86 research outputs found

    Survey of Radio Navigation Systems

    Get PDF
    At present, there is a growing demand for radio navigation systems, ranging from pedestrian navigation to consumer behavior analysis. These systems have been successfully used in many applications and have become very popular in recent years. In this paper we present a review of selected wireless positioning solutions operating in both indoor and outdoor environments. We describe different positioning techniques, methods, systems, as well as information processing mechanisms

    Directional Antenna System-Based DoA/RSS Estimation, Localization and Tracking in Future Wireless Networks: Algorithms and Performance Analysis

    Get PDF
    Location information plays an important role in many emerging technologies such as robotics, autonomous vehicles, and augmented reality. Already now the majority of smartphone owners use their devices' localization capabilities for a broad range of location-based services. Currently, location information in smartphones is mostly obtained in a device-centric approach, where the device to be localized, here referred to as the target node (TN), estimates its own location using, for example, the global positioning system (GPS). However, TNs with wireless communication capabilities can be localized based on their transmitted signals by a third party. In particular, localization can be implemented as a functionality of a wireless network. Depending on the application area and implementation, this network-centric approach has several advantages compared to device-centric localization, such as reducing the energy consumption within the TNs, enabling localization of non-cooperative TNs, and making location information available in the network itself. Current generation wireless networks are already capable of coarse localization. However, these existing localization capabilities do not suffice for the challenging demands of future applications. The majority of approaches moreover does not exploit the fact that an increasing number of base stations (BSs) and user devices are equipped with directional antennas. However, directional antennas enable direction of arrival (DoA) estimation that can, in turn, serve as the basis for advanced localization and location tracking. In this thesis, we thus study the application of directional antennas for localization and location tracking in future generation wireless networks. The contributions of this thesis can be grouped into two topics.First, this thesis provides a detailed study of DoA/received signal strength (RSS) estimation and localization with a group of directional antennas herein denoted as sectorized antennas. This group of antennas is of particular interest as it encompasses a broad range of directional antennas that can be implemented with a single RF front-ïżŒend. Thus, the hardware complexity of sectorized antennas is low in comparison to the conventionally used antenna arrays that require multiple transceiver branches. However, at the same time this means that DoA estimation with sectorized antennas has to be implemented in a fundamentally different way. In order to address these differences, the study of sectorized antennas in this thesis includes the derivation of Cramer-Rao bounds (CRBs) for DoA/RSS estimation and localization, the proposal of three different DoA/RSS estimators, as well as numerical and analytical performance evaluations of DoA/RSS estimation and localization using sectorized antennas.Second, this thesis deals with localization based on the fusion of DoA and RSS estimates as well as DoA and time of arrival (ToA) estimates. It is shown that the combination of these estimates can result in a much increased localization performance compared to a localization based on one of these estimates alone. For the localization based on DoA/RSS estimates, a mechanism explaining this improvement is revealed by means of a CRB analysis. Thereafter, DoA/RSS-based fusion is further studied using an extended Kalman filter (EKF) as an example location tracking algorithm. Finally, an EKF is proposed that tracks the location of a TN by fusing DoA and ToA estimates. Apart from a significantly improved tracking performance, this joint DoA/ToA-EKF moreover provides estimates for the TN device clock offset and is able to localize the TN in situations where a classical DoA-only EKF fails to provide a location estimate altogether.Overall, this thesis thus provides insights into benefits of localization and location tracking using directional antennas, accompanied by specific DoA/RSS estimation, localization and location tracking solutions, as well as design guidelines for implementing localization systems in future generation wireless networks

    Interference Power Characterization in Directional Networks and Full-Duplex Systems

    Get PDF
    This paper characterizes the aggregate interference power considering both directional millimeter-wave (mmWave) and In-Band Full-Duplex (IBFDX) communications. The considered scenario admits random locations of the interferers. The analysis considers a general distance-based path loss with a sectored antenna model. The interference caused to a single node also takes into account the residual self-interference due to IBFDX operation. The main contribution of the paper is the characterization of the interference caused by both transmitting nodes and full-duplex operation for different parameters and scenarios.authorsversionpublishe

