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Abstract: Background: The progressive aging of populations, primarily in the industrialized western
world, is accompanied by the increased incidence of several non-transmittable diseases, including
neurodegenerative diseases and adult-onset dementia disorders. To stimulate adequate interventions,
including treatment and preventive measures, an early, accurate diagnosis is necessary. Conven-
tional magnetic resonance imaging (MRI) represents a technique quite common for the diagnosis
of neurological disorders. Increasing evidence indicates that the association of artificial intelligence
(AI) approaches with MRI is particularly useful for improving the diagnostic accuracy of different
dementia types. Objectives: In this work, we have systematically reviewed the characteristics of AI
algorithms in the early detection of adult-onset dementia disorders, and also discussed its perfor-
mance metrics. Methods: A document search was conducted with three databases, namely PubMed
(Medline), Web of Science, and Scopus. The search was limited to the articles published after 2006
and in English only. The screening of the articles was performed using quality criteria based on
the Newcastle–Ottawa Scale (NOS) rating. Only papers with an NOS score ≥ 7 were considered
for further review. Results: The document search produced a count of 1876 articles and, because of
duplication, 1195 papers were not considered. Multiple screenings were performed to assess quality
criteria, which yielded 29 studies. All the selected articles were further grouped based on different
attributes, including study type, type of AI model used in the identification of dementia, performance
metrics, and data type. Conclusions: The most common adult-onset dementia disorders occurring
were Alzheimer’s disease and vascular dementia. AI techniques associated with MRI resulted in
increased diagnostic accuracy ranging from 73.3% to 99%. These findings suggest that AI should be
associated with conventional MRI techniques to obtain a precise and early diagnosis of dementia
disorders occurring in old age.

Keywords: adult-onset dementia; Alzheimer’s disease; magnetic resonance imaging; artificial
intelligence; machine learning; neural networks

1. Introduction

Adult-onset cognitive disorders (AOCD) are characterized by a clinically significant,
acquired impairment of cognitive functions [1,2]. Around 50 million people were affected
by AOCD (dementia) worldwide in 2018, with a cost of approximately one trillion dollars
for their care every year [3]. There is an impairment in daily functioning caused by multiple
cognitive deficits. The main symptoms of AOCD are dementia, delirium, and mild cognitive
impairment (MCI). A person with dementia has severe impairments in memory, language,
problem solving, and other thinking abilities [4]. In most cases, delirium is defined as a
state of acute disturbance of consciousness accompanied by a change in cognition during
the day [5,6], whereas MCI is characterized by loss of memory and other cognitive abilities
in individuals [7].
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The impairment of neurocognitive function is associated with several neurological
conditions, including Alzheimer’s disease (AD), frontotemporal dementia, Lewy body dis-
ease, Parkinson’s disease (PD), Huntington’s disease, Prion disease, traumatic brain injury,
and others [8–11]. A pathophysiological correlation has been demonstrated between the
progression of AD and nerve cell loss, neuro-fibrillary tangles, and senile plaques [12–14].
However, amyloid levels do not correlate directly with the progression of AD, affecting
primarily the hippocampal, entorhinal cortex, neocortex, and other brain regions [12].
Neurofibrillary degeneration has been observed hierarchically among brain regions, and a
pattern of progression of lesions is generally accepted [15].

Neurocognitive tests, brain imaging, and cerebrospinal fluid (CSF) tests are currently
used to diagnose AD [16]. By improving diagnostics, biomarkers can facilitate early AD de-
tection and treatment [17]. Studies have demonstrated the importance of early diagnostics,
pharmacological interventions, lifestyle changes, and decreasing cardiovascular risk factors
in suppressing the progression of the disease [18–20]. Therefore, it is imperative to diagnose
clinical conditions that can potentially progress into dementia as early as possible [21,22].

In this 21st century, artificial intelligence (AI) composed of both machine learning
(ML) and deep learning (DL) is rapidly revolutionizing the field of medicine [23]. ML
involves an AI algorithm that selects the most suitable model based on a set of alternatives.
For complex applications, ML algorithms have several advantages, including nonlinearity,
fault tolerance, and real-time operation. Although the ML models incorporate information
not ordinarily available to clinicians, such as advanced neuroimaging, genetic testing, and
cerebrospinal fluid biomarkers, they can be applied to specialist and research settings [24].

