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Abstract

Transfer learning is a machine learning technique founded on the idea that knowledge

acquired by a model during “pretraining” on a source task can be transferred to

the learning of a target task. Successful transfer learning can result in improved

performance, faster convergence, and reduced demand for data. This technique is

particularly desirable for the task of brain decoding in the domain of functional

magnetic resonance imaging (fMRI), wherein even the most modern machine learning

methods can struggle to decode labelled features of brain images. This challenge is

due to the highly complex underlying signal, physical and neurological differences

between brains, low data collection throughput, and other factors. Transfer learning

is exciting in its potential to mitigate these challenges, but with this application still

in its infancy, we must begin on the ground floor.

The goals of this thesis were to design, implement, and evaluate a framework for

pretraining and transfer learning on arbitrary fMRI datasets, then demonstrate its

performance with respect to the literature, and achieve substantive progress toward

generalized pretrained models of the brain. The primary contribution is our novel

framework which achieves these goals, called BEAT, which stands for Bi-directional

Encoders for Auditory Tasks. The design and implementation of BEAT include

adapting state-of-the-art deep learning architectures to sequences of fMRI data, as

well as a novel self-supervised pretraining task called Next Thought Prediction and

several novel supervised brain decoding tasks. To evaluate BEAT, we pretrained
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on Next Thought Prediction and performed transfer learning to the brain decoding

tasks, which are specific to one of three fMRI datasets. To demonstrate significant

benefits of transfer learning, BEAT decoded instrumental timbre from one of the fMRI

datasets which standard methods failed to decode in addition to improved downstream

performance. Toward generalized pretrained models of the brain, BEAT learned

Next Thought Prediction on one fMRI dataset, and then successfully transferred that

learning to a supervised brain decoding task on an entirely distinct dataset, with

different participants and stimuli. To our knowledge this is the first instance of transfer

learning across participants and stimuli–a necessity for whole-brain pretrained models.
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Chapter 1

Introduction

“This it is necessary to grasp, but not easy.”

–Aristotle, De Anima

This chapter provides the introduction to this thesis. In Section 1.1 we give a

general overview of the motivations and central concepts, including related works. In

Section 1.2 we briefly present our main contributions.

Section 1.1

General Introduction

Functional MRI (fMRI) measures blood-oxygen-level-dependent (BOLD) responses

that reflect changes in metabolic demand consequent to neural activity[7, 38, 91]. By

measuring BOLD responses at specific combinations of spatio-temporal resolutions and

coverages, fMRI data provide the means to study complex cognitive processes in the

human brain[48, 117, 78]. In particular, task-based fMRI protocols include targeted

stimuli or other task variables, such as question answering, during the scan. Researchers

can then conclude associations between task features and the evoked responses across

the brain[54, 114, 71]. Regions of activity that are correlated with the presence of
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a particular task feature are thus taken to be involved in the brain’s representation

of that feature[101], and they are considered to be functionally connected[93]. Even

rest-state fMRI data, that is, data collected in the absence of external stimuli or task,

contain characteristic multi-variate signals of the brain[79, 64, 72, 126, 111, 42]. Such

rest-state signals have been shown to be predictive of the diagnosis and characterization

of multiple neurological diseases and psychiatric conditions[130, 120, 124].

fMRI researchers have adopted several data analysis techniques to analyze the

complex relationship between BOLD signal and the underlying task, disease, or biolog-

ical information. More specifically, the task of predicting such information given the

BOLD data as input is known as task-state decoding, or brain decoding. Toward

the goal of more powerful brain decoding models, many advances in modern deep

machine learning have been applied to fMRI research. These include convolution-based

models[132, 79], recurrent neural networks (RNN)[14], and graph neural networks[58].

Most recently, Transformer[113] based models have achieved state of the art results

on several brain decoding tasks[62, 7, 70], having already grown to dominate the

fields of time series forecasting[56], natural language processing[17], and computer

vision[19, 55]. Indeed, BOLD signal has high spatio-temporal complexity, so this shift

in the literature toward brain decoding on sequences of whole regions of fMRI data,

rather than single images or single voxels, has been and continues to be motivated by

a desire to capture the temporal as well as spatial components of the signal.

However, training deep models is data intensive, while fMRI scans are expensive

with relatively little data obtained per scan. Moreover, the experiment-specific labels

and scanning parameters of the images mostly eliminate the possibility of combining

datasets. In Paulsen, May, and Casey (2021)[79], our work prior to beginning this

thesis, we employed a deep learning model to learn the latent patterns in short

sequences of unlabelled fMRI data, then leveraged the knowledge of those patterns to

2



1.1 General Introduction Chapter 1

improve (and enable) success of downstream linear classifiers. This strategy can be

thought of as an early form of sequential transfer learning, in which a model is first

pre-trained on a task in the domain of interest to acquire general knowledge about

the target dataset. The pretrained model then has a head start, so to speak, on the

target task of interest, by leveraging its general understanding of the data[21]–in other

words, by transferring its learning. As Kalyan et al. (2021)[45] note about pretrained

models, “These models provide good background knowledge to downstream tasks

which avoids training of downstream models from scratch.” This strategy is nearly

ubiquitous in the domain of Natural Language Processing (NLP)[45] and has begun

to appear in fMRI studies aside from our own[70, 62, 7]. We discuss our previous

work[79] in more detail in the next chapter, but its success was our primary motivator

for developing our own modern framework for transfer learning with fMRI data.

In 2019, Devlin et al.[17] presented BERT, which stands for Bidirectional Encoder

Representations from Transformers. The Transformer[113] is a deep learning architec-

ture which has come to completely dominate sequence-based machine learning and is

particularly well suited for transfer learning–we discuss the transformer architecture

in detail in the beginning of Chapter 4. BERT was pretrained on a massive corpus of

unlabelled text and the authors performed transfer learning to obtain state-of-the-art

results on eleven natural language processing tasks. We take several notes of inspira-

tion from BERT, which are discussed in Chapter 4, but BERT also inspires the idea

of a generalized pretrained model of the brain, that could transfer its learning to a

wide variety of brain decoding tasks on various datasets. This is a gargantuan and

long-term goal, but in this thesis we present statistically significant evidence of, to

the best of our knowledge, the first step towards it.

We call our framework BEAT, which stands for Bidirectional Encoders for Auditory

Tasks. “Auditory” because the datasets used in this work are audio-evoked fMRI
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data, but the architecture and task design can be applied to an arbitrary fMRI

dataset. When we say “framework” throughout this thesis, we refer to the full suite

of architecture design and implementation, pretraining and target task design, dataset

construction for training these tasks, and evaluation of transfer learning effects. The

components of BEAT are thus the contributions of this thesis.

Section 1.2

Main Contributions

The main contributions of this thesis are the following:

1) A paired-sequence Transformer-based architecture for brain decoding tasks. This

architecture is detailed in Section 4.2.

2) An audio-evoked fMRI dataset with condition labels for task-state decoding

studies and experiments. The motivation for and collection of this dataset are

detailed in Section 3.2.

3) Self-supervised pretraining tasks on fMRI data which enable transfer learning.

These tasks are detailed in Section 4.3, and the corresponding experiments and

results are detailed throughout Chapter 5.

4) Supervised brain-decoding tasks which demonstrate statistically significant ben-

efits from transfer learning. These tasks are detailed in Section 4.4, and the

corresponding experiments and results are detailed throughout Chapter 5. We

achieve a new level of granularity in the decoding of audio-evoked fMRI data.

This achievement is presented in detail in Section 5.2.3. We also demonstrate

an enculturation effect in Nucleus Accumbens after a week of exposure to an

unfamiliar musical grammar, as well as, to the best of our knowledge, the first
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significant effects of transfer learning on a brain decoding task when the pre-

training and finetuning datasets are wholly distinct. These two achievements

are presented in detail in Section 5.3.
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Chapter 2

Brain Decoding – History and

Motivation

In this chapter we consider the motivations behind decoding information from the

brain and explore the relevant timeline of research. This timeline will reveal the

challenges and shortcomings of such research, ultimately leading to the motivations

for this thesis. There are several brain data collection modalities that can be used

for brain decoding, but in this work we focus on fMRI. The science behind fMRI

is detailed in Chapter 3 but we present a general idea below. Thus the aim of this

chapter is to set the stage for the goals of this thesis and provide context for our

contributions.

Section 2.1

General Motivations

The relationship between physical neurological states and cognition has been a curiosity

throughout human history. The term neural correlates is used to refer to brain

activity that corresponds with and is necessary to produce a particular experience. In

De Anima, Aristotle considers whether all psychological states are also material states
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of the body, commenting “This it is necessary to grasp, but not easy.” We certainly

reject the notion that psychological states could be immaterial, but what remains

is perhaps the next steps in Aristotle’s consideration: Which neural correlates are

identifiable via physical measurements? How are they represented in the brain? What

techniques should be used for measurement and identification?

But why do we care about neural correlates? The universal and fundamental

nature of these questions allows sheer curiosity as one motivator. Consciousness, for

example, is a question as old as itself. In 2019, Nani et al.[69] published a through

survey of the neural correlates of consciousness and attention. From their conclusions,

“Consciousness has the function of creating a continuous and coherent picture of reality,

while attention has the function of attributing relevance to the objects of thought.

Consciousness develops along two dimensions, that of wakefulness and that of contents.

It can also be conceptually distinguished between phenomenal consciousness (how the

world appears to us) and access consciousness (when contents are more or less vivid,

intense, and available for focal awareness).”

There are more tangible motivations as well. Every unraveled neural correlate

could provide a new vector to diagnosing neurological conditions in a non-invasive

way. For example, resting state (no stimuli) fMRI identified significant disruptions in

default mode network’s co-activation in patients with Alzheimer’s disease, and lowered

activation has been identified in the supplementary motor area during movement

in patients with Parkinson’s disease versus controls[70]. Neural correlates can also

lead to new treatments. Neurologic Music Therapy, for example, uses the perception

of auditory structures and patterns in music as cues to retrain brain function[107].

Although the number of studies and extent of available evidence is greatest in stroke

and dementia, there is also evidence for the effects of music-based interventions on

supporting cognition, motor function, or emotional wellbeing in people with Parkinson’s
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disease, epilepsy, or multiple sclerosis[100].

Brain-computer interface (BCI) technology necessarily requires a robust understand-

ing of neural correlates. In 2004, Goebel[29] presented work where two participants

were able to play the video game “Pong” against each other in real time while lying

in fMRI scanners. At time of writing, Neuralink has recently obtained FDA approval

to begin human trials of a fully implantable BCI with the stated mission to “Create a

generalized brain interface to restore autonomy to those with unmet medical needs

today and unlock human potential tomorrow.”

It is clear that the benefits of brain decoding research are extensive, reaching

from answering fundamental questions of human existence to improving the everyday

lives of people around the world. With these motivations in mind, the next section

discusses the techniques involved in and general history of the research into decoding

fMRI data.

Section 2.2

Classical Statistical Inference

Functional magnetic resonance imagine (fMRI) exploits blood-oxygen level-dependent

(BOLD) contrasts to map neural activity associated with a variety of brain functions

including sensory processing, motor control, and cognitive and emotional functions.

BOLD signal changes are modulated by changes in blood flow due to the metabolic

demand of neural activity. A typical fMRI database contains a timeseries of 3D BOLD

signal measured at many voxels in the brain. A voxel is a 3D cuboid of brain volume,

whose dimensions are on the order of millimeters. Thus the task of decoding cognitive

function from fMRI data requires analyzing the BOLD signal at each voxel across

the time series (Figure 2.1. We use “voxel data” as a shorthand for such a timeseries

throughout this thesis. The subsections below provide an overview of the history of
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Figure 2.1: The sequences of voxel data used in our experiments are timeseries of
neural activity measured by fMRI. Graphic published in [99]

techniques for decoding information from the brain via voxel data analysis.

2.2.1. General Linear Model

The general linear model (GLM) approach is used to reveal “activated” brain areas by

searching for linear correlations between the fMRI time series and a reference model

of the brain defined by the researcher, or with some known pattern of stimulation or

experimental manipulation. Iterative statistical analysis on all voxels can then identify

regions of voxels whose measured BOLD responses display significant statistical effects.

This framework is commonly referred to as mass-univariate model-based analysis,

and was, at least in 2012, considered the gold standard in fMRI research[34].

The GLM is expressed as a matrix by

Y = Xβ + ϵ, (2.1)

where Y = [y1, . . . , yM ]T is a column vector of the recorded BOLD signal at a single

voxel at each of M-many timesteps. β = [β1 . . . βP ]
T is a column vector of unknown

model parameters to be estimated. X is the MxP design matrix where the columns

are hand-crafted explanatory variables or regressors quantifying the experimental

knowledge about the expected signal, with the ith row corresponding to the ith timestep.
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Figure 2.2: General Linear Model (GLM) for a single voxel with timeseries Y, with
design matrix X. X has three regressors of interest, corresponding to the conditions
during the scan, and seven nuisance regressors to account for confounds such as head
motion or signal drifts. Each regressor is weighted by parameter βi. ϵi is the calculated
error term at each timestep i. Image from Monti (2011)[66].

βi can thus be interpreted as the weight or effect size of regressor i. Figure 2.2 gives

an example. Its design matrix X has three regressors of interest corresponding to

three conditions presented during scanning, and seven nuisance regressors, to account

for confounds such as head motion and signal drift.

β is estimated beginning with a randomly initialized estimate β̂, and then we

calculate the estimated signal Ŷ = Xβ̂. The role of ϵ as the residual error now becomes

clear as we have ϵ = Y − Ŷ . Least squares regression on β̂ to minimize S = ϵT ϵ yields

the estimated model. As was first shown by Roger Penrose in 1956[81], the ˆbeta values

which minimize S (with an important caveat discussed below) are obtained by the

following “normal” equation:

β̂ = (XTX)−1XTY. (2.2)

A contrast in the GLM is defined by a set of weights, one for each βi, which are

used to specify a linear combination of the parameters. For example, if there were
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three parameters (and thus three regressors) we would have:

c1 ∗ β̂1 + c2 ∗ β̂2 + c3 ∗ β̂3 = cT β̂. (2.3)

Now say regressor 1 corresponds to the timesteps of the scan where music was played

for the participant, and our goal is to find voxels that are active while listening to

music. In other words, we want voxels where the GLM has an effect size for regressor 1

(β1) that is greater than zero with statistical significance. Then we could write our null

hypothesis as cT β̂ = 0 with c1 = 1, c2 = 0, and c3 = 0. Say regressor 2 corresponds

to watching video during the scan and regressor 3 corresponds to looking at a still

image during the scan. Now if our goal were to find a difference between processing

video and images, we would set c1 = 0, c2 = 1, c3 = −1 to obtain a null hypothesis of

cT β̂ = β2 − β3 = 0. We would then look for voxels where we are able to reject the null

hypothesis. This is the general strategy for inference with GLM. For a question of

interest, we choose values for the ci to obtain a null hypothesis of cT ˆbeta = 0. Then

the t-statistic at each voxel can be computed as

t =
cT β̂√

var(ϵ)cT (XTX)−1c
. (2.4)

Consider the need to account for the enormous number of statistical tests used in this

mass univariate approach. Even low-resolution fMRI scans will have over one hundred

thousand voxels, and a collection of this many statistical tests will be rife with false

positives. Further, because clusters of voxels may not be spatially independent, simple

multiple-comparison methods to correct p-values may be inappropriate. Without

burying this work in the details, we note that Gaussian fields are stochastic processes

that conform very nicely to realizations of brain scans under normal situations. Within

a few years of the advent of fMRI, methods to compute corrected p-values were deeply
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embedded in Gaussian field theory[122].

2.2.2. Historical Overview

The GLM itself has a broader history in statistics and regression analysis which

predates its application to fMRI data, but we begin our overview with fMRI related

work. One of the earliest pioneering studies which brought GLM to fMRI data was

published in 1990 by Ogawa et al.[74]. This seminal work introduced the BOLD signal

as a correlate of neural activity by using the GLM to model and analyze the signal

changes associated with visual stimulation.

The existence of the relationship between activity and measured BOLD signal

quickly became well-known. It remained to establish a formal framework for the

hypothesis testing of voxel data. In 1994, one of the most cited works in this domain

was published, in which Friston et al.[25] presented a simple and complete approach

to the hypothesis testing of fMRI data by unifying GLM and Gaussian fields. This

approach exists under the umbrella of “statistical parametric mapping” (SPM), which

refers to the statistical processes used to test hypotheses about functional imaging

data in general, not just fMRI. At this point, SPM methods had yet to address the

temporal dependence of successive fMRI images as SPM had hitherto been applied

only to PET imaging, which does not have this dependency. To that end, in 1995,

Friston et al.[26] published a modification to the SPM approach which used hand-

crafted heuristics to allow correlations between the error terms of each timestep.

Later that year, in the aptly named “Analysis of fMRI Time-Series Revisited–Again,”

Worsley and Friston[123] were able to solve the same problem without relying on

heuristic arguments. The list of fMRI results published using the above approach is

insurmountable, but we present some interesting works here.

Some of the first work in the auditory domain was published in 1997 by Zatorre[127],

which employs the GLM to explore the structural correlates of phonetic perception,
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melodic processing, auditory working memory, and auditory imagery. In 1998, Buchel

et al.[8] used SPM to identify brain regions involved in visual attention modulation. To

do this, the authors modeled the four different conditions “attention,” “no attention,”

“fixation,” and “stationary” as regressors in their GLM.

One year prior, in 1997, Dale and Buckner[15] employed the GLM to average fMRI

data from individual trials, enabling the investigation of rapid cognitive processes

in the brain. All of the fMRI datasets in our work use a “block design,” which

alternates between periods of a stimulus and rest, with the rest period allowing the

stimulus-evoked response to return to baseline. However, the ability to analyze closely

spaced single-trial signals, or “event-related design”, as in Dale and Buckner, still

provides for a useful class of investigations[94]. An example that includes the GLM is

Ollinger, Shulman, and Corbetta in 2001[75]. The authors used the GLM to separate

overlapping sensory, cognitive, and motor components within individual rapid trials

by modeling each component with its own regressor.

