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Abstract
Car accidents are the leading cause of death and injuries in most countries.

advanced driving assistance systems and intelligent autonomous vehicles

aim to improve road safety, traffic issues, and the comfort of passengers.

Lane detection is a pivotal element in advanced driving assistance systems

as lane understanding is essential in maneuvering the car safely on roads.

Detecting lanes in real-world scenarios is challenging due to adverse

weather, lighting conditions, and occlusions. However, as the

computational budget available for lane detection in the systems above is

limited, a lightweight, fast and accurate lane detection system is crucial.

This thesis proposes a simple, lightweight, end-to-end deep

learning-based lane detection framework following the row-wise

classification approach. The inference speed is significantly increased by

reducing the computational complexity and using a light backbone. In

contrast to other systems, the proposed method can handle lane-changing

scenarios by offering three lane candidates within the model. Additionally,

we introduced a second-order polynomial fitting method and Kalman filter

for tracking lane points as post-processing steps to improve the overall

accuracy and stability of the system.

The proposed lane detection method can provide over 500 frames per

second on an Nvidia GTX 3080 notebook with our lightweight model and a

median 48 frames per second on an Nvidia Jetson AGX Xavier while

producing comparable accuracy to most of the state-of-the-art approaches.

Keywords: Lane Detection, Deep Learning, Embedded Systems, ADAS,

Autonomous Driving, Machine Learning
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Symbols and abbreviations
Symbols

A 2D filter, kernel or image

The mean or average of some values

The standard deviation of the mean of a normal distribution

An angle theta in radians

Operators

exp(x) The exponential function

Convolution operator

The gradient of f

Σi Sum over index i

Partial derivative of f with respect to variable x

The magnitude of some variable x

Abbreviations

ADAS Advanced Driving Assistance System

FPS Frames-per-Second

SOC System-On-a-Chip

ML Machine Learning

DL Deep Learning

NN Neural Network

CNN Convolutional Neural Network

LSTM

ResNet

IPM

Long short term memory

Residual Network

Inverse Perspective Mapping
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1. Introduction

1.1 Motivation

Motor vehicle based transportation is critical for individual participation in

the modern world, yet over one million people die each year in motor

vehicle related accidents. Vehicle related injuries are the leading cause of

death for children and young adults (5-29 years old) [1]. According to the

National Highway Transportation Safety Administration (NHTSA), human

error accounts for an overwhelming majority of all auto related accidents

[2]. For these reasons, research institutions and private companies have

sought to make driving safer by eliminating human error.

In previous decades, reducing the impact of crashes with physically

based safety features has been the main method of making driving safer.

This approach has saved countless lives, but is reaching its limit and does

not account for human error. Another approach is to give vehicles the

ability to perceive their environment, potentially eliminating human error.

Advanced Driving Assistance Systems (ADAS) features such as automatic

braking, blind spot detection and backup cameras have the potential to

reduce crashes by up to 40% [3, 4]. The European Road Safety Observatory

(ERSO) defines ADAS as “vehicle-based intelligent safety systems which

could improve road safety in terms of crash avoidance, crash severity

mitigation and protection and post-crash phases” [5]. We seek to develop a

lane detection model that performs accurately and fast enough to be used as

the basis for control systems on a System-On-a-Chip (SOC).

Lane detection is one of the most fundamental and safety-critical

tasks in autonomous driving. Its application ranges from ADAS features

such as lane-keeping to higher-level autonomy tasks such as fusion with

high-definition maps and trajectory planning. Detecting lanes in real-world

scenarios is challenging due to adverse weather, lighting conditions, and

occlusions. Moreover, lane detection algorithms should be computationally

efficient and runnable on embedded systems limited to small memory and

processor resources. Light image processing-based methods are considered

a solution for this limit. However, these methods can not overcome the

challenges above. New approaches based on Deep Neural Networks (DNNs)

can overcome many of these challenges but demand higher computational

power, memory, and battery power requirements, making them useless for

this application. Although many light models have been introduced for the

lane detection task recently, the problem is there for SOCs with minimal

resources.
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In this thesis, we proposed a light DNN model for the lane detection

task, which is runnable on SOCs with limited resources. The proposed

model comprises a light backbone for feature extraction and three heads,

one for predicting coordinates, another for classifying points as under or

above the horizon, and one for proposing lane candidates. For performance

sake, this method uses some fixed row anchors to predict the position of

lane points. The detection accuracy is further improved by fitting a

second-order polynomial to the line points and tracking them using a

Kalman filter as post-processing. The model was tested on two SOCs:

Nvidia Jetson AGX Xavier and Jetson Nano which provided 100 and 46

FPS, respectively. In addition to the performance, the proposed method can

correctly predict lane position when changing lanes and also detect the

curvatures.

1.2 ADAS and Automated Driving Systems

Manufacturers have slowly but surely been automating some of the

previously most dangerous parts of driving. From Lane Departure

Warnings (LDW) first invented in 1992 by Mitsubishi, to driver assistance

coming about from Toyota in 2004 [6]. A big leap towards defining and

standardizing ADAS and Automated Driving Systems (ADS) came in 2014,

when the Society of Automotive Engineers (SAE) released a document

known as SAE J3016 Taxonomy and Definitions for Terms Related to

Driving Automation Systems for On-Road Motor Vehicles. This document

sets a guideline for ADS which performs sustained Dynamic Driving Tasks

(DDT). The SAE defines 6 degrees of automation in motor vehicles, which

range from no driving automation (level 0) to full driving automation (level

5) [7]. The levels are detailed as below:

Level 0: No Driving Automation - The driver performs all DDT (i.e. full

manual driving) while the ADS provides warnings or momentary

emergency intervention.

Level 1: Driver Assistance - Driver performs all DDT not performed by the

ADS and supervises features performed by it. The ADS is capable of

performing either longitudinal or lateral vehicle motion control.

Level 2: Partial Driving Automation - Driver performs all DDT not

performed by the ADS and supervises features performed by it. The ADS is

capable of performing both longitudinal and lateral vehicle motion control.
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Level 3: Conditional Driving Automation - The ADS performs all DDT

within its Operational Design Domain (ODD) while engaged and will

disengage after requesting the driver to intervene when it detects a situation

outside of its ODD or when the driver requests to drive.

Level 4: High Driving Automation - The driver does not need to supervise

the ADS while it is engaged. The ADS will determine if the condition is safe

enough for the user to drive upon request.

Level 5: Full Driving Automation - The vehicle can drive everywhere (i.e.

on roadways public and private) in all conditions completely autonomously.

Figure 1.1: The 6 SAE levels of automation.

In SAE levels 0 through 2, the human must constantly supervise the vehicle,

even when semi-autonomous features are operating. Conversely, in levels 3

through 5, the human passenger is not considered driving, except in level 3

when an autonomous feature requests the human must drive. In higher

levels of automation, the user's role may switch between driver and

passenger. In all cases, the person who may be designated as the driver is

responsible for checking the vehicle is in working condition.

Features we are interested in for this thesis are LDW, considered

SAE level 0, and Lane Keeping Assistance (LKA), which is SAE level 1 or 2

depending on if it is performed on a sustained basis [7]. In the April 2021

revision J3016_202104, LKA is excluded from the scope of the DDT

because it only provides momentary intervention [8]. Although LKA is

difficult to fit within one SAE driving level, we seek to develop a model

capable of SAE level 2++ autonomy such that our lane detection algorithm
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can serve as a foundation to provide other more advanced features in the

future.

To create an autonomous vehicle, it is first necessary to measure the

environment through various sensors, such as camera, radar, IMU and

GPS. Combining output from multiple sensors into a single system is called

sensor fusion. Using the information from multiple sensors enables the

development of perception algorithms such as lane and obstacle detection

and other methods of perceiving the environment. Using these algorithms,

it is possible to perform trajectory planning and path navigation in the

control system. Vehicles with the capability of environmental perception

can keep passengers safe by minimizing the potential for human error. With

these foundational algorithms, the autonomous vehicle can perform lane

keeping, obstacle avoidance and other safety features.

1.3 Classic Image Processing versus Deep Learning

Methods for lane detection can be classified into two categories: image

processing-based and neural network-based methods. The former category

uses image processing techniques like edge detection and line detection

along with color space information to detect the lanes, while the latter uses

a model to learn lanes based on some internal extracted features. Currently,

image processing-based methods are used more in the industry since these

methods are computationally less expensive, but deep learning is quickly

becoming widely adopted as advances in network efficiency are becoming

better understood. The literature review will overview different lane

detection methods and dive deeper into them in sections 2.1 and 2.2.

Before going further into classic lane detection methods and their

evolution into using deep learning, we will briefly cover their differences

(figure 1.2).

Figure 1.2: Traditional programming compared to machine learning [9].
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Traditional programming requires the engineer to write a program to

formulate rules with which data will be processed to produce some desired

outcome. This approach is advantageous when we know exactly what rules

a program should follow, which is not always the case in real life. However,

it is almost impossible to develop rules for solving complex problems (e.g.

classification) and that is exactly where machine learning comes to learn

rules from existing examples.

In contrast, the machine learning approach automatically formulates

the rules and generates a program by observing some example inputs and

their expected outputs via a process called training. Typically the entire

dataset is split up into three parts: a training, test and validation set. The

purpose of this is to have enough data for the network to learn an

approximation of the entire dataset while having unseen data which is

useful for evaluating the effectiveness of the model.

During training, the machine learning model learns a

linear/non-linear mathematical function which maps inputs to proper

outputs. A loss function measures the quality of the model by quantifying

the difference between the expected and predicted outcomes. Based on this

difference, the model updates its parameters.

Deep Learning is a specialized subset of machine learning, where the

statistical model takes the form of a deep neural network (DNN). DNNs

take the form of a graph structure, typically composed of layers of

computational units called neurons (figure 2.6). A Neuron is a combination

of weights and biases input into a non-linear activation function (figure

2.5).

During training, the network's weights are tuned by using

backpropagation and gradient descent to map inputs to an output

prediction. Backpropagation is an algorithm which automatically computes

derivatives for the entire network from the output layer to the input layer

using the chain rule. Next, gradient descent uses the derivatives (i.e.

gradient) output by backpropagation to adjust the weights in a way which

moves the loss function towards a local minimum. These two algorithms

occur iteratively for all data in the training set until the network is trained.

Each pass through all data in the training set is called an epoch. Once

trained, the weights of the network are frozen then used to make

predictions in a process called inference.