Recent studies demonstrated the effectiveness of ML algorithms in neuroimaging and
cognitive testing for the early detection of neurodegenerative diseases such as AD [25,26].
Patients with dementia will benefit from high-quality care when these diverse and strategic
resources are utilized effectively. Therefore, ML is a crucial component in achieving this
goal, and there is evidence that ML knowledge from clinical data can be used to plan
care for people at risk of different dementia forms [27–31]. Review articles on the use
of AI in the brain sciences analyze the opportunities and challenges associated with its
implementation [32,33]. Neurogenerative disorders are poorly understood due to a lack of
systematic analysis of AI technologies.

This systematic review examines the involvement of AI applications in AOCDs. In this
study, all performance metrics of the AI model for the early diagnosis of neurogenerative
disorders such as dementia are presented. It provides a comprehensive overview of the
state-of-the-art for machine learning about health informatics in dementia care. As we deal
with big health data, we compile and review existing scientific methodologies. It has been
demonstrated that ML can contribute to the analysis of neuroimaging data in dementia
care. However, a relatively small effort has been made to apply advanced ML approaches
to integrated heterogeneous data, which demonstrates the future potential and directions
in dementia informatics.

2. Methods
2.1. Document Search

The review was conducted based on the guidelines of the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) 2020. The document search was
performed based on available literature from the databases PubMed, Web of Science
(WoS), and Scopus. The document search was performed between the years 2006 and
2022. Articles before 2006 were excluded because of the limited literature on the topic
of AI techniques in the diagnosis of neurogenerative diseases. Search keywords used
were “artificial intelligence, “machine learning, “deep learning, “dementia”, “Alzheimer”s
disease”, and “MRI”. The search queries were carefully framed using Medical Subject
Headings (MeSH) for different databases, which are further listed in Table 1. The document
distribution of each database can be found in Figure 1.
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Table 1. Search queries for three adopted databases.

Database Query

PubMed

English AND (“Artificial Intelligence” [Title/Abstract/MeSH] OR “Machine
Learning”[Title/Abstract/MeSH]) OR “Deep learning” AND

(“diagnosis”[Title/Abstract] OR “detection”[Title/Abstract] OR
“identification”[Title/Abstract] OR “recognition”[Title/Abstract]) OR
“interpretation”[Title/Abstract]) AND (“dementia”[All Fields] AND

“MRI”[All Fields]) AND “PET” [All Fields]) AND “image data”[All Fields])
NOT “classification” [Title/Abstract/MeSH] NOT

“ranking”[Title/Abstract/MeSH] NOT “grouping”[Title/Abstract/MeSH]
NOT Review[ptyp] NOT books and Documents [ptyp] NOT conference [ptyp]

WoS

(“AI” AND “Artificial Intelligence” AND “Machine Learning” AND “Deep
Learning”) AND (“Diagnosis” OR “Identification” OR “recognition”) AND
(“dementia” OR “Alzheimer’s disease” OR “MRI” OR “PET” OR “medical

imaging” OR “neuro”) NOT “segmentation” NOT “functional” NOT
“connectivity”) AND LANGUAGE: (English) AND DOCUMENT TYPES:

(Review OR Proceedings Paper)

Scopus

TITLE-ABS-KEY (“Artificial Intelligence” AND “Machine Learning” AND
“Deep Learning”) AND (“Diagnosis” OR “Identification” OR “recognition” OR
“interpretation) AND (“neurological diseases” OR “neurogenerative disorders”

OR “dementia” OR “MRI” OR “PET”) AND LIMIT-TO (LANGUAGE,
“English”) AND (LIMIT-TO (EXACT KEYWORD, “dementia”)

Figure 1. Document distribution of each database.

2.2. Inclusion and Exclusion Criteria

We included all articles focused on AI use in dementia diagnosis or early-stage identifi-
cation. The articles handling the data of patients with different types of dementia and those
in the English language met the basic requirements of the inclusion criteria. The adoption
of AI-related ML and DL model outcomes with 2 × 2 confusion matrix outcomes was
considered. Papers published before 2006 and works not reporting the training and testing
data split or not providing information on validation approaches were excluded. Papers
published in languages other than English and dealing with animals were not considered
either. Conference papers or proceedings with insufficient data on patients’ information,
lack of information on the used model type, and validation approaches were excluded.

