Aalto-yliopisto
Aalto-universitetet

B Aalto University

Master’s Programme in ICT Innovation: Visual Computing and Communication

Real-Time Lane Detection on Embedded
Systems for Control of Semi-Autonomous
Vehicles

Applying Deep Learning on Embedded Systems

Jacob Young

Master’s Thesis
2022

Copyright ©2022 Jacob Young

A

Aalto-yliopisto
Aalto-universitetet
H Aalto University

Author Jacob R. Young

Title of thesis Real-Time Lane Detection on Embedded Systems for
Control of Semi-Autonomous Vehicles

Programme ICT Innovation

Major Visual Computing and Communication

Thesis supervisor Dr. Juho Kannala

Thesis advisor(s) Dr. Vahid Abrishami & Dr. Timo Tossavainen

Collaborative partner Basemark Oy

Date 21.07.2022 Number of pages 63 + 9 Language English

Abstract

Car accidents are the leading cause of death and injuries in most countries.
advanced driving assistance systems and intelligent autonomous vehicles
aim to improve road safety, traffic issues, and the comfort of passengers.
Lane detection is a pivotal element in advanced driving assistance systems
as lane understanding is essential in maneuvering the car safely on roads.
Detecting lanes in real-world scenarios is challenging due to adverse
weather, lighting conditions, and occlusions. However, as the
computational budget available for lane detection in the systems above is
limited, a lightweight, fast and accurate lane detection system is crucial.

This thesis proposes a simple, lightweight, end-to-end deep
learning-based lane detection framework following the row-wise
classification approach. The inference speed is significantly increased by
reducing the computational complexity and using a light backbone. In
contrast to other systems, the proposed method can handle lane-changing
scenarios by offering three lane candidates within the model. Additionally,
we introduced a second-order polynomial fitting method and Kalman filter
for tracking lane points as post-processing steps to improve the overall
accuracy and stability of the system.

The proposed lane detection method can provide over 500 frames per
second on an Nvidia GTX 3080 notebook with our lightweight model and a
median 48 frames per second on an Nvidia Jetson AGX Xavier while
producing comparable accuracy to most of the state-of-the-art approaches.

Keywords: Lane Detection, Deep Learning, Embedded Systems, ADAS,
Autonomous Driving, Machine Learning

Contents

Preface
Symbols and abbreviations
1. Introduction
1.1 Motivation
1.2 ADAS and Automated Driving Systems
1.3 Classic Image Processing versus Deep Learning
2 Literature review
2.1 Image Processing Methods
2.1.1 Edge Detection and Hough Transform
2.1.2 Color-Based Methods
2.1.3 Inverse Perspective Mapping
2.2 Neural Networks
2.2.1 Basics of Neural Networks
2.2.2 LaneNet
2.2.3 Robust Lane Detection
2.2.4 Ultra Fast Lane Detection
2.2.5 Summary of the Start of the Art
2.3 Implementing Lane Detection Methods on Embedded Systems
3 Methodology
3.1 Background
3.2 Model Architecture
3.3 Loss Functions
3.4 Data Labeling
3.4.1 Labeling
3.4.2 Auto-labeling
3.5 Post-Processing
4 Experiments and Results
4.1 Datasets
4.2 Evaluation Criteria
4.2.1 TuSimple Evaluation

4.3 Implementation Details

O 0 w3 O

14
14
14
18
19
21
21
29
32
34
36
36
38
38
40
41
45
46
47
48
50
50
51
53
56

4.3.1 Input Image Size
4.3.2 Hardware
4.3.3 Hyperparameters
4.3.4 Backbones
4.3.5 Data Augmentation
4.4 Results
4.4.1 Comparison with the State of the Art
4.4.2 Lane Detection Prediction Results
4.4.3 Performance using Multiple Networks
5 Conclusion
5.1 Conclusion
5.2 Discussion

Bibliography

56
57
57
57
57
58
58
59

59
61

61
62
65

Preface

I want to thank Dr. Juho Kannala and my advisors at Basemark, Dr. Vahid
Abrishami & Dr. Timo Tossavainen for their guidance and to thank my
partner Sarah Van Sicklen for listening to me talk about the same subject
for months on end. I would also like to thank my Father for his support and
push to pursue a master’s degree. Finally to the rest of my family (The Blys,
The Morrisons & The Youngs).

Otaniemi, 21 July 2022
Jacob Young

Symbols and abbreviations

Symbols
Hu,v] A 2D filter, kernel or image
M The mean or average of some values
o The standard deviation of the mean of a normal distribution
0 An angle theta in radians
Operators
exp(X) The exponential function e”
* .
Convolution operator
v/ The gradient of f
> Sum over index 1
of Partial derivative of f with respect to variable x
ox
||z|| The magnitude of some variable x

Abbreviations

ADAS
FPS
SOC
ML

DL

NN
CNN
LSTM
ResNet
IPM

Advanced Driving Assistance System
Frames-per-Second
System-On-a-Chip

Machine Learning

Deep Learning

Neural Network

Convolutional Neural Network

Long short term memory

Residual Network

Inverse Perspective Mapping

https://www.codecogs.com/eqnedit.php?latex=H%5C%5Bu%2Cv%5C%5D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta#0
https://www.codecogs.com/eqnedit.php?latex=e%5E%7Bx%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cast#0
https://www.codecogs.com/eqnedit.php?latex=%5Cnabla%20f#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D#0
https://www.codecogs.com/eqnedit.php?latex=%7C%7Cx%7C%7C#0

1. Introduction

1.1 Motivation

Motor vehicle based transportation is critical for individual participation in
the modern world, yet over one million people die each year in motor
vehicle related accidents. Vehicle related injuries are the leading cause of
death for children and young adults (5-29 years old) [1]. According to the
National Highway Transportation Safety Administration (NHTSA), human
error accounts for an overwhelming majority of all auto related accidents
[2]. For these reasons, research institutions and private companies have
sought to make driving safer by eliminating human error.

In previous decades, reducing the impact of crashes with physically
based safety features has been the main method of making driving safer.
This approach has saved countless lives, but is reaching its limit and does
not account for human error. Another approach is to give vehicles the
ability to perceive their environment, potentially eliminating human error.
Advanced Driving Assistance Systems (ADAS) features such as automatic
braking, blind spot detection and backup cameras have the potential to
reduce crashes by up to 40% [3, 4]. The European Road Safety Observatory
(ERSO) defines ADAS as “vehicle-based intelligent safety systems which
could improve road safety in terms of crash avoidance, crash severity
mitigation and protection and post-crash phases” [5]. We seek to develop a
lane detection model that performs accurately and fast enough to be used as
the basis for control systems on a System-On-a-Chip (SOC).

Lane detection is one of the most fundamental and safety-critical
tasks in autonomous driving. Its application ranges from ADAS features
such as lane-keeping to higher-level autonomy tasks such as fusion with
high-definition maps and trajectory planning. Detecting lanes in real-world
scenarios is challenging due to adverse weather, lighting conditions, and
occlusions. Moreover, lane detection algorithms should be computationally
efficient and runnable on embedded systems limited to small memory and
processor resources. Light image processing-based methods are considered
a solution for this limit. However, these methods can not overcome the
challenges above. New approaches based on Deep Neural Networks (DNNSs)
can overcome many of these challenges but demand higher computational
power, memory, and battery power requirements, making them useless for
this application. Although many light models have been introduced for the
lane detection task recently, the problem is there for SOCs with minimal
resources.

In this thesis, we proposed a light DNN model for the lane detection
task, which is runnable on SOCs with limited resources. The proposed
model comprises a light backbone for feature extraction and three heads,
one for predicting coordinates, another for classifying points as under or
above the horizon, and one for proposing lane candidates. For performance
sake, this method uses some fixed row anchors to predict the position of
lane points. The detection accuracy is further improved by fitting a
second-order polynomial to the line points and tracking them using a
Kalman filter as post-processing. The model was tested on two SOCs:
Nvidia Jetson AGX Xavier and Jetson Nano which provided 100 and 46
FPS, respectively. In addition to the performance, the proposed method can
correctly predict lane position when changing lanes and also detect the
curvatures.

1.2 ADAS and Automated Driving Systems

Manufacturers have slowly but surely been automating some of the
previously most dangerous parts of driving. From Lane Departure
Warnings (LDW) first invented in 1992 by Mitsubishi, to driver assistance
coming about from Toyota in 2004 [6]. A big leap towards defining and
standardizing ADAS and Automated Driving Systems (ADS) came in 2014,
when the Society of Automotive Engineers (SAE) released a document
known as SAE J3016 Taxonomy and Definitions for Terms Related to
Driving Automation Systems for On-Road Motor Vehicles. This document
sets a guideline for ADS which performs sustained Dynamic Driving Tasks
(DDT). The SAE defines 6 degrees of automation in motor vehicles, which
range from no driving automation (level 0) to full driving automation (level
5) [7]. The levels are detailed as below:

Level o: No Driving Automation - The driver performs all DDT (i.e. full
manual driving) while the ADS provides warnings or momentary
emergency intervention.

Level 1: Driver Assistance - Driver performs all DDT not performed by the
ADS and supervises features performed by it. The ADS is capable of
performing either longitudinal or lateral vehicle motion control.

Level 2: Partial Driving Automation - Driver performs all DDT not
performed by the ADS and supervises features performed by it. The ADS is
capable of performing both longitudinal and lateral vehicle motion control.

Level 3: Conditional Driving Automation - The ADS performs all DDT
within its Operational Design Domain (ODD) while engaged and will
disengage after requesting the driver to intervene when it detects a situation
outside of its ODD or when the driver requests to drive.

Level 4: High Driving Automation - The driver does not need to supervise
the ADS while it is engaged. The ADS will determine if the condition is safe
enough for the user to drive upon request.

Level 5: Full Driving Automation - The vehicle can drive everywhere (i.e.
on roadways public and private) in all conditions completely autonomously.

Machine Driver

Driver only Longitudal Traffic Takeover if No takeover
or supervison required required
lateral steering

Longitudal Longitudal No request
or and Request for takeover
lateral steering lateral steering for takeover required No driver

Driver Assisted Partial Conditional High Full
Automation § Automation Automation Automation

Figure 1.1: The 6 SAE levels of automation.

In SAE levels o through 2, the human must constantly supervise the vehicle,
even when semi-autonomous features are operating. Conversely, in levels 3
through 5, the human passenger is not considered driving, except in level 3
when an autonomous feature requests the human must drive. In higher
levels of automation, the user's role may switch between driver and
passenger. In all cases, the person who may be designated as the driver is
responsible for checking the vehicle is in working condition.

Features we are interested in for this thesis are LDW, considered
SAE level 0, and Lane Keeping Assistance (LKA), which is SAE level 1 or 2
depending on if it is performed on a sustained basis [7]. In the April 2021
revision J3016_202104, LKA is excluded from the scope of the DDT
because it only provides momentary intervention [8]. Although LKA is
difficult to fit within one SAE driving level, we seek to develop a model
capable of SAE level 2++ autonomy such that our lane detection algorithm

10

can serve as a foundation to provide other more advanced features in the
future.

To create an autonomous vehicle, it is first necessary to measure the
environment through various sensors, such as camera, radar, IMU and
GPS. Combining output from multiple sensors into a single system is called
sensor fusion. Using the information from multiple sensors enables the
development of perception algorithms such as lane and obstacle detection
and other methods of perceiving the environment. Using these algorithms,
it is possible to perform trajectory planning and path navigation in the
control system. Vehicles with the capability of environmental perception
can keep passengers safe by minimizing the potential for human error. With
these foundational algorithms, the autonomous vehicle can perform lane
keeping, obstacle avoidance and other safety features.

1.3 Classic Image Processing versus Deep Learning

Methods for lane detection can be classified into two categories: image
processing-based and neural network-based methods. The former category
uses image processing techniques like edge detection and line detection
along with color space information to detect the lanes, while the latter uses
a model to learn lanes based on some internal extracted features. Currently,
image processing-based methods are used more in the industry since these
methods are computationally less expensive, but deep learning is quickly
becoming widely adopted as advances in network efficiency are becoming
better understood. The literature review will overview different lane
detection methods and dive deeper into them in sections 2.1 and 2.2.

Before going further into classic lane detection methods and their
evolution into using deep learning, we will briefly cover their differences
(figure 1.2).

Traditional programming

Data _
Computation ——— > PResults
Program —

Machine Learning Approach
Data R g)
Computation — > Program
Results —

Figure 1.2: Traditional programming compared to machine learning [9].

11

Traditional programming requires the engineer to write a program to
formulate rules with which data will be processed to produce some desired
outcome. This approach is advantageous when we know exactly what rules
a program should follow, which is not always the case in real life. However,
it is almost impossible to develop rules for solving complex problems (e.g.
classification) and that is exactly where machine learning comes to learn
rules from existing examples.

In contrast, the machine learning approach automatically formulates
the rules and generates a program by observing some example inputs and
their expected outputs via a process called training. Typically the entire
dataset is split up into three parts: a training, test and validation set. The
purpose of this is to have enough data for the network to learn an
approximation of the entire dataset while having unseen data which is
useful for evaluating the effectiveness of the model.

During training, the machine learning model learns a
linear/non-linear mathematical function which maps inputs to proper
outputs. A loss function measures the quality of the model by quantifying
the difference between the expected and predicted outcomes. Based on this
difference, the model updates its parameters.

Deep Learning is a specialized subset of machine learning, where the
statistical model takes the form of a deep neural network (DNN). DNNs
take the form of a graph structure, typically composed of layers of
computational units called neurons (figure 2.6). A Neuron is a combination
of weights and biases input into a non-linear activation function (figure
2.5).

During training, the network's weights are tuned by using
backpropagation and gradient descent to map inputs to an output
prediction. Backpropagation is an algorithm which automatically computes
derivatives for the entire network from the output layer to the input layer
using the chain rule. Next, gradient descent uses the derivatives (i.e.
gradient) output by backpropagation to adjust the weights in a way which
moves the loss function towards a local minimum. These two algorithms
occur iteratively for all data in the training set until the network is trained.
Each pass through all data in the training set is called an epoch. Once
trained, the weights of the network are frozen then used to make
predictions in a process called inference.

The goal of training is to have the network learn general features
present in the dataset to correctly predict features in unseen data. The
downside of this process is that the model is only as good as the input data
and its loss function. Feeding a model random data will not result in a
useful program. It often takes many thousands to millions of well labeled

12

data points for the model to learn complex tasks. This process can be very
laborious and expensive. Loss functions must be designed to minimize the
error between the data and the label gradually. These cannot just be any
function and are not “one size fits all”. Which loss function to choose
depends on the situation and has a huge impact on how the model learns.
They can be biased with domain-specific knowledge to aid the model in
learning faster.

In image processing and computer vision, features are often detected
through a process called convolution [10]. It works by crafting some kernel
or filter then applying it to the image to detect some feature. Classic
methods require hand-crafting of filters for detecting different features.
These filters are extremely difficult to design and understand as it often
requires multiple filters in conjunction to actually create a useful process
for detecting things in an image.

In deep learning for computer vision, we often use a type of neural
network biased towards image data, called a Convolutional Neural Network
(CNN). This type of network was originally called a neocognitron, proposed
by K. Fukushima in 1980 [11]. CNNs use image data to learn the filter
required for detection, rather than hand crafting it. This gives networks the
ability to learn a sequence of filters which are capable of detecting a
hierarchy of features. For instance, a hand-crafted filter might be able to
differentiate what makes up a human face, but a CNN can learn what
exactly makes up a specific individual's face. The main reason deep learning
has become so popular in computer vision and lane detection is that the
series of filters the machine learns to generalize lane detection across many
scenarios would be extremely difficult, if not impossible to craft by hand.
Now that the two paradigms have been overviewed, we begin by diving
deeper into classic methods and see how they eventually evolved into neural
networks to more capably complete the same tasks.