The goal of training is to have the network learn general features

present in the dataset to correctly predict features in unseen data. The

downside of this process is that the model is only as good as the input data

and its loss function. Feeding a model random data will not result in a

useful program. It often takes many thousands to millions of well labeled
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data points for the model to learn complex tasks. This process can be very

laborious and expensive. Loss functions must be designed to minimize the

error between the data and the label gradually. These cannot just be any

function and are not “one size fits all”. Which loss function to choose

depends on the situation and has a huge impact on how the model learns.

They can be biased with domain-specific knowledge to aid the model in

learning faster.

In image processing and computer vision, features are often detected

through a process called convolution [10]. It works by crafting some kernel

or filter then applying it to the image to detect some feature. Classic

methods require hand-crafting of filters for detecting different features.

These filters are extremely difficult to design and understand as it often

requires multiple filters in conjunction to actually create a useful process

for detecting things in an image.

In deep learning for computer vision, we often use a type of neural

network biased towards image data, called a Convolutional Neural Network

(CNN). This type of network was originally called a neocognitron, proposed

by K. Fukushima in 1980 [11]. CNNs use image data to learn the filter

required for detection, rather than hand crafting it. This gives networks the

ability to learn a sequence of filters which are capable of detecting a

hierarchy of features. For instance, a hand-crafted filter might be able to

differentiate what makes up a human face, but a CNN can learn what

exactly makes up a specific individual's face. The main reason deep learning

has become so popular in computer vision and lane detection is that the

series of filters the machine learns to generalize lane detection across many

scenarios would be extremely difficult, if not impossible to craft by hand.

Now that the two paradigms have been overviewed, we begin by diving

deeper into classic methods and see how they eventually evolved into neural

networks to more capably complete the same tasks.
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2. Literature Review

2.1 Image Processing Based Methods

2.1.1 Edge Detection and Hough Transform

Before the advent of big data and deep learning for solving problems, lane

detection was constructed as a line detection problem. Because of this,

traditional methods of edge detection and line fitting, most notably the

Hough transform [12] and Canny edge detection [13] were employed to

detect lanes in a few specific cases [14, 15]. These methods were effective for

detecting straight lines, which is useful in ideal cases such as driving on the

highway with low traffic during a sunny day. Many improved iterations of

the Hough transform were attempted including [16, 17, 18].

Each of these methods utilized a combination of preprocessing steps

to obtain a cleaner detection with Hough transformation or they would

modify parameters of Hough transform directly. Nonetheless, the

underlying method remained the same. Fundamentally, the Hough

transform is a voting technique that can be used to determine which line

features present in the image are most important. The main idea is that, for

a given edge in an image, it “votes” for other compatible lines. Once voting

is finished, search for lines with the highest number of votes.

The Hough transform expects an edge detection image as input to

identify potential lines. The Canny edge detection algorithm is a well known

method which uses hand-crafted filters to detect steep changes in intensity.

It works by filtering an image using two filters (i.e. kernels) which compute

the derivative of the image with respect to the X and Y directions then

applying additional post-processing steps detailed later in this section.

These operations rely on an image processing technique called

spatial filtering, that extracts meaning from an image by analyzing spatial

relationships between pixels. Linear spatial filtering finds features in

images using convolution, or more specifically 2D discrete convolution.

Convolution is a linear translation invariant function from a finite sized

filter applied to an image. This process uses a sliding window to compute a

weighted sum of the current pixel and its neighbors based upon the filter

when repeated for every pixel. The result of this is a filtered image or

feature map which retains semantic information about the image.

Mathematically, 2D discrete convolution can be defined as:
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(1)

Where, G is the resulting filtered image, H is the filter, F is the image and

denotes the convolution operation. In practice convolution is implemented

as an NxN matrix H, which represents a window that moves across each

horizontal row of the image and replaces the value of each pixel with a

weighted combination of surrounding pixels, resulting in a filtered image.

Given some image F(x,y) in figure 2.1, a filter of size 3x3 is used, which

accounts for a region of 9 pixels.

Figure 2.1: Convolution visualized [19].

(a)                                                      (b)

Figure 2.2:  Box filter on an image (a),  Gaussian filter on an image (b).
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A simple example of filtering an image would be setting the center pixel of

the filter to the average of surrounding pixels. Repeating this process for

each pixel results in a blurred image with harsh artifacts (see figure 2.2a).

There are better methods for blurring images, most notably using the

Gaussian function (equation 2) which performs a circularly symmetric blur

in figure 2.2b.

(2)

Where is the standard deviation of the mean of a normal distribution.

Now that we have covered basic filtering, we will see how different

functions can produce dramatically different results. The resulting filtered

image is often called a Feature Map. We will see why this is the case later,

as we use filtering to detect features in the image. Following through the

Hough transform, images are pre-processed using Canny edge detection.

Edges in images can be found by detecting steep changes in intensity

throughout the image. Change in this intensity can be found using the

image derivative. The Gaussian blurring effect detailed above is essential to

the process, as Canny edge detection first applies this filter to smooth out

noise in the image making it easier to detect steep changes in intensity. If

smoothing is not performed, the noise present in the image will be

amplified when taking the derivative, making it difficult to distinguish

edges. Next the derivatives in the X and Y directions are calculated using

another filter, combining both directional derivatives is referred to as the

gradient. The derivative theorem of convolution states that it is possible to

apply this filter directly to the previous Gaussian filter first, then filter the

original image. The gradient is defined as:

(3)

We produce the gradient using two filters (one for each derivative

direction). This is usually computed with two Sobel filters, defined in

equations 4a and 4b:
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(4a)

(4b)

We apply these filters to the image separately, then take the magnitude of

the two image derivatives. The gradient magnitude is defined as:

(5)

Afterwards, threshold the result using non-maximum suppression. This

thins out the lines present in the gradient magnitude image. Non-maximum

suppression works by filtering out neighboring pixels which do not exceed

some threshold. In practice the gradient orientation is used to detect the

peak intensity along an edge, this is defined as:

(6)

Figure 2.3: A Canny edge image.

Convolving an image with a different filter can give dramatically different

feature maps. These maps are useful for detecting different things in the
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image. Now that filtering has been covered, we return back to the first step

of the Hough transform: Voting.

The key concept to perform voting is Hough Space. Lines in the

image are transformed into points in Hough Space and vice versa. By

dividing the image in Hough Space into bins, each line in that bin casts a

vote. Counting up the votes of bins in Hough Space corresponds to

candidate lines in the image.

Some difficulties encountered in using the Hough transform to

detect lines in an image, is that there are many parameters to optimize,

depending on factors such as noise. Relying on Canny edge detection means

that Hough Transform images will have widely varying results depending

on lighting conditions. This means that even with many modifications

which yield better results, the narrow number of situations where these are

useful, limits the number of scenarios in which this method of lane

detection can be used. Due to this limitation, Hough transform based lane

detection is restricted to daytime highway driving. Using it for vehicle

control may not be safe in suboptimal illumination. Ultimately, the

pervasiveness of complex lighting conditions and the inability to easily

detect curves led to researchers developing other techniques.

Use of black and white color (i.e. image intensity) information has

proven to be very useful in methods such as Canny edge detection and the

Hough Transform. J. Gonzalez and U. Ozguner [20] built upon the idea of

using intensity information by effectively leveraging the intensity histogram

of the image. A histogram shows the frequency of light intensities present in

the image. They couple this information with the use of a classic machine

learning technique called a Decision Tree to detect and analyze lane

markers. Their system creates structures that define lane boundaries in real

time, resulting in images that can be used for preprocessing steps in lane

and object detection [20]. This method resembles a rudimentary version of

deep learning techniques used today.

2.1.2 Color-Based Methods:

The previous methods rely solely on image intensity, which overlooks

integrating color information in the detection process. Using color to detect

lanes begins with the simple premise that roads and lane lines are usually

marked or have some consistent range of color (ex: lane lines are usually

white or yellow, roads are very dark). Humans rely on color information to

distinguish types of lane boundaries and therefore having programs capable

of understanding this information should be incorporated into their

function. Aside from filter based approaches, the rise of statistical methods
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in lane detection provided solutions previously out of reach. Through this

research we will show how the combination of filter and statistical methods

naturally leads to using deep learning.

K. Chiu and S. Lin [21] propose a system which uses statistics to

extract color thresholds based upon a region of interest in colored images.

Their method uses this threshold to distinguish potential lane boundaries

from the road. They present a fast and efficient way of estimating the

geometric structure of the lane boundary that is robust in complex

environments and various lighting conditions [21].

The use of classic machine learning techniques continued to emerge

in lane detection as the role of statistical information became more

understood in the importance of detecting lanes. Building on K. Chiu and

S. Lin’s approach, years later J.W. Lee and J.S. Cho [22] proposed a method

which uses both color detection and edge orientation to minimize the error

of a Bayesian classifier. This classifier is capable of distinguishing if a pixel

belongs to the lane class or not. They estimate the probability distribution

functions based upon classified features to adapt their model to various

road conditions and lane types. Using this strategy, they are able to detect a

single lane in real time [22].

As lane detection systems improved, more ADAS features went from

academia to application. Early implementations of Lane Departure

Warning (LDW) and Adaptive Cruise Control (ACC) features needed

algorithms capable of dealing with changes present in the natural

environment.

2.1.3 Inverse Perspective Mapping

Inverse perspective mapping is a classic method, which relies on the

geometric camera calibration to create an inverse perspective map [23, 24,

25]. Effectively this converts the front camera image into a top down view,

also called a bird’s eye view image. After the image is converted, utilizing

the Hue, Saturation and Value (HSV) color model, it can be used to isolate

colored lane pixels such as safety boundaries. Next, edge detection filtering

with thresholding (i.e. Canny edge detection) is performed to create a

binary map of the lane pixels. Finally, edge pixels in the binary image are

split into two halves, which then have a polynomial curve fit to each half of

the image. The advantages of this approach over the Hough Transform is

that it can create curved lines up to the extent of the horizon. This method

of lane detection also runs in real time.
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Figure 2.4: Transforming an image into bird’s eye view using IPM [24].

Although this method improves upon the Hough transform, it still has

several downsides. At least the following issues can be identified: IPM

requires camera calibration which can be difficult or impractical in a real

world setting. This is because the IPM assumes flat terrain, which is

required for a linear transformation from the front camera view to a bird’s

eye view. In a perspective view, less pixels represent the lane as it draws

closer to the horizon, therefore making curve fitting after projection more

difficult. Moreover, the width of the lanes is set manually, so additional care

must be taken when working with datasets containing varying road-widths.

Given these factors, it may be unreliable to use IPM for autonomous vehicle

control in less than ideal conditions.

A major limiting factor of the classic methods mentioned above is

their reliance on canny edge detection. Unfortunately this introduces

several limiting factors, as lane boundaries are not always present and

detection of the lane is heavily influenced by lighting conditions.