Adams and Janata(2002)[1] used SPM to identify regions where BOLD signal was

modulated during auditory and visual object categorization. More recently, in 2009,

Janata[44] identified regions of the brain associated with familiarity, autobiographical

salience, and positive emotional affect (valence) (Figure 2.3). They used three sets

of regressors that represented 1) a 30s period during which music was playing 2) a

question and answer period following each musical excerpt; and 3) a set of parametric

regressors that captured the variation in the familiarity, autobiographical salience, and

degree of positive affect evoked by each musical excerpt. Their results contributed

evidence toward their hypothesis that memories and music are associated in the medial

prefrontal cortex.
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Figure 2.3: Image from [44]. Regions of effects due to music: familiarity (green), auto-
biographical salience (red), positive emotional affect (valence) (blue), and combined
effect of all three (outlined in black).

2.2.3. Conclusions

The GLM/SPM approach has continued from this time to today, but we have presented

the landscape leading up to and extending slightly past a new approach to brain

decoding introduced in 2001, which is detailed in the next section. To motivate this

new approach, note there are two major assumptions inherent to basic GLM analysis,

either one of which may be rightfully challenged. First, GLM is a “mass-univariate”

approach, calculating statistics one voxel at a time and assuming that signals from

each voxel are independent of one another. It may well be, though, that the covariance

across neighboring voxels is in fact informative about the cognitive function under

examination. Second, the solution for ˆbeta in Equation 2.2 can only be derived after

assuming that the errors ϵi are independent and drawn from a normal distribution

with mean zero. This assumption may not hold for a variety of reasons, including

overlap in the regressors. Indeed, univariate approaches to fMRI data such as contrast

subtraction can be useful for basic analysis, but such approaches struggle to isolate

the densely overlapping patterns of multivariate signals which comprise neural activity

[80, 121].
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Section 2.3

MVPA

Multivariate pattern analysis (MVPA, sometimes also called multivoxel pattern

analysis) is a set of methods for analyzing neural responses as patterns of activity.

This framing affords investigation of the varying brain states that an area of the brain

can produce. This stands in contrast to the GLM which indicates only the extent to

which an area of the brain is globally engaged. Thus MVPA methods increase the

amount of information that can be decoded from brain activity.

2.3.1. Techniques

MVPA involves searching for reproducible spatial patterns of activity that differen-

tiate across experimental conditions. MVPA is therefore considered as a supervised

classification problem where a classifier attempts to capture the relationships between

spatial patterns of fMRI activity and experimental conditions.

More generally, classification consists in determining a decision function f that

takes the values of various “features” in a data sample x and predicts the class of

x. We use “Features” here in the familiar machine learning sense to mean the set of

variables or attributes describing x. As a concrete example, x could be a concatenated

sequence of timesteps during which a particular stimulus was presented, and the

features may represent the corresponding fMRI signals in a cluster of voxels. The

different stimuli presented during the scan would then be the class labels.

To obtain the decision function f, data (i.e., samples and their corresponding class

labels) must be split into two sets: “training set” and “test set.” The classifier is

trained using the training set. Training consists of modeling the relationship between

the features and the class label by assigning a weight w to each feature. This weight

corresponds to the relative contribution of the feature to successfully classify two or
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more classes. When more than two classes are present in the experimental design, the

analysis can be transformed into a combination of multiple two-class problems (i.e.,

each class versus all the others). The classifier is then evaluated with the test set to

determine its performance in capturing the relationship between features and classes.

This need for a classifier motivated the adoption of early ML architectures for

multivariate fMRI analysis [73, 34], notably support vector machines for brain decoding

classification [64, 102, 119, 40]. Support vector machines (SVMs) have become popular

as supervised classifiers of fMRI data due to their high performance, their ability to

deal with large high-dimensional datasets, and their flexibility in modeling diverse

sources of data. We do not provide a rigorous mathematical foundation for SVMs

here, but we remind the reader that the objective is to separate the different classes

while balancing accuracy against overfitting. Figure 2.4 provides instructive examples.

In 2012, Haxby[34] published a paper recounting the developments and innovations

of MVPA over the prior decade. He begins the paper by stating, in no uncertain

terms, “Multivariate pattern analysis of fMRI data has proven to be more sensitive

and more informative about the functional organization of cortex than univariate

analysis with the general linear model.” MVPA was slow to be adopted though, as it

does not provide simple answers to the kinds of questions people were asking at the

time[34]–Where is the speech area, or the motor area? Where is reward processed? and

so forth. The slow adoption was also because MVPA addressed questions that people

hadn’t thought of investigating – quoting Haxby, “What are the varying brain

states in an area and how do they encode different types of information?”

This question mirrors quite nicely our rephrasing of Aristotle above, and we will refer

back to it in later chapters.
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Figure 2.4: Examples of Support Vector Machine (SVM) hyperplanes. A) Linear
SVMs allowing some training error (solid) and allowing no training error (dashed).
This represents the tradeoff between acceptable classifier performance and overfitting.
B) Nonlinear SVM with polynomial kernel d = 2, K = 0. C) Nonlinear SVM with
Radial Basis Function kernel σ = 0.2. Images from [34].
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2.3.2. Historical Overview

Haxby et al. (2001)[35] devised the first prototype MVPA method during their

investigation of functional architecture for face and object recognition in ventral

temporal cortex. In 2003, Cox and Savoy[12] utilized linear discriminant analysis and

support vector machines to classify patterns of fMRI activation evoked by the visual

presentation of various categories of objects. Classification was done using only small

amounts of data (20s worth) at a time. They achieved classification accuracies well

above chance using regions of interest restricted to higher-order object-selective visual

areas. Relevant to the transition from mass univariate methods to MVPA, they note:

“In contrast to typical fMRI data analysis, in which hours of data across many subjects

are averaged to reveal slight differences in activation, the use of pattern recognition

methods allows a subtle 10-way discrimination to be performed on an essentially

trial-by-trial basis within individuals, demonstrating that fMRI data contain far more

information than is typically appreciated.”

Results in visual areas of the brain continued. Kamitani and Tong (2005)[46] were

able to decode which of eight edge orientations the participant was looking at, as well

as which of two overlapping orthogonal gratings they chose to consciously attend on.

These results demonstrated that primary visual cortex contains detailed orientation

information that can reliably predict subjective perception.

It was not until 2008 that auditory fMRI studies began to use MVPA, when

Formisano et al.[24] decoded different vowel sounds and speaker identities from the

same set of voxels. Staeren et al. (2009)[103] used MVPA methods to decode four

different audio labels: cats, female singers, acoustic guitars, and individual tones.

They note they were unable to do so with conventional contrast-based methods.

Raizada et al. (2010)[90] performed MVPA analysis on native English and Japanese

speakers’ neural response to the syllables /ra/ and /la/ in right primary auditory
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cortex. They demonstrated that the statistical separability of those responses predicted

the participants’ behavioral ability to differentiate the syllables. Lee et al. (2011)[53]

examined discrimination of melodic contour (the “ups” and “downs” of music) using

MVPA. They identified three distinct regions in which the local pattern of activity

accurately discriminated between contour categories. Giordano et al.(2011)[27] used

MVPA methods to obtain evidence of abstract encoding of non-speech biological

sounds, which up to that point had only been known for human speech. Casey et al.

(2011) performed 5-way music genre classification using MVPA and an SVM classifier.

Deep learning methods began to creep into fMRI analysis around this time and thus

we end this subsection here, despite MVPA’s continued contributions to the field.

2.3.3. Conclusions

By considering patterns of activity across multiple voxels, MVPA can capture more

nuanced and distributed information in the brain, allowing for the detection of subtle

differences or patterns that may be missed by univariate methods. On the other

hand, the high-dimensional nature of the data and complex models used in MVPA

can make it difficult to attribute specific cognitive or neural interpretations to the

identified patterns. A further challenge is that MVPA typically requires a relatively

large amount of high-quality training data to build accurate models. However, fMRI

datasets have continued to grow larger due to higher spatiotemporal resolution from

technological advances, and increasingly large sample sizes in general, particularly from

big-data initiatives such as the Human Connectome Project[112] and OpenNeuro[84].

Larger datasets can potentially accommodate more sophisticated statistical models

than MVPA, with greater power to identify, extract, and distinguish noise sources and

signals of interest.[49]
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Section 2.4

Deep Learning

We now move on to the discussion of deep machine learning techniques which have had

empirical success in learning representations of high-dimensional data, without the

need for hand crafted features[118] as was the case with MVPA and GLM. Further,

the nonlinear activation functions in deep ML models enable the learning of a more

complex output function than those that can be learned using traditional machine

learning methods. Kuntzelman et al. (2021)[49] give a retrospective view of deep

learning with neuroimaging data, in which they suggest that “deep learning has

the potential to perform most of the tasks for which traditional MVPA is typically

employed, but with greater speed, flexibility, and power,” and that deep learning

results up to the time of writing “represent only the tip of the proverbial iceberg.”

2.4.1. Techniques

Progression into deep ML models has seen multilayer perceptrons[105], autoencoders[79,

43], convolutional neural networks (CNN)[118, 125], and graph neural networks

(GNN)[58] for feature extraction and classification of single fMRI images. Architectures

designed for time series analysis are desirable due to the high degree of temporal cor-

relation in BOLD responses, and indeed recurrent neural networks (RNN) and various

long short-term memory (LSTM) models have been reported[14, 20, 57, 131, 108, 86].

2.4.2. Historical Overview

Since the neural network revolution (or perhaps renaissance) began in 1998 with the

Convolutional Neural Network (CNN)[51], there has been consistent and growing

interest in applying various deep learning techniques to fMRI data[82]. CNNs, for

example, have been successfully applied to the learning of representational features
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from fMRI data. In 2014, Yamins et al.[125] showed that optimizing CNNs solely on the

task of decoding object labels from visual object recognition fMRI data simultaneously

optimized the model’s ability to predict responses in visual cortex. The authors thus

refer to CNNs as “biologically plausible,” a quality lacking in GLM and MVPA.

In 2020, Li et al.[58] used GNNs to decode the labels “Autism Spectrum Disorder”

and “Healthy Control” from the Autism Spectrum Database[115] as well as the 7

different task labels in the Human Connectome Project (HCP)[112]. In both cases, their

models significantly outperformed MVPA-SVM classifiers. Note that this architecture

is only capable of classifying one image at a time, as are basic CNNs. The temporal

dependence of fMRI data, however, suggests that we look toward architectures which

accept sequential inputs.

Dakka et al. (2017)[14] used LSTMs to decode whether the participant had been

diagnosed with schizophrenia from sequences of fMRI data evoked by a certain auditory

stimulus. The LSTMs outperformed their baseline MVPA-SVM classifiers. Huang et

al. (2017)[43] proposed an architecture based on the sparse convolutional autoencoder

to learn high-level features from handcrafted time series derived from the raw fMRI

data. Wang et al. (2018)[118] proposed a 4-layer CNN that classifies tasks from

the raw fMRI voxel values. Their method achieved an average accuracy of 89.0%

and 94.7% on a working memory task and a motor classification task, respectively,

higher than the accuracy of 69.2% and 68.6% obtained by the SVM-MVPA. A network

visualization analysis showed that the CNN automatically detected features from areas

of the brain related to each task. Their work used HCP, treating the entire fMRI

timeseries as input.

In our previous work in 2021, we trained a sparse autoencoder to reconstruct

sequences of fMRI data[79, 64] and used the trained encoder weights as filters in a

CNN to transform the labelled fMRI data. The transformed data enabled higher
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accuracies on brain decoding tasks with MVPA-SVM classifiers, as well as the learning

of a novel decoding task that the SVMs could not learn on either the transformed or

original data. We hypothesize that the autoencoder was learning a basis for the vector

space of BOLD activity, and thus the filtering process expressed the transformed

data as a linear combination of the basis. This compact representation would then

be responsible for the improved SVM performance. Note that the autoencoder was

trained on the unlabelled fMRI data, that is, the images taken in between stimulus

trials. Unlabelled data often comprises large amounts of a dataset–in this case it was

more than half– but has little to no use in SPM and MVPA strategies. Indeed, the

ability to learn relevant latent patterns in unlabelled data is a critical advantage of

deep learning over prior techniques. During this work, we were not able to decode

the instrumental timbre labels of “Clarinet” and “Trumpet” from either the original

or transformed data. BEAT, however, succeeds at this task, as we will discuss in

Chapter 5. Recall the description in [34] of MVPA as a new way of asking questions

to outperform GLM. We claim that BEAT presents yet another new style of question

to empirically outperform MVPA and other deep learning methods when decoding

task information from fMRI data.

2.4.3. Conclusions

Deep learning models have enabled performance leaps in high-dimensional fMRI

data[7]. However, the application of deep learning models to neuroimaging data

poses several challenges, due to the high dimensionality, low sample size, and complex

temporo-spatial dependency structure of these datasets. Furthermore, trained deep

models generally act as a black-box, which is to say that it is unclear how all the

individual parameters work together or on their own to reach a decision. This lack

of interpretability impedes insight into the association of cognitive state and brain

activity[108]. While deep learning methods are effective if enough data are available
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for training, most typical neuroimaging studies have collected data from only tens to

hundreds of subjects, with the purpose of identifying minor differences between different

states[41] or groups thereof[116]. As noted above, though, deep learning methods

can leverage latent patterns in unlabelled data, while MVPA methods alone cannot.

Recall from Chapter 1 that transfer learning can help overcome these challenges.

While transfer learning strategies do exist for architectures such as RNN and CNN, a

different architecture has come to dominate most, if not all, modes of transfer learning

with high-dimensional timeseries data–the Transformer. This architecture is the focus

of the first section of Chapter 4, and provides the foundation for BEAT. For now,

though, we proceed into Chapter 3, which provides a more detailed explanation of

fMRI data collection which is necessary to understand the design and implementation

of BEAT.
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Chapter 3

FMRI Overview and Collection

Functional Magnetic Resonance Imaging (fMRI) is an imaging modality for the

functional activity of the brain including physical activity, active thought, and response

to stimuli. This chapter explains the concepts and background of fMRI studies

necessary to understand this thesis and its motivations, while contextualizing those

concepts through our data collection in early 2023. This dataset is one of the

main contributions of this thesis. Section 3.1 introduces the Blood Oxygenation

Level Dependent (BOLD) signal measured by the fMRI scanner. Section 3.2 explains

the motivation, design, and implementation of the scanning protocol for this collection.

Section 3.3 explains the extensive preprocessing techniques performed on the data after

scanning. Section 3.4 details the previously-existing datasets explored in this thesis.

Note that our experiments on the “other datasets” took place before the collection we

describe below. The datasets are presented in reverse order to more easily present

the necessary concepts in the context of our own work. Finally Section 3.5 details the

extraction of specific regions of brain used in our experiments.
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Section 3.1

MRI and BOLD Signal

Oxygen is delivered to neurons by hemoglobin in capillary red blood cells. When

neuronal activity increases there is an increased demand for oxygen and the local

response is an increase in blood flow to regions of increased neural activity (Figure 3.1).

Hemoglobin is diamagnetic when oxygenated but paramagnetic when deoxygenated.

This difference in magnetic properties leads to small differences in the reaction of blood

to a strong external magnetic field depending on the degree of oxygenation. Since

blood oxygenation varies according to the levels of neural activity these differences can

be used to detect brain activity. We note that quite a bit of work has been abstracted

out into the phrase “detect brain activity,” but this is enough to proceed with the

relevant discussion. This form of magnetic resonance imaging (MRI) is known as

blood oxygenation level dependent (BOLD) imaging. At the beginning of a scan, a

high resolution image is taken in order to identify anatomical structures. We refer to

this as the “T1 data.” The “runs” of a scan begin after collecting the T1 data, during

which images are collected faster but at a lower resolution and stimuli are presented

or tasks are performed. We refer to this as the “functional data.”

Section 3.2

Enculturation Dataset

3.2.1. Motivation

A basic function of cognition is to detect regularities in sensory input to facilitate the

unconscious prediction and recognition of future events[2]. During the past 20 years,

these predictions have been shown to account for multiple facets of music cognition,

including memory[2], emotions[97], pleasure[30], and reward[10]. Multiple studies have
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Figure 3.1: (Top) Increased blood flow and therefore increased oxygenation consequent
to the demand of increased neural activity.

demonstrated behaviorally that listeners’ internal models which output the predictions

vary across cultures and were consistent with the statistics of the musical grammars

of their own musical culture[16, 47, 85]. Studies have also shown that exposure to

unfamiliar music induces statistical learning consistent with the exposed music[33, 60].

This mechanism is known as Musical Enculturation.

Our goal for data collection was to complement the musical enculturation research

conducted by our colleagues Guilhem Marion and Camille Barbarot at l’École normale

supérieure (ENS) in Paris. They performed enculturation by instructing 19 participants

to listen to unfamiliar Chinese music from the region of Shanxi for at least 30 minutes

per day for two weeks. They also instructed a control group of 15 additional participants

to listen to at least 30 minutes per day of Bach chorals for two weeks. The relevant

musical grammars present in the Bach chorals are generally consistent across all western

music, but are distinct from the Shanxi music. We omit further music-theoretic details

here. Their main hypotheses were: 1) the enculturation group would update their

internal models to make better predictions about Shanxi music than the control group,

and 2) the self-reported pleasure ratings would increase in the enculturation group
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after learning the Shanxi musical grammar, but not in the control group.