13

2. Literature Review

2.1 Image Processing Based Methods
2.1.1 Edge Detection and Hough Transform

Before the advent of big data and deep learning for solving problems, lane
detection was constructed as a line detection problem. Because of this,
traditional methods of edge detection and line fitting, most notably the
Hough transform [12] and Canny edge detection [13] were employed to
detect lanes in a few specific cases [14, 15]. These methods were effective for
detecting straight lines, which is useful in ideal cases such as driving on the
highway with low traffic during a sunny day. Many improved iterations of
the Hough transform were attempted including [16, 17, 18].

Each of these methods utilized a combination of preprocessing steps
to obtain a cleaner detection with Hough transformation or they would
modify parameters of Hough transform directly. Nonetheless, the
underlying method remained the same. Fundamentally, the Hough
transform is a voting technique that can be used to determine which line
features present in the image are most important. The main idea is that, for
a given edge in an image, it “votes” for other compatible lines. Once voting
is finished, search for lines with the highest number of votes.

The Hough transform expects an edge detection image as input to
identify potential lines. The Canny edge detection algorithm is a well known
method which uses hand-crafted filters to detect steep changes in intensity.
It works by filtering an image using two filters (i.e. kernels) which compute
the derivative of the image with respect to the X and Y directions then
applying additional post-processing steps detailed later in this section.

These operations rely on an image processing technique called
spatial filtering, that extracts meaning from an image by analyzing spatial
relationships between pixels. Linear spatial filtering finds features in
images using convolution, or more specifically 2D discrete convolution.
Convolution is a linear translation invariant function from a finite sized
filter applied to an image. This process uses a sliding window to compute a
weighted sum of the current pixel and its neighbors based upon the filter
when repeated for every pixel. The result of this is a filtered image or
feature map which retains semantic information about the image.
Mathematically, 2D discrete convolution can be defined as:

14

Gli,j]=H* F = Z Z Hlu,v|F[i —u,j — v]

u=—k v=—"k (1)

Where, G is the resulting filtered image, H is the filter, F'is the image and *
denotes the convolution operation. In practice convolution is implemented
as an NxN matrix H, which represents a window that moves across each
horizontal row of the image and replaces the value of each pixel with a
weighted combination of surrounding pixels, resulting in a filtered image.
Given some image F(x,y) in figure 2.1, a filter of size 3x3 is used, which
accounts for a region of 9 pixels.

90 90 90 90 oo [I6H

151G I8 <o 8 o0 90 9o G IEN

8l 90 90 90 90 90 N IGN

Figure 2.1: Convolution visualized [19].

(a) (b)

Figure 2.2: Box filter on an image (a), Gaussian filter on an image (b).

15

https://www.codecogs.com/eqnedit.php?latex=G%5Bi%2Cj%5D%20%3D%20H%20*%20F%20%3D%20%5Csum_%7Bu%3D-k%7D%5E%7Bk%7D%20%5Csum_%7Bv%3D-k%7D%5E%7Bk%7D%20H%5Bu%2Cv%5DF%5Bi%20-%20u%2C%20j%20-%20v%5D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cast#0

A simple example of filtering an image would be setting the center pixel of
the filter to the average of surrounding pixels. Repeating this process for
each pixel results in a blurred image with harsh artifacts (see figure 2.2a).
There are better methods for blurring images, most notably using the
Gaussian function (equation 2) which performs a circularly symmetric blur
in figure 2.2b.

1 u2 'U2
h(u,v) e

" 2102 (2)

Where ¢ is the standard deviation of the mean of a normal distribution.

Now that we have covered basic filtering, we will see how different
functions can produce dramatically different results. The resulting filtered
image is often called a Feature Map. We will see why this is the case later,
as we use filtering to detect features in the image. Following through the
Hough transform, images are pre-processed using Canny edge detection.
Edges in images can be found by detecting steep changes in intensity
throughout the image. Change in this intensity can be found using the
image derivative. The Gaussian blurring effect detailed above is essential to
the process, as Canny edge detection first applies this filter to smooth out
noise in the image making it easier to detect steep changes in intensity. If
smoothing is not performed, the noise present in the image will be
amplified when taking the derivative, making it difficult to distinguish
edges. Next the derivatives in the X and Y directions are calculated using
another filter, combining both directional derivatives is referred to as the
gradient. The derivative theorem of convolution states that it is possible to
apply this filter directly to the previous Gaussian filter first, then filter the
original image. The gradient is defined as:

of of

V el A
/ [(% 8y] (3)

We produce the gradient using two filters (one for each derivative
direction). This is usually computed with two Sobel filters, defined in
equations 4a and 4b:

16

https://www.codecogs.com/eqnedit.php?latex=h(u%2Cv)%20%3D%20%5Cfrac%7B1%7D%7B2%5Cpi%5Csigma%5E2%7De%5E%7B-%5Cfrac%7Bu%5E2%2Bv%5E2%7D%7B%5Csigma%5E2%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cnabla%20f%20%3D%20%5C%5B%20%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D%2C%20%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%20%5C%5D#0

1 -1 0 1
hy(u,v) = 3 -2 0 2
_—1 0 1 (42)
] 1 2 1
hy(u,v) == 0 0 0
8 |1 —2 —1
| (4b)

We apply these filters to the image separately, then take the magnitude of
the two image derivatives. The gradient magnitude is defined as:

0 0
1971l = [G+ (52
(5)

Afterwards, threshold the result using non-maximum suppression. This
thins out the lines present in the gradient magnitude image. Non-maximum
suppression works by filtering out neighboring pixels which do not exceed
some threshold. In practice the gradient orientation is used to detect the
peak intensity along an edge, this is defined as:

of of

6 =tan ' (==/=")
ox' Oy (6)
. Image Gray Canny Image
100
200 1
300 |
0 200 400 600 0 200 400 600

Figure 2.3: A Canny edge image.

Convolving an image with a different filter can give dramatically different
feature maps. These maps are useful for detecting different things in the

17

https://www.codecogs.com/eqnedit.php?latex=h_x(u%2Cv)%20%3D%20%5Cfrac%7B1%7D%7B8%7D%20*%20%5Cbegin%7Bbmatrix%7D%20-1%20%26%200%20%26%201%20%5C%5C%5C%5C%20-2%20%26%200%20%26%202%20%5C%5C%5C%5C%20-1%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D#0
https://www.codecogs.com/eqnedit.php?latex=h_y(u%2Cv)%20%3D%20%5Cfrac%7B1%7D%7B8%7D%20*%20%5Cbegin%7Bbmatrix%7D%201%20%26%202%20%26%201%20%5C%5C%5C%5C%200%20%26%200%20%26%200%20%5C%5C%5C%5C%20-1%20%26%20-2%20%26%20-1%20%5Cend%7Bbmatrix%7D#0
https://www.codecogs.com/eqnedit.php?latex=%7C%7C%5Cnabla%20f%7C%7C%20%3D%20%5Csqrt%7B%20%5C(%20%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D%20%5C)%5E%7B2%7D%20%2B%20%5C(%20%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%20%5C)%5E%7B2%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta%20%3D%20%5Ctan%5E%7B-1%7D%5C(%20%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D%5Cslash%20%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%20%5C)#0

image. Now that filtering has been covered, we return back to the first step
of the Hough transform: Voting.

The key concept to perform voting is Hough Space. Lines in the
image are transformed into points in Hough Space and vice versa. By
dividing the image in Hough Space into bins, each line in that bin casts a
vote. Counting up the votes of bins in Hough Space corresponds to
candidate lines in the image.

Some difficulties encountered in using the Hough transform to
detect lines in an image, is that there are many parameters to optimize,
depending on factors such as noise. Relying on Canny edge detection means
that Hough Transform images will have widely varying results depending
on lighting conditions. This means that even with many modifications
which yield better results, the narrow number of situations where these are
useful, limits the number of scenarios in which this method of lane
detection can be used. Due to this limitation, Hough transform based lane
detection is restricted to daytime highway driving. Using it for vehicle
control may not be safe in suboptimal illumination. Ultimately, the
pervasiveness of complex lighting conditions and the inability to easily
detect curves led to researchers developing other techniques.

Use of black and white color (i.e. image intensity) information has
proven to be very useful in methods such as Canny edge detection and the
Hough Transform. J. Gonzalez and U. Ozguner [20] built upon the idea of
using intensity information by effectively leveraging the intensity histogram
of the image. A histogram shows the frequency of light intensities present in
the image. They couple this information with the use of a classic machine
learning technique called a Decision Tree to detect and analyze lane
markers. Their system creates structures that define lane boundaries in real
time, resulting in images that can be used for preprocessing steps in lane
and object detection [20]. This method resembles a rudimentary version of
deep learning techniques used today.

2.1.2 Color-Based Methods:

The previous methods rely solely on image intensity, which overlooks
integrating color information in the detection process. Using color to detect
lanes begins with the simple premise that roads and lane lines are usually
marked or have some consistent range of color (ex: lane lines are usually
white or yellow, roads are very dark). Humans rely on color information to
distinguish types of lane boundaries and therefore having programs capable
of understanding this information should be incorporated into their
function. Aside from filter based approaches, the rise of statistical methods

18

in lane detection provided solutions previously out of reach. Through this
research we will show how the combination of filter and statistical methods
naturally leads to using deep learning.

K. Chiu and S. Lin [21] propose a system which uses statistics to
extract color thresholds based upon a region of interest in colored images.
Their method uses this threshold to distinguish potential lane boundaries
from the road. They present a fast and efficient way of estimating the
geometric structure of the lane boundary that is robust in complex
environments and various lighting conditions [21].

The use of classic machine learning techniques continued to emerge
in lane detection as the role of statistical information became more
understood in the importance of detecting lanes. Building on K. Chiu and
S. Lin’s approach, years later J.W. Lee and J.S. Cho [22] proposed a method
which uses both color detection and edge orientation to minimize the error
of a Bayesian classifier. This classifier is capable of distinguishing if a pixel
belongs to the lane class or not. They estimate the probability distribution
functions based upon classified features to adapt their model to various
road conditions and lane types. Using this strategy, they are able to detect a
single lane in real time [22].

As lane detection systems improved, more ADAS features went from
academia to application. Early implementations of Lane Departure
Warning (LDW) and Adaptive Cruise Control (ACC) features needed
algorithms capable of dealing with changes present in the natural
environment.

2.1.3 Inverse Perspective Mapping

Inverse perspective mapping is a classic method, which relies on the
geometric camera calibration to create an inverse perspective map [23, 24,
25]. Effectively this converts the front camera image into a top down view,
also called a bird’s eye view image. After the image is converted, utilizing
the Hue, Saturation and Value (HSV) color model, it can be used to isolate
colored lane pixels such as safety boundaries. Next, edge detection filtering
with thresholding (i.e. Canny edge detection) is performed to create a
binary map of the lane pixels. Finally, edge pixels in the binary image are
split into two halves, which then have a polynomial curve fit to each half of
the image. The advantages of this approach over the Hough Transform is
that it can create curved lines up to the extent of the horizon. This method
of lane detection also runs in real time.

19

Figure 2.4: Transforming an image into bird’s eye view using IPM [24].

Although this method improves upon the Hough transform, it still has
several downsides. At least the following issues can be identified: IPM
requires camera calibration which can be difficult or impractical in a real
world setting. This is because the IPM assumes flat terrain, which is
required for a linear transformation from the front camera view to a bird’s
eye view. In a perspective view, less pixels represent the lane as it draws
closer to the horizon, therefore making curve fitting after projection more
difficult. Moreover, the width of the lanes is set manually, so additional care
must be taken when working with datasets containing varying road-widths.
Given these factors, it may be unreliable to use IPM for autonomous vehicle
control in less than ideal conditions.

A major limiting factor of the classic methods mentioned above is
their reliance on canny edge detection. Unfortunately this introduces
several limiting factors, as lane boundaries are not always present and
detection of the lane is heavily influenced by lighting conditions.
Fundamentally this filter cripples these approaches from being robust.

The most important takeaway from these methods is that the
function (i.e. filter) which we convolve an image with is useful for detecting
different features present in said image. Applying several different
convolutional filters to an image can allow us to detect multiple features.
Some examples of this is detecting that an image contains a dog versus
figuring out which dog breed is shown through the more specific features.
Later we will see that the foundation of convolutional neural networks
(CNNs) is the ability to learn the filters necessary to detect features for any
type of detection problem. The ability to utilize multiple learned filters in
conjunction for detection is a huge advantage of CNNs as these filters are
able to detect features which would be extremely difficult for humans to
come up with the mathematical function by hand. The nature of neural
networks being universal function approximators [26] means that they can

20

learn any possible filter which is capable of detecting any object or class of
objects. This extremely powerful tool enables us to focus more on higher
level concepts rather than on intricate details of why some given filter
detects some type of feature.

2.2 Neural Network Based Methods

2.2.1 Basics of Neural Networks

Perceptrons: A simple explanation of neural networks starts with a classic
machine learning component called a perceptron. Neural networks have
been around for a long time, with perceptrons being detailed in The
Perceptron, A perceiving and recognizing automation [27]. Originally
believed to be capable of learning anything, the perceptron was hailed by
Rosenblatt “Yet we are about to witness the birth of such a machine — a
machine capable of perceiving, recognizing and identifying its surroundings
without any human training or control” [27].

The perceptron is a linear, binary classifier, considered the most
fundamental building block of the majority of neural networks [28].
Perceptrons work by taking a number of inputs (x1, .., xn), each assigned a
weight (w1, .., wn) and producing a single output prediction from
multiplying the input vector (x) with the weight vector (w) then adding a
bias term (b) and summing the results. This weighted sum of the inputs is
referred to as the activation function of the neuron. The weight vector
which differentiates the input classes is a vector learned by the perceptron.
Originally initialized randomly, this weight vector starts off with poor
results.

I

w1

Lry ——» s y
w3
xIr3
Figure 2.5: Perceptron Model [29].

Ultimately the perceptron learns a decision boundary, i.e. a line, also called
a hyperplane, which separates two classes or two features, provided the
classes are linearly separable. After learning from a sufficient number of

21

examples, the perceptron can predict the class of new instances. The
learning process of the perceptron works by first feeding it a piece of data
with which a prediction is made and compared to the ground truth label of
the data. For instance, if the neuron is fed information of a dog, but it
predicts a cat. The difference between the prediction and label is called the
error, which is used to update the weight vector in a process called
Stochastic Gradient Descent (SGD) [30]. SGD is similar to normal gradient
descent except that the gradient is recalculated per data point rather than
after training on the entire dataset. More on optimization algorithms will be
covered at the end of this section.

Much later detailed in the 1969 book Perceptrons [29], the authors
discovered that perceptrons are incapable of learning the “exclusive or
(XOR) function. This crashing discovery sewed disbelief in the ability of
learning algorithms. The reason for this is that the perceptron is only
capable of linearly separating classes, while the XOR is a nonlinear
function. Although there are many different kinds of activation functions,
the original perceptron algorithm used a linear function. Linear functions
are incapable of learning decision boundaries between classes that can not
be separated by a straight line [31].