Fundamentally this filter cripples these approaches from being robust.

The most important takeaway from these methods is that the

function (i.e. filter) which we convolve an image with is useful for detecting

different features present in said image. Applying several different

convolutional filters to an image can allow us to detect multiple features.

Some examples of this is detecting that an image contains a dog versus

figuring out which dog breed is shown through the more specific features.

Later we will see that the foundation of convolutional neural networks

(CNNs) is the ability to learn the filters necessary to detect features for any

type of detection problem. The ability to utilize multiple learned filters in

conjunction for detection is a huge advantage of CNNs as these filters are

able to detect features which would be extremely difficult for humans to

come up with the mathematical function by hand. The nature of neural

networks being universal function approximators [26] means that they can
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learn any possible filter which is capable of detecting any object or class of

objects. This extremely powerful tool enables us to focus more on higher

level concepts rather than on intricate details of why some given filter

detects some type of feature.

2.2 Neural Network Based Methods

2.2.1 Basics of Neural Networks

Perceptrons: A simple explanation of neural networks starts with a classic

machine learning component called a perceptron. Neural networks have

been around for a long time, with perceptrons being detailed in The

Perceptron, A perceiving and recognizing automation [27]. Originally

believed to be capable of learning anything, the perceptron was hailed by

Rosenblatt “Yet we are about to witness the birth of such a machine – a

machine capable of perceiving, recognizing and identifying its surroundings

without any human training or control” [27].

The perceptron is a linear, binary classifier, considered the most

fundamental building block of the majority of neural networks [28].

Perceptrons work by taking a number of inputs (x1, .., xn), each assigned a

weight (w1, .., wn) and producing a single output prediction from

multiplying the input vector (x) with the weight vector (w) then adding a

bias term (b) and summing the results. This weighted sum of the inputs is

referred to as the activation function of the neuron. The weight vector

which differentiates the input classes is a vector learned by the perceptron.

Originally initialized randomly, this weight vector starts off with poor

results.

Figure 2.5: Perceptron Model [29].

Ultimately the perceptron learns a decision boundary, i.e. a line, also called

a hyperplane, which separates two classes or two features, provided the

classes are linearly separable. After learning from a sufficient number of
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examples, the perceptron can predict the class of new instances. The

learning process of the perceptron works by first feeding it a piece of data

with which a prediction is made and compared to the ground truth label of

the data. For instance, if the neuron is fed information of a dog, but it

predicts a cat. The difference between the prediction and label is called the

error, which is used to update the weight vector in a process called

Stochastic Gradient Descent (SGD) [30]. SGD is similar to normal gradient

descent except that the gradient is recalculated per data point rather than

after training on the entire dataset. More on optimization algorithms will be

covered at the end of this section.

Much later detailed in the 1969 book Perceptrons [29], the authors

discovered that perceptrons are incapable of learning the “exclusive or“

(XOR) function. This crashing discovery sewed disbelief in the ability of

learning algorithms. The reason for this is that the perceptron is only

capable of linearly separating classes, while the XOR is a nonlinear

function. Although there are many different kinds of activation functions,

the original perceptron algorithm used a linear function. Linear functions

are incapable of learning decision boundaries between classes that can not

be separated by a straight line [31].

Mutli-layer Perceptrons: The solution to separating nonlinear functions

(such as XOR) was to use multiple perceptrons strung together with each

using nonlinear activation functions. The most common activation function

used in modern neural networks is the Rectified Linear Unit (ReLU) which

employs a Max(0, output) function [32]. These multi-layer perceptrons

(MLPs) (figure 2.6) are the basis of nearly all deep learning models. They

consist of an input layer of perceptrons which feed their prediction to some

number of hidden layers of perceptrons which are then summed into the

output as a single value prediction or vector of predictions. The connections

between each layer are densely connected, meaning that every input in the

previous layer is connected to every output in the next layer.
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Figure 2.6: A multi-layer perceptron network [33].

Going further into detail on this issue, non-linear transformations are

critical for a network to actually learn, because with linearity, the

combination of all perceptrons in a network could be modeled by a single

perceptron as a linear sum of any number of neurons is still a linear

function. Most problems in the real world are nonlinear and thus require a

nonlinear function to approximate their prediction solution. As a simple

example using fluffiness and color as input to determine what the animal is

would not have linear separation, as many different animals may be equally

fluffy and the same color. This process of determining which features

differentiates the classification most optimally is called feature selection

[34].

As mentioned, classic computer vision methods of lane detection

work in a limited number of scenarios, making them insufficient for the

wide range of situations encountered in fully autonomous driving. MLPs are

extremely useful for generating accurate predictions given sufficient data,

but their input is often just a vector of values, while images are usually a 2D

matrix of vectors. Spatial information in MLPs is not encoded, meaning

information relative to some other bit of information is not carried across.

This is because MLPs work using flattened 1D vectors, which loses the

ordering of pixels [35]. CNNs address this problem, as local pixel groups are

usually very important to understanding a portion of the image (i.e. spatial

information is important for understanding features in an image).

One of the most useful ways for using images in neural networks is

using a CNN, where rather than using a perceptron to transfer data from
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one layer to another, learned weighted filters pass information forward

through the network. These filters are initialized randomly and eventually

come to approximate some function given sufficient data. After the

demonstration of a powerful CNN called AlexNet in 2012 the pursuit of lane

detection with machine learning and deep learning techniques took off [36].

Convolutional Neural Networks differ from MLPs in that they leverage

spatial structure in an image to predict features. This way of structuring a

network can be seen as biasing a network (i.e. specializing it to efficiently

handle certain data structures [images])[37, 38]. Effectively, CNNs can be

viewed as a special subset of the more general MLP.

By combining concepts of spatial information, feature understanding

through filters (as seen in Canny edge detection) and MLPs, we can use

CNNs to learn a hierarchical set of features ranging from low detailed

information called local features (such as edges) to high level (global)

features (ex: eyes, facial structure). The learned features present in some

dataset can then be generalized, allowing the network to correctly classify

new data.

Figure 2.7: A CNN depicting the LeNet-5 architecture [39].

As demonstrated in figure 2.7, CNNs have four main operations. Namely,

convolution, non-linear activation functions, subsampling (pooling) and full

connection (classification). The network architecture specifies how many of

these operations will be used and in what order. Once set they do not

change.

During training, the goal of the network is to learn a set of feature

maps which generate a high response when classifying data. Learning is

done by adjusting the weights of the filters until they converge to the correct

classification. Each pass through the network, the input data convolved

with the filters to create feature maps. These feature maps are then passed

to further layers, where low-level features are synthesized into higher level

features. At the end of the network, feature maps are flattened into a feature

vector, which outputs a prediction for the given data point. A loss function
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is used to calculate the error between the output prediction and the labeled

data. This error is then used in the backpropagation step to calculate

gradients which determine how the filters should be adjusted using gradient

descent. Once trained, the loss function and backpropagation steps are no

longer used. The network maintains a set of filters which will generate a

high response to new data of the same classes which the network was

trained on.

Going into detail, convolution uses filters to create feature maps that

preserve the spatial relationship between a neighborhood of pixels. Since

convolution is a linear operation, a non-linear activation function must be

applied after the convolution step for the network to learn the filters. Each

new data point fed into the model adjusts the filters to better classify

features present in the image. The network learns a hierarchy of features

given sufficient data. Filters earlier in the network correspond to lower level

features, while filters later in the network take previous feature maps to

learn higher level features. Depending on the size of the filter and the

padding around the input image, convolution may reduce spatial

dimensionality while increasing feature dimensionality (e.g, 36x36x3 →
28x28x6). Decreasing input and filter size can optimize the prediction

process, saving computational time. Another way to do this is using pooling.

Pooling is a downsampling operation that reduces image resolution

while preserving spatial relationships between image regions. The typical

type of pooling used is called max pooling, which takes the maximum value

in some given patch of the original image and uses it as the pixel intensity in

the downsampled image. Pooling passes only the most important features

through the network.

Once these actions have been performed many times, the final layer

contains several small feature maps that describe high level details. These

are then flattened and fully connected like an MLP which enables the

network to generate a classification vector or value prediction. The fully

connected layer also has the advantage of learning non-linear combinations

of high level feature maps. Typically the prediction is passed to a softmax

function which converts the output into a statistical distribution which

sums to one [31]. As an example using the softmax function in equation 7,

the prediction may output a classification vector which contains the values

(0.75, 0.1, 0.05, 0.03, 0.0.2) which means the network predicts the animal

contained in the image has a 75% chance to be classified as an ermine, 10%

cat, 5% dog, 3% squirrel and 2% bear. Softmax provides a clean way of

understanding the prediction when multiple classes are present in the same

image.
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(7)

Encoder-Decoder Networks: The output prediction of the network does

not necessarily have to be a single value or vector of probabilities. By

performing upsampling on the learned features at the end of the network,

the network can also learn the class of each pixel in the image, in a process

called semantic segmentation. We will see this process implemented later

on in both Lanenet and Robust Lane Detection. Often this type of

architecture is called an Encoder-Decoder network. Transposed

convolution is an operation which scales a feature map up by overlapping

kernel strides and summing the result. It is performed in the decoding

portion to upsample features into the image.

Figure 2.8: An Encoder-Decoder Network [37].

Residual Networks: An important network which we use as a backbone

for feature extraction is ResNet. ResNet34 is a simplified version of the

residual network architecture, a commonly used deep residual neural

network (RNN) which combines a series of convolutional layers for feature

extraction in images [40]. Residual networks are not just Convolutional

Neural Networks (CNNs) in that, they additionally pass the next layer a

residual function by skipping certain activation functions, which passes

lower level features further to the next layer. Residual networks are

composed of residual blocks, also called skip connections, which pass

features from the previous layer over some portion of the network.
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Figure 2.9: A residual block [41].

By passing lower level features throughout the network, Residual networks

are able to overcome the infamous “vanishing gradient problem” [41]

which prevents backpropagation from updating network weights earlier in

the network. This innovation enabled new networks to be constructed with

significantly more layers, increasing feature detection capabilities.

Methods of teaching neural networks: Random initialization of

weights does not always lead to learning something useful. Sometimes these

weights propagated through gradient descent based optimization

algorithms can converge to non-optimal local minima. The topic of finding

out how to ensure the network most optimally learns a separate and useful

feature is an open research problem.

There are many approaches to assist the network in converging to a

more optimal solution. Optimization functions like gradient descent come

in many different flavors which affect the speed of convergence. Stochastic

Gradient Descent [30] is a well known algorithm which can be improved by

a concept called momentum to increase the speed of convergence [42, 43].