Marion and Barbarot used electroencephalography (EEG) to measure the electrical

response to Shanxi samples in the brains of both groups before and after the two weeks

of exposure, and in both instances asked the participants to rate the pleasure they

felt while listening. The literature on the neural underpinnings of musical expectation

indicates that the degree of surprise due to a note is encoded in the measured electrical

activity around 200ms from the note onset, with greater amplitude for unexpected

notes[18, 52, 63, 76]. In other words, the amplitude around 200ms after note onset

serves as a measure of surprise. This approach was used to evaluate hypothesis 1), and

the changes in response to Shanxi music induced by the two weeks of exposure – that

is, response after exposure minus response prior – are given in Figure 3.2. Both lines

peak around 200ms. This appears to indicate that the change in surprise is positive,

that is, the surprise has gone up, for both groups, when it was expected to remain

constant in the control group and go down in the enculturation group. However, this

effect is explained by an increased signal-to-noise ratio (SNR). Indeed, participants’

familiarity with an experiment generally improves SNR along with generating larger

responses. The important conclusion, rather, is that the surprise experienced by the

enculturation group is significantly lower than the control group after exposure. This

result is consistent with the literature and supports hypothesis 1). Figure 3.3 is more

straightforward. It depicts the change in pleasure ratings for the two groups, in which

we observe an increase in pleasure ratings for the enculturation group and a decrease

for the control group. This is consistent with the literature and supports hypothesis

2).

Now consider that the literature on musical reward suggests that the nucleus

accumbens (NAcc) is highly involved in behavioral musical pleasure, musical pre-

dictions, and musical learning[10, 128]. In particular, surprise and uncertainty from
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Figure 3.2: The change in response to Shanxi music (after minus before) as measured
by EEG. Greater amplitudes around 200ms after note onset correspond to greater
surprise, that is, a more severe violation of the internal model’s prediction for that
note. Both lines are (unintuitively) positive around 200ms, but this is due to a higher
SNR after the exposure period. Given that there was no difference in surprise between
groups before the exposure period, we conclude a significantly lower degree of surprise
experienced by the enculturation group after exposure.

statistical models of music jointly predict self-reported musical pleasure and evoked

activity in NAcc[10]. Thus we expect to see increased activity in both NAcc and

STG after enculturation. However, the spatial resolution of EEG does not permit this

analysis. Indeed, the total spatial information granted by the EEG study can be seen

in the topographical maps in Figure 3.2. Therefore, we sought to complement the

work of Marion and Barbarot by measuring the effects of musical enculturation via

the same Bach and Shanxi music clips with fMRI rather than EEG. The high spatial

resolution of fMRI would then permit the direct analysis of NAcc.

Several other regions of the brain are implicated in musical enculturation. Nan et

al. (2008)[68] demonstrated increased BOLD signal in response to culturally unfamiliar

musical grammars in right angular gyrus and middle frontal gyrus (possibly reflecting

higher demands on attention systems), and the right posterior insula (suggesting

higher loads on basic auditory processing). In response to culturally familiar music,
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Figure 3.3: Change in pleasure ratings (after - before). An increase (mean above 0)
means that participants increased their liking of the pieces.

Nan et al. observed increased BOLD signal in left planum temporale, right ventro-

medial prefrontal cortex, and bilateral motor regions, the last of which is likely due to

“grooving” to the more familiar music, even as one tries to remain still in the scanner.

The dorsal striatum as well is implicated in music memory [44, 106], and thus likely

contributes to the internal prediction model. In this thesis we consider only Nucleus

Accumbens due to time constraint and our motivation to supplement the work of our

colleagues Marion and Barbarot.

3.2.2. Methods

The high-level design for this data collection was as follows: 1) Recruit participants

familiar with western musical grammars and unfamiliar with Shanxi musical grammars;

2) Expose participants to clips of Bach and Shanxi during fMRI scan and periodically

ask them to rate the pleasure of the music; 3) Expose participants to at least 30
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minutes of Shanxi music at home every day for one week following the initial scan;

4) Expose participants to Bach and Shanxi during a second fMRI scan at the end of

the exposure week; 5) Attempt to train a classifier to distinguish the two scanning

sessions. We now explain each of these steps in detail.

1) Recruitment of participants willing and available to commit to two scans one

week apart is difficult. Nevertheless we recruited 5 participants. Each was at least

18 years old and gave their written informed consent for each scan in accordance

with the Institutional Review Board at Dartmouth College. They completed a brief

questionnaire to determine eligibility in which four participants responded that they

listened to at least 5 hours of music per week and the fifth between 0 and 5 hours.

All participants responded that they had actively listened to western classical music

during more than 5 years of their life, and Chinese folk music during 0 years. All five

were thus deemed eligible. Upon arrival for each scan, the participants filled out a

screening form to confirm they could be scanned safely. They were each compensated

$60 USD after the second session.

2) Each scan consisted of 8 runs. Each run began with two dummy TRs and then

consisted of four “blocks,” which themselves consisted of four “trials.” The design of

a single trial is shown in Figure 3.4. All trials in a given block are the same style,

resulting in 48 trials for each style per scan. There is no time between trials. A

randomized jitter value between 4 and 7.5 seconds is assigned to the beginning of

each trial to decouple the evoked response from elapsed time and prevent a consistent

expectation of music starting. The scanning parameters were as close to those of the

Genre Dataset as possible to facilitate transfer learning from one to the other. In

particular, 1mm3 voxels and a 1.5s TR.

The music clips were procedurally generated by Marion and Barbarot using a

synthesizer according to the rules of the two musical grammars. Both styles of clips
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are simply a sequence of notes played on the Guzheng, a Chinese instrument. This

construction controls for effects due to different instruments and complex melodic

interactions, thereby focusing the experiment on the differences in the musical gram-

mars.

The EEG experiment by Marion and Barbarot asked participants to rate the

pleasure experienced by each clip on a continuous scale from 0 to 1, and they report a

significant increase in the pleasure ratings after exposure to Shanxi music. However,

in our fMRI scanner, the only method of feedback from the participant is a controller

with four buttons. Thus we prompted the participants to rate the pleasure they

experienced as one of “Not pleasing,” “Somewhat pleasing,” “Moderately pleasing,”

or “Very pleasing.” The lack of complexity in the music combined with the relative

weakness of our rating system makes this a difficult and imprecise question, and thus

we did not expect to reproduce the increased pleasure results of Marion and Barbarot.

This prompt still serves to monitor the attention of the participant. On the other

hand, we felt that presenting this prompt after every trial, that is, every 45 seconds,

would become tedious and perhaps annoying for the participant, which could corrupt

our measurements of NAcc. Thus the prompt was presented after every three trials,

that is, at the end of each block.

3) Marion and Barbarot created a website that played Shanxi clips (distinct from

clips used during scanning) and recorded the time spent listening. The participants

were instructed to listen to at least 30 minutes per day, with 1 hour being preferable.

In order to maintain the attention of the participant, the music stopped at random

times and required the participant to manually resume it. The listening times for

all participants are given in Table 3.1. Day 0 is the day of the first session, and

the final listed row is the day before their second session. Two participants had an

additional day of listening before their second session due to scheduling issues, but
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Figure 3.4: The design of each trial during scanning for the Enculturation Dataset.
A randomized jitter value between 4 and 7.5 seconds is assigned to the beginning of
each trial to decouple the evoked response from elapsed time and prevent a consistent
expectation of music starting. The compensation lag is calculated such that the
Pleasure Rating prompt appears after 39s, although this prompt only appears at the
end of each block. Each participant’s functional data consists of 8 runs, each of which
had 4 blocks with 3 trials in each block. Each block was either all Bach or all Shanxi.
Half of all blocks for each participant were Bach and the other half Shanxi. The
arrangement of blocks was randomized for each participant. The two sessions for each
participant had identical stimuli presentation.

Table 3.1: Time spent listening to Shanxi music clips during the week of exposure
after the first scan, in minutes and seconds. Columns are for the day number and
each participant. The clips listened to during this period were distinct from those
played during scanning. Day 0 is the day of the first scan and does not include the 24
minutes spent listening in the scanner. Each participant’s final listed row is the day
before their second scan. Two participants had an additional day of listening due to
scheduling issues, but in some sense this is balanced by both participants also having
at least one day where they did not listen at all.

Day Part. 1 Part. 2 Part. 3 Part. 4 Part. 5

0 0s 15m 18m06s 0s 0s
1 33m03s 38m57s 11m48s 41m59s 8m13s
2 34m36s 48m22s 83m48s 40m42s 79m56s
3 48m57s 28m47s 8m21s 48m49s 38m35s
4 0s 39m26s 16m35s 60m0s 17m12s
5 31m22s 42m21s 30m0s 51m19s 0s
6 25m37s 90m37s 79m37s 31m29s 11m8s
7 44m23s 63m49s

this is balanced somewhat by the fact that both had at least one day where they did

not listen at home.

4) Toward the goal of distinguishing between the two sessions, the sequence of
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clips presented during the second session was identical to the first session in order to

allow direct comparison of the neural responses. This does raise the concern of effects

due to recognizing the music during the second scan. However, as explained in 2)

above, the music is very simple with no unique identifiers. After a week of listening to

similar clips at home, we contest that the likelihood of recognizing any of the music

during the second scan to be negligible.

5) We present the architecture, task, and training data of this classifier in Chapter 4.

The general idea though is to separate the data corresponding to Bach and Shanxi,

reduce the data to only Nucleus Accumbens, and then train separate classifiers to

distinguish between session one and two for each style. The Bach training serves as

a control since our experiment design does not attempt to change the participants’

response to western music. Specifically, if the models learn to distinguish the sessions

equally well on both styles, despite taking no action to modulate the Bach response,

then the difference between sessions is most likely due to confounds such as the

participants’ increased comfort in the scanner during the second session. On the other

hand, if the models have a greater ability to distinguish sessions for Shanxi than Bach,

we will attempt to draw conclusions about enculturation.

Section 3.3

Data Preprocessing

The BOLD signal measured by fMRI is typically mixed with non-neural sources

of variability[88]. Preprocessing identifies the nuisance sources and reduces their

effect on the data[59, 9], and further addresses particular imaging artifacts and the

anatomical localization of signals[104]. Extracting a signal that is most faithful

to the underlying neural activity is crucial to ensure the validity of inference and

interpretability of results[4]. Thus, a primary goal of preprocessing is to reduce sources
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of false positive errors without inducing excessive false negative errors. An illustration

of false positive errors familiar to most researchers is finding activation outside of

the brain due to faulty spatial normalization. As a more practical example, Power

et al. (2012)[87] demonstrated that unaccounted-for head-motion in resting-state

fMRI generated systematic correlations that could be misinterpreted as functional

connectivity. Conversely, false negatives can result from a number of preprocessing

failures. We turn to a standardized preprocessing pipeline to achieve an empirically

sound balance between these two concerns.

3.3.1. fMRIPrep

We use a standardized pre-processing pipeline called fMRIPrep[22] on all datasets

in this work. fMRIPrep is designed to provide an easily accessible, state-of-the-art

interface that is robust to variations in scan acquisition protocols and that requires

minimal user input, while providing easily interpretable and comprehensive error and

output reporting.

The descriptions in this subsection are mostly adapted from the fMRIPrep

website[22], but the images are from the output of running fMRIPrep on the dataset we

collected in the previous section. All of our preprocessing steps were performed on the

Brainlife service[36]. Preprocessing fMRI data requires intense storage and computing

resources, and Brainlife provides millions of free computing hours supported by NSF

and crowdsourced cycles to researchers and students free of charge. Brainlife also

provides secure cloud storage for raw data as well as data derivatives.

The first objective of the pipeline is to remove the skull from the images, in other

words, we want to obtain a brain mask (Figure 3.5.

Then, spatial normalization to a standard space is performed using mutual-

information based, nonlinear registration scheme. We chose the MNI152NLin2009cAsym

template. We refer to this as “MNI space” throughout. Figure 3.6 shows two dif-
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Figure 3.5: fMRIPrep uses an atlas-based method for skull extraction. The output
includes a single figure overlaying the brain mask (red), and tissue boundaries (blue
= gray/white; magenta = tissue/Cerebro-Spinal Fluid (CSF)).

ferent participants in the first column, and their transformations to MNI space in

the third and fourth columns. The circled regions in the figure are easily identifiable

dissimilarities between the two participants that have become indistinguishable in

MNI space.

Next we need to reconstruct the surface boundaries in MNI space (Figure 3.7).

fMRIPrep can outsource this step to another application called Freesurfer[23], which

we were able to do on Brainlife.

The preprocessing of the T1 data is complete. It remains to preprocess the

functional data. The first step is head-motion correction. To do this, the first image of
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Figure 3.6: Spatial normalization of the T1 image to the MNI152NLin2009cAsym
template. Columns from left to right: Participant A in T1 space, Participant B in T1
space, Participant A in MNI space, Participant B in MNI space. The circled regions
are easily identifiable dissimilarities between participants that have become nearly
indistinguishable in MNI space.

each run is chosen as the reference image. Then a rigid-body transform is calculated

for each timestep with respect to the reference image, and then applied to that

timestep to correct for head-motion. The second step is slice-time correction. When

we perform analysis of fMRI data, we treat each TR as if the entire image were

obtained instantaneously. The reality is that each image is collected in slices over the

course of the TR. For example, suppose an image consisted of two slices, and slice 2

were acquired 0.1 seconds after slice 1. Then either slice 2 would need to be shifted

(interpolated) back in time 0.1 seconds, or slice 1 would need to be shifted 0.1 seconds

forward in time, in order for us to treat the image as an instantaneous snapshot of

the brain. This is slice-timing correction, and fMRIprep realigns all slices in time to

the middle of each TR.

The next step is to transform the functional data to MNI space by aligning it with
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Figure 3.7: fMRIPrep uses the output of Freesurfer to reconstruct the surface bound-
aries in MNI space.

the T1 image in MNI space we obtained earlier (Figure 3.8).

Finally we calculate the brain mask for the functional data in MNI space (Fig-

ure 3.9).

All remaining steps are performed on the output of this preprocessing pipeline.
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Figure 3.8: Mapping functional data to MNI space by aligning to T1 reference image
in MNI space.
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Figure 3.9: Calculating the brain masks for the functional data in MNI space.

Section 3.4

Other Datasets

We collected the Enculturation dataset in early 2023. Until that point our experiments

focused on two different datasets. We present their details here as they are critical to

understanding the experiments.

3.4.1. Auditory Imagery Dataset

This dataset was collected by May et al. in 2020 and has not yet been made officially

public, but is tentatively available upon request. On other hand, work built on this

dataset has been published in our lab’s previous work. [64, 79].
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Candidates to participate possessed at least 8 years of formal music training or

professional performance experience in Western tonal music, and they completed

the Bucknell Auditory Imagery Scale[31] and the Bregman Musical Ability Rating

Survey[32]. Twenty-three such participants passed the screening process and provided

their written informed consent in accordance with the Anonymous Review Board.

Each subject was compensated $20 US upon completion of the scan.

All scanning used a 3.0 T Siemens MAGNETOM Prisma MRI scanner with a

32-channel head coil and Lumina button box with four colored push buttons. Each

functional scan performed a T2* weighted single shot echoplanar (EPI) scanning

sequence with a repetition time (TR) of 2 sec and 240mm field of view with 3mm

voxels, yielding 80 voxel by 80 voxel images with 35 axial slices for a total of 224,000

voxels per volume. We used the fmriprep software[22] to perform motion correction,

field un-warping, bias field correction, and mapping to the standardized MNI space,

as well as brain extraction and ROI parcellation, on the raw T2* BOLD data. As

mentioned the dimensions of the raw functional data were 80x80x34, while the

dimensions after being mapped to MNI space were 65x77x65. A sample image from

before and after this standardization are shown in Figure 3.10.

Each participant’s functional scan consists of 8 runs of 21 musical trials. The

design of each trial is depicted in Figure 3.11. Each scan was randomly assigned either

the key of E Major or F Major, which was not known by the participant. Each run

collected data for either the heard condition or the imagined condition, alternating

from run to run. The conditions of the first four runs were repeated in the last four

runs. In other words, the task-condition run sequences for each participant were one

of either [HT, HC, IT, IC, HT, HC, IT, IC] or [HC, HT, IC, IT, HC, HT, IC, IT].

Each trial began with an arpeggio in the assigned key for the participant to

internally establish a tonal context, followed by a cue-sequence of ascending notes in
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Figure 3.10: (Top) Sample raw image from the Auditory Imagery dataset. (Bottom)
The same image as above after being mapped to the standardized MNI space.

Figure 3.11: The design of each trial during scanning for the Auditory Imagery Dataset.
Each participant’s functional data consists of 8 runs, each of which had 21 trials.

their assigned major scale. After a randomized time interval, the participant either

heard the next ascending note in the scale, or was instructed to imagine the next

ascending note, depending on the run. The following four seconds (2 TRs) of scanning

collected from all trials constituted the labelled data for the heard and imagined tasks.

Next, a probe tone was played, and the participant rated the probe tone’s goodness

of fit in the tonal context from 1 to 4. They excluded the data of any participant

with at least 20% of their ratings missing, or whose ratings did not reflect adequate
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understanding of the probe tones’ goodness of it. These exclusions controlled for

insufficient musical knowledge as well as inattention. Thus they excluded the data of

six of the twenty-three participants.

3.4.2. Music Genre Dataset

This dataset was published by Nakai et al. in 2017[67]. Scanning was performed using

a 3.0 T MRI scanner equipped with a 32-channel headcoil. For functional scanning,

they scanned 68 interleaved axial slices with a thickness of 2.0 mm without a gap using

a T2*-weighted gradient echo multi-band echo-planar imaging sequence (repetition

time (TR) = 1.500 ms, echo time (TE) = 30 ms, flip angle (FA) = 62°, field of view

(FOV) = 192×192 mm2, voxel size = 2×2×2 mm3, multi-band factor = 4). For

anatomical reference, they acquired high-resolution T1-weighted images of the whole

brain from all participants using a magnetization prepared rapid acquisition gradient

echo sequence (MPRAGE, TR = 2.530 ms, TE = 3.26 ms, FA = 9°, FOV = 256×256

mm2, voxel size = 1×1×1 mm3).

