .01

and use the fine details of experimental data to validate their models. Chapter 2 
introduces the reader to this research strategy.

1.11 Chapter Summary

According to Vico’s certum quod factum principle, we are only “certain of what we 
build.” Science exploits Vico’s principle by using the properties of well- understood 
human devices to illuminate less- understood phenomena. For instance, cognitive 
psychologists treat thinking as analogous to the operations carried out by com-
puters. They hope that the well- understood properties of computers will help us 
to understand human cognition. Computer performance fuels their hope because 
computers can perform many tasks that ordinarily require human intelligence.

If computers can produce intelligent behaviour, then computer- like operations 
might provide the foundation for human intelligence. Thus, cognitive psycholo-
gists assume that cognition is computation, where “computation” is rule- governed 
symbol manipulation.

To explain a computer’s information processing, we could detail data structures, 
basic operations, and control. We could also examine a computer at multiple levels 
of analysis. What information processing problem is being solved? Which algorithm 
is used to solve the problem? What are the operations used by the algorithm? Which 
mechanisms bring the operations into being?

Cognitive psychologists aim to explain human cognition the same way. What are 
the properties of the data structures, operations, and control of human cognition? 
How can we explain human cognition at the four different levels of analysis?

However, cognitive psychologists encounter a difficult problem when answering 
such questions. Unlike computer programmers, cognitive psychologists cannot 
directly observe the core properties of human information processing. Instead, they 
can only observe stimulus- response relationships mediated by human information 
processing. Clever experiments must be designed to permit cognitive psychologists 
to infer information processing details from observable behaviour.

We can now explore the research strategies used by cognitive psychologists. 
Chapter 2 provides example experiments conducted by cognitive psychologists to 
support the assumption that cognition is computation. With these examples in 
hand, Chapter 3 introduces the philosophical foundations of theories of human 
cognition.
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2

Inferring Cognitive Processes

Cognitive psychologists view cognition as information processing: rule- governed 
symbol manipulation. The information processing assumption is attract-
ive because symbol manipulating machines— digital computers— can produce 
intelligent behaviours. Why else might we assume that cognition is information 
processing? In this chapter, I explore this question by introducing some research 
methods invented during cognitive psychology’s early years. Cognitive psych-
ologists observe how various manipulations affect human behaviour and then 
infer properties of human information processing. Cognitive psychologists infer  
such properties without directly observing internal processing. Chapter 2’s examples 
demonstrate the use of psychological experiments both to defend and to elaborate 
the information processing hypothesis. The chapter’s examples provide a focus on 
cognitive psychology’s early studies of human memory, which permitted inferences 
about different kinds of memories and their properties. Each memory uses different 
symbols, manipulates symbols with different processes, and uses different methods 
of control for deciding the order in which to execute processes.

2.1 Using Symbols

Do humans differ from animals and machines? Many scholars argue that humans 
are special because they use mental representations, a view rooted in 17th- century 
philosophy. Descartes (1637/1960) argued that only humans possess a soul or con-
sciousness, and the soul’s essence is only to think. His notion of thinking resembles 
modern information processing. Modern echoes of Descartes are easily found. 
Bronowski writes that “man is distinguished from other animals by his imaginative 
gifts” (1973, p. 20). Bertalanffy argues that “symbolism, if you will, is the divine spark 
distinguishing the poorest specimen of true man from the most perfectly adapted 
animal” (1967, p. 36).
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Modern computers refute using symbols to grant humans special status. We 

live in an age in which the difference between humans and machines has become 

blurred. Perhaps we should consider the advantages provided by representations 

not only for humans but also for animals or machines.

Philosopher Karl Popper (1978) proposed that representations aid survival. 

Thinking permits actions to be modelled, evaluated, and discarded before being 

performed so that humans do not rashly undertake dangerous acts. For Popper, 

reasoning allows our hypotheses to die in our place. Cognitive psychology also 

presumes that planning plays a critical role in cognition. Cognitive psychologists 

hypothesize that humans perceive information, construct mental models of the 

perceived world, and then manipulate models to plan and evaluate potential actions. 

We call such processing the sense- think- act cycle.

Cognitive psychologists emphasize “thinking” in the sense- think- act cycle and 

treat thinking as rule- governed symbol manipulation. Earlier we considered evi-

dence supporting the information processing assumption: information processing 

machines produce seemingly intelligent behaviours. What other evidence sup-

ports viewing cognition as computation, as manipulating mental representations? 

Chapter 2 provides several examples from cognitive psychology to illustrate how 

observing human behaviour supports inferences about human information pro-

cesses, which we cannot observe directly.

Chapter 2 focuses on the multi- store memory model central to early cogni-

tive psychology (Shiffrin & Atkinson, 1969; Waugh & Norman, 1965). That model 

explains memory as multi- stage information processing. Each stage involves a dif-

ferent memory store with unique properties. Properties include the symbols used 

to store information, how long symbols exist in the store, the capacity of the mem-

ory, how information in the memory is maintained, and how information can be 

transferred to another memory.

Although the multi- store memory model was important historically, many 

modern revisions to and elaborations of it exist (Baddeley, 1986; Conway, 1997; 

Eichenbaum, 2002; Tulving, 1983). If more modern memory theories exist, then why 

do I use older research to introduce cognitive psychology’s methods?

Cognitive psychology reacted to behaviorism (Flanagan, 1984; Gardner, 1984; 

Leahey, 1987; Miller, 2003). Behaviorism characterized psychology as a natural sci-

ence by excluding mentalistic terms from theory and by focusing on the relationships 

between observable stimuli and behaviours (Watson, 1913). Cognitive psychology 

aimed to return mentalism to experimental psychology.
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The behaviorist dominance of psychology caused problems for early cognitive 
psychologists, who encountered difficulties publishing research in mainstream jour-
nals because editors thought that the research was too mentalistic (Mandler, 2002). 
Furthermore, cognitivists challenged the status quo by openly rejecting all behaviorist 
assumptions (Bruner, 1990; Sperry, 1993). “We were not out to ‘reform’ behaviorism, 
but to replace it” (Bruner, 1990, p. 3). To succeed in a behaviorist environment, cog-
nitive psychologists needed methodologies to withstand intense behaviorist scrutiny. 
Cognitive psychology’s research on memory, which produced the multi- store mem-
ory model, used methodologies tempered in the crucible of behaviorist criticism.

The multi- store memory model also adheres to a philosophy of science called 
functional analysis. Functional analysis defines cognitive psychology’s explanatory 
goals and opposes the philosophy of science followed by behaviorists. I will detail 
the properties of functional analysis in Chapter 3 by building upon the material 
discussed in Chapter 2.

2.2 Partial Report and Iconic Memory

The sense- think- act cycle begins with sensing. For psychology, sensing is 
transduction— converting something from one form into another form. In cogni-
tive psychology, sensing transduces energy received from the world into mental 
representations or symbols.

George Sperling (1960) conducted an early and influential study of transduction. 
He wanted to determine how much information could be seen in a single brief 
exposure. In one study, participants saw an array of letters and numbers (Figure 2- 1)  
for a mere 50 milliseconds (ms). After the display disappeared, participants reported 
as many characters as possible. Participants retrieved characters from memory 
because the display had vanished. Sperling called his method the whole report con-
dition because participants attempted to report the whole character set.

7 I V F

X L 5 3

B 4 W 7

Figure 2- 1 An example stimulus from Sperling’s experiment.
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A participant in the whole report condition recalled three or four characters. 
However, she also reported seeing other characters but could not recall them. A 
limitation prevented all items from being retrieved. For instance, the memory traces 
of the characters quickly decayed, making them unavailable for recall if participants 
needed a long time to report all the items.

Sperling tested this possibility with his partial report method. Participants in a 
partial report task experienced a display like that in Figure 2- 1, again for only 50 ms. 
However, immediately after the stimulus disappeared, participants heard one of 
three possible sounds, each a signal about which characters to report. Participants 
reported only the characters in the display’s bottom row (low tone), or the display’s 
middle row (medium tone), or the display’s top row (high tone). Participants knew 
that their task was to report a subset of display characters but did not know which 
subset in advance. The tone that they heard caused them to direct attention to the 
appropriate subset in memory.

In a partial report task, participants again only reported three or four characters 
from a row. However, because participants did not know in advance which row to 
report, Sperling inferred that a participant’s memory held about 9 of the 12 charac-
ters. He reasoned that most of the display remained in memory because participants 
could retrieve three or four items from any display row. The partial report technique 
indicated that display memory had a larger capacity than predicted from the whole 
report method. Presumably, participants could report only a small number of items 
before the whole memory disappeared.

Sperling varied the partial report method to infer further details about the 
memory for brief visual displays, called iconic memory (Neisser, 1967). For example, 
Sperling delayed the tone signalling the to- be- reported row; a 1- second delay caused 
partial report accuracy to fall to the same level as that observed using the whole 
report technique. He concluded that items persisted in iconic memory for less than 
a second.

Other variations of the partial report method permitted Sperling to conclude 
that iconic memory represents the visual properties of characters. In a typical partial 
report condition, the display disappears by being replaced with a dark visual field. 
However, if the display is replaced with a bright visual field, then performance is 
poorer. The bright stimulus following the display erases or masks memory contents. 
Brightness masking uses a bright stimulus to erase iconic memory’s contents.

Sperling also discovered that iconic memory did not encode other display char-
acter properties. He conducted a partial report experiment that cued participants 
to report only the letters (or the numbers) in a display. Sperling found partial report 
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performance to be no better than whole report performance. Iconic memory rep-
resents visual properties of characters but not abstract properties such as character 
type. Iconic memory illustrates a sensory register, which holds information briefly in 
some sensory format (e.g., visual, auditory). Other sensory registers, such as echoic 
memory for auditory information, also exist (Neisser, 1967). Sensory registers rep-
resent sensory information and do not encode more abstract properties, such as 
character type.

Sperling’s partial report method provides a pioneering example of using 
experimental observations to infer properties of mental representations. Sperling 
measured only how many characters participants could correctly report from the 
memory of a brief display. But he inferred many properties of iconic memory, and 
he described iconic memory as a high- capacity visual representation that persists 
for less than a second.

2.3 Primary Memory and Acoustic Confusions

To be used in the sense- think- act- cycle, information must persist for a longer dur-
ation than is offered by iconic memory. Psychologist William James wrote that 
“all the intellectual value for us of a state of mind depends on our after- memory 
of it. Only then is it combined in a system and knowingly made to contribute to a 
result” (1890, p. 644). He examined his own experience to argue for different kinds 
of memory, calling one primary memory. We consciously experience information in 
primary memory as part of the psychological present.

Pioneering studies in cognitive psychology investigated primary memory’s prop-
erties. One famous study by Conrad (1964) explored the format— the symbols— used 
to store information in primary memory. Conrad hypothesized that primary mem-
ory uses acoustic properties to represent items.

To test this hypothesis, Conrad presented sequences from a 10- letter alpha-
bet. Five letters (B, C, P, T, and V) defined one group that sounded similar to one 
another when pronounced. Five other letters (F, M, N, S, and X) defined a second 
group with similar sounds. The two groups, however, did not sound similar to one 
other. Conrad predicted that, if primary memory stored items acoustically, then 
much confusion would occur between letters belonging to the same group, and less 
confusion would occur between letters belonging to different groups.

Conrad presented participants with six- letter sequences from his alphabet. Each 
sequence was presented visually, one letter at a time. A new letter appeared every 
750 ms. Thus, Conrad used much longer display durations than those that Sperling 
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used. As a result, Conrad was not studying iconic memory. After the sixth letter 
was presented, participants wrote the sequence down— from memory— in order. 
Conrad used recall accuracy as his dependent measure. A correctly recalled letter 
was written in the correct location in a six- letter sequence.

A participant made an error when she confused the correct letter with  
an incorrect one. Conrad summarized recall errors in a confusion matrix like that 
in Table 2- 1. Each row in the matrix corresponds to a presented (correct) letter. 
Each column corresponds to an (incorrect) response to the presented letter. The 
numbers in a row indicate how many times participants made a particular error. 
For instance, the top row indicates that B was incorrectly recalled as C 13 times, 
incorrectly recalled as P 102 times, incorrectly recalled as T 30 times, and so on.

Conrad used results like those in Table 2- 1 to note that participants confused a  
presented letter with a letter in its sound- alike group more frequently than with 
a letter in the other group. For example, consider the total number of confusions 
(790) between letters all belonging to the first sound- alike group. The total sums 

Table 2- 1 The frequency that a presented letter was incorrectly recalled as a different 
letter in Conrad’s (1964) study of immediate memory

Recalled Letter

B C P T V F M N S X

Presented 
Letter

B – 13 102 30 56 6 12 11 7 3

C 18 – 18 46 32 8 6 7 21 7

P 62 27 – 79 30 14 8 5 11 2

T 5 18 24 – 14 5 5 1 2 2

V 83 55 40 38 – 31 20 19 9 11

F 12 15 15 18 21 – 16 28 37 30

M 9 3 8 14 15 12 – 167 4 10

N 3 12 8 14 11 13 146 – 12 11

S 2 35 7 8 11 131 15 24 – 59

X 0 7 7 10 5 16 5 5 16 – 



Inferring Cognitive Processes 37

https:// doi .org/ 10 .15215/ aupress/ 9781771993418 .01

up the numbers in the grey area in the upper left of Table 2- 1. In contrast, only 233 
confusions occurred between letters in one group and letters in the other group (the 
sum of the white area in the upper right of the table). We see similar results when 
we compare the sums of the other two quadrants in Table 2- 1.

Conrad also compared the confusion matrix from his (visual) recall study with 
another one from a study in which participants heard spoken letters. He added 
white noise to each letter’s pronunciation to make each letter hard to hear correctly. 
Conrad found a very high correlation between Table 2- 1 and the confusion matrix 
for the spoken letters, providing strong evidence that the recall errors in Table 2- 1 
reflect letter sounds.

His study again illustrates using behavioural observations to infer cognitive 
processes. Conrad summarized recall errors in a confusion matrix. By examining 
errors, he realized that confusion was more likely between sound- alike items and 
not between look- alike items. Conrad used his observations to infer that primary 
memory represents items with a code for how an item sounds when pronounced. 
In short, he collected evidence to answer questions about primary memory’s basic 
information processing properties.

2.4 Delaying Recall from Primary Memory

Why might primary memory encode sounds when representing items? We often use 
rehearsal to preserve information in memory. Rehearsal involves saying items aloud 
to keep them in primary memory and is easier if the format of primary memory 
makes items easier to say aloud. In short, primary memory’s acoustic representa-
tion supports a particular process, rehearsal.

How important is rehearsal for maintaining items in primary memory? Peterson 
and Peterson (1959) challenged primary memory by preventing rehearsal. In a given 
trial, participants heard one item to remember (a consonant syllable), followed by 
a number. Participants then counted, aloud, backward from the number by threes 
until the researcher signalled them to stop. Counting out loud prevented them from 
rehearsing the item. When signalled, participants tried to recall the item presented 
at the start of the trial.

Peterson and Peterson manipulated the length of the delay— the length of time 
that participants counted out loud— before participants tried recalling an item. 
Peterson and Peterson discovered that an item’s probability of correct recall dra-
matically decreased as the delay increased. They used an exponential function to 
relate recall probability to amount of delay; the equation is provided and illustrated 
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in Figure 2- 2. The figure shows that, without rehearsal, items are likely forgotten 
after a few seconds of delay. Rapid forgetting without rehearsal is another primary 
memory property inferred from behavioural measures.

2.5 Primary Memory and Recoding

In Sections 2.3 and 2.4, I described how cognitive psychologists infer the properties 
of primary memory. Conrad demonstrated that primary memory stores items in an 
acoustic format. Peterson and Peterson discovered that items in primary memory 
are forgotten in seconds without rehearsal.
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Figure 2- 2 The equation that Peterson and Peterson used to fit their experimental 
data relating recall probability to delay.
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Another property is capacity: how many items can primary memory hold? 
One measurement of capacity is the span of immediate memory, the longest digit 
sequence that someone can recall after hearing the sequence only once (Gates, 1916). 
It is measured with the digit- span task, which presents digit sequences of different 
lengths to participants to determine the longest sequence that a participant can 
remember. Gates used the digit- span task to determine that humans have a span 
of immediate memory of between seven and eight digits.

Many later studies confirmed the results from Gates, as summarized by George 
Miller (1956) in his famous paper “The Magical Number Seven, Plus or Minus  
Two.” Miller concluded that primary memory holds only between five and nine 
different items— the magical number. But he famously argued that researchers 
define the term “item” poorly. For instance, they often vary the digit- span task by 
presenting different stimuli, such as letters and words. Such studies reveal that the 
span of immediate memory is smaller for words than for letters (Bousfield & Cowan, 
1964). But is the capacity for words really smaller?

Imagine the finding that primary memory can hold seven letters but only six 
words. However, if each word contains at least three letters, then remembering  
six words means that a participant also remembers eighteen letters. Which is a more 
appropriate “item,” words or letters used to construct words? Miller proposed that 
we cope with primary memory’s limited capacity by recoding items into chunks. He 
argued that “chunks” are more appropriate for measuring capacity than “items.”

Recoding organizes or combines many items into a single chunk. “There are 
many ways to do this recoding, but probably the simplest is to group the input 
events, apply a new name to the group, and then remember the new name rather 
than the individual input events” (Miller, 1956, p. 93). For Miller, primary memory 
could hold about seven chunks, but each chunk could represent many individual 
items, extending memory capacity. He wrote that recoding is “the very lifeblood 
of the thought processes” (p. 95). Miller argued that we constantly use recoding, 
which primarily involves translating information into a verbal code. The next 
section illustrates recoding, teaching the reader how to recode digit sequences 
into words.

2.6 Example: Recoding Digits into Chunks

How might we use recoding to cope with primary memory’s limited capacity? 
Consider one approach to coping with the digit- span task, a mnemonic technique, 
or memory aid, for recoding digits into chunks represented as words. The major 
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method, from the 1830s, recodes each digit into a consonant sound (Lorayne & Lucas, 
1974). Table 2- 2 provides the mapping from digits to consonant sounds. In order 
to use the major method, the reader must memorize the sounds associated with 
each digit.

Some simple memory aids help you to memorize Table 2- 2. For example, the 
lowercase letter n possesses two feet, which is why its sound is associated with 
the digit 2. Similarly, the lowercase letter m possesses three feet, which is why its 
sound is associated with the digit 3. Typical memory aids for remembering the major 
method mappings are provided in Table 2- 2. If you take a few minutes to use these 
rules to remember the mappings, then you can perform an impressive memory feat 
by the end of the chapter.

The major method begins by using the Table 2- 2 mappings to recode to- be- 
recalled digits. For example, consider one 10- digit sequence used in the study by 
Gates: 2574638197. The major method converts the 10 digits into a consonant sound 
sequence: n-l- k- r- sh- m- v- t- b- k. Consult Table 2- 2 to see the rules used to generate 
the sounds.

The major method’s second step converts sounds into chunks, where each chunk 
represents several digits. Vowel sounds are inserted between consonant sounds  

Table 2- 2 The major method for recoding a digit as a consonant sound.

Digit Sound Memory Aid

0 s the word zero starts with s sound

1 t or d 1 long stroke in t or d

2 n n has 2 legs

3 m m has 3 legs

4 r r is last letter in four

5 l a hand makes an L when thumb is extended

6 sh or ch or soft g or j 6 looks like an upside- down g

7 k 7 looks like a K if you add a small line

8 f or v V8 juice

9 p or b 9 can look like a p or a b
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to combine multiple consonant sounds into a single word. We use vowel  
sounds because vowels do not represent any digits, so they can be added freely.

For instance, consider one grouping for the consonant sound sequence for 
2574638197: n-l, k-r- sh, m-v, t-b- k. By adding vowel sounds, we convert the conson-
ants into a four- word sequence: nail, crash, movie, tobacco. Each word chunks two 
or three consonant sounds together to represent two or three digits in a single item. 
Four words are easier to remember than are 10 digits.

We recall a digit sequence by reversing the major method. First, we recall a 
word from memory. Second, we extract the word’s consonant sounds. And third, 
we convert the consonant sounds into digits— our responses to the experimenter’s 
running a digit- span task. We repeat the process for each word held in primary 
memory.

Recoding and chunking using the major method become faster and easier with 
practice. Table 2- 3 provides some additional examples of using the major method 
for several other digit sequences studied by Gates. The examples in Table 2- 3 
suggest a second recoding stage to make the major method even more efficient. 
In this second stage, we chunk the words in the third column into a single image 
to be remembered. For instance, chin and foam bring to my mind an image of 
a great deal of foam dripping from someone’s chin. Lake and neighbour can be 
combined into a single image of my neighbour Al standing in front of his dock 
at Hastings Lake.

Table 2- 3 Examples of using the major method to recode and chunk other stimuli 
studied by Gates.

Digit Sound Words

6283 ch- n-f- m chin foam

57294 l-k- n- b- r lake neighbour

241738 n-r- t- k- m- v antarctic movie

2170463 n-t- k- s- r- g- m antiques regime

27985543 n-k- p- f- l- l- r- m kneecap fail alarm

9627 p-sh- n- k passion ache

41852 r-t- f- l- n art felon

38471629 m-v- r- k- t- ch- n- b mover catch honeybee
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2.7 Functional Dissociations of Serial Position Curves

Recoding copes with primary memory’s limited capacity. However, recoding requires 
additional cognitive resources. For instance, the major method requires know-
ing different words for chunking consonant sounds. We must also know how to  
map digits to sounds. We cannot store this additional knowledge in primary memory 
alone. Instead, we must store such general knowledge in a different, larger, and 
longer- lasting memory, called secondary memory by William James (1890).

Psychologists Shiffrin and Atkinson (1969) called secondary memory the long- 
term store and theorized, with appropriate processing, that information can be 
transferred to it from primary memory. For Shiffrin and Atkinson, “the long- term 
store is assumed to be a permanent repository of information” (p. 180).

Excellent evidence supporting the existence of different memories, primary and 
secondary, comes from observing serial position curves. A serial position curve plots 
data from a free recall experiment. In a free recall experiment, an experimenter pre-
sents participants with an item sequence to remember. At the end of the sequence, 
participants recall as many items as possible and in any order— hence the name 
free recall.

Although a free recall experiment does not constrain recall order, item order is 
important when researchers summarize participant performance. A serial position 
curve graphs an item’s recall probability as a function of the item’s position in the 
sequence, its serial position. Serial position curves ordinarily look like a flat- bottomed 
U. Figure 2- 3 illustrates serial position curves for four different sequence lengths 
(10, 20, 30, and 40 items). A mathematical model, used to fit real experimental data 
(Murdock, 1962), generates each curve. The model, which predicts recall probability 
from an item’s serial position (x) and the list’s length (L), is also provided in the figure.

Serial position curves routinely show a higher probability for recalling the first 
three or four items presented in a sequence, the primacy effect (see Figure 2- 3). Sim-
ilarly, the last three or four items presented in a sequence also have a higher recall 
probability, the recency effect. The remaining (middle) items in a sequence have much 
poorer recall probability, producing the bottom of the U-shaped serial position 
curve, which increases in width as the sequence increases in length.

How do serial position curves provide evidence of the existence of both pri-
mary and secondary memory? Cognitive psychologists believe that primary memory 
causes the recency effect, and that secondary memory produces the primacy effect. 
For example, Glanzer and Cunitz (1966) incorporated the Peterson and Peterson 
(1959) paradigm into the free recall task. At the end of a to- be- remembered list, 
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participants performed mental arithmetic to prevent rehearsal. Preventing rehearsal 
reduced the recency effect, which even disappeared with sufficiently long recall 
delay. Crucially, delaying recall did not alter the primacy effect.

Glanzer and Cunitz’s result supports the hypothesis that primary memory produ-
ces the recency effect. For instance, when participants can recall items in any order, 
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they recall the most recent items first, reporting items currently being rehearsed. 
Preventing rehearsal means that participants cannot report such items, nor can 
they recall items from primary memory if a delay causes forgetting. Furthermore, 
finding that preventing rehearsal does not change the primacy effect indicates that 
the items presented the earliest are held in a store different from primary memory.

Glanzer and Cunitz (1966) reduced the primacy effect by presenting items more 
quickly and increased the primacy effect by repeating items. Both manipulations did 
not change the recency effect. Glanzer and Cunitz hypothesized that having longer 
times to process items, or having items repeated, aids encoding items in secondary 
memory. However, both independent variables do not affect the recency effect, 
which involves recall from primary memory, a system governed by processes (e.g., 
rehearsal) different from those of secondary memory.

Discovering that different manipulations affect the primacy effect and the 
recency effect illustrates a functional dissociation. When different factors alter a 
serial position curve’s different parts, we infer that the different parts reflect quali-
tatively different information processing. Functional dissociations permit cognitive 
psychologists to infer that different memory stores exist, even though the memories 
cannot be directly observed.

2.8 Rehearsal and the Primacy Effect

Glanzer and Cunitz (1966) found that the primacy effect diminishes with increases 
in the presentation rate for to- be- remembered items. What causes this decrease? 
Glanzer and Cunitz hypothesized that rote learning transfers information from pri-
mary memory to secondary memory. One form of rote learning involves rehearsing 
aloud items from primary memory, without any more detailed processing. We call 
such rote learning maintenance rehearsal.

Maintenance rehearsal preserves items in primary memory. Plausibly, items 
remaining for longer durations in primary memory have higher likelihoods of 
transfer to secondary memory. Longer item rehearsal increases recall probability 
(Mechanic, 1964; Rundus, 1971). Increasing the presentation rate reduces rehearsal, 
diminishing the possibility of transfer to secondary memory and decreasing recall 
probability.

To illustrate, consider the list of words below. If we present the list one word 
every 4 seconds, then participants have ample opportunity to rehearse repeat-
edly the first few words. Only when the middle of the list is reached will rehearsal 
become difficult, because participants do not have sufficient time to place all the 
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presented items into a rehearsal loop, the set of primary memory items currently 
being rehearsed.

• piano
• snake
• clock
• pencil
• lobster
• cigar
• star
• house
• pipe

In contrast, presenting the same list at a faster rate (e.g., one word every second) 
makes maintenance rehearsal more difficult. First, there is less time available to 
rehearse items. Second, the rehearsal loop will be filled faster than with a slower 
presentation rate. Difficulties with maintenance rehearsal decrease the likelihood 
that items are transferred to secondary memory and reduce the primacy effect.

Other processes of control can transfer items from primary memory to sec-
ondary memory, such as elaborative rehearsal (Craik & Lockhart, 1972). Elaborative 
rehearsal involves thinking about what items in primary memory mean. Such 
thinking requires linking new items to existing information in secondary memory. 
Elaborative rehearsal connects representations in primary memory to representa-
tions in secondary memory.

The list presented above permits elaborative rehearsal. Each word in the list 
is a concrete word used in a free recall study (Paivio & Csapo, 1969). We can easily 
generate mental images for concrete words. Elaborative rehearsal of these words 
could use secondary memory to provide a mental image for each item.

One could also enhance elaborative rehearsal by using mental images to chunk 
items together. For instance, we could imagine a piano played by a snake, a clock 
with pencil hands, a lobster smoking a cigar, and so on. Such recoding again requires 
knowledge already present in secondary memory.

Elaborative rehearsal involving mental imagery provides a powerful technique 
for improving item recall. Compare recall of concrete words (as above) with recall of 
more abstract words (below) (Paivio & Csapo, 1969). Participants have much more dif-
ficulty generating mental images for abstract words than for concrete words. Paivio 
and Csapo found, in a free recall task, significantly better memory for concrete 
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words compared with abstract words. Elaborative rehearsal, via mental images, is 
easier for concrete words.

• justice
• ability
• ego
• moral
• bravery
• amount
• theory
• freedom
• grief

The major method for recoding digits offers another example of elaborative 
rehearsal. To succeed, secondary memory must already hold the major method. Simi-
larly, secondary memory must also provide the words used to chunk consonant sounds 
together as well as the images used to combine different words into a single chunk.

Note, too, that elaborative rehearsal will be disrupted by speeding up the pres-
entation rate in a free recall experiment. Elaborative rehearsal will be more effective 
if we have more time to think about the meanings of items. Faster sequence pres-
entations reduce the opportunity to perform elaborative rehearsal. As a result, the 
transfer of items from primary memory to secondary memory is impaired, reducing 
the primacy effect in a serial position curve.

2.9 Sentence Verification and Secondary Memory

Evidence such as the functional dissociation of the primacy and recency effects permit-
ted researchers to infer the existence of secondary memory. Cognitive psychologists 
agree that secondary memory stores concept meanings. But how does secondary 
memory encode and organize meanings? New techniques answered such questions.

One such technique is the sentence verification task (Collins & Quillian, 1969). 
In that task, a participant presses one of two buttons to indicate whether sen-
tences such as “A canary is a bird” are true or false. Researchers measure response 
latency or reaction time— the time from sentence presentation to button press. 
The sentence verification task was developed to test a particular model of second-
ary memory (Quillian, 1967, 1969). Quillian’s model uses a network to represent  
relations between concepts by encoding category membership (Figure 2- 4). A 
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network node represents each concept (the words on the left in Figure 2- 4). Links 
between nodes represent whether one concept belongs to a higher- order category 
(e.g., canaries are birds). The organization of the network is hierarchical. Quillian’s 
model also represents concept properties by linking nodes to features. For instance, 
the features attached to the “Canary” node in Figure 2- 4 represent that canaries can 
sing and are yellow.

The principle of cognitive economy governs Quillian’s network. Cognitive econ-
omy minimizes duplicate features. Rather than storing the property “Has feathers” 
with each node for a different bird, the network stores the property once, attached 
to the node “Bird.” Thus, to determine whether a canary has feathers, we find the 
property “Has feathers” from the “Bird” node to which “Canary” is linked.

In Quillian’s model, verifying a sentence such as “A canary breathes” involves 
searching the network to determine whether, starting at the “Canary” node, we 
can reach or retrieve the property “Breathes.” When testing the model, Collins and 
Quillian (1969) assumed that retrieving a property directly connected to a node takes 
a constant time, as does moving from one node to the next in the hierarchy. They 
also assumed that times are additive, so following more links to find a property takes 
longer. The sentence verification task tests Collins and Quillian’s predictions. In a 
hierarchically organized secondary memory (Figure 2- 4), some sentences should be 
faster to verify than others.

For instance, verifying “A canary is yellow” should be faster than verifying  
“A canary has wings” because the first sentence only involves retrieving a prop-
erty from the current node, whereas the second sentence requires retrieving 

Can sing
Is yellow

Has wings
Can fly
Has feathers

Has skin
Can move around
Eats
Breathes

Animal

Bird

Canary

Figure 2- 4 An example representing concepts and concept properties in a 
hierarchical network.
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a property after moving from the current node to another node in the hierarchy. 

Verifying “A canary has skin” should take even longer because it requires retrieving a 

property from a node two links above “Canary.” Collins and Quillian’s (1969) results 

supported the predictions. Typically, participants would take 75 ms longer to verify 

a sentence such as “A canary has wings” than to verify a sentence such as “A canary 

is yellow.” And they would take on average about 150 ms longer to verify a sentence 

such as “A canary has skin” than to verify the sentence “A canary is yellow.”

Collins and Quillian (1969) concluded that secondary memory has a hierarchical 

organization. However, they also raised new questions. For instance, participants 

took longer to verify false sentences than true sentences, a result that Quillian’s 

model could not predict. Such questions led other researchers to conduct further 

studies by varying the sentence verification task. New results inspired alternative 

secondary memory models.

For instance, category size affects sentence verification (Wilkins, 1971). Partici-

pants take less time to verify sentences involving categories with fewer members 

(e.g., musical instruments, sports) than sentences involving categories with more 

members (e.g., birds, diseases). Wilkins also found that word occurrence frequencies 

in language affect sentence verification speed. Sentences including higher- frequency 

concepts or properties take less time to verify than do sentences including lower- 

frequency words. Note that Quillian’s model does not represent properties such as 

category size and word frequency.

Similarly, the preceding stimulus affects sentence verification time. A high 

degree of semantic relatedness between the two sentences reduces the time for 

verifying the current sentence (Ashcraft, 1976), an example of a priming effect. Again, 

Quillian’s theory does not explain priming.