This can effectively be thought of as an additional velocity term which

allows the learning process to overcome non-optimal local minimums. It

works by taking a weighted moving average of the network's gradients to

smooth out the oscillations introduced by SGD when updating after each

training example. Another improvement to the optimization process is to

introduce a variable learning rate, rather than inching forward with a small

rate. Adam (Adaptive Moment Estimation) is an optimization algorithm

which takes into account both momentum and adaptive learning rates to

speed up convergence [44].
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Additional techniques which examine separate parts of the training

process can have a large impact on how well the network learns. Typically

these techniques seek to address improving the model through adjusting

the data (normalization) or adjusting the model (regularization).

Normalization is a technique in which output from one neuron

layer is normalized before being the input to another layer of neurons.

Normalization generally works by computing both a mean and variance

values to which all neurons on a layer are normalized against [45, 46].

Lower numerical values generated by normalization have the effect of

increasing the speed and accuracy of networks. There are two main types of

normalization, being batch and layer normalization.

Batch normalization calculates the mean of the current neuron layer from

all batches of data sampled [45]. This attempts to find a mean and standard

deviation which represent the entire dataset. It then normalizes the outputs

of all neurons in each layer by each layer's calculated mean.

Layer normalization calculates a mean value for each neuron layer

for each data sample. It then normalizes the output of the entire neuron

layer with this mean value. This means that each normalized layer in the

network has the same mean and variance.

Layer normalization is an improvement over batch normalization

and provides several advantages when working with large datasets. One

advantage of layer normalization is that it is free from dependencies of

batch size. This means the same number of calculations are performed in

training time and test time. These two times differ in batch normalization,

because performing inference during training in larger batches often

utilizes stronger hardware which may not be available in test time. Another

advantage is that layer normalization can be used on sequence data

enabling the performance increase previously only available to non

sequential networks [46]. Although, layer normalization is not as effective

on CNNs, which is why our network only uses layer normalization on the

fully connected layers.

Regularization works to prevent a model from overfitting to the

dataset. Two important types of regularization are L1 and L2 regularization.

Both techniques penalize networks if weights are too high by adding the

weights into the loss calculation. This is because weights with uniquely high

values often exaggerate the importance of some feature in the training set,

leading to overfitting. The key difference is that L1 regularization (i.e. L1

norm) encourages network weights to be sparse while L2 regularization

(i.e. ridge regression) penalizes weights with high values, positive or

negative, which keeps network’s weights from being high, but not pushing

them to zero.
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Another regularization technique called drop out prevents the model

from settling on a local minimum by randomly deactivating neurons in the

network. This will prevent the model from relying on some subset of

neurons storing the majority of information used for classification. Other

techniques such as data augmentation are covered in section 4.3.5. Overall

experimentation with hyperparameters (i.e. the values used to tune the

learning process such as learning rate, batch size, etc), architectures, feature

selection or better datasets are the best way to ensure a model converges to

the most important features for a  classification task.

Applying neural networks in autonomous driving has revolutionized

the field, making reliable control of the vehicles now possible. The downside

is that many of these powerful networks rely on heavy and expensive

hardware. This research focuses on networks which have the potential to

work on light-weight embedded systems which are useful for cost-efficient

consumer vehicles. This research focuses on three papers which yield good

results. Namely, Lanenet lane segmentation (2018) [47], Robust Lane

Detection (2020) [48] and Ultra-fast Lane Detection (2020) [49] which is

based on a highly efficient CNN technique referred to as SCNN (2018) [50].

2.2.2 LaneNet

LaneNet approaches lane detection as an instance segmentation problem.

The goal is to label each lane line as belonging to a separate instance of the

Lane class. The architecture is a two branch Encoder-Decoder CNN which

shares an encoder comprising two out of three stages of E-Net [47] used as

the backbone (i.e. using a feature extractor network as a foundation for

another network). The decoder is split into two branches, one for binary

segmentation and the other for instance segmentation.

Figure 2.10: LaneNet architecture [47].

The binary segmentation encoder separates lane lines out, coloring lane

pixels white, with all other pixels colored black. This binary segmentation
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map is used in conjunction with the pixel embeddings output to mask out

non-lane pixels, making prediction of lane instance in the next step less

computationally expensive. This first branch uses standard cross-entropy

loss defined in equation 20. The instance segmentation branch has the goal

of outputting an N dimensional pixel embedding which separates the pixels

into different instances of the lane class. Pixel embeddings are created by

using an iterative clustering loss function which pulls together nearby lane

pixels and pushes away lane pixels of other instances. This process and the

loss function are detailed in De Brabandere et al. [56].

The combination of the binary segmentation and instance

segmentation set the foundation for inverse perspective transformation and

curve fitting performed by the second Neural Network detailed in the paper.

In previous research, a fixed homography matrix (an inverse perspective

matrix) would be used to warp the perspective image into a top-down image

also called a bird’s eye view image [23, 25]. Homography means a

perspective mapping of one (image) plane to another. It requires that

enough image points present in one plane must be known in the other. This

technique allows us to recover the depth of image points which are normally

lost in projection. The homography matrix is typically calculated only once

using known camera parameters and is error prone under non-flat terrain,

which can result in lane points in other images being projected to infinity

[25]. LaneNet resolves this issue with a second network referred to as

H-Net, that predicts a conditioned homographic matrix which transforms

points into a top-down view where lane fitting is performed (figure 2.11).

Figure 2.11: LaneNet and H-Net.
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The authors specify a custom loss function for H-Net to predict a

transformation matrix which optimally fits a polynomial curve to lane

pixels. Given N ground-truth lane points, these points

are transformed by the output of H-Net:

(8)

where and H is a 3x3 matrix containing 6 variables

(i.e. 6 degrees of freedom) and 3 constants.

(9)

Once points are projected, a polynomial is fit using

the least squares closed-form solution:

(10)

with and Y is a Nx3 matrix

containing the vertical pixel positions of the polynomial variables with N

being the order of the polynomial.

(11)

Regarding the case using a 2nd order polynomial, the fitted polynomial is

evaluated at every location yielding a horizontal pixel

position prediction . Afterwards the prediction is projected back by the

inverse of H and compared with the label in image space using least

squares. The sum of the difference between the original and the fitted point

transformed back into image space is used as the measurement for the loss.

(12)
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These constants used for ensuring horizontal lines in the original image

remain horizontal in the warped image. The output matrix is then used to

warp a downsampled original image into bird’s eye which works under

variable terrain, ensuring that all lane points are correctly warped onto the

image. The reason for this is that it is easier to fit lower order polynomial

curves onto the warped images as their points are spread equidistant,

making curves wider and therefore easier to approximate. The fitted

polynomials are then warped back into the original image space, correctly

separating lane lines. Ultimately using both LaneNet and H-Net in tandem

results in accurately fitted curves produced at 50 fps on an Nvidia 1080 ti.

With an accuracy of 96.4%, LaneNet achieved 4th place in accuracy on the

TuSimple dataset. Speed of the other winning models is not provided.

2.2.3 Robust Lane Detection

Another paper critical to our research is Robust Lane Detection. Their

research team’s key insight was to pivot from single image lane detection to

a continuous image sequence based detection. The main theory behind their

approach is that lanes are fundamentally continuous structures and

therefore having only a single image to predict a continuous structure does

not provide enough information. By incorporating information from

previous frames, the model will be capable of filling in the blank when the

lanes (the continuous structures) are obscured or occluded. The model

should be capable of predicting lane structure from past information when

it is obstructed in the current frame. Due to this idea, Zou et al. [48]

structure their model architecture as follows:

Figure 2.12: Robust Lane Detection Architecture [48].

The architecture involves a fusion of a classic Encoder-Decoder CNN for

semantic segmentation, with the center being a Long-Short-Term Memory
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(LSTM) Recurrent Neural Network (RNN). Using RNNs on images

previously would be extremely costly as images represented as vectors

would be of size WxH so even small images (ex: 512x256) would create too

large vectors for passing information. The encoder resamples images to size

256x128 and this size is replicated in the decoder, producing the same size

output prediction.

U-Net and SegNet introduced here [57] combined with ConvLSTM

act as the backbone for the model. ConvLSTM was introduced in [58] and is

different from traditional LSTMs in that all matrix operations on the gates

are converted to convolution operations, decreasing the size of

computation. Instead, by attaching the LSTM to the end of the decoder, the

LSTM works given image features of size 8x16x512 when using

UNet-ConvLSTM or 4x8x512 when using SegNet-ConvLSTM. Since this

process is repeated for a continuous image sequence (in this case, 5 images

at a time), the LSTM is able to incorporate multiple lane features from the

images and make a robust prediction. The loss function is based on the

weighted cross entropy for the purposes of solving discriminative

segmentation tasks. It is defined as:

(13)

Where, L : Ω → {1, . . . , K} is the true label of each pixel and w : Ω → R is a

weight for each class. Additionally p represents the softmax function,

defined in equation 7.

The authors of RLD contributed to the TuSimple lane dataset by

additionally labeling every 13th image, where the previous dataset only had

every 20th image labeled. Additionally, the authors expanded the dataset by

introducing 1,148 sequences of rural roads with the goal of increasing the

diversity of the dataset.

The results of the dataset demonstrate that the combination of

U-Net-ConvLSTM produces the most robust results as opposed to

SegNet-ConvLSTM. U-Net-ConvLSTM achieves validation accuracy of

98.52, test accuracy of 98.43 in rural scenes and 98.00 accuracy on highway

scenes. Other metrics include Precision of 0.857, Recall of 0.958 and F1 of

0.904. These metrics are defined in section 4.2.

The authors are able to achieve state of the art performance on

images which include obstruction, occlusion and heavy shadows while

running at 5.8ms on inference on two GeForce GTX TITAN-X GPUs. While

the results of Robust Lane Detection are worth noting, the speed of
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inference is significantly slower on embedded systems, pushing the model

out of use for production purposes. With this constraint in mind, we instead

opted to leverage Robust Lane Detection and clustering for auto-labeling

frames to use on smaller models. This process will be explained in further

detail in the methodology section.

2.2.4 Ultra Fast Lane Detection

Seeking to solve the “no visual clue” problem, Ultra-Fast Lane Detection

[49] opts to make strategic optimizations to reduce computational cost on

their model. It uses two core approaches to speed up lane detection while

achieving state of the art performance in accuracy. The first is using

row-based selection to predict positions of lanes in the image along pre-set

row anchors, rather than using a more powerful encoder-decoder

architecture to segment the entire image. By manually biasing where the

model has the highest probability to find the lane markings, computation

can be saved instead of using semantic segmentation across the entire

image.