Music stimuli from 10 genres (blues, classical, country, disco, hip-hop, jazz, metal,

pop, reggae, and rock) were taken at random from the GTZANmusic genre dataset[110].

A total of 54 music pieces (30s, 22,050 Hz) were selected from each genre, providing

540 music pieces. A 15-s music clip was selected at random from each music piece.

They scanned each participant for 18 runs of 10 minutes each: 12 were considered

as “training” runs, and 6 were considered as “test” runs. We emphasize here that

the words “training” and “test” in the original run labels have no relation to our

own training and validation splits. Each “Training” Run corresponds to 40 different

music clips with no break in between clips (40 · 15s = 600s), while each “Test” Run

corresponds to a sequence of 10 music clips (one from each genre) repeated four times

with no breaks (10 · 4 · 15s = 600s). In our work, we only considered the first instance

of each clip in the “Test Runs,” to avoid any effects from repeat exposure, meaning
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each “Test” Run contributes 10 clips. Thus each of the five subjects contributes

12 · 40 + 6 · 10 = 540 clips.

The dimensions of the raw functional data were 96x96x68, while the dimensions

after being mapped to MNI space were 97x115x97. We wanted to match the dimensions

of the audimg dataset to facilitate ease of use of our models and directly compare

performance. Thus the MNI data was downsampled via linear interpolation to

65x77x65. A sample image in each of the three dimensionalities is shown in Figure 3.12.

Section 3.5

Regions of Interest

The full MNI space is several orders of magnitude too large for our purposes, and

more importantly we are only interested in regions of interest (ROIs) of the brain that

may be related to the musical information we are interested in. In this section we first

cover the ROI extraction for the Music Genre and Auditory Imagery experiments, and

then the ROI extraction for our Enculturation Dataset experiments, as those decisions

were informed by our experience with the other two datasets.

3.5.1. Genre and Auditory Imagery

The Superior Temporal Gyrus (STG) is the site of the auditory cortex, which processes

auditory information. Angulo-Perkins et al. (2014)[3] showed preferential involvement

of STG in processing music in both musicians and non-musicians, which fits our goal

of learning from the Music Genre dataset. STG has also been used to learn decoding

models of complex natural sounds[32], language[103], and even imagined sound[64, 79]

from fMRI data.

More specifically to the Music Genre Dataset, Nakai et al. (2021)[67], the white

paper for the Music Genre dataset, indicated distinct cortical organizations for different
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Figure 3.12: (Top) Sample raw image from the Music Genre dataset. (Middle) The
same image as above after being mapped to the standardized MNI space. (Bottom)
The same image as above after being downsampled via linear interpolation to match
the dimensions of the Auditory Imagery data in MNI space.

music genres in the bilateral STG. Specific to the Auditory Imagery Dataset, our

previous work successfully decoded heard and imagined pitch from bilateral STG[79, 64].

Thus we focused on STG for both the Music Genre and Auditory Imagery experiments.

We proceeded with Left STG and Right STG separately for reduced model complexity

and thus lower resource demand for training.

FSLEyes (2022)[65] is a free application for viewing fMRI images and includes

44



3.5 Regions of Interest Chapter 3

Figure 3.13: (Top) The Harvard Oxford Cortical Atlas. (Bottom) Heatmap for
probability of voxel inclusion in STG. Only probabilities greater than or equal to 23%
are shown.

several atlases for isolating structural ROIs in the brain with respect to MNI space.

We used the Harvard-Oxford cortical structure atlas (HO atlas), some regions of which

are shown as an example in Figure 3.13.

The HO atlas assigns a probability to each voxel of belonging to each ROI. Therefore

in order to extract STG, we needed to choose a minimum probability threshold for

inclusion in STG. This threshold is a hyperparameter to be tuned in future work, but

in this work all datasets have a threshold of 23%. We obtained our threshold by visual

inspection of the resulting regions. In their seminal work, Craddock et al. (2011)[13]
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used a threshold of 25% with the HO atlas, so our visual inspection method was only

slightly more lenient.

The HO atlas labels anterior and posterior STG separately, so we applied the

threshold to both regions and concatenated them. Voxels which met the threshold for

inclusion in both anterior and posterior are only included once and the greater of the

two probabilities is preserved. Figure 3.13 shows the heatmap corresponding to this

union.

The number of voxels in Left STG with inclusion threshold 23% is 413. However,

as we will explain in Chapter 3, we wanted the input space to be a round number with

a diverse factorization, and either 2 or 3 (depending on the experiment) additional

dimensions must be reserved. Thus we chose to insert either 5 or 4, respective to 2

and 3, additional voxels with maximal probabilities below 23%. The number of voxels

in Right STG with 23% inclusion threshold is 431, so for this region we removed the

13 or 14 voxels with minimal probability of inclusion, with respect to whether 3 or 2

dimensions were reserved. For both hemispheres this resulted in a 420-dimensional

input space for the experiments using inputs constructed from these datasets. We then

performed voxel-wise linear de-trending across the full scan and, finally, standardized

each voxel to mean zero and standard deviation 1 across the full scan.

3.5.2. Enculturation

Recall from Section 3.2.1 that we expect to see the effects of musical enculturation in

several regions related to auditory and emotional processing, and that we focus here

on NAcc as a continuation of previous work on the evolution of the internal prediction

model. Additional regions are left to future work. The experiments on this dataset

(5.3) thus demonstrate BEAT’s capacity for transfer learning in regions beyond STG.

We relied on an atlas to extract STG from the previous two datasets, but we

take a more deliberate approach with NAcc. One of the outputs of Freesurfer is a

46



3.5 Regions of Interest Chapter 3

Figure 3.14: (Top) Nucleus Accumbens ROI from Harvard-Oxford atlas with threshold
0%. (Bottom) Same ROI as top with threshold 23%. Above it are three participants’
warped ROIs in transparent green, light blue, and dark blue.

parcellation, which outlines the various structures in the brain. We used an application

on Brainlife to obtain a volumetric ROI for Nucleus Accumbens from the outline

provided by Freesurfer. These ROIs are specific to each participant’s high resolution

T1 data. A final Brainlife application warps these ROIs to MNI space. Figure 3.14

compares these warped ROIs to that of the Harvard Oxford Atlas. The top image

shows the atlas NAcc with a threshold of 0%. The bottom image shows the atlas ROI

as the same heatmap as the top image with threshold of 23%. Three participants’

warped ROIs are overlaid in transparent green, light blue, and dark blue. As with

STG, a 23% threshold is a satisfying approximation. The union of all participants’

warped ROIs yields total 417 voxels. This union is our final Nucleus Accumbens ROI

in this work. We performed voxel-wise linear de-trending on the extracted data, and

then standardized to mean 0 and standard deviation 1.
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Chapter 4

Bidirectional Encoders for Auditory

Tasks (BEAT)

The contributions of this thesis include a novel deep learning framework for fMRI-

based studies called BEAT, which stands for Bidirectional Encoders for Auditory

Tasks. These contributions are the focus of this chapter. In Section 2.4.2 we detailed

the history of machine learning with fMRI data, leading to the motivations for

the architecture and task designs detailed in this chapter. Section 4.1 explains the

Transformer deep learning architecture, on which my framework is based, and presents

an overview of how Transformers have been used on fMRI data. In Section 4.2 I

present my Transformer-based paired-sequence architecture for fMRI tasks which

serves as the model of interest for BEAT. Then in Section 4.3 and Section 4.4 I present

the novel training tasks learned by BEAT.
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Section 4.1

The Transformer Architecture

The transformer architecture[113], depicted in Figure 4.1, is proposed to supersede

Recurrent Neural Networks (RNN)[83], and more specifically, the popular variants

of RNN such as Long Short Term Memory (LSTM)[39] and Gated Recurrent Units

(GRU)[11], for processing sequential inputs. Most competitive sequence-to-sequence

models have an encoder-decoder structure. In the case of the transformer, the encoder

(left side of Figure 4.1 maps an input sequence of symbol representations (x1, ..., xn) to

a sequence of continuous representations z = (z1, ..., zn). Given z (the arrow from left

half to right half in the figure), the decoder then generates an output sequence y = (y1,

..., ym) of symbols one element at a time. At each step the model is auto-regressive,

consuming the previously generated symbols as additional input when generating

the next. Consider machine translation as an example. The input sequence x is the

sequence to be translated, its encoded representation z is passed to the decoder, y

is currently an empty sequence, and the decoder outputs the first word y1 of the

translation. Then this repeats with the sequence (y1) as input to the decoder and y2

is output, and so on.

For sequence processing, one of the most important challenges is to model the

interaction between tokens. In RNNs, input tokens interact with each other through the

recurrent function and decide the output for the next recurrent step. The transformer

architecture, on the other hand, completely relies on the attention mechanism[6]

for token interaction. More specifically, it uses self-attention to model relationships

between the elements of the sequence. These relationships are quantified as attention

scores, which then becomes weights on each element due to their relevance to other

frames. However, without any recurrent or convolution components, the transformer
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Figure 4.1: The full transformer architecture, taken from the original paper[113]. The
left half is the “encoder” which generates a distributed representation of an input
sequence, for example a sentence to be translated, and the right half is the “decoder”
which uses that representation to generate the target output sequence, for example
the translated sentence, in an auto-regressive manner.

needs some other mechanism to inject information about the absolute and relative

position of the tokens in order to make use of the order of the sequence. This is the

“Positional Encoding” unit shown in the diagram. We refer to the original paper[113]

for the full details of multi-head attention and positional encoding, but remark here
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that the number of “attention heads” is a hyperparameter indicating the number of

different representation subspaces learned by each Multi-Head Attention block, on

which the model jointly attends.

Apart from the attention mechanisms, the encoder and decoder also have a feed-

forward layer which projects up to a higher dimensional space and then back down to

the original. We refer to this factor by which the model projects upward as “forward

expansion.” As seen in the diagram, there is a residual connection[37] which goes

around the attention and feedforward components, and a layer normalization module[5]

after the residual connection. These combined elements constitute one encoder or

decoder “layer,” and the number of layers is a hyperparameter to be tuned.

4.1.1. Transformers on fMRI Data

In 2019, Devlin et al.[17] presented BERT, which stands for Bidirectional Encoder

Representations from Transformers. Bidirectional meaning that each element of

the sequence is able to attend both forward and backward in time. This is not

always desirable, for example in language modeling, the next word to be generated is

conditioned only on what has come before it. But in our case, we want the attention

mechanism to learn as much as possible about the entire sequence. BERT removed the

decoder half entirely during pretraining, using only a stack of encoder blocks which

fed into an output layer. BERT was pretrained on a massive corpus of unlabelled

text and the authors performed transfer learning by simply replacing the output layer

to obtain state-of-the-art results on eleven natural language processing tasks. The

simplicity of such transfer learning motivated us to adapt their approach. In recent

years, this strategy of a stacked encoder transformer architecture has emerged as a

superior alternative to recurrent methods for fMRI timeseries modeling. Bedel et

al. (2023)[7] improved the state of the art for timeseries classification on multiple

public fMRI datasets with a novel fused-window attention mechanism, but their work
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did not explore pretraining or transfer learning. Nguyen et al. (2021)[70] achieved

state of the art classification accuracy for a task-state decoding task on the Human

Connectome Project 7-task dataset[112]. Their analysis includes the explicit benefits

of the transformer’s self-attention module when compared to previous recurrent

architectures, as well as a demonstration of transfer learning when pretraining on held-

out subsets of HCP 7-task. However, their pretraining task was supervised classification

specific to HCP 7-task labelled data, and thus their pretrained models would be of little

to no value toward transfer learning on different datasets or modalities[45]. Malkiel

et al. (2022)[62] pretrain on a self-supervised fMRI reconstruction task by wrapping

the transformer block in an encoder-decoder. They report that their pretraining was

crucial for improved state of the art performance on a variety of fMRI tasks such as age

and gender prediction, and schizophrenia recognition. We note that their downstream

task uses the “CLS token” decoding method popularized by Devlin et al. (2019)[17],

which we explain further below, and yet their pretraining task does not incorporate

the CLS token. This inconsistency between training phases does not obtain the full

value of the transfer learning paradigm.

Section 4.2

A Paired-Sequence Transformer for fMRI Tasks

Progressing from the previous section, we explored pretraining and transfer learning

using a stacked encoder transformer model via novel self-supervised pretraining tasks

which include the CLS token. All model inputs are in a standardized geographical

brain space.

Our architecture is a modified stacked bidirectional-encoder design (Figure 4.2)

with one or two separate output blocks, for each of two possible self-supervised

pretraining tasks on which the model may be trained. We implemented our models

52



4.2 A Paired-Sequence Transformer for fMRI Tasks Chapter 4

Figure 4.2: Our models consist of stacked transformer encoder layers without an
embedding, and one or more output layers (not pictured). When we refer to the
number of layers in a model, it is the N in this diagram being discussed.

from scratch with the pyTorch library. Our model does not include the standard

embedding layer after positional encoding. We hypothesize that the composition of the

fMRI scanner’s measurement of BOLD signal with the mapping of that measurement

to MNI space constitutes a meaningful embedding of the physical, biological neural

response. The data are already in a shared, distributed, representative space. Hence,

we dispense with the embedding layer in our design.

Each input to the model is constructed by extracting a contiguous sequence of

fMRI images of a subject listening to music (Seq1), and then pairing it with another

such sequence (Seq2). A separator token (SEP)[17] is inserted between the two

sequences, and a classification token (CLS)[17, 62, 70] is inserted at the front. The

presence of the SEP token in every input teaches the model to recognize the two

separate sequences. CLS serves as a “pooling” token–since only the CLS token is

fed to the output layer, backpropagation will force the model to learn to extract the

necessary information from the rest of the input into the CLS token.
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Figure 4.3: Pretraining and Finetuning phases. Output Blocks are not pictured but
are detailed in corresponding sections. The model learns to extract information into
the CLS token, which is fed to Output Block 1 during pretraining, and Output Block
3 during finetuning, for classification. The SEP token separates the two sequences.
The masked token(s), if used, are fed to Output Block 2.

Before constructing the inputs, we reduced all fMRI images to only the left-side

auditory cortex, resulting in 420 voxels, which we then flattened to 1-D. Thus each

input xi in the training set is a sequence of twelve 420-dimensional vectors, where

Seq1 and Seq2 both have length N:

xi = [CLS, v⃗0, . . . , v⃗N−1, SEP, v⃗N , . . . , v⃗2N−1] , vj ∈ R420. (4.1)

In the domain of NLP, the above tokens are added as word indices to the vocabulary

and the embedding layer learns their distributed representations[113]. Malkiel et al.

(2022)[62] prepended a CLS token to sequences of fMRI images and pass that sequence

through a learned embedding layer. But the original form of the CLS token must have

the same dimension as the fMRI images in the sequence in order for the embedding

layer to accept it. They do not report what this original form was. Logically, the

tokens ought to be “far away” from the rest of the data in the distributed space. Thus
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we simply reserved the first three of the 420 dimensions for our tokens. The CLS, SEP,

and MSK tokens have a 1 in the zeroth, first, and second dimensions respectively, and

are zero elsewhere. Each fMRI image has zero in those dimensions. Indeed, we had

to remove the three voxels with lowest probability of inclusion from each image to

make room for the tokens, and thus in practice only had 417 voxels in each image

rather than 420. The success of our experiments, detailed in Chapter 5, validates

our novel implementation of these tokens without an embedding space.

Section 4.3

Self-Supervised Pretraining

The classic supervised machine learning paradigm is based on learning in isolation,

a single predictive model for a task using a single dataset. This approach requires

a large number of training examples and performs best for well-defined and narrow

tasks. Transfer learning refers to a set of methods that extend this approach

by leveraging data from additional domains or tasks to train a model with better

generalization properties[95]. Over the last few years, the field of Natural Language

Processing (NLP) has witnessed the emergence of several transfer learning methods

and architectures which significantly improved upon the state-of-the-art on a wide

range of NLP tasks[17, 89]. This philosophy has begun to spread to deep learning on

fMRI datasets[62, 70]. Following these works, we focus on sequential transfer learning,

which consists of two phases: a pretraining phase in which general representations

are learned on a source task followed by a finetuning phase during which the learned

knowledge is applied to a target task.

Self-Supervised Learning (SSL), on the other hand, is a relatively new learning

strategy which helps the model to learn universal knowledge based on a sort of pseudo

supervision[95]. While supervised learning requires human labelled instances, the
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labels in SSL are generated automatically based on data attributes and the definition

of the task. This is what differentiates SSL from unsupervised learning, in which

no labels whatsoever are used doing training. Moreover, as Kalyan et al. (2021)[45]

describe, “the objective of unsupervised learning is to identify the hidden patterns

while the objective of SSL is to learn meaningful representations.”

The subsections below detail our novel self-supervised pretraining tasks.

4.3.1. Next Thought Prediction

Our first SSL task is Next Thought Prediction (NTP). The goal of NTP is binary

classification, predicting whether or not Seq2 follows immediately after Seq1 in the

original data. From the output of the final transformer block, the transformed CLS

token is sent to Output Block 1. This block consists of a linear layer projecting

down from 420 dimensions to 210, then a second linear layer projecting down from

210 to 2, and finally a softmax is applied to obtain probabilities for “No” (index 0)

and “Yes” (index 1). The loss for NTP is calculated as the Cross-Entropy between

the result of Output Block 1 and a one-hot encoding of the ground truth.