Mutli-layer Perceptrons: The solution to separating nonlinear functions
(such as XOR) was to use multiple perceptrons strung together with each
using nonlinear activation functions. The most common activation function
used in modern neural networks is the Rectified Linear Unit (ReLU) which
employs a Max(o, output) function [32]. These multi-layer perceptrons
(MLPs) (figure 2.6) are the basis of nearly all deep learning models. They
consist of an input layer of perceptrons which feed their prediction to some
number of hidden layers of perceptrons which are then summed into the
output as a single value prediction or vector of predictions. The connections
between each layer are densely connected, meaning that every input in the
previous layer is connected to every output in the next layer.

22

Input Hidden Layer Output
Layer

Figure 2.6: A multi-layer perceptron network [33].

Going further into detail on this issue, non-linear transformations are
critical for a network to actually learn, because with linearity, the
combination of all perceptrons in a network could be modeled by a single
perceptron as a linear sum of any number of neurons is still a linear
function. Most problems in the real world are nonlinear and thus require a
nonlinear function to approximate their prediction solution. As a simple
example using fluffiness and color as input to determine what the animal is
would not have linear separation, as many different animals may be equally
fluffy and the same color. This process of determining which features
differentiates the classification most optimally is called feature selection
[34].

As mentioned, classic computer vision methods of lane detection
work in a limited number of scenarios, making them insufficient for the
wide range of situations encountered in fully autonomous driving. MLPs are
extremely useful for generating accurate predictions given sufficient data,
but their input is often just a vector of values, while images are usually a 2D
matrix of vectors. Spatial information in MLPs is not encoded, meaning
information relative to some other bit of information is not carried across.
This is because MLPs work using flattened 1D vectors, which loses the
ordering of pixels [35]. CNNs address this problem, as local pixel groups are
usually very important to understanding a portion of the image (i.e. spatial
information is important for understanding features in an image).

One of the most useful ways for using images in neural networks is
using a CNN, where rather than using a perceptron to transfer data from

23

one layer to another, learned weighted filters pass information forward
through the network. These filters are initialized randomly and eventually
come to approximate some function given sufficient data. After the
demonstration of a powerful CNN called AlexNet in 2012 the pursuit of lane
detection with machine learning and deep learning techniques took off [36].

Convolutional Neural Networks differ from MLPs in that they leverage
spatial structure in an image to predict features. This way of structuring a
network can be seen as biasing a network (i.e. specializing it to efficiently
handle certain data structures [images])[37, 38]. Effectively, CNNs can be
viewed as a special subset of the more general MLP.

By combining concepts of spatial information, feature understanding
through filters (as seen in Canny edge detection) and MLPs, we can use
CNNs to learn a hierarchical set of features ranging from low detailed
information called local features (such as edges) to high level (global)
features (ex: eyes, facial structure). The learned features present in some
dataset can then be generalized, allowing the network to correctly classify
new data.

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5
ik 6@28x28

S52: f. maps
6@14x14

1 |
| | Full connection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Figure 2.7: A CNN depicting the LeNet-5 architecture [39].

As demonstrated in figure 2.7, CNNs have four main operations. Namely,
convolution, non-linear activation functions, subsampling (pooling) and full
connection (classification). The network architecture specifies how many of
these operations will be used and in what order. Once set they do not
change.

During training, the goal of the network is to learn a set of feature
maps which generate a high response when classifying data. Learning is
done by adjusting the weights of the filters until they converge to the correct
classification. Each pass through the network, the input data convolved
with the filters to create feature maps. These feature maps are then passed
to further layers, where low-level features are synthesized into higher level
features. At the end of the network, feature maps are flattened into a feature
vector, which outputs a prediction for the given data point. A loss function

24

is used to calculate the error between the output prediction and the labeled
data. This error is then used in the backpropagation step to calculate
gradients which determine how the filters should be adjusted using gradient
descent. Once trained, the loss function and backpropagation steps are no
longer used. The network maintains a set of filters which will generate a
high response to new data of the same classes which the network was
trained on.

Going into detail, convolution uses filters to create feature maps that
preserve the spatial relationship between a neighborhood of pixels. Since
convolution is a linear operation, a non-linear activation function must be
applied after the convolution step for the network to learn the filters. Each
new data point fed into the model adjusts the filters to better classify
features present in the image. The network learns a hierarchy of features
given sufficient data. Filters earlier in the network correspond to lower level
features, while filters later in the network take previous feature maps to
learn higher level features. Depending on the size of the filter and the
padding around the input image, convolution may reduce spatial
dimensionality while increasing feature dimensionality (e.g, 36x36x3 —
28x28x6). Decreasing input and filter size can optimize the prediction
process, saving computational time. Another way to do this is using pooling.

Pooling is a downsampling operation that reduces image resolution
while preserving spatial relationships between image regions. The typical
type of pooling used is called max pooling, which takes the maximum value
in some given patch of the original image and uses it as the pixel intensity in
the downsampled image. Pooling passes only the most important features
through the network.

Once these actions have been performed many times, the final layer
contains several small feature maps that describe high level details. These
are then flattened and fully connected like an MLP which enables the
network to generate a classification vector or value prediction. The fully
connected layer also has the advantage of learning non-linear combinations
of high level feature maps. Typically the prediction is passed to a softmax
function which converts the output into a statistical distribution which
sums to one [31]. As an example using the softmax function in equation 7,
the prediction may output a classification vector which contains the values
(0.75, 0.1, 0.05, 0.03, 0.0.2) which means the network predicts the animal
contained in the image has a 75% chance to be classified as an ermine, 10%
cat, 5% dog, 3% squirrel and 2% bear. Softmax provides a clean way of
understanding the prediction when multiple classes are present in the same
image.

25

eyi
softmax(y;) = —=——
25" @

Encoder-Decoder Networks: The output prediction of the network does
not necessarily have to be a single value or vector of probabilities. By
performing upsampling on the learned features at the end of the network,
the network can also learn the class of each pixel in the image, in a process
called semantic segmentation. We will see this process implemented later
on in both Lanenet and Robust Lane Detection. Often this type of
architecture is called an Encoder-Decoder network. Transposed
convolution is an operation which scales a feature map up by overlapping
kernel strides and summing the result. It is performed in the decoding
portion to upsample features into the image.

FCN: Fully Convolutional Network.
Network designed with all convolutional layers,
with downsampling and upsampling operations

Med-res: Med-res: y’
D, x H/4 x W/4 D, x H/4 x W/4,

Low-res:
D, x H/4 x W4
Input: High-res: High-res: Predictions:
: > ctions:

3xHxW D, x H/2 x W/2 D, x Hi2 x W/2 Hx W

Figure 2.8: An Encoder-Decoder Network [37].

Residual Networks: An important network which we use as a backbone
for feature extraction is ResNet. ResNet34 is a simplified version of the
residual network architecture, a commonly used deep residual neural
network (RNN) which combines a series of convolutional layers for feature
extraction in images [40]. Residual networks are not just Convolutional
Neural Networks (CNNs) in that, they additionally pass the next layer a
residual function by skipping certain activation functions, which passes
lower level features further to the next layer. Residual networks are
composed of residual blocks, also called skip connections, which pass
features from the previous layer over some portion of the network.

26

https://www.codecogs.com/eqnedit.php?latex=%5Cmathrm%7Bsoftmax%7D(y_i)%20%3D%20%5Cfrac%7Be%5E%7By_i%7D%7D%20%7B%5Csum_%7Bj%7D%20e%5E%7By_j%7D%7D#0

weight layer
F(x) l relu .
weight layer identity

F(x) +x
Figure 2.9: A residual block [41].

By passing lower level features throughout the network, Residual networks
are able to overcome the infamous “vanishing gradient problem” [41]
which prevents backpropagation from updating network weights earlier in
the network. This innovation enabled new networks to be constructed with
significantly more layers, increasing feature detection capabilities.

Methods of teaching neural networks: Random initialization of
weights does not always lead to learning something useful. Sometimes these
weights propagated through gradient descent based optimization
algorithms can converge to non-optimal local minima. The topic of finding
out how to ensure the network most optimally learns a separate and useful
feature is an open research problem.

There are many approaches to assist the network in converging to a
more optimal solution. Optimization functions like gradient descent come
in many different flavors which affect the speed of convergence. Stochastic
Gradient Descent [30] is a well known algorithm which can be improved by
a concept called momentum to increase the speed of convergence [42, 43].
This can effectively be thought of as an additional velocity term which
allows the learning process to overcome non-optimal local minimums. It
works by taking a weighted moving average of the network's gradients to
smooth out the oscillations introduced by SGD when updating after each
training example. Another improvement to the optimization process is to
introduce a variable learning rate, rather than inching forward with a small
rate. Adam (Adaptive Moment Estimation) is an optimization algorithm
which takes into account both momentum and adaptive learning rates to
speed up convergence [44].

27

Additional techniques which examine separate parts of the training
process can have a large impact on how well the network learns. Typically
these techniques seek to address improving the model through adjusting
the data (normalization) or adjusting the model (regularization).

Normalization is a technique in which output from one neuron

layer is normalized before being the input to another layer of neurons.
Normalization generally works by computing both a mean X and variance
o values to which all neurons on a layer are normalized against [45, 46].
Lower numerical values generated by normalization have the effect of
increasing the speed and accuracy of networks. There are two main types of
normalization, being batch and layer normalization.
Batch normalization calculates the mean of the current neuron layer from
all batches of data sampled [45]. This attempts to find a mean and standard
deviation which represent the entire dataset. It then normalizes the outputs
of all neurons in each layer by each layer's calculated mean.

Layer normalization calculates a mean value for each neuron layer
for each data sample. It then normalizes the output of the entire neuron
layer with this mean value. This means that each normalized layer in the
network has the same mean and variance.

Layer normalization is an improvement over batch normalization
and provides several advantages when working with large datasets. One
advantage of layer normalization is that it is free from dependencies of
batch size. This means the same number of calculations are performed in
training time and test time. These two times differ in batch normalization,
because performing inference during training in larger batches often
utilizes stronger hardware which may not be available in test time. Another
advantage is that layer normalization can be used on sequence data
enabling the performance increase previously only available to non
sequential networks [46]. Although, layer normalization is not as effective
on CNNs, which is why our network only uses layer normalization on the
fully connected layers.

Regularization works to prevent a model from overfitting to the
dataset. Two important types of regularization are L1 and L2 regularization.
Both techniques penalize networks if weights are too high by adding the
weights into the loss calculation. This is because weights with uniquely high
values often exaggerate the importance of some feature in the training set,
leading to overfitting. The key difference is that L1 regularization (i.e. L1
norm) encourages network weights to be sparse while L2 regularization
(i.e. ridge regression) penalizes weights with high values, positive or
negative, which keeps network’s weights from being high, but not pushing
them to zero.

28

https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma#0

Another regularization technique called drop out prevents the model
from settling on a local minimum by randomly deactivating neurons in the
network. This will prevent the model from relying on some subset of
neurons storing the majority of information used for classification. Other
techniques such as data augmentation are covered in section 4.3.5. Overall
experimentation with hyperparameters (i.e. the values used to tune the
learning process such as learning rate, batch size, etc), architectures, feature
selection or better datasets are the best way to ensure a model converges to
the most important features for a classification task.

Applying neural networks in autonomous driving has revolutionized
the field, making reliable control of the vehicles now possible. The downside
is that many of these powerful networks rely on heavy and expensive
hardware. This research focuses on networks which have the potential to
work on light-weight embedded systems which are useful for cost-efficient
consumer vehicles. This research focuses on three papers which yield good
results. Namely, Lanenet lane segmentation (2018) [47], Robust Lane
Detection (2020) [48] and Ultra-fast Lane Detection (2020) [49] which is
based on a highly efficient CNN technique referred to as SCNN (2018) [50].

2.2.2 LaneNet

LaneNet approaches lane detection as an instance segmentation problem.
The goal is to label each lane line as belonging to a separate instance of the
Lane class. The architecture is a two branch Encoder-Decoder CNN which
shares an encoder comprising two out of three stages of E-Net [47] used as
the backbone (i.e. using a feature extractor network as a foundation for
another network). The decoder is split into two branches, one for binary
segmentation and the other for instance segmentation.

Pixel embeddings

branch

Figure 2.10: LaneNet architecture [47].

The binary segmentation encoder separates lane lines out, coloring lane
pixels white, with all other pixels colored black. This binary segmentation

29

map is used in conjunction with the pixel embeddings output to mask out
non-lane pixels, making prediction of lane instance in the next step less
computationally expensive. This first branch uses standard cross-entropy
loss defined in equation 20. The instance segmentation branch has the goal
of outputting an N dimensional pixel embedding which separates the pixels
into different instances of the lane class. Pixel embeddings are created by
using an iterative clustering loss function which pulls together nearby lane
pixels and pushes away lane pixels of other instances. This process and the
loss function are detailed in De Brabandere et al. [56].

The combination of the binary segmentation and instance
segmentation set the foundation for inverse perspective transformation and
curve fitting performed by the second Neural Network detailed in the paper.
In previous research, a fixed homography matrix (an inverse perspective
matrix) would be used to warp the perspective image into a top-down image
also called a bird’s eye view image [23, 25]. Homography means a
perspective mapping of one (image) plane to another. It requires that
enough image points present in one plane must be known in the other. This
technique allows us to recover the depth of image points which are normally
lost in projection. The homography matrix is typically calculated only once
using known camera parameters and is error prone under non-flat terrain,
which can result in lane points in other images being projected to infinity
[25]. LaneNet resolves this issue with a second network referred to as
H-Net, that predicts a conditioned homographic matrix which transforms
points into a top-down view where lane fitting is performed (figure 2.11).

Lane fitting

Figure 2.11: LaneNet and H-Net.

30

The authors specify a custom loss function for H-Net to predict a
transformation matrix which optimally fits a polynomial curve to lane

T
pixels. Given N ground-truth lane points, Pi = [, Y1, 117 € P these points
are transformed by the output of H-Net:

P’ = HP (8)

T
where pi = [, y;,1]" € P’ and H is a 3x3 matrix containing 6 variables
(i.e. 6 degrees of freedom) and 3 constants.

H=

O O Q
~ Q! o
— a0

(9)

2
Once points are projected, a polynomial fW) = ay™ + BY + 7 is fit using
the least squares closed-form solution:

w=(YTY)'YTx (10)

. _ T o (o 11T) .

with W = [, B,7]", X" = [z, 25, ..., 2y] and Yis a Nx3 matrix
containing the vertical pixel positions of the polynomial variables with N
being the order of the polynomial.

v oy 1
Y — . ; .
y;\% y?V 1 (11)

Regarding the case using a 2nd order polynomial, the fitted polynomial is
evaluated at every Yi location Ti = f(¥;) yielding a horizontal pixel

position prediction 7;. Afterwards the prediction is projected back by the
inverse of H and compared with the label in image space 7: using least
squares. The sum of the difference between the original and the fitted point
transformed back into image space is used as the measurement for the loss.