Row-based selection works by setting a predefined number of

horizontal anchors h across the image which are divided into grid cells w

that are searched to detect C lanes. This method drastically reduces the size

of the model to search through compared to image-segmentation which

searches the entire image. In practice on the TuSimple dataset, UFLD

creates 55 row anchors placed every 10 vertical pixels. Row anchors are

divided into 100 grid cells with up to 5 lanes. The second method is using

SCNN’s strategy of cutting out any 0 multiplication calculations, which are

often a product of the ReLU activation function [50]. The combination

achieves over 300 fps on an Nvidia 1080Ti with their lightest model. The

model is trained and tested on both the CULane and TuSimple Datasets.

Figure 2.13: Ultra-Fast Lane Detection model architecture [49].
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Multiple loss functions are used throughout different parts of the model

architecture to hierarchically predict different features of lane detection.

Their classification loss is the sum of the cross entropy loss LCE across C

(the maximum number of lanes) and h (the number of row anchors).

(14)

Where P i,j,: is the (w + 1)-dimensional vector representing the probability

of selecting (w + 1) gridding cells for the i-th lane, j-th row anchor, while T

i,j,: is one label of correct locations.

Their second loss function, Lane Structural Loss, is composed of two loss

functions: Similarity Loss (Lsim) and Shape Loss (Lshp). Similarity Loss:

(15)

addresses the fact that lanes are continuous structures and works by

constraining the distribution of classification vectors over adjacent row

anchors. Shape Loss:

(16)

constraints lane shape to the second order difference equation, being 0

when lanes are straight. Finally, they introduce an auxiliary segmentation

loss (LSeg), which is just cross entropy loss, giving the total loss:

. (17)

With this combination of model optimizations, loss functions and a

modified Resnet18 backbone, UFLD accurately predicts multiple lanes in

challenging scenarios (including curved roads, crowded streets and night

driving) in 3.2ms on a single Nvidia GTX 1080 Ti. The model has a

classification accuracy of 95.77 - 96.06 on the TuSimple benchmark.
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2.2.5 Summary of Neural Network Based Methods

Lane detection methods for the most part share the common strategy of

defining lane detection as an image segmentation problem. Even in the case

of Ultra-Fast Lane Detection, the authors still use some degree of (auxiliary)

segmentation. With this in mind, it means that the architectures rely on a

modified form of the “Encoder-Decoder” architecture. Ultimately each

experiment uses either Semantic Segmentation, Instance Segmentation or

Auxiliary Segmentation.

Due to their similar segmentation approach, both LaneNet and

Robust Lane Detection have the same issues of slower speed at the trade-off

for higher accuracy. LaneNet has an advantage over Robust Lane Detection

in the sense that lanes can be differentiated by their class instance.

Maintaining a consistent instance for each lane allows the autonomous

vehicle to change lanes while keeping a stable detection. In the end, Ultra

Fast Lane Detection comes out on top, as it is capable of comparable

accuracy to LaneNet and Robust Lane Detection while having many

multiples the speed of inference. Additionally UFLD is capable of classifying

the lane lines in a similar manner to LaneNet.

2.3 Implementing Lane Detection Methods on Embedded
Systems

In research, lane detection is typically simulated on personal computers

rather than directly on embedded hardware due to tighter constraints than

what is typically available in academia. The problem with this is that it leads

to cutting edge robust lane detentions being too slow to be practical for

commercial use [51]. This means that older, less robust detection systems

which rely heavily on hand-crafted feature filters have to be used, limiting

the range of scenarios vehicles can drive safely. Research such as the real

time mobile lane detection system by M.J. Jen et al. [52] resorts to running

hand-crafted filters on embedded hardware. Other improvements including

PathMark by Q. Ju et al. [51] continued to improve detection using image

intensity and geometric matching of detected lane segments to full lanes.

Gradual advances in hardware brought classic machine learning techniques

back into the picture. N. Mechat et al. [53] used Support Vector Machines

(SVMs) to classify lanes and then fit curves for better predictions. Often

relying on a single camera for lane detection, sensor fusion techniques such

as the Kalman filter were used to give the control system better perception

[53]. Additional uses of combining both the Kalman filter and IPM

techniques include Y. Lee and H. Kim’s [25] research which achieves real
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time performance for highway and urban driving scenarios. This technique

uses a single camera and focuses on ego-lane detection only. M. Neito et al.

[54] further improves classification method based lane detection by

providing an end-to-end lightweight pipeline which is built to combine

many different computer vision techniques for maintaining stable

detection. They focus on geometry based methods that are capable of

detecting multiple lanes.

Recent improvements in embedded hardware computational speed

has opened up the opportunity to use lightweight neural network based lane

detection. Inspired by UFLD’s row-wise classification technique, SwiftLane

by O. Jayasinghe et al. [55] tackle lane detection on the Nvidia Jetson AGX

Xavier embedded system. They further increase inference speed by

reducing the number of false detection, which manages to achieve 56 fps,

rivaling our solution.
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3. Methodology

3.1 Background

In 2019 the European Commision enacted a law requiring new automotive

safety features to be implemented in cars launched after July 5th of 2024

[59]. Safety features required by this mandate include Advanced Emergency

Braking (AEB) and Lane-Keeping Assistance (LKA). Our team developed a

pilot for a major European OEM which included a convolutional neural

network based lane detection model as it is the foundation for AEB and

LKA features.

The main requirements of the pilot are a model that runs in real time

on an automotive-grade SOC and meets the Operational Design Domain

(ODD) standard of L2+ ADAS. OEMs need small systems that can easily fit

in the dashboard. This places a significant constraint on the amount of

computation that can be used for reliable lane detection models. We

examined these constraints on hardware and software to find a balance

which meets the requirements of the pilot.

In regards to hardware, we took a similar approach to [55] by

choosing the Nvidia Jetson AGX Xavier as our SOC. It is a powerful

embedded system useful for deploying end-to-end AI and robotics

applications [60]. We plan to downscale further to the Nvidia Jetson Nano

[61]. After testing we expected a 10-12x downscaling in fps when testing

models on an Nvidia GTX 3080 notebook moving to the Xavier and 15x

downscaling to the Nano.

Inference speed is a key factor that eliminates any model incapable

of running at very high FPS. This is because the model needs to predict

lanes fast enough that the control system can steer the vehicle safely at high

speeds. Downscaling to an embedded system slows down inference

significantly. Making a control robust system requires more than just lane

detection. 3D vehicle detection, pedestrian detection, objects on road

detection and other features are critical to maintaining a safe driving

experience for passengers.

In regards to the models presented in the literature review, we found

that LaneNet and RLD require a combination of powerful GPUs while only

attaining slightly higher than real-time fps. LaneNet sought to address the

issue of poor prediction when switching lanes using instance segmentation;

we found that given sufficient data, UFLD is more than capable of reliably

switching lanes. UFLD most notably significantly outperforms these other

methods and will most likely scale down well. It was rigorously tested in

several scenarios that feature high curvature, missing lane markings and
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night driving. Although the accuracy will vary in these scenarios, we believe

it will remain high enough for autonomous control. Moreover, when testing

UFLD on an Nvidia GTX 3080 notebook we were able to obtain over 500

fps in inference when using the ResNet 18 backbone. Expecting to achieve

between 50-80 fps with ResNet 18 on the selected embedded systems, this

still leaves room for additional tweaks and modifications to increase

performance for our purpose.

For the reasons above, our team adopted UFLD’s methodology and

tuned its architecture to fit our key purposes. See section 2.2.4 Ultra Fast

Lane Detection for more details on the representation of lanes and use of

loss functions to learn lane structure. How lanes are labeled is covered in

section 3.4. Using row-based selection of lanes as a foundation, we further

optimize for speed by reducing the total number of row anchors for the

network to learn from 48 to 14. One important thing to note is that, unlike

UFLD, our goal is only to predict the ego-lane (i.e. the lane the vehicle is

driving in) for lane-keeping assistance features. UFLD detects a maximum

of five lanes, while we reduce the number to three, which is the minimum

for changing lanes. Experiments with different tiers of ResNet will likely

improve performance while pushing fps down closer to just above real-time

inference.

Although we chose not to use LaneNet or RLD, the models were not

entirely disregarded. Although RLD was capable of running at real-time on

high end systems, downscaling the model would yield sub-real time speeds,

which eliminated the model from being used on the chosen embedded

system for the pilot. RLD was found to have a very reliable detection and

segmentation processes that could be used to label many images very

quickly in a process referred to as auto-labeling. This process will be

detailed further after the section on manual labeling.
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3.2 Model Architecture

Figure 3.1: VahidNet model architecture.

As noted in section 3.1 we based our model architecture on a simplified

version of UFLD. Overall we reduce the input image size, number of lanes

predicted and number of lane points to speed up computation. The model’s

architecture can be summarized as follows:

● Input a 3 channel RGB image of size (224x224x3)

● Backbone (ResNet18 or ResNet34) → outputs a 1000 fc layer. #1

● ReLU and layer normalization (1000)

● Fully connected layer 2 (1000 → 500) → transforms into 500 length

vector

● ReLU and Layer normalization 2 (500)

● Fully connected layer 3 (500 → 200)

● ReLU and Layer normalization 3 (200)

● Fully connected layer 4 (Multi-headed output):

○ Part A: size 200 → size (3x14) lane points

○ Part B: size 200 -> size (14) horizon values

○ Part C: size 200 -> size (3) lane order

Beginning with the model backbone, we choose to build upon the ResNet18

and ResNet34 [62] architectures, which as noted in UFLD are able to

significantly enhance prediction accuracy while maintaining a good degree

of speed. We chose these two backbones due to speed constraints and found
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that both are able to maintain real-time inference on the Nvidia Xavier

embedded system. The ResNet backbone provides the learned features we

use for performing lane detection. ResNet34 outputs a fully connected layer

as a 1000x1 length classification vector.

Our own model is quite simple due to time constraints of the OEM

pilot demonstration. We began by taking the 1000x1 length vector output

by ResNet34 then performing layer ReLu activation and layer

normalization on it. Next, the feature vector is further downsized to a 500x1

length fully connected layer, then performing ReLu activation and layer

normalization again. Afterwards the fully connected layer is downsized once

more through a 500x1 to 200x1 length layer which is also passed to ReLu

activation and then layer-normalized. Finally, a forth fully connected layer

is created in 3 steps:

a. The size 200 layer is linearly transformed to a 3x14 sized fully

connected layer. This 3x14 vector is a combination of the number of

side candidates (3) and the number of side coordinates (14).

b. Linearly transforming the layer size 200 to 14.

c. Linearly transforming the layer size 200 to 3.