We remind the reader that Cross-Entropy is a measure of “difference” between

two probability distributions over the same set. Here, the two distributions are over

the output labels “No” and “Yes.” Formally, the Cross-Entropy of the distribution q

relative to a distribution p over a given set is defined as:

H (p, q) = −Ep [log q] , (4.2)

where Ep [·] is the expected value operator with respect to p.
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4.3.2. Masked Brain Modeling

Our second SSL task is Masked Brain Modeling (MBM). The goal of MBM is to

reconstruct a masked element or elements of the input sequence. When an input

arrives at the model, before positional encoding, 15% of the fMRI images in the input

are chosen uniformly at random (without replacement) for masking. When an image

is “chosen”, there is an 80% chance to replace it with the mask token (MSK), a 10%

chance to replace it with a random image sampled uniformly from the full dataset,

and a 10% chance to leave it unchanged. These percentages are the same as in Devlin

et al. (2019)[17]. The chosen indices are recorded, and the elements of the final

transformer block’s output at those indices are passed separately to Output Block 2.

This block consists of a dense layer with ReLU activation, then a second dense layer

with linear activation. The loss for MBM is calculated as the Mean Squared Error

(MSE) between the output and the original chosen fMRI image. In the case of two

chosen images, the total MBM loss is the average of the two individual MBM losses.

We remind the reader that MSE is a measure of the quality of a predictor, that

is, a vector of n predictions. For each chosen fMRI image we have n = 420 output

predictions (Ŷ ) for the 420 true voxel values of that image (Y ). Formally, the MSE of

our MBM predictor is:

MSE =
1

n

n∑
i=1

(
Yi − Ŷi

)2

. (4.3)

Note the inherent data augmentation of the MBM task. There are ten fMRI images

in each training sample, and the result of each possible masking configuration yields a

distinct training sample. Thus MBM can effectively grow the size of the training set

by an order of magnitude if the model is trained long enough. This gain is perhaps

overlooked in domains such as natural language processing where billions of training

samples are available. In fMRI studies, however, data poverty is a consistent concern

due to the financial and time costs of scanning. We currently make no specific claims
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about the effects of this augmentation in our experiments, but this potential benefit

built into the task is noteworthy.

4.3.3. Multitask Learning

Training on more than one task simultaneously, known as Multitask Learning, has

been shown to improve downstream performance in several domains[50] by benefiting

from the underlying relationships between tasks, but to our knowledge this has not

previously been done when training on fMRI data. In their thorough treatment of the

brain’s musical reward system, Salimpoor et al. (2015)[96] comment “music pleasure

is thought to rely on generation of expectations, anticipation of their development and

outcome, and violation or confirmation of predictions.” In other words, the notion of

“what comes next” is intimately connected to the explicit values of voxel activity. NTP

and MBM embody these two concepts, so indeed our multitask pretraining scheme is

aligned with the literature.

When training begins, the raw loss value of NTP for a single training sample

is, on average, at least an order of magnitude greater than the loss value of MBM.

Therefore the parameter updates will certainly be dominated by NTP, stifling any

learning from MBM. Deriving a theoretically optimal way to combine the two losses

would be a significant endeavor, so our total training loss for a single sample is merely

the weighted sum of our two loss values:

Emulti = α1 · ENTP + α2 · EMBM (4.4)

α1 + α2 = 1. (4.5)

These two weights are simply hyperparameters to be tuned. We explore these and

other hyperparameters in the Experiments and Results section below.
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Section 4.4

Finetuning on a Brain Decoding Task

The second stage of sequential transfer learning is the finetuning phase, during

which the learned knowledge from pretraining is leveraged toward a target task. The

subsections below detail the target tasks, that is, our novel supervised brain decoding

tasks.

4.4.1. Same-Timbre Task

The goal of the Same-Timbre task is binary classification on the Auditory Imagery

Dataset detailed in Section 3.4.1, attempting to decode whether Seq1 and Seq2

correspond to the same timbre of music. Recall that each trial in this dataset is either

Heard Clarinet (HC), Heard Trumpet (HT), Imagined Clarinet (IC), or Imagined

Trumpet (IT). For this task, we consider HC and IC to be the same timbre, likewise

for HT and IT. From the output of the final transformer block, the transformed CLS

token is sent to Output Block 3. This block consists of a linear layer projecting down

from 420 dimensions to 210, a second linear layer from 210 to 2 dimensions, then a

softmax is applied to obtain probabilities for “No” (index 0) and “Yes” (index 1). The

loss for Same-Timbre is calculated as the Cross-Entropy between the result of Output

Block 3 and a one-hot encoding of the ground truth.

4.4.2. Same-Session Task

The goal of the Same-Session task is binary classification on the Enculturation

Dataset, which was detailed in Section 3.5.2. Seq1 and Seq2 are either both Bach

listening or both Shanxi listening, and the task is to predict whether the two sequences

are drawn from the same scanning session. From the output of the final transformer

block, the transformed CLS token is sent to Output Block 3. This block consists of a
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linear layer projecting down from 420 dimensions to 210, a second linear layer from

210 to 2 dimensions, then a softmax is applied to obtain probabilities for “No” (index

0) and “Yes” (index 1). The loss for Same-Session is calculated as the Cross-Entropy

between the result of Output Block 3 and a one-hot encoding of the ground truth.

4.4.3. Same-Genre Task

The goal of the Same-Genre task is binary classification on the Music Genre Dataset

detailed in Section 3.4.2, attempting to decode whether Seq1 was and Seq2 were

scanned while listening to the same genre of music. From the output of the final

transformer block, the transformed CLS token is sent to Output Block 3. This block

consists of a linear layer projecting down from 420 dimensions to 210, a second linear

layer from 210 to 2 dimensions, then a softmax is applied to obtain probabilities for

“No” (index 0) and “Yes” (index 1). The loss for Same-Genre is calculated as the

Cross-Entropy between the result of Output Block 3 and a one-hot encoding of the

ground truth.
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Experiments and Results

This chapter details the experiments we conducted with the BEAT framework presented

in Chapter 4, as well as the results of those experiments. Section 5.1 presents the

experiments and results on the Music Genre Dataset. Section 5.2 presents the

experiments and results on the Auditory Imagery Dataset, as well as inference on the

attention weights of the best performing models. Section 5.3 presents the experiments

and results on the Enculturation Dataset, the collection of which was described in

Chapter 3.

Section 5.1

Experiments on Music Genre Dataset

The Music Genre Dataset was detailed in Section 3.4.2. In this section we explain the

construction of the training data, demonstrate our architecture’s ability to learn the

NTP and MBM pretraining tasks, including a potential benefit of training on them

both simultaneously, and then demonstrate statistically significant benefits of transfer

learning to the Same-Genre finetuning task.

As a helpful reference, we summarize the upcoming information about this dataset

and its training data in Table 5.1.
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Table 5.1: Summary of Music Genre Dataset. The Pretraining and Finetuning Samples
fields are given as “{training samples} and {validation samples}”.

Music Genre Dataset
# of Participants 5
Training Regimen 12-fold cross-val, heldout runs
Region of Interest Left STG
Pretraining Tasks NTP+MBM Multitask, NTP-only
Pretraining Samples 10,000 and 800
Finetuning Task Same-Genre
Finetuning Samples 10,000 and 800

5.1.1. Training Data

Recall that the stimulus schedule for this dataset was to present 15s clips of music

from ten different genres with a TR of 1.5s, for a total of 10 consecutive fMRI images

per clip with no break in between clips. Observe that the length of the inputs must

be the same in both the pretraining and finetuning stages. Looking ahead to the

Same-Genre task, the maximum length of Seq1 and Seq2 is therefore 10, because

each clip of music is only 10 TRs long and crossing the boundary of another clip

would create an input containing more than one genre. We note, though, that a small

amount of boundary crossing, say 8 TRs of one clip and 2 TRs of the next clip with

the 8 TRs deciding the genre of that sequence, could potentially make the learning

more robust and lead to better generalization, similar to dropout. We leave that to

future work.

Regardless, we instead chose a sequence length of 5 TRs to create more training data.

We refer to this as a 5-seq throughout the rest of this thesis. Another consideration

is the stride when collecting 5-seqs. For example we could collect images 0 through 4,

2 through 6, and 5 through 9 to obtain three 5-seqs from a single clip. Or, we could

avoid overlap entirely and collect only 0 through 4 and 5 through 9. Overlapping

5-seqs would have the advantage of more training data, at the cost of potentially

overfitting the training data due to repeat exposure to certain images. We chose to
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begin with no overlap at all (stride of 5), meaning two 5-seqs per clip, and met enough

success that we have not, as yet, returned to consider different strides on this dataset.

With the above design, after collecting from all five participants we obtain 5400

5-seqs. Now the final consideration is the construction of the positive (“Yes” is the

correct output) and negative (“No” is the correct output) training samples. Observe

that it is impossible to have a positive sample for NTP if Seq1 and Seq2 are drawn

from different participants. Thus each pairing, whether positive or negative, is drawn

from a single participant, while the complete training set draws pairings from all

participants, resulting in a sort of within/among-participants hybrid. Observe further

that each 5-seq could be used as Seq1 for both a positive and negative sample when

constructing the training set. This option has the advantage of doubling the amount

of training data compared to choosing either a positive or negative partner for each

Seq1. On the other hand, creating both could potentially contribute to overfitting

from repeat exposure. For brevity going forward, we refer to this quality as “PosNeg.”

If PosNeg is True when when constructing a dataset, each 5-seq is used to construct

both a positive and negative sample. If False, then each 5-seq is used to construct

either a positive or negative sample with 50/50 chance.

The last consideration is the implementation of Masked Brain Modeling (MBM).

Recall that the Masked Brain Modeling (MBM) masking process is performed when

the input arrives at the model. Therefore creating a training set for multitask learning

on both MBM and Next Thought Prediction (NTP) reduces to creating a training

set for NTP-only and switching the masking process on or off. However, our goal was

to select 15% of the fMRI images in an input for masking, but our inputs have two

5-seqs for a total of 10 images. Thus our implementation selects either one or two

images with 50/50 change for an average of 15%. The masking process described in

Section 4.3.2 is applied to the chosen images individually.
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We are finally ready to construct the datasets. For pretraining, we performed

12-fold cross validation where each fold holds out as validation/test data of the twelve

runs labeled as “Training” in the original dataset. We remind the reader that the

original labels on the runs are not related to how we use them. For each fold, both the

training and heldout data have stride of 5 and True PosNeg. The 5-seqs are paired

according to the hybrid within/among scheme described above. The same 12 folds

are used in all pretraining experiments below. For finetuning, we constructed 12 new

folds with the same method as the pretraining folds.

5.1.2. Pretraining

One of the most important questions to ask in the context of multitask learning is

whether the model would have been better off with only one task. In particular, how

much is the performance on NTP impeded by having to learn MBM at the same time?

To explore this, we performed our hyperparameter grid search for training on the

multitask regimen as well as NTP alone. Recall that Nguyen et al. (2021) [70] was

the only relevant transformer brain decoding work when we began these experiments.

Thus we performed the initial hyperparameter search within small neighborhoods of

their reported configuration (2 layers, 8 attention heads). This initial search met with

enough success that we did not explore further. (Table 5.2 shows the best performing

(i.e. achieved the highest validation accuracy on NTP at some point during training)

configurations. We let the NTP task guide our search because its binary accuracy is

simply more interpretable than any metric involving the MBM task. Nevertheless,

the multitask models’ performance on MBM is included in our analysis below.

All training during grid search held out run 0 from the dataset as a validation split.

We applied a dropout rate of 0.1 in all transformer blocks. Models were trained for

ten epochs via backpropagation with the Adam optimizer with β1 = 0.9, β2 = 0.999,

and weight decay = 0.0001.
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Table 5.2: Best performing configuration for the two training regimens. Parameters
from top to bottom are the alpha weights for loss calculation, learning rate, number
of attention heads, and factor of forward expansion in the encoder blocks.

Multi NTP

α1, α2 0.1, 0.9 N/A
LR 10−4 10−5

Atn Hds 2 2
F Exp 4 4

In general, fewer attention heads with more layers outperformed the reverse. It is

reassuring to obtain the same value for attention heads and forward expansion on both

regimens. The best performing learning rate for NTP-only is an order of magnitude

smaller than for multitask, but this is not surprising. NTP’s contribution to the loss

is scaled by α1 = 0.1, and in the most basic gradient descent, scaling the loss function

by a constant is functionally the same as scaling the learning rate by that constant

instead. The Adam optimizer is a bit more complex, but the general idea holds.

5.1.3. Cross Validation

After identifying the best performing hyperparameters for both cases, we performed

12-fold cross validation for both multitask and NTP-only, where each of the 12 folds

held out one of twelve runs from the dataset. It was unclear during hyperparameter

search whether a 3 or 4 layer model was superior, so we considered both here. The

same Adam specifications as hyperparameter search were used. The exact details of

pretraining dataset construction can be found in the Materials section below, but we

note here that each fold has 10,000 training samples and 800 validation samples.

We applied a dropout rate of 0.1 in all transformer layers. Models were trained for

ten epochs via backpropagation with the Adam optimizer with β1 = 0.9, β2 = 0.999,

and weight decay = 0.0001. Each model was trained with a different RNG seed for

reproducibility. Results are presented in Table 5.3. For each fold, we saved the model’s
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Figure 5.1: Box and whisker plot of the average Best Validation Accuracies obtained
on the NTP task with two different pretraining strategies on the Music Genre Dataset:
NTP-only, and both NTP and MBM simultaneously. Baseline chance on NTP is 50%.

state after the epoch with the highest NTP accuracy on the validation split (“Best

Val. Acc.” in the table). The “Best Epoch” column contains the epoch in which this

accuracy was achieved. The MBM loss calculated on the validation split after the

Best Epoch is also given to consider the relationship between the two tasks. Consider

as a baseline that the MBM training loss on the first training sample seen by a model

is around 0.4. The averages of each column are given in the last row of the table. The

statistics of those averages are depicted in Figure 5.1.

Models with 3 layers outperformed on average on both accuracies of interest as

well as MBM Validation Loss, so we proceeded to finetuning with the saved 3-layer

models. The exact details of finetuning dataset construction can be found in the
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Table 5.3: Results of 12-fold cross validation for Multitask (NTP and MBM) and
NTP-only pretraining regimens, on 3 and 4 layers. Best Val Acc is the highest accuracy
obtained during training on the NTP task on the validation split. Baseline chance
on NTP is 50%. The epoch in which that accuracy was obtained is given in the Best
Epoch column, from 0 to 9 inclusive. MBM Loss is the loss obtained on the MBM
task on the validation split in the Best Epoch. The average across all twelve folds is
given at the bottom of each column with ± standard deviation.

Multitask (NTP and MBM) NTP Only
Heldout

Run
N Layers Best Val Acc

Best

Epoch

MBM Val

Loss
Best Val Acc

Best

Epoch

0
4 93.5 8 0.00103 88.375 6

3 88.125 8 0.00048 88.25 9

1
4 87.375 9 0.00088 87.375 8

3 90.6 6 0.00051 88.375 9

2
4 88.625 4 0.00070 87.875 9

3 88.75 9 0.00037 89.375 8

3
4 86.875 7 0.00043 87.375 8

3 89.5 9 0.00118 87.75 7

4
4 80.0 3 0.00107 83.0 8

3 80.5 8 0.00045 90.75 9

5
4 88.375 9 0.00080 87.0 9

3 90.75 9 0.00040 87.75 9

6
4 79.375 8 0.00079 83.875 6

3 84.125 8 0.00051 87.75 9

7
4 79.875 3 0.00259 85.375 9

3 85.625 8 0.00071 89.25 9

8
4 81.75 6 0.00098 90.0 9

3 94.875 8 0.00083 90.125 8

9
4 82.25 9 0.00102 85.0 8

3 85.0 8 0.00076 84.75 4

10
4 80.375 5 0.00079 87.0 9

3 92.0 9 0.00077 87.25 9

11
4 72.278 1 0.00070 88.734 9

3 82.152 9 0.00032 87.468 9

Average
4 83.388±5.713 6 (98±54)∗10−5 86.749±2.058 8.17

3 87.613±4.255 8.25 (61±25)∗10−5 88.237±1.557 8.25

Materials section below, but as in the pretraining phase, each fold has 10,000 training

samples and 800 validation samples.
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5.1.4. Finetuning

We loaded the twelve 3-layer models saved after their Best Epoch during the Multitask

and NTP-only regimens and trained them for ten epochs on the Same-Genre task

described above. The training data for each model holds out the same run as was

held out during pretraining as a validation split. Preliminary testing showed that

freezing the pretrained weights and updating only the new output block was not a

successful training strategy for this work. Therefore all parameters were updated

during finetuning. To examine the benefit of transfer learning, we also trained twelve

randomly initialized (RI) models. The RI models are identical to the other models

used in finetuning but do not load any pretrained weights.

The Adam optimizer parameters were the same as during pretraining. We trained

all 36 models for 10 epochs with a Learning Rate of 10−4 and then again with 10−5-

the two learning rates used during pretraining. Table 5.4 reports the same values as

Table 5.3 for the models with LR of 10−5. The statistics of the average Best Validation

Accuracies are depicted in Figure 5.2. These results outperformed the 10−4 results

across the board so those are not reported.

5.1.5. Discussion

The first point of interest is that the pretraining phase was successful at all. fMRI

data is a challenging domain and paired-sequence transformers have not previously

been used on fMRI data, nor has multitask learning, in addition to our pretraining

tasks being novel. Nevertheless, our implementation is conclusively capable of learning

these tasks as both strategies significantly outperform the baseline chance of 50%

(for each, a one-sample t-test against hypothetical mean of 50%, p < .001). The

average best performance between the two regimens is not significantly different for

the 3-layer models (paired t-test, p=.6661), which alleviates concerns about MBM

impeding the ability to learn NTP. Moreover, it does not impede the speed at which
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Table 5.4: Results of 12-fold cross validation for three finetuning regimens on the
Same-Genre task: Multitask-pretrained models, NTP-only-pretrained models, and
randomly initialized (RI) models, all with 3 transformer layers. Baseline chance on
this task is 50%. Best Val. Acc. is the highest accuracy obtained during training on
validation split. The epoch in which that accuracy was obtained is given in the Best
Epoch column, from 0 to 9 inclusive. The average across all twelve folds is given at
the bottom of each column with ± standard deviation.