The concept or property typicality also affects sentence verification times (Ash-

craft, 1978). Researchers measure typicality by having participants generate examples 

of a stimulus. For example, participants could generate different examples of the 

stimulus “Bird.” The more typical an example, the more frequently different partici-

pants will generate it. Participants generate “Robin” as an example of “Bird” more 

frequently than “Duck.”

Ashcraft (1978) found faster verification for sentences containing typical con-

cepts or properties (“A robin has feathers”) than for sentences containing atypical 

concepts or properties (“A duck has a bill”). Note that Collins and Quillian (1969) 

would predict that both sentences produce the same verification time because both 

“Robin” and “Duck” are the same distance away from “Bird.”
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When new experiments produced problematic results for Quillian’s model, the  

model was revised (Collins & Loftus, 1975). As revised by Collins and Loftus,  

the model was a semantic network (similar to that in Figure 2- 4) composed of inter-

connected nodes. However, the semantic network abandoned the logical structure 

of concepts used by Collins and Quillian (1969). Instead, the semantic network of  

Collins and Loftus represented the semantic similarity or semantic relatedness  

of concepts. Two concepts with high semantic similarity share many properties. 

A semantic network represents semantic relatedness by having two concepts con-

nected to many of the same nodes (the shared properties).

Spreading activation serves as the basic process in a semantic network.  

When nodes in the network activate, activation travels as a signal to other con-

nected nodes, increasing activity in nodes that receive the signal. When a participant 

is presented with a sentence such as “A robin has feathers,” the nodes for both 

“Robin” and “Feathers” activate, and activation spreads from them. If activity  

from “Robin” and “Feathers” intersects or collides in the network, then the sentence 

is true.

The semantic network model addressed many limitations of the original Quillian 

network. For instance, the higher the semantic relationship between the two nodes, 

the faster the signals intersect, because the number of potential routes for activity 

to intersect increases with increases in semantic relatedness. The revised model also 

explains typicality effects because more typical concepts or properties have more 

links to other nodes. Priming effects can be explained by hypothesizing that network 

activity takes time to decay, meaning that activity produced by a previous stimulus 

might still exist in the network, facilitating the verification of a related sentence.

The semantic network revised Quillian’s original model. Other researchers aban-

doned network representations, proposing radically different secondary memory 

models. For example, set- theoretic models represent each concept as a collection or 

set of features (Rips et al., 1973). Rips et al. replace spreading activation with a process 

of feature comparison. To verify a sentence such as “A robin is a bird,” we compare 

the features for “Robin” to the features for “Bird.” If the two concepts share a suffi-

cient number of features, then the sentence is true. Sentence verification speeds up 

as the number of shared features increases, which accounts for many of the results 

obtained from the sentence verification paradigm.

Even when researchers agree on set- theoretic representations, they dispute other 

details. For instance, Rips et al. (1973) presume that we represent concept categories 

(e.g., “Bird,” “Fish”) as feature sets, but a category member must possess particular 
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features. For example, all birds have hearts. Requiring particular features to belong 
to a concept is known as the classical theory of concepts.

In contrast, prototype theory does not represent categories with definite 
features (Rosch, 1975; Rosch & Mervis, 1975). Prototype theory instead defines 
categories using the family resemblance between category members, because some 
members better represent a category than do others. Prototype theory represents 
each category member as a set of features varying in cue validity. A feature with 
high cue validity occurs more frequently in category members than does a feature 
with low cue validity. A prototype possesses many features with high cue validity. In 
prototype theory, we classify a new instance as belonging to a category if the new 
instance has high family resemblance to a category’s prototype. Family resemblance 
is determined by comparing the features of the instance with those of the proto-
type using a process sensitive not only to which features are shared but also to cue 
validities (Tversky, 1977).

We cannot directly observe secondary memory. We must infer its properties 
from other observations, such as results provided by the sentence verification task. 
By measuring the time taken to determine the truth of a sentence of the form “An x 
is a y,” and by manipulating the relationship between x and y, cognitive psychologists 
can infer properties of secondary memory.

However, the inferences that cognitive psychologists make must be re- evaluated 
constantly when new experimental results are obtained. New sentence verification 
results required existing models to be revised, producing new theories. Progress in 
cognitive psychology depends on developing more sophisticated techniques for 
evaluating whether one proposal (e.g., a semantic network) is more plausible than 
another (e.g., a set- theoretic model). I consider the logic of comparing theories in 
more detail in Chapter 3.

2.10 Associations, Verbal Learning, and Secondary Memory

In the previous section, I used the sentence verification task as a context for  
examining secondary memory. However, researchers use many other methods to 
study secondary memory. Results from such methods in turn support many dif-
ferent theories about cognitive processing. Below I briefly consider one example, 
associationism.

Associationism proposes links or associations between concepts; thinking of one 
concept causes us to think about another. Associationism originated in the writings 
of Aristotle in 350 BC (Sorabji, 2006). Experimental psychologists have had a long 
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interest in associationism (Warren, 1921). Associationism also inspired a model of 
secondary memory called HAM, for human associative memory, which arose at 
the same time as the models introduced in Section 2.9 (Anderson & Bower, 1973).

A particular form of associationism inspired behaviorism. Behaviorists did not 
study associations between ideas; rather, they studied habits, associations between 
environmental stimuli and behavioural responses (Thorndike, 1932). Behaviorists 
aimed to make psychology a natural science by focusing only on directly observable 
entities (stimuli and responses) and by removing unobservable mental terms from 
psychological theory (Watson, 1913).

However, through the first half of the 20th century, several factors  
increased interest in studying an older idea, the associations between ideas. These 
factors included the rise of information theory, growing interest in the study of 
human learning and memory, and the impact of linguistics on psychology (Cofer, 
1978). In studying the associations between ideas, psychologists returned to inves-
tigating unobservable mental properties, leading to experimental psychology’s 
verbal learning tradition. That tradition modified behaviorist methodologies to study  
the learning of verbal materials (Andresen, 1991; Deese, 1965; Deese & Hulse, 1967; 
Hunt, 1971). Although verbal learners proposed associations between mentally 
represented concepts, they studied objective stimulus properties (Cramer, 1968).

Stimulus meaningfulness provides an example property. Researchers measure 
meaningfulness by having participants generate associates of stimulus words (Noble, 
1952). A word that produces many associated words has higher meaningfulness than 
a word that produces fewer associates. Note that cognitive psychologists define 
meaningfulness not by using internal semantics but by using observable behaviour. 
Verbal learning experiments demonstrated that words with higher meaningfulness 
have higher recall probability in memory experiments (Deese & Hulse, 1967).

The paired- associate learning task provided a key methodology to the verbal 
learning tradition. That task, invented by Mary Whiton Calkins in 1894, presents 
participants with pairs of unrelated words to remember (e.g., House- Tree, Robin- Dog, 
etc.). Typically, the paired- associate learning task uses the anticipation procedure 
(Pennington & Waters, 1938). In that procedure, a researcher presents the first word 
of a pair, and participants try to recall the second word. (On the first trial, the second 
word must be guessed.) After responding, participants see both members of the 
pair. Thus, each trial provides both a test and a learning opportunity. Research-
ers measure performance by counting how many times the list must be presented 
before a participant recalls the words perfectly. The paired- associate learning task 
was popular because various independent variables, such as the meaningfulness, 
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frequency, and similarity of stimulus items, could be manipulated easily (Goss & 
Nodine, 1965; Underwood & Schulz, 1960). Also, the task seemed to test most directly 
associationist ideas of interest to verbal learners (Deese & Hulse, 1967).

The verbal learning tradition bridged waning behaviorism and rising cognitiv-
ism. Early on, verbal learners had difficulty publishing results in mainstream journals 
because the verbal learning approach seemed to be too mentalistic (Mandler, 2002), 
a problem solved when Charles Cofer founded the Journal of Verbal Learning and 
Verbal Behavior (Cofer, 1978; Virues- Ortega, 2006).

However, as cognitivism flourished, the verbal learning tradition became more 
mentalistic and emphasized principles governing secondary memory’s organiza-
tion (Tulving et al., 1972). For example, HAM modelled human associative memory 
by forming associations between nodes representing the hierarchical structure of 
linguistic propositions (Anderson & Bower, 1973). We will see in Section 2.11 that 
verbal learners also became more cognitive because paired associate learning experi-
ments demonstrated that unobservable properties of representations were the most 
powerful predictors of memory performance. The verbal learning tradition finished 
its conversion into modern cognitivism in 1984, the year that the Journal of Verbal 
Learning and Verbal Behavior changed its title to the Journal of Memory and Language.

2.11 Imagery and Secondary Memory

The previous section introduced the verbal learning tradition as well as a key 
method, the paired- associate learning task. The verbal learning tradition proposed 
that secondary memory encodes associations between concepts. Section 2.10  
noted that the verbal learning tradition helped psychology to transition from behav-
iorism to cognitivism. The paired- associate learning task pushed verbal learning 
theories toward cognitivism by demonstrating that the most important predictors 
of memory performance could not be directly observed.

In particular, the paired- associate learning task re- established experimental 
psychology’s interest in another potential encoding in secondary memory, mental 
imagery. When we experience a mental picture, we experience a mental image. 
The idea that we encode concepts as mental images is as old as associationism. 
Aristotle believed that images represent ideas (Cummins, 1989). The first mne-
monic techniques attributed to the Greek poet Simonides also used mental imagery  
(c. 500 BC) (Yates, 1966).

We can generate mental images for some concepts easier than we can generate 
images for others (Paivio, Yuille & Madigan., 1968), as we saw earlier in the two 
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lists of words on pages 45 and 46. Such concepts are high in imagery. We measure 
concept imagery by having participants rate how easy or difficult it is to create a 
mental image for a concept (Paivio et al., 1968).

The paired- associate learning task can demonstrate that imagery predicts recall 
better than do traditional verbal learning variables (Paivio et al., 1968). Paivio et 
al. even conducted one study that controlled stimulus imageability while varying 
stimulus meaningfulness. The study demonstrated that meaningfulness did not 
affect recall performance. In fact, increasing meaningfulness decreases memory 
performance when imagery is controlled!

In general, Paivio’s research demonstrates that imagery is one of the best pre-
dictors of performance in memory tasks (Paivio, 1969, 1971). Paivio’s results led to 
another proposal about the nature of secondary memory, dual- coding theory (Paivio, 
1971, 1986). According to dual- coding theory, we store concepts in secondary mem-
ory using more than one format. One is a verbal code or label. Another is a mental 
image. We can more easily retrieve concepts represented by both types of codes, 
explaining better memory of concrete concepts than of abstract concepts.

2.12 Inferring Structure, Process, and Control

In the preceding sections, I described early methods invented by cognitive psychol-
ogists to infer human information processing. The examples selected for Chapter 2  
were important contributions to developing the modal memory model (Baddeley, 
1990). That model is also known as the multi- store memory model, one of early cog-
nitive psychology’s crowning achievements (Shiffrin & Atkinson, 1969; Waugh & 
Norman, 1965). Figure 2- 5 illustrates the modal memory model’s general structure.

The modal memory model possesses several features typical of cognitive psychol-
ogy. First, the model explains a very general phenomenon, memory, as an organized 
system of subsystems: sensory registers, primary memory, and secondary memory. 
Such an account illustrates cognitive psychology’s core methodology, functional 
analysis. I explore functional analysis in Chapter 3.

Second, the model is functional in nature. The physical natures of the compon-
ent memories are not described. “Our hypotheses about the various memory stores 
do not require any assumptions regarding the physiological locus of these stores” 
(Shiffrin & Atkinson, 1969, p. 179).

Third, the model’s different components have different functions, and functions 
are organized in a particular fashion, with information being transferred (while 
being recoded) from one memory to another. For example, sensory registers such 
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as iconic memory briefly hold a large amount of information for a short duration 
so that some information can be transferred to primary memory. Primary memory 
holds a small number of chunks, encoded acoustically, representing our experience 
of the present. Information in primary memory can be transferred to large- capacity 
secondary memory to represent concept meanings for a long duration.

Fourth, each component in the modal memory model has different structural 
properties. Components differ in terms of capacity, information encoding, and 
memory duration.

Fifth, each component of the modal memory model is governed by a different 
kind of process. For instance, attention can be directed to different parts of a sensory 
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Figure 2- 5 The modal memory model from cognitive psychology’s early years.
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register to transmit a small amount of its contents to be transferred to primary 

memory. The triangular shape of the attention process in Figure 2- 5 illustrates that 

it transfers only a limited amount of information. Similarly, information can be  

preserved indefinitely in primary memory via maintenance rehearsal, or it can  

be transferred into secondary memory via elaborative rehearsal.

Sixth, though some processes for manipulating information in the model’s stores are 

automatic (e.g., those causing information to be forgotten), others are under conscious 

control. For instance, we saw in Sperling’s partial- report technique that participants 

can direct attention to different parts of iconic memory. Similarly, they can choose 

which contents of primary memory undergo elaborative rehearsal and the nature of 

this elaborative processing. Maintenance rehearsal is also under our explicit control.

Importantly, the properties of the modal memory model in Figure 2- 5 are all 

architectural. As we saw in Chapter 1, an architectural account of a computer, which 

describes structures, processes, and control, explains how the computer processes 

information. The modal memory model also provides an architectural account by 

detailing the structures, processes, and control of different memory stores critical to 

human information processing. In Chapter 3, I explore why cognitive psychologists 

need to identify the architecture of cognition.

2.13 How to Remember π to 100 Digits

Section 2.11 described two intersections between associationism and imagery. First, 

associations between ideas are associations between images. Second, imagery has an 

important role in memory, as revealed by Paivio’s research. We can illustrate a third 

intersection between associationism and mental imagery using the mnemonic tech-

nique called the method of loci (Yates, 1966), a method designed for remembering a 

sequence of ideas in a particular order. The method of loci stores an idea to remember 

in a location. The method uses familiar locations, spatially arranged in a particular 

order. For example, we could use the rooms of a familiar house as loci because we 

reach each room in a particular order by mentally “walking through the house.”

To use the method of loci to remember a sequence, we create a mental image 

to represent the first item to remember and “place” that item in the mental  

image created for the first location. We then image the second item to remember 

and place it in the image of the second location and so on. Note the intersection of 

images and associations in the method. The method of loci requires mental images 

but associates a new image with a familiar one by mentally linking an item’s image 
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with a place’s image. The method also illustrates elaborative rehearsal because it 
links new information to already known information.

With the method of loci, recall involves mentally “walking” through the sequence 
of remembered locations; we perform the “walking” in a set order because locations 
have a particular spatial layout. At each location, we retrieve the image associated with 
the location earlier. As a result, we recall items in the correct order. Below I consider a 
concrete example of the method of loci, demonstrating use of the method to memor-
ize long strings of digits: remembering the first 100 digits of π. We remember the 100 
digits in order by combining the major method (Section 2.6) with the method of loci.

Memorizing the 100 digits begins by creating phrases for recoding and chunking 
the digits to remember. Table 2- 4 provides one possible set of phrases. The table’s 
first row provides a phrase representing the first digits to remember, the next row 
presents a phrase representing the next digits to remember, and so on to the end 
of the table. We must recall the phrases in their order in the table.

I can easily generate images for the phrases in Table 2- 4. I imagine the first phrase 
as being like a coin- operated mechanical horse ride for a child, but in this case it is a 

Table 2- 4 Phrases for using the major method to encode the first 100 digits of π

Phrase Consonants Number

motored loping lama m-t- r- d l-p- n- g l-m 3.141592653

leaf pick poem name l-f p-k p-m n-m 58979323

fur changer mom f-r ch- n-g- r m-m 84626433

foam neck pails f-m n-k p-l- s 8327950

navy frat picket n-v f-r- t p-k- t 28841971

shabby map bomb sh- b m-p b-m 693993

cold seal fins k-l- d s-l f-n- s 75105820

packer bear earlobe p-k- r b-r r-l- b 97494459

gnomes coffee n-m- s k-f 23078

teachers shine fish nose t-ch- r- s sh- n f-sh n-s 1640628620

hive o’ pipe fish v p-p f-sh 89986

knife swimmer fin n-f s-m- r f-n 2803482

lemur wanted aches checkup l-m- r n-t- d k-s ch- k-p 53421170679
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mechanical lama whose legs lope when the machine activates. I imagine the second 
phrase as a person wearing a Toronto Maple Leafs jersey while picking the name of 
a poem from a book of poetry.

Given the phrases and images in Table 2- 4, we next remember the (ordered) 
phrases. We use the method of loci, which explains our need to create an image 
for each phrase. Table 2- 5 provides locations that I use to memorize the images for  
Table 2- 4 in order. As noted earlier, we must use familiar, easily imagined, and 
sequentially arranged locations. Rooms in a well- known house serve that purpose 
well. Table 2- 5 lists locations in my own house. I am very familiar with them, and I 
encounter them in a particular order as I move through them. For these locations, 
I start outside the house on the front sidewalk, go up the front stairs, into the front 
vestibule, and so on. Of course, readers must come up with their own loci to use as 
memory locations in order to be able to remember π.

The procedure used to memorize the digits is straightforward. I mentally link 
the image created for the first phrase in Table 2- 4 to the image created for the first 
place in Table 2- 5. For example, I imagine my coin- operated “motored loping lama” 

Table 2- 5 Images for using the method of loci to memorize the first 100 digits of π

Locus Image Phrase Image

front sidewalk motored loping lama

front step leaf pick poem name

front vestibule fur changer mom

front closet foam neck pails

bathroom navy frat picket

basement stairs shabby map bomb

kitchen cold seal fins

back entry packer bear earlobe

pantry gnomes coffee

dining room teachers shine fish nose

living room hive o’ pipe fish

fireplace knife swimmer fin

staircase lemur wanted aches checkup
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operating in the middle of my front sidewalk. Next I place the second image (“leaf 
pick poem name”) on my front step. Then I place the third image (“fur changer 
mom”) in the front vestibule. I continue until I place every phrase image in one 
of my locations. I need practice to ensure that I remember correct phrases in the 
correct order; I typically practise by moving through the loci a few times. I do not 
need a great deal of such practice.

With surprisingly little effort, we can learn, and recall, the images in order. Mem-
orization and practice of the major method helps to convert phrases quickly into a 
sequence of digits. Most of the effort comes in the first step, generating phrases for 
recoding digits into imageable chunks.

The mnemonic technique described above illustrates many of the information 
processing properties inferred by cognitive psychologists from their memory experi-
ments. For instance, rote learning or maintenance rehearsal commits the major 
method to memory. Elaborative rehearsal links the major method with existing 
knowledge using the memory aids of Table 2- 2. The major method illustrates recod-
ing and chunking. Converting images to phrases illustrates Paivio’s dual- coding 
theory. Using images with the method of loci illustrates elaborative rehearsal as 
well as associating images together.

2.14 Chapter Summary

Cognitive psychologists hypothesize that cognition is information processing, 
an idea inspired by the digital computer. They assume that human thinking, like 
computers, is rule- governed symbol manipulation. Thus, cognitive psychologists 
must explain human cognition in the same way that computer scientists explain a 
computer’s behaviour. In Chapter 1, I presented a general approach to explaining 
a computer by describing its architecture. Which symbols represent information? 
Which processes manipulate symbols? How does the computer control the order 
of applying processes?

Cognitive psychologists recognize that explanations of human cognition must 
answer similar questions. Such psychologists aim to identify human cognition’s 
basic properties and do not worry about whether similarities exist between human 
cognition and computer information processing. Instead, cognitive psychologists 
assume that humans are a kind of computer and seek to determine what kind of 
computer humans are (Hunt, 1971).

However, cognitive psychologists face a formidable problem. Unlike comput-
ers, human participants do not permit cognitive psychologists to observe internal 
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cognitive processes directly. As a result, these psychologists must invent new 
methods for collecting behavioural observations to support inferences about the 
properties of cognition.

In Chapter 2, I introduced many example methods: Sperling’s partial report 
method, confusion matrices, Peterson and Peterson’s delay of recall technique, the 
functional dissociation of the serial position curve, the sentence verification task, 
and the paired- associate learning task. All of these methods explored the properties 
of human memory in the early years of cognitive psychology and permitted cognitive 
psychologists to infer basic properties of human memory. Cognitive psychologists 
proposed a series of different memory stores, each defined by different properties 
(capacity, duration, kind of information represented, processes, and control). By the 
middle of the 1960s, experimental results supported one of cognitive psychology’s 
most influential ideas, the modal memory model.

In Chapter 3, I will show that the modal memory model provides but one 
example of the philosophy of science adopted by cognitive psychologists: functional 
analysis. I now turn to describing functional analysis and how it converts cognitive 
descriptions into explanatory theories.



This page intentionally left blank



https:// doi .org/ 10 .15215/ aupress/ 9781771993418 .01

61

3

Using Functional Analysis to Explain Cognition

The first two chapters related cognitive psychology to computer science and to 

experimental psychology. This chapter relates cognitive psychology to philosophy by 

describing the explanations proposed by cognitive psychologists. Such explanations 

take the form of flow diagrams— a tool borrowed from computer science— to show 

how one function manipulates information, passing results to a different function 

for further processing. We create flow diagrams from basic operations built into 

an information processor. The basic operations used to create flow diagrams serve 

as the system’s architecture, which provides the system’s built- in programming 

language. The philosophy of science calls decomposing a system into organized sub- 

functions functional analysis. I begin Chapter 3 by describing functional analysis. I 

then turn to a consideration of four different kinds of evidence: relative complexity 

evidence, error evidence, intermediate state evidence, and the cognitive penetrabil-

ity criterion. Cognitive psychologists collect such evidence to validate functional 

analyses, converting functional theories into scientific explanations.

3.1 Competing Notions of Explanation

Cognitive psychology’s pioneers trained as behaviorists (Miller, 2003). In his first 

book, Miller (1951) adopted a behaviorist perspective that he would soon aban-

don. “In 1951, I apparently still hoped to gain scientific respectability by swearing 

allegiance to behaviorism. Five years later, inspired by such colleagues as Noam 

Chomsky and Jerry Bruner, I had stopped pretending to be a behaviorist” (Miller, 

2003, p. 141). Pioneering cognitive psychologists discarded behaviorism because it 

limited what could be studied. Behaviorists argued that psychology must eliminate 

mental terms from its vocabulary (Watson, 1913). Cognitive psychologists fiercely 

rejected behaviorism’s stance against mentalism (Bruner, 1990; Sperry, 1993).
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Replacing behaviorism did not merely change the topics that psychologists 

could study. The cognitive revolution involved “discovering an alternative logic 

by which to refute the seemingly incontestable reasoning that heretofore required  

science to ostracize mind and consciousness” (Sperry, 1993, p. 881). Cognitive psych-

ologists aimed to replace behaviorist theories with a new approach, an approach 

both mentalistic and scientific.

Chapter 1 introduced the inspiration for an alternative form of explanation, the  

computer. Computer scientists explain how computers work by appealing to  

the functional properties of computer programs. Chapter 2 illustrated how cog-

nitive psychologists collect data to support similar accounts of human cognition. 

Like behaviorists, cognitive psychologists observe behaviour. Unlike behaviorists, 

cognitive psychologists use observations to infer information processes that cannot 

be observed directly.

Chapter 1 related cognitive psychology to computer science, and Chapter 2 related 

cognitive psychology to experimental psychology. Chapter 3 now relates cognitive 

psychology to the philosophy of science. Cognitive psychology uses explanations 

very different from those of behaviorism. Cognitive psychology’s theories arise 

from a philosophical approach called functional analysis. In Chapter 3, I introduce 

functional analysis and explore how it shapes the practice of cognitive psychology.

3.2 Functionalism, Hierarchies, and Functional Decomposition

Cybernetics explained behaviour by appealing to the feedback loop (Ashby, 1956, 

1960; Wiener, 1948, 1950). Feedback measures the distance between an agent’s cur-

rent state and a goal state that the agent desires. The agent acts on the world to 

decrease the distance between the current state and the desired state. A feedback 

loop cycles back and forth between an agent’s actions and environmental changes, 

constantly measuring the distance from a desired goal to alter or guide the agent’s  

future actions.

Cybernetics played an important role in founding cognitive psychology (Con-

way & Siegelman, 2005). For instance, one pioneering book on cognition, Plans and 

the Structure of Behavior (Miller et al., 1960), explored the relevance of cybernetics 

to psychology. Miller et al. proposed the feedback loop as behaviour’s funda-

mental building block by introducing the TOTE unit (Figure 3- 1). TOTE stood  

for “Test- Operate- Test- Exit.” One component, “Test,” provides feedback to the unit. 

“Test” compares the world’s current state to a desired state. If the desired state is 
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true, then the unit “Exits,” passing control elsewhere. However, if the desired state 
is false, then the TOTE unit passes control to the second component, “Operate.”

“Operate” acts on the world to help achieve the desired state. “Operate” changes 
the world, making it more similar to the desired state. After “Operate” performs the 
action, control again returns to “Test” to determine whether the action achieved 
the goal. If not, then “Test” passes control back to “Operate.” Thus, the TOTE unit 
repeatedly moves back and forth between testing and operating until achieving the 
desired state.

The TOTE unit illustrates one core assumption of cognitive psychology, func-
tionalism (Polger, 2012). Functionalism explains how a system works by describing 
what its components do rather than by describing their physical properties. I 
describe TOTE units functionally, not physically, as detailed below.

Functionalism arises from a many- to- one relationship (introduced in Chap-
ter 1). Functionalists realize that physically different components can serve the 
same function. For instance, the total artificial heart (Mollon, 1982) performs  
the same function as the human heart but is built from different physical materials. 
Miller et al. (1960) treat TOTE units functionally, not physically. First, they describe 
TOTE units as transmitting control, not as transmitting energy or neural pulses. 
Their proposal is deliberately abstract and non- mechanistic. Second, Miller et al. 
recognize that TOTE units can be studied with computer simulations, arguing 
that a valid simulation need only emulate a theory’s functional characteristics. “A 
successful model does not have to look like the organism it simulates” (p. 48). Third, 

Test
(Is the world in the desired state?)

Operate
(Change the state of the world.)

Exit
Yes

No

Figure 3- 1 The basic structure of a TOTE unit.
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Miller et al. spend 13 chapters developing their functional theory before mentioning 
the brain. A final chapter, entitled “Some Neuropsychological Speculations,” has 
only fourteen pages. Cognitive psychologists typically develop a functional theory 
first and only later relate the theory to the brain.

The TOTE unit was but one of the pioneering ideas of Miller et al. (1960). They 
also proposed a hierarchical organization for TOTE units. The foundational concept 
of their book, the “Plan,” appeals to hierarchy: “A Plan is any hierarchical process in 
the organism that can control the order in which a sequence of operations is to be per-
formed” (p. 16). Importantly, they also treated hierarchical organization functionally.

Miller et al. (1960) hierarchically organize TOTE units by decomposing a TOTE 
unit’s “Operate” component into organized sub- functions; each sub- function is 

Is the wood in two pieces?

Sa
w

 th
e 

w
oo

d

No

ExitYes

Is the arm
straight?

Pull the arm 
backwards

Is the arm
fully bent?

Push the arm
forward

Figure 3- 2 Hierarchical organization in a TOTE unit is accomplished by 
functionally decomposing “Operate” into sub- TOTE units.
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another TOTE unit. We call recasting one function as an organized system of 
sub- functions functional decomposition. Figure 3- 2 illustrates Miller et al.’s func-
tional decomposition using a TOTE unit for sawing a wooden board into two. In  
Figure 3- 2, the higher- level “Operate” component “Saw the Wood” is decomposed 
into two linked TOTE units, one for pulling a straight arm backward, the other for 
pushing a bent arm forward. Note that the second sub- component “Exit” passes 
control back to the upper- level “Test” “Is the Wood in Two Pieces?”

Figure 3- 2 permits further functional decomposition. We could decompose 
both the “Pull Arm Backward” and “Push Arm Forward” operations into new TOTE 
units— sub- sub- functions— to ensure that “Saw the Wood” proceeds as desired.

Miller et al. (1960) use functional decomposition to explain how we perform 
operations. They realize that some operations (e.g., “Saw the Wood”), too complex 
to build directly into a device, must instead be created from simpler processes. Thus, 
they explain a complex operation by decomposing it into an organized system of 
simpler operations. However, such decomposition adds new TOTE units. Can we 
explain one functional component by decomposing it into other functions that 
also require explanation? Cognitive psychology must answer this question and does  
so using an approach outlined below.

3.3 Ryle’s Regress

Behaviorists argued that mental terms did not carry any explanatory value. A theory 
including mental states could not explain because it incorporated unexplained 
components. “When we attribute behavior to a neural or mental event, real  
or conceptual, we are likely to forget that we still have the task of accounting for the 
neural or mental event” (Skinner, 1950, p. 194). Miller et al. (1960, p. 9) understood 
Skinner’s concern: “The criticism is that the cognitive processes Tolman and others 
have postulated are not, in fact, sufficient to do the job they were supposed to do. 
Even if you admit these ghostly inner somethings, say the critics, you will not have 
explained anything about the animal’s behavior.”

Gilbert Ryle (1949) provided the philosophical foundations for Skinner’s criti-
cism. He opposed what he called the intellectualist legend, which requires intelligence 
to be produced by mental rules. Ryle argued that such accounts produce an infinite 
regress of mental state terms. To explain one cognitive process, cognitive psycholo-
gists decompose it into other cognitive processes. However, new cognitive processes 
themselves require explanation. If we use the intellectualist legend to explain new 
cognitive processes, then we perform further functional decomposition.
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As a result, Ryle argued that functional decomposition creates an infinite regress 
of mental state terms. This infinite proliferation of unexplained functions is called 
Ryle’s regress. If a cognitive psychologist is trapped in Ryle’s regress, then her theories 
merely describe and do not explain.

Cognitive psychology’s functionalism seems to lead into Ryle’s regress. Con-
sider the modal memory model (Figure 2- 5). Cognitive psychologists began with 
the task of explaining human memory. However, they decomposed a general 
function— memory— into an organized system of sub- functions (e.g., sensory regis-
ters, primary memory, secondary memory, etc.). However, each new sub- function 
also requires explanation. But if we explain a new sub- function using functional 
decomposition, we produce new to- be- explained sub- sub- functions. Given Ryle’s 
regress, how did cognitivism replace behaviorism? Cognitive psychologists adopted 
an explanatory approach to escape Ryle’s infinite regress, which I consider in the 
next section.

3.4 Functional Analysis

In science, explanations typically appeal to causal laws or transition laws (Cum-
mins, 1983). For instance, physicists explain the transition from one physical state 
to another by citing a law that “explains an effect by citing its cause” (Cummins, 
1983, p. 4).

Behaviorists used physics to inspire their psychology (Köhler, 1947). As a result, 
in addition to focusing on observables (stimuli and responses), behaviorists appealed 
to transition laws. Behaviorist explanations cite causal laws: a stimulus causes a 
response. “In a system of psychology completely worked out, given the response the 
stimuli can be predicted; given the stimuli the response can be predicted” (Watson, 
1913, p. 167). However, philosophy proposes other explanatory approaches. Scientists 
choose the approach that they prefer; their choice depends on beliefs about what 
constitutes good science (Osbeck, 2019).

When reacting to behaviorism, cognitive psychologists chose an alternative 
kind of explanation: functional analysis (Cummins, 1975, 1983). Functional analysis 
explains complicated systems by breaking them down into simpler subsystems and 
requires three general steps.

First, functional analysis specifies the function to be explained. This step 
is very general because it specifies only some regularity to convert stimuli into 
responses (Ashby, 1956), relating this step to the computational level of analysis 
(Section 1.7). At the computational level, a researcher specifies which information 
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processing problem is being solved, equivalent to indicating the overall input- output 
mapping— the function— performed by the system.

Second, functional analysis performs the analytic strategy. With this step, a 
researcher analyzes the function into an organized set of sub- functions, a prac-
tice called reverse engineering. When a cognitive psychologist engages in functional 
decomposition, she adopts the analytic strategy. We conduct the analytic strategy 
iteratively; once we propose some sub- function, we might decompose it further 
into simpler sub- sub- functions. Analysis can continue again and again. We stay in 
Ryle’s regress if we cannot stop applying the analytic strategy.