This fourth fully connected layer acts as a multi-headed output, giving 59

floats in total. Part A of the process is used for 3 lanes each with 14

x-coordinate positions at specified anchor points as mentioned earlier. This

output is used by the Lane Loss Function. Part B outputs 14 floating point

values which are later used in Horizon Loss to determine if a given anchor

point is above or below the horizon. Finally part C gives 3 floating values

which represent the probability that the lane is made up of two of the three

candidate lanes. This conversely is used in Lane Selection Loss. When the

model is not training, the outputs are fed directly into the post-processing

phase, which visually assembles the lane.

3.3 Loss functions

Our approach to lane detection can be conceptualized by splitting the

problem of detecting the ego lane into 4 components. We first determine

the 2D lane coordinate points for assembling up to three candidate lane

edges. In total we find 42 x-coordinate lane points (3 lanes of 14 horizontal

positions). Next the model learns which points belong to which lanes.

Following this, the model learns the height of the horizon. Finally these

three outputs are combined together in post-processing to remove any lane

predictions which appear above the horizon.
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This method of learning lane detection can be broken down by making 4

separate loss functions for each component of detection. We sought to make

the model learn the following:

● Lane Loss (L1) learns the 2D coordinates which make up a lane line.

It uses Mean Squared Error (MSE) of 2D lane coordinates.

● Lane Selection Loss (L2) learns which lanes to select from and relies

on Cross Entropy Loss.

● Horizon Loss (L3) learns the location of the horizon in the image.

This loss relies on a variant of Cross Entropy called Binary

Cross-Entropy.

Finally we use a separate loss function for determining lane order when

there are three lane candidates. This Lane Order Loss function (L4) helps

the model determine which two lanes should be used for the ego-lane and

additionally helps the model understand how to switch lanes. See figures

3.2, 3.3 and 3.4 for reference. In the following section, a more detailed look

into why the given loss function is useful and what data it uses.

Lane Loss (equation 18) learns 42 x-coordinate points or 3 lanes

consisting of 14 different x-coordinate values at predefined heights using

MSE. Our labeling method is a simplified version of TuSimple which

reduces the amount of lane boundary positions as shown in figure 3.3.

(18)

Where, is the labeled value of some x-coordinate, is the value

predicted by the model given the labeled image and is the number of data

points (in this case 42).

Effectively MSE measures the average squared distance between predicted

values and the ground truth label. The distance being squared has the effect

of dramatically increasing the loss value when the prediction is very

incorrect. In turn this has the effect of increasing the derivative in the

direction away from the loss during optimization, making the model learn

faster. The MSE is an effective way of penalizing highly incorrect

predictions, allowing the model to learn from mistakes quicker.

MSE is useful for learning a task such as finding the x-coordinates of

a lane because we are interested in minimizing the error between where the

lane has been marked and where the model predicts it will be.

Fundamentally this is a MSE problem because minimizing the distance

between where the lane actually is and where the model predicts it, is useful
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for getting the model to learn the positions of where the lane lies. One idea

for an improvement is to find some function such that points are aware of

the relative position of their neighbors. This could lead to an understanding

of some approximation that from one point to another, the x positions

should not change so drastically.

Second, we cover the Lane Selection Loss. This loss function outputs

3 floating-point values which give the probability of the possibilities for

which lane lines will be used to assemble the ego-lane. These values are

used later in the post-processing phase to display the ego-lane. For Lane

Selection Loss, we choose to use Cross-Entropy Loss, a common approach

for interpreting multiple output probabilities of neural networks.

Cross-Entropy loss has many other names including “Logistic Loss” and

“Multinomial Logistic Loss”. It is the negative natural log (log base e) of the

softmax function see equation 7. This equation can be represented in the

form:

(19)

This form is most often used as it resembles the entropy equation in

physics. For descriptive purposes, a slightly expanded form of the equation

is used for two reasons. First is that the log present in this equation is

actually log base e (natural log), not log base 10. Second is that the term

is the result of the softmax equation on the ground truth label .

(20)

where i is the index of the current output value, C is the total number of

output values, t_i is the ground truth label of the output. Y_i is the feature

vector input in softmax see equation 7. Softmax has the effect of taking

multiple input values and mapping them to sum to 1 which can be seen as a

probability distribution of the output. Wrapping the negative natural log

around the softmax function has the effect of dramatically increasing the

loss of bad predictions, while nearly linearly decreasing loss for good

predictions. Ultimately this prevents overstepping in backpropagation while

using our optimization method when the loss is low and quickly moving

away from the previous result when the loss is high. When loss is high from

a prediction, yielding a high loss function and therefore high derivative
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value can be useful for ensuring our approximation moves far away from an

area of local minima. When loss is low, we often want our approximation to

change slower, as to not overstep an approximation which minimizes loss.

In a way, it has a similar effect as mean-squared error except applied in

different cases with different input data.

The next component to address is Horizon Loss which employs

Binary Cross Entropy. This type of Cross Entropy is useful for making

several yes or no decisions at once [63, 64, 65]. In this case we use 14

floating point values which predict the probability for the horizon by

determining if a given horizontal anchor is above or below the horizon.

Again, refer to figure 3.3. Binary Cross Entropy functions similarly to

normal Cross Entropy, except that it utilizes two classes:

(21)

Where, and are the ground truth classification label and score for

Class 1 - above the horizon (C1) and and are the

ground truth label and score for Class 2 - below the horizon (C2).

An important drawback to this loss function is that the actual horizon often

falls between the boundary where classification of above or below the

horizon changes. Any points classified as part of the lane are later discarded

in the post processing phase if they fall above the horizon. Due to the

perspective effect there can be a long section of the road between the anchor

just below the horizon and just above it. Having a hard threshold at the

former anchor reduces the amount of lookahead to the road we can use for

controlling the vehicle.

The final component of lane detection is the Lane Order Loss (L_4)

which again uses MSE to determine if the lanes are in the wrong order,

otherwise the value yields 0 in cases where lane order is correct. The total

Loss Function is a combination of the previous four loss functions,

modeled:

(22)

For the experiment we chose the Adam optimization algorithm [66] rather

than Stochastic Gradient Descent as time was a major constraint and it was

leading to faster convergence to local minimums.
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3.4 Data Labeling

A large dataset of labeled images depicting diverse driving scenarios will

have a huge impact on the performance of a trained model. Overfitting to

specific scenarios which are overly abundant in homogenous datasets, such

as straight highway driving on sunny days, often leads to poor performance

in the real world. The lane detector must be robust to changes in weather or

lighting as the driver’s safety is at risk when a model encounters an

unfamiliar scenario.

Overfitting is a problem in machine learning that occurs when a

model fails to generalize features learned from a dataset and instead learns

features specific to a subset of the data. This leads to poor performance in

real world scenarios, as overfit models often fail to learn features present in

a diverse number of scenarios. Overfitting is often addressed by splitting a

dataset into training, testing and validation sets. The goal of each subset is

to capture an equal distribution of features which will be found evenly

across the entire dataset. The distribution of features present in each subset

is very important and has a great effect on performance. Other methods of

resolving overfitting were addressed in section 2.2.1. This even distribution

can be ensured by careful pruning of what is included in the dataset. As an

example, if the training set only includes straight driving scenarios on a

sunny day, but the test set only includes highly curved roads on stormy

days, the model will probably perform poorly.

Covering a range of diverse scenarios ensures models learn general

features. The downside is that it is impossible to create a dataset diverse

enough to cover all possible situations where the model will learn to handle

the situation perfectly. The drawback is that the model can only generalize

situations it encounters often, meaning it will never fully understand how to

handle all situations. The goal is to ensure that the model performs

consistently enough that it will work with a high degree of accuracy in

nearly all situations.

Many datasets are available for public research for non-commercial

purposes only. Because of this constraint, we opted to create our own

dataset for training the model and to use the TuSimple dataset [67] for

training and evaluation, as it is available for commercial use. TuSimple is

widely used as a basemark for testing lane detection models and consists of

6,408 road images of US highways with a resolution of 1280x720. These

images are organized by sequences of 20 frames. Out of this dataset, about

55% of all images are used for training with, 40% used for testing and 5%

for validation. The images include scenarios of different weather and

lighting conditions. TuSimple is a public dataset which was released during
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their Lane Detection challenge in 2017 [67] for the Conference on

Computer Vision and Pattern Recognition (CVPR).

Other common lane detection benchmarks such as CULane, that

contains over 55 hours of driving in diverse and challenging scenarios, were

not available because they were restricted to non-commercial use [68]. This

means that it becomes more difficult and costly to make a reliable model as

not enough data is present to generalize lane detection with just a single,

relatively small dataset. With this in mind, our team opted to create our

own dataset to train the model, containing over 20 hours of driving in

diverse scenarios across multiple European countries. Several of these

scenarios include inner-city driving, full of traffic lights, complex roads and

pedestrians.

3.4.1 Labeling

Developing and testing the model was done using the labeling method

employed by the TuSimple Dataset [67]. This labeling method is as follows:

Construct 48 evenly spaced horizontal lines which span from the bottom of

the image to a predefined height. Mark the lane line locations x position for

any lanes present. Any x position of the current horizontal line that is not

placed on a lane is marked as -2 to differentiate it from actual pixel values.

Follow this procedure for every 20th frame of each image sequence. These

lane markings are stored in a json file format which includes the pixel

heights of horizontal lines.

Figure 3.2: TuSimple labeled image [67].
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Figure 3.3: Manually labeled image in modified TuSimple label format.

In regards to labeling our own data, our team chose to label every 13th

frame while annotating significantly less horizontal lines (14) and x

positions in image space (3 per row anchor). Our target is simple, only

needing to detect the ego-lane (the current lane in which the vehicle is

driving), allowing us to only label 2 lanes. Additionally, to increase lane

annotation speed and lower costs, we built an in-house data annotation

team and provided them custom annotation tools which mimicked the

TuSimple method.

3.4.2 Auto-labeling

While our annotation team was manually labeling frames, we additionally

experimented with an auto-labeling approach. Inspired by Tesla’s strategy

of using the actions of the driver to label what the model should consider

ground truth in a scenario, we used Robust Lane Detection to generate

image labels to train the model with. After experimenting by combining the

prediction with curve fitting and then clustering, our pipeline was able to

rapidly generate labeled images on previously unseen data.
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Figure 3.4: An auto-labeled image with Robust Lane Detection, clustering

and line fitting.

The downside of this method was that results were inconsistent and had to

be manually verified. Fixing auto-labeled annotations with slightly incorrect

points proved to be a non-trivial task, which often resulted in many images

taking longer to correct than simply manually labeling the image or being

outright rejected. Given these issues, auto-labeling was an interesting

experiment that could be improved by using a more accurate model than

Robust Lane Detection. Swapping RLD for a better model would result in

higher quality labels that are generated more reliably, enabling

lighter-weight models to yield similar results. Despite the difficulties of

applying auto labeling in a short timeframe for the present project, the

technique seems promising and worthy of more research effort in the

future.