2.3. Quality Assessment

Once the literature search was carried out, the four authors independently assessed
each article in two phases. In the first phase, similar or duplicate documents extracted from
the three databases were eliminated by reading the abstracts. This analysis was conducted
with the conventional approach of reading the article title and abstract. The inclusion and
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exclusion criteria of the filters were applied, and the evolution of the quality of each selected
element was carried out based on the Newcastle–Ottawa scale (NOS), which varied from 0
to 9 [34]. The NOS defines each study in three ways: Poor (0–4), Moderate (5–6), and Good
(7–9). These scores are based on some filters, such as study selection, comparability, and
outcome. Various quality parameters, such as demonstration, coherence, risk factors, and
others, are considered. The quality scores of selected articles depend on these parameters.
These scores were recorded in an Excel sheet to calculate whether the selected study was
suitable for final consideration or not.

3. Results
3.1. Search Outcomes

With a literature search, 1876 documents were identified in the period mentioned.
Overall, 1195 documents were excluded due to duplication, ineligibility, and other reasons.
This resulted in 681 documents being screened. Based on the title and abstract, 424 papers
were excluded from further analysis as they were not consistent with the study objectives.
At the end of the preliminary assessment, 257 works were considered for further review.
For quality assessment, 76 documents were selected after applying inclusion and exclusion
criteria. To perform multiple screenings, authors were given the selected documents and
asked to note down quality scores anonymously for each work. In the absence of a high-
quality score, items outside the review objectives were not further analyzed. We included
29 studies and summarized their findings in tabular form (Figure 2).

Figure 2. PRISMA 2020 flow chart for new systematic reviews with databases and registry search
(*records extracted from only mentioned databases).
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In terms of AI classifiers, 28.6% of the reported number of studies developed models
using support vector machines (SVMs), and the models achieved accuracy ranging between
77.17% and 95.0%. In addition, two studies used Random Forest (RF) whereas the remaining
eight studies used multiple AI classifiers [34,35]. In this review, we have found that AI
models were used in five studies to diagnose AD, and six studies to diagnose other sorts
of dementia.

In most of the studies, AD detection is considered the highest priority. All these works
are associated with neuroimage data such as MRI data with dual modes (demographic
or image), positron emission tomography (PET), and other cognitive datasets. Studies
with deep learning neural networks produced a maximum accuracy of 98.3% [35–37]. As
shown in [38], the authors used neural network modeling to verify performance, and their
results showed that DenseNet-121 generated accuracy of 90.22%, which is higher than
Inception-V1, V2, and Residual Networks [39]. A simple classification model based on a
decision tree with hyperparameter tuning produced 99% accuracy [40].

Two studies developed an AI model for diagnosing Parkinson’s disease. In one of
these works, a CNN was trained and validated to detect PD from whole slide images
(WSI). Model results show high accuracy, sensitivity, and specificity of 99%. Another paper
developed an ML model for predicting Parkinson’s disease using the MRI method [41].
The model achieved 88% accuracy. The use of AI to diagnose and determine the prognosis
of dementia was explored in three studies [42–44].

3.2. Study Characteristics

The main characteristics of the selected papers (investigated country, study type,
dementia category, AI models and validation approaches, and performance metrics such
as accuracy, sensitivity, and specificity) are summarized in Table 2. Among 29 selected
works, a major part (22) of the studies are retrospective types, and the remaining seven
are prospective cohort studies. Moreover, 17 works combine the involvement of MRI data
coupling with AI modeling as a means of facilitating dementia and AD diagnosis [45–51].
Furthermore, electroencephalogram (EEG) sensors and clinical data can predict the risk
of other dementia types, such as MCI, PD, and frontotemporal [52–58]. On other hand, it
has been observed that nine studies appeared from the USA, which was followed by the
UK (3), India (3), and Canada (2).