Importantly, any new sub- functions proposed during the analytic strategy must 
be simpler than the functions from which they were derived for cognitive psych-
ologists to escape Ryle’s regress. Functional analysis decomposes a system into 
functional components simple enough to be explained using causal laws.

Figure 3- 3 illustrates the first two steps of functional analysis. The figure’s top 
part defines some function to explain, a mapping between the input and the output 
indicated by the two arrows. The figure’s middle part shows the first functional 
decomposition of the top function into two sub- functions. The figure’s bottom  
part decomposes the two sub- functions into various sub- sub- functions.

Figure 3- 3 portrays two additional characteristics of the analytic strategy. First, 
we decompose functions into simpler sub- functions, illustrated by making the boxes 
for sub- functions smaller than the boxes for functions. Second, we decompose a 
function into an organized set of sub- functions, reflecting the idea that informa-
tion processing occurs in stages. First one sub- function manipulates symbols; then 
the sub- function passes results to another sub- function. The arrows in Figure 3- 3 
indicate how information moves from one function to another. These two ideas 
reflect a very powerful insight: when simple functions form an organized system, 
that system can perform a more complex function.

However, Figure 3- 3 does not show how to escape Ryle’s regress. We need to 
explain some simple function without further decomposing that function into fur-
ther sub- functions. If (infinite) functional decomposition somehow stops, then we 
escape Ryle’s regress. The final step in Cummins’s (1983) functional analysis stops 
functional decomposition. The subsumption strategy describes how physical mech-
anisms instantiate functions. We explain an instantiated function by appealing to  
a causal law. Cummins calls such an appeal causal subsumption.

Causal subsumption explains some function’s input- output regularity with a 
(physical) transition law. We subsume a function by explaining how we can replace 
the function with a physical device to perform the same input- output mapping. 
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We do not explain the device via further functional decomposition because of the 
physical nature of the device. Instead, we explain the device by appealing to causal 
law, ending Ryle’s infinite regress.

Cummins’s functional analysis provides an alternative scientific explanation. 
Unlike behaviorist explanations, functional analysis appeals to internal functions 

Decompose sub-functions into sub-sub-functions

Decompose function into sub-functions

Define the function
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Figure 3- 3 Illustrating the analytic strategy in which a function is decomposed 
into two sub- functions, and then these sub- functions are further decomposed.
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that we cannot observe directly. However, Cummins, sensitive to Ryle’s regress, 
requires functional analysis to reach a set of final, instantiated, functions. Only 
then will a functional analysis explain. “Analysis of the disposition (or any other 
property) is only a first step; instantiation is the second” (Cummins, 1983, p. 31). 
Miller et al. (1960, p. 42) promoted testing theories with computer simulations by 
interpreting simulations as instantiations: “The reflex theorist is no longer the only 
psychologist who can summon up a tangible mechanism to make his claims sound 
more reasonable.”

Cognitive psychologists assume that cognition is computation: rule- governed 
symbol manipulation. As a result, they must explain cognition by appealing to 
processes that they cannot observe directly. Cognitive psychologists must adopt 
a philosophy of science different from that of behaviorism. Behaviorists criticized 
the cognitive approach as being non- scientific because behaviorists believe that 
functional decompositions do not explain. In response, cognitive psychologists 
adopt a different approach to explanation, one no less scientific than the approach 
used by behaviorists.

Cognitive psychologists explain cognition by performing functional analysis, 
which proceeds in three basic steps: (1) defining a to- be- explained function; (2) itera-
tively decomposing this function into organized sub- functions; and (3) ending this 
decomposition by causally subsuming the final functions. The final step converts a 
functional analysis from a description into an explanation.

3.5 The Architecture of Cognition

We can explain a computer by describing its architecture: detailing the computer’s 
basic symbols, rules, and control. When psychologists assume that cognition is 
information processing, they also claim that we can explain cognition in the same 
way, with an architectural account (Anderson, 1983; Newell, 1990; Pylyshyn, 1984).

Computers process information by executing a program, a sequence of pro-
cesses for manipulating symbols to accomplish a goal. A program ultimately uses 
the computer’s most basic operations. Basic operations are literally built into the 
machine and are called primitives. We explain a primitive function’s operation by 
appealing to physical properties or to causal laws. A primitive is not explained  
by further decomposition into functional sub- components.

A computer’s primitives define its functional architecture. “Specifying the 
functional architecture of a system is like providing a manual that defines some 
programming language” (Pylyshyn, 1984, p. 92). Functional analysis escapes Ryle’s 
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regress by causally subsuming basic functions, explaining functions via causal laws. 
The final stage of a functional analysis of human cognition must specify the primi-
tives, the functional architecture of cognition. “Theories of human cognition are 
ultimately theories of physical, biological systems” (Newell, 1990, p. 42).

Cognitive psychologists must discover the architecture to convert functional 
descriptions into explanations. We sometimes call the cognitive architecture the 
language of thought (Fodor, 1975), realizing that language of thought refers to a 
programming language. How do we determine the language of thought? We do so 
with a complete functional analysis of human cognition. Higher- order functions 
in such an analysis describe the general information processing being carried out. 
Lowest- order functions are physically instantiated and therefore represent the cog-
nitive architecture.

In short, then, determining the language of thought requires researchers to con-
duct a complete functional analysis, which includes collecting evidence for claiming 
that certain functions are primitive. The primitive functions define the language 
of thought. Therefore, cognitive psychologists aim to identify the architecture of 
cognition.

3.6 Functional Analysis of Colour Perception

To illustrate functional analysis, consider the trichromatic theory of colour per-
ception (Wasserman, 1978), which begins with Sir Isaac Newton’s 17th- century 
experiments using prisms. Newton found that a prism refracts sunlight into the 
rainbow’s full spectrum. A second prism recombines the rainbow back into white 
light. Newton hypothesized that we can describe any perceived colour as a weighted 
combination of seven different primary colours (red, orange, yellow, green, blue, 
indigo, and violet).

Newton’s theory inspired several competitors. The German poet Johann Wolf-
gang von Goethe proposed his own two- colour theory (based upon yellow and blue) 
in 1810. Thomas Young proposed a three- colour theory in 1801. Others proposed 
four- colour theories (Karl Hering in 1874 and Christine Ladd- Franklin in 1893). 
Physicist James Clerk Maxwell resolved the debate about the minimum number  
of primary colours for colour perception in 1856. He proved that we can express any 
perceived colour using no more than three primary colours.

Maxwell’s proof provides the computational foundation for the trichromatic 
theory of human colour perception. That theory is also known as the Young- 
Helmholtz theory because physiologist Hermann von  Helmholtz (1868/1968) 
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popularized Young’s theory in biological terms at the dawn of experimental psych-
ology. Helmholtz hypothesized that colour vision uses three different “nerve fibres,” 
each sensitive to a different colour (red, green, or blue). A perceived colour results 
from combining the different fibre activities. Equal (and maximum) stimulation of 
all three fibres causes us to experience the colour white. Otherwise, the three fibres 
produce the sensation of some other colour. Helmholtz refined Young’s theory  
by proposing that the three fibres had overlapping colour sensitivities to explain why 
we might fail to match some spectral colour by mixing the three primary colours  
in the Young- Helmholtz theory.

How do we relate the trichromatic theory to functional analysis? Helmholtz’s 
theory was functional, not physical: “It must be confessed that both in men and 
in quadrupeds we have at present no anatomical basis for this theory of colors” 
(Helmholtz, 1868/1968, p. 95). Given the functional nature of the theory, why was 
it so influential?

First, the trichromatic theory predicted many observations about colour percep-
tion. From the early 18th century on, artists knew that we could use trichromatic 
techniques to produce diverse colours (Mollon, 1982). More precise colour- mixing 
experiments performed by Helmholtz and Maxwell provided strong support for the 
theory and could explain colour blindness. In other words, the trichromatic theory’s 
predictive power led to its wide acceptance without being causally subsumed. Even 
though the theory’s red, blue, and green detectors were not linked to biology, there 
was no evidence to weaken the claim that the three detectors were primitives.

Causal subsumption of the Young- Helmholtz theory required 20th- century 
methodologies. We now know that Helmholtz’s nerve fibres are instantiated 
as different retinal cone receptors. Different receptors contain different photo- 
pigments. Microspectrophotometry reveals that each photo- pigment generates 
maximum responses to different light wavelengths, the wavelengths required by 
Helmholtz’s theory (Dartnall et al., 1983). Measures of action potentials from cone 
cells support Helmholtz’s hypothesis that different channels have overlapping 
sensitivities (Schnapf et al., 1990). Mechanical principles explain how detected 
light generates an action potential. When a photo- pigment molecule absorbs light, 
the molecule’s shape changes. The molecular shape change causes the receptor 
containing the photo- pigment to initiate a neural response (Nicholls et al., 1992).  
The trichromatic theory is a subsumed functional analysis.
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3.7 The Cognitive Approach

Ulric Neisser (1967) tried to define cognitive psychology by the topics studied. He 
listed sensation, perception, imagery, retention, recall, problem solving, and think-
ing. But Neisser realized that his list did not separate cognitive psychology from 
other approaches: “It is apparent that cognition is involved in everything a human 
being might possibly do; that every psychological phenomenon is a cognitive phe-
nomenon” (p. 4).

If we cannot define cognitive psychology via its topics, then perhaps we can 
define it via its research methods. However, we encounter problems. Modern 
textbooks show that cognitive psychologists use a staggering diversity of methods 
(Anderson, 2015; Goldstein, 2011; Sinnett et al., 2016). Many methods have long 
histories, and cognitive psychologists have borrowed and adapted them from other 
schools of experimental psychology. Hence, research methods do not uniquely 
define cognitive psychology.

Neisser (1967) finally adopted a broader perspective to define cognitive psych-
ology. For him, cognitive psychology uniquely adopts the cognitive approach. That 
approach assumes a strong analogy between a computer program and human cog-
nition. Neisser noted that a computer program is “a device for selecting, storing, 
recovering, combining, outputting and generally manipulating [information]” (p. 8). 
The cognitive approach aims to provide a similar account of human cognition. 
Importantly, functional analysis provides exactly the sort of theory required by 
Neisser’s cognitive approach. Functional analyses can take the form of computer 
programs.

Consider one approach to computer programming, creating a flow diagram. A 
flow diagram illustrates a program’s logical structure, defining what happens at 
different program stages. We can create a flow diagram without expressing how 
functions actually operate. Flow diagrams for computer programming appeared 
just after the Second World War (Goldstine & von Neumann, 1947). By the time of 
psychology’s cognitive revolution, students learning to program first learned how 
to make flow diagrams (Farina, 1970; Schriber, 1969).

Crucially, we can represent both cognitive theories and computer programs as 
flow diagrams. Cognitive psychology’s first flow diagram appeared in 1958 (Benja-
min, 2019) to describe attentional filters (Broadbent, 1958). Using flow diagrams to 
represent cognitive theories rapidly grew in popularity. I discussed two examples 
earlier, the modal memory model (Figure 2- 5) and hierarchical TOTE units (Fig-
ure 3- 3). Modern cognitive psychology textbooks use many flow diagrams. Their use 
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proliferated because cognitive psychologists employ functional analysis. When we 

explain some function by decomposing it into an organized system of sub- functions, 

we can easily express the explanation as a flow diagram (see Figure 3- 3).

Although we can express cognitive theories as flow diagrams, and we can con-

vert flow diagrams into computer programs, we need not always frame cognitive 

theories as working computer simulations. Neisser himself counselled against using 

simulations, arguing that “none of them does even remote justice to the complex-

ity of human mental processes” (1967, p. 9). He believed instead that the cognitive 

approach generates testable hypotheses about whether computer programming 

ideas also apply to human cognition.

The usefulness of functional analysis comes from producing information pro-

cessing accounts to generate testable hypotheses about human cognition. We need 

not convert a functional analysis into a working simulation to generate hypotheses. 

Instead, we can think through the flow diagram to make predictions (Braitenberg, 

1984). Nevertheless, cognitive psychology has a long history of converting theories 

into working computer models (Dutton & Starbuck, 1971; Feigenbaum & Feld-

man, 1963; Lewandowsky, 1993; Newell, 1990; Newell & Simon, 1961; Simon, 1979). 

Creating such models offers many benefits (Lewandowsky, 1993). For instance, 

the computer simulation’s behaviour provides testable predictions about human 

behaviour.

Cognitive psychology works to validate functional analyses by comparing behav-

iour predicted by functional analyses to behaviour observed in human participants. 

Have we decomposed the system into the correct set of sub- functions? Have the 

sub- functions been organized correctly? Do we have evidence of the causal sub-

sumption of any sub- function? I now relate such questions to methods used by 

cognitive psychologists.

3.8 Seeking Strong Equivalence

Cognitive psychologists perform functional analysis to develop theories analogous 

to computer programs, theories for generating testable hypotheses about human 

cognition. Cognitive psychologists conduct experiments either to support or to 

reject a particular functional analysis by comparing the behaviour predicted by 

the theory to the behaviour observed in human participants. How do cognitive 

psychologists compare theories to data? Let us start by relating the comparison to 

a task from computer science: deciding about a computer program’s intelligence.
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Alan Turing (1950) proposed a method, now known as the Turing test, to deter-

mine whether a machine had achieved intelligence. He believed that we require 

intelligence to carry on meaningful conversations. In the Turing test, a human judge 

converses with different agents, some human, others computer programs. Turing 

argued that, if the judge cannot correctly distinguish humans from a program, then 

the computer program must be intelligent.

For example, consider testing a computer simulation of paranoid schizophrenia, 

PARRY, which participated in conversations, but its contributions became more 

paranoid over time. Colby et al. (1972) evaluated PARRY by having psychiatrists 

compare its conversations with conversations with human paranoids. The psych-

iatrists could not reliably determine whether a conversation was generated by a 

human or by PARRY. PARRY had passed the Turing test.

Unfortunately, the Turing test can be passed for the wrong reasons, as shown 

by another conversation- making program called ELIZA (Weizenbaum, 1966, 1976). 

ELIZA mimicked a humanistic psychologist’s conversational style and gener-

ated extremely compelling conversations. “Some subjects have been very hard to 

convince that ELIZA is not human. This is a striking form of Turing’s test” (Weizen-

baum, 1966, p. 42). However, Weizenbaum did not create ELIZA to model natural 

language understanding. Instead, ELIZA used some programming tricks to parse 

incoming sentences into templates for creating convincing responses. “A large part 

of whatever elegance may be credited to ELIZA lies in the fact that ELIZA maintains 

the illusion of understanding with so little machinery” (Weizenbaum, 1966, p. 43).

ELIZA is simply a procedure— a flow diagram— for converting stimuli into 

responses. Let us consider the human with whom ELIZA converses as another 

flow diagram. When ELIZA and a human produce a convincing conversation, 

both flow diagrams generate appropriate outputs to inputs. We call two different 

systems generating the same input- output behaviour weakly equivalent systems  

(Pylyshyn, 1984).

We call input- output equivalence weak equivalence because two very differ-

ent procedures can produce the same input- output mapping. Weak equivalence 

therefore illustrates another many- to- one relationship. For example, ELIZA  

uses the programming tricks invented by Weizenbaum, who intended ELIZA not 

to understand language. In contrast, humans use very different methods, methods 

for actually understanding sentences.

Weak equivalence affects our validation of functional analyses. A cognitive 

psychologist wants to claim that her functional analysis correctly explains some 
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cognitive phenomenon. But weak equivalence means that methods only examining 
input- output mappings— like the Turing test— cannot validate a cognitive theory.

Cognitive psychologists do not want to propose weakly equivalent theories about  
human cognition. Instead, they want to propose strongly equivalent theories  
about cognition. Strong equivalence exists when two systems use the same pro-
cedures to generate the same input- output mapping (Pylyshyn, 1984). Strongly 
equivalent systems (1) generate the same input- output mapping, (2) use the same 
program or algorithm to produce the mapping, and (3) use the same architecture  
or programming language to bring the algorithm to life. In other words, both sys-
tems use the same flow diagram, which in turn uses the same primitive functions.

To establish the strong equivalence of a functional analysis to human cognition, 
cognitive psychologists must go beyond the Turing test and examine additional 
evidence. They must observe behaviours, produced as unintended consequences 
of information processing, that reveal the nature of internal processing. We call 
such unintended behaviours second- order effects (Newell & Simon, 1972). Pylyshyn 
(1984) argues that we can study second- order effects using three different measures: 
relative complexity evidence, error evidence, and intermediate state evidence. In 
the next sections, I consider second- order effects in more detail.

3.9 Relative Complexity Evidence

In the 19th century, Dutch physiologist Franciscus Donders (1869/1969) launched 
mental chronometry to measure the duration of mental processes. Prior to  
Donders, researchers used the simple reaction time task to measure nerve impulse 
latency. Researchers presented a stimulus (e.g., a mild shock to the foot) to a par-
ticipant, who pressed a response key as soon as he felt the shock, and measured the 
time elapsed between presenting the stimulus and pressing the key.

Donders added a condition that required participants to decide before respond-
ing; we call his method the choice reaction time task. For instance, Donders could 
deliver a shock to either foot; the participant would then press one key if he felt a 
shock in the left foot or a different key if he felt a shock in the right foot. Participants 
decided which key to press. Donders reasoned that participants would take longer 
to respond by having to decide (about shock location) in addition to performing  
the other actions required by the simple reaction time task. Figure 3- 4 illustrates the 
differences that he assumed to exist between the two reaction time tasks.

Donders believed that the differences between the two tasks permitted him to  
measure the duration of mental processes. He argued that we can measure the 
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time required to decide by subtracting the response time for the simple reaction 
task from the response time for the choice reaction time task, because the only  
difference between the two tasks is the decision- making stage. We call his technique 
the subtractive method.

The subtractive method requires two assumptions. First, a processing stage 
must start only after the preceding stage finishes. Second, adding a new processing 
stage must not affect the other stages— the assumption of pure insertion (Sternberg, 
1969b). The subtractive method fell out of favour in the 19th century when some 
researchers questioned these two assumptions (Külpe & Titchener, 1895). However, 
by the 1960s, cognitive psychologists altered the method established by Donders to 
address such concerns.

One variation was the additive factors method (Sternberg, 1969a, 1969b). This 
method holds the number of processing stages constant across conditions but 
manipulates processing steps within a processing stage. For instance, consider 
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Figure 3- 4 Two types of reaction time tasks to be compared to determine the 
amount of time required for the “Discriminate Stimulus Type” stage of processing.
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Sternberg’s (1969b) landmark memory scanning task. In that task, participants 
remember a list of items (in primary memory). When presented with a probe  
item, they decide as quickly and accurately as possible whether the probe item 
belongs to the remembered list.

The additive factors method manipulates processing within a particular stage. 
For instance, Sternberg (1969b) varied the number of items remembered in the list. 
By increasing the length of a list, Sternberg influenced processing times within 
the stage in which memorized items compared with the probe. Sternberg gener-
ated different hypotheses about how manipulating list length would affect reaction  
time; different hypotheses assumed that memory scanning uses different search 
processes.

For instance, Sternberg hypothesized that an exhaustive search scans the memory. 
An exhaustive search scans every item (in order) before responding. If scanning 
each item requires constant time, then speed in responding to the presence of the 
probe will increase as the list increases. Furthermore, an exhaustive search should 
produce no differences in response time for trials in which the probe belongs to 
the list versus trials in which the probe does not belong to it (Figure 3- 5, left panel).

Sternberg made different predictions if a serial self- terminating search scanned 
memory. This search moves from the first item to the last item on the list but stops 
when it discovers the probe item. The serial self- terminating search hypothesis 
predicts the same reaction time function as that predicted by an exhaustive search 
for trials in which the probe does not belong to the list, because both processes scan 
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Figure 3- 5 Predicted reaction time functions for an exhaustive search and for a 
serial self- terminating search in Sternberg’s memory scanning task.
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all items. However, when the probe belongs to the list, the reaction time function 
will have a shallower slope (in fact, half of the slope found when the probe does 
not belong to the list; Figure 3- 5, right panel). When the probe belongs to the list, 
the scan will only process, on average, half of the items before finding the probe. 
“Yes” responses with a serial self- terminating search require half of the scanning 
compared with “No” responses, halving the slope of the reaction time function.

Sternberg (1969b) found that human participants in the memory scanning 
experiment produced reaction time functions consistent with the exhaustive search 
hypothesis and proposed a memory scanning model for which an exhaustive 
search provided more efficiency than a serial self- terminating search.

Sternberg’s use of reaction time to evaluate memory scanning illustrates what 
Pylyshyn (1980, 1984) calls relative complexity evidence, which recognizes that some 
problems are more challenging, and require more processing, than others. A valid 
cognitive theory will produce relative complexity rankings of problems identical 
to rankings based upon human performance. Both the model and the participant 
will find the same problems “easy”; both the model and the participant will find the 
same problems “hard.”

Reaction time provides relative complexity evidence, because harder prob-
lems presumably require more processing time than do easier problems. Sternberg’s 
predicted reaction time functions (Figure 3- 5) illustrate the relative complexity of 
different memory scan techniques. The number of items in memory, and whether 
the probe belongs to the list, affect Sternberg’s techniques differently. Sternberg sup-
ported exhaustive search over serial self- terminating search by comparing modelled 
reaction time functions to functions obtained from human participants.

Relative complexity evidence informs functional analysis. Researchers frequently 
use visual search tasks to study visual cognition. In a visual search task, a participant 
sees several displayed objects and must decide whether one object (the target) is 
unique compared with the others (the distractors). The dependent measure is reac-
tion time, and the independent variables include the number of distractors and the 
features used to define objects.

Visual search tasks reveal the pop- out effect. Some targets immediately “pop out” 
from the display, so the number of distractors does not influence the time to detect 
the presence of the target (Treisman & Gelade, 1980). A target that pops out pos-
sesses a unique visual feature (e.g., a unique colour, orientation, contrast, or motion). 
For example, a red object pops out from a display in which all distractors are green.

However, other unique targets do not pop out from a display. These targets 
are unique feature combinations, such as a red circle among distractors that are 
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either red squares or green circles. The time to detect unique feature combinations 
increases with an increase in the number of distractors.

Visual search results inspired Treisman’s feature integration theory (Treisman, 
1985, 1986, 1988; Treisman & Gelade, 1980; Treisman & Gormican, 1988; Treisman et 
al., 1977). In feature integration theory’s early processing stages, different detectors 
register the locations of different, basic, visual features. Unique basic features pro-
duce pop out. A different feature map represents locations of different features 
(different colours, orientations, movements, etc.). A target possessing a unique fea-
ture will be the only active location in one feature map and will pop out.

However, targets created from unique feature combinations do not produce 
unique activity in a single feature map and therefore do not pop out. Instead, 
detecting such targets requires additional processing. The additional processing 
aligns different feature maps using a master map of locations. The master map 
indicates which feature combinations exist at each location. An attentional spotlight 
performs a serial self- terminating scan of the master map. Attention scans from 
one location to the next until discovering a unique target. With such a serial search 
from location to location, the reaction time for detecting a unique combination of 
features increases as the number of distractors increases.

Feature integration theory explained why some unique targets pop out, but 
others do not. Reaction time data motivated a particular functional decomposition. 
However, reaction times can provide relative complexity evidence for evaluating 
competing functional analyses. For instance, guided search theory arose from con-
cerns about feature integration theory (Wolfe, 1994; Wolfe et al., 1989; Wolfe et al., 
1988). Wolfe worried that feature integration theory did not use results from early 
feature processing stages to direct the attentional spotlight. In contrast, guided 
search theory informs the search with both early feature processing and attentional 
processing. Early feature processing directs attention to visual objects that differ 
from their neighbours; higher- order processes direct attention to objects possess-
ing target features. Thus, the two processes produce an efficient search by directing 
attention to locations likely to hold the target.

3.10 Error Evidence

Relative complexity evidence uses problem difficulty to rank order problems for 
comparing two systems (e.g., a functional analysis and a human participant). A valid 
functional analysis should match a human participant when we order problems 
from the easiest to the hardest. Section 3.9 related relative complexity evidence to 
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measuring reaction time, because more challenging tasks should take longer to per-

form than less challenging tasks. However, relative complexity evidence can come 

from other sources, such as measuring performance accuracy. Harder problems 

cause more errors than easier problems.

A recent study gives an example of using errors to provide relative complexity 

evidence (Dawson, 2022). In this study, cue combinations signalled reward prob-

ability. The logical structure of cue combinations was manipulated; the interaction 

was either the AND of two cues (signalling a reward if both cues were present) or 

the XOR of two cues (signalling a reward if only one cue was present). The reward 

probability signalled by the cue interactions was also manipulated (high versus  

low probability) to alter the interaction’s size as measured by a probabilistic value 

called conditional dependence.

Dawson (2022) trained very simple artificial neural networks called perceptrons 

(Rosenblatt, 1958) to predict the reward probability signalled by cues. He found an 

interaction between the manipulations of the logical structure and of reward size 

associated with the cue interaction. As a result, the networks were very poor at 

estimating reward probability for the XOR/low- probability condition compared 

with the other conditions.

Dawson (2022) then ran an experiment in which human participants learned 

to estimate probabilities signalled by stimuli defined by different cue patterns. He 

discovered higher accuracy for participants in conditions for which the perceptrons 

also performed well and lower accuracy for participants in conditions for which the 

perceptrons also performed less well. Dawson proposed the perceptron as a plausible 

model of human probability learning.

The example provided by Dawson (2022) illustrates how accuracy measures can 

provide relative complexity evidence. However, the errors made by models or  

by participants can also provide additional information. A system’s mistakes can 

reveal information about internal processing, information called error evidence  

(Pylyshyn, 1984).

Cognitive psychology frequently examines error evidence. We saw in Chapter 2  

that Conrad’s (1964) analysis of letter confusion provided evidence for acous-

tic, not visual, representations in primary memory. Similar results emerge when 

using words as stimuli (Baddeley, 1966). Baddeley found more confusion between 

memories of similar- sounding words, even when he presented words visually. The 

semantic similarity between words held in primary memory interferes far less  

with recall.



Using Functional Analysis to Explain Cognition 81

https:// doi .org/ 10 .15215/ aupress/ 9781771993418 .01

In contrast, semantic similarity produces more recall errors from secondary 
memory (Baddeley & Dale, 1966). For instance, for two semantically similar word 
lists, learning the second list of words interfered with memory of the first list. 
However, primary memory did not produce the same effect. Such error evidence 
indicates that secondary memory encodes concept meanings. Encoding meanings 
causes other memory errors. For instance, human participants will mistakenly rec-
ognize a sentence as having been seen before provided that the sentence conveys 
the same meaning as that provided by previously presented material (Bransford  
et al., 1972).

Error evidence also provides insight into finer details. One study used multivari-
ate statistics to explore letter confusion in iconic memory (Dawson & Harshman, 
1986). The study found more likely confusion between letters with many features 
and letters built from a subset of the features than vice versa. For example, confu-
sion between E and F or between E and L occurred more frequently than confusion 
between F and E or between L and E. Dawson and Harshman argued that such 
error evidence supports a letter recognition model involving feature accumulation.  
For instance, such a model would accumulate a vertical line and three horizon-
tal lines as the features of E. Mistakes occur when not all features are correctly 
detected. For instance, a failure to detect one of the horizontal lines in E could 
incorrectly register F, and a failure to register two of these lines could incorrectly 
register L. Confusion asymmetries— E is more likely to be confused with L than L is  
with E— emerge naturally from feature accumulation failures.

3.11 Intermediate State Evidence

Cognitive psychologists also use intermediate state evidence to validate a functional 
analysis (Pylyshyn, 1984). Such evidence concerns the intermediate knowledge states 
that a system passes through during information processing. If a functional analysis 
is strongly equivalent to a modelled system, then both proceed through identical 
intermediate states.

Intermediate state evidence plays a central role in studying human problem 
solving. Newell and Simon’s classic 1972 book Human Problem Solving summarized 
20 years of studying how humans solved problems. Their explanations took the 
form of working computer simulations; they evaluated simulations by comparing 
their intermediate states to those of human problem solvers.

Newell and Simon (1972) used a core methodology called protocol analysis  
(Ericsson & Simon, 1984). Protocol analysis begins by collecting verbal protocols 



82 What Is Cognitive Psychology?

https:// doi .org/ 10 .15215/ aupress/ 9781771993418 .01

from participants solving problems. A verbal protocol records what participants 
say as they “think out loud” while solving a problem. The problems that Newell 
and Simon studied— problems in cryptarithmetic, logic, and chess— were difficult 
enough to ensure that participants engaged in problem- solving behaviour but not so 
difficult that the problem could not be solved in a reasonable time, or the problem 
would produce a verbal protocol too long for later analysis.

Protocol analysis proceeds in several steps. First, a single participant solves 
a problem, speaking aloud at all times. Participants have been trained to think 
out loud and are encouraged to think out loud by the experimenter if they stop 
talking during a session. The session is tape- recorded, providing the raw data for  
the analysis.

Second, the recorded protocol is transcribed, breaking the transcription into 
short phrases labelled for later reference. The labelling is a form of data preprocess-
ing because each labelled phrase is assumed to represent a single problem- solving 
state. However, there is very little additional editing of the protocol.

Third, the transcribed problem is used to infer the participant’s problem space. A 
problem space defines the different knowledge states used to represent a problem 
during its solution. A particular knowledge state can be thought of as a set of sym-
bols that represents a problem’s current condition. To move from one state to the 
next is to apply some rule to manipulate symbols in order to change the knowledge 
state. A participant was presumed to “encode these problem components— defining 
goals, rules, and other aspects of the situation— in some kind of space that rep-
resents the initial situation presented to him, the desired goal situation, various 
intermediate states, imagined or experienced, as well as any concepts he uses to 
describe these situations to himself” (Newell & Simon, 1972, p. 59). The problem 
space makes explicit such encoded properties.

Fourth, a participant’s problem space is converted into a problem behaviour graph. 
This graph is a set of connected nodes. Each node represents a knowledge state  
about the problem. Each link represents a rule in the problem space that, when 
applied to a knowledge state, produces the next knowledge state in the graph. Typ-
ically, nodes are linked from left to right to illustrate the process of solving a problem.

However, a problem behaviour graph can also represent a participant’s changing 
approach to a problem. Sometimes in pursuing a train of thought a participant 
reaches a dead end and backtracks to some earlier point in her reasoning. A problem 
behaviour graph represents such backtracking by going back to the knowledge state 
to which the participant has returned, drawing a link downward, and duplicating 
the returned- to knowledge state. Thus, the problem behaviour graph illustrates both 
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progress on a problem (by growing outward from left to right) and backtracking  

to previous knowledge states (by growing downward from top to bottom).

Fifth, a production system is used to create a working computer simulation to 

solve the problem. A production system’s basic operations are derived from the 

problem behaviour graph by inferring potential rules that describe the links between 

states. Intermediate state evidence evaluates how well the production system emu-

lates human performance by comparing the production system’s problem behaviour 

graph to the participant’s.

Newell and Simon (1972) proposed the production system as the cognitive 

architecture. A production system consists of a set of operators. Each operator is 

a condition- action rule. A simulation begins with each operator scanning mem-

ory simultaneously, searching for its condition (i.e., a particular string of symbols). 

When one operator finds its condition, it temporarily inhibits the other operators 

and performs its action. A production’s action involves manipulating the symbols in 

memory. Once symbol manipulation finishes symbols, the production releases 

control, and the system returns to the state in which all operators scan memory in 

search of their conditions.

Note that a production system like the one described above generates all of the 

information required to create a problem behaviour graph for the simulation. At any 

moment in time, the current knowledge state for the production system is the set 

of symbols being held in memory. To move from this state to the next, a particular 

production captures control and manipulates the symbols in memory. Thus, a link 

between knowledge states indicates which production was used. The fact that a 

production system can generate its own problem behaviour graph means that we 

can compare the production system graph to the problem behaviour graph created 

from a participant’s example.