3.5 Post-Processing

After the model outputs the prediction, we use a Kalman filter, also known

as Linear Quadratic Estimation to smooth lane point predictions. The

Kalman filter is an optimal estimation algorithm invented by Rudolf E.

Kalman in 1960 [69]. This filter is often used for target tracking, as it

provides a statistical method to predict the next position of an object given

previous position data from multiple sources. It is extremely useful when

combining approximate info provided by multiple sensors (such as IMU,

GPS, etc) which inform our model about its position and velocity relative to

the world. Each sensor or model provides some noisy value of where the
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vehicle is located. It works by estimating unknown variables based on

uncertain measurements given by measurement devices. Since we intend to

combine data from sensors and approximations provided by our model for

controlling the vehicle, it is critical to have an accurate idea of where the

vehicle is relative to the road. Applying the filter, gives the vehicle a more

informed idea of its position and velocity by finding where the

approximations provided by each sensor overlap. This helps eliminate noise

from each sensor.

Although we opted to use the Kalman filter alongside our lane

detection model, we found it often made lane departure more difficult to

detect as the filter would heavily influence the model to stay in the lane

provided past data. After the predicted points are filtered, we use a 2nd

degree polynomial curve to smooth lane points and display areas within the

two lanes curves in green. We chose 2nd degree polynomials because higher

order polynomials have overly complex curves which fail to approximate

the lane line near the horizon.
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4. Experiments and Results

4.1 Datasets

Since the model was produced as a pilot for a major OEM, many datasets

are only available for academic research. For this reason, we chose to

compare our model to others using the TuSimple dataset [67], since it is

open to commercial use. TuSimple was released by the autonomous truck

driving company of the same name. This dataset contains 6,408 images of

roads on US highways and was made available during the CVPR2017

conference. These image sets are made of many one-second-long clips of 20

frames each of resolution 1280x720. Overall the dataset mostly contains

image sequences with good or medium weather conditions, during the day,

containing 2 or more lanes in several traffic conditions. Upon release,

TuSimple proposed two challenges: A Lane Detection Challenge and a

Velocity Estimation Challenge. As part of the challenge, they provide labels

for every 20th frame for each sequence, which contain x coordinates for

each lane (up to 5) at 48 different vertical positions. The vertical positions

are marked by horizontal line anchors which are consistent for every image.

Finally, a -2 value is set for positions on the anchors which do not overlap a

lane or positions where no lane marking exists [67].

In an effort to expand the diversity of the TuSimple dataset, the

Robust Lane Detection team provides additional labels for every 13th image

in each sequence. Moreover, they include 1,148 image sequences of rural

roads in China [48].

CULane is another dataset widely used for benchmarking lane

detection models, but unfortunately is only available for education or

non-commercial research [68]. Our team chose to omit testing and

evaluating on this dataset to avoid any commercial conflicts.

Additionally, we recorded 20 hours of continuous driving through

several European countries, including France, Belgium, the Netherlands

and Finland to test and train our model to be fit for European roads. This

private dataset has a wide variety of driving conditions, including inner city

driving with pedestrians and highway driving with different weather and

illumination conditions. Our dataset contains labels of every 13th image,

with labels constructed in a similar manner as TuSimple. Rather than

having 48 horizontal lane anchors, we use 14 to decrease labeling cost. We

use less points to increase model inference speed by only needing to predict

a maximum of 3 lanes x 14 points.
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4.2 Evaluation Criteria

A variety of metrics are used by researchers to evaluate the effectiveness of

machine learning models. Most of these criteria use a combination of True

Positive (TP), True Negative (TN), False Positive (FP) and False Negative

(FN) counts to come up with a single numerical value to determine how

well the model is performing. Among these criteria are Precision, Recall, F1

and Accuracy, with the latter being a value for human readability.

Understanding these four values can be depicted in a Confusion Matrix [70,

71, 72]:

Figure 4.1: A confusion matrix [72].

Precision, also called positive predictive value (equation 23) gives an idea

of determining how reliable a given model can classify something as

positive.

(23)

Relying on precision as a metric allows us to determine whether or not we

can trust the prediction to be accurate. Recall, also known as sensitivity,

requires all positive labels and positive predictions. This is because recall

measures the model’s ability to detect positive examples.

(24)
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A perfect model would produce no false negatives, resulting in a recall of

1.0. In practice it is generally not possible to have both high precision and

recall as they often require tradeoffs between what is considered false

positive or false negative. Often, having too high precision and recall can

inform us that either the model is too complex (i.e. computationally costly)

or overfit to the trained data [71]. A model which has 0 false negatives or

positives is worth scrutinizing. It is important to utilize both precision and

recall in evaluating the effectiveness of our model because having only a

single metric can be deceiving on a case by case basis, meaning they are not

always reliable.

Another metric for evaluating predictive performance is F1-score

(equation 25). It is useful for evaluating the effectiveness of multi-class

classifiers because it helps us find a balance between precision or recall. It

works by combining precision and recall, which are often competing

metrics [73]. Increasing precision can decrease recall and vice versa. As F1

is dependent on precision and recall, it is not perfect in that it does not

account for True Negative (TN) detections, which can be an issue in certain

situations. F1 ranges from 0 to 1, with values closer to 1 being better.

(25)

Other metrics such as the Matthews Correlation Coefficient (MCC) can be

employed when a more thorough evaluation is needed in situations where

there are unbalanced FNs vs FPs [60]. Accuracy, aka Error Rate (equation

26a) is the last commonly used metric for evaluating prediction capabilities

[75].

(26a)

Unlike the previous 3 metrics, accuracy takes into account True Negative

(TN) predictions. Accuracy evaluates the models performance across all

classes and is particularly useful when classes are of equal importance [71].

Having a balanced (i.e. unbiased) dataset is also important for evaluating

the effectiveness of our model. Christopher K. Williams [60] notes that

precision of a classifier depends on the ratio of positive and negative cases

present in the test dataset [74]. As an example, imagine we have a biased

dataset containing 99 pictures of dogs and 1 picture of cats for a dog-cat

binary classification model. If our model classifies all 100 images as dogs, it
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would be said to have an accuracy of 0.99 (99%), Precision of 99 / (99 + 1)

= 0.99 and Recall of 99 / (99 + 0) = 1.0, even when it failed to correctly

label the cat class 100% of the time. A more balanced dataset which

contains a realistic distribution of inputs would result in a more trustworthy

value of precision and recall. Having datasets full of cherry picked data

would lead to misleading metrics on real predictions. This is one reason

why datasets are often shuffled, then split into training, testing and

validation sets. Ultimately, knowing if detecting false positives or false

negatives is more critical for the effectiveness of the model is situation

dependent.

4.2.1 TuSimple Evaluation

Since we rely on TuSimple as the main dataset for evaluation compared

with other models, we choose to use their evaluation formula specified in

the lane detection challenge. For the TuSimple lane detection challenge,

they account Accuracy (equation 26b) as their main metric.

(26b)

Where, is the number of correct points in the last frame of the clip and

is the number of requested points in the last frame of the clip.

Although, they remain vague when it comes to defining what qualifies as a

correct point: “If the difference between the width of ground-truth and

prediction is less than a threshold, the predicted point is a correct one” [67].

TuSimple evaluation criteria includes rate of false positives (27a), false

negatives (27b):

, (27a), (27b)

Where, is the number of wrong predicted lanes, is the number

of all predicted lanes, is the number of missed ground-truth lanes in

the predictions and is the number of all ground-truth lanes.
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This evaluation criteria combines both True Positive and True Negative into

“correct predictions”. Because of this, Precision, Recall and F1-score are not

considered.

When examining the criteria provided by the TuSimple challenge, a

few questions come to mind: Since a lane consists of 48 points, what

constitutes a correctly or incorrectly predicted lane? Is it some percentage

of the total lane considered matching? How far away is the prediction

compared to the ground truth label? Lanes in the image tend to become

smaller the further away they are, meaning a prediction 20 pixels away

from the ground truth label at the bottom of the image is much closer than

20 pixels away at the horizon. We will need to define these ourselves and

note that, although evaluation criteria is provided, it is not necessarily

rigorous enough to distinguish a good model.

To begin addressing the questions above, we define a confusion

matrix as follows: True Positive (TP) defined as when the prediction falls

within the thresholded distance away from the ground truth point. True

Negative (TN) when both the model and ground truth label are marked as

-2, meaning the lane is not present in the image. False Positive (FP) defined

as when the model predicts a pixel value, but the label is -2. False Negative

(FN) when the model predicts a -2 value, but the label is some real pixel

value. In our case, having a bias towards the model's performance of false

positive detections is more important because our lane detection model is

intended to guide lane correction. Predicting a lane is not present when it is,

is less dangerous than predicting a lane is present when it is not because the

vehicle would try to steer back into a lane it knows exists or stop the vehicle.

If the model predicted a lane is present when reality there is nothing there,

this could be dangerous because the vehicle could drive off road.

For inspiration in defining the threshold, we take a look at UFLD’s

method. They provide a clever way of creating a threshold that depends on

the angle of the lane and a pixel distance. Once the model has predicted the

x coordinates for each lane, a simple linear regression model uses

least-squares to fit a straight line to all points on the lane. Next, they take

the main coefficient (i.e. the slope of the line) and find the angle by taking

the inverse tangent of the slope. Afterwards they divide the pixel threshold

(in this case 20 pixels) by the cosine of the angle. Their reasoning for

choosing 20 pixels is not specified, but can be viewed as:

(28)
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Where, = the coefficient of x in a slope-intercept form line .

This results in the higher the angle of the lane, the less distance is allowed

to fit within the threshold. This is because shallow angles correspond to

lanes further from the camera and therefore containing less pixels overall in

the image, meaning the further lanes have less margin for error. Note, this

is still not perfect, because points closer to the horizon are still treated the

same as points closer to the bottom of the image.

UFLD evaluates their model by using the maximum accuracy over all

predicted lanes. This method should be scrutinized because it does not

inform the audience of the accuracy of each lane. A better approach would

be to provide the list of accuracies for each lane and use a normal

distribution to weight the accuracies, with lanes closer to the center of the

image receiving higher weighting. This would better inform of cases where

some lanes are detected very clearly, but other lanes are not detected.

UFLD’s current method would not be capable of distinguishing the

effectiveness of a model which only predicts 2 lanes from one that predicts 5

lanes. Ignoring the model’s ability to predict multiple lanes makes for an

ineffective evaluation criterion. Ignoring the model’s performance on all

other lanes fails to communicate how the model will perform when

switching lanes.