1
Loss = N Z (zF — ;)

i=1,N (12)

31

https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7Bp_%7Bi%7D%7D%20%3D%20%5Bx_%7Bi%7D%2C%20y_%7Bi%7D%2C%201%5D%5E%7BT%7D%20%5Cin%20%5Cmathbf%7BP%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BP'%7D%20%3D%20%5Cmathrm%7BH%7D%5Cbf%7BP%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7Bp'_%7Bi%7D%7D%20%3D%20%5Bx'_%7Bi%7D%2C%20y'_%7Bi%7D%2C%201%5D%5E%7BT%7D%20%5Cin%20%5Cmathbf%7BP'%7D#0
https://www.codecogs.com/eqnedit.php?latex=f(y')%20%3D%20%5Calpha%20y'%5E%7B2%7D%20%2B%20%5Cbeta%20y'%20%2B%20%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7Bw%7D%20%3D%20(%5Cmathbf%7BY%7D%5ET%5Cmathbf%7BY%7D)%5E%7B-1%7D%5Cmathbf%7BY%7D%5ET%5Cmathbf%7Bx%7D'#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BY%7D%20%3D%20%5Cbegin%7Bbmatrix%7Dy'%5E%7B2%7D_%7B1%7D%20%26%20y'_%7B1%7D%20%26%201%5C%5C%5C%5C%20%5Cvdots%20%26%20%5Cvdots%20%26%20%5Cvdots%20%5C%5C%5C%5C%20y'%5E%7B2%7D_%7BN%7D%20%26%20y'_%7BN%7D%20%26%201%20%5Cend%7Bbmatrix%7D#0
https://www.codecogs.com/eqnedit.php?latex=y'_%7Bi%7D#0
https://www.codecogs.com/eqnedit.php?latex=x'%5E%7B*%7D_%7Bi%7D%20%3D%20f(y'_%7Bi%7D)#0
https://www.codecogs.com/eqnedit.php?latex=x'%5E%7B*%7D_%7Bi%7D#0
https://www.codecogs.com/eqnedit.php?latex=x_%7Bi%7D#0
https://www.codecogs.com/eqnedit.php?latex=Loss%20%3D%20%5Cfrac%7B1%7D%7BN%7D%5Csum_%7Bi%3D1%2C%20N%7D%5C(x%5E%7B*%7D_%7Bi%7D%20-%20x_%7Bi%7D%5C)%5E%7B2%7D#0

These constants used for ensuring horizontal lines in the original image
remain horizontal in the warped image. The output matrix is then used to
warp a downsampled original image into bird’s eye which works under
variable terrain, ensuring that all lane points are correctly warped onto the
image. The reason for this is that it is easier to fit lower order polynomial
curves onto the warped images as their points are spread equidistant,
making curves wider and therefore easier to approximate. The fitted
polynomials are then warped back into the original image space, correctly
separating lane lines. Ultimately using both LaneNet and H-Net in tandem
results in accurately fitted curves produced at 50 fps on an Nvidia 1080 ti.
With an accuracy of 96.4%, LaneNet achieved 4th place in accuracy on the
TuSimple dataset. Speed of the other winning models is not provided.

2.2.3 Robust Lane Detection

Another paper critical to our research is Robust Lane Detection. Their
research team’s key insight was to pivot from single image lane detection to
a continuous image sequence based detection. The main theory behind their
approach is that lanes are fundamentally continuous structures and
therefore having only a single image to predict a continuous structure does
not provide enough information. By incorporating information from
previous frames, the model will be capable of filling in the blank when the
lanes (the continuous structures) are obscured or occluded. The model
should be capable of predicting lane structure from past information when
it is obstructed in the current frame. Due to this idea, Zou et al. [48]
structure their model architecture as follows:

LSTMO LSTM1
Encl) /T on \—&[Tio) |-> e T

Enc{Xu) -

Tey || Tay f oo

()
(T -
_> .

Continuous Frames Encoder CNN ConvLSTM Decoder CNN Prediction of Xtn

Figure 2.12: Robust Lane Detection Architecture [48].

The architecture involves a fusion of a classic Encoder-Decoder CNN for
semantic segmentation, with the center being a Long-Short-Term Memory

32

(LSTM) Recurrent Neural Network (RNN). Using RNNs on images
previously would be extremely costly as images represented as vectors
would be of size WxH so even small images (ex: 512x256) would create too
large vectors for passing information. The encoder resamples images to size
256x128 and this size is replicated in the decoder, producing the same size
output prediction.

U-Net and SegNet introduced here [57] combined with ConvLSTM
act as the backbone for the model. ConvLSTM was introduced in [58] and is
different from traditional LSTMs in that all matrix operations on the gates
are converted to convolution operations, decreasing the size of
computation. Instead, by attaching the LSTM to the end of the decoder, the
LSTM works given image features of size 8x16x512 when using
UNet-ConvLSTM or 4x8x512 when using SegNet-ConvLSTM. Since this
process is repeated for a continuous image sequence (in this case, 5 images
at a time), the LSTM is able to incorporate multiple lane features from the
images and make a robust prediction. The loss function is based on the
weighted cross entropy for the purposes of solving discriminative
segmentation tasks. It is defined as:

€loss — Z U)(X)lOg (pl(x) (X>)

x€Q (13)

Where, L : Q — {1, ..., K} is the true label of each pixel and w: Q — Risa
weight for each class. Additionally p represents the softmax function,
defined in equation 7.

The authors of RLD contributed to the TuSimple lane dataset by
additionally labeling every 13th image, where the previous dataset only had
every 20th image labeled. Additionally, the authors expanded the dataset by
introducing 1,148 sequences of rural roads with the goal of increasing the
diversity of the dataset.

The results of the dataset demonstrate that the combination of
U-Net-ConvLSTM produces the most robust results as opposed to
SegNet-ConvLSTM. U-Net-ConvLSTM achieves validation accuracy of
08.52, test accuracy of 98.43 in rural scenes and 98.00 accuracy on highway
scenes. Other metrics include Precision of 0.857, Recall of 0.958 and F1 of
0.904. These metrics are defined in section 4.2.

The authors are able to achieve state of the art performance on
images which include obstruction, occlusion and heavy shadows while
running at 5.8ms on inference on two GeForce GTX TITAN-X GPUs. While
the results of Robust Lane Detection are worth noting, the speed of

33

https://www.codecogs.com/eqnedit.php?latex=%5Cvarepsilon_%7Bloss%7D%3D%5Csum_%7B%5Cmathbf%7Bx%7D%5Cin%5COmega%7D%20w%5C(%5Cmathbf%7Bx%7D%5C)log%7B%5C(p_%7Bl(%5Cmathbf%7Bx%7D)%7D%5C(%5Cmathbf%7Bx%7D%5C))%7D#0

inference is significantly slower on embedded systems, pushing the model
out of use for production purposes. With this constraint in mind, we instead
opted to leverage Robust Lane Detection and clustering for auto-labeling
frames to use on smaller models. This process will be explained in further
detail in the methodology section.

2.2.4 Ultra Fast Lane Detection

Seeking to solve the “no visual clue” problem, Ultra-Fast Lane Detection
[49] opts to make strategic optimizations to reduce computational cost on
their model. It uses two core approaches to speed up lane detection while
achieving state of the art performance in accuracy. The first is using
row-based selection to predict positions of lanes in the image along pre-set
row anchors, rather than using a more powerful encoder-decoder
architecture to segment the entire image. By manually biasing where the
model has the highest probability to find the lane markings, computation
can be saved instead of using semantic segmentation across the entire
image.

Row-based selection works by setting a predefined number of
horizontal anchors h across the image which are divided into grid cells w
that are searched to detect Clanes. This method drastically reduces the size
of the model to search through compared to image-segmentation which
searches the entire image. In practice on the TuSimple dataset, UFLD
creates 55 row anchors placed every 10 vertical pixels. Row anchors are
divided into 100 grid cells with up to 5 lanes. The second method is using
SCNN’s strategy of cutting out any 0 multiplication calculations, which are
often a product of the ReLU activation function [50]. The combination
achieves over 300 fps on an Nvidia 1080Ti with their lightest model. The
model is trained and tested on both the CULane and TuSimple Datasets.

Auxiliary segmentation

Umnly valid dunng training !
\\x‘ ‘
1 D

1
1
1
] ' 1
T
1
[}

Aarciliary branch
o

Main branch

SIBLRLE M0

Selecting
FC Reshape

Fes blocks Giroup classitication

Figure 2.13: Ultra-Fast Lane Detection model architecture [49].

34

Multiple loss functions are used throughout different parts of the model
architecture to hierarchically predict different features of lane detection.
Their classification loss is the sum of the cross entropy loss LCE across C
(the maximum number of lanes) and h (the number of row anchors).

cls - ZZLCE 1,750 ,j)

i=1 j=1 (14)

Where P i,j,: is the (w + 1)-dimensional vector representing the probability
of selecting (w + 1) gridding cells for the i-th lane, j-th row anchor, while T
1,J,: is one label of correct locations.

Their second loss function, Lane Structural Loss, is composed of two loss
functions: Similarity Loss (Lsim) and Shape Loss (Lshp). Similarity Loss:

>

-1

Szm Z | 2,7, Pi,j:l,:”l

1=1

S,
|
—_

(15)

addresses the fact that lanes are continuous structures and works by
constraining the distribution of classification vectors over adjacent row
anchors. Shape Loss:

C h-2

Loy = > Y (Locij = Locju1) — (Loci j1 — Loc; jy2)| 1
=1 j=1 (16)

constraints lane shape to the second order difference equation, being o
when lanes are straight. Finally, they introduce an auxiliary segmentation
loss (LSeg), which is just cross entropy loss, giving the total loss:

LTotal — Lcls + LStT + LS@Q. (17)

With this combination of model optimizations, loss functions and a
modified Resnet18 backbone, UFLD accurately predicts multiple lanes in
challenging scenarios (including curved roads, crowded streets and night
driving) in 3.2ms on a single Nvidia GTX 1080 Ti. The model has a
classification accuracy of 95.77 - 96.06 on the TuSimple benchmark.

35

https://www.codecogs.com/eqnedit.php?latex=L_%7Bcls%7D%3D%5Csum_%7Bi%3D1%7D%5E%7BC%7D%5Csum_%7Bj%3D1%7D%5E%7Bh%7DL_%7BCE%7D(P_%7Bi%2Cj%2C%3A%7D%2CT_%7Bi%2Cj%2C%3A%7D)#0
https://www.codecogs.com/eqnedit.php?latex=L_%7Bsim%7D%3D%5Csum_%7Bi%3D1%7D%5E%7BC%7D%5Csum_%7Bj%3D1%7D%5E%7Bh-1%7D%7C%7CP_%7Bi%2Cj%2C%3A%7D-P_%7Bi%2Cj%3D1%2C%3A%7D%7C%7C_%7B1%7D#0
https://www.codecogs.com/eqnedit.php?latex=L_%7Bshp%7D%3D%5Csum_%7Bi%3D1%7D%5E%7BC%7D%5Csum_%7Bj%3D1%7D%5E%7Bh-2%7D%7C%7C(Loc_%7Bi%2Cj%7D-Loc_%7Bi%2Cj%2B1%7D)%20-%20(Loc_%7Bi%2Cj%2B1%7D-Loc_%7Bi%2Cj%2B2%7D)%7C%7C_%7B1%7D#0
https://www.codecogs.com/eqnedit.php?latex=L_%7BTotal%7D%20%3D%20L_%7Bcls%7D%20%2B%20L_%7Bstr%7D%20%2B%20L_%7Bseg%7D#0

2.2.5 Summary of Neural Network Based Methods

Lane detection methods for the most part share the common strategy of
defining lane detection as an image segmentation problem. Even in the case
of Ultra-Fast Lane Detection, the authors still use some degree of (auxiliary)
segmentation. With this in mind, it means that the architectures rely on a
modified form of the “Encoder-Decoder” architecture. Ultimately each
experiment uses either Semantic Segmentation, Instance Segmentation or
Auxiliary Segmentation.

Due to their similar segmentation approach, both LaneNet and
Robust Lane Detection have the same issues of slower speed at the trade-off
for higher accuracy. LaneNet has an advantage over Robust Lane Detection
in the sense that lanes can be differentiated by their class instance.
Maintaining a consistent instance for each lane allows the autonomous
vehicle to change lanes while keeping a stable detection. In the end, Ultra
Fast Lane Detection comes out on top, as it is capable of comparable
accuracy to LaneNet and Robust Lane Detection while having many
multiples the speed of inference. Additionally UFLD is capable of classifying
the lane lines in a similar manner to LaneNet.

2.3 Implementing Lane Detection Methods on Embedded
Systems

In research, lane detection is typically simulated on personal computers
rather than directly on embedded hardware due to tighter constraints than
what is typically available in academia. The problem with this is that it leads
to cutting edge robust lane detentions being too slow to be practical for
commercial use [51]. This means that older, less robust detection systems
which rely heavily on hand-crafted feature filters have to be used, limiting
the range of scenarios vehicles can drive safely. Research such as the real
time mobile lane detection system by M.J. Jen et al. [52] resorts to running
hand-crafted filters on embedded hardware. Other improvements including
PathMark by Q. Ju et al. [51] continued to improve detection using image
intensity and geometric matching of detected lane segments to full lanes.
Gradual advances in hardware brought classic machine learning techniques
back into the picture. N. Mechat et al. [53] used Support Vector Machines
(SVMs) to classify lanes and then fit curves for better predictions. Often
relying on a single camera for lane detection, sensor fusion techniques such
as the Kalman filter were used to give the control system better perception
[53]. Additional uses of combining both the Kalman filter and IPM
techniques include Y. Lee and H. Kim’s [25] research which achieves real

36

time performance for highway and urban driving scenarios. This technique
uses a single camera and focuses on ego-lane detection only. M. Neito et al.
[54] further improves classification method based lane detection by
providing an end-to-end lightweight pipeline which is built to combine
many different computer vision techniques for maintaining stable
detection. They focus on geometry based methods that are capable of
detecting multiple lanes.

Recent improvements in embedded hardware computational speed
has opened up the opportunity to use lightweight neural network based lane
detection. Inspired by UFLD’s row-wise classification technique, SwiftLane
by O. Jayasinghe et al. [55] tackle lane detection on the Nvidia Jetson AGX
Xavier embedded system. They further increase inference speed by
reducing the number of false detection, which manages to achieve 56 fps,
rivaling our solution.

37

3. Methodology

3.1 Background

In 2019 the European Commision enacted a law requiring new automotive
safety features to be implemented in cars launched after July 5th of 2024
[59]. Safety features required by this mandate include Advanced Emergency
Braking (AEB) and Lane-Keeping Assistance (LKA). Our team developed a
pilot for a major European OEM which included a convolutional neural
network based lane detection model as it is the foundation for AEB and
LKA features.

The main requirements of the pilot are a model that runs in real time
on an automotive-grade SOC and meets the Operational Design Domain
(ODD) standard of L2+ ADAS. OEMs need small systems that can easily fit
in the dashboard. This places a significant constraint on the amount of
computation that can be used for reliable lane detection models. We
examined these constraints on hardware and software to find a balance
which meets the requirements of the pilot.

In regards to hardware, we took a similar approach to [55] by
choosing the Nvidia Jetson AGX Xavier as our SOC. It is a powerful
embedded system useful for deploying end-to-end AI and robotics
applications [60]. We plan to downscale further to the Nvidia Jetson Nano
[61]. After testing we expected a 10-12x downscaling in fps when testing
models on an Nvidia GTX 3080 notebook moving to the Xavier and 15x
downscaling to the Nano.

Inference speed is a key factor that eliminates any model incapable
of running at very high FPS. This is because the model needs to predict
lanes fast enough that the control system can steer the vehicle safely at high
speeds. Downscaling to an embedded system slows down inference
significantly. Making a control robust system requires more than just lane
detection. 3D vehicle detection, pedestrian detection, objects on road
detection and other features are critical to maintaining a safe driving
experience for passengers.