For instance, Newell and Simon (1972) studied the cryptarithmetic problem 

DONALD + GERALD = ROBERT. A participant is presented with this statement 

and told that D = 5. The task is to determine the integer represented by each remain-

ing letter. Newell and Simon’s protocol analysis of one participant’s work on this 

problem generated a problem behaviour graph consisting of 238 nodes. Newell and 

Simon used this graph to find evidence for 14 separate productions and used them 

to create a working production system. They found that the production system 

accounted for approximately 80% of the subject’s problem behaviour graph. This is 

a striking correspondence between the intermediate states measured for a human 

participant and those created by a computer simulation of his thought processes.
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3.12 The Cognitive Impenetrability Criterion

Cognitive psychology seeks strong equivalence between systems. Strongly equivalent 
systems generate the same input- output mapping by using the same information 
processing steps. Three different sources of information can establish whether two 
systems use the same algorithm: relative complexity evidence, error evidence, and 
intermediate state evidence.

However, strong equivalence requires that two systems not only run the same 
program but also use the same programming language, the same information pro-
cessing primitives, and the same functional architecture (Section 3.5). “Devices with 
different functional architectures cannot, in general, directly execute identical algo-
rithms” (Pylyshyn, 1984, p. 96).

In many cases, supporting the claim that a function is a primitive involves 
appealing to findings collected from outside cognitive psychology, such as evidence 
from neuroscience. For instance, discovering that the surgical removal of part of 
the human brain disrupted primary memory, but not secondary memory (Scoville & 
Milner, 1957), provided anatomical evidence for the modal memory model (Squire, 
2009). Similarly, evidence from visual neuroscience (Livingstone & Hubel, 1988) 
supports the existence of the various feature maps proposed as the early stages of 
feature integration theory (Treisman, 1986; Treisman & Gelade, 1980).

In other cases, a functional theory becomes widely accepted by explaining 
experimental results. Such success permits the theory to flourish while awaiting 
its subsumption, as illustrated earlier by the trichromatic theory, which provided 
the dominant account of colour perception, a century before being subsumed.

Given the importance of discovering primitive functions, can cognitive psych-
ologists do so by collecting data from within their own discipline? Can the results 
of a cognitive psychology experiment help to subsume causally a functional analy-
sis? Pylyshyn (1980, 1981b, 1984) proposes the cognitive penetrability criterion as one 
approach that cognitive psychologists can use to examine whether a function is 
primitive. If we can change a function’s behaviour by altering a participant’s beliefs, 
then we call the function cognitively penetrable. Cognitively penetrable functions 
are not primitive.

In contrast, if a wide variety of relevant belief changes do not affect the func-
tion, then we call the function cognitively impenetrable. Primitive functions must be 
cognitively impenetrable. The cognitive penetrability criterion “allows us to drive a 
wedge between cognitive processes and the part of the cognitive system fixed with 
respect to cognitive or semantic influences” (Pylyshyn, 1984, p. 139).
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The cognitive penetrability criterion’s logic begins by assuming that human 

information processing is instantiated by brain function. As we learn about the 

world, our brain structure changes (Doidge, 2007; Kolb, 1995). Knowledge must  

be stored by modifying neural connections. However, some brain features must be 

less modifiable than others (Newell, 1990). Newell argued that the brain has some 

structures, called fixed structures, that change relatively slowly. Fixed structures 

provide the architecture of cognition and differ from other structures that change 

much more rapidly because they store information.

An architecture associated with fixed brain structures will not change as new 

information is acquired. Adding new mental contents will not change the mech-

anisms for manipulating information. “An architecture provides a boundary that 

separates structure from content. Behavior is determined by variable content being 

processed according to the fixed processing structure, which is the architecture” 

(Newell, 1990, p. 82). Therefore, we can test whether a particular function belongs 

to the architecture by changing mental contents. If changes in contents alter the 

function’s operation, then the function is not part of the architecture. If the function 

belongs to the architecture, then it is fixed and should not be affected by content 

manipulations.

Pylyshyn’s cognitive penetrability criterion follows directly from this logic. 

Pylyshyn’s method proceeds by first measuring some function of interest. Then a 

participant’s beliefs are changed in a fashion related meaningfully to the function. 

Finally, the function is measured again after manipulating mental content. If the 

function changes in a way related to the changed belief, then it is cognitively pene-

trable and does not belong to the architecture. The cognitive penetrability criterion 

plays an important role in the debate about whether the spatial properties of mental 

images belong to the architecture.

We experience mental images as “pictures in the head” when we solve spatial 

problems. Many experiments study the properties of mental images (Kosslyn, 1980; 

Shepard & Cooper, 1982). These experiments reveal that mental images have spatial 

properties. Mental images have a spatial layout, so we require time to scan from 

one image location to another. Similarly, the time to rotate mental images to a  

new orientation increases with the amount of rotation required. The imagery 

debate examines whether the spatial properties of mental images belong to the 

cognitive architecture (Block, 1981; Pylyshyn, 1973). Some evidence in the imagery 

debate shows cognitive penetrability of spatial properties of mental images; such 

properties do not belong to the architecture.
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To illustrate using such evidence, consider the image scanning task (e.g., Kosslyn, 
1980, pp. 36– 52). In a typical scanning experiment, participants create a mental 
image of a memorized map. Then they use the image to answer questions. For 
instance, Kosslyn asked participants to focus their attention on one location, and 
then Kosslyn named another location. Participants scanned the image from the 
first location to the second one. Kosslyn manipulated the distance between the two 
locations and found that a participant’s response time increases with increases in 
the distance between the two locations.

Kosslyn (1980) presumed that the linear relation between distance and response 
time arose because a mental image’s spatial extent belonged to the architecture. If 
so, then changing a participant’s beliefs about the task should not alter the relation-
ship between distance and scanning time. However, some evidence indicates that 
belief changes alter scanning times, meaning that image scanning is cognitively 
penetrable.

For instance, Liam Bannon first replicated the linear relationship between image 
distance and reaction time (Pylyshyn, 1981b, pp. 242– 243). However, Bannon hypoth-
esized that task instructions led participants to believe that scanning should take 
time, because they were told to press a response button “when they arrived” at  
the second location. To test his possibility, Bannon altered the instructions to 
change participants’ beliefs about the task. “The instructions specified merely that 
subjects give the compass bearing of the second place— that is, to state whether the 
second place was north, northeast, east, southeast, and so on of the first” (Pylyshyn, 
1981b, p. 243). With these instructions, Bannon discovered that there was no rela-
tion between distance and reaction time; this result has been replicated by other 
researchers (e.g., Finke & Pinker, 1982). Thus, the map- scanning results are not 
caused by a primitive property of imagery, because results change when participants 
change beliefs about the task.

Cognitive psychologists must causally subsume their functional analyses and 
usually do so by appealing to evidence from other disciplines, such as neurosci-
ence (Dawson, 2013). However, some results from experimental psychology can 
determine whether functional properties are primitives. The cognitive penetrability 
criterion, as illustrated in the imagery debate, shows how cognitive psychologists 
can explore architectural issues.
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3.13 Cognitive Psychology in Principle and in Practice

In principle, cognitive psychology proceeds by conducting functional analysis, an 
approach inspired by the computer metaphor. In general, cognitive psychologists 
analyze cognition into components that we can describe as information process-
ing functions. Such functions use rules to manipulate symbols. Furthermore, 
strong similarities exist between functional analyses and programs or algorithms. 
Explaining human cognition with functional analysis uses techniques similar to 
the methods used to explain a computer’s behaviour. A functional analysis rests 
on the results of psychological experiments. Experimental observations of human 
behaviour motivate carving a complex process into an organized system of simpler 
sub- processes (see Chapter 2).

If, in principle, cognitive psychologists conduct functional analysis, then we 
expect, over time, that they will produce theories that include organized systems of 
larger numbers of sub- functions. For example, by the mid- 1960s, cognitive psych-
ology’s crowning achievement was the modal memory model (Figure 2- 5). Since 
then, both primary memory and secondary memory have been further analyzed 
into sub- components.

For instance, cognitive psychologists have decomposed primary memory into a 
more complex system known as working memory (Baddeley, 1986, 1990). Working 
memory consists of three sub- functions. The central executive operates on symbols 
stored in buffers and determines how attention is allocated across simultaneously 
ongoing tasks. The visuospatial buffer stores visual information. The phonological loop 
stores verbal information and itself has been further analyzed into sub- functions 
that include a phonological store for holding symbols and a rehearsal process for 
preserving items in the phonological store. Similarly, cognitive psychologists 
have decomposed secondary memory into distinct functional sub- components, 
including declarative versus non- declarative memory (Squire, 1992), semantic versus 
episodic memory (Tulving, 1983), and memory for words versus memory for images 
(Paivio, 1971, 1986).

Cognitive psychologists do not only use experimental results to decompose 
functions into sub- functions. They also use special observations— relative com-
plexity evidence, error evidence, and intermediate state evidence— to validate a 
particular functional analysis. Furthermore, the cognitive penetrability criterion 
can determine if a function is primitive.

In practice, when cognitive psychologists conduct functional analysis, they do 
not produce unified accounts of human cognition. Instead, they generate diverse, 
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competing theories. Validating a functional analysis not only establishes strong 
equivalence but also finds support to counter competing theories. For example, in 
Chapter 2 I briefly reviewed experimental results from studying human memory 
and used these results to motivate the modal memory model. Chapter 2 implies 
that all cognitive psychologists accepted the modal memory model. However,  
other theories offer very different explanations of the same results.

The levels of processing theory provides one example (Cermak & Craik, 1979;  
Craik & Lockhart, 1972). This theory emphasizes different kinds of processing 
instead of different kinds of memory stores. According to levels of processing, we 
retain items receiving deeper or more semantic processing better and longer than 
we retain items receiving shallower or less semantic processing. Levels of processing 
deliberately opposed the multi- store approach introduced in Chapter 2. “While 
multistore models have played a useful role, we suggest that they are often taken too 
literally, and that more fruitful questions are generated by the [levels of processing] 
formulation” (Craik & Lockhart, 1972, p. 681).

Because competing memory theories exist, cognitive psychologists who study 
memory must design experiments to determine whether to prefer one account (e.g., 
levels of processing) over another (e.g., multi- store models). The kinds of evidence 
introduced in Chapter 3 can evaluate competing functional analyses of the same 
cognitive phenomenon. Such evaluation is not limited to studying memory. For 
instance, earlier we saw different functional analyses exist for a visual search (i.e., 
feature integration theory versus guided search). Most topics in cognitive psychol-
ogy have inspired competing theories.

Cognitive psychology’s diversity arises from an evolving notion of what “infor-
mation processing” means. In the mid- 20th century, the digital computer provided 
the only notion of information processing available to cognitive psychology.  
Since then, new ideas about information processing have inspired competing cog-
nitivist positions (Dawson, 1998, 2013). Connectionism arose from the belief that 
biological brains do not process information in the same way that digital computers 
do, leading to theories that abandon the explicit distinction between symbols and 
rules (Bechtel & Abrahamsen, 2002; Clark, 1989, 1993; Horgan & Tienson, 1996;  
McClelland & Rumelhart, 1986; Rumelhart & McClelland, 1986b). Embodied cogni-
tion arose from a rekindling of cyberneticists’ interest in the interactions between 
agents and environments (Shapiro, 2011, 2014). Embodied theories propose that 
complex behaviours emerge from the interactions between simple agents and com-
plicated environments (Braitenberg, 1984; Clark, 1997, 2003, 2008, 2016; Dawson 
et al., 2010; Noë, 2004, 2009). Many embodied cognitivists believe that the mind 
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extends from inside the skull to include the surrounding environment (Clark & 
Chalmers, 1998).

Different ideas about information processing also inspire a diversity of proposed 
cognitive architectures. For instance, Dawson (1998, Table 6- 1) lists 24 different 
proposals for the language of thought. We should not be surprised that many com-
peting theories, and many competing architectures, exist in cognitive psychology. 
All psychological schools of thought have exhibited similar diversity (Heidbreder, 
1933). Earlier schools began not by organizing pre- existing facts but by investigating 
general notions of the mind, collecting new facts along the way. A school’s gen-
eral ideas about the mind “can best be understood not as statements of scientific 
fact, not as summaries of existing knowledge, but as ways and means of arriving 
at knowledge, as temporary but necessary stages in the development of a science” 
(Heidbreder, 1933, pp. 16– 17).

Cognitive psychology provides a modern illustration of Heidbreder’s point. 
Cognitive psychology begins by asserting that cognition is computation and then 
develops new methodologies to collect evidence to permit cognitive psychologists 
to explain human cognition in the same way that computer scientists explain the 
operations of a computer.

Neisser’s cognitive approach requires evaluating competing functional theories 
and competing architectural proposals. We cannot define cognitive psychology by 
which facts it collects or by which theories it considers. Instead, we must define it 
by using its primary method, functional analysis, as well as the directions in which 
functional analysis leads cognitive psychologists. “Science does not proceed in the 
light of reason alone, but like other human enterprises is a muddled adventure work-
ing itself out” (Heidbreder, 1933, p. 17). Cognitive psychology’s diversity illustrates 
its unique “muddled adventure.”

3.14 Chapter Summary

Chapter 1 related cognitive psychology to computer science, arguing that cognitive 
psychologists assume that human cognition is similar to the processing used by 
digital computers. Chapter 2 related cognitive psychology to general experimental 
psychology by illustrating how cognitive psychologists infer human information 
processing because we cannot directly observe it. Chapter 3 related cognitive psych-
ology to the philosophy of science by arguing that cognitive psychologists analyze 
complex phenomena into organized systems of simpler sub- functions, an approach 
called functional analysis.
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However, cognitive psychologists appear to explain one function by decompos-
ing it into further, unexplained, sub- functions, leading to Ryle’s regress. Cognitive 
psychologists must escape Ryle’s regress if their functional descriptions are to 
achieve the status of scientific explanations. They escape Ryle’s regress by discov-
ering sub- functions simple enough to be explained by physical causes: causally 
subsumed functions. We do not explain a causally subsumed function by decom-
posing it into further functions.

Cognitive psychology aims to show strong equivalence between a functional 
analysis and human cognition. Chapter 3 introduced three kinds of evidence for 
establishing strong equivalence: relative complexity evidence, error evidence, and 
intermediate state evidence. The chapter also introduced the cognitive penetrability 
criterion for testing whether a function belongs to the architecture.
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4

Cognitive Architectures

The information processing hypothesis leads cognitive psychologists to conduct 
functional analysis and face Ryle’s regress. To escape Ryle’s regress, they must dis-
cover a cognitive architecture. However, not all cognitive psychologists propose the 
same architecture, and many different architectures appear in cognitive psychology. 
In Chapter 4, I explore architectural variety and its causes by examining different 
architectural properties. Each property can take on different forms. Cognitive psych-
ologists generate competing architectures when they make different decisions about 
the forms that these properties take.

4.1 The Variety of Cognitive Psychology

Cognitive psychologists hypothesize that cognition emerges from the rule- governed 
manipulation of mental representations. Cognitive psychology aims to explain such 
processing by conducting functional analysis. Cognitive psychologists collect data 
to infer processes that they cannot observe directly. They intend to make functional 
analysis explanatory by discovering primitive functions, the cognitive architecture.

One might expect that, if all cognitive psychologists perform functional analysis, 
then they must all discover the same architecture. However, cognitive psychology 
hosts many competing theories and rival architectures. How can such variety arise 
if cognitive psychologists embrace the same general research strategy? At least three 
answers exist.

First, we can infer different information processes from the same results. For 
example, consider memory scanning experiments (Sternberg, 1969b). Earlier we 
saw graphs of a linearly increasing relationship between reaction time and list 
length (Figure 3- 5). Sternberg predicted such functions by assuming that we scan 
list items in serial fashion (i.e., one at a time). However, such graphs also conform 
to theories based upon parallel scanning of memory (i.e., scanning all items at once) 
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(Townsend, 1971, 1990). Consider a parallel scanning process that slows down as the 
list length increases. Such a process also predicts the Figure 3- 5 graphs. Thus, com-
pletely opposite proposals— serial versus parallel processing— can produce identical 
predictions.

Second, the ideas explored by cognitive psychology’s general approach do not 
arise in a theoretical vacuum. Cognitive psychologists explore predictions emerging 
from interesting hypotheses. But contrasting hypotheses about the same phenom-
enon lead different researchers in different directions, producing results supporting 
different theories. Consider the visual search (Treisman, 1986, 1988; Treisman & 
Gelade, 1980) introduced in Section 3.9. Treisman motivated her research by hypoth-
esizing a single attentional spotlight that shifts from one location to another. As a 
result, she studied a visual search in tasks requiring participants to locate an indi-
vidual target, discovering results to support feature integration theory.

However, different hypotheses about attention lead to very different studies. 
Pylyshyn (2001, 2003a, 2007) rejects the attentional spotlight hypothesis and instead 
proposes multiple attentional tags that attach themselves to different targets at the 
same time. As a result, in Pylyshyn’s studies, participants track multiple targets simul-
taneously (Pylyshyn et al., 2008). Pylyshyn’s results support a theory quite different 
from feature integration theory. In short, different hypotheses inspire differ-
ent investigations. In turn, different investigations produce results supporting 
different theories of the same phenomenon.

Third, cognitive psychology does not restrict ideas, because it permits deliberate 
rebellions against established theories, rebellions that produce new ideas. Cognitive 
psychologists explain many well- studied topics by using widely accepted theories. 
We can move research in new directions by rejecting the established theory’s assump-
tions. Roboticist Rodney Brooks promoted such scientific rebellion,

During my earlier years as a postdoc at MIT, and as a junior faculty 
member at Stanford, I had developed a heuristic in carrying out 
research. I would look at how everyone else was tackling a certain 
problem and find the core central thing that they all agreed on so 
much that they never even talked about it. I would negate the central 
implicit belief and see where it led. This often turned out to be quite 
useful. (2002, p. 37)

Cognitive psychology provides many examples of rebelling against established 
theory. Established theories assume that memory involves different storage systems 
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(Shiffrin & Atkinson, 1969; Waugh & Norman, 1965). Very different theories arise 
if we abandon the assumption and instead assume that different memories reflect 
differences in control (Baddeley, 1986) or differences in processing (Craik & Lock-
hart, 1972). Established theories assume that explicit symbols and processes exist 
(Newell & Simon, 1972). Very different theories arise when we rebel by assuming 
that cognition does not require symbols or rules (McClelland & Rumelhart, 1986; 
Rumelhart & McClelland, 1986b). Established theories assume that the skull com-
pletely contains the mind (Adams & Aizawa, 2008; Fodor, 1968). Very different ideas 
emerge when we assume that the mind extends into the world, making the world 
part of cognition (Brooks, 2002; Shapiro, 2011).

Thus, cognitive psychologists can share a general research strategy but still pro-
duce widely varying theories. Chapter 4 describes how different models arise when 
researchers make different assumptions about the cognitive architecture. Some 
propose serial processing, whereas others propose parallel processing. Some propose 
data- driven processing, yet others propose theory- driven processing. Some pro-
pose automatic processing, but others propose controlled processing. Some propose 
innate processes, whereas others focus on learning. Some propose isotropic pro-
cessing, yet others propose modular processing. Different cognitive psychologists 
propose different structure- process pairings or different kinds of control. Chapter 4 
shows how different assumptions produce radically different cognitive theories.

4.2 Serial and Parallel Processing

Chapter 4 illustrates that theoretical variety emerges in cognitive psychology when 
different cognitive psychologists make different assumptions about the cognitive 
architecture. To begin, I explore one architectural property: does the architecture 
execute one rule at a time (serial processing) or several rules at a time (parallel pro-
cessing)? Many different theories begin when cognitive psychologists make different 
assumptions about serial versus parallel processing.

Mental chronometry, pioneered by the subtractive method (Donders, 1869/1969) 
(see Section 3.9), measures the time taken by mental processes (Luce, 1986; Posner, 
1978). If Task B requires one more processing stage than Task A does, then we meas-
ure the additional stage’s processing duration by subtracting the time required to 
perform Task A from the time required to perform Task B.

The subtractive method assumes that mental operations involve serial process-
ing, which only executes one process at any given moment (Figure 4- 1). Figure 4- 2 
illustrates four different processes carried out in serial fashion. Process 1 occurs first, 
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then Process 2, and so on. However, results like the famous Stroop effect indicate 
that cognitive processing is not always serial.

Process 1

Process 2

Process 3

Process 4

Ti
m

e

Figure 4- 1 Serial processing.

Stroop (1935) studied the interference between information available at the 
same time. He presented participants with a list of colour names. In one condition,  
the ink colour for each word differed from the colour named by the word. For instance, 
Stroop printed the word red in blue, green, brown, or purple ink but never in red ink. 
He asked some participants to read the printed words out loud (ignoring the colour of 
the ink) and found that ink colour did not interfere with performance. Stroop found 
no difference between the time to read coloured words and the time to read the same 
words printed in black ink. However, he found a very different result when participants 
named each word’s ink colour (ignoring the colour named by the word). Colour words 
interfered with naming ink colour; participants required 50 seconds more to name the 
ink colour of colour words than required when naming the ink colours of squares.

Stroop’s result illustrates parallel processing, which occurs when more than one 
process occurs at the same time. If words slow down naming ink colour, then two 
different processes operate simultaneously: processing the word and processing the 
ink colour. Researchers have proposed numerous explanations for the Stroop effect 
(Dyer, 1973; Jensen & Rohwer, 1966; Macleod, 1991, 2015). All explanations share the 
idea that we process words and ink colours in parallel.
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For example, consider the “horse race model” (Posner & Snyder, 1975) illustrated 
in Figure 4- 2. That model has two processing streams— one for words, the other  
for ink colours— operating in parallel, as illustrated by the vertical overlap of the 
boxes in the figure. For example, Process 1 and Process A start at the same time, 
because the tops of their boxes align vertically in Figure 4- 1.

The horse race model proposes that we process words faster than we process 
colours. Figure 4- 2 illustrates faster word processing by shortening the height of 
word process boxes compared with the height of colour process boxes. Because the 
model processes words faster, the word stream will finish first. Therefore, word 
processing will finish before colour processing interferes. But, by finishing first, 
the word stream can interfere with naming ink colour by delivering a competing  
colour word participants must ignore to name ink colour.

Process 1

Process 2

Process 3

Ti
m

e

Process A

Process B

Process C

Process D

Word Colour

Respond

Figure 4- 2 The Stroop effect indicates that different processes can operate in 
parallel. The “Word” processing stream finishes before the “Colour” processing 
stream: Process 3 finishes before Processes C or D.

Figure 4- 2 combines parallel and serial processing. The two different processing 
streams run in parallel. However, each stream operates in serial. Feature integration 
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theory provides another example of combining both serial and parallel processing  
in the same theory (Treisman, 1986, 1988; Treisman & Gelade, 1980). Feature integra-
tion theory (Figure 4- 3) begins when specialized processors detect different features 
such as colour, motion, and so on. Feature detection occurs in parallel; Figure 4- 3 
illustrates parallel processing by vertically aligning feature detection processors.

Ti
m

e

Feature combinations via attention

Colour Motion Depth Orientation Curvature

Creation of object files

Object recognition via semantic memory

Figure 4- 3 Feature integration begins with parallel processing. This is then 
followed by processing stages operating in serial.

Once parallel processes detect various features, serial processing begins. First, 
attention combines different features together to create object representations 
called object files (Kahneman et al., 1992). Next, object recognition (object classifi-
cation or object naming) occurs by linking object files to semantic memory. Note 
that the final three stages in Figure 4- 3— combining features, building object files, 
and accessing semantic memory— operate in serial. Figure 4- 3 illustrates serial pro-
cessing by placing the three final stages at different vertical positions.

Researchers can propose other combinations of parallel and serial processing. 
Cascaded processing provides one example (McClelland, 1979). In cascaded process-
ing, a second (serial) process begins before the preceding (serial) process finishes. 
Cascaded processing (Figure 4- 4) permits incomplete information to be passed from 
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one process to the next, giving the second process a head start before the first process 
ends. Figure 4- 4 illustrates mostly serial processing: Process 1 occurs first, Process 2  
second, and so on. However, the vertical overlap between Process 1 and Process 2 in 
the figure indicates that Process 2 begins before Process 1 finishes. Similarly, Process 
2 is cascaded with Process 3, and Process 3 is cascaded with Process 4. The dual route 
cascaded model of reading uses cascaded processing (Coltheart et al., 2001).

Process 1
Process 2

Process 3
Process 4

Ti
m

e

Figure 4- 4 Four processes in cascaded processing.

Still other theories use only parallel processing. Figure 4- 5 illustrates four 
processes running at the same time, continually sending information to each 
other, in a system called an auto- associative network (Ackley et al., 1985; Hopfield,  
1982; Kohonen, 1977). Auto- associative networks can model many cognitive phe-
nomena, such as tracking moving objects (Dawson, 1991), paired- associate learning 
(Rizzuto & Kahana, 2001), visual search (Fukushima, 1986; Gerrissen, 1991), and 
concept categorization (Anderson et al., 1977).

Process 1

Process 2

Process 3

Process 4

Time

Figure 4- 5 A system in which all processing is parallel.
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Auto- associative networks illustrate connectionism (Bechtel & Abrahamsen,  
2002; Churchland et al., 1990; Dawson, 2004; McClelland & Rumelhart, 1986; 
Rumelhart & McClelland, 1986b). Connectionists believe in dramatic differences 
between information processing in brains and information processing in digital 
computers. We can treat each process in Figure 4- 5 as a model neuron, each oper-
ating in parallel, continually sending signals back and forth to one another.

Importantly, many connectionist models combine parallel and serial processing. 
Figure 4- 6 illustrates one network, the multi- layer perceptron. Processors in the 
multi- layer perceptron represent neurons, and therefore connectionists describe 
such networks as using parallel processing. However, multi- layer perceptrons also 
include serial processing: input units must first send signals to hidden units before 
the hidden units activate. Similarly, output units cannot activate until they receive 
signals from the hidden units.

Output units

Hidden
units

Input units

Figure 4- 6 The multi- layer perceptron is a typical connectionist network. Circles 
represent neuron- like processors.

Connectionism arises from adopting a rebellious counter- assumption to 
conventional theory: what if cognition differs from the serial digital computer? 
Connectionists produce theories quite different from other approaches (Bechtel & 
Abrahamsen, 2002; Dawson, 1998, 2013). We will encounter connectionism again 
in Chapter 5. In Chapter 4, I only need to emphasize connectionism’s preference 
for parallel processing over serial processing.

By making different assumptions about serial versus parallel processing, or by 
combining both serial and parallel processing in the same theory, cognitive psych-
ologists can create diverse theories. Such diversity emerges from making different 
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assumptions about one architectural property (temporal relations between pro-
cesses). Other architectural properties also permit different assumptions, generating 
theoretical diversity. The next section explores a second architectural property, 
whether a theory proposes data- driven or theory- driven processing.

4.3 Data- Driven and Theory- Driven Processing

Researchers produce different theories by proposing different combinations of parallel 
and serial processing (Section 4.2). The direction in which information flows in a system 
provides another architectural property to vary to create diverse cognitive theories.

We define the direction in which information flows by distinguishing between 
peripheral processing and central processing. Peripheral processing occurs early (at 
cognition’s start), has direct contact with the world, and involves detecting infor-
mation. In contrast, central processing occurs later (after we detect and represent 
information), has no direct contact with the world, and manipulates information 
already represented. Information can flow from peripheral to central processes, or 
in the opposite direction, from central to peripheral processes.

Data- driven processing, or bottom- up processing, occurs when information flows 
from peripheral to central processing (Figure 4- 7). In Figure 4- 7, sensation is the 
most peripheral processing and involves detecting information from the world. 
Awareness is more central and involves being consciously aware of some detected 
information. Thought is most central and involves reasoning about detected infor-
mation (e.g., classifying conscious information as an object, such as “scruffy brown 
dog”). Figure 4- 7 illustrates data- driven processing because the arrows between the 
boxes point in the direction from peripheral processes toward central processes.
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Figure 4- 7 In data- driven processing, information flows from peripheral processes 
toward central processes.
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The multi- layer perceptron presented in Figure 4- 6 illustrates data- driven pro-
cessing because input units first detect environmental information. Input units 
send signals to hidden units, which detect more complex features. Finally, hidden 
units send activity to output units, which generate a complex response. We describe 
the network’s processing as data- driven processing because information always  
flows from input units (peripheral) toward output units (central).

Theory- driven processing, or top- down processing, occurs when information flows 
from central processes toward peripheral processes (Figure 4- 8). Note that the 
arrows between boxes in Figure 4- 8 point in the opposite direction when compared 
with the arrows in Figure 4- 7. In theory- driven processing, results from central 
processes influence or guide more peripheral processing.

We find theory- driven processes in many cognitive theories of perception 
(Bruner, 1957, 1992; Bruner et al., 1951; Gregory, 1970, 1978; Rock, 1983). Most per-
ceptual theories recognize that data- driven processing does not deliver all of the 
information that we need to experience the world (Marr, 1982). Theory- driven pro-
cesses use our beliefs, knowledge, or expectations to fill in missing information. 
“We not only believe what we see: to some extent we see what we believe” (Gregory, 
1970, p. 15). For example, my data- driven processes provide me with information 
indicating that I see a small black- and- white animal. Top- down processing permits 
a more sophisticated experience. When I am in my house, my expectations lead me 
to recognize my cat Phoebe. In contrast, when I am in the ravine, my expectations 
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Figure 4- 8 In theory- driven processing, information flows from central processes 
toward peripheral processes.



Cognitive Architectures 101

https:// doi .org/ 10 .15215/ aupress/ 9781771993418 .01

lead me to recognize, and avoid, a skunk. Top- down processing enables different 
expectations to add different information to the same representation delivered by 
data- driven processes.

Figures 4- 7 and 4- 8 illustrate models involving only data- driven or only theory- 
driven processing. However, information can flow in both directions in the same 
theory, as illustrated in Figure 4- 9.

Treisman’s feature integration theory combines both data- driven and theory- 
driven processing (Treisman, 1986, 1988; Treisman & Gelade, 1980). The first stage, 
feature detection, uses data- driven processing. Different feature maps represent 
locations of different features. We recognize objects by combining features at the 
same location in different maps. However, data- driven processes do not com-
bine features. In feature integration theory, an attentional spotlight provides the 
“glue” to hold different feature maps together. Higher- level processes position  
the attentional spotlight: we deliberately direct our attention to a location of inter-
est. Thus, theory- driven processing moves the attentional spotlight from location 
to location.

Feature integration theory combines not only data- driven with theory- driven 
processing but also serial processing with parallel processing. Thus, feature inte-
gration theory illustrates that making different assumptions about architectural 
properties permits diversity within cognitive theory. Other architectural proper-
ties also support theoretical diversity. Section 4.4 introduces another example, 
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Figure 4- 9 Many modern theories, such as Treisman’s feature integration theory, 
include both data- driven and theory- driven processing.
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when cognitive psychologists hypothesize whether processing is automatic or 
controlled.

4.4 Automatic and Controlled Processing

In Sternberg’s (1969b) memory scanning task (see Section 3.9), participants deter-
mine whether a probe belongs to a memorized list. To study how we search 
primary memory, Sternberg varied list size and measured participants’ response 
time. Sternberg argued that we scan memory with an exhaustive serial search. Later 
researchers varied Sternberg’s task to discover additional properties of search pro-
cesses (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977). Schneider and Shiffrin 
varied not only how many items were memorized but also how many probes par-
ticipants searched for in memory.

Schneider and Shiffrin also manipulated the number of elements used to create 
memory sets and stimulus sets. A target belongs both to the stimulus set and to  
the memory set. A distractor belongs to the stimulus set but not to the memory set. 
In Schneider and Shiffrin’s varied mapping condition, items served as targets in some 
trials but as distractors in others. The varied mapping conditions increase task dif-
ficulty because participants must constantly attend to which items are targets since 
targets change from trial to trial. In contrast, in Schneider and Shiffrin’s consistent 
matching condition, one set of items always served as targets, and a different set of 
items always served as distractors. In the consistent matching condition, targets 
never served as distractors.