Multitask (NTP and MBM) NTP Only RI
Heldout

Run
Best Val. Acc.

Best
Epoch

Best Val. Acc.
Best
Epoch

Best Val. Acc.
Best
Epoch

0 82.625 7 94.75 9 84.625 8
1 86.625 9 91.375 9 88.75 5
2 88.375 9 94.0 6 89.625 6
3 93.0 4 92.125 8 89.5 9
4 72.75 9 93.25 8 82.5 6
5 89.5 9 92.0 5 86.5 9
6 82.0 9 91.0 9 82.75 9
7 98.25 9 90.875 5 82.5 9
8 94.25 9 95.375 9 83.625 6
9 78.125 9 92.375 9 83.125 5
10 82.625 7 91.875 8 87.875 8
11 81.392 2 97.089 8 83.291 9
Average 85.793± 7.28 7.67 93.007± 1.93 7.75 85.389± 2.87 7.42

the multitask models achieve their best performance- about 8 epochs in both cases.

The multitask models are more volatile, with standard deviation of 4.3 compared

to 1.6 for NTP-only. NTP-only achieves its highest validation accuracy at 90.75%,

but multitask runs achieve 92%, 93.5%, and 94.875%, which is our first evidence of a

synergistic benefit from self-supervised multitask training on fMRI data.

Our novel supervised brain decoding task, Same-Genre, was also successful on both

pretrained models and RI models. The models pretrained on NTP-only significantly

outperformed the RI models, which is our first significant evidence of the ability

to perform transfer learning with our model from one of our novel self-

supervised pretraining tasks to a supervised brain decoding task. The
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Figure 5.2: Box and whisker plot of the average Best Validation Accuracies obtained
when learning the Same-Genre task with 12-fold cross-validation with three different
initializations: pretrained on both NTP and MBM, pretrained only on NTP, and
randomly initialized (RI). Baseline chance on this task is 50%.

models pretrained on Multitask almost exactly matched the baseline RI models on

average, but we note a similar volatility to the pretraining phase. The average of the

Multitask models is dragged down by folds 4 (72.75%) and 9 (78.125%). On the other

hand, fold 7 achieves a staggering 98.25% validation accuracy, as well as 93% and

94.25%, all of which exceed the RI models’ best fold of 91.625%. NTP-only reached a

maximum of 97.089%, which is also short of the Multitask maximum. Note that the

success in pre-training and fine-tuning also validates our novel implementation of the

CLS and SEP tokens.

The relationship between pretraining performance and finetuning performance is

unclear. For example, the second highest finetuning accuracy for Multitask was on

folds 8, which was the highest performance of the 3-layer models during pretraining,

indicating the positive relationship between the two phases that we would expect.
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Table 5.5: Summary of Auditory Imagery Dataset. The Pretraining and Finetuning
Samples fields are given as “{training samples} and {validation samples}”.

Auditory Imagery Dataset
# of Participants 17
Training Regimen 8-fold cross-val, heldout participants
Regions of Interest Left and Right STG
Pretraining Task NTP
Pretraining Samples 26,640 and 3,552
Finetuning Task Same-Timbre
Finetuning Samples 2,520 and 336

On the other hand, fold 7 had the best performing Multitask finetuning accuracy, or

rather the best finetuning accuracy of any regimen, while the pretraining accuracy and

MBM loss were both below average on that fold. More work is required to properly

identify a relationship between the two phases.

Due to time constraints we leave inference on the trained models of the Music

Genre experiments to future work.

Section 5.2

Experiments on Auditory Imagery Dataset

The Auditory Imagery Dataset was detailed in Section 3.4.1. In this section explain

the construction of the training data for NTP and Same-Timbre (ST, Sec.4.4.1). We

then demonstrate our architecture’s ability to learn the NTP pretraining task on this

dataset as well as statistically significant benefits of transfer learning from NTP to ST

in both Left and Right STG when generalizing to heldout subjects. Finally we briefly

discuss our unsuccessful attempts at decoding explicit timbre labels of single-sequence

inputs from this dataset. This shortcoming will reinforce our asking the question of

decoding timbre in a different way, namely with ST.

We summarize the upcoming information about this dataset and its training data

in Table 5.5.
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5.2.1. Training Data

Recall that the source dataset consists of two each of Heard Clarinet, Heard Trumpet,

Imagined Clarinet, and Imagined Trumpet. Holding out any single run as a validation

set would not express the model’s ability to learn all four conditions. If we hold out

a strict subset from each of the four conditions, then some runs will contribute to

both training and validation splits, raising data contamination concerns. Instead, we

randomly shuffled the list of 17 participants and performed 8-fold cross validation,

where fold n holds out all runs of subjects 2n and 2n+1 in the shuffled list, 0 ≤ n ≤ 7.

This one shuffled list is the reference for constructing the 8 folds of all experiments on

this dataset.

The pre-training data for NTP is created by selecting every possible 5-seq (with

stride of 2) from all participants as Seq1, then for each of those, Seq2 is taken from

the same participant as Seq1. As in the Music Genre experiments, our training data

for NTP on this dataset is True PosNeg. Each fold during pretraining has 26,640

training samples and 3,552 validation samples. The training and validation splits are

both half positive and half negative.

The finetuning data for Same-Timbre (ST) must match the architecture used in

pretraining, so once again the inputs are pairs of 5-seqs. For this task, the 5-seqs

are the five contiguous images beginning from the Target Note onset from each cycle

(Figure 3.11). As in NTP, Seq2 was chosen within-participant. In all pairings, Seq1

and Seq2 are either both Heard or both Imagined. We leave the Heard-Imagined cross

pairs to future work. As in pretraining, we construct both a positive and negative

sample for each Seq1. However, observe the increased potential for data augmentation

with this task. In NTP, each Seq1 has only one possible Seq2 to create a positive

sample, but on this task the number of possible positive samples for each Seq1 is the

total number of trials with that same timbre, which is 41. That is, we can augment
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our ST datasets by a factor between 1 and 41 simply by the nature of having paired

inputs. An ablation study on the effects of this augmentation is left to future work.

In the Same-Timbre experiments below each of the 8 folds has 2,520 training samples

and 336 validation samples.

The above datasets were constructed for both Left and Right STG separately.

5.2.2. Pretraining

We did not consider multitask pretraining on this dataset, instead focusing on the

NTP-only regimen after seeing its superior transfer learning results on the Music

Genre Dataset. We performed a basic hyperparameter grid search over the Learning

Rate, the number of Transformer Layers, the number of Attention Heads within each

layer, and the factor of Forward Expansion within each layer. The best performing

configuration on the held out data was, in that order, [10−5, 3, 2, 4]. Observe that

this is identical to the optimal configuration found for NTP-only on the Music Genre

dataset. This consistency contributes to the proof of concept of BEAT. We did

not repeat hyperparameter search for any experiments below after observing this

consistency and continued to use this configuration throughout.

We trained a model on the NTP task for each of the 8 folds described above.

We applied a dropout rate of 0.1 in all transformer layers. Models were trained for

ten epochs via backpropagation with the Adam optimizer with β1 = 0.9, β2 = 0.999,

and weight decay = 0.0001. Each model was trained with a different RNG seed for

reproducibility.

Results for Left and Right STG are presented in Table 5.6. For each training

session, we saved the model’s state after the epoch with the highest NTP accuracy

on the validation split (“Best Val. Acc.” in the table). The “Best Epoch” column

contains the epoch in which this accuracy was achieved, from 0 to 9. The averages of

each column are given in the last row of the table. The statistics of those averages are
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Table 5.6: Results of 8-fold cross-validation of pretraining on the NTP task with
the Auditory Imagery Dataset. Baseline chance on this task is 50%. Sixteen of the
seventeen participants were partitioned uniformly at random in groups of 2 to be held
out as validation data for each of the 8 folds. Results for Left STG and Right STG
are reported. Best Val Acc is the highest accuracy obtained during training on the
validation split. The epoch in which that accuracy was obtained is given in the Best
Epoch column, from 0 to 9 inclusive. The average of the best validation accuracies
across the eight folds is given at the bottom of the corresponding columns with ±
standard deviation.

Left STG Right STG

Fold Best Val. Acc.
Best
Epoch

Best Val. Acc.
Best
Epoch

0 87.6 5 91.4 6
1 84.8 7 87.5 6
2 84.7 4 86.1 9
3 88.3 6 86.7 4
4 90.9 9 92.3 8
5 83.7 4 89.6 8
6 87.9 9 87.2 7
7 88.2 8 85.3 9
Average 87.0± 2.4 6.5 88.3± 2.5 7.1

depicted in Figure 5.3.

All models on both hemispheres significantly outperformed the baseline chance of

50% when generalizing to heldout subjects (one sample t-test for both hemispheres

against hypothetical mean of 50%, p < .001). However, there is no significant difference

between the ability of Left and Right STG to generalize to heldout subjects (paired

t-test between the two sets of accuracies, p=.2643).

5.2.3. Finetuning

For fine-tuning, the datasets were constructed for 8-fold cross-validation on the Same-

Timbre (ST) task as described above, where each fold holds out the same subject as

in pretraining to prevent data contamination. For each hemisphere (Left and Right),

we finetuned by loading the saved pretrained weights from the eight Best Epochs of
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Figure 5.3: Box and whisker plot of the average Best Validation Accuracies for 8-fold
cross-validation pretraining on NTP in Left STG and Right STG, using the Auditory
Imagery Dataset. Baseline chance on this task is 50%.

pretraining on that hemisphere. The pretrained output layer was replaced with a

single untrained Linear layer which projects from 420 dimensions down to 2, then

a Softmax layer to obtain output probabilities for the “No” and “Yes” labels for

ST. Preliminary testing showed that freezing the pre-trained weights and updating

only the output layer was not a viable training regimen. Therefore all parameters

were updated during fine-tuning. To examine the benefit of transfer learning, we also

trained eight randomly initialized (RI) models with the same random-initialization

parameters as in pretraining. The RI models are identical to the other models used

in fine-tuning but do not load any pre-trained weights. We also trained eight null

models on each hemisphere’s data, which are identical to RI models but with the

labels assigned uniformly at random to the training data. In the interest of brevity, we

simply report here that the average best performance of the null models was roughly

51% in both hemispheres rather than reporting their individual results.

Models were trained for ten epochs via backpropagation with the Adam optimizer
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Table 5.7: Results of finetuning with 8-fold cross-validation on ST in Left and Right
STG after loading the Best Epoch weights from each fold in that hemisphere, as well
as eight randomly initialized (RI) models which serve as a baseline to examine the
effects of transfer learning in the two hemispheres. Baseline chance on this task is 50%.
For each fold we report the highest accuracy obtained during training on that fold’s
heldout subjects, and the epoch in which it occurred from 0 to 9 inclusive. Note that
this is not the epoch of the loaded pretrained weights, which can be found in Table 5.6.
The average accuracy across all 8 folds is given at the bottom of the corresponding
columns with ± standard deviation.

Same-Timbre in Left STG Same-Timbre in Right STG

Transfer from NTP RI Transfer from NTP RI

Fold
Best Val.

Acc.

Best

Epoch

Best Val.

Acc.

Best

Epoch

Best Val.

Acc.

Best

Epoch

Best Val.

Acc.

Best

Epoch

0 76.8 2 63.4 8 78.3 1 70.5 8
1 68.2 9 61.0 6 70.2 7 67.9 3
2 75.0 6 75.3 9 75.0 1 66.4 7
3 75.9 5 64.3 9 69.0 8 61.0 4
4 71.4 1 68.2 9 72.9 1 71.4 9
5 67.3 5 69.0 7 73.2 3 68.8 9
6 81.5 9 73.5 9 75.6 6 65.5 7
7 72.3 7 71.1 8 64.9 5 66.7 8
Avg. 73.5±4.7 5.5 68.2±5.0 8.1 72.4±4.2 6.9 67.3±3.2 6.9

with β1 = 0.9, β2 = 0.999, and weight decay = 0.0001. Each model was trained with a

different RNG seed for reproducibility. Table 5.7 contains our familiar metrics of Best

Val. Acc. and Best Epoch. The statistics of the Best Val. Acc. averages are depicted

in Figure 5.4.

All models significantly outperformed the baseline chance of 50% (one-sample

t-tests, p¡.0001 in all cases). The Best Val. Acc. values obtained via transfer learning

in Left STG are significantly higher than those obtained on the RI models (paired

t-test between two sets of values, p=.0306). Similar for Right STG (paired t-test

between two sets of values, p=.0105). There is no significant difference between Left

and Right STG for the transfer learning models’ performance (paired t-test, p=.5256).

Despite a seemingly lower average, the mean Best Epoch for Left pretrained models
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Figure 5.4: Box and whisker plot of the average Best Validation Accuracies obtained
when learning the Same-Timbre (ST) task via 8-fold cross-validation with four condi-
tions: transferring from Left NTP to Left ST, learning Left ST with RI, transferring
from Right NTP to Right ST, and learning Right ST with RI. Baseline chance on this
task is 50%.

is not significantly different from the mean of Left RI models (paired t-test, p=.0691),

and similar for Right (paired t-test, p=.1337). There is also no significant difference

between the mean Best Epoch of Right and Left models, for either pretrained or RI

(paired t-test, p=.1114 and .1501 respectively). Thus these experiments did not yield

significant evidence of reduced training requirements due to transfer learning.

5.2.4. Direct Decoding and MVPA

Our paired-sequence approach to brain decoding is difficult to pitch in an elevator,

so to speak, being entirely unfamiliar in this domain. Motivated by a desire to

complement the above results with a more familiar approach, we attempted to use the

same architecture to decode a single 5-seq rather than a pair of sequences. That is,

the inputs to the model were length 6 and consisted of a CLS token and a 5-seq. All

5-seqs were extracted from STG from the dataset as for the ST task above. The CLS
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Table 5.8: Preliminary hyperparameter search for decoding timbre directly from a
single 5-seq with the CLS token. Each configuration has the same hyperparameters
and architecture as the Same-Timbre experiments except for the hyperparameters
listed here. Each configuration was trained for 20 epochs and the best accuracy
obtained on the held out runs obtained by each configuration is reported along with
the corresponding epoch number. We did not continue with this approach after
all configurations significantly under-performed compared to the paired-sequence
approach.

Encoder Attention Forward Best Best
Layers Heads Exp. Val. Acc. Epoch

3 6 4 53.1 12
2 6 4 52.4 4
1 3 3 55.6 1
2 3 3 51.3 2
1 2 2 53.5 3

token was passed to the same output layer as above, with the binary classification

corresponding to “trumpet” or “clarinet” rather than “true” or “false.” The extent of

our experiments with this approach was a preliminary hyperparameter search which

clearly indicated that this approach was not viable. The results are given in Table 5.8.

Each configuration was trained for 20 epochs and the highest validation accuracy

across all epochs is given for each configuration, along with the epoch in which it

occurred. Hyperparameters other than those shown in the table are the same as above.

As shown in the table, all configurations significantly under-performed compared to

our paired-sequence approach, and thus we did not continue with this method.

Prior to this work, during the research conducted for [64], our lab attempted to

decode the clarinet and trumpet labels from both heard and imagined data using

MVPA methods with an SVM classifier. Twenty regions of interest were considered.

The regions which outperformed chance are shown in Table 5.9. The highest accuracy

obtained was only 52.7%, and even though correction for multiple comparisons had

yet to be done, none of the p-values were significant. Superior Temporal Gyrus is

notably absent.
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Table 5.9: MVPA methods with SVM classifier attempting to decode the clarinet and
timbre labels. Twenty regions of interest were considered for both heard and imagined,
and regions which failed to outperform chance are omitted. The highest accuracy is
only 52.7%. These p-values had not yet been corrected for multiple-comparisons and
were already insignificant.

ROI H or I Accuracy P-value

RH Transverse Temporal Heard 0.5266 0.0687
RH Banks STS Imagined 0.5137 0.2502

LH Transverse Temporal Imagined 0.5011 0.4787
RH Insula Imagined 0.5028 0.4444

5.2.5. Discussion

Our pre-training phase on NTP was successful on this dataset as well. The models

significantly outperforming chance on heldout runs complements our pre-training

results from the previous section. We contribute this result as further significant

evidence that the Next Thought Prediction task is well-defined and our novel paired-

sequence architecture is capable of learning it.

Our novel supervised task, Same-Timbre, was also successful on Left and Right

pre-trained models and RI models, while the null models performed only at random

chance. We contribute this result as significant evidence that the Same-Timbre task

is well-defined and our model is suited to learn it. Further, the pre-trained models

significantly outperformed the RI models. We contribute this result as significant

evidence of the ability to perform sequential transfer learning with our framework.

Additionally, the success in pre-training and fine-tuning in these experiments further

validates our novel implementation of the CLS and SEP tokens.

Observe that our implementation of the Same-Timbre task implicitly includes the

task of decoding the Clarinet and Trumpet labels from a single 5-seq. For example, if

we want to predict whether a Heard 5-seq is Clarinet or Trumpet, we need only pair

it with a 5-seq whose Clarinet/Trumpet label is known, and then ask the model if
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they are the same timbre. Most importantly, Same-Timbre significantly outperformed

chance while our MVPA approach and direct decoding approach did not. Indeed,

“asking the question in a different way” was needed for success. Thus we contribute

our success on the Same-Timbre task as the first successful decoding of instrumental

timbre from auditory cortex in fMRI data.