Various AI algorithms are used to assist in identifying different forms of dementia.
Results mention that the common cause of neurocognitive disorders is AD, whose main
features are progressive memory loss and multidomain cognitive decline. AD represents
60% of all neurocognitive disorders [59]. AOCDs are a major cause of disability in the
general population. Current data and prospects make dementia treatment a pivotal topic in
the planning of national health systems, recognizing it as a major challenge for proposing
sustainable choices for health and social assistance [60].

In terms of AI classifiers, 28.6% of studies applied SVM models and achieved accu-
racy in between 77.17% and 95.0% [49,50,56,58]. In addition, two studies used RF algo-
rithms [45,51], whereas the remaining eight used multiple AI classifiers [46–48,52–55,57].
The present review found that five studies used AI models in AD diagnosis [45–47,52,56],
and six studies to diagnose other dementia types [48–50,53,57].

Two studies developed an AI model for PD diagnosis [41,61]. A Boutet et al. developed
an ML model for PD prediction using the MRI method [41], and M Signaevsky et al. trained
and validated a CNN to detect PD from whole slide images (WSI) [61]. Results show high
accuracy, sensitivity, and specificity. CI and MCI were classified with 81% and 96.6% of
accuracy with recurrent neural networks (RNN) and artificial neural networks (ANN),
respectively [43,62]. A study using multi-layer perceptrons (MLP) with cognitive data
showed that 92.98% of AD cases were accurately diagnosed [63]. The mini-mental state
examination (MMSE) and clinical dementia ratio (CDR) tests were also used to further
classify AD stages with ResNet and DenseNet, which resulted in 99% accuracy [64,65].
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Table 2. Characteristics of papers included in the review.

N Country Study Cohort Dementia
Category AI Model AI Modality Validation Methods Accuracy Sensitivity Specificity Ref.

1 Canada Prospective AD RUSRF PET, MRI Independent test set 84% 70.8% 86.5% [39]

2 UK, China Retrospective MCI, Dementia MobileNet, SVM Facial
expressions

5-fold
cross-validation 73.3% N/A N/A [42]

3 India Retrospective AD
DNN, Inception-V1,

V2, V3, Residual
Networks, DenseNet

MRI Independent test set 90.22% N/A N/A [38]

4 India Retrospective AD CNN MRI Independent test set 98.3% 97% N/A [35]

5 India Retrospective AD DTC-HPT MRI Independent test set 99% 99.10% N/A [40]

6 Egypt Retrospective AD CNN MRI 10-fold
cross-validation 97% 95% N/A [36]

7 USA Retrospective AD ResNet-50, GBM MRI 10-fold
cross-validation 99% N/A N/A [64]

8 USA Retrospective AD MLP Cognitive data Independent test set 92.98% 93.75% 92.68% [63]

9 Canada Retrospective AD CNN MRI 5-fold
cross-validation 84% N/A N/A [37]

10 South Korea Retrospective MCI, Dementia ANN NPT data 10-fold
cross-validation 96.66% 96% 96.8% [43]

11 USA Prospective Dementia LSTM, CNN Voice Data 5-fold
cross-validation 74% 66.3% 84.7% [44]

12 USA Prospective PD CNN WSI Cross-validation 99% 99% 99% [61]

13 USA Prospective AD RNN MRI 5-fold
cross-validation 81% 84% 80%% [62]

14 Lithuania Retrospective AD ResNet18,
DenseNet201 MRI Cross-validation 98.86% 98.89% N/A [65]

15 Canada Prospective PD ML model MRI
Independent test set/

5-fold
cross-validation

88% N/A N/A [41]

16 Spain Retrospective AD RF MRI Cross-validation 94.4% N/A N/A [45]
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Table 2. Cont.

N Country Study Cohort Dementia
Category AI Model AI Modality Validation Methods Accuracy Sensitivity Specificity Ref.