In regards to the models presented in the literature review, we found
that LaneNet and RLD require a combination of powerful GPUs while only
attaining slightly higher than real-time fps. LaneNet sought to address the
issue of poor prediction when switching lanes using instance segmentation;
we found that given sufficient data, UFLD is more than capable of reliably
switching lanes. UFLD most notably significantly outperforms these other
methods and will most likely scale down well. It was rigorously tested in
several scenarios that feature high curvature, missing lane markings and

38

night driving. Although the accuracy will vary in these scenarios, we believe
it will remain high enough for autonomous control. Moreover, when testing
UFLD on an Nvidia GTX 3080 notebook we were able to obtain over 500
fps in inference when using the ResNet 18 backbone. Expecting to achieve
between 50-80 fps with ResNet 18 on the selected embedded systems, this
still leaves room for additional tweaks and modifications to increase
performance for our purpose.

For the reasons above, our team adopted UFLD’s methodology and
tuned its architecture to fit our key purposes. See section 2.2.4 Ultra Fast
Lane Detection for more details on the representation of lanes and use of
loss functions to learn lane structure. How lanes are labeled is covered in
section 3.4. Using row-based selection of lanes as a foundation, we further
optimize for speed by reducing the total number of row anchors for the
network to learn from 48 to 14. One important thing to note is that, unlike
UFLD, our goal is only to predict the ego-lane (i.e. the lane the vehicle is
driving in) for lane-keeping assistance features. UFLD detects a maximum
of five lanes, while we reduce the number to three, which is the minimum
for changing lanes. Experiments with different tiers of ResNet will likely
improve performance while pushing fps down closer to just above real-time
inference.

Although we chose not to use LaneNet or RLD, the models were not
entirely disregarded. Although RLD was capable of running at real-time on
high end systems, downscaling the model would yield sub-real time speeds,
which eliminated the model from being used on the chosen embedded
system for the pilot. RLD was found to have a very reliable detection and
segmentation processes that could be used to label many images very
quickly in a process referred to as auto-labeling. This process will be
detailed further after the section on manual labeling.

39

3.2 Model Architecture

Conv. Block 1
Light-weight Network Architecture

Conv. Block 3 feme e :
Post-Processing :

Conv. Block 2
FC4a !
—> ﬂ Lane Points | Kalman Filter
3x14 integers
Input image FC1 FC2 FC3 FC 4b : L
e -—> J > » (—)———> () Horizon values :
224 %224 X3 1x1x1000 1x1x500 1x1x200 14 floats
FC 4c Curve Fitting
L—> () Lane order
3 floats

Conv. Block 4

Avg Pool
: Relu Relu

+ +
Layer Norm Layer Norm

Relu
+

Layer Norm

| ResNet34 |

Figure 3.1: VahidNet model architecture.

As noted in section 3.1 we based our model architecture on a simplified
version of UFLD. Overall we reduce the input image size, number of lanes
predicted and number of lane points to speed up computation. The model’s
architecture can be summarized as follows:

Input a 3 channel RGB image of size (224x224x3)
Backbone (ResNet18 or ResNet34) — outputs a 1000 fc layer. #1
ReLU and layer normalization (1000)
Fully connected layer 2 (1000 — 500) — transforms into 500 length
vector
ReLU and Layer normalization 2 (500)
Fully connected layer 3 (500 — 200)
ReLU and Layer normalization 3 (200)
Fully connected layer 4 (Multi-headed output):
o Part A: size 200 — size (3x14) lane points
o Part B: size 200 -> size (14) horizon values
o Part C: size 200 -> size (3) lane order

Beginning with the model backbone, we choose to build upon the ResNet18
and ResNet34 [62] architectures, which as noted in UFLD are able to
significantly enhance prediction accuracy while maintaining a good degree
of speed. We chose these two backbones due to speed constraints and found

40

that both are able to maintain real-time inference on the Nvidia Xavier
embedded system. The ResNet backbone provides the learned features we
use for performing lane detection. ResNet34 outputs a fully connected layer
as a 1000x1 length classification vector.

Our own model is quite simple due to time constraints of the OEM
pilot demonstration. We began by taking the 1000x1 length vector output
by ResNet34 then performing layer ReLu activation and layer
normalization on it. Next, the feature vector is further downsized to a 500x1
length fully connected layer, then performing ReLu activation and layer
normalization again. Afterwards the fully connected layer is downsized once
more through a 500x1 to 200x1 length layer which is also passed to ReLu
activation and then layer-normalized. Finally, a forth fully connected layer
is created in 3 steps:

a. The size 200 layer is linearly transformed to a 3x14 sized fully
connected layer. This 3x14 vector is a combination of the number of

side candidates (3) and the number of side coordinates (14).

b. Linearly transforming the layer size 200 to 14.
c. Linearly transforming the layer size 200 to 3.

This fourth fully connected layer acts as a multi-headed output, giving 59
floats in total. Part A of the process is used for 3 lanes each with 14
x-coordinate positions at specified anchor points as mentioned earlier. This
output is used by the Lane Loss Function. Part B outputs 14 floating point
values which are later used in Horizon Loss to determine if a given anchor
point is above or below the horizon. Finally part C gives 3 floating values
which represent the probability that the lane is made up of two of the three
candidate lanes. This conversely is used in Lane Selection Loss. When the
model is not training, the outputs are fed directly into the post-processing
phase, which visually assembles the lane.

3.3 Loss functions

Our approach to lane detection can be conceptualized by splitting the
problem of detecting the ego lane into 4 components. We first determine
the 2D lane coordinate points for assembling up to three candidate lane
edges. In total we find 42 x-coordinate lane points (3 lanes of 14 horizontal
positions). Next the model learns which points belong to which lanes.
Following this, the model learns the height of the horizon. Finally these
three outputs are combined together in post-processing to remove any lane
predictions which appear above the horizon.

41

This method of learning lane detection can be broken down by making 4
separate loss functions for each component of detection. We sought to make
the model learn the following;:

e Lane Loss (L1) learns the 2D coordinates which make up a lane line.
It uses Mean Squared Error (MSE) of 2D lane coordinates.

e Lane Selection Loss (L2) learns which lanes to select from and relies
on Cross Entropy Loss.

e Horizon Loss (L3) learns the location of the horizon in the image.
This loss relies on a variant of Cross Entropy called Binary
Cross-Entropy.

Finally we use a separate loss function for determining lane order when
there are three lane candidates. This Lane Order Loss function (L4) helps
the model determine which two lanes should be used for the ego-lane and
additionally helps the model understand how to switch lanes. See figures
3.2, 3.3 and 3.4 for reference. In the following section, a more detailed look
into why the given loss function is useful and what data it uses.

Lane Loss (equation 18) learns 42 x-coordinate points or 3 lanes
consisting of 14 different x-coordinate values at predefined heights using
MSE. Our labeling method is a simplified version of TuSimple which
reduces the amount of lane boundary positions as shown in figure 3.3.

l — .
MSE=—=3 (¥; - Y)?
n i=1 (18)

A

Where, Yi is the labeled value of some x-coordinate, Yi is the value
predicted by the model given the labeled image and n is the number of data
points (in this case 42).

Effectively MSE measures the average squared distance between predicted
values and the ground truth label. The distance being squared has the effect
of dramatically increasing the loss value when the prediction is very
incorrect. In turn this has the effect of increasing the derivative in the
direction away from the loss during optimization, making the model learn
faster. The MSE is an effective way of penalizing highly incorrect
predictions, allowing the model to learn from mistakes quicker.

MSE is useful for learning a task such as finding the x-coordinates of
a lane because we are interested in minimizing the error between where the
lane has been marked and where the model predicts it will be.
Fundamentally this is a MSE problem because minimizing the distance
between where the lane actually is and where the model predicts it, is useful

42

https://www.codecogs.com/eqnedit.php?latex=%20MSE%20%3D%20%5Cfrac%7B1%7D%7Bn%7D%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5C(%20Y_%7Bi%7D%20-%20%5Chat%7BY%7D_%7Bi%7D)%5E2%20#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bi%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7BY%7D_%7Bi%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=n#0

for getting the model to learn the positions of where the lane lies. One idea
for an improvement is to find some function such that points are aware of
the relative position of their neighbors. This could lead to an understanding
of some approximation that from one point to another, the x positions
should not change so drastically.

Second, we cover the Lane Selection Loss. This loss function outputs
3 floating-point values which give the probability of the possibilities for
which lane lines will be used to assemble the ego-lane. These values are
used later in the post-processing phase to display the ego-lane. For Lane
Selection Loss, we choose to use Cross-Entropy Loss, a common approach
for interpreting multiple output probabilities of neural networks.
Cross-Entropy loss has many other names including “Logistic Loss” and
“Multinomial Logistic Loss”. It is the negative natural log (log base e) of the
softmax function see equation 7. This equation can be represented in the
form:

C
i (19)

This form is most often used as it resembles the entropy equation in
physics. For descriptive purposes, a slightly expanded form of the equation
is used for two reasons. First is that the log present in this equation is
actually log base e (natural log), not log base 10. Second is that the term Si
is the result of the softmax equation on the ground truth label Y:.

e
COF = — Z t; In (softmax(y;))

(20)

where i is the index of the current output value, C is the total number of
output values, t_i is the ground truth label of the output. Y_i is the feature
vector input in softmax see equation 7. Softmax has the effect of taking
multiple input values and mapping them to sum to 1 which can be seen as a
probability distribution of the output. Wrapping the negative natural log
around the softmax function has the effect of dramatically increasing the
loss of bad predictions, while nearly linearly decreasing loss for good
predictions. Ultimately this prevents overstepping in backpropagation while
using our optimization method when the loss is low and quickly moving
away from the previous result when the loss is high. When loss is high from
a prediction, yielding a high loss function and therefore high derivative

43

https://www.codecogs.com/eqnedit.php?latex=%20CE%20%3D%20-%20%5Csum_%7Bi%7D%5E%7BC%7D%20t_%7Bi%7D%20%5Clog%7B%20(s_%7Bi%7D)%20%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=s_i#0
https://www.codecogs.com/eqnedit.php?latex=y_i#0
https://www.codecogs.com/eqnedit.php?latex=%20CE%20%3D%20-%20%5Csum_%7Bi%7D%5E%7BC%7D%20t_%7Bi%7D%20%5Cln%7B%20%5C(%20%5Cmathrm%7Bsoftmax(y_%7Bi%7D)%7D%20%20%5C)%20%7D%20#0

value can be useful for ensuring our approximation moves far away from an
area of local minima. When loss is low, we often want our approximation to
change slower, as to not overstep an approximation which minimizes loss.
In a way, it has a similar effect as mean-squared error except applied in
different cases with different input data.

The next component to address is Horizon Loss which employs
Binary Cross Entropy. This type of Cross Entropy is useful for making
several yes or no decisions at once [63, 64, 65]. In this case we use 14
floating point values which predict the probability for the horizon by
determining if a given horizontal anchor is above or below the horizon.
Again, refer to figure 3.3. Binary Cross Entropy functions similarly to
normal Cross Entropy, except that it utilizes two classes:

c=2
BCE = - t;log(s;) = —t1log(s1) — (1 — t1)log(1 — s1)

(21)

Where, t1 and S1 are the ground truth classification label and score for
Class 1 - above the horizon (C1) and t2 = 1 — 1?1 and s2 = 1 — s2 are the
ground truth label and score for Class 2 - below the horizon (C2).

An important drawback to this loss function is that the actual horizon often
falls between the boundary where classification of above or below the
horizon changes. Any points classified as part of the lane are later discarded
in the post processing phase if they fall above the horizon. Due to the
perspective effect there can be a long section of the road between the anchor
just below the horizon and just above it. Having a hard threshold at the
former anchor reduces the amount of lookahead to the road we can use for
controlling the vehicle.

The final component of lane detection is the Lane Order Loss (L_4)
which again uses MSE to determine if the lanes are in the wrong order,
otherwise the value yields 0 in cases where lane order is correct. The total
Loss Function is a combination of the previous four loss functions,
modeled:

[1 + waly + wsls + wyly (22)

For the experiment we chose the Adam optimization algorithm [66] rather
than Stochastic Gradient Descent as time was a major constraint and it was
leading to faster convergence to local minimums.

44

https://www.codecogs.com/eqnedit.php?latex=%20BCE%20%3D%20-%20%5Csum_%7Bi%7D%5E%7BC%3D2%7D%20t_%7Bi%7D%20%5Clog%7B%20(s_%7Bi%7D)%20%7D%20%3D%20-t_%7B1%7D%5Clog(s_%7B1%7D)%20-%20(1%20-%20t_%7B1%7D)%5Clog(1%20-%20s_%7B1%7D)#0
https://www.codecogs.com/eqnedit.php?latex=t_1#0
https://www.codecogs.com/eqnedit.php?latex=s_1#0
https://www.codecogs.com/eqnedit.php?latex=t_2%20%3D%201%20-%20t1#0
https://www.codecogs.com/eqnedit.php?latex=s_2%20%3D%201%20-%20s_2#0
https://www.codecogs.com/eqnedit.php?latex=%20l_%7B1%7D%20%2B%20w_%7B2%7Dl_%7B2%7D%20%2B%20w_%7B3%7D%20l_%7B3%7D%20%2B%20w_%7B4%7Dl_%7B4%7D%20#0

3.4 Data Labeling

A large dataset of labeled images depicting diverse driving scenarios will
have a huge impact on the performance of a trained model. Overfitting to
specific scenarios which are overly abundant in homogenous datasets, such
as straight highway driving on sunny days, often leads to poor performance
in the real world. The lane detector must be robust to changes in weather or
lighting as the driver’s safety is at risk when a model encounters an
unfamiliar scenario.

Overfitting is a problem in machine learning that occurs when a
model fails to generalize features learned from a dataset and instead learns
features specific to a subset of the data. This leads to poor performance in
real world scenarios, as overfit models often fail to learn features present in
a diverse number of scenarios. Overfitting is often addressed by splitting a
dataset into training, testing and validation sets. The goal of each subset is
to capture an equal distribution of features which will be found evenly
across the entire dataset. The distribution of features present in each subset
is very important and has a great effect on performance. Other methods of
resolving overfitting were addressed in section 2.2.1. This even distribution
can be ensured by careful pruning of what is included in the dataset. As an
example, if the training set only includes straight driving scenarios on a
sunny day, but the test set only includes highly curved roads on stormy
days, the model will probably perform poorly.

Covering a range of diverse scenarios ensures models learn general
features. The downside is that it is impossible to create a dataset diverse
enough to cover all possible situations where the model will learn to handle
the situation perfectly. The drawback is that the model can only generalize
situations it encounters often, meaning it will never fully understand how to
handle all situations. The goal is to ensure that the model performs
consistently enough that it will work with a high degree of accuracy in
nearly all situations.

Many datasets are available for public research for non-commercial
purposes only. Because of this constraint, we opted to create our own
dataset for training the model and to use the TuSimple dataset [67] for
training and evaluation, as it is available for commercial use. TuSimple is
widely used as a basemark for testing lane detection models and consists of
6,408 road images of US highways with a resolution of 1280x720. These
images are organized by sequences of 20 frames. Out of this dataset, about
55% of all images are used for training with, 40% used for testing and 5%
for validation. The images include scenarios of different weather and
lighting conditions. TuSimple is a public dataset which was released during

45

their Lane Detection challenge in 2017 [67] for the Conference on
Computer Vision and Pattern Recognition (CVPR).