We take a closer look at the behavior of the attention mechanism and our hand-

crafted tokens on this dataset’s experiments in Section ?? below.

Section 5.3

Enculturation Dataset

Our motivation for collecting this dataset was detailed in Section 3.2.1. In the first set

of experiments in this section we successfully trained our architecture to differentiate

activity in Nucleus Accumbens between the first and second scanning sessions when

the participant was listening to the Shanxi music, thereby establishing evidence

of enculturation. We called this the Same-Session (SS) task. The second set of

experiments demonstrate that NTP can be learned in Nucleus Accumbens using either

the Music Genre Dataset (Genre NTP) or the Enculturation dataset (Enc NTP). The

third set of experiments demonstrate transfer learning from both Genre NTP and Enc

NTP to the Same-Session task for Shanxi listening.

We summarize the upcoming information about this dataset and its training data

in Table 5.10.

5.3.1. Training Data

As discussed in Section 3.5.2, these experiments used the union of all participants’

personal bilateral Nucleus Accumbens ROIs, consisting of 417 voxels, for a total input

dimension of 420 after adding the three token dimensions, although MSK is currently
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Table 5.10: Summary of Enculturation Dataset. The Pretraining and Finetuning
Samples fields are given as “{training samples} and {validation samples}”.

Enculturation Dataset
# of Participants 5
Training Regimen Fixed set of heldout runs, 12 iterations
Region of Interest Union Nucleus Accumbens
Pretraining Tasks Enc NTP and Genre NTP
Pretraining Samples 24,640 and 3,520 (Enc NTP)

21,560 and 1,960 (Genre NTP)
Finetuning Tasks Shanxi Same-Session, Bach Same-Session
Finetuning Samples 4,200 and 600 (both Bach SS and Shanxi SS)

not used. Arriving at the same input dimension as the prior experiments motivated us

to being these experiments with the same hyperparameter configuration and training

specifications which had been successful on the previous experiments. We encountered

enough success that we have not yet revisited these decisions.

The training data for Genre NTP was constructed by extracting all 5-seqs from

the twelve “Training” runs, as labeled in the original Music Genre Dataset, with stride

of 2. Both a positive and negative NTP sample were constructed for each 5-seq to

the left of the SEP token. All pairs were within-participant. 5-seqs whose positive

NTP sample would cross a run boundary were not used to the left of the SEP token

for positive or negative samples. In the Music Genre experiments above, the “Test”

runs, as labeled in the original dataset, were included in our datasets in a tedious

way with little benefit, so we excluded them here for simplicity. We obtained a total

of 23520 samples for this task. During training, one of the twelve “Training” runs

will be heldout for validation, resulting in 21560 training samples and 1960 validation

samples.

The training data for Enc NTP was constructed similarly: all 5-seqs were used to

make a positive and negative sample except for those which crossed a run boundary,

a stride of 2, and within-participant pairings. The key difference is in the heldout
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data. As always, we want to hold out entire runs as validation. But recall that

each run of the Enculturation Dataset consists of four blocks, and each block has

three trials. The three trials within a block are either all Bach or all Shanxi. Each

full scan consists of 16 Bach blocks and 16 Shanxi blocks, but the arrangement of

these blocks within a scan is randomized for each participant. For instance, an entire

run may consist only of Bach blocks. Holding out such a run as validation would

therefore bias the validation accuracy toward Bach and thus corrupt the results. By

random chance, all five participants have at least one run that is two Bach blocks

and two Shanxi blocks. If we were to hold out a run with blocks arranged as, say,

Bach-Shanxi-Bach-Shanxi for all five participants, then we would bias the validation

split toward that pattern of alternating musical grammars. Therefore we not only

sought runs with 2 blocks of each style, but also with different arrangements of the

four blocks across the five participants. Further, we wanted the run numbers to be as

uniformly distributed as possible, to avoid bias toward the beginning or end of the

scan. Thus we arrived at the following selection of heldout runs: Participant 1, run 3,

Bach-Shanxi-Bach-Shanxi; Participant 2, run 7, Bach-Shanxi-Shanxi-Bach; Participant

3, run 6, Shanxi-Shanxi-Bach-Bach; Participant 4, run 4, Shanxi-Bach-Bach-Shanxi;

Participant 5, run 1, Shanxi-Bach-Shanxi-Bach. Recall that the stimulus schedule for

each participant was identical in sessions 1 and 2, so these runs are safe to hold out in

both sessions. This process resulted in 24640 training samples and 3520 validation

samples.

The training data for Same-Session was constructed differently. Each trial consists

of 30 TRs, with padding on both ends, so for each trial we begin extracting 5-seqs at

TR 4. We wanted to use a stride of 5 to avoid overfitting the training data via repeat

exposure, so for each trial we extract the 5-seqs beginning at TRs 4, 9, 14, 19, and 24.

With this task, we can create multiple positive and negative samples for each 5-seq,
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unlike NTP, but in order to avoid overfitting the training data we only created one of

each. For each input, both sides of the SEP token are either both Shanxi, or both

Bach, and two different datasets were created for each style so their changes between

sessions can be investigated in isolation. To avoid temporal correlation, the two sides

of the SEP token are never drawn from the same block. The heldout runs were chosen

as in Enc NTP for the same reasons. In particular, the uniform run numbers, as the

participant’s comfort in the scanner can change drastically over the course of a long

scan, and thus either frontloading or backloading the heldout runs would introduce

bias when analyzing NAcc. This process resulted in 4200 training samples and 600

validation samples for both Bach and Shanxi.

5.3.2. Same-Session Experiments

Our goal for these experiments was to obtain evidence of a musical enculturation

effect in Nucleus Accumbens by training a classifier to predict whether two 5-seqs

were drawn from the same session. We introduced this Same-Session (SS) task in

Section 4.4.2. The construction of the training data was detailed in the preceding

subsection.

The most intuitive results one might expect when training Same-Session on only

Bach listening (Bach SS) is for the models to perform at random chance, since the

experiment is not designed to change one’s familiarity with western musical grammars.

On the other hand, we expected statistically significant accuracy on the heldout data

for Same-Session on only Shanxi listening (Shanxi SS) due to the changes in NAcc

consequent to enculturation, as discussed in Section 3.2.1. Twelve models were trained

on Bach SS, and another twelve on Shanxi SS. The results are given in Table 5.11.

The highest accuracy on the heldout data is given in the Best Val. Acc. column, and

the corresponding epoch in the Best Epoch column. The averages are given in the

bottom row of the table, and the statistics of the Best Val. Acc. averages are depicted
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Table 5.11: Results of training on the Same-Session (SS) task as detailed in Section 4.4.2
with heldout runs as detailed in Section 5.3.1 above. Baseline chance on this task is
50%. Twelve models were trained on pairs corresponding to Bach listening, and another
twelve for Shanxi listening, indexed by the first column here. The highest accuracy on
the heldout runs is given in the Best Val. Acc. column, and the corresponding epoch
in the Best Epoch column. Epochs range from 0 to 9 inclusive. Averages are given in
the bottom row with ± standard deviation.

Shanxi SS Bach SS

Iteration Best Val. Acc.
Best
Epoch

Best Val. Acc.
Best
Epoch

0 60.0 9 58.2 8
1 65.8 9 56.5 8
2 64.2 8 61.5 8
3 66.3 7 56.0 7
4 65.3 8 61.5 8
5 60.0 8 63.0 9
6 64.3 9 58.5 7
7 55.3 9 61.2 9
8 61.8 9 58.8 8
9 61.8 9 58.3 9
10 71.2 9 58.8 9
11 63.7 9 60.0 9
Average 63.7± 4.0 8.6 60.0± 2.1 8.3

in Figure 5.5.

Both sets of models are able to distinguish between sessions above the baseline

chance of 50% (two one-sample t-tests with hypothetical mean 50%, p < .001 in

both cases). We expected the Bach trials to be mostly indistinguishable between

sessions as our control condition. One likely possibility for this distinguishability is the

participants feeling more comfortable in the scanner the second time and being more

familiar with the experiment. Observe though that the Shanxi trials are significantly

more distinguishable than the Bach trials (paired t-test, p=.0096). Therefore if

indeed the Bach distinguishability is due to the aforementioned confounds, then those

confounds would also contribute to the distinguishability of Shanxi, yet we still have
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Figure 5.5: Box and whisker plot of the average Best Validation Accuracies obtained
when learning the Same-Session task on just the Shanxi trials, as well as on just
the Bach trials, with randomly initialized models. This served as a quick sanity
check for the distinguishability of the two conditions, as we expected to see a greater
distinguishability in the Shanxi trials after a week of at-home exposure. Baseline
chance on this task is 50%.

a significant effect beyond those confounds. However, we argue here that neither the

Bach nor Shanxi success is due to confounds such as familiarity and comfort.

Recall that these confounds were seen to modulate the amplitude of activity in

the original EEG experiments discussed in Section 3.2.1. In all of our experiments

(and fMRI research in general), the datasets are normalized to mean 0 and standard

deviation 1. This should largely control for amplitude based effects due to familiarity

or comfort, forcing the model to learn differences in patterns in the time series instead.

We also directly tested for the presence of these sorts of confounds. If learnable effects

due to familiarity and comfort in the scanner remain after normalization, we would

expect these effects to be consistent across the entire scan, and thus both sets of
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models (Bach SS and Shanxi SS) would be learning (at least partially) overlapping

classifiers. In other words, the saved Bach models would recognize those confounds in

the Shanxi data and perform with some amount of aptitude when evaluated on the

Shanxi data, and vice versa. However, both cases yielded entirely degenerate behavior:

when the Bach SS models were evaluated on Shanxi SS training data and vice versa,

all models output “True” for all inputs, resulting in 50% accuracy. Indeed, there does

not appear to be any overlap whatsoever between how the Bach and Shanxi models

learn to distinguish the two sessions. This is compelling evidence that the models are

not learning to recognize differences due to confounds such as familiarity or comfort.

But then the models’ aptitude for Bach SS remains unexplained. Prior to this work

we hypothesized a potential anti-enculturation toward the western musical grammars,

in which case it would be a diminished ability to make predictions on the western

musical grammars that differentiates the two sessions. This could explain our results

on Bach SS, but more work is required in this direction.

5.3.3. Pretraining

Our goal for pretraining was to determine whether our architecture can learn the NTP

task in Nucleus Accumbens using both the Music Genre and Enculturation Datasets.

Then, if so, save the best performing models to attempt transfer learning to Shanxi SS.

For Genre NTP, we performed 12-fold cross-validation where each fold held out one of

the twelve “Training” runs, as labeled in the original dataset. For Enculturation NTP,

we trained twelve iterations with the heldout data constructed in Section 5.3.1 above,

each with a unique RNG seed. The hyperparameters remain the same as in previous

experiments.

The results are given in Table 5.12 and the familiar box and whiskers plot of the

Best Val. Acc. averages is shown in Figure 5.6. Enc NTP and Genre NTP both

outperformed the baseline random chance of 50% (two one-sample t-tests against
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Figure 5.6: Box and whisker plot of the average Best Validation Accuracies obtained
when pretraining on NTP in the Nucleus Accumbens ROI extracted from the Encul-
turation Dataset (Enc NTP) and the Music Genre Dataset (Genre NTP). Baseline
chance on this task is 50%.

hypothetical mean of 50%, p < .001 in both cases). However, the Enc NTP models

significantly outperformed the Genre NTP models (78.7± 1.8 and 57.8± 3.0 average

Best Val. Acc. respectively, paired t-test with p¡.001), the latter of which also paled

in comparison to our previous Genre NTP experiments in Superior Temporal Gyrus

(88.2% average Best Val. Acc.). We hypothesize that there is a lower amount of

variation in reward and prediction error consequent to the Music Genre stimuli as

they all follow the familiar western musical grammars. This would make it more

difficult to distinguish the temporal behavior of NAcc in the Music Genre participants.

Nevertheless, these results contribute significant evidence that NTP can be learned

outside of STG, in particular in NAcc, which reinforces our claim that NTP is a

meaningful and well-defined self-supervised pretraining task for finetuning on fMRI

brain decoding.
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Table 5.12: Results of pretraining NTP on the Union Nucleus Accumbens ROI.
Baseline chance on this task is 50%. We performed 12-fold cross-validation for the
Music Genre dataset, with each fold holding out one of the twelve “Training” Runs,
as labeled in the original dataset. Due to the nature of the stimuli design for the
Enculturation runs, we cannot perform cross-validation with heldout runs, and instead
trained twelve models with the heldout runs as explained earlier in this section. Each
of these runs had a different RNG seed for reproducibility. Averages are given in the
bottom row with ± standard deviation along with the epoch in which they occurred.
Epochs range from 0 to 9 inclusive. Both experiments significantly outperform chance,
although the Enculturation NTP models significantly outperform the Genre NTP
models.

Enc. NTP Genre NTP

Iteration Best Val. Acc.
Best
Epoch

Best Val. Acc.
Best
Epoch

0 75.0 5 57.4 9
1 78.8 9 53.8 7
2 77.2 8 55.9 8
3 79.3 6 55.2 9
4 81.0 2 59.6 9
5 80.6 9 64.6 6
6 79.2 5 60.3 0
7 77.9 8 57.2 7
8 81.3 5 59.8 8
9 77.2 9 55.6 5
10 78.3 7 55.7 9
11 79.0 6 58.7 5
Average 78.7± 1.8 6.6 57.8± 3.0 6.8

5.3.4. Finetuning

Our goal for finetuning was to demonstrate transfer learning from both Enculturation

NTP and Genre NTP to the Same-Session task. Due to time constraints, only

Shanxi SS was examined. For each iteration of the NTP pretraining phases, the best

performing models on the held out data (those reported in Table 5.12) were saved. For

both NTP tasks, we loaded the twelve models, replaced the trained output layer with

an untrained Linear layer which projects down from 420 dimensions to 2, and then a

Softmax layer to obtain output probabilities for the two Same-Session classification
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labels. The RNG seed for each iteration was identical to the above experiments as

well, controlling out variation due to randomness when considering the benefit of

transfer learning.

The results are shown in Table 5.13, and the corresponding averages are depicted

in Figure 5.7. Inspection alone reveals that pretraining on Enculture NTP has a

statistically significant benefit for accuracy on the heldout data (paired t-test between

Best Val. Accuracies of Shanxi SS on Enc NTP and Shanxi SS on RI, p¡.001) as

well as the speed of obtaining the maximum (paired t-test between Best Epochs of

Shanxi SS on Enc NTP and Shanxi SS on RI, p¡.0001). These results are significant

evidence of NTP being well defined in Nucleus Accumbens, and yet more evidence of

its efficacy as a general self-supervised pretraining task for downstream brain decoding

tasks on fMRI data. We note that iteration 11 when loading Enc. NTP weights is

an outlier in its Best Epoch. However, after the first epoch this iteration obtained

68.7% accuracy on the heldout data. Thus this model did not need the extra time to

outperform iteration 11 in the original Shanxi SS experiment, which had a Best Val.

Acc. of 63.7%. Therefore we conclude that the shorter training requirement combined

with the improved result was observed across all twelve iterations.

The models which were pretrained on Genre NTP are less dramatic, but nevertheless

demonstrate significant improvements of Best Val. Acc. due to transfer learning

compared to the RI models (paired t-test, p=.0416). To the best of our knowledge,

this is the first significant evidence of the occurrence of transfer learning when the

pretraining was performed on an fMRI dataset with wholly distinct participants and

stimuli. Transfer learning across participants and stimuli would be necessary for a

theoretical general pretrained model of the brain to be able to transfer its learning to

arbitrary brain decoding tasks. Therefore we mark this result as the first major step

toward that ultimate goal, and it is one of the core results of this thesis.
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Table 5.13: Results of finetuning on the Shanxi Same-Session task. Baseline chance
on this task is 50%. Finetuning was performed by loading models pretrained on either
Enculturation NTP or Genre NTP. For each of the twelve iterations, the pretrained
model was saved after the Best Epoch listed in Table 5.12. Epochs range from 0 to 9
inclusive. We include the RI Shanxi SS results from Table 5.11 for visual inspection
of the transfer learning benefits. The Best Val. Acc. averages are given in the bottom
row with ± standard deviation, as well as the Best Epoch averages.

Shanxi SS on Enc. NTP Shanxi SS on Genre NTP Shanxi SS on RI

Iteration Best Val. Acc.
Best
Epoch

Best Val. Acc.
Best
Epoch

Best Val. Acc.
Best
Epoch

0 66.0 2 62.2 4 60.0 9
1 69.5 1 63.0 10 65.8 9
2 67.0 6 63.3 4 64.2 8
3 64.7 3 65.2 5 66.3 7
4 71.7 3 70.7 4 65.3 8
5 70.2 2 64.2 9 60.0 8
6 71.8 1 69.0 10 64.3 9
7 70.2 3 65.7 8 55.3 9
8 70.3 2 68.7 5 61.8 9
9 69.7 1 63.7 9 61.8 9
10 70.0 3 69.2 9 71.2 9
11 72.3 10 66.3 10 63.7 9
Average 69.5± 2.4 3.1 65.9± 2.8 7.25 63.3± 4.0 8.6

5.3.5. Discussion

First, our models successfully learned the Same-Session task with performance on held-

out runs significantly above chance, for both Bach and Shanxi listening. These results

complement the EEG research conducted by Marion and Barbarot (Section 3.2.1) by

demonstrating changes in Nucleus Accumbens as a result of musical enculturation.