17 Greece Retrospective
AD and

Frontotemporal
Dementia

DT, RF, ANN, SVM,
Naïve Bayes, and

KNN
EEG

10-fold and
leave-one-patient-out

cross-validation

80% (DT)–99.1%
(RF)

94% (NB)–98.6%
(RF)

58% (NB)–99%
(RF) [52]

18 Italy Retrospective AD
Gradient boosting,

SVM, LR, RF,
AdaBoosting, NB

MRI Cross-validation
95.96%

(NB)–97.58%
(GB)

95%–96% N/A [46]

19 UK Retrospective Dementia RF and XGBoost Clinical data 5-fold
cross-validation

85% (RF)–87%
(XGB)

73% (RF)–76%
(XGB)

99% (RF) and
(XGB) [53]

20 USA Retrospective PD

Classification tree,
Gaussian Kernel,
LDA, Ensemble,
KNN, LR, Naive
Bayes, SVM, RF

Clinical data
Leave-one-subject-

out
cross-validation

74.1%
(SVM)–84.5%

(KNN)

70.6%
(SVM)–88.5%

(KNN)

79.2%
(SVM)–84.6%

(LR)
[54]

21 USA Retrospective AD KNN, SVM, DT, RF,
DL

MRI, SNP,
clinical data

Internal
cross-validation and
an external test set

68% (KNN)–
89%(DL) N/A N/A [47]

22 Italy Retrospective PD SVM, KNN, LDA, LR Clinical data 10-fold
cross-validation

90.1%
(LDA)–91.8%

(SVM)

68.4%
(SVM)–87.5%

(SVM optimized
cost)

N/A [55]

23 UK Retrospective Dementia NB, LD, SVM, and
KNN MRI 10-fold

cross-validation
77% (NB)–93%

(C-SVM)

72.5%
(CNN)–99%

(KNN)

67%
(KNN)–95%

(SVM)
[48]

24 Netherlands Retrospective Dementia Linear SVM MRI, PET
LOO cross-validation

and four-fold
cross-validation

89% (voxel)–90%
(Region)

83%
(Region)–85%

(voxel)

79%
(voxel)–90%

(Region)
[49]

25 Finland Prospective Dementia SVM MRI/CT,
clinical data

5-fold
cross-validation 95% 93% 99% [50]

26 Japan Retrospective Dementia XGBoost, RF, LR Clinical data -

86.3%
(XGBoost)–

89.3%
(LR)

85.7%
(XGBoost)–

96.4%
(LR)

80.0%
(RF)–89.3%

(LR)
[57]
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Table 2. Cont.

N Country Study Cohort Dementia
Category AI Model AI Modality Validation Methods Accuracy Sensitivity Specificity Ref.

27 USA Retrospective MCI and AD SVM Clinical data 5-fold
cross-validation 91% N/A N/A [56]

28 USA Prospective MCI SVM Clinical data 5-fold
cross-validation 77.17% 81.97% 67.74% [58]

29 Korea Retrospective AD and PD RF MRI 5-fold
cross-validation 73.3% 78.0% 70.0% [51]
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4. Discussion

Our study reviewed the research literature on the application of AI models in the
early detection of dementia in adults. A review of outcome data has shown that AI or ML
models can greatly influence any subspecialty within AOCD at every treatment stage. To
predict dementia types in advance, ANN, MRI data, and labeling segments have been most
frequently used.

4.1. AI for Diagnostic Purposes

Currently, the treatment of AOCDs is limited to symptomatic therapies available,
and drugs used in the treatment of dementias have very limited therapeutic value. For
this reason, advanced computing techniques such as AI, ML, and deep learning have
been directed toward the search for non-pharmacological approaches and support for
caregivers [18]. It is now widely accepted that the phase of overt dementia in AD is
preceded by a long preclinical phase, sometimes lasting several decades, that evolves
through a continuum, from the initial preclinical stages to MCI up to the overt clinical
stage of dementia [66,67]. People with advanced dementia have similar outcomes with
psychosocial interventions as with pharmacological interventions. It has been demonstrated
that cognitive stimulation improves cognition as well as the self-reported quality of life
(QOL) and wellbeing. Computer-assisted exercise has been linked to better QOL for people
with disabilities; however, not much research has been conducted. A pilot study examined
whether computer-assisted exergaming interventions, utilizing exergaming technology
(Able-X), could improve QOL, including cognitive and physical functioning, in 10 dementia
patients, in addition to existing therapies and activities [68]. The role of AI algorithms in
effectively detecting the different AOCD types was explained further.