Schneider and Shiffrin discovered that the two conditions produced strikingly 
different results. Participants found the varied mapping condition much more diffi-
cult than the consistent mapping condition. In the former condition, performance 
became poorer (slower, less accurate) with increases in the size of the memorized 
lists or in the number of probes. Performance did not improve with training. In 
contrast, participants performed faster in the consistent mapping condition, and 
varying the number of memorized items or the number of probes did not affect 
performance. Performance in the consistent matching condition improved with 
training: participants reported that early trials demanded effort but experienced 
less effort after performing several trials (Shiffrin & Schneider, 1977).

Schneider and Shiffrin used their results to argue for two qualitatively dif-
ferent types of processes. Automatic processes are fast, automatically activated by 
stimuli, place few demands on cognitive resources such as attention, and do not 
require top- down control. In contrast, controlled processes are slow, initiated by 
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higher- order processes, place high demands on attentional resources, and require 
top- down control. Although the architectural distinction between automatic and 
controlled processing differs from the architectural proposals introduced earlier in 
this chapter strong relationships do exist. Automatic processing is more likely to be 
data driven and parallel, whereas controlled processing is more likely to be theory 
driven and serial.

Feature integration theory, which contains both parallel and serial processing, 
and both data- driven and top- down processing, also contains both automatic and 
controlled processing. For instance, pop out results from automatic processing, 
whereas searching for unique feature combinations is controlled processing. We 
could create variations of feature integration theory by changing how all of the 
different processing types combine in the model. We could make attentional scan-
ning parallel instead of serial but slow down the processing with increases in how 
many objects are scanned. We could make parallel scanning of objects data driven. 
Such changes involve modifying architectural properties, and each modification 
produces a different theory.

We have seen three architectural properties in Chapter 4 (serial versus parallel 
processing, data- driven versus theory- driven processing, and automatic versus con-
trolled processing). Varieties of cognitive theories emerge when researchers assign 
different values to any of these processes. I now turn to another important archi-
tectural property that permits different design decisions, the format of symbols 
and the nature of rules to manipulate them.

4.5 Structures and Processes

Cognitive psychologists believe that a physical symbol system produces cognition 
(Newell, 1980; Newell & Simon, 1976). The physical symbol system describes a 
class of devices “capable of having and manipulating symbols, yet is also realizable 
within our physical universe” (Newell, 1980, p. 136). Digital computers belong to the  
class of physical symbol systems. Cognitive psychologists believe that the brain also 
belongs to the same class. However, we must do more than merely claim that a 
physical symbol system causes cognition. Cognitive psychologists must also provide 
many architectural details. If cognition emerges from a physical symbol system, 
then which symbols does the system manipulate, and which processes perform the 
manipulating?

The many- to- one relationship between physical and functional properties 
(Section 1.2) means that any physical entity is a possible symbol. Because of the 
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many- to- one relationship, we can construct universal machines (Section 1.5) from 
gears (Swade, 1993), LEGO (Agullo et al., 2003), electric train sets (Stewart, 1994), 
hydraulic valves, or silicon chips (Hillis, 1998). As a result, cognitive psychologists 
can consider many options for the nature of mental symbols and processes. Fortun-
ately, the relationship between symbols and the processes for manipulating them is 
not arbitrary. Symbol properties— a symbol’s format or structure— determine which 
processes can manipulate them. Symbols of one format can be manipulated only 
by certain processes, making some problems easier to solve than others. Changing 
the format means that symbols can be manipulated only by different processes, 
making different problems easier to solve. The close relationship between symbols 
and processes helps cognitive psychologists to define a cognitive architecture.

Let me illustrate how different structure- process pairings affect performance. 
Consider using a roadmap to represent spatial locations of places. A roadmap’s 
format— its spatial layout— permits us to execute specific operations easily, such 
as visual scanning. We scan a roadmap to determine quickly which city will be 
encountered next along a route. However, a roadmap’s spatial layout makes other 
operations more difficult to execute, making some questions more difficult to 
answer. For instance, we cannot determine the precise distance between two cities 
simply by scanning the roadmap. Instead, we must measure the distance on the map 
and then use a scale to convert the measured distance into kilometres.

If we represent the same information in a different format, then we can more 
easily execute different operations and therefore answer different questions  
more quickly. For instance, we can use a table of distances as a different format for 
representing the spatial relationships between cities. Each row or column of the 
table corresponds to a particular city. Each table number represents the distance 
between the row city and the column city. A table easily permits one operation 
called table lookup. We perform table lookup when we quickly read a table to retrieve 
information from the intersection between a row and a column. Table lookup per-
mits us to use the table to quickly find the distance between two cities, a question 
more difficult to answer with the roadmap. However, table lookup does not permit 
us to easily determine the next city along our route, a question that we can answer 
quickly using a roadmap.

The roadmap versus distance table example illustrates the structure- process 
relationship (Dawson, 1998, 2013). Structure refers to the symbols’ format (e.g., spa-
tial map versus distance table). Process refers to the operations for manipulating 
structure (e.g., scanning versus table lookup). According to the structure- process 
relationship, when one chooses a particular structure, one also chooses which 
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operations can easily manipulate that structure. The structure- process relationship 

determines the questions that we can easily answer because of a particular pairing 

between structure and process. Roadmaps permit scanning, making questions about 

routes easy but questions about distances difficult. In contrast, a different structure- 

process pairing— distance tables and table lookup— makes questions about distance 

easy but questions about routes difficult.

The practice of cognitive psychology depends on the structure- process relation-

ship, which indicates that we can easily answer certain questions but cannot easily 

answer others. Thus, choosing a particular architecture for a theory, or choosing a 

particular combination of structure and process, generates hypotheses to test by col-

lecting relative complexity evidence, error evidence, or intermediate state evidence 

(Sections 3.9– 3.11). To illustrate, let us consider one theory about mental imagery.

We experience mental imagery as mental pictures, which we often use to solve 

spatial problems (Kosslyn, 1980). For instance, to remember how many windows a 

building has, we might create a mental image of the building, scan the image, and 

count how many windows we see with our “mind’s eye.”

Which mental structure produces mental imagery? Which format do mental 

images take in the cognitive architecture? Cognitive psychologist Stephen Kosslyn 

answers such questions with his depictive theory of mental imagery (Kosslyn, 1980, 

1994; Kosslyn et al., 2006). According to the depictive theory, mental images lit-

erally depict spatial information with a picture- like format: mental images have a 

picture- like spatial layout.

According to the depictive theory, the picture- like characteristics of men-

tal images result from a small number of privileged properties (Kosslyn, 1980). 

First, images occur in a spatial medium functionally equivalent to a coordinate  

space: images are analog representations possessing spatial extent. Second, images 

visually resemble the things that they represent: there is an “abstract spatial iso-

morphism” between mental images and the world (Kosslyn, 1980, p. 33). Mental 

images represent visible properties such as colour and texture.

The privileged, architectural, properties of mental imagery define its struc-

ture. In turn, the structure permits certain visual processes to manipulate images 

easily. We can scan mental images, inspect images at different apparent sizes, or 

rotate images to new orientations. By coupling visual processing with the depictive 

structure of images, we can easily solve visuospatial problems. Furthermore,  

the privileged properties generate strong predictions about the time required to use 

mental images to answer specific questions.
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For example, in the mental rotation task, Roger Shepard presented participants 
with two side- by- side images, each rotated to a different orientation (Cooper & 
Shepard, 1973a, 1973b; Shepard & Metzler, 1971). Participants decided whether 
both images represented the same object. Shepard measured the angular disparity 
between the two images (the difference between the images’ orientations) and how 
long it took participants to decide.

The depictive theory proposes that participants perform the mental rotation 
task by creating a mental image of one stimulus and then rotating the image to 
a new orientation. In the new orientation, participants can compare the rotated 
image to the other stimulus and decide whether the two represent the same object. 
The mental rotation task reveals that response time increases with increases  
in the amount of required mental rotation (angular disparity between stimuli). The 
result supports the depictive theory, which proposes that we rotate mental images  
holistically (as whole pictures), through intermediate orientations, because  
images have a picture- like format. The greater the angular disparity, the greater 
the time we need to rotate an image from the starting orientation to the ending 
orientation.

The image scanning task provides another example of testing the privileged 
properties of the depictive theory (Kosslyn, 1980; Kosslyn et al., 1978). In the image 
scanning task, participants create a mental image of a map. Kosslyn asked par-
ticipants to scan the image from one location to another and to press a button  
when they arrived at the second location. Researchers manipulate the distance 
between the two locations and measure the time required for participants to respond. 
The image scanning task produces a linear relationship between response time and 
distance between locations (Kosslyn et al., 1978). Increasing the distance produces a 
corresponding increase in reaction time. The result supports the depictive theory, 
which claims that we scan the spatial extent of mental images at a constant rate. 
The distance- time relationship arises from an image being extended in space.

Researchers have also used computer simulations to study the depictive theory’s 
privileged properties (Kosslyn, 1980, 1987, 1994; Kosslyn et al., 1984; Kosslyn et al., 
1985; Kosslyn & Shwartz, 1977). The simulations demonstrate that the hypothesized 
properties of mental images produce many regularities observed in experimental 
studies of mental imagery.

The mental imagery example shows that detailed proposals about the structure- 
process relationship generate hypotheses for cognitive psychologists to test. 
Importantly, results obtained from mental imagery experiments do not restrict 
the variety of architectures that cognitive psychologists can explore. They can create 
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alternative theories by proposing alternative structure- process relationships or by 
taking issue with one proposed by others.

For instance, some researchers challenged the depictive theory in a decades- 
long imagery debate (Block, 1981; Tye, 1991). The imagery debate (Section 3.12) 
examines one basic question: do Kosslyn’s privileged properties belong to the 
architecture? Pylyshyn (1973, 1981a, 1981b, 1984, 2003a, 2003b, 2003c, 2007) argues 
that the depictive properties of mental images do not belong to the architecture; 
instead, primitive, non- spatial elements give rise to our spatial experience of mental 
images. Pylyshyn’s argument led to variations of the image scanning task that pro-
duce results against the depictive theory. Cognitive psychology uses experimental 
evidence to resolve debates about the architecture.

4.6 Structure, Process, and Control

The preceding sections described many possible architectural choices, which in turn 
produce a variety of cognitive theories. I now explore how cognitive psychologists 
can create radically different accounts of the same phenomena by making different 
architectural decisions.

Many examples in Chapter 2 involved the modal memory model (Shiffrin & 
Atkinson, 1969; Waugh & Norman, 1965). That model depicts memory as a sequence 
of different stores (iconic memory, primary memory, and secondary memory) with 
different architectural properties (symbols, processes, durations, and capacities). The 
architectural differences between stores in the modal memory model emphasize 
different assumptions about structure and process (Section 4.5).

However, we do not define information processing using only structure and 
process. Information processors must also incorporate control (Section 1.1). Control 
determines which process manipulates a data structure at any given time. Cognitive 
psychologists who emphasize control over structure and process produce very dif-
ferent theories from the ones produced by cognitive psychologists who emphasize 
structure and process over control.

The levels of processing theory of memory provides one example of a control- 
based memory theory (Cermak & Craik, 1979; Craik, 2002; Craik & Lockhart, 1972; 
Lockhart & Craik, 1990). That theory replaces a structural account of memory 
with a procedural account. Lockhart and Craik (1990, p. 88) sought to displace “the  
idea (a) that memory could be understood in terms of elements (‘items’) held in 
structural entities called memory stores, (b) that the fate of an item so stored was 
determined by the properties of this store.”
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Craik and Lockhart used depth of processing to displace structural accounts of 

memory. Depth of processing reflects the degree to which we analyze a stimulus. 

Deep processing involves a semantic analysis of an item. For example, partici-

pants might determine whether each word in a list belongs to the category flower. 

Shallower processing involves analyzing non- semantic properties. For instance, 

participants might determine whether each word in a list rhymes with train.

Participants who perform deeper processing of a list also perform better in a 

surprise memory test, supporting levels of processing as an alternative account  

of the memory phenomena introduced in Chapter 2. Many view Craik and Lock-

hart’s theory as attacking the distinctions between memory stores in the modal 

memory model. Craik and Lockhart believe that this view is overstated (Craik, 2002; 

Lockhart & Craik, 1990).

Importantly, depth of processing is under conscious control. We can deliberately 

decide to pay attention to stimulus meanings and therefore determine how well we 

remember items. Improving memory by performing deeper analysis offers another 

perspective on the mnemonic techniques introduced in Chapter 2.

4.7 Nativism and Empiricism

Chapter 4 demonstrates that various cognitive theories emerge when cognitive 

psychologists make different assumptions about the cognitive architecture. We have 

considered many different assumptions, ranging from serial versus parallel process-

ing to emphasizing structure and process over control. Section 4.7 introduces yet 

another architectural property, whether information is innate or learned, by briefly 

considering the psychology of language.

Symbols make particular information explicit. For example, a grammatical sen-

tence contains words in a linear order. In addition, a sentence’s words belong to 

various parts of speech, and parts of speech are hierarchically organized. A sentence’s 

representation must make explicit linear order, parts of speech, and hierarchical 

organization.

One representation, phrase marker, makes the three properties explicit (Fig-

ure 4- 10). The words at the bottom of a phrase marker are in linear order. The nodes 

of a phrase marker represent different parts of speech: determinant (“Det”), adjec-

tive (“Adj”), noun (“N”), and verb (“V”). Links between nodes show the hierarchical 

organization of parts of speech. For instance, a noun phrase (“NP”) can combine a 

determinant, an adjective, and a noun in a particular order.
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To define an architecture, we must also specify the rules for manipulating 
symbols and not just specify the symbols themselves. Two different kinds of rules 
manipulate phrase markers. A context- free grammar consists of rewrite rules for 
creating a phrase marker. For Figure 4- 10, one rule, “S → NP VP,” creates the figure’s 
top two branches. The rule “NP → Det Adj N” and the rule “VP → V NP” create 
the figure’s next level of branches. Other rules, called transformations, belong to 
a different grammar called a transformational grammar. Such a grammar converts 
one phrase marker into a different one. For instance, one transformation could 
convert the phrase marker for the Figure 4- 10 sentence “The cognitive psychologist  
seeks the architecture” into a different phrase marker to represent the question 
“Does the cognitive psychologist seek the architecture?”

Phrase markers, and the rules for creating and manipulating them, belong to gen-
erative grammar (Chomsky, 1957, 1965, 1966, 1995; Chomsky et al., 2000). A generative 
grammar consists of explicit, well- defined rules for assigning structural descriptions 
(e.g., phrase markers) to sentences or for manipulating such descriptions (e.g., con-
verting one phrase marker into another). We achieve language competence when 
we master and internalize a generative grammar. How do we do that? Obviously, we 
learn languages: children learn to speak the languages of the households in which 
they are raised. However, though we learn some aspects of language, researchers 
believe in the innateness of other important aspects of generative grammars.

Consider Gold’s paradox (Gold, 1967; Pinker, 1979). Gold proved that genera-
tive grammars are too complex to learn under the conditions that children 
experience during typical language learning. Paradoxically, children clearly learn a 
language under these conditions! How do children avoid Gold’s paradox? We can 

�e cognitive psychologist seeks the architecture

 Det        Adj                N                 V               NP

Det        N

NP                                       VP

S

Figure 4- 10 An example phrase marker.
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avoid it if much of a generative grammar is innate and therefore does not require 
learning.

We find one example of language innateness in a transformational grammar 
theory called principles and parameters (Chomsky, 1995). That theory includes phrase 
markers and rules for manipulating them but allows certain properties to vary 
from language to language. For instance, languages such as English are head- initial 
(noun phrases precede verb phrases), whereas others such as Japanese are head-  
final (verb phrases precede noun phrases). The head- directional property is an 
example of a parameter, a property that can adopt different values. A param-
eter’s value determines certain phrase marker properties (e.g., head- initial versus 
head- final).

Linguistic experience determines parameter values. For instance, the head- 
directional property will adopt one value for children raised in an English- speaking 
household but adopt a different value for children raised in a Japanese-  
speaking household. However, a grammar’s other properties (i.e., phrase markers 
and rules for manipulating them) are innate. We avoid Gold’s paradox because we 
can learn parameter settings but cannot learn an entire transformational grammar. 
A grammar’s partial innateness permits mastery of the whole grammar.

A transformational grammar’s innate components define what Chomsky calls 
the universal grammar: “The study of innate mechanisms leads us to universal gram-
mar” (1980, p. 206). Proposing an innate universal grammar illustrates nativism. 
We often associate nativism with the 17th- century philosophy of Rene Descartes. 
Cartesian philosophy (sometimes called rationalism) asserted that we derive new 
knowledge from the logic- like manipulation of innate ideas. When cognitive psych-
ologists hypothesize that cognition is the rule- governed manipulation of symbols, 
and relate rules and symbols to a biological architecture, they adopt a modern ver-
sion of Cartesian rationalism (Dawson, 2013). Indeed, Chomsky (1966) titled one of 
his books Cartesian Linguistics.

Cartesian psychology did not go unchallenged. The 17th- century philosopher 
John Locke (1706/1977) rejected the Cartesian claim of innate knowledge. For Locke, 
we acquire all of our ideas through experience: “Let us then suppose the mind to 
be, as we say, white paper, void of all characters, without any idea, how comes it 
to be furnished? . . . To this I answer, in one word, from experience” (p. 54). Locke’s 
philosophy is known as empiricism.

Like nativism, empiricism also provides the philosophical foundation for many 
cognitive theories (Dawson, 2013), such as connectionist networks like the multi- 
layer perceptron in Figure 4- 6. Such a network’s connection weights usually begin 
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as small, randomly selected values, making the weights analogous to “white paper, 

void of all characters.” Networks learn by responding to stimuli; mistakes cause 

connection weight changes to make response errors smaller. Networks illustrate 

empiricism, learning to solve problems from experienced mistakes.

Many modern cognitive theories combine nativism and empiricism. For 

instance, though principle and parameters theory (Chomsky, 1995) is nativist in 

its appeals to an innate transformational grammar, it is empiricist in its appeals to 

experience- based parameter setting. Competing theories weight empiricism and 

nativism differently. For instance, connectionist networks play an important role 

in another theory of language development emphasizing empiricism (Elman et al., 

1996). However, Elman et al. also invoke nativism by assuming that the biology of 

neural development constrains connectionist learning mechanisms.

Our understanding of the architecture is affected by cognitive psychology’s ten-

dency to combine nativism and empiricism. The architecture consists of primitive 

information processing capabilities (Chapter 3). Since primitives are built into the 

system, and cognitively impenetrable, we cannot functionally decompose them.  

The brain must instantiate the architecture, suggesting that the architecture is 

innate. However, this suggestion need not be true.

Cognitive psychologists believe that brains cause cognition. But the brain brings 

other, non- architectural, cognitive characteristics to life. For instance, when we 

change our beliefs, or when we learn new information, our brains change: learn-

ing and experience modify neural connections (Dudai, 1989; Eichenbaum, 2002; 

Gluck & Myers, 2001; Lynch, 1986; Squire, 1987). The brain must bring such non- 

architectural properties to life.

If the brain causes the architecture, but also stores (non- innate) information, 

then how can we distinguish the architecture from information? Importantly, brain 

structures change over time but not at the same rate (Newell, 1990). For Newell, 

the architecture is a relatively fixed structure and changes very slowly. In contrast, 

other structures change much more rapidly, such as the memories holding the 

information for the architecture to manipulate. Newell does not say why the archi-

tecture might (slowly) change. Architectural changes could be innate (e.g., neural 

development), or they could be caused by experience (e.g., when practice makes 

object recognition automatic). Explaining the architecture might require appeal-

ing to both nativism and empiricism. Appealing to both nativism and empiricism 

arises in another varying architectural property, isotropic processing versus modular 

processing.
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4.8 Isotropic and Modular Processing

Karl Duncker (1945) pioneered the experimental study of problem solving and 
profoundly influenced the development of cognitive psychology (Simon, 2007). 
Duncker famously studied the radiation problem: “Given a human being with an 
inoperable stomach tumor, and rays which destroy organic tissue at sufficient inten-
sity, by what procedure can we free him of the tumor by these rays and at the same 
time avoid destroying the healthy tissue which surrounds it?” (1945, p. 1). Duncker 
discovered fundamental characteristics of problem solving by having participants 
think out loud when solving the radiation problem.

Modern researchers studied whether participants find the radiation problem 
easier to solve after reading seemingly unrelated stories (Gick & Holyoak, 1980). 
Gick and Holyoak presented some participants with the Attack- Dispersion story, 
in which a general wants to capture a fortress. Many different roads lead to the 
fortress, all protected by explosive mines. A small squad of soldiers, because of their 
light weight, can cross the mines, but the weight of a large army causes the mines 
to explode. The general captures the fortress by dividing her army into many small 
groups, each taking a different road and safely reaching the fortress at the same time.

We can relate, via analogy, the general’s solution in the Attack- Dispersion story 
to the solution for the radiation problem. We can destroy the tumor, but preserve 
the surrounding tissue, if we aim lower- intensity rays at the tumor from many 
different directions. As a result, the tumor receives a massive dose of radiation 
not received by the surrounding tissue. Gick and Holyoak (1980) found that the 
Attack- Dispersion story helped participants to solve the radiation problem faster 
than participants who did not read the story.

Results like Gick and Holyoak’s (1980) inform cognitive psychologists who 
believe in the centrality of analogical thinking to problem solving (Gentner et 
al., 2001; Holyoak & Thagard, 1995). Analogical thinking finds insightful rela-
tionships between very different domains. Famous scientific analogies include  
Kepler’s comparison of the motion of the planets to the motion of a clock and 
Huygens’s hypothesization that light is wavelike by considering waves on water.

Analogical thinking requires cognition to relate disparate domains, to access 
information about clocks and planets, or about military strategy and cancer treat-
ment, at the same time. We call the wide- ranging access to very different kinds of 
information isotropic processing (Fodor, 1983). As Fodor notes, isotropic scientific 
reasoning occurs when “everything that the scientist knows is, in principle, relevant 
to determining what else he ought to believe. In principle, our botany constrains 
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our astronomy, if only we could think of ways to make them connect” (p. 105). For 
Fodor, central processes— thinking and problem solving— are necessarily isotropic.

However, Fodor (1983) also argues that many cognitive processes are neither 
central nor isotropic, processes that Fodor calls modules, specialized devices for solv-
ing specific information processing problems. A module receives information from 
sensors, manipulates information to solve a problem, and sends the solution on to 
central processes. A module uses parallel processing, is data driven, and is automatic. 
These characteristics arise because localized neural functions instantiate a module.

Being associated with localized neural functions makes modules domain specific 
or informationally encapsulated. We achieve modular processing by “wiring” modules 
only to necessary information. “The intimate association of modular systems with 
neural hardwiring is pretty much what you would expect given the assumption that 
the key to modularity is informational encapsulation” (Fodor, 1983, p. 98). Mod-
ules are not isotropic; they cannot access information irrelevant to their specialized 
function.

Neuroscience provides evidence for the existence of modules. Results from 
anatomy, physiology, and clinical neuroscience reveal the modularity of visual per-
ception. Two distinct pathways exist in the human visual system (Livingstone & 
Hubel, 1988; Maunsell & Newsome, 1987; Ungerleider & Mishkin, 1982). We pro-
cess the appearances of objects, while the other processes object locations. We can 
describe the two pathways as modules because we do not process the informa-
tion (features versus location) processed by the other. Furthermore, each pathway 
consists of smaller modules. Researchers have identified over 30 distinct visual pro-
cessing modules, each responsible for detecting a very specific kind of information 
(van Essen et al., 1992).

For Fodor (1983), modules are informationally encapsulated, domain specific, fast, 
and automatic because localized neural processes implement each module. Fodor also 
argues that the same properties cannot be true of central or isotropic processing and 
concludes that cognitive psychologists cannot explain isotropic processes: “The more 
global (e.g., the more isotropic) a cognitive process is, the less anybody understands 
it” (p. 107).

We can treat that pessimistic conclusion skeptically. For instance, the memory 
systems introduced in earlier chapters are isotropic because they can store many 
different kinds of information. Nevertheless, cognitive psychologists have acquired 
a deep understanding of these systems.
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4.9 An Example Architecture

In this chapter, I have introduced several different architectural properties for cog-
nitive psychology. Cognitive psychologists create different theories by choosing 
different values for different architectural properties. I now take a different approach 
to considering architectural questions by describing one important candidate for 
the cognitive architecture, the production system. I then consider the example 
architecture in the context of the various properties that we have considered.

A production system is a computer simulation used to model problem solving 
(Anderson, 1983; Newell, 1973; Newell & Simon, 1972). The simplest production 
system (Figure 4- 11) has a working memory for holding strings of symbols and a set 
of rules, called productions, for manipulating memory contents.

In a production system, each rule or production is a condition- action pair. A 
production searches memory for symbols matching its condition. When a produc-
tion finds a match, the production performs its action, which manipulates memory 
contents. A production system starts with a to- be- solved problem in memory. All 
productions simultaneously search memory for conditions. When one production 
finds its condition, it first disables the other productions, and then it performs  
its action. After performing the action, all of the productions scan memory in par-
allel again.

Productions

Working memory

C
ondition

A
ction

C
ondition

A
ction

C
ondition
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ction

C
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A
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Figure 4- 11 A simple production system consisting of four different productions.
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We can represent a production system’s behaviour over time using a problem 
behaviour graph (Newell & Simon, 1972). Such a graph (Figure 4- 12) consists of a set 
of linked nodes. Each node represents the current memory contents. One produc-
tion’s action links two nodes together. For instance, the top left of Figure 4- 12 shows 
that, when production P1 acts on memory State 1, the memory changes into State 2.

Problem behaviour graphs also depict changes in knowledge states not directly 
related to productions. In some instances, a participant might recall a previous state 
of knowledge during problem solving. A problem behaviour graph depicts such 
backtracking by copying the recalled state and placing the copy below the original 
in the graph. Figure 4- 12 illustrates two examples of backtracking, one for State 1, 
the other for State 2. The examples indicate that time proceeds both horizontally 
and vertically in a problem behaviour graph.

Production systems can model human problem solving. How do we create 
such a model? Production systems emerge from a methodology called protocol 
analysis (Ericsson & Simon, 1993), which involves a detailed analysis of what par-
ticipants say when they think aloud during problem solving (Section 3.11). Protocol 
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Figure 4- 12 An example problem behaviour graph. States are different memory 
contents, and links are created by a production’s action.
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analysis produces a problem space for representing a participant’s knowledge at 
each moment during problem solving. Researchers use a problem space to create a 
problem behaviour graph. The graph represents the rule- governed transition from 
one knowledge state to the next. The graph also helps researchers to create a pro-
duction system to simulate the participant’s problem solving.

Newell and Simon (1972) used their method’s utility for a variety of problems. 
They found a high degree of correspondence between the problem behaviour graph 
created using protocol analysis and the problem behaviour graph generated by the 
production system. In general, production systems can generate a very accurate 
step- by- step account of a participant’s problem- solving operations. Because produc-
tion systems can successfully simulate many psychological phenomena (Anderson, 
1983; Anderson et al., 2004; Anderson & Matessa, 1997; Meyer et al., 2001; Meyer & 
Kieras, 1997a, 1997b; Newell, 1990; Newell & Simon, 1972), numerous researchers 
treat the production system as a plausible cognitive architecture for providing a 
unified theory of cognition (Anderson, 1983; Anderson et al., 2004; Newell, 1990).

The simple production system presented in Figure 4- 11 has evolved into more 
complex models (Anderson, 1983; Anderson, 1990; Meyer & Kieras, 1997a, 1997b). 
Different production systems emerge from different combinations of the architec-
tural properties discussed in this chapter.

Simple production systems scan memory in parallel, but act on memory in ser-
ial, because only one production operates at any time. However, other production 
systems permit productions to act in parallel (Meyer & Kieras, 1997a, 1997b).

Simple production systems model problem solving using data- driven, automatic 
processing, because patterns held in working memory trigger productions. However, 
other production systems permit theory- driven, controlled processing. For instance, 
the adaptive control of thought- rational (ACT- R) architecture includes components 
for directing the system to accomplish a desired goal (Anderson et al., 2004).

Memory contents do not perfectly control simple production systems. Some-
times multiple productions discover their conditions at the same time, or one 
production discovers its condition at more than one memory location. Additional 
control mechanisms can resolve conflicts between productions or conditions. Pro-
duction systems can differ from one another in terms of the control mechanisms 
used to deal with such conflicts.

When Newell and Simon (1972) described modelling problem solving with 
production systems, they said little about nativism and empiricism. Although not 
claiming innateness, their simple production systems did not learn. Later produc-
tion systems included learning mechanisms. For example, ACT- R uses learning 



Cognitive Architectures 117

https:// doi .org/ 10 .15215/ aupress/ 9781771993418 .01

mechanisms to modify existing productions and uses learning mechanisms to add 
new knowledge to memory (Anderson et al., 2004).

We can describe simple production systems as modules because such systems 
accomplish particular tasks, such as solving a specific cryptarithmetic problem 
(Newell & Simon, 1972). However, later production systems seem to be more iso-
tropic (Anderson, 1983; Anderson et al., 2004; Newell, 1990). These systems include 
general knowledge of the world and goal- directed problem solving, which make 
them general purpose problem solvers.

In short, even when researchers view production systems as a plausible cog-
nitive architecture, they need not agree on various specific details. Many different 
production systems emerge when researchers make different decisions about archi-
tectural properties.

4.10 Chapter Summary

To overcome Ryle’s regress, cognitive psychologists must discover a cogni-
tive architecture. However, not all cognitive psychologists will converge on the  
same architecture. Many different architectures appear in cognitive psychology 
because the same results can support different models, because different research-
ers explore different ideas, and because researchers can negate the architectural 
assumptions held by others. Cognitive psychologists frequently explore com-
peting architectures.

Furthermore, potential cognitive architectures exhibit many possible properties. 
Are processes serial or parallel? Are they data driven, or theory driven? Are they 
automatic or controlled? Which particular combination of structure and process 
is involved? How are processes controlled? Are they innate or learned? Are they 
isotropic or modular? Different cognitive psychologists generate different answers 
to such questions, producing architectural variety. In addition, we can answer some 
questions in many different ways. For instance, we can propose many different com-
binations of symbolic structures and manipulated rules (Dawson, 1998, Table 6.1). 
Again, different answers to architectural questions produce architectural variety.

Thus, cognitive psychology hosts a number of competing models. Is language 
embedded in the innate structure of a universal grammar (Cook & Newson, 1996), 
or are its regularities learned by connectionist networks (Joanisse & McClelland, 
2015)? Is memory a set of different stores (Shiffrin & Atkinson, 1969), or do different 
memories reflect different levels of processing (Craik & Lockhart, 1972)? Is attention 
a serial spotlight (Treisman & Gelade, 1980), or is it a set of indices deployed in 
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parallel (Pylyshyn, 2003a)? Radically different theories arise when researchers adopt 
radically different hypotheses about the architecture.

Further variety emerges because different answers to the same architectural 
question exist in a single theory. For instance, feature integration theory includes 
feature detectors operating in parallel but then uses serial processing to com-
bine features into objects (Treisman & Gelade, 1980). One model exhibiting multiple 
architectural properties (e.g., both parallel and serial processing) illustrates another 
source of theoretical variety.

Theoretical variety also arises when models differ in their emphasis on architectural 
properties. For example, where does data- driven processing stop? In feature integration 
theory, it ends early, delivering fairly simple visual features (Treisman & Gelade, 1980). 
In natural computation theories, data- driven processing ends later, delivering more 
complex representations of surfaces and objects (Biederman, 1987; Marr, 1982). It is 
little wonder that cognitive psychology hosts so many different models.

In short, even when cognitive psychologists share foundational assumptions, they 
can still propose and explore different architectures. Cognitive psychology possesses 
notable theoretical diversity. Nevertheless, its diversity faces a common fate: empirical 
testing. Cognitive psychologists must collect data to support architectural proposals.

Of course, finding a single, unifying cognitive architecture requires that such an 
architecture exists, which many researchers assume. Allen Newell defines a unified 
theory of cognition as “a single set of mechanisms for all of cognitive behavior” (1990, 
p. 15), and an elaborate production system called SOAR (‘state, operator and result’) 
can provide a unifying theory (Laird et al., 1987). However, not everyone agrees that 
a unifying cognitive architecture exists. Instead, some believe that diverse arrays 
of processes carry out cognition, each possessing distinct architectural properties. 
The society of mind provides one example, producing cognition with a large number 
of simple, distinct processes called agents (Minsky, 1985, 2006). A related idea is 
massive modularity, which proposes that many specialized modules produce human 
cognition (Carruthers, 2006; Pinker, 1997).