By evaluating the saved Bach SS models on the Shanxi SS data, and vice versa, we

ruled out our worry about the models learning to differentiate the sessions by some

global change due to familiarity or comfort. Moreover, these results reinforce two of

our core contributions which we have been building up across this work: that our

paired-input architecture is well-suited to fMRI based deep learning, and that our

90



5.3 Enculturation Dataset Chapter 5

Figure 5.7: Box and whisker plot of the average Best Validation Accuracies obtained
when performing transfer learning from Enc NTP and Genre NTP to Shanxi Same-
Session, as well as the results of the RI Shanxi-SS models from Table 5.11 to examine
the benefits of transfer learning. Baseline chance on this task is 50%.

novel implementations of the CLS and SEP tokens are effective.

Second, our models successfully learned the Next Thought Prediction task with the

data drawn from Nucleus Accumbens, rather than STG as in the previous experiments.

This was true for both the Enculturation dataset and the Music Genre Dataset. The

Genre NTP models dramatically underperformed compared to both Enc NTP and

the earlier Genre NTP on STG. We hypothesize that this is due to the Music Genre

protocol consisting only of familiar western musical grammars, which results in less

variation in the participants’ internal prediction models.

Third, we performed transfer learning from both Enc NTP and Genre NTP to

Shanxi SS, with statistically significant improvements in both cases. These results

reinforce one of our core contributions, that NTP is a meaningful and effective self-

supervised pretraining task for downstream brain decoding on fMRI data. They also

provide another core contribution of this work, that it is possible to perform transfer

91



5.4 Inference Chapter 5

learning from one set of participants and stimuli to another, and more specifically that

our framework and implementation are capable of it. To the best of our knowledge

this is the first instance of such transfer learning on fMRI data.

Due to time constraints, we leave inference of the trained Enculturation models to

future work.

Section 5.4

Inference

The above results have contributed significant evidence of BEAT’s efficacy for self-

supervised pretraining and transfer learning with fMRI data. We now take a closer

look at how our models perform these tasks by observing the behavior of the attention

weights. We will examine the top performing trained model from three of the above

experiments: Left STG NTP, Left STG Same-Timbre after NTP pretraining, and Left

STG Same-Timbre RI.

Recall that our models have three encoder layers, each with two attention heads,

for a total of six. For a given input to the model, each attention head will calculate a

12x12 matrix of “attention weights,” or “attention scores.” Element i, j of this matrix

represents how much attention element i of the sequence is paying to element j of the

sequence. Each row in this matrix is the output of a softmax layer, and thus the rows

are normalized and can be compared directly. The matrices are obtained by loading

the best performing model from that experiment and setting the model to evaluation

mode, in which no losses or gradients are calculated and no parameters are updated.

We then input the full validation set that the model saw during training and we record

the attention scores (the 12x12 matrix) obtained from each attention head. Because

we are interested in how the model successfully performs each task, we only record

the attention scores from inputs which the model classifies correctly. The collection of
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12x12 matrices of attention scores is then averaged and presented below as heatmaps

for the six heads in each of the three experiments. The coloring for each table is a

linear gradient from fully red at its minimum value to fully green at its maximum.

5.4.1. Inference on Auditory Imagery NTP

The heatmaps for the six attention heads in this model are given in Figure 5.8. A

critical and immediate sanity check is whether our implementations of the CLS and

SEP tokens were able to convey to the model that the tokens are separate entities from

the fMRI images. Indeed, the CLS and SEP columns are overwhelmingly red, with

the curious exception of the SEP token attending on CLS in Layer 1 Head 2. It may

be possible for the SEP token to serve as a secondary or auxiliary pooling site, which

would explain why it attended on CLS. But then in Layer 2 SEP is soundly ignored

so this explanation seems unlikely. The CLS token ignoring itself may seem alarming,

after all it is intended to pool cumulative information across the three encoder layers.

However, recall that there is a residual connection summing the input of the attention

module to the output of the attention module, and thus the previous knowledge of

the CLS token is not lost, but rather added to mostly new information in this case.

Observe the horizontal centralization of the higher attention scores. The model

appears to have realized the most direct route to answering NTP is the relationship

between v4 and v5, that is, the spot where the two sequences connect or not, resulting

in lower attention scores on the fringes, where temporal relationships between the two

sequences are harder to detect. This “shortcut” solution to NTP is undesirable, but

note that this shortcut is not useful on any of our downstream brain decoding tasks.

That is, the pairs in our brain decoding tasks will, by construction, never be connected

at either end. Therefore the transfer learning benefits of NTP demonstrated in our

results must be independent of this shortcut.

Next, observe the mostly red SEP columns directly in between the mostly green
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Figure 5.8: Heatmap of attention scores from red to green after averaging all correct
validation inputs to the best performing saved model from NTP pretraining in Left
STG of the Auditory Imagery Dataset.

columns of v4 and v5 in all six heads. This is only possible due to the Trans-

former architecture removing any elements of recurrence or relative position, instead

including only information about absolute position. An LSTM or RNN, or even

temporal-convolutional filters, would necessarily assume correlation between consecu-

tive sequence elements, and would likely never obtain such a decisive decoupling of
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important and unimportant neighbors.

Lastly for this model, recall that the output of the two attention heads in each

layer are concatenated, and then observe the attention heads’ division of labor between

attending on v4 and v5 in Layer 3.

5.4.2. Inference on Same-Timbre RI

The heatmaps for the six attention heads are given in Figure 5.9. Compared to NTP,

the best performing Same-Timbre RI model has a much smoother distribution of

attention in Layers 2 and 3. However, this is a different task, and as mentioned above

we wouldn’t expect to see decisive attention on v4 and v5 this time. It is known,

though, that the BOLD response peaks about 6 seconds after stimulus onset. The

training data for Same-Timbre was constructed with the Target Note stimulus onset

occurring on v0 and v5. The TR for this dataset was 2 seconds, and so it would

be reasonable to expect the model to learn to focus on v3/4 and v7/8. This does

not appear to have happened, as the model attends on all of the second sequence in

general, with only two heads paying any attention to v3.

Note as well that all six heads have the fMRI images attending on the tokens.

But perhaps we are being unfair, and Same-Timbre is just that much harder than

NTP. Thus in order to properly evaluate these attentions, we must now consider the

finetuned model.

5.4.3. Inference on Same-Timbre Transfer Learning

The heatmaps for the six attention heads are given in Figure 5.10.

Unlike the RI model, this model mostly avoids attending on the tokens, with

the one exception being mostly green attention paid to the CLS token by the fMRI

images in Layer 3 Head 1. While the persistence of this lesson from pretraining is

a benefit, we also note the persistence of attending on v4 and v5, which is likely
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Figure 5.9: Heatmap of attention scores from red to green after averaging attention
scores of all correct validation inputs to the best performing saved model from randomly
initialized Same-Timbre in Left STG.

hindering performance by drawing attention away from v3 and v7. Similar inferences

on our trained Music Genre and Enculturation models are left to future work due to

time constraints. The yet unexplained attention on v8 in Layer 2 Head 2 persisted

as well. Nevertheless the transfer learning models significantly outperformed the RI

models on Same-Timbre, and thus we hypothesize that the most impactful benefit of
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Figure 5.10: Heatmap of attention scores from red to green after averaging all correct
validation inputs to the best performing saved model after transferring from NTP to
Same-Timbre in Left STG.

NTP pretraining is learning not to attend on the tokens. These considerations can be

developed further in future work with inference on the remaining trained models from

the Auditory Imagery experiments, and further still on the models from the other

experiments.
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Chapter 6

Conclusions and Future Work

This chapter concludes this thesis. In Section 6.1 we summarize our core contributions.

In Section 6.2 we discuss threads left dangling by this work and additional directions

for progressing this area of research.

Section 6.1

Conclusions

Transfer learning is a powerful machine learning technique for improving downstream

performance of deep learning models and reducing the demand for data. In our work

immediately prior to the work in this thesis[79], we saw firsthand the necessity of

learning the latent patterns in high dimensional fMRI data to improve performance of

downstream classifiers. Thus we sought to develop a more formal transfer learning

framework for the analysis of neural activity in fMRI data.

6.1.1. Contributions

In this work we presented BEAT, a novel sequential transfer learning framework for

sequences of fMRI data. The contributions of BEAT are as follows:

• Next Thought Prediction: Self-supervised pretraining allows for leveraging
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large amounts of unlabeled data, which is more readily available than labeled

data, to learn useful representations. The pretraining phase captures general-

purpose features that are likely to be useful for various downstream tasks.

BEAT significantly outperformed chance when learning NTP on three different

fMRI datasets (Genre, Auditory Imagery, and Enculturation), and in three

different regions of the brain (Left and Right Superior Temporal Gyrus and

Nucleus Accumbens). This is conclusive evidence that NTP is a well-defined

self-supervised task and that BEAT has the capacity to learn it.

• A transformer architecture without an embedding layer: We hypoth-

esized that an fMRI scan and subsequent preprocessing were functionally an

embedding of physical cognitive processes into a representative distributed vector

space, and thus the typical embedding layer was not needed. This required hand

crafting the CLS, SEP, and MSK tokens in the distributed space. BEAT’s success

on all of our experiments supports this hypothesis and our implementation of

the tokens.

• Transfer learning: BEAT obtained significantly improved performance on

all three of our supervised brain decoding tasks–Same-Genre, Same-Timbre,

and Same-Session–after pretraining on NTP. This contributes further conclusive

evidence of the efficacy of NTP as a self-supervised pretraining task, but also

contributes conclusive evidence that BEAT is well suited for facilitating transfer

learning on sequences of fMRI data. The development of such a framework was

the primary goal of this thesis. In the case of Same-Session, BEAT obtained

significant benefits when pretrained on a different dataset entirely, thus achieving

the first step toward a generalized pretrained model of the brain, which was the

secondary goal of this thesis.
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• Brain decoding results: Our attempts to decode instrumental timbre from

STG with MVPA methods and with a direct decoding method were unsuccessful.

However, BEAT’s successful learning of the Same-Timbre task contributes

significant evidence that instrument-specific features are represented in both

Left and Right STG and can be distinguished. BEAT’s successful learning of

the Same-Session task contributes significant evidence of a musical enculturation

effect in Nucleus Accumbens after a week of exposure to an unfamiliar musical

grammar.

6.1.2. Limitations

Recall that each fold of Same-Timbre training had only 2,520 training samples and

Same-Session had only 4,200 training samples. BEAT was only able to learn these

tasks because we restricted the data to relatively small regions of interest. If larger

areas of the brain are of interest, concerns with data poverty begin to emerge. On

the other hand, both of the aforementioned tasks can benefit from the natural data

augmentation of paired tasks. We discuss this more in the next Section. So indeed,

while BEAT does lack the ability to output explicit labels for arbitrary single-sequence

or single-image brain decoding tasks, the data augmentation is potentially quite

powerful. More importantly, our work was singularly focused on the question of

distinguishability of conditions in the brain, from which we draw conclusions about

the representations of those conditions, e.g instrumental timbre in STG. Explicit label

decoding is not always necessary for modern brain decoding goals, and this observation

hearkens back to Haxby (2012) [34] in which the author credits part of the success of

MVPA to the asking of questions in a different way.

Masked Brain Modeling faces limitations in theory as well as in implementation.

For the theory, consider Tong et al. (2022) [109]. In the context of masking and

reconstructing sequences of pixel-regions in video, they remark that the temporal
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correlation of the video frames will lead to data leakage, allowing the models to

learn “shortcut” features that will not generalize well. fMRI data has high temporal

correlation, so this concern applies to MBM as well. Perhaps MBM learned tem-

porally correlated shortcut features to reconstruct the masked images, rather than

gaining a high-level understanding. This hypothesis offers an explanation for our

multitask pretraining performing as well as NTP-only, and yet failing to transfer its

knowledge to Same-Genre, while NTP-only transferred with statistical significance. In

implementation, the limitation comes from the task being asked of the model. Mean

Squared Error Regression to a 420 dimensional vector in a space known for its complex

subtleties is unlikely to approach meaningful reproduction. As Lu et al. (2023) [61]

note, the most powerful models working on this task have been able to reconstruct

images that are semantically similar to the originals, but “the outcomes are always

lacking in control over details such as location and size.” We discuss alternatives to

our MBM implementation in the Future Work section below.

A major limitation in the collection of our Enculturation Dataset was the human-

element. Our scanning protocol was roughly 1.5 hours per scan, which is intimidating

for any potential recruits. Further, scheduling fMRI scans exactly one week apart

when our scanner is under constant heavy demand is difficult, and we were not entirely

successful as two participants had their second scan after an extra day. Marion and

Barbarot exposed their participants to two weeks of Shanxi music, but our scheduling

and recruitment challenges would have only magnified if we tried to match their

two weeks of exposure. With only half the desired enculturation period, the effects

may not have developed enough, resulting in less distinguishable sessions. This likely

contributed to BEAT’s overall weaker performance on Same-Session compared to our

other brain decoding tasks, not to mention the fact that only one of the five participants

listened to the minimum requested amount of music on all days (30 minutes), while
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none of them listened to the recommended amount every day (Table 3.1).

Section 6.2

Future Work

As our primary interest is the efficacy of transfer learning, there are a considerable

number of ablation studies still to explore to optimize downstream performance. These

include:

• Different constructions of the training data: stride, threshold for inclusion in ROI,

among-participant pairing for downstream tasks, etc. In particular, examination

of the benefits of data augmentation available in paired sequence tasks, for

example, multiplying the dataset for the Same-Timbre task by a factor of up to

41.

• Additional regions of interest for experiments on Enculturation Dataset: ventro-

medial prefrontal cortex, dorsal striatum, right angular gyrus, etc. Refer to

Section 3.2.1 for more.

• BEAT performed transfer learning from Genre NTP to Same-Session in NAcc.

A natural follow-up, then, is pretraining on Enc NTP in STG and attempting

to transfer the learning to Same-Genre.

• In the Same-Timbre experiments, all pairs were either both Heard or both

Imagined. However, in our previous work[79], we were able to train our SVM

classifier on Heard and then perform above chance when evaluating on Imagined–

the “cross-decoding” result. It remains to consider cross-decoding experiments

with BEAT.

• One particular strength of the transformer architecture is the ability to learn
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long-term dependencies, and it remains to repeat our work with longer sequences.

This requires specific scanning protocols, however. For example, with the Genre

Dataset, the maximum length would be 10 TRs before samples would contain

music of more than one genre. Indeed, it may be hard to find fMRI datasets

with stimuli or tasks long enough to fully explore learning long sequences.

In Masked Language Modeling, the model output is a vector of probabilities over

the vocabulary space. The index with the highest probability is therefore the model’s

prediction for the masked word. The model does not actually need to reconstruct the

distributed (embedded) representation of the masked word. This stands in contrast

to MBM, which, as discussed in the Limitations section above, suffers from the very

difficult task of reconstructing a complex high dimensional vector. Vector Quantized

Variational-Autoencoders (VQ-VAEs) [92, 77] present an exciting alternative to our

implementation of MBM. In short, VQ-VAEs learn discrete representations of images,

and have been deployed successfully on 256x256 images [92], much larger than the ROIs

in this work. Imagine we have a trained VQ-VAE for an fMRI dataset, and the model

is about to replace an image in the input sequence with the MSK token. We would

then make a quick detour to obtain the chosen image’s discrete representation, that is,

some integer, and record it for later. The transformer blocks then proceed as usual.

But the output layer can now perform a different task, similar to MLM, we can now

output a probability distribution over the space of discrete representations (integers),

with the previously recorded integer as the ground truth. This is a much simpler

task than 420 dimensional regression. Further, it will mitigate or even eliminate our

concerns about data leakage. Since the model is no longer trying to reconstruct the

voxel values, the temporal correlations of the voxels in temporally-local images likely

cannot provide the “shortcuts” discussed in the Limitations section above. Continuing

with this area of thought, we could also implement an fMRI analogue of standard
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Language Modeling, in which the task is to predict the next work. Attempting to

generate the next fMRI image in voxel space faces the same challenges as MBM

with regression, but VQ-VAE would provide a similar alternative wherein the model

predicts the discrete representation of the next image instead.

Our extraction of STG from the Auditory Imagery and Music Genre Datasets via

the HO Atlas and FSLeyes may fall short of current standards for Regions of Interest

in fMRI data, and Future Work ought to consider more advanced methods such as

the Glasser [28] or Schaefer [98] parcellations.

Additional work is required to identify the features BEAT learned in order to

distinguish the two scanning sessions of Bach trials despite our experiment having

been designed with that as our control.

An examination of the correlates of musical features with evoked BOLD signal

could grant insight into the behavior of BEAT’s attention heads, as perhaps the model

learns to attend on musical features encoded in the data.

While the use of the standardized MNI space generally accounts for different spatial

resolutions between source and target data, different temporal resolutions, that is,

different TR times, must be addressed to progress toward a generalized pretrained

model of the brain. Sample Rate Conversion is a ubiquitous and critical function

of signal processing systems[129] and we are interested in the potential for transfer

learning when these techniques have been applied to convert the temporal resolution

of a target dataset to that of the pretraining data.

We would like to continue to show the ability of BEAT to learn the NTP task on

various regions of the brain scanned with various protocols, and transfer that learning

to downstream brain decoding tasks, particularly non-audio tasks, as so far we have

only used audio-evoked fMRI data.

The most important direction of Future Work, however, is pretraining on larger and
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larger datasets to improve transfer learning from one dataset to another. Pretraining

is generally thought of as having an enormous set of unlabelled training data, while in

our experiments we have thus far only used fairly typical single-study sized datasets

for pretraining. The benefit obtained on the Same-Session task by pretraining on

Genre NTP was relatively weak and only barely statistically significant, thus we would

like to improve this effect with a larger pretraining dataset. With our long-term goal

of a generalized pretrained model of the brain, we need to obtain more knowledge from

more participants during pretraining. The Human Connectome Project[112] is the

most compelling avenue towards this goal and is the most immediate line of research

we propose to pursue, due to its overwhelming size and well-established benchmarks

across the entire brain.
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