A. MCI detection

MCI is considered a transitional phase between normal aging and dementia [7]. When
compared with nondepressed patients with MCI, individuals with MCI and depression
perform less well on immediate and delayed memory tasks. MCI patients who experience
sub-syndromic symptoms of depression have been found to have poorer function and
quality of life, as well as a higher risk of dementia progression. Therefore, those who
are cognitively impaired must undergo appropriate screening strategies for depression
and depressive symptoms. This will enable clinicians to identify the causes of cognitive,
functional, and behavioral impairments. It is thought that, in this phase, it is possible
to intervene and slow the progression versus overt dementia during this stage. In this
systematic review, four studies employed ML models to detect MCI [42,43,58]. An SVM
model was the most incorporated algorithm in the detection of MCI and produced accuracy
ranging from 73% to 91% [56,58]. Advanced ML models such as ANN can have the ability
to detect MCI with 96.66% accuracy [43].

B. AD diagnosis

AD is a brain neurodegenerative disorder occurring mainly in diseases commonly
affecting elderly people, although it is not a normal part of aging. As AD progresses, memory
loss, personality changes, and changes in brain function gradually worsen. AD is the most
common adult-onset dementia. In this review, we found that 16 studies out of 29 (55%)
used AI models to diagnose AD. According to these studies, AI models performed well
in detecting AD, with an accuracy range of 73.33–99%, a sensitivity range of 70.8–90.10%,
and a specificity range of 70–90%. A total of 11 studies (70%) utilized AI in conjunction
with magnetic resonance imaging (MRI) to diagnose AD. Two studies analyzed clinical data,
one along with MRI. One study used positron emission tomography (PET) and MRI. The
remaining research used EEG and cognitive data to diagnose AD with AI models.

C. Frontotemporal (FTD) and Lewy bodies (LBD) dementia

To target interventions and treatments for frontotemporal dementia (FTD), an accu-
rate differential diagnosis is vital [69]. There are studies suggesting that deep learning
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techniques can be used to solve the differential diagnosis problem for FTD, AD, and nor-
mal controls (NCs), but their performance is still unknown. A third issue is that existing
DL-assisted diagnostic studies are still reliant on expert-level preprocessing based on
hypotheses. Some ML tools help to distinguish the AD and FTD symptoms with genetic al-
gorithms [70]. It has been demonstrated that a data-centric perspective helps to understand
AD and FTD disorders by allowing the results to be interpreted.

While LBD is a dementia-type syndrome with many clinical similarities, it can be
difficult to diagnose clinically, especially in the advanced stages. To identify these disorders
with a high prognosis, researchers proposed an ML algorithm based solely on non-invasive
and easily collectable predictors [71]. The ImageNet dataset and ADNI database were used
to reduce model complexity based on two-stage transfer learning technology [72,73]. Using
the medical experience as a concatenation layer in the deep learning model, the AI model
can automatically extract features corresponding to regulation and domain knowledge.
Using this approach, the deep learning model gains better training efficiency and identifies
more significant features in differentiating AD and LBD.

D. PD diagnosis

PD is a neurological disease characterized by shaking, stiffness, and difficulties in
walking, balance, and coordination. Symptoms usually develop gradually. People may
have trouble walking and talking as the disease progresses. In addition, they may have
psychological changes, sleeping problems, depression, and memory issues. In this system-
atic review, five studies associated PD detection with AI algorithms with MRI, clinical data,
and WSI. They reported an accuracy range of 74–99%, a sensitivity range of 68.4–99%, and
a specificity range of 70–99% for their developed AI models in PD diagnosis.

4.2. Model Assessment

Various AI algorithms are used to assist in identifying different forms of dementia in
this section. There were two groups of AI algorithms, including ML and DL, reviewed in
this work. Eighteen studies employed traditional ML classifiers, among which four utilized
SVM, with accuracy ranging from 77.17% to 95.0% [49,50,56,58]. In addition, two studies
applied RF [45,51], and one study employed Random Under-Sampling RF (RUSRF) [39],
with an accuracy range of 73.3% to 94.4%. ML models were employed by G. Lee et al. [62],
without mentioning any particular algorithm’s name, and showed 88% accuracy. Using
multilayer perceptron (MLP) modeling, AD classification with 92.98% of accuracy was
achieved [63]. In [40], the authors developed a model using the decision tree classifier with
hyperparameter tuning (DTC-HPT) and observed high accuracy of 99% for identifying AD.
On the other hand, the remaining eight studies applied multiple ML classifiers [46–48], and
they performed extremely well, with an accuracy range of 68% to 99.1% [52–55,57].