The architecture of one agent or of one module need not be identical to the 
architecture of another. When two cognitive psychologists propose different archi-
tectures, both can be correct, because different architectures can exist in different 
agents or modules. Questioning the existence of a unifying cognitive architecture 
illustrates a foundational debate. Cognitive psychology requires such debates to 
develop. In the next and final chapter, I explore some example debates. Different 
positions in such debates produce radically different theories. Ultimately, dif-
ferent theories reflect different ideas about the fundamental nature of cognition.
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5

Questioning Foundations

The first four chapters introduced cognitive psychology’s foundations. The first 
chapter presented the computer metaphor adopted by cognitive psychologists. The 
second chapter discussed how cognitive psychologists use experimental methods to 
infer human information processes. The third chapter defined cognitive psychol-
ogy’s philosophy of science, functional analysis. The fourth chapter demonstrated 
how cognitive psychology’s hypotheses, methods, and philosophy allow cognitive 
psychologists to propose many competing theories. Competing theories lead to 
many debates about the nature of human cognition, debates that I explore in Chap-
ter 5. Each debate challenges cognitive psychology’s foundations. By understanding 
these debates, we can sharpen our understanding of— and concerns about— the 
discipline’s foundations.

5.1 Questioning Foundational Assumptions

What are cognitive psychology’s foundations? Cognitive psychologists often debate 
cognitive psychology’s foundational assumptions (Dawson, 2013). The rise of con-
nectionism in the mid- 1980s challenged the digital computer metaphor. Embodied 
cognition challenged cognitive psychology’s dismissal of the environment and the 
body. Cognitive neuroscience challenged cognitive psychology’s functionalism. We 
can express such challenges as questions about foundations. Does cognitive psych-
ology need the computer metaphor? Does cognition require rules? Do people think? 
Can we reduce cognition to brain operations?

Chapter 5 explores such challenges. Each section poses a different question, a 
different challenge to a foundational assumption. I begin by considering a different 
notion of information processing, connectionism. Next, I discuss a different chal-
lenge, embodied cognition. Then I explore cognitive neuroscience’s role in cognitive 
psychology and address more general questions about the “textbook” presentation 
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of cognitive psychology. I end the chapter by considering the question in the book’s 
title: what is cognitive psychology?

5.2 Do We Need the Computer Metaphor?

Chapter 1 launched our discussion of cognitive psychology by introducing the 
computer metaphor: the assumption that cognition involves symbol manipula-
tion like the information processing operations used by digital computers. The 
computer metaphor leads directly to cognitive psychology’s experimental method-
ologies (Chapter 2) and explanatory practices (Chapter 3). Chapter 4 revealed that 
the computer metaphor permits cognitive psychologists to develop diverse cogni-
tive theories by making different architectural assumptions. Most examples in 
Chapter 4 involved specific assumptions (replacing parallel processing with serial 
processing or proposing new formats for symbols).

Importantly, radically different cognitive theories arise when cognitive psych-
ologists propose more consequential architectural challenges. Not all cognitive 
psychologists endorse the computer metaphor. Connectionists abandon the meta-
phor, propose alternative brain- like theories, and move cognitive psychology in very 
different directions. I briefly mentioned connectionism earlier (Sections 3.13, 4.2, 
4.7), but now I consider connectionism in more detail as a challenge to traditional 
cognitivism. Sections 5.2 through 5.4 explore connectionism’s challenges to the 
computer metaphor and which evidence connectionists need to support radically 
different theories.

Our discussion of connectionism begins with a core question: why did cognitive 
psychology adopt the digital computer metaphor? When cognitive psychology arose 
in the 1950s, the digital computer offered the best example of information process-
ing. However, other information processing examples also existed.

For instance, analog computers appeared decades before digital computers. 
Analog computers do not use rules to manipulate symbols. Instead, they vary con-
tinuously changeable physical properties (e.g., a mechanical or electrical value) to 
model variables for solving problems. Some researchers suggested that neurons were 
a kind of analog computer (von Neumann, 1958). Thus, even in the beginning, the 
digital computer metaphor had plausible alternatives.

Connectionism arose from exploring alternatives to the digital computer 
metaphor. Connectionists hypothesize that networks of simpler processors, oper-
ating in parallel, process information. We often describe connectionist models as 
neuronally inspired or biologically plausible. Analogous to neurons, connectionist 
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processors send signals to one another through weighted connections. Proces-
sors receive signals sent from other processors; we call the total signal received 
the net input. Processors convert net input into internal activity ranging in value 
between 0 and 1.

A connectionist network, a system of such processors, converts a stimulus into a 
response. Processors called input units represent stimuli, and processors called out-
put units represent responses (see Figure 5- 1). The network distributes the knowledge 
for converting a stimulus into a response among all of the weighted connections, 
a distributed representation. Connectionists replace the digital computer metaphor 
with the idea that parallel distributed processing (PDP) networks carry out human 
cognition.

Using networks to model human cognition has a long history. Warren McCul-
loch and Walter Pitts (1943) proposed the first artificial neural networks, using 
mathematical logic to describe neural processing. When the net input for a 
McCulloch- Pitts neuron exceeds a threshold, the neuron generates an activity of 1.  
Otherwise, the neuron generates an activity of 0. McCulloch and Pitts mapped 
the binary activity of their neurons onto the logical notions of “true” or “false.”  
McCulloch and Pitts then established the power of networks by creating a univer-
sal Turing machine (Section 1.5) from a network of McCulloch- Pitts neurons: “To 
psychology, however defined, specification of the net would contribute all that could 
be achieved in that field” (p. 37).

Input units

Output unit

Weighted
connections

Figure 5- 1 A perceptron consisting of 12 input units connected to one output 
unit via weighted connections.
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Networks of McCulloch- Pitts neurons can solve difficult problems but have 
one drawback: such neurons do not learn. Instead, the network’s designer must 
predetermine a neuron’s connection weights and threshold. Experience neither 
creates nor modifies thresholds or connection weights. Frank Rosenblatt (1958, 1962) 
introduced learning to networks with his perceptron. A perceptron has multiple 
input units and a single output unit. Perceptrons have weighted connections from 
each input unit to the output unit (Figure 5- 1). The activity of a perceptron’s output 
unit, like a McCulloch- Pitts neuron, is either 0 or 1.

Perceptrons differ from a McCulloch- Pitts neuron because perceptrons learn. 
When the perceptron receives a stimulus, the output unit determines its net input 
and then responds. A learning rule computes response error by comparing the out-
put unit’s response to the desired response. Rosenblatt’s learning rule then alters 
connection weights to decrease response error. His perceptron convergence theorem 
guaranteed that his learning rule could teach a perceptron to solve a problem— if 
the perceptron could represent a solution (Rosenblatt, 1962). We will see below that 
perceptrons cannot learn to solve every problem.

One example perceptron generates the logical operator AND. Using two input 
units, we present two stimuli to the perceptron; each stimulus has a value of either 
0 or 1. The AND perceptron outputs a value of 1 if both stimuli equal 1. Otherwise, 
the perceptron responds with 0. The top of Figure 5- 2 plots the pattern space for the 
AND perceptron. Each circle represents one of the four possible stimuli (pairs of 
input values). The input unit values give the coordinates of each circle: that is, 0,0, 
0,1, 1,0, and 1,1. The colour of each circle represents the perceptron’s response to 
each pattern. A white circle indicates a response of 0, and a black circle indicates a 
response of 1. The bottom part of Figure 5- 2 shows a perceptron trained to generate 
correct AND responses. Each connection weight has a value of 1, and the threshold 
of the output unit has a value of 1.5.

How does the perceptron’s structure generate AND? Each input unit sends 
activity to the output unit, but the perceptron first multiplies the activity by 
the input unit’s connection weight. To compute net input, the perceptron’s out-
put unit sums up the two weighted signals. When we activate both input units  
with 1, the perceptron receives a net input of 2. A net input of 2 causes the output 
unit to respond with 1, because the net input exceeds the threshold of 1.5. For the 
three other possible patterns, the net input equals either 0 or 1, does note the thresh-
old (either 0 or 1), and causes the output unit to respond with 0.

Rosenblatt’s perceptron led to growing interest in training networks and 
motivated a formal analysis of what perceptrons could and could not learn to do  
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(Minsky & Papert, 1969). Minsky and Papert proved that perceptrons cannot learn 
to solve many problems that people can learn to solve. Perceptrons cannot model 
human cognition.

Minsky and Papert (1969) established the negative assessment of perceptrons 
by proving that they can only learn linearly separable problems. We call a problem 
linearly separable if a single, straight cut through a pattern space separates all pat-
terns associated with a response of 1 from all patterns associated with a response  
of 0. The pattern space for AND (Figure 5- 2) is linearly separable because the figure’s 
one dashed line separates the “on” pattern from the three “off” patterns.

Weight = 1Weight = 1

Input 1 

In
pu

t 2
1

1

0

0

Input 1 Input 2

q = 1.5

and  (Input 1, Input 2)

Figure 5- 2 The top part of the figure provides the pattern space for AND. The 
bottom part of the figure illustrates the structure of a perceptron trained to 
generate the correct responses for AND.
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Perceptrons cannot solve linearly non- separable problems. Figure 5- 3 provides the 
pattern space for another logical operator, exclusive or (called XOR). Like AND, XOR 
performs a logical judgment about two stimuli, generating a response of 1 when the 
two stimuli (each input unit value) differ from one another. XOR returns a value 
of 1 when one stimulus is 1 and the other is 0. If both stimuli are 1, or if both are 0, 
then XOR returns a 0.

Figure 5- 3 illustrates that XOR is a non- linearly separable problem because one 
single straight cut cannot separate both black circles from both white circles. XOR’s 
pattern space requires two cuts. A perceptron can never solve XOR, because the 
output unit can make one cut, or the other, but not both. How can we increase  
the power of a perceptron? We could include intermediate processors between input 
and output units, called hidden units. The multi- layer perceptron presented earlier 
(Figure 4- 6) possesses one layer of hidden units.

Hidden units add power by detecting more complex features, such as cor-
relations between different input unit activities. Each hidden unit makes its own 
straight cut through a pattern space (Lippmann, 1989). To solve XOR, we require 
two such cuts; we can solve XOR using a multi- layer perceptron with two hidden 
units; each hidden unit provides one required cut (Rumelhart et al., 1986).

By the late 1960s, researchers realized that replacing the computer meta-
phor with connectionist processing required more powerful networks such 
as multi- layer perceptrons. However, connectionists did not yet know how to 
train networks with hidden units. As a result, connectionist research languished 
(Medler, 1998; Papert, 1988). Connectionist research lay largely dormant until 
the mid- 1980s, when a learning rule for training multi- layer perceptrons, called 

Input 1 

In
pu

t 2

1

1

0

0

Figure 5- 3 The pattern space for the linearly non- separable logical operator XOR 
(Input 1, Input 2).
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backpropagation of error, appeared in the journal Nature (Rumelhart et al.,  
1986). Backpropagation of error led to an explosion of connectionist models of 
cognitive phenomena.

Some famous examples of connectionist models included networks for con-
verting present tense verbs into past tense verbs (Rumelhart & McClelland, 1986a), 
for simulating recognition memory (Ratcliff, 1990), for learning categories (Krus-
chke, 1992), and for generating the Stroop effect (Cohen et al., 1991). We often see 
connectionist networks in the modern cognitive literature. Backpropagation of 
error launched a connectionist revolution.

Although the connectionist revolution arose directly from the ability to train 
multi- layer perceptrons, broader issues made cognitive psychology eager for change 
(Bechtel & Abrahamsen, 2002; Dreyfus, 1972; Dreyfus & Dreyfus, 1988; Fodor & Pyly-
shyn, 1988; Medler, 1998; Rumelhart & McClelland, 1986b). Researchers argued that 
fatal flaws existed in models inspired by the computer metaphor, which used slow 
serial processing and failed to recognize that brains differed from digital computers. 
The connectionist revolution offered new ideas to researchers dissatisfied by slow 
progress in developing sophisticated simulations of cognition. “Almost everyone 
who is discontent with current cognitive psychology and current ‘information pro-
cessing’ models of the mind has rushed to embrace ‘the Connectionist alternative’” 
(Fodor & Pylyshyn, 1988, p. 3). Connectionism offered a paradigm shift for cognitive 
psychology (Schneider, 1987).

The rise of connectionism shows that the computer metaphor does not pro-
vide the only view of information processing for cognitive psychology. However, 
replacing that metaphor with connectionism does not abandon the information 
processing hypothesis. Connectionists still treat cognition as information pro-
cessing (Churchland et al., 1990). But they also believe that cognitive information 
processing differs from the information processing performed by computers. “These 
dissimilarities do not imply that brains are not computers, but only that brains are 
not serial digital computers” (Churchland et al., 1990, p. 48, their italics).

How can we make sense of a discipline possessing two views that appeal to 
paradigmatically different notions of information processing? Computer metaphor 
models and connectionist networks do have many similarities (Dawson, 1998, 2013). 
Both perspectives agree that cognition is information processing but disagree about 
its basic information processing properties. Thus, the two views provide different 
proposals about the cognitive architecture.

In the next section, I explore greater similarities between the two views of infor-
mation processing than we might expect. I will examine the connectionist claim  



126 What Is Cognitive Psychology?

https:// doi .org/ 10 .15215/ aupress/ 9781771993418 .01

that cognition does not require the rule- governed manipulation of symbols, a  
claim surprisingly hard to defend.

5.3 Does Cognition Require Rules?

In Section 5.2, I considered the connectionist claim that human information pro-
cessing differs from computer information processing. I described connectionism 
as exploring brain- like processing in which simple, neuron- like processors send 
signals to other processors. However, in challenging the computer metaphor, 
the connectionist revolution encouraged more focused reactions to traditional 
cognitive architectures. In Section 5.3, I explore one example, claiming that cogni-
tion not only is not rule- governed symbol manipulation but also requires neither 
rules nor symbols. I also note that connectionists often fail to use appropriate 
evidence— interpretations of network structures— to support cognitive theories 
with no rules or symbols. I end by showing that, when we collect appropriate evi-
dence, we blur the differences between traditional and connectionist cognitive 
psychology.

Multi- layer perceptrons offered cognitive psychology a paradigm shift (Schneider, 
1987). Why might we describe connectionism as a paradigm shift? When we examine 
a production system (Figure 4- 11), we see a set of explicit rules (the productions) 
and explicit symbols (in working memory). In contrast, when we examine a con-
nectionist network (Figure 4- 6), we see neither rules nor symbols. “One thing that 
connectionist networks have in common with brains is that if you open them up 
and peer inside, all you can see is a big pile of goo” (Mozer & Smolensky, 1989, p. 3). 
We describe connectionist networks as offering a paradigm shift for traditional 
cognitive psychology because networks process information without apparent rules 
or symbols.

To criticize the computer metaphor, connectionists trained networks to solve 
problems that other (traditional) researchers believed required rules and symbols. If 
connectionist networks solved such problems, then connectionists would claim that 
the networks offered alternative, rule- less and symbol- less, accounts. For example, 
Rumelhart and McClelland (1986a) trained one network to convert present tense 
verbs into past tense verbs. We saw in Section 4.7 that Chomsky proposed that mas-
tering a language involves acquiring grammatical rules. Rumelhart and McClelland 
proposed an alternative: “We suggest that lawful behavior and judgments may be 
produced by a mechanism in which there is no explicit representation of the rule” 
(p. 217).
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Rumelhart and McClelland’s (1986a) network learned the past tense task, and 

its changes in performance during learning mirrored the development of handling  

verb tenses by children. As a result, the model became very influential by provid-

ing a radically different account of language learning. Rumelhart and McClelland 

could describe the network as if it used rules, but no rules were actually represented. 

“The child need not figure out what the rules are, nor even that there are rules” 

(p. 267).

However, we can see problems with that conclusion (Pinker & Prince, 1988). 

Rumelhart and McClelland (1986a) claim that the network does not use rules, but 

they do not supply evidence about how the network operates to support that claim. 

Instead, the claim emerges from an uncritical assumption of qualitative differences 

between networks and rule- governed systems. Rumelhart and McClelland do not 

actually report the network structure to reveal the alternative (rule- less) nature of 

its processing. Without such evidence, we cannot establish a qualitative difference 

between the network and other rule- based models.

Rumelhart and McClelland’s (1986a) failure to examine the internal structure of 

the past tense verb network should not surprise us. We encounter great difficulties 

when we attempt to understand the internal workings of connectionist networks 

(Hecht- Nielsen, 1987; Mozer & Smolensky, 1989). Some researchers argue that failing 

to understand network structure limits networks’ ability to contribute new cog-

nitive theories (McCloskey, 1991; Seidenberg, 1993). However, various techniques 

do exist for understanding how networks operate (Berkeley et al., 1995; Dawson, 

2018; Dawson et al. 2020; Hanson & Burr, 1990). Importantly, when we use such 

techniques to interpret networks, the distinction between networks and rule- based 

models becomes less clear.

Consider a network trained to perform logical judgments. Propositional logic is 

a system of rules for manipulating symbols. Therefore, logical reasoning provides a 

prototypical example of rule- governed thinking (Johnson- Laird, 1983; Leighton & 

Sternberg, 2004; Wason, 1966; Wason & Johnson- Laird, 1972), a position challenged 

by connectionist networks. Bechtel and Abrahamsen (1991) trained a multi- layer 

perceptron to classify logical arguments and to indicate argument validity. They 

hypothesized that “connectionist networks encode knowledge without explicitly 

employing propositions” (p. 147). Thus, if a network could solve the logic prob-

lem, then logical reasoning need not require using rules to manipulate symbols. 

After successfully training the network, Bechtel and Abrahamsen claimed, “prop-

ositionally encoded knowledge might not be the most basic form of knowledge” 
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(p. 174). However, similar to the study by Rumelhart and McClelland (1986a), Bechtel  

and Abrahamsen did not examine their network’s internal structure.

Other researchers interpreted a different network trained on the Bechtel and 

Abrahamsen (1991) logic problem (Berkeley et al., 1995). The interpretation discov-

ered the features detected by each hidden unit and determined how the network 

combined detected features to solve the logic problem. The analysis revealed stan-

dard rules of logic represented by network structure. Berkeley et al.’s network solved 

the logic problem by discovering, and using, rules.

Other examples also show that network interpretations reveal striking similar-

ities between connectionist models and more traditional information processing. 

For instance, cognitive neuroscientists use dissociations as evidence to relate psych-

ological processes to brain structure. A dissociation occurs when damage to a brain 

area produces a specific cognitive or behavioural deficit. Researchers combine such 

evidence with the locality assumption that the brain consists of functionally local-

ized areas (Farah, 1994). Under the locality assumption, cognitive neuroscientists 

use dissociations to infer that specific brain areas bring to life specific cognitive or 

behavioural processes.

Farah (1994) used connectionist networks to challenge the locality assumption. 

She demonstrated that lesions to networks produce dissociations and used her 

evidence against the locality assumption. Farah argued that networks are distrib-

uted systems, not local systems. Therefore, networks do not conform to the locality 

assumption. If lesions to (non- local) networks produce dissociations, then we can-

not claim that dissociations must be caused by damaging localized brain functions.

However, Farah (1994) did not examine the internal structure of her networks 

to support her argument. She did not confirm that her lesions did not remove a 

localized structure. A different study lesioned connectionist networks but also inter-

preted the structure of ablated processors (Medler et al., 2005). When the lesioned 

networks produced dissociations, the interpretation revealed that local network 

structure had been removed.

Musical cognition provides another example. Many researchers train con-

nectionist networks to perform various musical tasks (Griffith & Todd, 1999;  

Todd & Loy, 1991). Most researchers who conduct such research assume that 

networks capture musical properties that we cannot express using formal rules 

(Bharucha, 1999). However, when we interpret the internal structures of musical 

networks, we discover many formal musical properties (Dawson, 2018; Dawson  

et al., 2020).
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A final example concerns a benchmark problem in the machine learning liter-
ature. Schlimmer’s (1987) mushroom problem requires a system to learn to classify 
over 8,000 mushrooms as being edible or poisonous. We describe each mushroom 
as a set of 21 different features. One study trained a connectionist network with 10 
hidden units to classify Schlimmer’s mushrooms (Dawson et al., 2000). Dawson  
et al. analyzed the network’s internal structure and related it to alternative rule- 
based models of mushroom classification.

A production system provided one rule- based model for comparison. 
Dawson et al. (2000) created a set of nine different productions for correctly 
classifying mushrooms. A set of mushroom features defined each production’s 
condition. A classification (poisonous versus edible) defined a production’s action. 
For instance, one production was “if (odour = anise) OR (odour = almond) → edible.”  
Another production was “if (odour ≠ anise) AND (odour ≠ almond) AND  
(odour ≠ none) → poisonous.”

What relationship holds between the production system and the network? Daw-
son et al. (2000) analyzed their network in two different ways. The first analysis 
determined the features detected by each hidden unit. The second analysis assigned 
similar mushrooms to groups, defining similarity in terms of the activity produced 
by a mushroom in the hidden units. If two different mushrooms produced similar 
activity patterns, then Dawson et al. assigned the mushrooms to the same group. 
Otherwise, they assigned them to different groups. Dawson et al. required only  
12 different groups to summarize the entire stimulus set.

Dawson et al. (2000) combined their two analyses to translate the network 
into the production system. They summarized each group of mushrooms in terms  
of the average activity produced in each hidden unit by group members. Further-
more, on the basis of the first analysis, they translated each average activity into a set 
of mushroom features. Dawson et al. translated each set of mushroom features into 
one of the production’s conditions. For instance, when the hidden units produced 
activities associated with one group of mushrooms, the hidden units detected the  
features representing the condition for a particular production. Furthermore,  
the hidden unit activities caused an output unit to generate the production’s 
action (e.g., to classify a mushroom as edible). In other words, we can describe 
the Dawson et al. model as a connectionist network, but we can also describe it 
as a production system, blurring the distinction between connectionist and rule- 
 based processing.

The two accounts of the mushroom network introduce the notion of sub- 
symbolic networks (Smolensky, 1988). Smolensky called networks sub- symbolic 
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because we can explain them by appealing to finely detailed properties: the sig-
nals that processors send through weighted connections. Furthermore, the finely 
detailed properties of sub- symbolic networks (e.g., processor activities) need not 
represent rules or symbols. If we view networks as being sub- symbolic, then we also 
believe that higher- level symbolic explanations of networks (e.g., appealing to rules) 
serve only as approximations. From Smolensky’s perspective, when Dawson et al. 
(2000) analyzed the details of hidden unit responses, they revealed the mushroom 
network’s sub- symbolic properties. In contrast, when they translated hidden unit 
activities into productions, they provided a symbolic approximation of network 
processing. We can interpret the network “as if” it represents a production system, 
but in so doing we ignore the fine details of network operations.

However, we need not adopt Smolensky’s (1988) perspective. We have no reason 
to believe that one of the accounts offered by Dawson et al. (2000) is more accurate, 
or more informative, than another. Each account depends on the other, and both 
accounts provide insight into the network. “The picture that emerges is of a sym-
biosis between the symbolic and subsymbolic paradigms” (Smolensky, 1988, p. 19). 
To understand a network completely, we require both sub- symbolic and symbolic 
accounts, implying that connectionism does not eliminate rules from cognitive 
explanations.

5.4 Can Connectionist Networks Provide Cognitive Theories?

In Sections 5.2 and 5.3, I explored two architectural challenges by connectionists to 
rule- based cognitivism. I now examine connectionism’s explanatory role in cognitive 
psychology. Connectionist researchers almost always develop computer simulations 
of cognitive phenomena because connectionism studies trained networks. In Chap-
ter 3, I detailed rule- based cognitivism’s explanatory mission: subsumed functional 
analyses. In Section 5.4, I explore connectionism’s philosophy of science by asking 
whether connectionist networks can serve as theories or explanations.

Simulations as theories. Cognitive psychology aims to explain cognition. Psych-
ological theories take many forms and have many purposes. Some researchers 
express theories mathematically (Bock & Jones, 1968; Estes, 1975; Restle & Greeno, 
1970). Other researchers express theories as interactions between mechanistic 
components, interactions for producing predictable behaviour (Eichenbaum, 2002;  
Martinez & Kesner, 1998). Mechanistic components can also belong to an infor-
mation processing architecture (Anderson, 1983; Carruthers, 2006; VanLehn, 
1991). Researchers often express architectural theories as computer simulations  
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(Dutton & Briggs, 1971; Dutton & Starbuck, 1971; Feigenbaum & Feldman, 1963; 
Simon & Newell, 1958).

Expressing theories as computer programs provides many advantages 
(Lewandowsky, 1993). Simon and Newell (1958, pp. 7– 8) boldly predicted “that within 
ten years most theories in psychology will take the form of computer programs, or 
of qualitative statements about the characteristics of computer programs.” Simon 
and Newell (1958) based their prediction upon their own experience with the com-
puter metaphor. A different kind of simulation, the artificial neural network, also 
arose at the same time (Rosenblatt, 1958, 1962; Widrow & Hoff, 1960). We saw in  
Section 5.3 that psychology’s interest in networks exploded when researchers dis-
covered how to train multi- layer perceptrons (McClelland & Rumelhart, 1986; 
Rumelhart & McClelland, 1986b).

However, multi- layer perceptrons have many practical limitations. The brain has 
many layers of intermediate neurons, layers that can deliver the brain’s enormous 
computational power (Bengio, 2009). However, when we add many layers of hidden 
units to multi- layer perceptrons, the networks become very difficult to train with 
backpropagation of error. Recently, connectionists have discovered new rules to 
train networks with many hidden layers, called deep belief networks (Bengio et al., 
2013; Hinton, 2007; Hinton et al., 2006; Hinton & Salakhutdinov, 2006; Larochelle 
et al., 2012; LeCun et al., 2015). Deep learning rules train deep belief networks to 
accomplish tasks far more complex than we can teach multi- layer perceptrons when 
we use traditional learning rules.

For instance, deep belief networks learn to solve complex classification problems 
related to language, image, and sound (Hinton, 2007; Hinton et al., 2006; Mohamed 
et al., 2012; Sarikaya et al., 2014). Deep belief networks have applications in agricul-
ture, biology, chemistry, and medicine (Ching et al., 2018; Gawehn et al., 2016; Goh 
et al., 2017; Kamilaris & Prenafeta- Boldu, 2018; Shen et al., 2017). “Deep learning is 
making major advances in solving problems that have resisted the best attempts 
of the artificial intelligence community for many years” (LeCun et al., 2015, p. 436).

Yet, as deep belief networks revolutionize machine learning, we rarely see them 
used by cognitive psychologists. In Section 5.4, I discuss why researchers have diffi-
culty converting deep learning networks into cognitive theories.

Bonini’s paradox. Although computer simulations offer many advantages, they 
also face disadvantages (Lewandowsky, 1993). We call one important disadvan-
tage Bonini’s paradox (Dutton & Briggs, 1971). A computer simulation encounters 
Bonini’s paradox when we have at least as much difficulty explaining the simulation 
as we do explaining the phenomenon that we want to model. Researchers “can easily 



132 What Is Cognitive Psychology?

https:// doi .org/ 10 .15215/ aupress/ 9781771993418 .01

construct a computer model more complicated than the real thing. Since science is 
to make things simpler, such results can be demoralizing as well as self- defeating” 
(Dutton and Briggs, 1971, p. 103).

Bonini’s paradox applies to any computer simulation but frequently plagues 
connectionist networks. I noted in Section 5.3 our difficulties understanding the 
internal structures of trained networks (Hecht- Nielsen, 1987; Mozer & Smolensky, 
1989). As a result, connectionists rarely interpret or report network structure. Con-
nectionism replaces one unknown (human performance on a cognitive task) with 
two unknowns (human and network performance on a cognitive task).

Bonini’s paradox causes connectionists problems because a network can pro-
vide a cognitive theory only if researchers can describe precisely how the network 
converts stimuli into responses. We cannot merely claim that networks offer new 
theories because we believe that networks differ qualitatively from rule- based mod-
els. We must provide details about the alternative theory that a network provides. 
Otherwise, we merely practise “gee whiz connectionism” (Dawson, 2009).

When connectionists fail to interpret network structure, connectionist net-
works fail to provide cognitive theories. McCloskey (1991) argues that networks 
serve as neither theories nor simulations of theories. Seidenberg (1993, p. 229) 
admits that “connectionist models do not clarify theoretical ideas, they obscure 
them.” To address such criticisms, connectionists must develop techniques for 
understanding exactly how networks convert stimuli into responses. We saw earlier  
(Section 5.3) that such techniques do exist, and when we interpret networks, they 
can provide theoretical contributions.

Consider one recent example in which networks learn to solve musical problems 
(Dawson, 2018). After training, Dawson interprets network structure by inspecting 
connection weights, by plotting distributions of hidden unit activities, and by per-
forming multivariate analyses of processor activities. He provides a detailed account 
of each musical network. His interpretations reveal that networks represent formal 
musical properties, but the properties differ from those used in traditional music 
theory. For example, music theory assumes that we create Western music from a  
set of 12 different pitch classes (C, C#, D, etc.) (Forte, 1973). However, the hidden 
units of Dawson’s networks use smaller sets of pitch classes. His networks treat pitch 
classes differentiated in traditional music theory as being identical.

Dawson (2018) shows that interpreted connectionist networks can inform cog-
nitive theory. His networks inform music theory by introducing different notions 
of pitch class. In turn, his results raise questions for experimentally studying 
musical cognition. Does human cognition use musical representations similar to 



Questioning Foundations 133

https:// doi .org/ 10 .15215/ aupress/ 9781771993418 .01

the representations found in the networks? Importantly, not all types of networks 
can produce cognitive theory. Bonini’s paradox causes Dawson deliberately to 
avoid deep belief networks (Turner et al., 2018). Deep belief networks have not yet 
penetrated cognitive psychology because few methods exist for interpreting deep 
networks (Erhan et al., 2010).

Deep belief networks accomplish incredible feats but do so as black boxes. 
Researchers cannot explain how complex networks make decisions. However, 
growing legal pressure might motivate researchers to develop methods for inter-
preting deep belief networks (Deeks, 2019). When courts challenge decisions made 
by networks (e.g., rejecting a bank loan), judges demand that banks explain exactly 
how the networks made those decisions. Uninterpretable networks lose companies 
money! Interest in explainable artificial intelligence, or XAI, has grown in response 
to such concerns (Arrieta et al., 2020). XAI researchers aim to develop more easily 
understood new systems or to develop new approaches for understanding existing 
technologies such as deep belief networks. Perhaps, once researchers achieve the 
goals of XAI, we will see deep belief networks playing a larger role in cognitive 
psychology.

5.5 Do People Think?

In Sections 5.2 through 5.4, I explored architectural debates about cognitive psych-
ology’s foundations related to connectionism’s challenge to the computer metaphor. 
Connectionism’s challenges arose from claiming that human information processing 
differs significantly from the processing carried out by digital computers. However, 
connectionists did not propose the only alternative to the computer metaphor. 
An alternative position, called embodied cognition, critiques both traditional and 
connectionist cognitive psychology. We encountered embodied cognition briefly 
in Section 3.13, and I now explore it in more detail.

Embodied cognitive psychologists argue that both rule- based and network- based 
theories pay too little attention to the roles of the world and of agents’ bodies in 
human cognition. These psychologists note that both traditional and connectionist 
theories appeal to sense- think- act processing. Embodied cognitive psychologists 
intend to replace sense- think- act theories with theories based upon sense- act 
processing.