Other common lane detection benchmarks such as CULane, that
contains over 55 hours of driving in diverse and challenging scenarios, were
not available because they were restricted to non-commercial use [68]. This
means that it becomes more difficult and costly to make a reliable model as
not enough data is present to generalize lane detection with just a single,
relatively small dataset. With this in mind, our team opted to create our
own dataset to train the model, containing over 20 hours of driving in
diverse scenarios across multiple European countries. Several of these
scenarios include inner-city driving, full of traffic lights, complex roads and
pedestrians.

3.4.1 Labeling

Developing and testing the model was done using the labeling method
employed by the TuSimple Dataset [67]. This labeling method is as follows:
Construct 48 evenly spaced horizontal lines which span from the bottom of
the image to a predefined height. Mark the lane line locations x position for
any lanes present. Any x position of the current horizontal line that is not
placed on a lane is marked as -2 to differentiate it from actual pixel values.
Follow this procedure for every 20th frame of each image sequence. These
lane markings are stored in a json file format which includes the pixel
heights of horizontal lines.

Figure 3.2: TuSimple labeled image [67].

46

Figure 3.3: Manually labeled image in modified TuSimple label format.

In regards to labeling our own data, our team chose to label every 13th
frame while annotating significantly less horizontal lines (14) and x
positions in image space (3 per row anchor). Our target is simple, only
needing to detect the ego-lane (the current lane in which the vehicle is
driving), allowing us to only label 2 lanes. Additionally, to increase lane
annotation speed and lower costs, we built an in-house data annotation
team and provided them custom annotation tools which mimicked the
TuSimple method.

3.4.2 Auto-labeling

While our annotation team was manually labeling frames, we additionally
experimented with an auto-labeling approach. Inspired by Tesla’s strategy
of using the actions of the driver to label what the model should consider
ground truth in a scenario, we used Robust Lane Detection to generate
image labels to train the model with. After experimenting by combining the
prediction with curve fitting and then clustering, our pipeline was able to
rapidly generate labeled images on previously unseen data.

47

—

Figure 3.4: An auto-labeled image with Robust Lane Detection, clustering
and line fitting.

The downside of this method was that results were inconsistent and had to
be manually verified. Fixing auto-labeled annotations with slightly incorrect
points proved to be a non-trivial task, which often resulted in many images
taking longer to correct than simply manually labeling the image or being
outright rejected. Given these issues, auto-labeling was an interesting
experiment that could be improved by using a more accurate model than
Robust Lane Detection. Swapping RLD for a better model would result in
higher quality labels that are generated more reliably, enabling
lighter-weight models to yield similar results. Despite the difficulties of
applying auto labeling in a short timeframe for the present project, the
technique seems promising and worthy of more research effort in the
future.

3.5 Post-Processing

After the model outputs the prediction, we use a Kalman filter, also known
as Linear Quadratic Estimation to smooth lane point predictions. The
Kalman filter is an optimal estimation algorithm invented by Rudolf E.
Kalman in 1960 [69]. This filter is often used for target tracking, as it
provides a statistical method to predict the next position of an object given
previous position data from multiple sources. It is extremely useful when
combining approximate info provided by multiple sensors (such as IMU,
GPS, etc) which inform our model about its position and velocity relative to
the world. Each sensor or model provides some noisy value of where the

48

vehicle is located. It works by estimating unknown variables based on
uncertain measurements given by measurement devices. Since we intend to
combine data from sensors and approximations provided by our model for
controlling the vehicle, it is critical to have an accurate idea of where the
vehicle is relative to the road. Applying the filter, gives the vehicle a more
informed idea of its position and velocity by finding where the
approximations provided by each sensor overlap. This helps eliminate noise
from each sensor.

Although we opted to use the Kalman filter alongside our lane
detection model, we found it often made lane departure more difficult to
detect as the filter would heavily influence the model to stay in the lane
provided past data. After the predicted points are filtered, we use a 2nd
degree polynomial curve to smooth lane points and display areas within the
two lanes curves in green. We chose 2nd degree polynomials because higher
order polynomials have overly complex curves which fail to approximate
the lane line near the horizon.

49

4. Experiments and Results

4.1 Datasets

Since the model was produced as a pilot for a major OEM, many datasets
are only available for academic research. For this reason, we chose to
compare our model to others using the TuSimple dataset [67], since it is
open to commercial use. TuSimple was released by the autonomous truck
driving company of the same name. This dataset contains 6,408 images of
roads on US highways and was made available during the CVPR2017
conference. These image sets are made of many one-second-long clips of 20
frames each of resolution 1280x720. Overall the dataset mostly contains
image sequences with good or medium weather conditions, during the day,
containing 2 or more lanes in several traffic conditions. Upon release,
TuSimple proposed two challenges: A Lane Detection Challenge and a
Velocity Estimation Challenge. As part of the challenge, they provide labels
for every 20th frame for each sequence, which contain x coordinates for
each lane (up to 5) at 48 different vertical positions. The vertical positions
are marked by horizontal line anchors which are consistent for every image.
Finally, a -2 value is set for positions on the anchors which do not overlap a
lane or positions where no lane marking exists [67].

In an effort to expand the diversity of the TuSimple dataset, the
Robust Lane Detection team provides additional labels for every 13th image
in each sequence. Moreover, they include 1,148 image sequences of rural
roads in China [48].

CULane is another dataset widely used for benchmarking lane
detection models, but unfortunately is only available for education or
non-commercial research [68]. Our team chose to omit testing and
evaluating on this dataset to avoid any commercial conflicts.

Additionally, we recorded 20 hours of continuous driving through
several European countries, including France, Belgium, the Netherlands
and Finland to test and train our model to be fit for European roads. This
private dataset has a wide variety of driving conditions, including inner city
driving with pedestrians and highway driving with different weather and
illumination conditions. Our dataset contains labels of every 13th image,
with labels constructed in a similar manner as TuSimple. Rather than
having 48 horizontal lane anchors, we use 14 to decrease labeling cost. We
use less points to increase model inference speed by only needing to predict
a maximum of 3 lanes x 14 points.

50

4.2 Evaluation Criteria

A variety of metrics are used by researchers to evaluate the effectiveness of
machine learning models. Most of these criteria use a combination of True
Positive (TP), True Negative (TN), False Positive (FP) and False Negative
(FN) counts to come up with a single numerical value to determine how
well the model is performing. Among these criteria are Precision, Recall, F1
and Accuracy, with the latter being a value for human readability.
Understanding these four values can be depicted in a Confusion Matrix [770,

71, 72]:

Predicted

Positive Negative

False

Positiv .
D Negative

False
Positive

Negative

Ground-Truth

Figure 4.1: A confusion matrix [72].

Precision, also called positive predictive value (equation 23) gives an idea
of determining how reliable a given model can classify something as
positive.

Precisi TP

recision = TP (23)
Relying on precision as a metric allows us to determine whether or not we
can trust the prediction to be accurate. Recall, also known as sensitivity,
requires all positive labels and positive predictions. This is because recall
measures the model’s ability to detect positive examples.

TP

Recall = ——
AT TP I FN (24)

51

https://www.codecogs.com/eqnedit.php?latex=%5Cbf%7BPrecision%20%3D%20%5Cfrac%7BTP%7D%7BTP%2BFP%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbf%7BRecall%20%3D%20%5Cfrac%7BTP%7D%7BTP%2BFN%7D%7D#0

A perfect model would produce no false negatives, resulting in a recall of
1.0. In practice it is generally not possible to have both high precision and
recall as they often require tradeoffs between what is considered false
positive or false negative. Often, having too high precision and recall can
inform us that either the model is too complex (i.e. computationally costly)
or overfit to the trained data [71]. A model which has o false negatives or
positives is worth scrutinizing. It is important to utilize both precision and
recall in evaluating the effectiveness of our model because having only a
single metric can be deceiving on a case by case basis, meaning they are not
always reliable.

Another metric for evaluating predictive performance is Fi-score
(equation 25). It is useful for evaluating the effectiveness of multi-class
classifiers because it helps us find a balance between precision or recall. It
works by combining precision and recall, which are often competing
metrics [73]. Increasing precision can decrease recall and vice versa. As F1
is dependent on precision and recall, it is not perfect in that it does not
account for True Negative (TN) detections, which can be an issue in certain
situations. F1 ranges from 0 to 1, with values closer to 1 being better.

F1— 2 Precision - Recall

" Precision + Recall (25)

Other metrics such as the Matthews Correlation Coefficient (MCC) can be
employed when a more thorough evaluation is needed in situations where
there are unbalanced FNs vs FPs [60]. Accuracy, aka Error Rate (equation
26a) is the last commonly used metric for evaluating prediction capabilities

[75].

TP + TN
TP + TN + FP + FN

Accuracy =

(26a)

Unlike the previous 3 metrics, accuracy takes into account True Negative
(TN) predictions. Accuracy evaluates the models performance across all
classes and is particularly useful when classes are of equal importance [71].

Having a balanced (i.e. unbiased) dataset is also important for evaluating
the effectiveness of our model. Christopher K. Williams [60] notes that
precision of a classifier depends on the ratio of positive and negative cases
present in the test dataset [74]. As an example, imagine we have a biased
dataset containing 99 pictures of dogs and 1 picture of cats for a dog-cat
binary classification model. If our model classifies all 100 images as dogs, it

52

https://www.codecogs.com/eqnedit.php?latex=%5Cbf%7BF1%20%3D%202%5Ccdot%20%5Cfrac%7BPrecision%20%5Ccdot%20Recall%7D%7BPrecision%20%2B%20Recall%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbf%7BAccuracy%20%3D%20%5Cfrac%7BTP%20%2B%20TN%7D%7BTP%20%2B%20TN%20%2B%20FP%20%2B%20FN%7D%7D#0

would be said to have an accuracy of 0.99 (99%), Precision of 99 / (99 + 1)
= 0.99 and Recall of 99 / (99 + 0) = 1.0, even when it failed to correctly
label the cat class 100% of the time. A more balanced dataset which
contains a realistic distribution of inputs would result in a more trustworthy
value of precision and recall. Having datasets full of cherry picked data
would lead to misleading metrics on real predictions. This is one reason
why datasets are often shuffled, then split into training, testing and
validation sets. Ultimately, knowing if detecting false positives or false
negatives is more critical for the effectiveness of the model is situation
dependent.

4.2.1 TuSimple Evaluation

Since we rely on TuSimple as the main dataset for evaluation compared
with other models, we choose to use their evaluation formula specified in
the lane detection challenge. For the TuSimple lane detection challenge,
they account Accuracy (equation 26b) as their main metric.

i Ccli
Accuracy = Z:Chp—sp
chip clip (26b)
Where, Ceiip is the number of correct points in the last frame of the clip and
Sciip is the number of requested points in the last frame of the clip.

Although, they remain vague when it comes to defining what qualifies as a
correct point: “If the difference between the width of ground-truth and
prediction is less than a threshold, the predicted point is a correct one” [67].
TuSimple evaluation criteria includes rate of false positives (27a), false
negatives (27b):

Fp — Fered pry = Mered
Npred , Ngt (273), (27b)

Where, Fpred is the number of wrong predicted lanes, Npred is the number

of all predicted lanes, Mpred is the number of missed ground-truth lanes in
the predictions and Vet is the number of all ground-truth lanes.

53

https://www.codecogs.com/eqnedit.php?latex=%5Cbf%7BAccuracy%7D%20%3D%20%5Cfrac%7B%5Csum_%7Bclip%7D%20C_%7Bclip%7D%7D%7B%5Csum_%7Bclip%7D%20S_%7Bclip%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=C_%7Bclip%7D#0
https://www.codecogs.com/eqnedit.php?latex=S_%7Bclip%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbf%7BFP%20%3D%20%5Cfrac%7BF_%7Bpred%7D%7D%7BN_%7Bpred%7D%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbf%7BFN%20%3D%20%5Cfrac%7BM_%7Bpred%7D%7D%7BN_%7Bgt%7D%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=F_%7Bpred%7D#0
https://www.codecogs.com/eqnedit.php?latex=N_%7Bpred%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_%7Bpred%7D#0
https://www.codecogs.com/eqnedit.php?latex=N_%7Bgt%7D#0

This evaluation criteria combines both True Positive and True Negative into
“correct predictions”. Because of this, Precision, Recall and F1-score are not
considered.

When examining the criteria provided by the TuSimple challenge, a
few questions come to mind: Since a lane consists of 48 points, what
constitutes a correctly or incorrectly predicted lane? Is it some percentage
of the total lane considered matching? How far away is the prediction
compared to the ground truth label? Lanes in the image tend to become
smaller the further away they are, meaning a prediction 20 pixels away
from the ground truth label at the bottom of the image is much closer than
20 pixels away at the horizon. We will need to define these ourselves and
note that, although evaluation criteria is provided, it is not necessarily
rigorous enough to distinguish a good model.

To begin addressing the questions above, we define a confusion
matrix as follows: True Positive (TP) defined as when the prediction falls
within the thresholded distance away from the ground truth point. True
Negative (TN) when both the model and ground truth label are marked as
-2, meaning the lane is not present in the image. False Positive (FP) defined
as when the model predicts a pixel value, but the label is -2. False Negative
(FN) when the model predicts a -2 value, but the label is some real pixel
value. In our case, having a bias towards the model's performance of false
positive detections is more important because our lane detection model is
intended to guide lane correction. Predicting a lane is not present when it is,
is less dangerous than predicting a lane is present when it is not because the
vehicle would try to steer back into a lane it knows exists or stop the vehicle.
If the model predicted a lane is present when reality there is nothing there,
this could be dangerous because the vehicle could drive off road.

For inspiration in defining the threshold, we take a look at UFLD’s
method. They provide a clever way of creating a threshold that depends on
the angle of the lane and a pixel distance. Once the model has predicted the
x coordinates for each lane, a simple linear regression model uses
least-squares to fit a straight line to all points on the lane. Next, they take
the main coefficient (i.e. the slope of the line) and find the angle by taking
the inverse tangent of the slope. Afterwards they divide the pixel threshold
(in this case 20 pixels) by the cosine of the angle. Their reasoning for
choosing 20 pixels is not specified, but can be viewed as:

20
cos(arctan(m)) (28)

Threshold =

54

https://www.codecogs.com/eqnedit.php?latex=%20Threshold%20%3D%20%5Cfrac%7B20%7D%7B%5Ccos%20(arctan(m))%7D%20#0

Where, m = the coefficient of x in a slope-intercept form line ¥ = mx + b,

This results in the higher the angle of the lane, the less distance is allowed
to fit within the threshold. This is because shallow angles correspond to
lanes further from the camera and therefore containing less pixels overall in
the image, meaning the further lanes have less margin for error. Note, this
is still not perfect, because points closer to the horizon are still treated the
same as points closer to the bottom of the image.

UFLD evaluates their model by using the maximum accuracy over all
predicted lanes. This method should be scrutinized because it does not
inform the audience of the accuracy of each lane. A better approach would
be to provide the list of accuracies for each lane and use a normal
distribution to weight the accuracies, with lanes closer to the center of the
image receiving higher weighting. This would better inform of cases where
some lanes are detected very clearly, but other lanes are not detected.
UFLD’s current method would not be capable of distinguishing the
effectiveness of a model which only predicts 2 lanes from one that predicts 5
lanes. Ignoring the model’s ability to predict multiple lanes makes for an
ineffective evaluation criterion. Ignoring the model’s performance on all
other lanes fails to communicate how the model will perform when
switching lanes.