The basis of calculating the evaluation metrics (precision, recall, etc)

relies on what predictions we consider to be True Positive. In the case of

TuSimple, the confusion matrix is defined by the accuracy of the model. As

previously noted, using only one threshold value would result in higher

accuracy metrics which do not actually reflect an accurate model. One

approach may be to tie the threshold size to the inverse distance from the

camera combined with UFLD’s method of penalizing lanes further in the x

direction. Effectively this is accounting for the perspective effect with the

threshold. Another approach could be to average the results of many

different pixel distances. Since we lack a labeled depth estimation, we rely

on both TuSimple’s original metric and UFLD’s modified threshold.
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Figure 4.2: Accuracy compared to threshold size with number of iterations.

The x direction shows different accuracy thresholds in pixels, while the

colored bar on the right shows the accuracy of the model with a given

threshold.

In figure 4.2 the accuracy increases as more pixel distance is allowed in the

threshold. Accuracy at 0 pixel distance only works for evaluating the

prediction of the NaN or -2 values (i.e. true or false negative detections),

since there is no distance in between missed.

4.3 Implementation Details

4.3.1 Input Image Size

Our cameras provide an image size of 1280x720 while our model expects an

image resolution of 640x360. After features are detected with the ResNet

backbone, the input image is scaled down to 256x256 on the GPU to speed

up computation.
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4.3.2 Hardware

Training the model was performed on an NVIDIA GeForce RTX 3080

Laptop GPU. CPU hardware used includes an 11th Gen Intel(R) Core(™)

i7-11850H @ 2.50GHz with 64 GBs of RAM. The model was then deployed

on an Nvidia Jetson AGX Xavier which has a 512-core Volta GPU with 64

Tensor cores and an 8-core ARM v8.2 64-bit CPU, 8MB L2 + 4MB L3 and

32B 256-Bit LPDDR4x memory [60].

4.3.3 Hyperparameters

The model was trained on a single GPU at image resolution of 640x360 and

then 256x256 after feature detection. Batch size was 192, performed using 6

workers. Learning rate, selection loss weight and horizon loss weight were

all set to 0.001. Lane order loss weight was set to 1. Maximum steps allowed

was 20,000 with our best results achieved just after step 10000 or about

119 Epochs. A custom script saved the maximum accuracy value and step

count and would terminate if no improvements were made while training

the model on the cloud to save money. Figure 4.2 demonstrates that

accuracy lowers slightly and plateaus from 15000 to 50000 steps.

4.3.4 Backbones

Our model was built upon PyTorch’s implementation of the ResNet34

architecture, a commonly used deep residual neural network (RNN) which

combines a series of convolutional layers for feature extraction in images

[40]. ResNet34 [41] takes some input image and outputs a 1000 length

feature vector describing the image. See the architecture diagram in section

3.2 for how we utilize this feature vector further in our network. We settled

on ResNet34 as a backbone after trying other length ResNets (i.e. ResNet18,

ResNet50, etc) as we found ResNet34 to result in a balance between

inference speed and model accuracy when deployed on our embedded

hardware.

4.3.5 Data Augmentation

Data augmentation is a method of enhancing the size of a dataset by

applying techniques such as cropping an image or changing illumination

conditions (brightness, contrast, noise, etc) to make a model both more

robust to variations and better at generalizing the task [76]. Networks are

only as good as the data fed in, meaning networks which are fed more data
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generally yield better results. The amount of data needed tends to relate to

the complexity of the problem and therefore the complexity of the model.

There is not a way to know how much data is needed exactly for the task,

but heuristics and approximations can help. A rule of thumb is to use 10

times more data samples than parameters [77]. Our team attempted many

different types of data augmentation including spatial augmentation and

augmenting color, but unfortunately found these augmentations to result in

longer training times without much better results.

4.4 Results

4.4.1 Comparison with the State of the Art

In this section we cover the results using the TuSimple dataset comparing

our model against 4 others including LaneNet, Robust Lane Detection,

Ultra-Fast Lane Detection tested on an NVIDIA GeForce RTX 3080 Laptop

GPU. All models were trained from scratch using the TuSimple training set.

Training parameters were taken from the UFLD research paper which set

batch size to 32, learning rate to 4e-4 with a cosine decay learning strategy

with Adam optimizer and total number of epochs to 100. FPS was

calculated by taking the average over 100 frames 10 times, then averaging

the results. Frames were taken sequentially from the TuSimple testset. GPU

startup time often leads to the first set of 100 frames having a significantly

lower average FPS, which slightly pulls down the mean. Median FPS on

inference is typically slightly higher. Randomly pulling frames from the

dataset leads to slightly lower inference times and was avoided because it

does not replicate real world scenarios, therefore all frames were loaded

sequentially.

Table 1: Comparison of our method to several others on TuSimple Dataset.

Method Accuracy Runtime (fps) Runtime (s)

LaneNet 96.40% 15 0.0666

RLD: unet lstm 97.91% 56 0.0178

RLD: unet 96.53% 57 0.0175

UFLD 95.82% 286 0.0035

Ours (ResNet 18) 93.10% 510 0.0019

Ours (ResNet 34) 96.94% 343 0.0029
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We provide inference speed of our model deployed on our target embedded

hardware: Nvidia Jetson AGX Xavier. As shown, even with pre and post

processing, our model still runs above real time on our target hardware. See

table 2 below:

Table 2: Vahidnet performance on Nvidia Jetson AGX Xavier.

Operation Median FPS

Lane detection inference 48.37

LD inference + pre and

post-processing

36.42

4.4.2 Lane Detection Prediction Results

Figure 4.3 (a-f): We demonstrate the results of our model with

post-processing applied.

4.4.3 Performance using Multiple Networks

Table 3: Comparison of model performance on Nvidia Jetson AGX Xavier

Operation Media FPS Processor Unit

LD inference 47.23 GPU

LD inference + pre and

post-processing

35.13 GPU + CPU
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Other NN 33.67 CPU

Even when both networks are run simultaneously, we are able to achieve

above real time inference. Additionally we test inference when running

alongside another neural network. The other neural network is proprietary,

but produces similar FPS when tested alone.
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5. Conclusion

5.1 Conclusion

This research was performed to examine the effectiveness of lane detection

methods when placed on the Nvidia Jetson AGX Xavier SOC. Several lane

detection methods focus solely on detection accuracy at the expense of

speed, leading to models which are too slow to be useful in the real world.

Significant computing power and therefore more expensive and larger

equipment is required which requires major modification to the vehicle,

prohibiting affordable commercial applications of autonomous driving.

We present a real time method which provides competitive accuracy

and runs on an SOC capable of fitting in a vehicle’s dashboard. We iterate

on the row-wise classification method pioneered by UFLD [49] which

enables stable and accurate lane detection at high speeds using individual

images. We further modify this method to run at real time on the Nvidia

Jetson AGX Xavier SOC by reducing the model’s complexity and output

parameters. Additionally, the model meets level 2 / 2++ ADAS operational

design domain requirements.

Accurately and truthfully evaluating a lane detection model is not a

trivial task. Without external information about the vehicle, evaluating the

model often relies on methods which do not model the real world, such as

choosing a pixel threshold for predictions to fall within. Other lane

detection methods often rely on subjective heuristics for evaluating

performance which do not accurately reflect how the model might perform

in reality. By breaking down our model into 3 separate tasks of lane

detection and order, lane selection and horizon detection, we are able to

eliminate false predictions and consistently define the ego lane in which the

vehicle is driving. This method also allows the ability for the model to stably

switch lanes with consistent predictions. One limitation is that the model is

intended to be used for the purpose of informing the driver when the

vehicle is departing the lane while driving on the highway. The single

camera method does not have a full understanding of the surrounding

vehicle and will only be used as a level 2 ADAS safety feature. Fully

autonomous control will require a more robust perception stack with more

cameras to increase the vehicle's awareness.

Although the model has been evaluated visually and

methodologically, we have yet to see how it performs when used to control a

vehicle. Understanding if the model will perform safely when combined

with a control system is difficult to determine without additional validation.

Realistically evaluating the effectiveness of the model will require real world
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tests which are beyond the scope of this research. Nonetheless, our model

combined with the Kalman filter has demonstrated reliable predictions

which are stable and accurate.

The method mainly relies on the ResNet34 backbone for feature

detection and may be improved using more powerful architectures.

Furthermore, the accuracy of the model could benefit from training on

more data in more situations than highway driving or with a more rigorous

use of data augmentation methods. Other similar methods such as

SwiftLane [55] use false positive suppression techniques to increase

accuracy and speed. Finally, we seek to continue downscaling the model

such that it can run at real time on less powerful SOCs. We will continue to

update our model with recent advances to ensure a safe and reliable lane

detection model for semi-autonomous driving.

5.2 Discussion

In tackling this project the two biggest problems encountered had little to

do with the actual science involved, but rather the accessibility to the ML

models provided by other researchers.

With our current code hosting platforms such as GitHub, it has been

easier than ever to access the research results of others. Being able to run

and verify the results of a model developed by a team across the world is a

modern wonder which has been a great triumph for research. Although, a

few barriers stand in the way of this free and open accessibility to research.

In trying to evaluate Robust Lane Detection, only some of the pre-trained

models provided by the team were accessible through Google drive. The

efforts of the Robust Lane Detection team were excellent in that they

provided free access to an extended version of the TuSimple dataset. Access

to Google is (at the time of writing) restricted in China and thus the team

collaborated internationally in order to provide these models. I think it is

very important for us to be aware of the platforms in which we publish our

research, noting that it may very well be inaccessible to our fellow scientists

elsewhere in the world.

The second issue involves dependencies in deep learning. With the

current infrastructure, we have a pipeline of PyTorch, OpenCV, NumPy,

Docker and Nvidia’s CUDA which enables a development to edge pipeline

which enables quick iteration when creating real world applications with

deep learning. It comes at the cost of managing many dependencies which

often do not work well together. There were many moments in this research

where some combination of dependencies had become obsolete and no

longer available on the platforms which host previous versions of the
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dependencies listed above. Effectively this pushes research which relies on

these old dependencies out of reach, making them quickly obsolete.

In the case of testing LaneNet and even my team's current model, the

difference between software versions made these models un-deployable

without first virtualizing an environment. This dependency problem greatly

increases the time and complexity of running a model that is from just a few

years before. Attempting to test SCNN, using up to date hardware to test the

other models no longer supported the outdated versions of dependencies

required to run their model, which resulted in the model being dropped

from the experiments. Thinking about this pipeline brings the topic of how

to maintain deep learning models and prevent them from becoming

obsolete within a matter of years.
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