To replace sense- think- act processing with sense- act processing is to propose 
an alternative architecture for cognition. As was the case with connectionism, 
the alternative architecture for embodied cognition leads to new debates about 
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cognitive foundations. I now consider some debates arising from embodied cogni-
tion’s alternative architecture. In Section 5.5, I explore one immediate consequence 
of removing “thinking” from the sense- think- act cycle: when we assume that only 
human cognition involves sense- act processing, do we claim that people do not 
think? In Section 5.6, I consider a radical implication of embodied cognition’s 
emphasis on the environment: the mind extends outside the skull and into the 
world, a world that becomes part of cognition. In Section 5.7, I study one question 
raised in Chapter 1: can machines think? However, in Chapter 5, I reconsider that 
question by recognizing that embodied cognition defines “thinking” quite differ-
ently from traditional cognitive psychology. To begin our exploration of debates 
arising from embodied cognition, let us ask why embodied cognitive psychologists 
prefer sense- act processing over sense- think- act processing.

During a baseball game, a batter hits a fly ball to the outfield. Seeing the hit, an 
outfielder runs across the field to catch the ball. How does she know where to go? 
Perhaps the outfielder solves this problem by thinking. She mentally models the ball’s 
trajectory, using some initial variables, and uses the model to predict where to run 
to catch the ball (Saxberg, 1987a, 1987b). Alternatively, perhaps when the outfielder 
starts to run, she simply watches the ball. She runs in the direction that makes the 
ball’s trajectory look like a straight line (McBeath et al., 1995). If the trajectory does 
not look straight, then the outfielder changes direction, eventually reaching the 
location where the ball can be caught.

The two approaches differ dramatically from one another. The first appeals to 
thinking and mental representation, whereas the second does not. Instead, the 
second approach involves only sensing (watching the ball) and acting (running across 
the field). If the second answer works, then we might be able to solve some complex 
problems without thinking. We might then ask which other problems can we solve 
without thinking? Do people need to think at all? I now explore such questions by 
considering sense- act theories in cognitive psychology.

Experimental psychology arose in the 19th century to study consciousness sci-
entifically. Psychology changed when behaviorism arrived; behaviorists argued that 
scientific psychology could study observable phenomena only (Watson, 1913). Behav-
iorism provided a stimulus- response psychology. Cognitive psychology reacted to 
behaviorism by adopting a competing view, the sense- think- act cycle. According  
to that cycle, organisms first sense information from the environment. Then they 
think by manipulating sensed (and represented) information. The purpose of think-
ing is to plan— to hypothesize actions that might achieve desirable outcomes and 
reject actions that do not. Finally, sense- think- act processing converts a chosen plan 



Questioning Foundations 135

https:// doi .org/ 10 .15215/ aupress/ 9781771993418 .01

into action on the world. We call the sense- think- act cycle the classical sandwich, 

because thinking is necessarily sandwiched between sensing and acting (Hurley, 

2001). In that cycle, direct connections do not exist between sensing and acting. 

We must think before we act.

In reacting to behaviorism, cognitive psychology appealed to information pro-

cessing concepts as intervening variables (Bruner, 1990; Sperry, 1993). However, the 

“sense” and “act” components of the classical sandwich seemed to be too behaviorist 

by being too strongly linked to “stimulus” and “response.” As a result, cognitive 

psychologists overemphasized thinking and underemphasized both sensing and 

acting. “One problem with psychology’s attempt at cognitive theory has been our 

persistence in thinking about cognition without bringing in perceptual and motor 

processes” (Newell, 1990, p. 15). Which problems arise when cognitive psychologists 

overemphasize thinking?

A first problem is that, when we overemphasize thinking, our theories 

become overly complex (Braitenberg, 1984). Researchers who emphasize thinking  

assume that complicated actions result from intricate thought processes. Thus, 

cognitive psychologists explain complex behaviour by proposing complex thought 

processes. However, complex behaviour might arise from much simpler processes.

Consider the parable of the ant (Simon, 1969). Imagine explaining the winding 

path that an ant takes along a beach. If we focus exclusively on thinking, then we 

explain the path’s shape via complex internal processes. However, we can adopt a 

simpler sense- act theory: the complex path emerges from the ant’s simple reac-

tions to obstacles. As Simon noted, “Viewed as a geometric figure, the ant’s path is 

irregular, complex, hard to describe. But its complexity is really a complexity in the 

surface of the beach, not a complexity in the ant” (p. 24).

A second problem emerges when our theories overemphasize thinking and plan-

ning. Information processing creates plans by constructing and updating a mental 

model of the world. We plan our actions by manipulating our mental models. How-

ever, modelling and planning require excessive time and resources (Ford & Pylyshyn, 

1996; Pylyshyn, 1987). Consider the famous robot Shakey, which navigated through 

an environment, pushing objects to new locations to accomplish assigned tasks 

(Nilsson, 1984). Shakey sent sensor readings to a computer, which created a model 

of the robot’s world. The computer used the model to plan actions and sent the plan 

back to Shakey’s robot body for execution. Shakey exemplified the sense- think- act 

cycle. Unfortunately, the robot performed behaviours extremely slowly. Shakey 

required several hours to complete tasks (Moravec, 1999), spending much time idling 
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in place while the computer modelled and planned. Shakey’s “thinking” required a 
great deal of time, making Shakey’s actions uselessly slow.

This slow performance inspired an alternative, behaviour- based robotics, to speed 
up behaviour by removing thinking (Brooks, 1991, 1999). “Models of the world sim-
ply get in the way. It turns out to be better to use the world as its own model” 
(Brooks, 1991, p. 139). Behaviour- based robotics replaced the sense- think- act cycle 
with a sense- act cycle. By removing thinking, behaviour- based robotics resembles 
behaviorism, and behaviour- based roboticists only consider stimuli and responses, 
using “highly reactive architectures with no reasoning systems, no manipulable 
representations, no symbols, and totally decentralized computation” (Brooks, 1999, 
p. 170). Behaviour- based robots sense and react; they do not think and plan.

In cognitive psychology, ideas from behaviour- based robotics appear to inspire 
an approach called embodied cognition (Calvo & Gomila, 2008; Chemero, 2009; 
Clark, 1997, 1999, 2008; Dawson et al., 2010; Lakoff & Johnson, 1999; Rowlands, 
2010; Shapiro, 2014, 2019; Varela et al., 1991; Wilson, 2002).

Shapiro (2019) identifies three characteristics of embodied theories. The first 
characteristic is conceptualization. The concepts that an organism uses to inter-
act with the environment depend on the form of the organism’s body. If different 
agents possess different bodies, then their understanding of or engagement with 
the world also differs. We find conceptualization in biology’s notion of the umwelt 
(Uexküll, 1957, 2001) and in psychology’s related idea of affordance (Gibson, 1979). 
Gibson called a possible action offered by the world to an organism an affordance, 
which depends on the shape of the world and the nature of the organism’s body. 
A smooth, vertical wall does not afford “climbing” to a human, but the same  
wall affords “climbing” to a housefly.

The second characteristic is replacement (Shapiro 2019). The environment can 
aid or replace cognitive resources. For instance, a student who takes lecture notes 
replaces her internal memory with an environmental record. When we use the 
environment to support cognition, the environment provides cognitive scaffolding 
(Clark, 1997).

And the third characteristic is constitution (Shapiro 2019). An organism’s body 
and environment have more than causal effects on cognition. Instead, the body and 
the world belong to cognition. The constitution hypothesis leads to a radical pro-
posal, the extended mind hypothesis, which I consider in Section 5.6.

Shapiro (2019) observes that his three characteristics appear to different degrees 
in different embodied theories. For example, when theories exhibit different 
degrees of replacement, some are more comfortable than others with the existence 
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of mental representations. Some embodied theories are hybrid because they explain 

some cognition with the sense- think- act cycle and other cognition with sense- act 

processing. If the world scaffolds cognition, then some thinking moves from inside 

the head to outside in the world— but not all thinking can move to the world.

Many embodied theories of language, social cognition, and mathematical 

reasoning propose that we use our own bodies to scaffold cognition (Dove, 2014; 

Fischer & Zwaan, 2008; Gallese & Goldman, 1998; Gallese et al., 2004; Gallese &  

Sinigaglia, 2011; Lakoff & Johnson, 1999; Lakoff & Núñez, 2000). For example, 

children often develop number concepts by counting with their fingers (Dehaene, 

2011). Fingers offer the affordance of “countable” (Chrisomalis, 2013). Finger- 

based representations provide prototypical examples of replacing symbols with  

bodily representations (Bender & Beller, 2012; Fischer & Brugger, 2011; Tschentscher 

et al., 2012; Wasner et al., 2014).

However, not all theories in embodied cognition propose representations. 

Radical embodied cognitive scientists propose explicitly anti- representational theor-

ies (Anderson et al., 2012; Chemero, 2000, 2009; de Oliveira et al., 2019). Radical 

embodied cognitivists believe that cognitive psychologists err when appealing to 

representations. Radical embodied cognitive science avoids making such a mistake 

by eliminating representation and by explaining all of cognition using sense- act 

theories.

We can find many sense- act accounts of diverse cognitive phenomena (Shapiro, 

2014). By understanding the parable of the ant, and by paying more attention to the 

roles of the environment and bodies in cognition, embodied cognitive psychologists 

can propose new and important theories. However, radical embodied cognition 

might not succeed in eliminating mental representations. Focusing only on sensing 

and acting moves embodied cognition closer to behaviorism and to the challenges 

that it failed to meet.

Gestalt psychologists challenged behaviorism by discovering insight— the sudden 

and unexpected experience of a solution to a problem (Köhler, 1925/2018; Wert-

heimer & Asch, 1945). Can sense- act theories explain insight? The stimulus- response 

theories of behaviorism provided inadequate accounts of human language (Chom-

sky, 1959). Do the sense- act theories of radically embodied cognition offer more 

explanatory power? Do people think? We have no compelling evidence to throw 

away the representations proposed by cognitive psychologists. However, we also 

have no reason to believe that every cognitive phenomenon has a representational 

explanation.
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Embodied cognition reveals that we can explain many interesting phenomena via 
rich interactions between bodies and environments. Embodied cognitive researchers 
“get to work providing non- representational explanations of cognitive phenomena 
both convincing and sufficiently rich in their implications to guide further research” 
(Chemero, 2000, p. 646). Embodied cognition adopts a fruitful strategy likely to 
show how much cognition requires thinking— and how much does not.

5.6 Where Is the Mind?

Where is the mind? According to modern, materialist psychology, the mind resides 
inside the skull, because brains cause minds, and skulls contain brains (Searle, 1980, 
1984). However, embodied cognition challenges this answer. Embodied cognition 
uses feedback to link or couple organisms to their environments (Ashby, 1956, 1960; 
Grey Walter, 1963; Wiener, 1948). Organisms act to change the world, and changes 
in the world influence future actions. Feedback means that we can use the world 
for cognitive scaffolding (Clark, 1997, 2008; Scribner & Tobach, 1997).

We can easily propose many concrete examples of cognitive scaffolding. When 
we write a reminder to ourselves, we use the environment to scaffold memory. Chil-
dren gain insight into calculating the areas of irregular figures by cutting cardboard 
models with scissors (Wertheimer & Asch, 1945). When a player rearranges her tiles 
while playing Scrabble, the rearranged tiles scaffold word retrieval (Kirsh, 1995).

We can find more abstract examples of scaffolding. In education, Vygotsky (1986) 
called the zone of proximal development the difference between a child’s ability to 
solve problems without aid and his ability to solve problems when provided with 
support or assistance. Vygotsky championed educational techniques for bridging 
the gap using scaffolding, which involves social and cultural factors and includes 
language.

Cognitive scaffolding typifies an important characteristic of embodied cognition, 
replacement, which occurs when environmental scaffolds replace internal cognitive 
resources (Shapiro, 2019). Replacement frees cognitive resources, reducing “the 
loads on individual brains by locating those brains in complex webs of linguistic, 
social, political, and institutional constraints” (Clark, 1997, p. 180).

Replacement, however, also leads to questions about the mind’s location. If I 
scaffold my memory with written notes, then do they make up part of my mem-
ory? If I find rules to calculate area by manipulating cardboard models, then do the 
cardboard models make up part of my mathematical reasoning? “If, as we confront 
some task, a part of the world functions as a process which, were it done in the 
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head, we would have no hesitation in recognizing as part of the cognitive process, 

then that part of the world is (so we claim) part of the cognitive process” (Clark & 

Chalmers, 1998, p. 8).

Questions about the mind’s location intensify after realizing that scaffolding 

consists of more than using the environment to store information. The organism’s 

body— its embodiment— determines the rich interaction between an organism and 

its world (Gibson, 1979). Embodiment defines possible actions; Gibson claims that 

“it is often neglected that the words animal and environment make an inseparable 

pair” (p. 8). The rich interactions involved in scaffolding lead to a controversial prop-

erty of embodied cognition, constitution (Shapiro, 2019). If the environment can 

replace cognitive resources, and if embodiment and environment determine how 

we experience the world, then the environment does more than supply information. 

Constitution claims that the world belongs to cognition and does not merely provide 

information to cognition.

Constitution alters the definition of “mind” or “self” and questions the mind’s 

location (Bateson, 1972). If the environment belongs to cognition, then the mind 

extends into the world. What does the extended mind imply? “But what about ‘me’? 

Suppose I am a blind man, and I use a stick. I go tap, tap, tap. Where do I start? Is 

my mental system bounded at the handle of the stick? Is it bounded by my skin?” 

(Bateson, 1972, p. 465). Embodied cognition takes Bateson’s questions seriously 

by proposing the extended mind hypothesis (Clark, 1997, 1999, 2003, 2008; Clark &  

Chalmers, 1998; Menary, 2008, 2010; Noë, 2009; Rupert, 2009; Wilson, 2004, 2005). 

According to this hypothesis, no boundary exists between the mind and the world. 

“It is the human brain plus these chunks of external scaffolding that finally consti-

tutes the smart, rational inference engine we call mind” (Clark, 1997, p. 180).

The extended mind hypothesis also permits more elaborate notions of mind, 

such as cooperative cognition, which occurs when several agents share an environ-

ment (Hutchins, 1995). More than one cognitive agent can manipulate the world, 

which also scaffolds the information processing of other group members. As a result, 

“organized groups may have cognitive properties that differ from those of the indi-

viduals who constitute the group” (Hutchins, 1995, p. 228).

Hutchins (1995) uses his idea to extend the parable of the ant (Simon, 1969). 

Hutchins proposes watching generations of ants at work at a beach after a  

storm. Later generations will appear to be smarter because they behave more effi-

ciently. But, as Hutchins notes, “the environment is not the same. Generations 

of ants have left their marks on the beach, and now a dumb ant has been made 
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to appear smart through its simple interaction with the residua of the history of  
its ancestor’s actions” (p. 169).

Collective cognition appears to be outside cognitive psychology, such as in ento-
mology’s concept of the superorganism, which imparts intelligence to the colony 
instead of the individual (Wheeler, 1911). The superorganism describes how colonies 
create elaborate structures, such as nests; we cannot predict such achievements 
from the capabilities of individual colony members.

Furthermore, the superorganism’s intelligence emerges from cognitive scaf-
folding called stigmergy (Grasse, 1959; Theraulaz & Bonabeau, 1999). Stigmergy 
proposes that members of insect colonies do not themselves coordinate nest- 
building behaviour. Instead, the nest controls its own construction by stimulating  
insect behaviour. The nest- as- stimulus elicits particular insect actions for 
changing the nest in particular ways. Once changed, the nest becomes a different 
stimulus and elicits different nest- building actions.

The success of exploring the extended mind or collective cognition in other 
fields fuels new interest in these ideas within cognitive psychology. Such interest 
flourishes in embodied cognition, which has very different ideas about the mind and 
the role of the environment. However, the extended mind hypothesis faces intense 
criticism (Adams & Aizawa, 2008; Menary, 2010; Robbins & Aydede, 2009). Adams 
and Aizawa argue that embodied cognitivists do not define principled differences 
between cognitive and non- cognitive processing: “What the advocates of extended 
cognition need, but, we argue, do not have, is a plausible theory of the difference 
between the cognitive and the non- cognitive that does justice to the subject matter 
of cognitive psychology” (p. 11). They worry that the extended mind means that 
anything is cognitive.

Where is the mind? A psychology more open to cognitive contributions from  
the world, contributions also depending on the body, raises important questions 
about where cognition occurs. Such questions mean that researchers must recon-
sider how we need to study cognition. “We need a greater understanding of the ways 
in which the institutional setting, norms and values of the work group and, more 
broadly, cultural understandings of labor contribute to the reorganization of work 
tasks in a given community” (Scribner & Tobach, 1997, p. 373).

5.7 Can Machines Think?

Can machines think? The answer depends on our definition of “thinking.” For 
instance, if we believe the information processing hypothesis— if cognition is 
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rule- governed symbol manipulation— then other symbol- manipulating devices, 
such as digital computers, can think (Section 1.6). However, the answer also depends 
on our definition of “machine.” Traditional cognitive psychologists, connectionists, 
and embodied cognitive psychologists propose different notions of “machine.”

The possibility of thinking machines begins with the mechanical view of 
human bodies. In the 17th century, philosophers described humans as machines 
(Descartes, 1637/1960; Hobbes, 1651/1967). Philosophers described 18th- century 
clockwork automata as “living machines” offering support to mechanistic philoso-
phies (Grenville, 2001; Wood, 2002). Some 18th- century philosophers claimed that 
thought itself is mechanical (La Mettrie, 1750). In the 19th century, elaborations 
of the mechanical view heralded modern notions of machine intelligence. George 
Boole (1854/2003) invented mathematical logic because he wanted to study thought 
mathematically. He equated thinking with performing logical operations and intro-
duced his mathematical ideas in a book titled The Laws of Thought.

Researchers soon realized that machines could perform Boole’s logical operations 
and invented various devices for solving problems of logic. The first such device, 
called the logical piano (Jevons, 1870), inspired more powerful logic machines (Mar-
quand, 1885). Marquand even designed an electromagnetic logic machine (Mays, 
1953). Boole’s logic also set the stage for the 20th century’s information age. Alan 
Turing’s (1936) universal machine had far more power than did the 19th- century 
logic machines. Claude Shannon (1938) represented electric circuits as Boolean 
operators. The digital computer’s invention depended on Turing’s and Shannon’s 
insights (Goldstine, 1993).

Digital computers appeared to be capable of thinking (Section 1.6). Early comput-
ers performed intelligent tasks, such as playing games, generating logical proofs, or 
solving problems (Feigenbaum & Feldman, 1963; Newell et al., 1958; Newell & Simon, 
1956; Samuel, 1959; Simon & Newell, 1958). Turing (1950), convinced of the inevit-
ability of machine intelligence, developed a test of computer intelligence. Books, 
aimed at the general public, described computers as thinking machines (Adler, 
1961; Bell, 1962; Berkeley, 1949; Wiener, 1950). Advances in artificial intelligence 
strengthened the widespread belief in thinking machines. The age of intelligent 
machines spanned the late 1960s to the late 1980s (Kurzweil, 1990). During the age 
of intelligent machines, researchers developed numerous expert systems (Feigen-
baum & McCorduck, 1983; Kurzweil, 1990). An expert system, a computer program, 
solves problems with an ability equal to, if not greater than, a human expert. Expert 
systems appeared in diverse domains, such as finance, manufacturing control,  
and medical diagnosis.
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However, expert systems could only solve very narrowly defined problems and 
did not deliver general intelligence. “An overall pattern had begun to take shape . . . : 
an early, dramatic success based on the easy performance of simple tasks, or low- 
quality work on complex tasks, and then diminishing returns, disenchantment, 
and, in some cases, pessimism” (Dreyfus, 1992, p. 99). The pattern noted by Dreyfus 
produced harsh criticisms of the computer metaphor (Dreyfus, 1972, 1992; Wino-
grad & Flores, 1987). AI researcher Terry Winograd (1972, 1983) pioneered computer 
programs for understanding language. However, by the late 1980s, he held little hope 
for his enterprise: “Our position . . . is that computers cannot understand language” 
(Winograd & Flores, 1987, p. 107).

Rising pessimism led many to argue that the computer metaphor does not pro-
vide an adequate account of human thinking. The Chinese room argument provides 
one influential example (Searle, 1980, 1984, 1990). In Searle’s thought experiment, 
we write a question in Mandarin symbols, pass the question into a room through 
a slot, and then receive an answer, again written in Mandarin symbols. Clearly, the 
room understands the symbols because the room provides intelligible answers to 
written questions. But concerns arise when we look inside to see the mechanisms 
in the room. We see boxes of Mandarin symbols and instructions for converting 
sequences of symbols passed into the room into new sequences (answers). Inside 
we also see a native English speaker who does not understand Mandarin symbols, 
but she can follow the room’s instructions and answer the questions even though 
she does not understand what the symbols mean.

The Chinese room contains the core elements of an information processing 
theory: the rule- governed manipulation of symbols. However, the room’s compon-
ents possess no true understanding of Mandarin. Therefore, Searle uses the Chinese 
room to argue that the computer metaphor cannot explain intelligent acts, such 
as understanding language. “Understanding a language, or indeed, having mental 
states at all, involves more than just having a bunch of formal symbols” (Searle, 
1984, p. 33). If computers cannot produce intelligence, then what kind of machine 
can? Searle answers “the brain” because brains cause minds and— given the Chinese 
room argument— must do so by doing more than running a computer program. 
Thus, “anything else that caused minds would have to have causal powers at least 
equivalent to those of the brain” (p. 40). In other words, the possibility of machine 
intelligence depends on the nature of the machine itself.

Concerns about the computer metaphor produced alternative approaches to 
information processing, including a growing interest in neural accounts of cognitive 
processes. I have already discussed one related topic, the rise of connectionism, 
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in Section 5.2. Unsurprisingly, connectionism arose at the same time that serious 
criticisms of the computer metaphor appeared. Figure 5- 4 illustrates such a trend 
by plotting the number of times that four different terms (“expert systems,” “neuro-
science,” “connectionism,” and “cognitive neuroscience”) appear in books curated 
by Google in the period from 1970 to 2008. I obtained the plotted results using the 
Google nGram viewer. The graph shows the dramatic rise, and the equally dramatic 
fall, of the term “expert system.” When its usage decreases, we also see increases 
in using the other three terms, reflecting more brain- based approaches to mental 
phenomena.

Searle (1990) modified the Chinese room argument to challenge connection-
ism by proposing a Chinese gym filled with many native English speakers, each 
performing the same function as a neuron or a network processor. No one inside 
the gym understands Chinese. The gym can answer the same questions answered 
by the room. Searle concluded that, because no understanding of Chinese exists 
inside the gym, the gym refutes connectionism just as the room refutes the com-
puter metaphor.

Searle’s Chinese gym provoked a connectionist rebuttal (Churchland & Church-
land, 1990). The Churchlands noted that “no neuron in my brain understands 
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English, although my whole brain does” (p.  37). They provided an example of  

the whole system reply to the Chinese room argument. According to that reply, the  

whole room (or the whole gym), not its components, understands Chinese.  

The whole system reply also encourages us to consider which kinds of whole systems 

can understand. For instance, some could argue that an intelligent Chinese room 

must take the form not of a room but of a humanoid. To understand a language, 

computers might require bodies similar to those of humans, because our physical 

interactions with our world define our semantics (Dreyfus, 1967).

We frequently see roboticists claiming that humanoid intelligence depends on 

humanoid embodiment. The early successes in behaviour- based robotics involved 

machines with insect- like embodiment (Brooks, 1999, 2002). However, robots with 

such embodiment can achieve at best insect- level intelligence (Moravec, 1999). We 

must develop alternative embodiments if we want to emulate human intelligence. 

Such criticisms have driven recent advances in behaviour- based robotics.

For example, Brooks developed a humanoid robot called Cog (Brooks, 1997; 

Brooks et al., 1999; Brooks & Stein, 1994). Cog began as a torso with a single jointed 

arm and a head. Brooks aimed to make Cog’s interaction with the world as human- 

like as possible. For instance, its visual system consisted of cameras to emulate 

human saccadic eye movements. Brooks developed Cog to explore ideas central 

to embodied cognition: “All human representations are ultimately grounded in 

sensory motor patterns. Thus to build an artificial system with similar grounding 

to a human system it is necessary to build a robot with human form” (1997, p. 968).

Social robotics provides another example of emphasizing human embodiment. 

The embodiment of a social robot facilitates and modulates social interactions with 

humans (Breazeal, 2002, 2003, 2004; Breazeal et al., 2009). Social robots typically 

have human or animal embodiments to permit dynamic interactions with humans 

via verbal or non- verbal behaviours (Breazeal et al., 2016). For instance, one robot 

uses variations of head position, mouth shape, direction of gaze, opening of eyelids, 

or raising of eyebrows to influence social interactions or to communicate internal 

states. The robot’s behaviours influence people because humans have high sensi-

tivity to such social signals (Breazeal et al., 2016). Socially intelligent robots require 

appropriate embodiment.

Can machines think? Early adopters of the computer metaphor answered 

affirmatively. However, the failure of expert systems to produce general intelligence 

produced new ideas. Some argue that machines can think if their inner workings 

resemble those of the brain. Others argue that, for machines to think like humans, 
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they must have humanoid embodiment. Ideas about intelligent machines have 
evolved as different approaches to human information processing have emerged.

Interestingly, Searle dismisses such approaches. His Chinese gym argument 
attacks connectionists (Searle, 1990). As for humanoid embodiment, Searle (1984) 
argues that a robot cannot understand language using a computer “brain.” Searle 
believes that only biological brains can think. We will see in Section 5.8 that many 
other researchers share Searle’s belief.

5.8 What Is the “Cognitive” in Cognitive Neuroscience?

Sections 5.2 through 5.7 explored debates arising from challenges to the computer 
metaphor. Both connectionism and embodied cognition reject similarities between 
human and computer information processing. The new views of information pro-
cessing provided by connectionism and embodied cognition represent architectural 
challenges to traditional cognitive psychology. However, the new views also lead 
to philosophical challenges. Both connectionism’s appeal to brain- like processing 
and embodied cognition’s appeal to physical embodiment react to cognitive psych-
ology’s functionalism because the new views place particular emphasis on physical 
substrates or mechanisms.

I now explore a particular rejection of functionalism, cognitive neuroscience. 
Since the 1990s, the so- called decade of the brain, researchers have increasingly 
proposed cognitive theories related to brain areas or neural functions. Such theor-
ies reject functionalism. How might non- functionalist theories contribute to 
cognitive psychology? In Section 5.8, I argue that cognitive neuroscientists should 
contribute to cognitive psychology by supporting functional analyses and not by 
reducing cognition to brain operations. In Section 5.9, I elaborate the argument in  
Section 5.8 by considering recent philosophical criticisms of cognitive neuroscience. 
I begin by relating cognitive psychology and cognitive neuroscience using many- to- 
one relationships.

Theories in cognitive psychology reveal many- to- one relationships. Different 
algorithms can produce the same behaviour. Different architectures can perform 
the same algorithm. Different physical systems can create the same architecture. 
We call the last relationship, from the physical to the architectural, multiple realiza-
tion (Polger & Shapiro, 2016). Multiple realization recognizes that different physical 
substrates can produce identical functions (Putnam, 1975a, 1975b). “We could be 
made of Swiss cheese and it wouldn’t matter” (Putnam, 1975b, p. 291). Cognitive 
psychologists endorse multiple realization by appealing to functions instead of 
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physical states (Polger, 2012). Multiple realization permits computer simulations  
of cognitive theories. Provided that we use the correct functions, we need not con-
cern ourselves with the physical differences between computers and brains.

Although early cognitive psychology adopted functionalism, modern cog-
nitive psychology appeals more and more to cognitive neuroscience. The rise 
of cognitive neuroscience began in the 1990s with the so- called neuro- turn in the 
social sciences (Cooter, 2014; Pedersen, 2011; Vidal & Ortega, 2017). The neuro- turn 
grew with increased funding for brain research during the “decade of the brain” 
(Jones & Mendell, 1999). Cognitive psychology’s neuro- turn appears in many text-
books, which display brain imaging pictures and include chapters about cognitive 
neuroscience (Section 5.10). Modern texts also include cognitive neuroscience in 
definitions of cognitive psychology (Section 5.11). Given the functionalism of cog-
nitive psychology, how can cognitive psychology include cognitive neuroscience? 
What is the “cognitive” in cognitive neuroscience (Figdor, 2013)?

Cognitive neuroscientists assume that brains cause minds and explore their 
assumption scientifically. “Cognitive neuroscience is an experimental investiga-
tion that aims to discover empirical truths concerning the neural foundations of 
human faculties and the neural processes that accompany their exercise” (Bennett & 
Hacker, 2013, p. 238). Cognitive neuroscientists adopt three additional assumptions 
to guide their investigations (Frisch, 2014). The first is localizationism: assuming 
an association between mental functions and localized brain areas. The second is 
internalism: assuming that neural mechanisms produce localized mental functions. 
And the third is isolationism: assuming that we can use biological causes to explain 
how mental functions are generated by local brain regions.

The history of the three assumptions dates back to the early 18th- century 
hypothesis associating specific mental functions with specific, local brain regions. 
Gall’s now discredited phrenology popularized localizationism (Simpson, 2005). 
Proper scientific support for localized brain functions arose in the middle of the 
19th century. Paul Broca and Carl Wernicke discovered that damage to different 
regions of the brain produced different types of aphasia (Bennett & Hacker, 2013). 
Thus, we find historical links between cognitive neuroscience and the study of the 
relationships between brain injuries and mental deficits.

We can also link cognitive neuroscience to more recent invasive studies of ani-
mal brains. David Hubel and Torsten Wiesel (1959, 1962) recorded the responses of 
visual neurons in cats and pioneered techniques used to provide a modern, detailed, 
functional map of the primate visual system (van Essen et al., 1992). The modern 
map has 32 different cortical areas, each understood as detecting different visual 
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features. Thus, invasive explorations of the visual system also provide evidence to 
associate local brain areas with particular psychological processes.

Modern cognitive neuroscience distinguishes itself from older traditions by using 
non- invasive techniques to study the normal brain (Kok, 2020). Cognitive neurosci-
ence’s older techniques measured the brain’s electrical activity and included the 
electroencephalogram (EEG), a technique developed in the 1920s (Stone & Hughes, 
2013). An EEG measures electrical activity in different parts of the brain via elec-
trodes attached to the scalp. A related technique, the event- related potential (ERP), 
uses the EEG to measure brain responses to specific sensory, cognitive, or motor 
events. We measure ERPs by combining multiple EEG recordings (Cox & Evarts, 
1961; Dawson, 1954). More modern techniques create brain images from magnetic 
fields. Researchers invented magnetic resonance imaging (MRI) in the early 1970s 
(Lauterbur, 1973). Functional MRI (fMRI), developed in the early 1990s (Bandettini, 
2012), measures brain activity by detecting changes associated with cerebral blood 
flow. fMRI’s key metric is BOLD: blood- oxygen level- dependent.

How do cognitive neuroscientists use such modern methods? We can describe 
one common approach as a new version of the subtractive method established by 
Donders (Sections 3.9 and 4.2). The modern subtractive method measures brain 
activity during a “reference” task as well as during a “target” task (Cabeza & Nyberg, 
1997, 2000). Researchers presume that the target task differs from the reference task 
by a single cognitive process of interest. By subtracting reference task brain activity 
from target task brain activity, cognitive neuroscientists can correlate the cognitive 
process of interest with brain regions exhibiting higher activity (“activations”) or 
lower activity (“deactivations”).

One imaging study of the Stroop effect provides an example of cognitive neuro-
science’s subtractive method (Langenecker et al., 2004). The study compared the 
neural processing of older adults with that of younger adults. Older adults tended 
to produce larger Stroop effects. Langenecker et al. hypothesized an association 
between the brain’s frontal lobes and age- related differences in Stroop effects, and 
they used three different Stroop task conditions. The first, the congruent condition, 
had the names of colours printed in correct ink colours. The second, the incongru-
ent condition, had the names of colours printed in incorrect ink colours. The 
third, the neutral condition, had non- colour words printed in various ink colours. 
Langenecker et al. examined brain activations using variations of the subtraction 
method. In the first variation, they treated the incongruent condition as the tar-
get condition and the neutral condition as the reference condition. In the second, 
they treated the incongruent condition as the target condition and the congruent 
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condition as the reference condition. And in the third, they treated the congru-
ent condition as the target condition and the neutral condition as the reference 
condition.