The basis of calculating the evaluation metrics (precision, recall, etc)
relies on what predictions we consider to be True Positive. In the case of
TuSimple, the confusion matrix is defined by the accuracy of the model. As
previously noted, using only one threshold value would result in higher
accuracy metrics which do not actually reflect an accurate model. One
approach may be to tie the threshold size to the inverse distance from the
camera combined with UFLD’s method of penalizing lanes further in the x
direction. Effectively this is accounting for the perspective effect with the
threshold. Another approach could be to average the results of many
different pixel distances. Since we lack a labeled depth estimation, we rely
on both TuSimple’s original metric and UFLD’s modified threshold.

55

https://www.codecogs.com/eqnedit.php?latex=m#0
https://www.codecogs.com/eqnedit.php?latex=y%3Dmx%2Bb#0

(=]
= -0.8
= 0.82
-
A
o7
(=]
=t
=T
",_.I" 0.85
(=N}
i
2™ 0.6
c
=
5
5o
33
g L 05
o
A
= 0.4
[
i
& 0.82
=]
=
{ 03
acc_000 acc_002 acc_005 acc_010 acc_020

Figure 4.2: Accuracy compared to threshold size with number of iterations.
The x direction shows different accuracy thresholds in pixels, while the

colored bar on the right shows the accuracy of the model with a given
threshold.

In figure 4.2 the accuracy increases as more pixel distance is allowed in the
threshold. Accuracy at o pixel distance only works for evaluating the
prediction of the NalNV or -2 values (i.e. true or false negative detections),
since there is no distance in between missed.

4.3 Implementation Details

4.3.1 Input Image Size

Our cameras provide an image size of 1280x720 while our model expects an
image resolution of 640x360. After features are detected with the ResNet

backbone, the input image is scaled down to 256x256 on the GPU to speed
up computation.

56

4.3.2 Hardware

Training the model was performed on an NVIDIA GeForce RTX 3080
Laptop GPU. CPU hardware used includes an 11th Gen Intel(R) Core(™)
i7-11850H @ 2.50GHz with 64 GBs of RAM. The model was then deployed
on an Nvidia Jetson AGX Xavier which has a 512-core Volta GPU with 64
Tensor cores and an 8-core ARM v8.2 64-bit CPU, 8MB L2 + 4MB L3 and
32B 256-Bit LPDDR4x memory [60].

4.3.3 Hyperparameters

The model was trained on a single GPU at image resolution of 640x360 and
then 256x256 after feature detection. Batch size was 192, performed using 6
workers. Learning rate, selection loss weight and horizon loss weight were
all set to 0.001. Lane order loss weight was set to 1. Maximum steps allowed
was 20,000 with our best results achieved just after step 10000 or about
119 Epochs. A custom script saved the maximum accuracy value and step
count and would terminate if no improvements were made while training
the model on the cloud to save money. Figure 4.2 demonstrates that
accuracy lowers slightly and plateaus from 15000 to 50000 steps.

4.3.4 Backbones

Our model was built upon PyTorch’s implementation of the ResNet34
architecture, a commonly used deep residual neural network (RNN) which
combines a series of convolutional layers for feature extraction in images
[40]. ResNet34 [41] takes some input image and outputs a 1000 length
feature vector describing the image. See the architecture diagram in section
3.2 for how we utilize this feature vector further in our network. We settled
on ResNet34 as a backbone after trying other length ResNets (i.e. ResNet18,
ResNet50, etc) as we found ResNet34 to result in a balance between
inference speed and model accuracy when deployed on our embedded
hardware.

4.3.5 Data Augmentation

Data augmentation is a method of enhancing the size of a dataset by
applying techniques such as cropping an image or changing illumination
conditions (brightness, contrast, noise, etc) to make a model both more
robust to variations and better at generalizing the task [76]. Networks are
only as good as the data fed in, meaning networks which are fed more data

57

generally yield better results. The amount of data needed tends to relate to
the complexity of the problem and therefore the complexity of the model.
There is not a way to know how much data is needed exactly for the task,
but heuristics and approximations can help. A rule of thumb is to use 10
times more data samples than parameters [77]. Our team attempted many
different types of data augmentation including spatial augmentation and
augmenting color, but unfortunately found these augmentations to result in
longer training times without much better results.

4.4 Results
4.4.1 Comparison with the State of the Art

In this section we cover the results using the TuSimple dataset comparing
our model against 4 others including LaneNet, Robust Lane Detection,
Ultra-Fast Lane Detection tested on an NVIDIA GeForce RTX 3080 Laptop
GPU. All models were trained from scratch using the TuSimple training set.
Training parameters were taken from the UFLD research paper which set
batch size to 32, learning rate to 4e-4 with a cosine decay learning strategy
with Adam optimizer and total number of epochs to 100. FPS was
calculated by taking the average over 100 frames 10 times, then averaging
the results. Frames were taken sequentially from the TuSimple testset. GPU
startup time often leads to the first set of 100 frames having a significantly
lower average FPS, which slightly pulls down the mean. Median FPS on
inference is typically slightly higher. Randomly pulling frames from the
dataset leads to slightly lower inference times and was avoided because it
does not replicate real world scenarios, therefore all frames were loaded
sequentially.

Table 1: Comparison of our method to several others on TuSimple Dataset.

Method Accuracy Runtime (fps) Runtime (s)
LaneNet 96.40% 15 0.0666
RLD: unet Istm 97.91% 56 0.0178
RLD: unet 096.53% 57 0.0175
UFLD 95.82% 286 0.0035
Ours (ResNet 18) | 93.10% 510 0.0019
Ours (ResNet 34) | 96.94% 343 0.0029

58

We provide inference speed of our model deployed on our target embedded
hardware: Nvidia Jetson AGX Xavier. As shown, even with pre and post
processing, our model still runs above real time on our target hardware. See
table 2 below:

Table 2: Vahidnet performance on Nvidia Jetson AGX Xavier.

Operation Median FPS
Lane detection inference 48.37

LD inference + pre and 36.42
post-processing

4.4.2 Lane Detection Prediction Results

(f)

Figure 4.3 (a-f): We demonstrate the results of our model with
post-processing applied.

4.4.3 Performance using Multiple Networks

Table 3: Comparison of model performance on Nvidia Jetson AGX Xavier

Operation Media FPS Processor Unit
LD inference 47.23 GPU

LD inference + pre and | 35.13 GPU + CPU
post-processing

59

Other NN 33.67 CPU

Even when both networks are run simultaneously, we are able to achieve
above real time inference. Additionally we test inference when running
alongside another neural network. The other neural network is proprietary,
but produces similar FPS when tested alone.

60

5. Conclusion

5.1 Conclusion

This research was performed to examine the effectiveness of lane detection
methods when placed on the Nvidia Jetson AGX Xavier SOC. Several lane
detection methods focus solely on detection accuracy at the expense of
speed, leading to models which are too slow to be useful in the real world.
Significant computing power and therefore more expensive and larger
equipment is required which requires major modification to the vehicle,
prohibiting affordable commercial applications of autonomous driving.

We present a real time method which provides competitive accuracy
and runs on an SOC capable of fitting in a vehicle’s dashboard. We iterate
on the row-wise classification method pioneered by UFLD [49] which
enables stable and accurate lane detection at high speeds using individual
images. We further modify this method to run at real time on the Nvidia
Jetson AGX Xavier SOC by reducing the model’s complexity and output
parameters. Additionally, the model meets level 2 / 2++ ADAS operational
design domain requirements.

Accurately and truthfully evaluating a lane detection model is not a
trivial task. Without external information about the vehicle, evaluating the
model often relies on methods which do not model the real world, such as
choosing a pixel threshold for predictions to fall within. Other lane
detection methods often rely on subjective heuristics for evaluating
performance which do not accurately reflect how the model might perform
in reality. By breaking down our model into 3 separate tasks of lane
detection and order, lane selection and horizon detection, we are able to
eliminate false predictions and consistently define the ego lane in which the
vehicle is driving. This method also allows the ability for the model to stably
switch lanes with consistent predictions. One limitation is that the model is
intended to be used for the purpose of informing the driver when the
vehicle is departing the lane while driving on the highway. The single
camera method does not have a full understanding of the surrounding
vehicle and will only be used as a level 2 ADAS safety feature. Fully
autonomous control will require a more robust perception stack with more
cameras to increase the vehicle's awareness.

Although the model has been evaluated visually and
methodologically, we have yet to see how it performs when used to control a
vehicle. Understanding if the model will perform safely when combined
with a control system is difficult to determine without additional validation.
Realistically evaluating the effectiveness of the model will require real world

61

tests which are beyond the scope of this research. Nonetheless, our model
combined with the Kalman filter has demonstrated reliable predictions
which are stable and accurate.

The method mainly relies on the ResNet34 backbone for feature
detection and may be improved using more powerful architectures.
Furthermore, the accuracy of the model could benefit from training on
more data in more situations than highway driving or with a more rigorous
use of data augmentation methods. Other similar methods such as
SwiftLane [55] use false positive suppression techniques to increase
accuracy and speed. Finally, we seek to continue downscaling the model
such that it can run at real time on less powerful SOCs. We will continue to
update our model with recent advances to ensure a safe and reliable lane
detection model for semi-autonomous driving.

5.2 Discussion

In tackling this project the two biggest problems encountered had little to
do with the actual science involved, but rather the accessibility to the ML
models provided by other researchers.

With our current code hosting platforms such as GitHub, it has been
easier than ever to access the research results of others. Being able to run
and verify the results of a model developed by a team across the world is a
modern wonder which has been a great triumph for research. Although, a
few barriers stand in the way of this free and open accessibility to research.
In trying to evaluate Robust Lane Detection, only some of the pre-trained
models provided by the team were accessible through Google drive. The
efforts of the Robust Lane Detection team were excellent in that they
provided free access to an extended version of the TuSimple dataset. Access
to Google is (at the time of writing) restricted in China and thus the team
collaborated internationally in order to provide these models. I think it is
very important for us to be aware of the platforms in which we publish our
research, noting that it may very well be inaccessible to our fellow scientists
elsewhere in the world.

The second issue involves dependencies in deep learning. With the
current infrastructure, we have a pipeline of PyTorch, OpenCV, NumPy,
Docker and Nvidia’s CUDA which enables a development to edge pipeline
which enables quick iteration when creating real world applications with
deep learning. It comes at the cost of managing many dependencies which
often do not work well together. There were many moments in this research
where some combination of dependencies had become obsolete and no
longer available on the platforms which host previous versions of the

62

dependencies listed above. Effectively this pushes research which relies on
these old dependencies out of reach, making them quickly obsolete.

In the case of testing LaneNet and even my team's current model, the
difference between software versions made these models un-deployable
without first virtualizing an environment. This dependency problem greatly
increases the time and complexity of running a model that is from just a few
years before. Attempting to test SCNN, using up to date hardware to test the
other models no longer supported the outdated versions of dependencies
required to run their model, which resulted in the model being dropped
from the experiments. Thinking about this pipeline brings the topic of how
to maintain deep learning models and prevent them from becoming
obsolete within a matter of years.

63

Bibliography

[1]

[2]

[3]

(4]

[5]

[6]

[7]

[8]

Road traffic injuries [Internet]. World Health Organization. World
Health Organization; [cited 2022Jun28]. Available from:
https://www.who.int/news-room/fact-sheets/detail /road-traffic-inj
uries#:~:text=Approximately%201.3%20million%20people%20die,p
edestrians%2C%20cyclists%2C%20and %20motorcyclists.

2016 fatal motor vehicle crashes: Overview - transportation
[Internet]. U.S Department of Transportation National Highway
Traffic Safety Administration; 2017 [cited 2022Jul3]. Available from:
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/81245
6

Reimer J. Adas Tech can save lives by helping you and your car drive
safer at night [Internet]. here.com. 2022 [cited 2022Jul3]. Available
from:
https://www.here.com/company/blog/adas-technology-night-time#
:~:text=ADAS%3A%20an%20intelligent%20nightlight%20for,injuri
es%20and%2029%25%200f%20deaths.

Benson, A., Tefft, B.C., Svancara, A.M. & Horrey, W.J. (2018).
Potential Reduction in Crashes, Injuries and Deaths from
Large-Scale Deployment of Advanced Driver Assistance Systems
(Research Brief). Washington, D.C.: AAA Foundation for Traffic
Safety. [cited 2022Juls]. Available from:
https://aaafoundation.org/potential-reduction-in-crashes-injuries-a
nd-deaths-from-large-scale-deployment-of-advanced-driver-assistan
ce-systems/

Brussels, European Commission / European Road Safety
Observatory (ERSO), 2016, 38 p., ref. [cited 2022Jul5]. Available
from:

Nissan D. A brief history of lane departure warnings [Internet].
Medium. Medium; 2016 [cited 2022Febi17]. Available from:
https://medium.com/@ducannissan/a-brief-history-of-lane-departu
re-warnings-f6316fce8427

O.-R. A. D. (ORAD) Committee, ‘Taxonomy and Definitions for
Terms Related to Driving Automation Systems for On-Road Motor
Vehicles’, SAE International 2021.[cited 2022Jul7]. Available from:
https://saemobilus.sae.org/content/j3016_202104

Francis T. What is Lane-Keeping Assist? [Internet]. Auto Express.
AutoExpress; 2021 [cited 2022Jul6]. Available from:

64

https://swov.nl/en/publicatie/advanced-driver-assistance-systems-0
https://swov.nl/en/publicatie/advanced-driver-assistance-systems-0
https://medium.com/@ducannissan/a-brief-history-of-lane-departure-warnings-f6316fce8427
https://medium.com/@ducannissan/a-brief-history-of-lane-departure-warnings-f6316fce8427

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

https://www.autoexpress.co.uk/tips-advice/356028 /what-lane-keep
ing-assist

F. Chollet, Deep Learning with Python, 2017, isbn: 9781617294433.
(page 5)

Gonzalez RC, Woods RE. 3.4 Fundamentals of Spatial Filtering. In:
Digital Image Processing. 4th ed. New York, NY: Pearson; 2018. p.
153—9. (Global Edition).

Fukushima K. Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in
position. Biological Cybernetics. 1980Apr1;36(4):193—202.

P. V. C. Hough, "Method and Means for Recognizing Complex
Patterns", US Patent 3,069,654, Ser. No. 17,7156 Claims, 1962.
Canny J. A computational approach to edge detection. Readings in
Computer Vision. 1987;:184—-203.

Shiwakoti N. Lane detection and tracking [Internet]. Encyclopedia.
Scholarly Community Encyclopedia; [cited 2022Feb24]. Available
from: https://encyclopedia.pub/entry/15330

Duda, R. O. and P. E. Hart, "Use of the Hough Transformation to
Detect Lines and Curves in Pictures," Comm. ACM, Vol. 15, pp. 11-15
(January, 1972).

B. Yu and A. K. Jain, "Lane boundary detection using a
multiresolution Hough transform,” Proceedings of International
Conference on Image Processing, 1997, pp. 748-751 vol.2, doi:
10.1109/ICIP.1997.638604.