DL classifiers were used in nine (31%) of the 29 studies reviewed. Four of the selected
studies employed conventional neural networks (CNNs) [35–37,61], reaching the highest
accuracy of 99% and the lowest accuracy of 84%. ANN [43] and RNN [62] were used in
two studies, with results of 96.66% and 81%, respectively. Three of the remaining studies
compared multiple DL models [38,44,65], with accuracy ranging from 59.8% to 98.86%.
Two studies were associated with both ML and DL classifiers [38,64]. A model using SVM
and a second using a combination of MobileNet and Block 11 addition and SVM were
noted [42]. In terms of accuracy, the combined model had the highest accuracy of 88.7%,
while the SVM model had the lowest accuracy of 73.3%. A gradient-boosting model (GBM)
as well as a Residual Neural Network (ResNet-50) have been designed by authors [64] and
showed 91.3% and 98.99% accuracy.

4.3. Research Implications

Dementia is not a specific disease—it is a group of symptoms severely affecting
memory loss, thinking, decision making, and social abilities so as to interfere with daily
life. Several diseases can cause dementia. The prevalence of dementia increases with age,
but it is not a normal part of aging. Symptoms vary according to the type of dementia. In
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this analysis, there were ten studies (33%) that developed different types of AI models to
detect dementia by analyzing MRI data (40%), EEG facial expressions, NPT, and clinical
and voice records. The performance of the AI model was evaluated in terms of accuracy
(range of 74–99.1%), sensitivity (range of 66.3–99%), and specificity (58–99%). It is now
widely accepted that the phase of overt dementia in AD is preceded by a long preclinical
phase, sometimes lasting several decades, that evolves through a continuum, from the
initial preclinical stages to MCI up to the overt clinical stage of dementia [66,67].

Current AI algorithms are recognized with measurable consistencies in large datasets
and are routinely utilized across a scope of different domains, including disease diagnosis,
but these models lack the power and generalizability related to human learning. If AI
procedures could empower computers to self-learn from fewer examples, the experimental
outcomes could have comprehensive logical and cultural effects. With increased memory
and increased processing power, large models can provide more sophisticated outcomes
and more adaptable learning. It is becoming increasingly clear that substantially more
prominent figuring assets will not suffice to produce calculations suitable for learning
from a few prototypes and summing up past preparation sets. Shortly, we may be able to
distinguish dementia from normal aging by using movement tests and smart environments.
Future directions to improve dementia detection in its earliest stages could include AI-based
smart environments and multimodal examinations.

4.4. Limitations

The current work has a few important limitations that need to be addressed. First,
the database search did not capture all the related papers; thus, it could not obtain all the
eligible articles as a whole. The search terms mentioned in this work could be insufficient to
identify the whole literature on AI combined with dementia. We highlighted the detection
of adult-onset dementia disorders and ML and DL algorithms associated with it. This led
to missing studies on working life dementia. On the other hand, in this review, we adopted
only three major databases. This limited the coverage of other journals that are in line with
the research topic.

5. Conclusions

Medicine is undergoing a revolution because of AI and ML, which help in the di-
agnosis of any disease, making it easier in recent years. With a more precise diagnosis,
this technology could transform healthcare. A computerized system helps doctors to di-
agnose patients more accurately, predict what patients’ future health will look like, and
recommends better treatments. In this review, we have investigated current approaches
of AI in the diagnosis and early prediction of adult-onset dementia disorders. In the past,
dementia diagnosis was performed solely based on correlations between symptoms and
the most likely cause. The newly developed methods with AI overcome several conven-
tional limitations by utilizing causal reasoning in their machine learning. As a result of AI,
dementia screening can now be automated to an even higher degree. This is particularly
appealing to epidemiology studies and public health organizations that aim to target early
risk reduction interventions. In contrast to clinicians’ judgment alone, AI can analyze and
respond quickly to large population screenings.
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