Langenecker et al. (2004) found results to support the hypothesis that older 
adults needed to recruit more inhibitory mechanisms in order to perform the task. 
For instance, the incongruent- congruent comparisons revealed higher activations 
in frontal lobes for older adults compared with younger adults. Langenecker et al. 
obtained similar results for the congruent- incongruent comparison. They concluded 
that frontal lobes (in particular, the left inferior frontal gyrus) control inhibition.

Brain imaging studies like the one conducted by Langenecker et al. (2004) pro-
vide insights into the relationship between the brain and cognition. One paper 
reviewed the results of 275 different imaging studies conducted between 1988 
and 1998 (Cabeza & Nyberg, 2000). The review covered many cognitive domains 
(attention, perception, imagery, language, and several different aspects of memory). 
Cabeza and Nyberg found that specific regions of the brain demonstrate consistent 
activation patterns for each cognitive domain.

In spite of cognitive neuroscience’s apparent success, researchers express persis-
tent and growing concerns about its utility. Some concerns focus on brain imaging 
methodology. Others question the inferences that we can make about relations 
between the brain and cognition. Let us briefly consider some criticisms of cognitive 
neuroscience.

One extensive literature review challenges cognitive neuroscience’s localiza-
tionism (Uttal, 2011). Uttal argues that brain imaging results fail to demonstrate 
functional localization. Instead, the results provide overwhelming evidence of dis-
tributed representations and processing. As Uttal notes, “Brain imaging meta- studies 
show that when the results of a number of experiments are pooled, the typical result 
is to show activations over most of the brain rather than convergence on a single 
location” (p. 365).

Uttal (2011) also questions the subtractive method. When it reveals no activation 
differences between tasks, different microscopic processes can still occur. Different 
processes might produce the same activity. Worries about the subtractive method, 
coupled with concerns about localizationism, lead Uttal to promote a new approach 
emphasizing distribution, interconnectedness, poly- functionality, and microscopic 
processing.

Uttal (2011) also charges that cognitive neuroscientists appeal to poorly defined 
cognitive terms: “The reference of such terms as learning, emotion, perception, 
and so on [is] . . . not precisely defined by either these words or the experimental 
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context in which they arise. There is a major disconnect between our understanding 
of what cognitive processes are and the brain measures we try to connect to them” 
(pp. 367– 368). Similar concerns underlie criticisms of how cognitive neuroscientists 
present their work to the public (Figdor, 2013). Other scholars question whether 
cognitive neuroscience adds any understanding to pre- existing cognitive concepts 
(Vidal & Ortega, 2017). The public sees cognitive neuroscience as offering a naive 
reductionism. When relating some cognitive function X and some brain area Y, 
cognitive neuroscientists imply that we can explain X with Y or that we can reduce 
X to Y: a false implication. Knowing (from brain imaging studies) that the medial 
temporal lobe relates to consolidating memories (Squire & Wixted, 2011) is quite 
different from knowing how the brain performs consolidation. Knowing where is 
not the same as knowing how.

A related issue concerns relating cognitive functions and cognitive neurosci-
ence. Functions precede localizationism. For instance, creating target and reference 
tasks depends on a pre- existing functional analysis of cognitive processing. Further-
more, cognitive neuroscience cannot use neural observations to generate functional 
descriptions. “Trying to understand perception by studying only neurons is like 
trying to understand bird flight by studying only feathers: It just cannot be done” 
(Marr, 1982, p. 27).

Bennett and Hacker (2003, 2013) offer one final concern about how cognitive 
neuroscience relates the brain to cognition. They recognize that the brain causes 
psychological states but argue that we make a logical error when we attribute psych-
ological states to the brain. They claim that we can only ascribe psychological 
states to whole organisms and not to parts of whole organisms (e.g., the brain). In  
Section 5.9, I examine Bennett and Hacker’s critique in more detail.

Given the various concerns raised above, what can cognitive neuroscience 
contribute to cognitive psychology? Cognitive neuroscience encounters problems  
when trying to reduce cognition to brain processes. We can view cognitive neuro-
science more pragmatically by claiming that it contributes to cognitive psychology’s 
functional analyses. Cognitive psychologists cannot directly observe cognitive pro-
cesses, so they must infer functions from empirical observations. Cognitive 
neuroscience offers new observations to support functional analysis.

Cognitive neuroscientists frequently use ERPs to study attention (Woodman, 
2010). ERPs can measure changes in brain activity occurring 1 millisecond to the 
next. We can reliably associate different ERP components with different kinds of 
attentional processes, such as shifting attention during a visual search. Participants 
do not have to shift attention away from a task to respond to it, another advantage 
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of measuring attentional processing with ERPs. We can also combine ERPs with 
other spatial measures of brain processing, such as fMRI (Heinze et al., 1994; 
Hopfinger et al., 2000; Mangun et al., 1998).

Functional analysis requires more than merely identifying potential functions. 
When we perform functional analysis, we decompose higher- order functions into 
organized systems of sub- functions. Cognitive neuroscience can help to guide 
functional decomposition, as illustrated by cognitive neuroscience’s study of 
human memory. Some of the earliest evidence for analyzing memory into differ-
ent subsystems arose from studies of memory deficits associated with brain lesions  
(Scoville & Milner, 1957; Squire, 2009). More recent brain imaging studies associate 
different patterns of brain activity with different kinds of memory (Cabeza & Nyberg, 
2000; Milner et al., 1998; Squire & Wixted, 2011). Cognitive neuroscience’s ability 
to guide functional decomposition does not require localizationism. We need not 
correlate a cognitive function with a local brain region. We only need to observe 
reliable differences in activation patterns, realizing that multiple brain regions might 
produce the differences.

Cognitive neuroscience can also aid functional decomposition by exploring 
domains that cognitive psychologists might not ordinarily study. For instance, we 
will see in Section 5.10 that cognitive psychologists rarely study emotion. How-
ever, cognitive neuroscientists have studied the relationship between emotion and 
memory (Eichenbaum, 2002). Thus, cognitive neuroscience can expand the typical 
domain of a functional analysis conducted by cognitive psychologists.

We cannot complete a functional analysis without evidence of primitive sub- 
functions. Because biological mechanisms bring to life the primitives of human or 
animal cognition, cognitive neuroscience can help to subsume a functional analysis. 
In all likelihood, cognitive neuroscience’s support for the subsumption of functional 
primitives requires a microscopic perspective of the sort favoured by Uttal (2011). We 
can find one example in current accounts of Hebbian learning. In his theory of cell 
assemblies, Hebb (1949) proposed that, if two neurons generated action potentials 
at the same time, then the excitatory connection between them would strengthen. 
His idea inspired many models of associative learning (Hinton & Anderson, 1981; 
Milner, 1957; Rochester et al., 1956).

We can subsume Hebbian learning. The biological phenomenon of long- term 
potentiation, dependent on N-methyl- D- aspartate (NMDA) receptors in hippocam-
pal neurons, provides a biological account of Hebb’s learning rule (Bliss & Lomo, 
1973; Brown, 1990; Lynch, 1986; Martinez & Derrick, 1996). NMDA receptors only 
permit ions to pass through membranes when both pre-  and post- synaptic activity 
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occur at the same time. Furthermore, blocking NMDA receptor sites prevents 
the hippocampus from establishing memories, indicating that NMDA receptors 
relate to learning (Morris et al., 1986). NMDA receptors explain Hebbian learning  
(Brown & Milner, 2003; Klein, 1999; van Hemmen & Senn, 2002).

Many controversies emerge when we treat the goal of cognitive neuroscience as 
reducing psychological functions to neural processes. We find fewer controversies 
when we view the goal as providing additional observations to support functional 
analysis. The methods of cognitive neuroscience complement the methods of 
experimental cognitive psychologists, aiding the broader effort of performing func-
tional analyses of cognition.

5.9 Do Brains Think?

Do brains think? Almost every modern cognitive psychologist would answer “Yes.” 
However, other scholars would not (Bennett et al., 2007; Bennett & Hacker, 2003, 
2013). Bennett and Hacker argue that brains do not think and that cognitive neuro-
scientists should not attribute psychological properties to the brain. Bennett and 
Hacker argue that brains do not think because thinking is a characteristic of whole 
organisms and not of their parts: “We deny that it makes sense to say that the brain 
is conscious, feel[s] sensations, perceives, thinks, knows or wants anything— for 
these are attributes of animals, not of their brains” (2013, p. 242).

Bennett and Hacker (2013) take inspiration from Ludwig Wittgenstein’s Philo-
sophical Investigations, drawing from a particular passage in that book: “Only of a 
human being and of what resembles (behaves like) a living human being can one say: 
it has sensations; it sees, is blind; hears, is deaf; is conscious or unconscious” (1953, 
§281). Bennett and Hacker argue that claiming brains think provides an example of 
the mereological fallacy. We commit that fallacy when we attribute a property to a 
part that we should attribute to the whole organism.

Bennett and Hacker’s (2013) position seems to return to behaviorism. For 
instance, on what basis would they attribute consciousness to a whole organism? 
“The concept of consciousness is bound up with the behavioral grounds for ascribing 
consciousness to the animal” (p. 245). They say that we can only attribute psych-
ological states to organisms when organisms display proper behaviour. Brains do 
not behave, and therefore we cannot say that brains have psychological properties.

The mereological fallacy challenges widely accepted views of brains and  
minds. Not surprisingly, the fallacy faces considerable criticism (Churchland, 2005; 
Dennett, 2007; Searle, 2007), some of which arises from the computer metaphor. 
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Churchland (2005, p. 470) describes digital computers as devices “deliberately built 

to engage in the ‘rule- governed manipulation of complex symbols.’” Computer 

engineers explain how computers work by appealing to information processing. 

To computer designers, computers store, manipulate, and retrieve information by 

following formal rules. “Such talk now makes perfect sense, at least to computer 

scientists” (p. 470).

Bennett and Hacker respond by applying the mereological fallacy to digital 

computers:

It is true that we do, in casual parlance, say that computers remember, 

that they search their memory, that they calculate, and sometimes, 

when they take a long time, we jocularly say that they are thinking 

things over. But this is merely a façon de parler. It is not a literal appli-

cation of the terms “remember,” “calculate” and “think.” Computers 

are devices designed to fulfil certain functions for us. We can store 

information in a computer, as we can in a filing cabinet. But filing  

cabinets cannot remember anything, and neither can computers. We 

use computers to produce the results of a calculation— just as we used 

to use a slide rule or a cylindrical mechanical calculator. Those results 

are produced without anyone or anything literally calculating— as is evi-

dent in the case of a slide rule or a mechanical calculator. (2013, p. 248)

However, their criticism of digital computers abandons the behaviorism that 

they apply to the brain by admitting that computers generate the right behaviour: 

“Computers are devices designed to fulfil certain functions for us.” Bennett and 

Hacker dismiss behavioural evidence, however, because computers do not generate 

behaviour in the right way:

Computers were not built to “engage in the rule- governed manipula-

tion of symbols,” they were built to produce results that will coincide 

with rule- governed, correct manipulation of symbols. Further, com-

puters can no more follow a rule than can a mechanical calculator. A 

machine can execute operations that accord with the rule, provided 

all the causal links built into it function as designed and assuming  

that the design ensures the generation of a regularity in accord-

ance with the chosen rule or rules. But for something to constitute 



Questioning Foundations 153

https:// doi .org/ 10 .15215/ aupress/ 9781771993418 .01

following a rule, the mere production of a regularity in accordance 
with the rule is not sufficient. (2013, p. 256)

What, in addition to behaviour, do Bennett and Hacker require to support  
the claim that computers follow rules? As they suggest,

A being can be said to be following a rule only in the context of a 
complex practice involving actual and potential activities of justify-
ing, noticing mistakes and correcting them by reference to the rule, 
criticizing deviations from the rule, and, if called upon, explaining an 
action as being in accordance with the rule and teaching others what 
counts as following a rule. (2013, p. 256)

Similarly, “In order literally to calculate, one must have a grasp of a wide range of 
concepts, follow a multitude of rules that one must know, and understand a variety 
of operations. Computers do not and cannot” (p. 248).

Thus, when the internal causal links of a computer cause it to perform calcula-
tions, it does not perform “true” calculation. True calculation requires additional, 
semantic properties: grasping concepts or understanding operations.

Bennett and Hacker’s (2013) response to Churchland restates the Chinese room 
problem (Section 5.7). When Bennett and Hacker look inside computers, they fail to 
see the expected calculation processes. Similarly, when they look inside the brain, 
they fail to see the expected thinking processes. However, they have incorrect 
expectations. Functional analysis decomposes behaviour into an organized system 
of primitives, which themselves neither resemble nor reveal the whole system’s 
behaviour. Although we might describe a whole brain as understanding English, we 
cannot describe individual neurons in the same way (Churchland & Churchland, 
1990). When we look inside a system, we can explain it using functional analysis; we 
should not see whole behaviour. We should see instead the primitives for bringing 
the whole behaviour into being.

Churchland’s (2005) rebuttal damages Bennett and Hacker’s (2013) position 
because we can explain computers using functional analysis, which dictates  
a computer’s design (Kidder, 1981). When a designer explains how she engineers 
computer behaviour, the explanation takes a different form from what Bennett 
and Hacker would like. Churchland’s critique demonstrates that the mereological 
fallacy does not always have problems. By hypothesis, cognitivists argue that we 
can explain thinking, and ultimately brain function, in the same way that we can 



154 What Is Cognitive Psychology?

https:// doi .org/ 10 .15215/ aupress/ 9781771993418 .01

explain computers. The mereological hypothesis will apply to neither computers 

nor brains when the hypothesis is true.

One further puzzle created by Bennett and Hacker’s position concerns the pur-

pose of cognitive neuroscience. Bennett and Hacker admit that we require brain 

processes for thinking to occur, and they describe cognitive neuroscience as aiming 

“to illuminate those mechanisms in the brain that must function normally in order 

for us to be able to exercise our psychological faculties, such as perception and 

memory” (2013, p. 1). However, the mereological fallacy dictates that we cannot 

accomplish the stated aim by ascribing psychological states to brain states. How, 

then, can cognitive neuroscience relate brain function to psychological faculties?

Functional analysis provides an answer. We explain information processing 

systems at different levels (e.g., computational, algorithmic, architectural, and 

implementational; see Section 1.7) (Dawson, 2013; Marr, 1982; Pylyshyn, 1984). We 

can describe electric circuits physically or as computing a complex Boolean function 

(Shannon, 1938). However, we expect differences between explaining a system at 

one level and explaining the same system at another level. The biological account 

of centre- surround cells in the lateral geniculate nucleus differs dramatically from 

the mathematical derivation of a difference of Gaussians function.

Nevertheless, we can relate different levels to one another. Both centre- surround 

cells and differences of Gaussians describe edge detection. The empirical successes 

of cognitivism show that we can sensibly claim that brains think. However, we 

must expect differences between accounting for a system at the implementational 

level and accounting for a system at the algorithmic level. The brain mechanisms 

for thinking differ from thinking itself.

5.10 Which Topics Are Important to Cognitive Psychology?

In Sections 5.2 through 5.9, I discussed architectural challenges to traditional cog-

nitive psychology from connectionism, architectural challenges from embodied 

cognition, and philosophical issues raised by cognitive neuroscience. In the final 

two sections of this chapter, I step back to consider broadly the nature of cognitive 

psychology. How can we define cognitive psychology? In Section 5.10, I attempt 

to define it by exploring how textbooks have presented the discipline in different 

decades. We will see that the definition of cognitive psychology seems to change 

over time. In Section 5.11, I propose a more general, but hopefully more lasting, 

definition by moving away from cognitive psychology’s topics and by moving toward 
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its methods. I begin by exploring how cognitive psychology textbooks present the 

discipline as the study of specific topics and by observing changes in such topics 

over decades.

Which topics are important to cognitive psychology? Let us explore how text-

books have introduced students to the discipline over the past several decades. 

Thomas Verner Moore (1939) wrote the first book, titled simply Cognitive Psychology. 

Moore discussed topics often seen in modern texts: perception, imagery, memory, 

judgment, and reasoning. However, his book had little impact (Knapp, 1985; Sur-

prenant & Neath, 1997). Surprenant and Neath note that other important books, 

aligned with more prominent schools of psychology (functionalism and behavior-

ism) overshadowed Moore (Hilgard & Marquis, 1940; Hull et al., 1940; McGeoch, 

1942; Woodworth, 1938). Moore did not spark the cognitive revolution.

Important texts appeared after the cognitive revolution. Cognition and Thought 

(Reitman, 1965) introduced information processing to psychologists and included an 

appendix on how to program computers to simulate psychological models. Cognitive 

Psychology (Neisser, 1967), usually described as the field’s founding text, defined 

cognitive psychology as the study of “all the processes by which the sensory input 

is transformed, reduced, elaborated, stored, recovered and used” (p. 4).

Cognitive psychology texts became more common in the 1970s. An Introduction 

to Cognitive Psychology (Manis, 1971) discussed topics ranging from learning and 

memory to cognitive consistency and social judgment. Cognitive Psychology: The 

Study of Knowing, Learning and Thinking (Anderson, 1975) placed cognitive psychol-

ogy into an idiosyncratic context of cybernetics, systems theory, and control theory. 

The variety of topics covered by early texts suggests that a unified understanding 

of cognitive psychology had not yet emerged. However, by the late 1970s, cognitive 

psychology texts had become more standardized and adopted an organization still 

seen in modern books (Reynolds & Flagg, 1977; Solso, 1979).

For example, Cognitive Psychology (Reynolds & Flagg, 1977) begins by placing 

the cognitive approach in a historical context. Early chapters discuss peripheral 

processes (sensory memory, pattern recognition), middle chapters describe mem-

ory, and final chapters focus on language. The cognitive psychology textbooks of 

the 1980s elaborate Reynolds and Flagg’s organization by adding later chapters on 

higher- order processing, such as problem solving, reasoning, and judgment and 

decision making (Anderson, 1980, 1985; Dodd & White, 1980; Reed, 1982, 1988). 

From the 1990s on, such organization becomes the norm, although more modern 

texts also include an early chapter on neuroscience.
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To gain insight into the contents of cognitive psychology textbooks, as well as 
into the changes in contents over time, let us explore the contents of several books. 
We can examine chapter titles and lengths, and classify each chapter as covering a 
general topic, adopting a methodology similar to earlier analyses of cognitive psych-
ology texts (Lewandowsky & Dunbar, 1983; Marek & Griggs, 2001). I consider two 
texts from the 1960s (Neisser, 1967; Reitman, 1965); five from the 1970s (Bourne et 
al., 1979; Lachman et al., 1979; Manis, 1971; Reynolds & Flagg, 1977; Solso, 1979); six 
from the 1980s (Anderson, 1980, 1985; Dodd & White, 1980; Reed, 1982, 1988; Solso, 
1988); and six from the 1990s (Haberlandt, 1994; Kellogg, 1995; Martindale, 1991; 
Medin & Ross, 1992; Reed, 1996; Solso, 1995). The remaining 12 appeared in 2000 
or later (Anderson, 2000, 2020; Braisby & Gellatly, 2012; Eysenck & Keane, 2020; 
Farmer & Matlin, 2019; Goldstein, 2011, 2015; Groome, 2014; McBride & Cutting, 
2019; Reisberg, 2013, 2018; Sinnett et al., 2016).

I process each book as follows. First, I record the title of each chapter and the 
total number of pages. Second, I examine the contents of each chapter and then clas-
sify the chapter as presenting one of the 22 finer- detailed topics in the left column 
of Table 5- 1. When I could conceivably assign a chapter to more than one category, 
I use only one category (e.g., I code “language acquisition” as “language,” not as 
“learning”); I use a consistent coding. Third, I calculate the total number of pages 
for each category by summing up the number of pages for all chapters belonging 
to that category.

After I code each book, I collapse topics into a coarser set of categories by com-
bining several finer categories to define a more general category. For instance, 
category 5 in the coarser scheme (“Problem Solving, Reasoning”) was created by 
combining four finer categories (“Problem Solving,” “Reasoning,” “Judgment, Deci-
sion Making,” “Intelligence, Creativity”). The layout of Table 5- 1 shows the finer 
categories that I combined into each coarser category. The coarser coding scheme is 
very similar to the one used by Marek and Griggs (2001). The processing represents 
each textbook in terms of the number of pages devoted to both the finer and the 
coarser topics listed in Table 5- 1. I convert the number of pages into proportions by 
dividing each by the total number of pages in a text.

This textbook representation permits us to see easily which topics are import-
ant to cognitive psychology, which topics are more important than others, and  
how topic coverage changes over time. For example, Figure 5- 5 presents a treemap 
of the text contents from Table 5- 1’s coarser topics. We can create the treemap by 
averaging the proportion of pages devoted to a topic over the books representing 
four different time periods: the 1970s, 1980s, 1990s, and 2000s (any book published 
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after 2000). A treemap represents proportions hierarchically. Figure 5- 5’s first level in 
the hierarchy represents book topics; the second level organizes topics by book eras.

In Figure 5- 5, I represent the upper part of the hierarchy (the set of eight topics 
from the coarse coding scheme) using a large rectangle of a uniform colour. For 
instance, the large white rectangle at the top left of the treemap represents the 

Table 5- 1 Two sets of categories used to classify the contents of book chapters

Finer Topics Coarser Topics

 1. Foundations, History  1. Foundations, History

 2. Neuroscience  2. Neuroscience, Physiology

 3. Sensation  3. Perception, Attention, Consciousness

 4. Attention

 5. Perception

 6. Consciousness

 7. Primary Memory  4. Memory

 8. Secondary Memory

 9. Levels of Processing

 10. Representational Format

 11. Mental Imagery

 12. Problem Solving  5. Problem Solving, Reasoning

 13. Reasoning

 14. Judgment, Decision Making

 15. Intelligence, Creativity

 16. Language  6. Language

 17. Development  7. Development

 18. Learning  8. Other

 19. Emotion

 20. Social

 21. Models, Simulation

 22. Other
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topic “Memory.” The rectangle’s size represents the proportion of pages in texts that 
we can classify as covering “Memory.” I represent the hierarchy’s next level (book 
era) by dividing a large rectangle into components. For instance, I divide the large 
white rectangle for the topic “Memory” into four smaller rectangles. I label each  
smaller rectangle by era; each rectangle’s size represents a topic’s coverage by a subset 
of books (i.e., all books belonging to the same era).

When we inspect the large rectangles in Figure 5- 5, we find that the topic “Mem-
ory” receives the most coverage, because the rectangle for “Memory” has the largest 
area. The next most covered topics are “Perception,” “Language,” and “Thinking,” 
each of which has roughly equal coverage. We find less coverage for “Foundations” 
and “Other.” “Neuroscience” has little coverage, followed by “Development.”

We can also see, from Figure 5- 5, how topic coverage changes over the four  
different eras. “Memory” and “Perception” receive equal coverage over all  
four eras, but “Language” receives less coverage beginning in 2000. Most coverage 
of “Neuroscience” occurs after 2000 and receives little coverage prior to the 1990s. 
The coverage of “Development” has decreased since the 1980s. “Thinking” receives 
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Figure 5- 5 A treemap of how cognitive psychology textbooks cover the coarse set 
of topics from Table 5- 1. The books belong to the 1970s (1970– 1979), the 1980s 
(1980– 1989), the 1990s (1990– 1999), or the 2000s (2000– 2020).
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more treatment after the 1980s. The 1980s stand out for having less coverage of 
“Foundations.”

We should also consider topics absent from Figure 5- 5 (unless they belong to 
“Other”). Social cognition has its own textbooks (Fiske & Taylor, 2020; Kunda, 
1999) and receives little coverage in cognitive psychology texts. The same is true 
for comparative cognition, a field absent from Figure 5- 5 but covered by its own 
texts (Menzel & Fischer, 2012; Olmstead & Kuhlmeier, 2015; Shettleworth, 2013). 
Figure 5- 5 reveals a discipline that focuses on cognition in individual adult humans. 
The figure also reveals that the coverage of unique topics (“Other”) decreases after 
2000, suggesting a growing uniformity of topic coverage in modern texts.

We can consider the similarities between individual texts in more detail by com-
puting correlations between texts. We can calculate using the values for each text 
for the finer set of topics from Table 5- 1. (This analysis excluded an extreme outlier, 
the Reitman [1965] text, which produced negative correlations with all other texts.)

We can use our correlations to conduct a multi- dimensional scaling (MDS) 
analysis. MDS, a statistical tool, positions different objects in a map. MDS places 
similar objects near one another and dissimilar objects farther apart. Figure 5- 6 
plots a three- dimensional MDS solution derived from the textbook correlations. 
The MDS solution provides an excellent fit to the data; the solution produces 
a correlation of 0.975 for distances among the books in Figure 5- 6 and the ori-
ginal correlations. What does Figure 5- 6 reveal about the relationships among 
individual textbooks? Each dimension of the graph represents different topic 
combinations.

The first dimension (“Perception/Neuroscience vs Language/Memory”) arranges 
books in terms of their combined treatment of four different topics. Books having 
a more positive position along this dimension (Braisby & Gellatly, 2012; Goldstein, 
2011; Groome, 2014) have more coverage of both perception and neuroscience and 
less coverage of both language and memory. In contrast, books having a more nega-
tive position along this dimension (Anderson, 2020; Haberlandt, 1994; Reed, 1996) 
have less coverage of both perception and neuroscience and more coverage of both 
language and memory.

We can provide a similar account for the second dimension (“Language/
Neuroscience vs Memory/Problem Solving”), which provides the y axis of the top 
plot, and the x axis of the bottom plot, of Figure 5- 6. Books with a more positive 
position along this dimension (Dodd & White, 1980; Goldstein, 2011, 2015) have 
more coverage of both language and neuroscience and less coverage of both memory 
and problem solving. In contrast, books with a more negative position along this 
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Figure 5- 6 A plot of the three- dimensional MDS solution for correlations among 
textbooks based upon the 22 finer topics from Table 5- 1. The top plot uses the 
first and second dimensions as the coordinates of the books. The bottom plot 
uses the second and third dimensions as the coordinates of the books.
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dimension (Lachman et al., 1979; Manis, 1971; Neisser, 1967; Reynolds & Flagg, 1977) 
have less coverage of both language and neuroscience and more coverage of both 
memory and problem solving.

We can also provide a similar account for the third dimension (“Neuroscience/
Memory vs Problem Solving/Language”), which provides the y axis of the bot-
tom plot of Figure 5- 6. Books with a more positive position along this dimension 
(McBride & Cutting, 2019; Reisberg, 2013, 2018) have more coverage of both neuro-
science and memory and less coverage of both problem solving and language. In 
contrast, books with a more negative position along this dimension (Dodd & White, 
1980; Goldstein, 2011; Manis, 1971) have less coverage of both neuroscience and 
memory and more coverage of both problem solving and language.

Which topics are important to cognitive psychology? Figure 5- 5 indicates that 
the core topics are memory, followed by thinking, perception, and language. How-
ever, a topic’s importance changes over time. For instance, modern texts, but not 
earlier texts, have high coverage of neuroscience. Figure 5- 6 indicates that different 
textbooks emphasize different topic combinations. Books with more coverage of 
neuroscience and perception, or of neuroscience and memory, have less coverage 
of language and problem solving.

In summary, cognitive psychology texts cover similar topics but still differ notice-
ably from one another. The average correlation used for the MDS analysis is 0.431. 
A correlation so large suggests a strong commonality of topics in texts through 
the decades. However, a correlation so small also suggests great variability of topic 
coverage. Some variation suggests that the definition of cognitive psychology has 
changed over time, as I discuss in Section 5.11.

5.11 What Is Cognitive Psychology?

What is cognitive psychology? To answer that question, we might consider textbook 
definitions. The definition of cognitive psychology has evolved over the decades. 
Moore (1939, p. v) provided the first textbook definition of cognitive psychology: 
“Cognitive psychology is the branch of general psychology which studies the way in 
which the human mind receives impressions from the external world and interprets 
the impressions thus received.” Moore’s definition highlights a common theme of 
cognitive psychology’s later reaction to behaviorism: replacing the passive responder 
with the active information processing agent.

Neisser (1967) defines cognitive psychology in two parts. He first restates Moore’s 
(1939) definition but introduces information processing ideas: “The term ‘cognition’ 
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refers to all the processes by which the sensory input is transformed, reduced, elab-
orated, stored, recovered, and used” (p. 4). Neisser then lists cognitive psychology’s 
prototypical topics: “Such terms as sensation, perception, imagery, retention, recall, 
problem- solving, and thinking, among many others, refer to hypothetical stages or 
aspects of cognition” (p. 4). Let us call his definition the information processing 
definition.

We find that definition in many cognitive psychology textbooks published after 
Neisser’s (1967) (Anderson, 1980; Haberlandt, 1994; Reed, 1982, 1988, 1996; Reynolds 
& Flagg, 1977). For example, Reynolds and Flagg write that “cognitive psychology is 
defined partly by what it does (the information processing approach to be described 
shortly) and by its subject matter, the higher mental processes” (p. 11).

Importantly, an alternative, broader definition appears in more modern texts. 
It places less emphasis on information processing and more emphasis on research 
methods or approaches. Let us call this the methodological definition. One example 
is provided by Eysenck (2020, p. 37):

Cognitive psychology used to be unified by an approach based on 
an analogy between the mind and the computer. This information- 
processing approach viewed the mind as a general- purpose, symbol 
processing system of limited capacity. Today there are four main 
approaches to human cognition: cognitive psychology, cognitive 
neuropsychology, cognitive neuroscience, and computational cog-
nitive science. These four approaches are increasingly combined to 
provide an enriched understanding of human cognition.

We can find Eysenck’s methodological definition in several modern textbooks 
(Farmer & Matlin, 2019; Groome, 2014; McBride & Cutting, 2019). That definition 
includes other fields’ contributions to studying cognition. Cognitive neuropsych-
ology studies deficits in cognitive performance associated with brain injuries. 
Cognitive neuroscience uses brain imaging techniques to explore the relationship 
between normal brain function and cognition. Computational cognitive science 
produces computer models of cognitive phenomena. The methodological definition 
modernizes cognitive psychology by including the latest methodologies.

Unfortunately, the methodological definition fails to consider any overarching 
approach to cognition. Defining cognitive psychology only in terms of meth-
odological approaches seems to be too inclusive. For example, Skinner (1957) 
studied a core cognitive topic, language, but his theory was not cognitive (Chomsky,  
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1959), and Skinner (1977) was not a cognitive psychologist. Modern simulations,  
such as deep belief networks, successfully solve many tasks involving images or lan-
guage (LeCun et al., 2015), but they do not produce cognitive theory. The cognitive 
neuroscience promoted by some (Bennett & Hacker, 2003, 2013) provides details 
about brain processes but excludes psychological terms. Such examples conform  
to the methodological definition but do not belong to cognitive psychology.

A better definition must include the nature of cognition. It must also include 
the kind of explanations that cognitive psychologists seek. For instance, cognitive 
psychology is the branch of general psychology which explains psychological phenom-
ena by using functional analysis to describe information processing. This definition 
appeals to a theory about cognition (information processing) and refers to the type 
of explanation sought (i.e., functional analyses). Neither the information processing 
hypothesis nor the practice of conducting functional analysis restricts the variety 
of theories or topics characterized by the definition.

Furthermore, by emphasizing the kind of explanation that cognitive psycholo-
gists seek, the definition forces Eysenck’s (2020) four approaches to be included in 
cognitive psychology only by contributing to functional analysis. For instance, the 
definition includes computer simulations only compared to human performance 
in the search for strong equivalence. Similarly, the definition includes studies from 
cognitive neuropsychology or cognitive neuroscience only for guiding functional 
decomposition or for providing evidence for causal subsumption.

Some might argue that this candidate definition excludes too much from cognitive 
psychology. But cognitive psychology proceeds by adopting a strong theory—  
the information processing hypothesis— and then by exploring the topics that the 
hypothesis can explain (Pylyshyn, 1980, 1984). “It is no less true of cognitive science 
than of other fields that we start off with the clear cases and work out, modifying our 
view of the domain of the theory as we find where the theory works” (Pylyshyn, 1980, 
p. 119; italics added). The theoretical perspective persists while cognitive psychol-
ogy’s topics and methods evolve.
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