Ping-shu Ge, Lie Guo, Guo-kai Xu, Rong-hui Zhang, Tao Zhang, "A
Real-Time Lane Detection Algorithm Based on Intelligent CCD
Parameters Regulation", Discrete Dynamics in Nature and Society,
vol. 2012, Article ID 273164, 16 pages, 2012.
https://doi.org/10.1155/2012/273164

Peng Sun and Hui Chen "Lane detection and tracking based on
improved Hough transform and least-squares method", Proc. SPIE
9301, International Symposium on Optoelectronic Technology and
Application 2014: Image Processing and Pattern Recognition,
93011U (24 November 2014); https: 1.0rg/10.1117/12.2072

Seitz S, Sinha P. Image Filtering [Internet]. CSE455: Computer
Vision, University of Washington; Lecture presented Winter (2003);
[cited 2022May11]. Available from:
https://courses.cs.washington.edu/courses/cse455/03wi/lectures/fi
Iter.pdf

J. P. Gonzalez and U. Ozguner, "Lane detection using
histogram-based segmentation and decision trees," ITSC2000. 2000

65

https://doi.org/10.1155/2012/273164
https://doi.org/10.1117/12.2072393

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

IEEE Intelligent Transportation Systems. Proceedings (Cat.
No.00TH8493), 2000, 98 346-351, doi:
10.1109/ITSC.2000.881084.

Kuo-Yu Chiu and Sheng-Fuu Lin, "Lane detection using color-based
segmentation," IEEE Proceedings. Intelligent Vehicles Symposium,
2005., 2005, pp. 706-711, doi: 10.1109/IVS.2005.1505186.

J. Lee and J. Cho, "Effective Lane Detection and Tracking Method
Using Statistical Modeling of Color and Lane Edge-Orientation,"
2009 Fourth International Conference on Computer Sciences and
Convergence Information Technology, 2009, pp. 1586-1591, doi:
10.1109/ICCIT.2009.81.

Kippenbrock R. Ross Kippenbrock - Finding Lane lines for self
driving cars [Internet]. YouTube. PyDataTV; 2017 [cited 2022Mar1].
Available from: https://www.youtube.com/watch?v=VyLihutdsPk
Keenan R, Kul S, Bucholtz B, Chadha H.
Udacity/carnd-advanced-lane-lines [Internet]. GitHub. Udacity;
[cited 2022Mari]. Available from:
https://github.com/udacity/CarND-Advanced-Lane-Lines

Y. Lee and H. Kim, "Real-time lane detection and departure warning
system on embedded platform,” 2016 IEEE 6th International
Conference on Consumer Electronics - Berlin (ICCE-Berlin), 2016,
pp. 1-4, doi: 10.1109/ICCE-Berlin.2016.7684702.

Zhou D-X. Universality of deep convolutional Neural Networks.
Applied and Computational Harmonic Analysis. 2020;48(2):787—94.
Rosenblatt, F. The perceptron - A perceiving and recognizing
automaton. Cornell Aeronautical Laboratory; 1957. Report
No.:85-460-1

Brownlee J. Perceptron algorithm for classification in Python
[Internet]. Machine Learning Mastery. 2020 [cited 2022Mar3].
Available from:
https://machinelearningmastery.com/perceptron-algorithm-for-clas
sification-in-python/#:~:text=The%20Perceptron%2o0algorithm%20
is%20a,and%20predicts%20a%20class%20label.

Minsky, M, Papert, S. Perceptrons: An Introduction to
Computational Geometry. MIT Press; 1969.

Robbins H, Monro S. A stochastic approximation method. The
Annals of Mathematical Statistics. 1951;22(3):400-7.

Baheti P. Activation functions in neural networks [12 types & use
cases] [Internet]. V7. Microsoft; [cited 2022Mar9] Avallable from

66

https://github.com/udacity/CarND-Advanced-Lane-Lines
https://www.v7labs.com/blog/neural-networks-activation-functions

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Fukushima K. Cognitron: A self-organizing multilayered neural
network. Biological Cybernetics. 1975;20(3-4):121—36.
Hassan, Hassan & Negm, Abdelazim & Zahran, Mohamed &
Saavedra, Oliver. (2015). ASSESSMENT OF ARTIFICIAL NEURAL
NETWORK FOR BATHYMETRY ESTIMATION USING HIGH
RESOLUTION SATELLITE IMAGERY IN SHALLOW LAKES: CASE
STUDY EL BURULLUS LAKE.. International Water Technology
Journal. 5. Figure 4.
Zheng A, Casari A. Chapter 2: Fancy Tricks with Simple Numbers /
Feature Selection. In: Feature Engineering for Machine Learning:
Principles and techniques for Data scientists. Beijing: O'Reilly; 2018.
p- 38—9.
Pani A. Convolutional Neural Networks [Internet]. LinkedIn.
Microsoft; 2018 [cited 2022Sep10]. Available from:
https://www.linkedin.com/pulse/convolutional-neural-networks-an
indita-pani/
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with
deep convolutional Neural Networks. Communications of the ACM.
2017;60(6):84—90.
Amini A. MIT 6.S191 (2020): Convolutional Neural Networks
[Internet]. YouTube. MIT; 2020 [cited 2022Mar11]. Available from:
https://www.youtube.com/watch?v=iaSUYvmCekI
Li F-F, Wu J, Gao R. [Internet]. CS231N convolutional neural
networks for visual recognition. Stanford University; [cited
2022Mari11]. Available from:
https://cs231n.github.io/convolutional-networks/
Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based
learning applied to document recognition," in Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi:
10.1109/5.726791.
Resnet34 [Internet]. resnet34 - Torchvision main documentation.
[cited 2022Jul2]. Available from:
https://pytorch.org/vision/main/models/generated/torchvision.mo
Is.resnet34.html
He, K, Zhang, X, Ren, S, Sun, JDeep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) 2016 (pp. 770-778).
Polyak BT. Some methods of speeding up the convergence of
iteration methods. USSR Computational Mathematics and
Mathematical Physics. 1964;4(5):1—17.

67

https://cs231n.github.io/convolutional-networks/
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet34.html
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet34.html

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Rumelhart DE, Hinton GE, Williams RJ. Learning representations
by back-propagating errors. Nature. 19860ct9;323(6088):533—6.
Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980. 2014 Dec 22.

What is layer normalization? | deep learning fundamentals
[Internet]. YouTube. AssemblyAl; 2022 [cited 2022Jun14]. Available
from: https://www.youtube.com/watch?v=2V3Uduw1zwQ

Ba JL, Kiros JR, Hinton GE. Layer normalization [Internet].
arXiv.org. 2016 [cited 2022Juni6]. Available from:
https://arxiv.org/abs/1607.06450

Wang, Z, Ren, W, Qiu, Q. “LaneNet: Real-Time Lane Detection
Networks for Autonomous Driving” (2018).
https://arxiv.org/abs/1807.01726 (accessed Jan. 18, 2022)

Q. Zou, H. Jiang, Q. Dai, Y. Yue, L. Chen, Q. Wang. "Robust lane
detection from continuous driving scenes using deep neural
networks". IEEE Transactions on Vehicular Technology 2020;
69(1):41-54

Qin, Z, Wang, H, Li, X. Ultra Fast Structure-aware Deep Lane
Detection (2020). https://arxiv.org/abs/2004.11757

Xingang Pan, Jianping Shi, Ping Luo, Xiaogang Wang, Xiaoou Tang.
"Spatial As Deep: Spatial CNN for Traffic Scene Understanding",
AAAI2018

Q. Ju, et al., "PathMark: A Novel Fast Lane Detection Algorithm for
Embedded Systems," in 2012 Fourth International Symposium on
Information Science and Engineering (ISISE 2012), Shanghai, 2012
pp. 68-73. doi: 10.1109/ISISE.2012.24

Jeng, Ming-Jer & Hsueh, Pi-Chih & Yeh, Chun-Wei & Hsiao,
Pei-Yung & Cheng, Chao-Han & Chang, Liann-Be. (2007). Real time
mobile lane detection system on PXA255 embedded system.

N. Mechat, N. Saadia, N. K. M'Sirdi and N. Djelal, "Lane detection
and tracking by monocular vision system in road vehicle," 2012 5th
International Congress on Image and Signal Processing, 2012, pp.
1276-1282, doi: 10.1109/CISP.2012.6469683.

M. Nieto, L. Garcia, O. Scnderos and O. Otaegui, "Fast Multi-Lane
Detection and Modeling for Embedded Platforms," 2018 26th
European Signal Processing Conference (EUSIPCO), 2018, pp.
1032-1036, doi: 10.23919/EUSIPCO0.2018.8553262.

Oshada Jayasinghe, Damith Anhettigama, Sahan Hemachandra,
Shenali Kariyawasam, Ranga Rodrigo, Peshala JayasekaraSwiftLane:
Towards Fast and Efficient Lane Detection. In 2021 20th IEEE

68

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1807.01726
https://arxiv.org/abs/2004.11757
https://arxiv.org/abs/1712.06080

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

International Conference on Machine Learning and Applications
(ICMLA) 2021 . IEEE.

Neven D. De Brabandere, B. Georgoulis, S, Proesmans, M, Van Gool,
L. Towards End-to-End Lane Detection: an Instance Segmentation
Approach.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical Image Computing and Computer Assisted
Intervention, 2015.

X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W. chun
Woo, “Convolutional Istm network: A machine learning approach for
precipitation nowecasting,” in Advances in neural information
processing systems (NIPS), 2015, pp. 802—-810.

Gospodinova S, Miccoli F. Press corner [Internet]. European
Commission - European Commission. European Commission; [cited
2022Junis]. Available from:
https://ec.europa.eu/commission/presscorner/detail/en/IP_22_43
12

Jetson AGX Xavier Developer kit [Internet]. NVIDIA Developer.
Nvidia; 2022 [cited 2022Junis]. Available from:
https://developer.nvidia.com/embedded/jetson-agx-xavier-develope
r-kit

Jetson Nano Developer Kit [Internet]. NVIDIA Developer. NVIDIA;
2022 [cited 2022Juni12]. Available from:
https://developer.nvidia.com/embedded/jetson-nano-developer-Kkit
RESNET34 Fast.ai V2 classification model [Internet]. Roboflow.
[cited 2022Juné6]. Available from:
https://models.roboflow.com/classification/resnet34

Binary crossentropy loss function: Peltarion platform [Internet].
Peltarion. Peltarion; [cited 2022May11]. Available from:
https://peltarion.com/knowledge-center/documentation/modeling-
view/build-an-ai-model/loss-functions/binary-crossentropy

Gomez R. Understanding Categorical Cross-Entropy Loss, Binary
Cross-Entropy Loss, Softmax Loss, Logistic Loss, Focal Loss and all
those confusing names [Internet]. Understanding categorical
cross-entropy loss, binary cross-entropy loss, Softmax loss, logistic
loss, focal loss and all those confusing names. 2018 [cited
2022Jul29]. Available from:
https://gombru.github.io/2018/05/23/cross_entropy_loss/
DigitalSreeni. Tips tricks 15 - understanding binary cross-entropy
loss [Internet]. YouTube. YouTube; 2021 [cited 2022May13].

69

https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://models.roboflow.com/classification/resnet34

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Available from:
https://www.youtube.com/watch?v=Md4b67HvimmRo
Hansen C. Optimizers explained - adam, momentum and stochastic
gradient descent [Internet]. Machine Learning From Scratch.
Machine Learning From Scratch; 2019 [cited 2022Jul2]. Available
from: https://mlfromscratch.com/optimizers-explained/#/
TuSimple. Tusimple/Tusimple-benchmark: Download datasets and
ground truths:
Https://github.com/tusimple/tusimple-benchmark/issues/3
[Internet]. GitHub. TuSimple; [cited 2022Jan24]. Available from:
https://github.com/TuSimple/tusimple-benchmark
CuLane Dataset [Internet]. Culane dataset. Multimedia Laboratory,
The Chinese University of Hong Kong; [cited 2022Jan28]. Available
from: https://xingangpan.github.io/projects/CULane.html
Becker A. Online kalman filter tutorial [Internet]. Kalman Filter
Tutorial. [cited 2022Jul13]. Available from:
https://www.kalmanfilter.net/default.aspx
Precision and recall in Machine Learning - Javatpoint [Internet].
www.javatpoint.com. [cited 2022Jul3]. Available from:
https://www.javatpoint.com/precision-and-recall-in-machine-learni
ng#:~:text=Recall%200f%20a%20machine%20learning%20model %
20is%20dependent%200n%20positive,correctly%2o0classifying%20a
11%20positive%20samples.
Classification: Precision and recall | machine learning | google
developers [Internet]. Google. Google; [cited 2022Julg]. Available
from:
https://developers.google.com/machine-learning/crash-course/clas
sification/precision-and-recall
Gad AF. Accuracy, precision, and recall in deep learning [Internet].
Paperspace Blog. Paperspace Blog; 2021 [cited 2022Jul12]. Available
from:
https://blog.paperspace.com/deep-learning-metrics-precision-recall
-accuracy/#:~:text=The%20recall%20measures%20the%20model %
27s,classified%2C%20e.g.%20for%20the%20precision.
LT Z. Essential things you need to know about Fi-score [Internet].
Medium. Towards Data Science; 2022 [cited 2022Jul12]. Available
from:
https://towardsdatascience.com/essential-things-you-need-to-know
-about-fi-score-dbdg73bfiag#:~:text=1.-.Introduction,competing%z2
metrics%20%E2%80%94%20precision%20and%20recall.

70

https://www.youtube.com/watch?v=Md4b67HvmRo
https://xingangpan.github.io/projects/CULane.html
https://www.kalmanfilter.net/default.aspx
https://blog.paperspace.com/deep-learning-metrics-precision-recall-accuracy/#:~:text=The%20recall%20measures%20the%20model%27s,classified%2C%20e.g.%20for%20the%20precision
https://blog.paperspace.com/deep-learning-metrics-precision-recall-accuracy/#:~:text=The%20recall%20measures%20the%20model%27s,classified%2C%20e.g.%20for%20the%20precision
https://blog.paperspace.com/deep-learning-metrics-precision-recall-accuracy/#:~:text=The%20recall%20measures%20the%20model%27s,classified%2C%20e.g.%20for%20the%20precision
https://towardsdatascience.com/essential-things-you-need-to-know-about-f1-score-dbd973bf1a3#:~:text=1.-,Introduction,competing%20metrics%20%E2%80%94%20precision%20and%20recall
https://towardsdatascience.com/essential-things-you-need-to-know-about-f1-score-dbd973bf1a3#:~:text=1.-,Introduction,competing%20metrics%20%E2%80%94%20precision%20and%20recall
https://towardsdatascience.com/essential-things-you-need-to-know-about-f1-score-dbd973bf1a3#:~:text=1.-,Introduction,competing%20metrics%20%E2%80%94%20precision%20and%20recall

[74]

[75]

[76]

[77]

Christopher K. I. Williams. "The Effect of Class Imbalance on
Precision-Recall Curves". Neural Computation 2021; 33(4):853—-857.
Classification: Accuracy | machine learning | google developers
[Internet]. Google. Google; [cited 2022Jul29]. Available from:
https://developers.google.com/machine-learning/crash-course/clas
sification/accuracy

Takimoglu A. Top data augmentation techniques: Ultimate guide for
2022 [Internet]. AIMultiple. 2022 [cited 2022Jul14]. Available from:
https://research.aimultiple.com/data-augmentation-techniques
Brownlee J. How much training data is required for machine
learning? [Internet]. Machine Learning Mastery. 2019 [cited
2022Jul12]. Available from:

https://machinelearningmastery.com/much-training-data-required-
machine-learnin

71

https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://research.aimultiple.com/data-augmentation-techniques/
https://machinelearningmastery.com/much-training-data-required-machine-learning/
https://machinelearningmastery.com/much-training-data-required-machine-learning/