    Design and theoretical analysis of advanced power based positioning in RF system

    Get PDF
    Accurate locating and tracking of people and resources has become a fundamental requirement for many applications. The global navigation satellite systems (GNSS) is widely used. But its accuracy suffers from signal obstruction by buildings, multipath fading, and disruption due to jamming and spoof. Hence, it is required to supplement GPS with inertial sensors and indoor localization schemes that make use of WiFi APs or beacon nodes. In the GPS-challenging or fault scenario, radio-frequency (RF) infrastructure based localization schemes can be a fallback solution for robust navigation. For the indoor/outdoor transition scenario, we propose hypothesis test based fusion method to integrate multi-modal localization sensors. In the first paper, a ubiquitous tracking using motion and location sensor (UTMLS) is proposed. As a fallback approach, power-based schemes are cost-effective when compared with the existing ToA or AoA schemes. However, traditional power-based positioning methods suffer from low accuracy and are vulnerable to environmental fading. Also, the expected accuracy of power-based localization is not well understood but is needed to derive the hypothesis test for the fusion scheme. Hence, in paper 2-5, we focus on developing more accurate power-based localization schemes. The second paper improves the power-based range estimation accuracy by estimating the LoS component. The ranging error model in fading channel is derived. The third paper introduces the LoS-based positioning method with corresponding theoretical limits and error models. In the fourth and fifth paper, a novel antenna radiation-pattern-aware power-based positioning (ARPAP) system and power contour circle fitting (PCCF) algorithm are proposed to address antenna directivity effect on power-based localization. Overall, a complete LoS signal power based positioning system has been developed that can be included in the fusion scheme --Abstract, page iv

    Analysis of Millimeter-Wave Networks: Blockage, Antenna Directivity, Macrodiversity, and Interference

    Get PDF
    Due to its potential to support high data rates at low latency with reasonable interference isolation because of signal blockage at these frequencies, millimeter-wave (mmWave) communications has emerged as a promising solution for next-generation wireless networks. MmWave systems are characterized by the use of highly directional antennas and susceptibility to signal blockage by buildings and other obstructions, which significantly alter the propagation environment. The received power of each transmission depends on the direction the corresponding antennas point and whether the signal’s path is line-of-sight (LOS), non-LOS (i.e., partially blocked), or completely blocked. A key challenge in modeling blocking in mmWave networks is that, in actual networks, the blocking might be correlated. Such correlation arises, for example, when single transmitter tries to broadcast to pair of receivers that are close to each other, or more generally when they have a similar angle to the transmitter. In this situation, if the first receiver is blocked, it is likely that the second one is blocked, too. This dissertation explores four related but distinct issues associated with mmWave networks: 1) Analytical modeling of networks consisting of user devices and blockages with fixed or random, but independent, locations, 2) The careful characterization of correlated blocking and analysis of its impact on the performance of mmWave networks, 3) The proposed use of macrodiversity as an important strategy to mitigating correlated blocking in mmWave networks and the corresponding analysis, and 4) The proposed use of networks of unmanned aerial vehicles (UAVs) to provide connectivity in urban deployments. This work provides insight into the performance of variety of applications of mmWave communications, ranging from wireless personal area networks (WPAN), device-to-device networks, traditional terrestrial, cellular networks, and the UAV-based networks where the UAVs act as the cellular base stations. A common thread throughout this dissertation is the development of new tools based on stochastic geometry and their application to modeling and analysis. The analysis presented in this dissertation is general enough to find application beyond mmWave networks, for instance the results may also be applicable to systems that use free-space optical (FSO) signaling technologies

    Guaranteeing the authenticity of location information

    Get PDF
    A comprehensive definition of location authentication and a review of its threats and possible solutions help provide a better understanding of this young security requirement.Publicad

    Performance Comparison Between Music And Esprit Algorithms For Direction Estimation Of Arrival Signals

    Get PDF
    This thesis examines and compares the performance of Multiple Signal Classification (MUSIC) and Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) for the estimation of Direction of Arrival (DOA) of incoming signals to the smart antenna. The comparison of these two algorithms was done on the basis of parameters like number of array elements, number of incoming signals, angle difference between the incoming signals, number of the samples taken of signal, processing time and SNR ratio. These two algorithms were implemented with MATLAB and SIMULINK for the experimental purpose. After all the experiments performed, it was analyzed that results obtained from both of the software were almost same. Comparing MUSIC\u27s results with ESPRIT, it was found that MUSIC is less prone to error than ESPRIT for almost all parametric tests. This superiority of MUSIC made it desirable to recommend it for DOA estimation in smart antenna system

    Enhancing RFID indoor localization with cellular technologies

    Get PDF

    Mobile Location in GSM Networks using Database Correlation with Bayesian Estimation

    Full text link
    • 

    corecore